
HANDBOOK OF MAGMA FUNCTIONS

Volume 4

Local Arithmetic Fields

John Cannon Wieb Bosma

Claus Fieker Allan Steel

Editors

Version 2.19

Sydney

April 24, 2013



ii



MAGMA
C O M P U T E R • A L G E B R A

HANDBOOK OF MAGMA FUNCTIONS

Editors:

John Cannon Wieb Bosma Claus Fieker Allan Steel

Handbook Contributors:

Geoff Bailey, Wieb Bosma, Gavin Brown, Nils Bruin, John

Cannon, Jon Carlson, Scott Contini, Bruce Cox, Brendan

Creutz, Steve Donnelly, Tim Dokchitser, Willem de Graaf,

Andreas-Stephan Elsenhans, Claus Fieker, Damien Fisher,

Volker Gebhardt, Sergei Haller, Michael Harrison, Florian

Hess, Derek Holt, David Howden, Al Kasprzyk, Markus

Kirschmer, David Kohel, Axel Kohnert, Dimitri Leemans,

Paulette Lieby, Graham Matthews, Scott Murray, Eamonn

O’Brien, Dan Roozemond, Ben Smith, Bernd Souvignier,

William Stein, Allan Steel, Damien Stehlé, Nicole Suther-
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Chapter 45

VALUATION RINGS

45.1 Introduction

Magma currently supports basic operations in valuation rings obtained either from the
rational field Q (and a finite prime p), or from a field of rational functions over a field (and
an irreducible polynomial, or the infinite prime).

45.2 Creation Functions

45.2.1 Creation of Structures

ValuationRing(Q, p)

Given the rational field Q and a rational prime number p, create the valuation ring R
corresponding to the discrete non-Archimedean valuation vp, consisting of rational
numbers r such that vp(r) ≥ 0, that is, r = x

y ∈ Q such that p 6 | y.

ValuationRing(F, f)

Given the rational function field F as a field of fractions of the univariate polynomial
ring K[x] over a field K, as well as a monic irreducible polynomial f ∈ K[x], create
the valuation ring R corresponding to the discrete non-Archimedean valuation vf .
Thus R consists of rational functions g

h ∈ F with vf (g/h) ≥ 0, that is, with f 6 |h.

ValuationRing(F)

Given the rational function field F as a field of fractions of the univariate polynomial
ring K[x] over a field K, create the valuation ring R corresponding to v∞, consisting
of g

h ∈ F such that deg(h) ≥ deg(g).

45.2.2 Creation of Elements

V ! r

Given a valuation ring V and an element of the field of fractions F of V (from which
V was created), coerce the element r into V . This is only possible for elements
r ∈ F for which the valuation on V is non-negative, an error occurs if this is not
the case.
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45.3 Structure Operations

45.3.1 Related Structures

Category(V) Parent(V) PrimeRing(V) Center(V)

FieldOfFractions(V)

Return field of fractions of the valuation ring V , which is the rational field or the
function field from which V was created.

45.3.2 Numerical Invariants

Characteristic(V)

45.4 Element Operations

45.4.1 Arithmetic Operations

+ v - v

v + w v - w v * w v ^ k v / w

v +:= w v -:= w v *:= w

v div w

The quotient q of the division with remainder v = qw + r of the valuation ring
elements v and w, where the remainder will have valuation less than that of w; if
the valuation of v is greater than or equal than that of w, this simply returns the
quotient v/w, if the valuation of w exceeds that of v it returns 0.

45.4.2 Equality and Membership

v eq w v ne w

v in V v notin V

45.4.3 Parent and Category

Parent(v) Category(v)
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45.4.4 Predicates on Ring Elements

IsZero(n) IsOne(n) IsMinusOne(n)

IsNilpotent(n) IsIdempotent(n)

IsUnit(n) IsZeroDivisor(n) IsRegular(n)

45.4.5 Other Element Functions

EuclideanNorm(v)

Valuation(v)

Given an element v of a valuation ring V , return the valuation (associated with V )
of v.

Quotrem(v, w)

Given two elements v, w of a valuation ring V with associated valuation φ, return a
quotient and remainder q and r in V such that v = qw + r and 0 ≤ φ(r) < φ(w). If
φ(v) < φ(w) this simply returns q = 0 and r = v, and if φ(v) ≥ φ(w) then it returns
q = v/w and r = 0.

GreatestCommonDivisor(v, w)

Gcd(v, w)

This function returns a greatest common divisor of two elements v, w in a valuation
ring V . This will return um, where m = min(φ(v), φ(w)) is the minimum of the
valuations of v and w m = min(φ(v), φ(w)) and u is the uniformizing element of V
(with valuation φ(u) = 1).

ExtendedGreatestCommonDivisor(v, w)

Xgcd(v, w)

XGCD(v, w)

This function returns a greatest common divisor z ∈ V of two elements v, w in
a valuation ring V as well as multipliers x, y ∈ V such that xv + yw = z. The
principal return value will be z = um, where m = min(φ(v), φ(w)) is the minimum
of the valuations of v and w m = min(φ(v), φ(w)) and u is the uniformizing element
of V (with valuation φ(u) = 1).
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Chapter 46

NEWTON POLYGONS

46.1 Introduction
This chapter introduces functions which allow the creation and simple study of Newton
polygons. It allows data from a number of different contexts to be used to construct
the polygons. It also covers different interpretations of Newton polygons, and translation
among these interpretations. Recall that a Newton polygon is the intersection of finitely
many rational half spaces in the rational plane. An advantage of this definition is that it
emphasizes that Newton polygons are often thought of as being noncompact. However,
they are not implemented here in this way. Instead polygons are interpreted as the convex
hull of finitely many points of the plane (possibly including some points at +∞ along the
axes).

Any Newton polygon is contained in some virtual cartesian product of the rational field
with itself (virtual since this plane is not a structure that is intended to be accessible to the
user or which is characteristic of the polygon). The first and second coordinate functions
of this plane are referred to as the x and y coordinates respectively. Points of the plane
will always be written 〈a, b〉 while faces of polygons will be written 〈a, b, c〉. Geometrically,
a face 〈a, b, c〉 is a one-dimensional boundary intersection of N with the line ax + by = c.

The standard Newton polygon of a polynomial f = f(u, v) is, by definition, the convex
hull of the points 〈a, b〉, so-called Newton points, ranging over monomials uavb having
nonzero coefficient in f together with the points +∞ on the two axes. The infinite points,
however, are not listed among the vertices of the polygon; they are simply a convenient
way of hiding all Newton points other than those on the ‘lower lefthand’ faces of the hull
of those points. A similar definition applies to polynomials f(y) whose coefficients lie in
some field of fractional power series, or Puiseux field, k 〈〈x〉〉. Newton Polygons can also
be created for polynomials over local rings (and fields). The defining points are computed
as 〈i, v(ai)〉 where ai is the coefficient of the i-th power of the generator and v denotes the
valuation function on the ring. Infinite points arise only as the valuation of zero coefficients.

The main intended application of Newton polygons is to the Newton–Puiseux analysis
of singular points of plane curves, or put another way, the factorization of polynomials
defined over Puiseux fields.

The examples below should be thought of as running consecutively in a single Magma
session.

> R<x,y> := PolynomialRing(Rationals(),2);
> f := x^5 + x^2*y + x^2*y^3 + y^4 + x^3*y^5 + y^2*x^7;
> N := NewtonPolygon(f);
> N;
Newton Polygon of x^7*y^2 + x^5 + x^3*y^5 + x^2*y^3 + x^2*y + y^4 over
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Rational Field
> Faces(N);
[ <3, 2, 8>, <1, 3, 5> ]
> Vertices(N);
[ <0, 4>, <2, 1>, <5, 0> ]

This is the standard Newton polygon associated with the polynomial f . Only those vertices
and faces of the convex hull of points which correspond to the monomials appearing in f
which ‘face’ the origin are considered to be vertices and faces of the polygon. As already
mentioned, one interpretation of this is to think of the points +∞ on each axis as being
included among the defining points of N , and then N is the convex hull of its defining
points.

To consider N as the compact convex hull of only the monomials of f simply use
alternative vertex and face functions.

> AllVertices(N);
[ <0, 4>, <2, 1>, <5, 0>, <7, 2>, <3, 5> ]
> AllFaces(N);
[ <3, 2, 8>, <1, 3, 5>, <-1, 1, -5>, <-3, -4, -29>, <1, -3, -12> ]

However, where there is a choice of interpretation, Magma always interprets N in the way
it was defined. So for example, the functions which test for faces and vertices compare a
given value with the sequence returned by the functions Faces(N) or Vertices(N), which
are fixed the first time they are calculated, rather than with any other collections of faces
or vertices.

> IsFace(N,<3/4,3/6,2>);
true <3, 2, 8>
> IsFace(N,<-3,-4,-29>);
false

Notice that faces are reduced to normal integral form and that the correct form is returned
as the second return value of the test function.

When a polygon is created using a polynomial, the restriction of the polynomial to
faces is important characteristic data.

> FaceFunction(Faces(N)[1]);
x^2*y + y^4

The face function is simply the sum of those monomial terms of f (they keep their coeffi-
cients) whose corresponding Newton point lies on the given face.



Ch. 46 NEWTON POLYGONS 1237

46.2 Newton Polygons

All polygons are determined by a finite collection of points in the rational plane. For
Magma, these points are the most basic attribute of any Newton polygon. They are always
determined and recorded on creation of a polygon. Throughout this chapter, for a Newton
polygon N , these points are denoted by PN . As seen in the introduction, the main class of
polygons is that comprising polygons in the first quadrant of the plane and including the
points +∞ on the two axes. But there are other useful types, especially when calculating
factorizations of univariate polynomials over series rings. The data distinguishing the
different flavours of Newton polygon is the collection of lines and points that are considered
to be faces and vertices.

46.2.1 Creation of Newton Polygons
These are the functions available for constructing Newton polygons and retrieving the
points which describe them.

NewtonPolygon(f)

Faces MonStgElt Default : “Inner”
The standard Newton polygon of a polynomial f in two variables. This is the hull
of the Newton points of the polynomial together with the points +∞ on each axis.
The horizontal and vertical ‘end’ faces are not listed among the faces of the polygon;
the points at infinity are not listed among the vertices of the polygon.

The parameter Faces can have the value "Inner", "Lower" or "All". This
determines which faces are returned by the intrinsic Faces.

NewtonPolygon(f)

SwapAxes BoolElt Default : false

Faces MonStgElt Default :

The standard Newton polygon of a polynomial in one variable defined over a series
ring or a local ring or field. A value of true for SwapAxes is only valid if the
polynomial is over a series ring. If SwapAxes is set to true then the exponents of
the series variable will be plotted on the horizontal axis and the exponents of the
polynomial on the vertical axis.

For a polynomial over a series ring, the hull includes the points +∞ on each axis.
For a polynomial over a local ring, the infinite points are not included.

The parameter Faces can have the value "All", "Inner" or "Lower". This
determines which faces are returned by the intrinsic Faces. The default for series
rings is "Inner" and for local rings is "Lower".

NewtonPolygon(f, p)

Faces MonStgElt Default : “Inner”
The newton polygon of f where p is a prime used for valuations of the coefficients
of f . The polynomial f may be over the integers or rationals or a number field or
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algebraic function field or an order thereof. The prime p may be an integer or a
prime ideal. The newton polygon will have points (i, vi) where i is the exponent of
a term of f and vi is the valuation of the coefficient of the ith term. The points at
+∞ on each axis are included.

The parameter Faces can have the value "Inner", "Lower" or "All". This
determines which faces are returned by the intrinsic Faces.

NewtonPolygon(f, p)

Faces MonStgElt Default : “Inner”
The newton polygon of the polynomial f where the place p of an algebraic function
field is the prime used for determining the valuations of the coefficients of f . The
points at +∞ on each axis are included.

The parameter Faces can have the value "Inner", "Lower" or "All". This
determines which faces are returned by the intrinsic Faces.

NewtonPolygon(C)

The standard Newton polygon of the defining polynomial of the curve C.

NewtonPolygon(V)

Faces MonStgElt Default : “All”
The Newton polygon that is the compact convex hull of the set or sequence V of
points of the form 〈a, b〉 where a, b are integers or rational numbers.

The parameter Faces can have the value "All", "Lower" or "Inner". This
determines which faces are returned by the intrinsic Faces.

DefiningPoints(N)

The points of the rational plane used in the initial creation of N . Applying this
function to two polygons allows their defining points to be compared. No explicit
function is provided for testing whether defining points of two polygons are equal.

Example H46E1

Some ways of creating Newton Polygons from polynomials are shown below.

> P<y> := PuiseuxSeriesRing(Rationals());

> R<x> := PolynomialRing(P);

> f := 3*x^4 + (5*y^3 + 4*y^(1/4))*x^3 + (7*y^2 + 1/2*y^(1/3))*x^2 + 6*x + y^(

> 4/5);

> N := NewtonPolygon(f);

> N;

Newton Polygon of 3*x^4 + (4*y^(1/4) + 5*y^3)*x^3 + (1/2*y^(1/3) + 7*y^2)*x^2 +

6*x + y^(4/5) over Puiseux series field in y over Rational Field

> P<x> := PolynomialRing(Integers());

> L := ext<ext<pAdicRing(5, 100) | 3> | x^2 + 5>;

> R<x> := PolynomialRing(L);

> f := 3*x^4 + 75*x^3 + 78*x^2 + 10*x + 750;
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> NR := NewtonPolygon(f);

> NR;

Newton Polygon of 3*x^4 + 75*x^3 + 78*x^2 + 10*x + 750 over L

Newton Polygons can also be created by specifying the defining points that the polygon must
enclose.

> N2 := NewtonPolygon({<2, 0>, <0, 3>, <4, 1>});

> N2;

Newton Polygon with defining points {(0, 3), (2, 0), (4, 1)}

> N6 := NewtonPolygon({<1, 4>, <1, 6>, <2, 4>, <3, 1>, <6, 1>, <5, 2>, <4, 5>,

> <4, 7>, <6, 6>, <7, 7>, <2, 7>, <5, 9>, <8, 4>, <8, 6>, <8, 8>, <7, 9>});

> N6;

Newton Polygon with defining points {(1, 4), (1, 6), (2, 4), (2, 7), (3, 1), (4,

5), (4, 7), (5, 2), (5, 9), (6, 1), (6, 6), (7, 7), (7, 9), (8, 4), (8, 6), (8,

8)}

These polygons will be referred to in later examples.

46.2.2 Vertices and Faces of Polygons
Both the vertices 〈a, b〉 and faces 〈a, b, c〉 (representing ax + by = c) of a given polygon N
are computed as needed. As seen above, these will be a particular choice of possible faces
and vertices determined by the data used to create the polygon. They can be recovered
using the Faces() and Vertices() intrinsics. A different choice of faces and vertices,
those faces and vertices of the compact convex hull of the defining points say, can be made
using the other intrinsics below.

Recall that PN denotes the set of points used in the definition of the Newton polygon
N whether they arise as the powers of monomials appearing in a polynomial or have been
given explicitly as a sequence of pairs.

Faces(N)

The sequence of faces 〈a, b, c〉 (representing ax + by = c) of N listed anticlockwise.
How this is interpreted in terms of the points used to create N depends on the cre-
ation function used (see Section 46.2.1). The faces are listed anticlockwise starting
with the face with its left endpoint being the lowest of the leftmost points.

