[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: I-key .. Ideal
I
i
Id(J) : JacHyp -> JacHypPt
Identity(J) : JacHyp -> JacHypPt
J ! 0 : JacHyp, RngIntElt -> JacHypPt
Id(R) : AlgChtr -> AlgChtrElt
Id(M) : MonFP -> MonFPElt
Id(O) : MonOrd -> MonOrdElt
Id(P) : MonPlc -> MonPlcElt
IdDataNLAC(L) : AlgLie -> MonStgElt, SeqEnum, Map
IdDataSLAC(L) : AlgLie -> MonStgElt, SeqEnum, Map
Identity(D) : DiffFun -> DiffFunElt
Identity(D) : DivCrv -> DivCrvElt
Identity(G) : DivFun -> DivFunElt
Identity(G) : Grp -> GrpElt
Identity(G) : Grp -> GrpPermElt
Identity(A) : GrpAb -> GrpAbElt
Identity(G) : GrpAtc -> GrpAtcElt
Identity(A) : GrpAutCrv -> GrpAutCrvElt
Identity(A) : GrpAuto -> GrpAutoElt
Identity(G) : GrpBB -> GrpBBElt
Identity(B) : GrpBrd -> GrpBrdElt
Identity(G) : GrpFP -> GrpFPElt
Identity(G) : GrpGPC -> GrpGPCElt
Identity(G) : GrpLie -> GrpLieElt
Identity(G) : GrpMat -> GrpMatElt
Identity(G) : GrpPC -> GrpPCElt
Identity(G) : GrpRWS -> GrpRWSElt
Identity(G) : GrpSLP -> GrpSLPElt
Identity(M) : MonRWS -> MonRWSElt
IdentityAutomorphism(G) : GrpLie -> GrpLieAutoElt
IsId(g) : GrpElt -> BoolElt
IsId(g) : GrpPermElt -> BoolElt
IsId(w) : GrpRWSElt -> BoolElt
IsId(w) : GrpRWSElt -> BoolElt
IsId(w) : MonRWSElt -> BoolElt
IsId(P) : PtEll -> BoolElt
IsIdentity(u) : GrpAbElt -> BoolElt
IsIdentity(g) : GrpGPCElt -> BoolElt
IsIdentity(g) : GrpMatElt -> BoolElt
IsIdentity(g) : GrpPCElt -> BoolElt
IsIdentity(u: parameters) : GrpBrdElt -> BoolElt
One(R) : Rng -> RngElt
Ideals and Factorisations (SCHEMES)
Ideals and Factorisations (SCHEMES)
AlgAss_id_pots (Example H81E3)
IdDataNLAC(L) : AlgLie -> MonStgElt, SeqEnum, Map
IdDataSLAC(L) : AlgLie -> MonStgElt, SeqEnum, Map
AdjointIdeal(C) : Crv -> RngMPol
AdjointIdealForNodalCurve(C) : Crv -> RngMPol
AdjointLinearSystemFromIdeal(I, d) : RngMPol, RngIntElt -> LinearSys
AugmentationIdeal(A) : AlgGrp -> AlgGrpSub
CanonicalCoordinateIdeal(S) : Srfc -> RngMPol
CanonicalLinearSystemFromIdeal(I, d) : RngMPol, RngIntElt -> LinearSys
ColonIdeal(M, N) : ModMPol, ModMPol -> RngMPol
ColonIdeal(I, J) : RngMPol, RngMPol -> RngMPol
ColonIdeal(I, f) : RngMPol, RngMPolElt -> RngMPol, RngIntElt
ColonIdeal(I, J) : RngOrdIdl, RngOrdIdl -> RngOrdIdl
ColonIdealEquivalent(I, f) : RngMPol, RngMPolElt -> RngMPol, RngMPolElt
CombineIdealFactorisation(~D) : DivSchElt ->
CommutatorIdeal(A, B) : AlgAss, AlgAss -> AlgAss
CommutatorIdeal(S) : AlgQuatOrd -> AlgQuatOrdIdl
DefiningIdeal(C) : Crv -> RngMPol
DefiningIdeal(C) : Sch -> RngMPol
DefiningIdeal(X) : Sch -> RngMPol
DerksenIdeal(F) : FldInvar -> RngMPol
DerksenIdeal(R) : RngInvar -> [RngMPolElt]
DifferentialIdeal(L) : [RngDiffElt] -> RngMPol
DivisorIdeal(I) : AlgFP -> AlgFr
DivisorIdeal(I) : RngMPolRes -> RngMPol
EasyIdeal(I) : RngMPol -> RngMPol
EliminationIdeal(I, k: parameters) : RngMPol, RngIntElt -> RngMPol