InnerFaces(N)

Those faces of the compact convex hull of PN starting at the lowest of the leftmost
points which have strictly negative gradient.

LowerFaces(N)

Those faces of the compact convex hull of PN which bound it below in the y direction.
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OuterFaces(N)

The union of lower faces which aren’t inner faces and the faces which bound the
compact convex hull of PN above in the y-direction (ignoring infinite points).

AllFaces(N)

The faces of the compact convex hull of PN .

Example H46E2

Using some of the polygons defined before the different types of faces are illustrated.

> Faces(N);

[ <4, 5, 4> ]

> InnerFaces(N);

[ <4, 5, 4> ]

> OuterFaces(N);

[ <0, 1, 0>, <-1, -4, -4>, <-11, -60, -48> ]

> AllFaces(N);

[ <4, 5, 4>, <0, 1, 0>, <-1, -4, -4>, <-11, -60, -48> ]

> Faces(NR);

[ <4, 1, 6>, <2, 1, 4>, <0, 1, 0> ]

> InnerFaces(NR);

[ <4, 1, 6>, <2, 1, 4> ]

> LowerFaces(NR);

[ <4, 1, 6>, <2, 1, 4>, <0, 1, 0> ]

For the polynomial over the Puiseux Field it is no coincidence that InnerFaces and Faces return
the same sequences. Similarly, for the polynomial over the local ring Faces is defined to be
LowerFaces. For both, this is the category of faces that gives the most information for the purposes
that the polygon is used. It can also be noted that combining InnerFaces and OuterFaces will
give AllFaces with no repetitions (though repetitions will occur if the polygon has only one face
and this face is an inner face).

Vertices(N)

The sequence of vertices of N . The vertices will be listed anticlockwise from the
lowest of the leftmost points.

InnerVertices(N)

The sequence of vertices which arise as endpoints of inner faces.

LowerVertices(N)

The sequence of vertices which arise as endpoints of lower faces.

OuterVertices(N)

The sequence of vertices which arise as endpoints of outer faces.

AllVertices(N)

The sequence of vertices of the compact convex hull of PN .
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Example H46E3

This example illustrates the types of vertices that can be calculated. Note that the printing of
these polygons, created from their defining points, changes as more information is calculated. This
would occur in the same manner if faces were being calculated instead of vertices.

> InnerVertices(N2);

[ <0, 3>, <2, 0> ]

> N2;

Newton Polygon with vertices {(0, 3), (2, 0)} and defining points {(0, 3), (2,

0), (4, 1)}

> InnerVertices(N6);

[ <1, 4>, <3, 1> ]

> N6;

Newton Polygon with vertices {(1, 4), (3, 1)} and defining points {(1, 4), (1,

6), (2, 4), (2, 7), (3, 1), (4, 5), (4, 7), (5, 2), (5, 9), (6, 1), (6, 6), (7,

7), (7, 9), (8, 4), (8, 6), (8, 8)}

> Vertices(N2);

[ <0, 3>, <2, 0>, <4, 1> ]

> Vertices(N6);

[ <1, 4>, <3, 1>, <6, 1>, <8, 4>, <8, 8>, <7, 9>, <5, 9>, <2, 7>, <1, 6> ]

> AllVertices(N2);

[ <0, 3>, <2, 0>, <4, 1> ]

> N2;

Newton Polygon with vertices {(0, 3), (2, 0), (4, 1)} and defining points {(0,

3), (2, 0), (4, 1)}

> AllVertices(N6);

[ <1, 4>, <3, 1>, <6, 1>, <8, 4>, <8, 8>, <7, 9>, <5, 9>, <2, 7>, <1, 6> ]

> N6;

Newton Polygon with vertices {(1, 4), (3, 1), (6, 1), (8, 4), (8, 8), (7, 9),

(5, 9), (2, 7), (1, 6)} and defining points {(1, 4), (1, 6), (2, 4), (2, 7), (3,

1), (4, 5), (4, 7), (5, 2), (5, 9), (6, 1), (6, 6), (7, 7), (7, 9), (8, 4), (8,

6), (8, 8)}

Here Vertices has been defined to be AllVertices. All the known vertices of the polygon are
printed when the polygon is printed. There is some overlap between the inner and outer vertices
as is shown below. Every vertex is either an inner vertex or an outer vertex with some being both.
Not all defining points are vertices.

> OuterVertices(N6);

[ <3, 1>, <6, 1>, <8, 4>, <8, 8>, <7, 9>, <5, 9>, <2, 7>, <1, 6>, <1, 4> ]

> OuterVertices(N2);

[ <2, 0>, <4, 1>, <0, 3> ]

EndVertices(F)

A sequence containing the two end vertices of the face F = 〈a, b, c〉.
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FacesContaining(N,p)

Those faces of the polygon N returned by Faces on which the point p = 〈a, b〉 lies.

Example H46E4

Using some of the example polygons that have been created above, we illustrate the simple use of
EndVertices and FacesContaining.

> AN := AllFaces(N);

> AN;

[ <4, 5, 4>, <0, 1, 0>, <-1, -4, -4>, <-11, -60, -48> ]

> A6 := AllFaces(N6);

> A6;

[ <3, 2, 11>, <0, 1, 1>, <-3, 2, -16>, <-1, 0, -8>, <-1, -1, -16>, <0, -1, -9>,

<2, -3, -17>, <1, -1, -5>, <1, 0, 1> ]

> AllVertices(N);

[ <0, 4/5>, <1, 0>, <4, 0>, <3, 1/4> ]

> AllVertices(N6);

[ <1, 4>, <3, 1>, <6, 1>, <8, 4>, <8, 8>, <7, 9>, <5, 9>, <2, 7>, <1, 6> ]

> EndVertices(AN[1]);

[ <0, 4/5>, <1, 0> ]

> EndVertices(AN[4]);

[ <0, 4/5>, <3, 1/4> ]

> EndVertices(A6[1]);

[ <1, 4>, <3, 1> ]

> EndVertices(A6[5]);

[ <7, 9>, <8, 8> ]

> EndVertices(A6[9]);

[ <1, 4>, <1, 6> ]

> FacesContaining(N, <1, 0>);

[ <4, 5, 4> ]

> FacesContaining(N6, <1, 0>);

[]

> FacesContaining(N6, <4, 1>);

[ <0, 1, 1> ]

> FacesContaining(N, <4, 1>);

[]

> FacesContaining(N6, <3, 1>);

[ <3, 2, 11>, <0, 1, 1> ]

GradientVector(F)

The a and b values of the line describing the face F of the form a ∗ x + b ∗ y = c
where a, b and c are integers.

GradientVectors(N)

A sequence containing the gradient vectors of the faces of the newton polygon N .
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Weight(F)

The c value of the line describing the face F of the form a ∗ x + b ∗ y = c where a, b
and c are integers.

Slopes(N)

The slopes of the faces of the newton polygon N .

InnerSlopes(N)

LowerSlopes(N)

AllSlopes(N)

The slopes of the polygon N corresponding of InnerFaces, LowerFaces and
AllFaces respectively.

Example H46E5

In this example GradientVector and Weight can be seen to be access functions on the components
of a face of a polygon.

> A := AllFaces(N);

> A;

[ <4, 5, 4>, <0, 1, 0>, <-1, -4, -4>, <-11, -60, -48> ]

> f := A[3];

> GradientVector(f);

<-1, -4>

> Weight(f);

-4

The gradient of the face can now be easily computed as shown.

> a := GradientVector(f)[1];

> b := GradientVector(f)[2];

> -a/b;

-1/4

46.2.3 Tests for Points and Faces
Once more, recall that PN denotes the finite set of points in the plane used to define the
Newton polygon N . Whether or not a point is considered to lie in a polygon depends
on what are considered to be its faces. Magma always uses the list of faces returned by
Faces(N) when testing points. Of course, this is not always the case in applications. One
must to perform other tests explicitly when there is doubt.

IsFace(N, F)

Return true if and only if the tuple F = 〈a, b, c〉 describes a line coinciding with a
face of the polygon N as returned by Faces.
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IsVertex(N, p)

Return true if and only if the point p = 〈a, b〉 of the rational plane (given as a
tuple) is a vertex of the polygon N as returned by Vertices.

IsInterior(N,p)

Return true if and only if the point p = 〈a, b〉 given as a tuple lies strictly in the
interior of the polygon N .

IsBoundary(N, p)

Return true if and only if the point p = 〈a, b〉 given as a tuple lies on the boundary
of the polygon N , that is, the point is contained in a face of N .

IsPoint(N,p)

Return true if and only if the point p = 〈a, b〉 (given as a tuple) lies on the polygon
N .

46.3 Polynomials Associated with Newton Polygons

The polynomial used to define a polygon can be recovered, but more usefully so can those
restrictions of that polynomial to parts of the polygon, the so-called face functions in
particular.

Note that most of these functions will return an error if N was not defined in terms of
a polynomial.

HasPolynomial(N)

Return true if and only if the polygon N was defined as the Newton polygon of
some polynomial.

Polynomial(N)

The polynomial used to define the polygon N .

ParentRing(N)

The parent ring of the polynomial of the polygon N .

IsNewtonPolygonOf(N, f)

Return whether the newton polygon N is defined by the polynomial f .

FaceFunction(F)

If the polygon N is defined by a polynomial in two variables f this returns those
monomial terms of f whose corresponding Newton points lie on the face F . On the
other hand, if N is determined by a univariate polynomial over a series ring, this
returns the univariate polynomial supported on the face F .
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IsDegenerate(F)

Return true if the face function along F is not squarefree.

IsDegenerate(N)

Return true if a face function on some face of N is degenerate.

46.4 Finding Valuations of Roots of Polynomials from Newton
Polygons

Newton polygons can be used to find the valuations of roots of the polynomial from which
the polygon was created at the prime used in the creation (given implicitly or explicitly).
The following functions use Newton polygons to calculate the valuations of the roots of
the polynomial paired with the number of roots with that valuation.

ValuationsOfRoots(f)

The valuations of the roots of f , where f is a polynomial over a local ring or a series
ring.

ValuationsOfRoots(f, p)

The valuations of the roots of f with respect to p where p may be either a prime
integer, a prime ideal of a number field or a place of a function field.

46.5 Using Newton Polygons to Find Roots of Polynomials over
Series Rings

The operations described in this section are relevant for polynomials over series rings.
There are two main algorithms involved.

SetVerbose("Newton", v)

Set the verbose printing to level v for PuiseuxExpansion, ExpandToPrecision,
DuvalPuiseuxExpansion, Roots and ImplicitFunction. A level of 1 will mean
that any partial solutions that could not be expanded to the precision requested will
be printed before an error is returned except for Roots. The polynomials used in
forming extensions will also be printed before the extension is computed. In Roots,
the algorithm used to compute the expansions will be printed. When Walker’s al-
gorithm is being used the current value of the denominator will be printed. For
ImplicitFunction a warning about a potentially bad value of d will be printed if
the value of d given is not divisible by the exponent denominator of some coefficient
of f . A level of 2 will print the last polynomials calculated during the newton poly-
gon part of PuiseuxExpansion and DuvalPuiseuxExpansion and some evaluated
polynomials during ImplicitFunction.
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46.5.1 Operations not associated with Duval’s Algorithm

PuiseuxExpansion(f, n)

PreciseRoot BoolElt Default : false

TestSquarefree BoolElt Default : true

NoExtensions BoolElt Default : false

LowerFaces BoolElt Default : true

OneRoot BoolElt Default : false

Verbose Newton Maximum : 2

This function implements the algorithm described in [Wal78].
Return a sequence of partial expansions of the roots of the polynomial f over a

series ring as puiseux series. The roots are returned with relative precision at least
n/d where d is the least common multiple of exponent denominator for the series
expansion and the exponent denominators of the coefficients of the f . An input
of n = 0 will return the expansions calculated by the newton polygon part of the
algorithm and these will be to the precision of what is known. The coefficient ring
of the series ring containing the coefficients of f must always be a field and unless
extensions are not required it must be able to be extended.

If the coefficient ring of the series ring is a finite field whose characteristic is less
than or equal to the degree of the polynomial then the denominators computed in
the newton polygon part of the algorithm may not be bounded and the function will
return an error. However, it is possible for some polynomials that the denominators
will be bounded. This is stated by [Gri95], pg 269 – 272.

Care needs to be taken with polynomials whose coefficients have low precision.
The algorithm must extract from f the squarefree part and in doing so lose even
more precision. The result is that the algorithm may not have enough precision to
calculate the expansions correctly. A solution is to set TestSquarefree to false if
the polynomial is known to have no multiple roots. However this will not solve all
precision problems and the answer is only as good as the precision allows it to be.

If PreciseRoot is set to true then the partial expansions to be returned are
checked and if any are exact roots of f they are returned with full precision. If
NoExtensions is set to true then expansions are found within the puiseux series
ring only. By default, the coefficient ring of the series ring is extended to find
all the partial expansions. If LowerFaces is set to false then expansions with
negative valuations will not be found. If OneRoot is set to true then representatives
of conjugate roots only will be found instead of each of the roots individually.

Note that it may useful to define the polynomial over an algebraically closed field
(via AlgebraicClosure), so that all roots may be found.
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ExpandToPrecision(f, c, n)

PreciseRoot BoolElt Default : false

TestSquarefree BoolElt Default : true

Verbose Newton Maximum : 2
Given a polynomial f over a Puiseux series ring and a partial root c of that polyno-
mial (found by PuiseuxExpansion for example) continue to expand that root until
it has relative precision n/d where d is the least common multiple of the exponent
denominator of c and the exponent denominators of the coefficients of f . If c is
given to greater precision (or length greater than n if its precision is infinite), the
relative precision of c is reduced to n/d. An error results if c is not a partial ex-
pansion to precision n/d. If PreciseRoot is true then the partial expansion to be
returned is checked and if it is an exact root of f it is returned with full precision.
All input is checked for being an exact root regardless. If TestSquarefree is false
the polynomial will not be made squarefree. This may avoid some loss of precision
but may result in some unique partial roots not being recognized as unique partial
roots and as such they cannot be expanded.

An error may result if c is a partial root of f but the exponent denominator of
the full expansion is greater than that of c. Therefore for c to be expanded it must
have the same denominator as the expansion it is part of. This will rarely be an
issue for those partial expansions resulting from PusieuxExpansion which did not
encounter problems with precision in the newton polygon part since the algorithm
for this will find at least as much of the expansion as necessary to compute the
exponent denominator.

ImplicitFunction(f, d, n)

Verbose Newton Maximum : 2
Return a root of the polynomial f over a series ring. The input d is the denominator
(or a multiple of) the exponent denominator of the root. The root is given to absolute
precision n/d. The evaluation of f at zero (polynomial) evaluated at zero (series)
must be zero but that of its derivative must be nonzero.

Example H46E6

This example illustrates the joint use of PuiseuxExpansion and ExpandToPrecision which can be
used together to gain and improve partial roots of a polynomial. The use of ExpandToPrecision
following PuiseuxExpansion avoids the recalculation of information already known.

> P<x> := PuiseuxSeriesRing(Rationals());

> R<y> := PolynomialRing(P);

> f := y^3 + 2*x^-1*y^2 + 1*x^-2*y + 2*x;

> c := PuiseuxExpansion(f, 0);

> A<a> := Parent(c[1]);

> N<n> := CoefficientRing(A);

> Q<q> := PolynomialRing(A);

> c;
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[

-2*a^3 + O(a^4),

-a^-1 + n*a + O(a^2),

-a^-1 - n*a + O(a^2)

]

> [ExpandToPrecision(f, c[i], 10) : i in [1 .. #c]];

[

-2*a^3 - 8*a^7 - 56*a^11 + O(a^13),

-a^-1 + n*a + a^3 + 5/4*n*a^5 + 4*a^7 + O(a^9),

-a^-1 - n*a + a^3 - 5/4*n*a^5 + 4*a^7 + O(a^9)

]

The same results could have been gained using PuiseuxExpansion with the required precision in
the first place.

> c := PuiseuxExpansion(f, 10);

> A<a> := Parent(c[1]);

> N<n> := CoefficientRing(A);

> c;

[

-2*a^3 - 8*a^7 - 56*a^11 + O(a^13),

-a^-1 + n*a + a^3 + 5/4*n*a^5 + 4*a^7 + O(a^9),

-a^-1 - n*a + a^3 - 5/4*n*a^5 + 4*a^7 + O(a^9)

]

However, asking for more precision requires time so that if it is not necessary the extra calculation
can be avoided and if more precision happens to be required then it can be gained without
recalculation. ExpandToPrecision is also called on only one root so that if only one expansion is
required using PusieuxExpansion and then ExpandToPrecision will not calculate any unnecessary
information.

> time c := PuiseuxExpansion(f, 100);

Time: 2.810

> time c := PuiseuxExpansion(f, 10);

Time: 0.060

> A<a> := Parent(c[1]);

> N<n> := CoefficientRing(A);

> time ExpandToPrecision(f, c[1], 100);

-2*a^3 - 8*a^7 - 56*a^11 - 480*a^15 - 4576*a^19 - 46592*a^23 -

496128*a^27 - 5457408*a^31 - 61529600*a^35 - 707266560*a^39 -

8257566720*a^43 - 97654702080*a^47 - 1167349284864*a^51 -

14082308833280*a^55 - 171221451538432*a^59 -

2096081963188224*a^63 - 25814314231136256*a^67 -

319605795242639360*a^71 - 3975750610806374400*a^75 -

49666299938073477120*a^79 - 622818862289639178240*a^83 -

7837247078959687925760*a^87 - 98931046460491133091840*a^91 -

1252424949872174982758400*a^95 - 15897106567806080658702336*a^99

+ O(a^103)
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Time: 0.410

IsPartialRoot(f, c)

Return true if the series c can be expanded to at least one root of the polynomial
f .

IsUniquePartialRoot(f, c)

TestSquarefree BoolElt Default : true

Return true if the series c can be expanded to exactly one distinct root of the
polynomial f . By default f will have multiple factors removed to allow partial
expansions of multiple roots to be recognized as being unique. If TestSquarefree
is set to false then f will be taken as given which may avoid errors due to lost
precision but may not pick partial expansions of multiple roots as being unique and
as such is best used when f is squarefree or the expansion is known to be of a single
root.

Example H46E7

The above 2 functions can be used to reduce the occurrence of errors from ExpandToPrecision by
checking that the input can be expanded. Errors resulting from a lack of precision which means
that the expansion cannot be calculated to the requested precision are the only errors that cannot
be removed. Only unique partial roots can be expanded. If a partial root is not unique then
calling PuiseuxExpansion will provide several further partial expansions of the partial root that
will themselves be unique and so can be used to calculate several expansions of the original.

> P<x> := PuiseuxSeriesRing(Rationals());

> R<y> := PolynomialRing(P);

> f := (y^2 - x^3)^2 - y*x^6;

> IsPartialRoot(f, x^(3/2));

true

> ExpandToPrecision(f, x^(3/2), 10);

>> ExpandToPrecision(f, x^(3/2), 10);

^

Runtime error in ’ExpandToPrecision’: Element is not a unique partial

root of the polynomial

> IsUniquePartialRoot(f, x^(3/2));

false

> c := PuiseuxExpansion(f, 0);

> A<a> := Parent(c[1]);

> N<n> := CoefficientRing(A);

> Q<q> := PolynomialRing(A);

> c;

[

a^(3/2) + 1/2*a^(9/4) + O(a^(5/2)),

a^(3/2) - 1/2*a^(9/4) + O(a^(5/2)),

-a^(3/2) + 1/2*n*a^(9/4) + O(a^(5/2)),
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-a^(3/2) - 1/2*n*a^(9/4) + O(a^(5/2))

]

> IsUniquePartialRoot(f, x^(3/2) + 1/2*x^(9/4));

true

> ExpandToPrecision(f, x^(3/2) + 1/2*x^(9/4), 10);

x^(3/2) + 1/2*x^(9/4) - 1/64*x^(15/4) + O(x^4)

> ExpandToPrecision(f, x^(3/2) + x^2, 30);

>> ExpandToPrecision(f, x^(3/2) + x^2, 30);

^

Runtime error in ’ExpandToPrecision’: Element is not a partial root of

the polynomial

> IsPartialRoot(f, x^(3/2) + x^2);

false

So if IsPartialRoot returns false then no expansion can be made. If IsUniquePartialRoot

returns false (but IsPartialRoot returns true) then several expansions can be made after calling
PuiseuxExpansion.

PuiseuxExponents(p)

Given a series expansion return the sequence of exponents [a/b] of the non zero terms
of the series p up to and including the first one where b is the global denominator
for the series.

PuiseuxExponentsCommon(p, q)

Given two series return the sequence of exponents [a/b] of the non zero initial terms
of the series p and q which are equal up to but not including the first unequal terms.

Example H46E8

This example illustrates how PuiseuxExponents and PuiseuxExponentsCommon can be used on
output from PusieuxExpansion. (Similar can be done with related functions and general series).

> P<x> := PuiseuxSeriesRing(FiniteField(5, 3));

> R<y> := PolynomialRing(P);

> f := (1+x)*y^4 - x^(-1/3)*y^2 + y + x^(1/2);

> time c := PuiseuxExpansion(f, 5);

Time: 0.030

> c;

[

4*x^(1/2) + x^(2/3) + 3*x^(5/6) + x^(7/6) + O(x^(4/3)),

x^(1/3) + x^(1/2) + 4*x^(2/3) + 2*x^(5/6) + O(x^(7/6)),

4*x^(-1/6) + 2*x^(1/3) + O(x^(2/3)),

x^(-1/6) + 2*x^(1/3) + O(x^(2/3))

]

> PuiseuxExponents(c[1]);

[ 1/2, 2/3, 5/6 ]

> PuiseuxExponents(c[3]);
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[ -1/6 ]

> P<x> := PuiseuxSeriesRing(FiniteField(5, 3));

> R<y> := PolynomialRing(P);

> f := ((y^2 - x^3)^2 - y*x^6)^2 - y*x^15;

> c := PuiseuxExpansion(f, 0);

> A<a> := Parent(c[1]);

> N<n> := CoefficientRing(A);

> Q<q> := PolynomialRing(A);

> c;

[

4*a^(3/2) + 4*a^(9/4) + 4*a^3 + O(a^(13/4)),

4*a^(3/2) + 4*a^(9/4) + a^3 + O(a^(13/4)),

4*a^(3/2) + a^(9/4) + 4*a^3 + O(a^(13/4)),

4*a^(3/2) + a^(9/4) + a^3 + O(a^(13/4)),

a^(3/2) + 3*a^(9/4) + 4*a^3 + O(a^(13/4)),

a^(3/2) + 3*a^(9/4) + a^3 + O(a^(13/4)),

a^(3/2) + 2*a^(9/4) + 4*a^3 + O(a^(13/4)),

a^(3/2) + 2*a^(9/4) + a^3 + O(a^(13/4))

]

> PuiseuxExponentsCommon(c[1], c[1]);

[ 3/2, 9/4, 3 ]

> PuiseuxExponentsCommon(c[1], c[2]);

[ 3/2, 9/4 ]

> PuiseuxExponentsCommon(c[1], c[3]);

[ 3/2 ]

> PuiseuxExponentsCommon(c[1], c[8]);

[]

46.5.2 Operations associated with Duval’s algorithm
The following functions have a similar use to those given above but implement a different
algorithm, namely that of [Duv89] which is faster and can handle larger degree polyno-
mials. However, it can only be used with polynomials which are essentially over a laurent
series ring and the coefficient ring of that laurent series ring has either characteristic zero
or characteristic greater than the degrees of the squarefree factors of the polynomial.

DuvalPuiseuxExpansion(f, n)

Version MonStgElt Default : “Rational”
TestSquarefree BoolElt Default : true

NoExtensions BoolElt Default : false

LowerFaces BoolElt Default : true

OneRoot BoolElt Default : false

Verbose Newton Maximum : 2
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A sequence of parametrizations of puiseux expansions of roots of f , as puiseux series,
where f is a polynomial over a series ring. The expansions will have at least n non
zero terms (unless the expansion is finite and has less than n non zero terms), with
more than n occurring only if n is less than the number of terms returned by the
newton polygon part of the algorithm. The coefficients of f must have exponent
denominator 1.

This algorithm is faster than that given by Walker and implemented in
PuiseuxExpansion, since it doesn’t calculate non zero terms explicitly and doesn’t
make all necessary extensions during the algorithm leaving some to be made when
the series is computed from the parametrizations.

If f has coefficients with finite precision then the expansions can only be com-
puted to as many non zero terms as can be known for that expansion. After this
limit has been reached, an error results since the next non zero term is not known.
If f has roots with finite puiseux expansions then if n is greater than the number of
non zero terms in the expansion the expansion is returned with infinite precision.

If Version is set to "Classical" then the (slower) classical branch of the al-
gorithm will be run which makes all extensions necessary for the computation of
the expansions. It is still faster than PusieuxExpansion since it does not iter-
ate through and calculate zero terms but will encounter the same problems that
PuiseuxExpansion does with field extensions over the rationals. The classical ver-
sion will return as many parametrizations as there are expansions and some of these
parametrizations will give the same set of expansions.

If NoExtensions is set to true then only the expansions which lie in the puiseux
series ring corresponding to the coefficient ring of f are calculated. Otherwise, all
the expansions of roots of f are calculated regardless of where they lie. LowerFaces
and OneRoot work as for PuiseuxExpansion.

This algorithm works with the squarefree part of f only. If any coefficient of f
has low precision then this step may make it impossible for any information about
the expansions to be gained due to a loss of further precision. A way around this is
to set TestSquarefree to false if the polynomial is known to be squarefree. This
may result in some information being returned but such information is only as good
as the precision it was allowed.

ParametrizationToPuiseux(T)

The series that satisfy the parametrization T. These are found by evaluating T[2]
at t where T[1] = λte.

PuiseuxToParametrization(S)

A parametrization of the series S. It is the simplest one which takes the denominator
out of S and makes it the exponent of the first entry in the parametrization.

Example H46E9

This example illustrates the use of DuvalPuiseuxExpansion and ParametrizationToPuiseux to
gain the information given by PuiseuxExpansion and also compares the performance of the two
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algorithms. It also highlights some of the anomalies that may be encountered due to precision
concerns.

> P<x> := PuiseuxSeriesRing(Rationals());

> R<y> := PolynomialRing(P);

> f := (y^2 - x^3)^2 - y*x^6;

> time D := DuvalPuiseuxExpansion(f, 0);

Time: 0.000

> D;

[

<16*x^4, 64*x^6 + 256*x^9 + O(x^10)>

]

> time P := ParametrizationToPuiseux(D[1]);

Time: 0.060

> A<a> := Parent(P[1]);

> N<n> := CoefficientRing(A);

> P;

[

a^(3/2) + 1/2*a^(9/4) + O(a^(5/2)),

a^(3/2) - 1/2*a^(9/4) + O(a^(5/2)),

-a^(3/2) + 1/2*n*a^(9/4) + O(a^(5/2)),

-a^(3/2) - 1/2*n*a^(9/4) + O(a^(5/2))

]

> time c := PuiseuxExpansion(f, 0);

Time: 0.050

Here it can be seen that the newton polygon part of the algorithm is substantially faster using
Duval’s method, though the converting of the parametrization to a series is not as fast. Asking
for more terms shows this more substantially.

> time D := DuvalPuiseuxExpansion(f, 10);

Time: 0.020

> D;

[

<16*x^4, 64*x^6 + 256*x^9 - 512*x^15 + 2048*x^18 - 4608*x^21 + 56320*x^27 -

294912*x^30 + 792064*x^33 - 12082176*x^39 + 68157440*x^42 + O(x^43)>

]

> time P := ParametrizationToPuiseux(D[1]);

Time: 0.129

> time c := PuiseuxExpansion(f, 10);

Time: 0.100

> A<a> := Parent(c[1]);

> N<n> := CoefficientRing(A);

> c;

[

a^(3/2) + 1/2*a^(9/4) - 1/64*a^(15/4) + O(a^4),

a^(3/2) - 1/2*a^(9/4) + 1/64*a^(15/4) + O(a^4),

-a^(3/2) + 1/2*n*a^(9/4) + 1/64*n*a^(15/4) + O(a^4),

-a^(3/2) - 1/2*n*a^(9/4) - 1/64*n*a^(15/4) + O(a^4)
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]

> A<a> := Parent(P[1]);

> N<n> := CoefficientRing(A);

> P;

[

a^(3/2) + 1/2*a^(9/4) - 1/64*a^(15/4) + 1/128*a^(9/2) - 9/4096*a^(21/4) +

55/131072*a^(27/4) - 9/32768*a^(15/2) + 1547/16777216*a^(33/4) -

11799/536870912*a^(39/4) + 65/4194304*a^(21/2) + O(a^(43/4)),

a^(3/2) - 1/2*a^(9/4) + 1/64*a^(15/4) + 1/128*a^(9/2) + 9/4096*a^(21/4) -

55/131072*a^(27/4) - 9/32768*a^(15/2) - 1547/16777216*a^(33/4) +

11799/536870912*a^(39/4) + 65/4194304*a^(21/2) + O(a^(43/4)),

-a^(3/2) + 1/2*n*a^(9/4) + 1/64*n*a^(15/4) - 1/128*a^(9/2) -

9/4096*n*a^(21/4) - 55/131072*n*a^(27/4) + 9/32768*a^(15/2) +

1547/16777216*n*a^(33/4) + 11799/536870912*n*a^(39/4) -

65/4194304*a^(21/2) + O(a^(43/4)),

-a^(3/2) - 1/2*n*a^(9/4) - 1/64*n*a^(15/4) - 1/128*a^(9/2) +

9/4096*n*a^(21/4) + 55/131072*n*a^(27/4) + 9/32768*a^(15/2) -

1547/16777216*n*a^(33/4) - 11799/536870912*n*a^(39/4) -

65/4194304*a^(21/2) + O(a^(43/4))

]

It can be seen that the computation of the information is a lot faster using Duval’s method. It is
only the cosmetic of converting this information into series that could make this algorithm seem
slow. But also note that there is much greater information given by Duval’s algorithm. The
equivalent information is given below.