EliminationIdeal(I, S) : RngMPol, { RngIntElt } -> RngMPol
FittingIdeal(M, i) : ModMPol, RngIntElt -> RngMPol
GroupIdeal(F) : FldInvar -> RngMPol
GroupIdeal(R) : RngInvar -> RngMPol
HilbertIdeal(R) : RngInvar -> RngMPol
Ideal(D) : DivCrvElt -> RngMPol
Ideal(D) : DivNumElt -> RngOrdIdl
Ideal(D) : DivNumElt -> RngOrdIdl
Ideal(D) : DivSchElt -> RngMPol
Ideal(A) : FldAC -> RngMPol
Ideal(P) : PlcCrvElt -> RngMPol
Ideal(P) : PlcFunElt -> RngFunOrdIdl
Ideal(P) : PlcFunElt -> RngFunOrdIdl
Ideal(f) : QuadBinElt -> RngQuadIdl
Ideal(f) : QuadBinElt -> RngQuadIdl
Ideal(f) : RngMPolElt -> RngMPol
Ideal(f) : RngMPolLocElt -> RngMPolLoc
Ideal(B) : [ RngMPolElt ] -> RngMPol
Ideal(B) : [ RngMPolLocElt ] -> RngMPolLoc
IdealFactorisation(D) : DivSchElt -> SeqEnum
IdealOfSupport(D) : DivSchElt -> RngMPol
IdealQuotient(I, J) : RngFunOrdIdl, RngFunOrdIdl -> RngFunOrdIdl
IdealWithFixedBasis(B) : [ RngMPolElt ] -> RngMPol
IrrelevantIdeal(C) : RngCox -> SeqEnum
IrrelevantIdeal(X) : TorVar -> SeqEnum
IsDifferentialIdeal(R, I) : RngDiff, RngMPol -> BoolElt
IsIdeal(A, S) : AlgBas, ModTupFld -> Bool
IsIdeal(S) : AlgGrpSub -> BoolElt
IsLeftIdeal(I) : AlgAssVOrdIdl -> BoolElt
IsLeftIdeal(A,S) : AlgBas, ModTupFld -> Bool
IsLeftIdeal(S) : AlgGrpSub -> BoolElt
IsPID(R) : Rng -> BoolElt
IsPIR(R) : Rng -> BoolElt
IsPrincipalIdealRing(F) : FldAlg -> BoolElt
IsPrincipalIdealRing(F) : FldNum -> BoolElt
IsPrincipalIdealRing(O) : RngOrd -> BoolElt
IsRightIdeal(A, S) : AlgBas, ModTupFld -> Bool
IsRightIdeal(S) : AlgGrpSub -> BoolElt
IsSplitAsIdealAt(I, l) : RngOrdFracIdl, UserProgram -> BoolElt, UserProgram, [RngOrdIdl]
JacobianIdeal(f) : RngMPolElt -> RngMPol
JacobianIdeal(C) : Sch -> RngMPol
JacobianIdeal(X) : Sch -> RngMPol
LeadingMonomialIdeal(I) : RngMPol -> RngMPol
LeadingMonomialIdeal(I) : RngMPolLoc -> RngMPolLoc
LeftIdeal(S, X) : AlgQuatOrd, [AlgQuatElt] -> AlgQuatOrdIdl
LeftIdealClasses(S) : AlgQuatOrd -> [AlgQuatOrdIdl]
PentahedronIdeal(f) : RngMPolElt -> RngMPol
PowerIdeal(R) : Rng -> PowIdl
PreimageIdeal(I) : AlgFP -> AlgFr
PreimageIdeal(I) : RngMPolRes -> RngMPol
PrimaryIdeal(R) : RngInvar -> RngMPol
PrimeIdeal(S, p) : AlgQuatOrd, RngElt -> AlgQuatOrdIdl
PrincipalIdealMap(O) : RngFunOrd -> Map
QuadeIdeal(L) : [FldFunRatElt] -> RngMPol
RandomIdealGeneratedBy(A, n) : AlgBas, RngIntElt -> ModTupFld
RandomRightIdeal(O) : AlgAssVOrd -> AlgAssVOrdIdl
ReesIdeal(P, I): RngMPol, RngMPol -> RngMPol, Map
RelationIdeal(R) : RngInvar -> RngMPol
RelationIdeal(Q) : [ RngMPol ] -> RngMPol
TwoSidedIdealClassGroup(S : Support) : AlgAssVOrd -> GrpAb, Map
TwoSidedIdealClasses(S) : AlgQuatOrd -> [AlgQuatOrdIdl]
UnivariateEliminationIdealGenerator(I, i) : RngMPol, RngIntElt -> RngMPolElt
UnivariateEliminationIdealGenerators(I) : RngMPol -> [ RngMPolElt ]
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013