> time D := DuvalPuiseuxExpansion(f, 3);

Time: 0.009

> time P := ParametrizationToPuiseux(D[1]);

Time: 0.049

> A<a> := Parent(P[1]);

> N<n> := CoefficientRing(A);

> P;

[

a^(3/2) + 1/2*a^(9/4) - 1/64*a^(15/4) + O(a^4),

a^(3/2) - 1/2*a^(9/4) + 1/64*a^(15/4) + O(a^4),

-a^(3/2) + 1/2*n*a^(9/4) + 1/64*n*a^(15/4) + O(a^4),

-a^(3/2) - 1/2*n*a^(9/4) - 1/64*n*a^(15/4) + O(a^4)

]

One thing that may be taken for granted from PuiseuxExpansion is that all the expansions lie in
the same puiseux series ring. However, for DuvalPuiseuxExpansion this may not be the case. It
will always be true that each of the parametrizations will lie in the same puiseux series ring but
series resulting from different parametrizations may not. This occurs since some extensions are
left to the stage of calculating the series from the parametrization to be made and for different
parametrizations these extensions may be different.

> f := (-x^3 + x^4) - 2*x^2*y - x*y^2 + 2*x*y^4 + y^5;

> time D := DuvalPuiseuxExpansion(f, 0);

Time: 0.010
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> D;

[

<x^2, -x^2 - x^3 + O(x^4)>,

<x^3, x + O(x^2)>

]

> time P := ParametrizationToPuiseux(D[1]);

Time: 0.000

> P;

[

-x - x^(3/2) + O(x^2),

-x + x^(3/2) + O(x^2)

]

> Parent(P[1]);

Puiseux series field in x over Rational Field

> time P := ParametrizationToPuiseux(D[2]);

Time: 0.030

> A<a> := Parent(P[1]);

> N<n> := CoefficientRing(A);

> P;

[

a^(1/3) + O(a^(2/3)),

n*a^(1/3) + O(a^(2/3)),

(-n - 1)*a^(1/3) + O(a^(2/3))

]

> Parent(P[1]);

Puiseux series field in a over N

> N;

Number Field with defining polynomial $.1^2 + $.1 + 1 over the Rational Field

DuvalPuiseuxExpansion reacts differently to PuiseuxExpansion when given input which has finite
expansions either due to finite precision or exact roots. These differences are shown below and
are due to the fact that DuvalPuiseuxExpansion always looks for the next non zero term in an
expansion whereas PuiseuxExpansion will calculate zero terms.

> f := y - x^3 - x^7 - x^76 + O(x^200);

> D := DuvalPuiseuxExpansion(f, 0);

> D;

[

<x, x^3 + O(x^4)>

]

> D := DuvalPuiseuxExpansion(f, 3);

> D;

[

<x, x^3 + x^7 + x^76 + O(x^77)>

]

> D := DuvalPuiseuxExpansion(f, 4);

>> D := DuvalPuiseuxExpansion(f, 4);

^

Runtime error in ’DuvalPuiseuxExpansion’: Insufficient precision to calculate to
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requested precision

> c := PuiseuxExpansion(f, 197);

> c;

[

x^3 + x^7 + x^76 + O(x^200)

]

> c := PuiseuxExpansion(f, 200);

>> c := PuiseuxExpansion(f, 200);

^

Runtime error in ’PuiseuxExpansion’: Insufficient precision to calculate to

requested precision

> f := y - x^3 - x^7 - x^76;

> D := DuvalPuiseuxExpansion(f, 0);

> D;

[

<x, x^3 + O(x^4)>

]

> D := DuvalPuiseuxExpansion(f, 3);

> D;

[

<x, x^3 + x^7 + x^76 + O(x^77)>

]

> D := DuvalPuiseuxExpansion(f, 4);

> D;

[

<x, x^3 + x^7 + x^76>

]

> c := PuiseuxExpansion(f, 10);

> c;

[

x^3 + x^7 + O(x^13)

]

> c := PuiseuxExpansion(f, 100);

> c;

[

x^3 + x^7 + x^76 + O(x^103)

]

> c := PuiseuxExpansion(f, 200);

> c;

[

x^3 + x^7 + x^76 + O(x^203)

]

> c := PuiseuxExpansion(f, 200 : PreciseRoot := true);

> c;

[

x^3 + x^7 + x^76
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]

The two methods can be combined. Given a series there is no way that Duval’s REGULAR
algorithm can be used to further the precision of an expansion. But ExpandToPrecision can be
used to gain the extra precision. Using the REGULAR algorithm would be preferable since it is
faster but this is not possible for the type of input that is available. This is explored in the case
of our first example.

> f := (y^2 - x^3)^2 - y*x^6;

> time D := DuvalPuiseuxExpansion(f, 0);

Time: 0.009

> time P := ParametrizationToPuiseux(D[1]);

Time: 0.050

> A<a> := Parent(P[1]);

> N<n> := CoefficientRing(A);

> P;

[

a^(3/2) + 1/2*a^(9/4) + O(a^(5/2)),

a^(3/2) - 1/2*a^(9/4) + O(a^(5/2)),

-a^(3/2) + 1/2*n*a^(9/4) + O(a^(5/2)),

-a^(3/2) - 1/2*n*a^(9/4) + O(a^(5/2))

]

> time ExpandToPrecision(f, P[1], 20);

a^(3/2) + 1/2*a^(9/4) - 1/64*a^(15/4) + 1/128*a^(9/2) - 9/4096*a^(21/4) +

O(a^(13/2))

Time: 0.070

> time D := DuvalPuiseuxExpansion(f, 5);

Time: 0.010

> time P := ParametrizationToPuiseux(D[1]);

Time: 0.059

It can be seen that using ExpandToPrecision is slower even than rerunning Duval’s algorithm
from the beginning. Even more so when it is remembered that running Duval’s algorithm with
the extra precision will give parametrizations of all the expansions of the roots of f and not just
one expansion. This seems to still be the case when larger examples are considered so that if more
terms of an expansion are required it is probably best to start from the beginning asking for these
extra terms.

> time p1 := ExpandToPrecision(f, P[1], 50);

> A<a> := Parent(p1);

> N<n> := CoefficientRing(A);

> p1;

a^(3/2) + 1/2*a^(9/4) - 1/64*a^(15/4) + 1/128*a^(9/2) - 9/4096*a^(21/4) +

55/131072*a^(27/4) - 9/32768*a^(15/2) + 1547/16777216*a^(33/4) -

11799/536870912*a^(39/4) + 65/4194304*a^(21/2) - 189805/34359738368*a^(45/4)

+ 1584999/1099511627776*a^(51/4) - 2261/2147483648*a^(27/2) + O(a^14)

Time: 0.439

> time D := DuvalPuiseuxExpansion(f, 13);

Time: 0.009

> time P := ParametrizationToPuiseux(D[1]);
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Time: 0.200

46.5.3 Roots of Polynomials
This section describes two similar functions that can be used for finding roots of polyno-
mials over series rings in a similar way to finding roots of polynomials over any other ring
for which roots can be computed in Magma.

Roots(f)

Roots(f, n)

Verbose Newton Maximum : 2
Find the roots of the polynomial f which lie in the coefficient ring of f . The first
form of this function can be used on any polynomial over any ring for which Magma
can compute roots. Since precision is an issue in series rings and some roots may
have infinite expansions, the second version of this function which is specific to series
rings allows a lower bound for the precision to which these roots will be known to
be specified. The first computes the roots to at least the default precision of the
ring if that ring has infinite precision otherwise it computes them to at least the
precision of the ring. The first version will be enough when all the coefficients of
the polynomial have infinite precision. The second version may be required when a
precision other than that assumed by the first is sought which may be due to the
impossibility of computing the roots to such a high precision as the default. The
precision is relative to the least common multiple of the exponent denominators of
the coefficients of f and the exponent denominator of the root. Roots which are
known to be different but are identical to the precision specified will be returned as
two distinct roots.

Duval’s algorithm as implemented in DuvalPuiseuxExpansion will usually be
used. Walker’s algorithm as implemented in PuiseuxExpansion will be used if the
polynomial has coefficients involving fractional powers or the characteristic of the
coefficient ring of the series ring is less than the degree of a squarefree factor.

If Walker’s algorithm is used and the characteristic of the field is less than the
degree of the polynomial then the computation may not finish (see remarks under
PuiseuxExpansion) and control will return to the user when interrupted.

If verbose printing of partial output that doesn’t have enough precision is required
the functions PuiseuxExpansion and DuvalPuiseuxExpansion should be used with
the appropriate precision. Roots also requires that there is enough precision in the
roots so that the multiplicities can be calculated correctly and the parts of the roots
that are returned are distinct. Therefore an error will be given if there is not enough
precision to calculate the part of the root that results from the newton polygon part
of the algorithm and the root is not known to be a single root since the multiplicity
may not be able to be calculated correctly. Information at such a low precision can
be gained correctly by using the PuiseuxExpansion functions and determining the
multiplicities manually.
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HasRoot(f)

Return true if the polynomial f has a root in its coefficient ring and that root can
be found to the fixed or default precision of the ring as applicable. A root is also
returned in this case. If f is irreducible over its coefficient ring then return false.

Example H46E10

Below are some examples of the use of the Roots function.

> SetVerbose("Newton", 1);

> P<x> := PuiseuxSeriesRing(Rationals());

> R<y> := PolynomialRing(P);

> f := y^3 + 2*x^-1*y^2 + 1*x^-2*y + 2*x;

> Roots(f);

DUVAL :

[

<-2*x^3 - 8*x^7 - 56*x^11 - 480*x^15 - 4576*x^19 + O(x^23), 1>

]

> f := f^2;

> Roots(f);

DUVAL :

[

<-2*x^3 - 8*x^7 - 56*x^11 - 480*x^15 - 4576*x^19 + O(x^23), 2>

]

> f := y^3 + 2*x^-1*y^2 + 1*x^-2*y + 2*x;

> f +:= O(x^20)*(y^3 + y^2 + y + 1);

> f;

(1 + O(x^20))*y^3 + (2*x^-1 + O(x^20))*y^2 + (x^-2 + O(x^20))*y + 2*x + O(x^20)

> Roots(f);

DUVAL :

>> Roots(f);

^

Runtime error in ’Roots’: Roots not calculable to default precision

> Roots(f, 10);

DUVAL :

[

<-2*x^3 - 8*x^7 - 56*x^11 + O(x^13), 1>

]

> f := f^2;

> f;

(1 + O(x^20))*y^6 + (4*x^-1 + O(x^19))*y^5 + (6*x^-2 + O(x^18))*y^4 + (4*x^-3 +

4*x + O(x^18))*y^3 + (x^-4 + 8 + O(x^18))*y^2 + (4*x^-1 + O(x^18))*y + 4*x^2

+ O(x^21)

> Roots(f, 10);

DUVAL :

[

<-2*x^3 - 8*x^7 - 56*x^11 + O(x^13), 2>

]
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> f := (y - x^(1/4))*(y - x^(1/3));

> Roots(f);

WALKER :

[

<x^(1/3) + O(x^2), 1>,

<x^(1/4) + O(x^(23/12)), 1>

]
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Chapter 47

p-ADIC RINGS AND THEIR EXTENSIONS

47.1 Introduction
Magma supports finite extensions of the ring Zp of p-adic integers or the field Qp of p-adic
numbers. Within this chapter, we mean these objects if we refer to local rings or fields.
Section 47.2 provides more background information on the theory behind the p-adics.

Magma has two different models for working with these locals: fixed precision rings
(RngPadRes and RngPadResExt, with element types RngPadResElt and RngPadResExtElt)
and free precision rings (RngPad and FldPad, with element types RngPadElt and
FldPadElt). The merits of each model are discussed in Section 47.3.1.

Magma also contains a type of local field where extensions can be made by any irre-
ducible polynomial. For more information on these local fields, see Chapter 51.

47.2 Background
The p-adic field Qp arises naturally as the completion of Q with respect to an absolute

value function |x|p = p−vp(x), where vp(x) is the p-adic valuation of x (that is, a power of
p such that x = pvp(x) a

b but p 6 | ab). The ring of integers of Qp, denoted Zp, is the set of
all elements of non-negative valuation. The ring Zp has a unique maximal ideal, generated
by the prime p; the residue class field K is the quotient Zp/pZp. Any element x of Qp

can be expressed as a power series in the prime p, so that x =
∑∞

i=v aip
i, where v is the

valuation of x, av is non-zero, and each ai is a lift of an element from the residue class
field. In more general terms, Qp is a local field, with its ring of integers Zp being a local
ring. A uniformizer π of Qp is the prime p.

More generally, consider an irreducible polynomial over some local field L1 (such as
Qp). Then the extension given by adjoining a root α of this polynomial to L1, L2 = L1[α],
is also a local field. Let π1 and π2 be uniformizers of L1 and L2, respectively. Then
πe

2 = π1u, where u is a unit of L2. The number e is the ramification degree of L2 over L1,
and divides the degree n of the extension. If e = n, we say L2 is totally ramified over L1;
if e = 1, we say L2 is unramified over L1. The degree of the residue class field K2 of L2

over the residue class field K1 of L1 is f = n
e . Finite extensions in Magma must be either

unramified or totally ramified; Magma also allows towers of extensions to be built.
It is well known that up to isomorphism there is only one degree n unramified extension

of L, which can be obtained by adjoining a pn − 1-th root of unity ζ to L. This extension
is Galois, with Galois group isomorphic to the cyclic group of order n. The Galois group is
generated by the Frobenius automorphism σ, which takes ζ to ζp. For some applications,
it is necessary to have a fast Frobenius action, so Magma supports such a representation.
However, the defining polynomial in this representation is particularly dense and can be
expensive to construct, hence it is ill-suited for general applications. An unramified exten-
sion can only be defined by inertial polynomials, which are polynomials that are irreducible
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over the residue class field. Magma allows an unramified extension to be defined by any
inertial polynomial.

All totally ramified extensions contain a root of an Eisenstein polynomial of L. An
Eisenstein polynomial f(x) =

∑n
i=0 aix

i satisfies vπ(an) = 0, vπ(ai) ≥ 1 for all 0 < i < n,
and vπ(a0) = 1. Magma allows a totally ramified extension to be defined by any Eisenstein
polynomial; note that this does not allow arbitrary representations of totally ramified
extensions to be constructed.

47.3 Overview of the p-adics in Magma

47.3.1 p-adic Rings
Since p-adic rings are completions (like the real numbers), it is difficult to represent their
elements in an exact form. As described in Section 47.2, any element x of a local ring L
can be expressed as a power series in the uniformizing element of L. Most problems can be
solved by computing in a finite quotient of L, which is equivalent to truncating the infinite
expansion of x at some point. More precisely, we work in the quotient rings L/πkL for
non-negative k, which is called the precision of the ring L.

Unfortunately, working with finite approximations to elements does have problems.
Some operations on these approximations will yield results with reduced precision. For
example, in a ring constructed with precision k the quotient of two elements with valuations
v1 ≥ v2 lies in the local ring, but can only be determined up to k − v2 digits. Also, it is
only possible in general to construct an approximation to the GCD of two polynomials f
and g over a local ring.

Magma offers two models for computing in a local ring L. The first model (the fixed
precision model) allows the user to work with the quotient rings defined above. These
quotient rings are finite structures, and their elements can easily be represented exactly;
hence, many exact algorithms can be applied to them. On the other hand, precision
management is left to the user, since operations which may lose precision, such as division,
will still return results to the full precision of the ring. In the second model (the free
precision model), the user works more directly with L, instead of a finite quotient of L. Each
element is still represented by a finite approximation, however, these approximations can
be of varying precisions, thus freeing the user from precision management. However, these
rings are inexact (for instance, there is no zero element of the ring, only approximations to
it), and hence many algorithms in Magma which are designed for exact rings may cause
significant precision loss. The situation is analogous to the support for real numbers in
Magma.

47.3.2 p-adic Fields
A local field in Magma is the field of fractions of a local ring. Representing a local field on
a machine causes some trouble, since there is no algebraic structure in which truncations
of the elements could be interpreted (as in the case of the finite quotients for the local
rings). Moreover, all structural information of a local field is already contained in its ring
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of integers, so that the main motivation for supporting local fields is to provide some basic
arithmetic.

An element x of a local field L is stored internally as x = πvu + O(πv+k), where v is
the (possibly negative) valuation of x, and u is a unit known to precision k in the ring of
integers of L. It can happen that operations in a field yield elements with no known digits
at all, since the unit parts may not overlap.

47.3.3 Free Precision Rings and Fields
Free precision rings and fields can be created with bounded or unbounded precision. If
they are created with some bounded precision k, then no element in the structure can
have precision greater than k. Thus, bounded free precision rings are “inexact” versions
of the fixed precision rings. Unbounded precision structures can have elements with arbi-
trarily large, but not infinite, precision. In general, it is recommended that free precision
structures are utilized unless speed is absolutely critical.

47.3.4 Precision of Extensions
In Magma, all measurements of precision are made with respect to a valuation function
vπ which takes the uniformizer π of the local ring L to unity (throughout this chapter, the
subscript will be dropped on vπ where there is no ambiguity). This can have surprising
results. For instance, consider a local ring L1 which extends L2, such that the ramification
degree of L1 over L2 is e. Let π1 and π2 be the uniformizing elements of L1 and L2,
respectively. Then, vπ1(π1) = 1, and vπ1(π2) = e. Hence, an element of precision k in L2

will have precision ek in when mapped into L1. Thus, it is important to always remember
in which ring precision is determined.

47.4 Creation of Local Rings and Fields
A local ring in Magma can be constructed in two ways: as either a p-adic ring, or as an
extension of another local ring. Magma supports the construction of towers of extensions
of local rings; the only restriction is that each extension must be either unramified or totally
ramified. As discussed in Section 47.2, Magma requires that the defining polynomial is
either inertial or Eisenstein.

Additionally, the user must specify whether to construct a fixed precision or free pre-
cision structure, and, if necessary, assign a precision to the structure. For local rings the
precision is interpreted as an absolute precision, specifying to what precision the element
is known, but for local fields it is interpreted as a relative precision, specifying to what
precision the unit part of the element is known.

47.4.1 Creation Functions for the p-adics

pAdicRing(p, k)

pAdicField(p, k)

Given a prime integer p and non-negative single-precision integer k, construct the
bounded free precision ring (field) of p-adic integers with maximum precision k.
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pAdicRing(p)

pAdicField(p)

Precision RngIntElt Default : 20

Given a prime integer p, construct the unbounded free precision ring (field) of p-adic
numbers. The optional parameter Precision, which must be a non-negative single
precision integer, controls the default precision to which elements are created, e.g.,
when coercing precise elements such as integers or rationals into the ring.

pAdicQuotientRing(p, k)

Given a prime integer p and non-negative single precision integer k, construct the
fixed precision quotient ring Zp/pkZp.

quo< L | x >

Given a local ring L, construct the quotient ring L/xL, where x is an element of L.

Example H47E1

The creation of p-adic rings using the above functions is illustrated below.

> R := pAdicRing(5);

> R;

5-adic ring

> R‘DefaultPrecision;

20

> R!1;

1 + O(5^20)

> R := pAdicRing(5 : Precision := 20);

> R!1;

1 + O(5^20)

> Q := quo<R | 5^20>;

> Q;

Quotient of the 5-adic ring modulo the ideal generated by 5^20

> Q!1;

1

> Q eq pAdicQuotientRing(5, 20);

true
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47.4.2 Creation Functions for Unramified Extensions

UnramifiedExtension(L, n)

ext< L | n >

Cyclotomic BoolElt Default : false

GNBType RngIntElt Default : 0

Given a local ring or field L and a positive single precision integer n, construct
the default unramified extension of L of degree n. If K is the residue class field of
L, then the defining polynomial of the default degree n extension of K is lifted to
be an inertial polynomial of L; this polynomial is used as the defining polynomial
of the extension. If Cyclotomic is true, then the lift of the defining polynomial
will be such that pn − 1-st root of unity will be adjoined to L (this representation
makes computation of the Frobenius automorphism particularly efficient). The angle
bracket notation can be used to assign a name to the generator of the extension,
e.g. K<t> := UnramifiedExtension(L, n). If Cyclotomic is false but GNBType
is t > 0 then a Gaussian normal basis of type t is used. This allows extremely
fast multiple Frobenius computations but multiplication is slower than the usual or
Cyclotomic representation if t > 2. Because of this, currently only 1 or 2 are legal
values for t. Only certain extension degrees will have a Gaussian normal basis of
type 1 or 2. To determine if this is true, the HasGNB functions described below may
be used.

UnramifiedQuotientRing(K, k)

Given a finite field K and a non-negative single precision integer k, construct the
fixed precision quotient ring which has residue class field K and precision k. The
angle bracket notation can be used to assign a name to the generator of the extension,
e.g. L<t> := UnramifiedExtension(K, f).

UnramifiedExtension(L, f)

ext< L | f >

Given a local ring or field L and a polynomial f with coefficients coercible to L,
construct the unramified extension of L defined by f . The polynomial f must be
an inertial polynomial over L. The angle bracket notation can be used to assign
a name to the generator of the extension, e.g. K<t> := UnramifiedExtension(L,
f). Free precision rings can only be extended by a polynomial if they are of bounded
precision, in which case f must be specified to the maximum precision of the ring.

IsInertial(f)

Given a polynomial f with coefficients over a local ring or field L, return true if and
only if f is an inertial polynomial. A polynomial is inertial over L if it is irreducible
over the residue class field of L.
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HasGNB(R, n, t)

Given a local ring or field, returns true iff the unramified extension of degree n
can be generated by a Gaussian Normal Basis (GNB) of Type t. A GNB allows
particularly fast multiple Frobenius and Norm computations. Multiplication will
tend to be slower though, unless t = 1.

CyclotomicUnramifiedExtension(R, f)

CyclotomicUnramifiedExtension(R, f)

CyclotomicUnramifiedExtension(R, f)

CyclotomicUnramifiedExtension(R, f)

Given a local ring of field R, construct the unramified degree f extension by
adjoining a pf − 1-th root of unity to R. Functionally equivalent to calling
UnramifiedExtension(R, f:Cyclotomic := true).

Example H47E2

The creation of unramified extensions of local rings using the above functions is illustrated below.

> R1 := pAdicRing(2, 20);

> R2 := ext<R1 | 5>;

> R2;

Unramified extension defined by the polynomial x^5 + x^2 + 1

over 2-adic ring mod 2^20

> DefiningPolynomial(R2);

x^5 + x^2 + 1

> R3 := ext<R1 | 5 : Cyclotomic>;

> R3;

Cyclotomic unramified extension of degree 5 over 2-adic ring mod 2^20

> DefiningPolynomial(R3);

x^5 + 426248*x^4 - 14172*x^3 - 147105*x^2 + 293314*x - 1

> R3.1^(2^5-1);

1

> P1<x> := PolynomialRing(R1);

> f1 := x^3 + 3*x + 1;

> IsInertial(f1);

true

> R4 := ext<R1 | f1>;

> R4;

Unramified extension defined by the polynomial x^3 + 3*x + 1

over 2-adic ring mod 2^20

> P2<y> := PolynomialRing(R2);

> f2 := y^3 + 3*y + 1;

> IsInertial(f2);

true

> ext<R2 | f2>;

Unramified extension defined by the polynomial x^3 + 3*x + 1
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over Unramified extension defined by the polynomial x^5 + x^2 + 1

over 2-adic ring mod 2^20

47.4.3 Creation Functions for Totally Ramified Extensions

TotallyRamifiedExtension(L, f)

ext< L | f >

Given a local ring or field L and a polynomial f with coefficients coercible to L,
construct the totally ramified extension of L defined by f . The polynomial f must
be an Eisenstein polynomial, that is, the leading coefficient is a unit, the constant
coefficient has valuation 1 and all other coefficients have valuation greater than or
equal to 1. The angle bracket notation can be used to assign a name to the generator
of the extension, e.g. K<t> := TotallyRamifiedExtension(L, f). Free precision
rings can only be extended by a polynomial if they are of bounded precision, in
which case f must be specified to the maximum precision of the ring.

IsEisenstein(f)

Given a polynomial f with coefficients over a local ring or field L, return true if
and only if f is an Eisenstein polynomial over L. An Eisenstein polynomial satisfies
the following properties: the leading coefficient is a unit, the constant coefficient has
valuation 1 and all other coefficients have valuation greater than or equal to 1.

Example H47E3

The creation of totally ramified extensions of local rings using the above functions is illustrated
below.

> L1<a> := ext<pAdicRing(5, 20) | 4>;

> L1;

Unramified extension defined by the polynomial x^4 + 4*x^2 + 4*x + 2

over 5-adic ring mod 5^20

> L2<b> := ext<L1 | x^4 + 125*x^2 + 5>;

> L2;

Totally ramified extension defined by the polynomial x^4 + 125*x^2 + 5

over Unramified extension defined by the polynomial x^4 + 4*x^2 + 4*x + 2

over 5-adic ring mod 5^20

> P<y> := PolynomialRing(L2);

> L3<c> := TotallyRamifiedExtension(L2, y^3 + b^4*a^5*y + b*a^2);

> L3;

Totally ramified extension defined by the polynomial x^3 + ((500*a^3 + 500*a^2 +

250*a)*b^2 + 20*a^3 + 20*a^2 + 10*a)*x + a^2*b

over Totally ramified extension defined by the polynomial x^4 + 125*x^2 + 5

over Unramified extension defined by the polynomial x^4 + 4*x^2 + 4*x + 2
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over 5-adic ring mod 5^20

If the precision of the base ring is only 1, then it is not possible to construct a ramified extension,
as there is not enough precision to allow the constant coefficient to be non-zero to that precision.

> R<x> := PolynomialRing(Integers());

> L<a> := UnramifiedExtension(pAdicRing(5, 1), 3);

> TotallyRamifiedExtension(L, x^4 + 5);

>> TotallyRamifiedExtension(L, x^4 + 5);

^

Runtime error in ’TotallyRamifiedExtension’: Polynomial must be Eisenstein

> L<a> := UnramifiedExtension(pAdicRing(5, 2), x^5 + x^2 + 2);

> TotallyRamifiedExtension(L, x^4 + 5);

Totally ramified extension defined by the polynomial x^4 + 5 over Unramified

extension defined by the polynomial x^5 + x^2 + 2 over 5-adic ring mod 5^2

> ext<L | x^4 + 125*x^2 + 5>;

Totally ramified extension defined by the polynomial x^4 + 5 over Unramified

extension defined by the polynomial x^5 + x^2 + 2 over 5-adic ring mod 5^2

47.4.4 Creation Functions for Unbounded Precision Extensions

Suppose we have an unbounded precision local ring or field L, and we wish to create a
finite extension of it. If we need the default degree n unramified extension, then we can use
the construction functions defined in Section 47.4.2 to construct this extension. However,
suppose we wish to define the extension by some polynomial f . As there is no upper
bound on the precision of elements of L, it is impossible for us to represent the polynomial
f sufficiently precisely, and hence we cannot use the creation functions defined in previous
sections for this task. To allow such extensions to be created, Magma allows extensions to
be defined by a map φ : Z≥0 → R[x], where R is a ring whose elements are coercible to the
quotient rings L/πkL for all k ∈ Z≥0. The map φ, given an input precision k, returns the
defining polynomial of the extension to precision k. Internally, whenever Magma needs
to represent an element of the extension to some precision, it will use φ to compute the
defining polynomial up to this precision. Magma may call φ on any precision between
zero and the precision of the most precise element created by the user.

ext< L | m >

Given a free precision local ring or field L and a map m with domain Z and codomain
R[x], where elements of R are coercible to the quotient rings L/πkL for all k ∈ Z≥0,
construct an extension of L defined by m. Given a non-negative single precision
integer k, the map m must return the defining polynomial of the extension to pre-
cision k, as a polynomial over R. The map m’s behaviour for other input values is
undefined. Internally, Magma will coerce the value returned by the map m to be
a polynomial over L/πkL. Examples of suitable codomains R include the integers,
rationals, or L itself.
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Example H47E4

The creation of extensions of local rings using maps is illustrated below. We show how it is
possible to define an extension of a free precision ring using an “exact” polynomial.

> R := pAdicRing(2);

> Z := Integers();

> P<x> := PolynomialRing(Z);

> m := map<Z -> P | k :-> x^3 + x + 1>;

> R2 := ext<R | m>;

> R2;

Unramified extension defined by a map over 2-adic ring

> DefiningPolynomial(R2);

(1 + O(2^20))*$.1^3 + O(2^20)*$.1^2 + (1 + O(2^20))*$.1 + 1 + O(2^20)

> R2‘DefaultPrecision := 1000;

> DefiningPolynomial(R2);

(1 + O(2^1000))*$.1^3 + O(2^1000)*$.1^2 + (1 + O(2^1000))*$.1 + 1 + O(2^1000)

47.4.5 Miscellaneous Creation Functions

IntegerRing(F)

Integers(F)

RingOfIntegers(F)

Given a local field F , construct the ring of integers R of F . The ring R is the set of
elements of F of non-negative valuation.

RingOfIntegers(R)

Given a ring R, this function simply returns it, it is provided to support generic
functionality for finite extensions of rings and fields.

FieldOfFractions(R)

Given a local ring R, construct the field of fractions F of R. The relative precision
of F is equal to the precision of R.

SplittingField(f, R)

Given a polynomial f over the integers and a p-adic ring R, compute an extension
S over R such that f splits into linear factors over S. The algorithms uses the
R4-methods as developed by Pauli ([Pau01]).

AbsoluteTotallyRamifiedExtension(R)

Given a tower of ramified extensions over some unramified ring S, compute a more
efficient representation of R, ie. an extension of S that is totally ramified and defined
by a single Eisenstein polynomial. The map returned allows to convert between the
new and old representations.
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47.4.6 Other Elementary Constructions

Composite(R, S)

For two p-adic fields that are normal over Qp, compute the compositum of R and
S, ie. the smallest field containing both R and S.

47.4.7 Attributes of Local Rings and Fields
There is only one attribute for local rings and fields that is accessible to the user.

L‘DefaultPrecision

Used to retrieve or set the default precision of the local ring or field L. This attribute
is only relevant if L is an unbounded free precision ring, in which case this will
change the precision with which elements are created by default. For bounded
precision structures, the default precision of the ring is equal to the upper bound
on precision; attempting to set this attribute will result in an error in this case.

47.5 Elementary Invariants

These functions return some simple information partially defining a local ring.

Prime(L)

Given a local ring or field L, return the prime p defining the p-adic ring or field
underlying L. This is also the characteristic of the residue class field of L.

InertiaDegree(L)

Return the inertia degree of the local ring or field L over its coefficient ring.

InertiaDegree(K, L)

Return the inertia degree of the local ring or field K relative to its subring L.

AbsoluteInertiaDegree(L)

Return the inertia degree of the local ring or field L over the p-adic ring.

RamificationDegree(L)

RamificationIndex(L)

Return the ramification degree of the local ring or field L over its coefficient ring.

RamificationDegree(K, L)

RamificationIndex(K, L)

Return the ramification degree of the local ring or field K relative to its subring L.
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AbsoluteRamificationDegree(L)

AbsoluteRamificationIndex(L)

Return the ramification degree of the local ring or field L over the p-adic ring.

AbsoluteDegree(L)

The degree of L over Zp.

Degree(L)

Return the degree of the local ring or field L over its coefficient ring.

Degree(K, L)

Return the degree of the local ring or field K relative to its subring L.

DefiningPolynomial(L)

Return the minimal polynomial of the generator of L over its coefficient ring. If L
is p-adic, the polynomial x − 1 is returned. For free precision rings and fields, the
coefficients of the defining polynomial are given to the default precision of L.

DefiningMap(L)

Given a free precision local ring or field L, return the map that was used to define
the extension (see Section 47.4.4 for information on defining extension by maps). If
a map was not used, then an error is raised.

HasDefiningMap(L)

Given a free precision local ring or field L, return true if L is defined by a map; if
so, the defining map is also returned.

PrimeRing(L)

PrimeField(L)

pAdicRing(L)

pAdicField(L)

Given a local ring or field L, return the p-adic ring or field which is a subring of L.

BaseRing(L)

CoefficientRing(L)

BaseField(L)

CoefficientField(L)

BaseRing(L)

Given a local ring or field L, return the base ring of L.
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ResidueClassField(L)

Given a local ring or field L, return the residue class field K of L, and a map from
L to K.

ResidueSystem(R)

Given a p-adic ring or field R, compute a set of representatives of the residue class
field of R as elements of R.

UniformizingElement(L)

Given a local ring or field L, return the uniformizing element of L.

L . 1

Given a local ring or field L, return an element α of L such that if K is L’s base
ring or field, then the powers of α give a basis of L as a vector space over K.

Precision(L)

Given a local ring or field L, return the precision with which L has been created.
If L is a local ring this is the maximum absolute precision to which its elements
can be created. If L is a local field this is the maximum relative precision to which
its elements can be created. If L is an unbounded free precision ring or field, then
infinity is returned.

HasPRoot(R)

Given a local ring R extending Zp for some prime p, decide if R contains a primitive
p-th root of unity.

HasRootOfUnity(L, n)

Given a local ring L and some positive integer n, decide if L contains a primitive
nth root of unity.

Discriminant(R)

Compute the discriminant of the local ring R over its coefficient ring. Since R is
defined by either an inertial polynomial or an Eisenstein one, this is equivalent to
computing the discriminant of the defining polynomial.

Discriminant(K, k)

Given p-adic rings K/k, compute the discriminant of K as an extension of k.

AdditiveGroup(R)

The additive group of the p-adic quotient R as an abelian group and the isomorphism
from this group back to R.
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Example H47E5

We illustrate the functions in this section for rings. Similar constructions can be used for fields.

> Zp := pAdicRing(5, 20);

> I<a> := UnramifiedExtension(Zp, 3);

> R<x> := PolynomialRing(I);

> L<b> := ext<I | x^3 + 5*a*x^2 + 5>;

> Prime(L);

5

> InertiaDegree(L);

1

The inertia degree of L is returned as 1 because L has been defined as a totally ramified extension
of I. However, the inertia degree of L over Zp is 3, because I itself is an unramified extension of
Zp.

> InertiaDegree(L, Zp);

3

> Degree(L);

3

> Degree(L, Zp);

9

> DefiningPolynomial(L);

x^3 + 5*a*x^2 + 5

> P<y> := PolynomialRing(Zp);

> DefiningPolynomial(I);

y^3 + 3*y + 3

> BaseRing(L);

Unramified extension defined by the polynomial x^3 + 3*x + 3

over 5-adic ring mod 5^20

> PrimeRing(L);

5-adic ring mod 5^20

> PrimeRing(I);

5-adic ring mod 5^20

> ResidueClassField(L);

Finite field of size 5^3

Mapping from: RngPad: L to GF(5^3)

> ResidueClassField(I);

Finite field of size 5^3

Mapping from: RngPad: I to GF(5^3)

Here, we see that the residue class fields of I and L are identical. This is due to the fact that L
is a totally ramified extension of I.

> UniformizingElement(L);

b

> Precision(L);

60

> Precision(I);

20
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> R<a> := ext<pAdicRing(2) | 2>;

> DefiningPolynomial(R);

(1 + O(2^20))*$.1^2 + (1 + O(2^20))*$.1 + 1 + O(2^20)

> Precision(R);

Infinity

47.6 Operations on Structures

AssignNames(∼L, S)

AssignNames(∼L, S)

Assign a name to the generator of L. The sequence must have only one element,
which must be a string. This element is assigned to be the name of the generator
when L is considered as a linear associative algebra over its base ring.

Characteristic(L)

Characteristic(L)

Characteristic(L)

The characteristic of the local ring or field L.

#L

The number of elements in the local ring or field L. The cardinality is finite only if
L is a quotient ring or a bounded free precision ring.

Iterating over the elements of a local ring is possible if it is bounded, but it will
take time in proportion to the cardinality of L. It is recommended only in the case
of “small” local rings (i.e., rings for which the precision is be very small).

Name(L, k)

Given a local ring or field L and an integer k, return the generator of L if k is 1;
otherwise, raise an error.
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ChangePrecision(L, k)

ChangePrecision(∼L, k)

ChangePrecision(L, k)

ChangePrecision(∼L, k)

ChangePrecision(L, k)

ChangePrecision(∼L, k)

ChangePrecision(L, k)

ChangePrecision(∼L, k)

ChangePrecision(L, k)

ChangePrecision(∼L, k)

ChangePrecision(L, k)

ChangePrecision(∼L, k)

Given a local ring or field L and a non-negative single precision integer k, change
the maximum precision with which elements can be created to be k. Depending
on how L and its subrings have been constructed, there may be an upper bound
(possibly infinite for free structures) on the precision to which L can be changed.
For instance, the precision to which a defining polynomial has been given places a
bound on the precision of the extension — no defining polynomial can be expanded
beyond the precision with which it was originally specified.

L eq K

Given local rings or fields L and K, return whether or not L and K are the same
object.

L ne K

Given local rings or fields L and K, return whether or not L and K are different
objects.

Example H47E6

> Zp := pAdicRing(5, 20);

> I<a> := UnramifiedExtension(Zp, 3);

> R<x> := PolynomialRing(I);

> L<b> := ext<I | x^3 + 5*a*x^2 + 5>;

> ChangePrecision(Zp, Infinity());

5-adic ring

> L;

Totally ramified extension defined by the polynomial x^3 + 5*a*x^2 + 5

over Unramified extension defined by the polynomial x^3 + 3*x + 3

over 5-adic ring mod 5^20
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> ChangePrecision(~L, 50);

> L;

Totally ramified extension defined by the polynomial x^3 + 5*$.1*x^2 + 5

over Unramified extension defined by the polynomial x^3 + 3*x + 3

over 5-adic ring mod 5^17

> #L;

8758115402030106693273309895561975820501\

6371367282235734816767743111942667866287\

592914886772632598876953125

> AssignNames(~L, ["t"]);

> L.1;

t

> b;

b

> L eq ChangePrecision(L, 10);

false

Note that b is an element of the original ring L with precision 60 which is why it retains its print
name.

47.6.1 Ramification Predicates

IsRamified(R)

IsUnramified(R)

IsTotallyRamified(R)

Return whether the local ring or field extension R is ramified, unramified or totally
ramified.

IsTamelyRamified(R)

IsWildlyRamified(R)

Return whether the local ring or field extension R is tamely ramified (the prime
does not divide the ramification degee) or wildly ramified (the prime does divide
the ramification degree).
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47.7 Element Constructions and Conversions
Local ring elements are implemented using a balanced mod representation. This allows
small negative elements x to be represented as x rather than pk − x where k is a p-adic
precision.

47.7.1 Constructions
To simplify the creation of elements in a local ring, various coercions are provided. The
most obvious is to regard the integer ring or rational field as embedded in the p-adic ring
or field. But there is a range of coercions available, including that of elements from the
residue class field.

To create an element of a local field not lying in the local ring, constructors are provided
that create an element coercible into the ring, and which increase or decrease this element’s
valuation in the field.

Zero(L)

Given a local ring or field L, create the additive identity of L. Note that if L is
an unbounded precision structure, this will only be the zero element to the default
precision of the ring, and hence only an approximation to the additive identity of L.

One(L)

Given a local ring or field L, create the multiplicative identity of L. Note that if L
is an unbounded precision structure, this will only be the one element to the default
precision of the ring, and hence only an approximation to the multiplicative identity
of L.

Random(L)

Given a local ring or field L, return a random element of L, which must be a quotient
ring or bounded precision ring. The element will have the default precision of the
ring.

Representative(L)

Return an element of the local ring or field L.

elt< L | u >

L ! u

Coerce the object u into the local ring or field L. The resulting element will have
as much precision as possible. The element u is allowed to be one of the following:
(i) An integer.
(ii) An element of Z/pmZ; (where m is a precision).
(iii) An element of the residue class field of L.
(iv) An element of a local ring or field with something in common with L.
(v) A rational number. If L is a ring then u must not have valuation in the

denominator.
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(vi) An element of a valuation ring over the rationals with the same prime as L.
(vii) A sequence s. In this case, the sequence s is coerced to a sequence t over the

base ring or field of L. This sequence is coerced to
∑#t

i=1 t[i]L.1i−1.

elt< L | u, r >

Create an element of the local ring or field L by coercing u into L and returning
with it precision r.

elt< L | v, u, r >

Create an element of the local ring or field L by coercing u into L, multiplying by
the v-th power of the uniformizing element and returning it with precision r.

BigO(x)

O(x)

For an element x of a local ring or field L of valuation v, create an element of
valuation v and relative precision 0. For rings this is the zero element in the quotient
L/πvL.

UniformizingElement(L)

Given a local ring or field L, return the uniformizing element of L to the default
precision of L.

Example H47E7

Here we illustrate the usage of element constructors for local fields and imprecise zeros.

> Zp := pAdicRing(5, 20);

> I<a> := UnramifiedExtension(Zp, 3);

> R<x> := PolynomialRing(I);

> L<b> := ext<I | x^3 + 5*a*x^2 + 5>;

> K<pi> := ext<BaseField(FieldOfFractions(L)) | x^2 + 5>;

> K;

Totally ramified extension defined by the polynomial x^2 + 5

over Unramified extension defined by the polynomial x^3 + 3*x + 3

over 5-adic field mod 5^20

> elt<K | 64>;

64 + O(pi^40)

> P := PrimeField(K);

> elt<K | 2, 3/4, 6>;

pi^2*7 + O(pi^6)

> 4*$1;

pi^2*3 + O(pi^6)

> K!3/5;

pi^-2*3 + O(pi^38)

> O(K!40^200);

O(pi^400)
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> Precision($1);

0

> O(K!0);

O(pi^40)

> O(K!1);

O(1)

> R<x> := PolynomialRing(Integers());

> K<pi> := ext<pAdicField(5, 100) | x^2 + 5>;

> elt<K | 64>;

64 + O(pi^200)

> Precision($1);

200

> K!3/10;

-pi^-2*3944304526105059027058642826413931148366032175545115023851394653320311 +

O(pi^198)

Example H47E8

There is a subtle interplay between the default precision of rings and fields and coercion of se-
quences, which we demonstrate here. We construct the 5-adic field P , and an unramified extension
of R. We set the default precision of R to be higher than that of P .

> P := pAdicRing(5);

> R := ext<P | 2>;

> P‘DefaultPrecision;

20

> R‘DefaultPrecision := 40;

> x := Random(R);

> x;

-1579801843431963201369145587*R.1 - 680575730458975039033394769 + O(5^40)

> s := [-680575730458975039033394769, -1579801843431963201369145587];

> R!s;

-13585890629962*R.1 + 47482939261481 + O(5^20)

> P‘DefaultPrecision := 40;

> R!s;

-1579801843431963201369145587*R.1 - 680575730458975039033394769 + O(5^40)

As can be seen from the above, it is the default precision of the base ring, not the ring itself,
which determines the precision of elements created by sequences.
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47.7.2 Element Decomposers

ElementToSequence(x)

Eltseq(x)

Coefficients(x)

Given an element x of a degree n extension K of L, these functions return a sequence
s of elements of L such that x =

∑n
i=1 s[i]K.1i−1.

Coefficient(x, i)

Equivalent to, but more efficient than, Coefficients(x)[i].

Example H47E9

We want to perform a Galois descent for a polynomial, i.e. we interpret the product of the Galois
conjugates of a polynomial in a subring.

> p := 3;

> L<a> := UnramifiedExtension(pAdicRing(p), 4 : Cyclotomic);

> R<x> := PolynomialRing(L);

> g := x^2 + (a+a^-2)*x + (a^-1+a^3+1);

> g;

(1 + O(3^20))*x^2 + (-151999392*a^3 - 428033534*a^2 + 1509587217*a - 64512399 +

O(3^20))*x + 2*a^3 + 307453058*a^2 - 1732356354*a - 151999391 + O(3^20)

> a2 := a^(p^2);

> g2 := R ! [ &+[Eltseq(c)[i]*a2^(i-1) : i in [1..4]] : c in Eltseq(g) ];

Here Eltseq is being used to replace occurrences of a in the element by a2.

> h := g * g2;

> h;

(1 + O(3^20))*x^4 + (774759822*a^3 - 1559939781*a^2 + 644136111*a + 143311364 +

O(3^20))*x^3 + (73899384*a^3 - 333497478*a^2 + 1655979363*a + 158024680 +

O(3^20))*x^2 + (989668189*a^3 - 661853000*a^2 - 1685887308*a + 122035547 +

O(3^20))*x - 1630826887*a^3 - 328410694*a^2 - 175290219*a + 1601599448 +

O(3^20)

The polynomial g2 is the image of g under the automorphism induced by the square of the
Frobenius automorphism. The product h = gg2 has coefficients in the unramified extension of
degree 2, which is the fixed field under the square of the Frobenius and is generated by a10. Next,
we determine a representation for the polynomial h with coefficients lying in this unramified
extension of degree 2.

> K<b> := UnramifiedExtension(pAdicRing(p), 2 : Cyclotomic);

> S<y> := PolynomialRing(K);

> M := RMatrixSpace(PrimeRing(L), 2, 4) ! 0;

> V := RSpace(PrimeRing(L), 4);

> M[1] := V ! Eltseq(a^0);

> M[2] := V ! Eltseq(a^10);

> sol := [ Solution(M, V ! Eltseq(c)) : c in Eltseq(h) ];
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> h2 := S ! [ K ! Eltseq(s) : s in sol ];

> h2;

(1 + O(3^20))*y^4 + (-1237301755*b + 505889265 + O(3^20))*y^3 + (-542504216*b +

1258167831 + O(3^20))*y^2 + (-280210015*b - 1205051127 + O(3^20))*y +

1213139407*b + 1602993886 + O(3^20)

47.8 Operations on Elements

47.8.1 Arithmetic
For local ring elements the usual operations are available. The quotient of two elements
can be computed when the result lies in the ring (i.e. the valuation of the dividend is not
smaller than that of the divisor). The precision of the result is reduced by the valuation
of the divisor. The result of an operation with elements of reduced precision will have
as much precision as possible. For addition and subtraction this is the minimum of the
precisions of the two elements. For multiplication it is the minimum of v1 +k2 and v2 +k1,
where vi and ki are the valuations and precisions of the two elements, respectively.

For local field elements the operations are performed with the maximum precision
possible. For multiplication and division this is the minimum of the (relative) precisions
of the two elements. For addition and subtraction of elements x and y with valuations vx

and vy and precisions kx and ky the precision of x± y is min(vx + kx, vy + ky)− vp(x± y),
which may even be 0.

-x

The negative of the element x.

x + y

The sum of the elements x and y.

x - y

The difference of the elements x and y.

x * y

The product of the elements x and y.

x ^ k

The k-th power of the element x. If k has valuation (when coerced) and x has
precision less than that of its parent ring, the power xk will have more precision
than x.

x div y

The quotient of the elements x and y. For elements of a local ring, this results in
an error if the valuation of x is smaller than that of y.
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x div:= y

Mutation operation: replace the element x by its quotient upon division by y. For
elements of a local ring, this results in an error if the valuation of x is smaller than
that of y.

x / y

The quotient of the elements x and y. For elements of a local ring, the result will
be returned in its field of fractions.

IsExactlyDivisible(x, y)

Return true if x can be exactly divided by y; in this case also return the quotient.

Example H47E10

Division of non-units in the ring will yield a result in the field of fractions. In that case the result
has reduced precision. To ensure that the result is returned as a ring element, the operator div

should be used.

> R := pAdicRing(2);

> pi := UniformizingElement(R);

> pi;

2 + O(2^20)

> 1 / pi;

2^-1 + O(2^18)

> Parent($1);

2-adic field

> 1 div pi;

>> 1 div pi;

^

Runtime error in ’div’: Division is not exact

> IsExactlyDivisible(1, pi);

false

> IsExactlyDivisible(pi^2, pi);

true 2 + O(2^20)

47.8.2 Equality and Membership
It is possible to test whether two local ring or field elements are equal only in quotient
rings. Equality testing in free precision rings is disabled, as there are several reasonable
definitions of equality in an imprecise ring.

x eq y

Given local ring or field elements x and y, return true if and only if x and y are
identical in value. This operator is only defined in fixed precision rings.
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x ne y

Given local ring or field elements x and y, return true if and only if x and y are
not identical in value. This operator is only defined in fixed precision rings.

x in L

Return true if and only if x lies in the local ring or field L.

x notin L

Return true if and only if x does not lie in the local ring or field L.

Example H47E11

We demonstrate how an unramified extension can be constructed from a given degree. The idea is
to interpret the minimal polynomial of a primitive element in the residue class field as a polynomial
over Zp. The quotient of Zp[x] by the ideal generated by this polynomial is isomorphic to the
unramified extension and a := x is a first approximation for the pf − 1-th root of unity. This is

improved by iterating a 7→ apf

until this remains fixed.

> p := 2;

> f := 5;

> Zp := pAdicRing(p, 25);

> R<x> := PolynomialRing(Zp);

> g := R ! MinimalPolynomial(GF(p,f).1);

> Q<r> := quo<R | g>;

> a := [ r, r^(p^f) ];

> while a[#a] ne a[#a-1] do

> print a[#a];

> Append(~a, a[#a]^(p^f));

> end while;

34*r^4 - 44*r^3 + 58*r^2 - 23*r + 36

12522914*r^4 + 12522004*r^3 - 12174790*r^2 - 8200343*r - 10407260

8242594*r^4 + 12409364*r^3 + 5143098*r^2 + 15781737*r - 3636572

5490082*r^4 + 8804884*r^3 - 11109830*r^2 + 11456361*r + 11698852

-15481438*r^4 - 5875180*r^3 + 5667386*r^2 + 7262057*r - 884060

> [ Minimum([ Valuation(c) : c in Eltseq(a[i] - a[i-1]) ]) : i in [2..#a-1] ];

[ 1, 6, 11, 16, 21 ]

The last statement demonstrates the convergence of the process. The polynomial defining the
unramified extension could now easily be obtained as the minimal polynomial of the fixed element.

> U := ext<Zp | f>;

> MinimalPolynomial(U ! Eltseq(a[#a]));

x^5 - 13205240*x^4 - 3159900*x^3 - 13778593*x^2 + 9730498*x - 1
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47.8.3 Properties
Local ring and field elements can be tested for certain properties. However, note that in
free precision rings and fields, exact zero, one, and minus one elements do not exist, only
approximations to such elements — in these cases, the predicates will always return false.

IsZero(x)

Given an element x of a local ring or field, return true if and only if x is the zero
element of its parent ring or field.

IsOne(x)

Given an element x of a local ring or field, return true if and only if x is the one
element of its parent ring or field.

IsMinusOne(x)

Given an element x of a local ring or field, return true if and only if x is the minus
one element of its parent ring or field.

IsUnit(x)

Given an element x of a local ring or field, return true if and only if x is a unit,
that is, x has valuation 0.

IsIntegral(x)

Given an element x of a local ring or field, return true if and only if x has non-
negative valuation.

47.8.4 Precision and Valuation
The parent of a local element can be retrieved, its precision accessed and changed, its
valuation computed and its denominator returned.

Parent(x)

Return the parent local ring or field of the element x.

Precision(x)

For a local ring element x, returns the precision to which it is known; for a local
field element x, returns the precision to which its unit part is known.

AbsolutePrecision(x)

Returns the precision of a local ring or field element x.

RelativePrecision(x)

Returns the difference between the absolute precision and the valuation of the local
ring or field element x.
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ChangePrecision(x, k)

ChangePrecision(∼x, k)

ChangePrecision(x, k)

ChangePrecision(∼x, k)

Given a local ring or field element or polynomial over a local ring or field x and a
non-negative single precision integer k, change the precision of x to k. If k is smaller
than the precision of x, x is truncated; if k is larger, then an element y is returned
such that v(x− y) ≥ k. Note that the precision of an element cannot be changed to
be greater than its parent. Any attempt to do so will result in the element gaining
the precision of its parent.

Expand(x)

Change the precision of the local ring or field element x to be the maximum precision
allowed by its parent. This results in an error if x is an element of an unbounded
free precision ring.

Valuation(x)

Return the valuation of the local ring or field element x. This is always bounded by
the absolute precision of the element.

Example H47E12

The uses and properties of relative and absolute precision for field elements are illustrated here,
as well as the results of Expand.

> R<x> := PolynomialRing(Integers());

> K<d> := ext<ext<pAdicField(5, 100) | 2> | x^2 + 5>;

> x := d + d^7;

> x;

-d*124 + O(d^200)

> AbsolutePrecision(x);

200

> RelativePrecision(x);

199

> RelativePrecision(x + O(d^10));

9

> AbsolutePrecision(x + O(d^10));

10

> RelativePrecision(ChangePrecision(x, 19));

19

> RelativePrecision(ChangePrecision(x, 10));

10

> AbsolutePrecision(ChangePrecision(x, 10));

11

> Expand(ChangePrecision(x, 10));
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d*3001 + O(d^201)

> Valuation(x);

1

> ChangePrecision(x, 20) - (x + O(d^21));

O(d^21)

The last two lines show that changing the precision of an element is equivalent to adding impre-
cision to the element effectively cancelling off all terms beyond that of relative valuation 20.

47.8.5 Logarithms and Exponentials
Logarithms and exponentials can also be calculated for certain elements.

Log(x)

The logarithm of the local ring or field element x, returned to the precision of x.
Note that the power series of the logarithm function only converges if the valuation
of x−1 is positive. For ring elements x, the answer lies in the ring (and not its field
of fractions) only if the valuation of x−1 is greater than or equal to the ramification
degree of the ring divided by the prime.

The rate of convergence of Log is dependent on the valuation of x − 1. The
greater the valuation the faster the convergence, as is illustrated in the example
below.

Exp(x)

The exponential of the local ring or field element x, returned to the precision of x.
Note that the power series of the exponential function only converges if the valuation
of x is strictly larger than e/(p−1), where e is the ramification degree of the parent
ring of x.

Example H47E13

This example illustrates the relative timings of the Log function and the Exp function for rings
and fields and for various valuations of x− 1 or x as appropriate.

> K := ext<pAdicField(3, 20) | x^3 + x^2 + x + 2>;

> K<d> := ext<K | x^3 + 3*x^2 + 3*x + 3>;

> L<b> := IntegerRing(K);

> x := 1 + b;

> time Log(x);

Time: 0.070

> x := 1 + b^5;

> time Log(x);

874050819*b^2 + 1624571442*b - 914550768

Time: 0.010

> Valuation(Exp(Log(x)) - x);

60

> x := b^2;
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> time Exp(x);

1418565628*b^2 + 1334033745*b + 905945461

Time: 0.170

> Valuation(Log(Exp(x)) - x);

60

> x := b^6;

> time Exp(x);

1700312013*b^2 - 72781965*b + 1129064707

Time: 0.020

> Valuation(Log(Exp(x)) - x);

60

47.8.6 Norm and Trace Functions
The norm, trace and minimal polynomial of an element can be calculated. A function
returning the image of an element under a power of the Frobenius automorphism is also
provided.

Norm(x)

Given a local ring or field element x, return the norm of x over the base ring of its
parent. The norm is the product of all conjugates of x.

Norm(x, R)

Given a local ring or field element x, return the norm of x over the local ring or
field R. The ring R must be a subring of the parent of x. The norm is the product
of all conjugates of x.

Trace(x)

Given a local ring or field element x, return the trace of x over the base ring of its
parent. The trace is the product of all conjugates of x.

Trace(x, R)

Given a local ring or field element x, return the trace of x over the local ring or field
R. The ring R must be a subring of the parent of x. The trace is the sum of all
conjugates of x.

MinimalPolynomial(x)

Given a local ring or field element x, return the minimal polynomial of x over the
base ring of its parent.

MinimalPolynomial(x, R)

Given a local ring or field element x, return the minimal polynomial of x over the
local ring or field R. The ring R must be a subring of the parent of x.



1292 LOCAL ARITHMETIC FIELDS Part VIII

CharacteristicPolynomial(x)

Given a local ring element x, return the characteristic polynomial of x over the base
ring of its parent.

CharacteristicPolynomial(x, R)

Given a local ring or field element x, return the characteristic polynomial of x over
the local ring or field R. The ring R must be a subring of the parent of x.

GaloisImage(x, i)

Given a local ring or field element x, return the image of x under the Frobenius
automorphism composed with itself i times, that is, a 7→ a(pi) where a is a pf − 1st
root of unity of the parent of x.

Example H47E14

One important application of the p-adics is to counting points on elliptic curves over finite fields.
This example demonstrates how a simple version of the Arithmetic-Geometric Mean (AGM)
algorithm could be implemented in Magma.

> d := 50;

> FF := GF(2^d);

> E := EllipticCurve([FF | 1, 0, 0, 0, Random(FF)]);

> assert Degree(sub<BaseRing(E) | jInvariant(E)>) gt 2;

>

> n := (d + 1) div 2 + 3;

> R := ext<pAdicRing(2) | d>;

> R‘DefaultPrecision := n;

>

> a6 := elt<R | jInvariant(E)^-1, 1>;

> lambda := 1 + 8 * a6;

>

> for k in [4..n] do

> ChangePrecision(~lambda, k + 2);

> lambda := (1 + lambda) * InverseSqrt(lambda) div 2;

> end for;

> lambda := 2 * lambda div (1 + lambda);

> Exp(Trace(Log(lambda)));

32196193 + O(2^26)

> Trace(E) mod 2^26;

32196193
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47.8.7 Teichmüller Lifts
Another important operation is the determination of the canonical Teichmüller lift of an
element u in the residue field of a p-adic ring. By definition this is the unique root of unity
of order prime to p which reduces to u modulo the maximal ideal.

TeichmuellerLift(u, R)

For a fixed precision quotient ring R of the p-adics or an unramified extension and
a finite field element u, the function attempts to coerce u into the residue class
field of R and then computes and returns its Teichmüller lift to R. This uses a fast
iterative lifting method of Harley described in Chapter 12 of [C+05]. For unramified
extensions this works most efficiently with Cyclotomic or Gaussian Normal bases
since it uses the Frobenius operation.

47.9 Linear Algebra

All linear algebra over local rings and fields in Magma is implemented in terms of the
fixed precision model. Internally, linear algebra over free precision models is performed
over an appropriate quotient ring. The advantage of this method is that exact algorithms
can be used to solve linear systems; the disadvantage is that the answer may be returned
to less precision than is theoretically possible.

47.10 Roots of Elements

Roots of local ring and field elements can be found to some precision.

SquareRoot(x)

Sqrt(x)

Given a local ring or field element x, return a square root of x. An error results if
x is not a square. The result may have less precision than x.

IsSquare(x)

Return whether the local ring or field element x is the square of an element in its
parent and if it is, the square root is returned. The result may have less precision
than x.

InverseSquareRoot(x)

InverseSqrt(x)

Given a local ring or field element x, return an inverse square root of x. The element
x must be a unit. An error results if x is not a square. The result may have less
precision than x.
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InverseSquareRoot(x, y)

InverseSqrt(x, y)

Given local ring or field elements x and y, return an inverse square root of x lifted
from an initial approximation y. The element x must be a unit. An error results
if x is not a square, or if y is not a valid initial approximation to an inverse square
root of x. The result may have less precision than x.

Root(x, n)

Return an n-th root of x if one exists. An error results if x is not an n-th power.
The result may have less precision than x.

IsPower(x, n)

Return whether x is an n-th power of some element belonging to its parent and if
it is return an n-th root. The result may have less precision than x.

InverseRoot(x, n)

Given a local ring or field element x, return an inverse n-th root of x. The element
x must be a unit. An error results if x is not an n-th power. The result may have
less precision than x.

InverseRoot(x, y, n)

Given local ring or field elements x and y, return an inverse n-th root of x lifted
from an initial approximation y. The element x must be a unit. An error results if
x is not an n-th power, or if y is not a valid initial approximation to an inverse n-th
root of x. The result may have less precision than x.

47.11 Polynomials

Various simple operations for polynomials as well as root finding and factorization functions
have been implemented for polynomials over local rings and fields.

47.11.1 Operations for Polynomials
A number of functions for polynomials in general are applicable for polynomials over local
rings and fields. Arithmetic functions, including div and mod can be used with such
polynomials (though there may be some precision loss), as well as all the elementary
functions to access coefficients and so forth. Derivatives can be taken and polynomials
over local rings and fields can be evaluated at elements coercible into the coefficient ring.
Along with GCD for these polynomials, the LCM of two polynomials can also be found.

Although the ring of polynomials over a local ring is not a principal ideal domain, it is
useful to have a GCD function available. For example, for polynomials which are coprime
over the local field, the ideal generated by the two polynomials contains some power of the
uniformizing element of the local ring. This power determines whether an approximate
factorization can be lifted to a proper factorization.
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GreatestCommonDivisor(f, g)

Gcd(f, g)

GCD(f, g)

Determine the greatest common divisor of polynomials f and g where f and g are
over a free precision local ring or field. The GCD returned is such that the cofactors
of the polynomials will have coefficients in the ring (if the polynomial is not over a
field). The process of computing the GCD of two polynomials may result in some
inaccuracy. The GCD is computed by echelonizing the Sylvester matrix of f and g.

f div g f mod g LeastCommonMultiple(f, g)

Coefficient(f, i) LeadingCoefficient(f)

Derivative(f) Evaluate(f, x)

Example H47E15

This example illustrates the usage and results of the GCD functions. Note the precision loss in
the answer.

> L := pAdicRing(5, 20);

> R<x> := PolynomialRing(L);

> elts := [Random(L) : i in [1..3]];

> f := (x - elts[1])^3 * (x - elts[2])^2 * (x - elts[3]);

> f;

x^6 + 31722977012336*x^5 - 34568128687249*x^4 +

4655751767246*x^3 + 11683626356181*x^2 -

29833674388290*x + 32360011367900

> GCD(f, Derivative(f));

(1 + O(5^18))*x^3 - (934087632277 + O(5^18))*x^2 -

(89130566204 + O(5^18))*x + 1178670674955 + O(5^18)

> f mod $1;

O(5^18)*x^5 + O(5^18)*x^4 + O(5^18)*x^3 + O(5^18)*x^2 +

O(5^18)*x + O(5^19)

> (x - elts[1])^2 * (x - elts[2]);

x^3 + 14324701430223*x^2 + 26613750293171*x +

31696248799955

> ChangePrecision($1, 18);

(1 + O(5^18))*x^3 - (934087632277 + O(5^18))*x^2 -

(89130566204 + O(5^18))*x + 1178670674955 + O(5^18)

ShiftValuation(f, n)

Shifts the valuation of each coefficient of f by n, ie. scales the polynomial by πn.
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47.11.2 Roots of Polynomials
Roots of polynomials can be found to some precision by applying the Hensel lift to an
approximation or by factorizing the polynomial and looking for linear factors from which
the roots can be read off.

47.11.2.1 Hensel Lifting of Roots
Roots of a polynomial f defined over a local ring or field can be found by first de-
termining their valuation (using the Newton polygon), finding a first approximation
over the finite field and finally improving this approximation until the Hensel condition
v(f(a)) > 2v(f ′(a)) is satisfied.

NewtonPolygon(f)

The Newton polygon of a polynomial f =
∑n

i=0 cix
i (over a local ring or field) is

the lower convex hull of the points (i, v(ci)). The slopes of the Newton polygon
determine the valuations of the roots of f in a splitting ring and the number of
roots with that valuation. The faces of the Newton polygon can be determined
using the function Faces which returns the faces expressed as the line mx + ny = c
which coincides with the face. The function GradientVector will return the m
and n values from the line so that the valuation (gradient) can be calculated. The
function EndVertices will return the end points of the face, the x coordinates of
which will give the number of roots with valuation equal to the gradient of the face.

Newton polygons are discussed in greater detail in Chapter 46 and are illustrated
below.

ValuationsOfRoots(f)

Return a sequence containing pairs which are valuations of roots of f and the number
of roots of f which have that valuation.

Example H47E16

For a polynomial of the form g :=
∏

(x−ri) we demonstrate that the Newton polygon determines
the valuations of the roots of g.

> Z3 := pAdicRing(3, 30);

> R<y> := PolynomialRing(Z3);

> pi := UniformizingElement(Z3);

> roots := [ pi^Random([0..3]) * Random(Z3) : i in [1..10] ];

> [ Valuation(r) : r in roots ];

[ 3, 1, 6, 3, 0, 3, 2, 3, 3, 2 ]

> g := &* [ y - r : r in roots ];

> N := NewtonPolygon(g);

> N;

Newton Polygon of y^10 + 44594997030169*y^9 - 85346683389318*y^8 +

76213593390537*y^7 + 74689026811236*y^6 - 48671968754502*y^5 -

58608670426020*y^4 - 63609139981179*y^3 + 77334553491246*y^2 +

39962036019861*y - 94049035648173 over pAdicRing(3, 30)
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> F := Faces(N);

> F;

[ <6, 1, 26>, <3, 1, 23>, <2, 1, 17>, <1, 1, 9>, <0, 1, 0> ]

> [GradientVector(F[i]) : i in [1 .. #F]];

[ <6, 1>, <3, 1>, <2, 1>, <1, 1>, <0, 1> ]

> [$1[i][1]/$1[i][2] : i in [1 ..#$1]];

[ 6, 3, 2, 1, 0 ]

> [EndVertices(F[i]) : i in [1 .. #F]];

[

[ <0, 26>, <1, 20> ],

[ <1, 20>, <6, 5> ],

[ <6, 5>, <8, 1> ],

[ <8, 1>, <9, 0> ],

[ <9, 0>, <10, 0> ]

]

> [$1[i][2][1] - $1[i][1][1] : i in [1 .. #$1]];

[ 1, 5, 2, 1, 1 ]

So there is one root of valuation 6, five of valuation 3, two of valuation 2, one of valuation 1 and one
root with valuation zero. This information could also have been gained using ValuationsOfRoots.

> ValuationsOfRoots(g);

[ <6, 1>, <3, 5>, <2, 2>, <1, 1>, <0, 1> ]

HenselLift(f, x)

HenselLift(f, x, k)

Return a root of the polynomial f over a local ring or field by lifting the approximate
root x to a root with precision k (or the default precision of the structure if not
specified). This results in an error, if the Hensel condition v(f(x)) > 2v(f ′(x)) is
not satisfied.

Example H47E17

This examples illustrates how Hensel lifting is used to compute square roots.

> Zx<x> := PolynomialRing(Integers());

> L1<a> := ext<pAdicRing(3, 20) | 2>;

> L2<b> := ext<L1 | x^2 + 3*x + 3>;

> R<y> := PolynomialRing(L2);

> c := (a+b)^42;

> r := L2 ! Sqrt(ResidueClassField(L2) ! c);

> r;

a

> rr := HenselLift(y^2-c, r);

> rr;

(-1513703643*a - 1674232545)*b - 1219509587*a + 760894776

> Valuation(rr^2 - c);
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40

> ChangePrecision(rr, 1);

a + O(b)

For p = 2 the situation is a bit more difficult, since the derivative of y2 − c is not a unit at this
point.

> Zx<x> := PolynomialRing(Integers());

> L1<a> := ext<pAdicRing(2, 20) | 2>;

> L2<b> := ext<L1 | x^2 + 2*x + 2>;

> R<y> := PolynomialRing(L2);

> c := (a+b)^42;

> r := L2 ! Sqrt(ResidueClassField(L2) ! c);

> r;

1

> HenselLift(y^2-c, r);

>> HenselLift(y^2-c, r);

^

Runtime error in ’HenselLift’: Hensel lift condition is not satisfied

We have to find a better approximation for the square root first.

> for d in GF(2,2) do

> if Valuation((r + b*L2!d)^2 - c) gt 4 then

> print L2!d;

> end if;

> end for;

a + 1

> r +:= b * (a+1);

> HenselLift( y^2-c, r );

(-199021*a + 100463)*b + 204032*a - 31859 + O(b^38)

> ChangePrecision($1, 1);

1 + O(b)

> ChangePrecision($2, 2);

(a + 1)*b + 1 + O(b^2)

The square root is an element of reduced precision, since the proper root is only guaranteed to
coincide with the approximation up to valuation 18.

47.11.2.2 Functions returning Roots
These functions determine the roots of a polynomial from the factorization of the polyno-
mial.

Roots(f)

Roots(f, R)

IsSquarefree BoolElt Default : false

Return the roots of the polynomial f over a local ring or field R as a sequence of
tuples of elements in R and multiplicities. If R is not specified it is taken to be the



Ch. 47 p-ADIC RINGS AND THEIR EXTENSIONS 1299

coefficient ring of f . If the polynomial is known to be squarefree, the root-finding
algorithm may run considerably faster.

HasRoot(f)

Try to find a root of the polynomial f over a local ring or field. If a root is found,
this function returns true and a root as a second value; otherwise it returns false.

Example H47E18

We generate the ramified extensions of Z2 of degree 2 by looping over some Eisenstein polynomials
with small coefficients and checking whether a new polynomial has a root in one of the already
known rings.

> Zx<x> := PolynomialRing(Integers());

> RamExt := [];

> for c0 in [2, -2, 6, -6] do

> for c1 in [0, 2, -2, 4, -4, 6, -6] do

> g := x^2 + c1*x + c0;

> new := true;

> for L in RamExt do

> if HasRoot(PolynomialRing(L)!g) then

> new := false;

> break L;

> end if;

> end for;

> if new then

> print "new field with polynomial", g;

> Append(~RamExt, ext<pAdicRing(2, 20) | g>);

> end if;

> end for;

> end for;

new field with polynomial x^2 + 2

new field with polynomial x^2 + 2*x + 2

new field with polynomial x^2 + 4*x + 2

new field with polynomial x^2 + 2*x - 2

new field with polynomial x^2 + 4*x - 2

new field with polynomial x^2 + 6

These are all such extensions, since the extensions of Q2 of degree 2 are in bijection to the 7
non-trivial classes of Q∗

2/(Q∗
2)

2 and one of these classes yields the unramified extension.
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47.11.3 Factorization
It is possible to factorize (to some precision) polynomials over a local ring or field. Ap-
proximate factorizations can also be lifted to a factorization to greater precision.

HenselLift(f, s)

Given a sequence s of polynomials with coefficients that can be coerced into the
coefficient ring of f such that f ≡ ∏#s

i=1 s[i] modulo π, s[i] and [j] are co–prime
modulo π for all i and j, and s[i] is monic for all i, find a more accurate factoriza-
tion t[1], t[2], . . . t[#s] such that f ≡ ∏#s

i=1 t[i] modulo πk, where k is the minimum
precision of the coefficients of f .

Example H47E19

If the reduction of a polynomial over the residue class field is not a power of an irreducible
polynomial, the factorization into powers of different irreducibles can be lifted to a factorization
over the local ring.

> Z2 := pAdicRing(2, 25);

> R<x> := PolynomialRing(Z2);

> f := &* [ x - i : i in [1..8] ];

> F2 := ResidueClassField(Z2);

> Factorization( PolynomialRing(F2)!f );

[

<$.1, 4>,

<$.1 + 1, 4>

]

> h1 := x^4;

> h2 := (x+1)^4;

> h := HenselLift(f, [h1, h2]);

> h[1], h[2], f - h[1]*h[2];

x^4 - 20*x^3 + 140*x^2 - 400*x + 384

x^4 - 16*x^3 + 86*x^2 - 176*x + 105

0

IsIrreducible(f)

Given a polynomial f with coefficients lying in a local ring or field L, return true
if and only if f is irreducible over L. Currently, this only works over p-adic rings,
unramified extensions of p-adic rings, totally ramified extensions of p-adic rings, and
totally ramified extension of unramified extensions of p-adic rings.
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SquareFreeFactorization(f)

Return a sequence of tuples of polynomials and multiplicities where the polynomials
are not divisible by any square of a polynomial. The product of the polynomials
to the corresponding multiplicities is the polynomial f (to some precision). Cur-
rently, this only works over p-adic rings, unramified extensions of p-adic rings, totally
ramified extensions of p-adic rings, and totally ramified extension of unramified ex-
tensions of p-adic rings.

Factorization(f)

LocalFactorization(f)

Certificates BoolElt Default : false

IsSquarefree BoolElt Default : false

Ideals BoolElt Default : false

Extensions BoolElt Default : false

Return the factorization of the polynomial f over a local ring or field into irreducible
factors as a sequence of pairs, the first entry giving the irreducible factor and the
second its multiplicity.

Precision is important since for polynomials over rings of relatively small pre-
cision a correct factorization may not be possible and an error will result. A
lower bound on the precision needed for the factorization to succeed is given by
SuggestedPrecision; this precision may still be insufficient, however.

The precision the factorization is returned to is reduced for multiple factors.
The optional parameter IsSquarefree can be set to true, if the polynomial

is known to be square-free. The Certificates parameter can be set to true to
compute certificates for the irreducibility of the individual factors returned. This
information can be used to compute the p-maximal order of the equation order
defined by the factor. If the Extensions parameter is set to true then certificates
will be returned which will include an extension given by each factor.

SuggestedPrecision(f)

For a polynomial f over a local ring or field, return a precision at which the fac-
torization of f as given by Factorization(f) will be Hensel liftable to the correct
factorization.

The precision returned is not guaranteed to be enough to obtain a factorization
of the polynomial. It may be that a correct factorization cannot be found at that
precision but may be possible with a little more precision.

Currently, this only works over p-adic rings, unramified extensions of p-adic
rings, totally ramified extensions of p-adic rings, and totally ramified extension of
unramified extensions of p-adic rings.
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IsIsomorphic(f, g)

Given two irreiducible polynomials over the same p-adic field, test if the extensions
defined by them are isomorphic.

Distance(f, g)

Given two Eisenstein polynomials of the same degree and discriminant compute their
distance, i.e. the minimal weighted valuation of the difference of the coefficients.

Example H47E20

The use of SuggestedPrecision along with Factorization is illustrated below for a few different
cases.

> L<b> := ext<ext<pAdicRing(5, 20) | 2> | y^2 + 5*y + 5>;

> R<x> := PolynomialRing(L);

> f := (x - 1)^3*(x - b)^2*(x - b^2 + b - 1);

> SuggestedPrecision(f);

80

> Factorization(f);

[

<x - b + O(b^40), 2>,

<x - 1 + O(b^40), 3>,

<x + 6*b + 4 + O(b^40), 1>

]

1 + O(b^40)

> f := (x + 2)^3*(x + b)*(x + 3)^4;

> f;

x^8 + (b + 18 + O(b^40))*x^7 + (18*b + 138 + O(b^40))*x^6 + (138*b + 584 +

O(b^40))*x^5 + (584*b + 1473 + O(b^40))*x^4 + (1473*b + 2214 + O(b^40))*x^3

+ (2214*b + 1836 + O(b^40))*x^2 + (1836*b + 648 + O(b^40))*x + 648*b +

O(b^40)

> SuggestedPrecision(f);

80

> Precision(L);

80

> P<y> := PolynomialRing(Integers());

> R<b> := ext<ext<pAdicRing(3, 20) | 2> | y^2 + 3*y + 3>;

> P<x> := PolynomialRing(R);

> f := x^12 + 100*x^11 + 4050*x^10 + 83700*x^9 + 888975*x^8 + 3645000*x^7 -

> 10570500*x^6 - 107163000*x^5 + 100875375*x^4 + 1131772500*x^3 -

> 329614375*x^2 + 1328602500*x + 332150625;

> SuggestedPrecision(f);

48

> Factorization(f);

[

<x + 153560934 + O(b^40), 1>,

<x - 1595360367 + O(b^40), 1>,

<x + 1273329451*$.1 - 1037496066 + O(b^40), 1>,
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<x + -1273329451*$.1 - 97370567 + O(b^40), 1>,

<x^4 + (-1598252738*$.1 - 309919655 + O(b^40))*x^3 + (-280421715*$.1 -

102998055 + O(b^40))*x^2 + (1263867503*$.1 + 923047935 + O(b^40))*x +

-1252549104*$.1 - 786365260 + O(b^40), 1>,

<x^4 + (1598252738*$.1 - 600198580 + O(b^40))*x^3 + (280421715*$.1 +

457845375 + O(b^40))*x^2 + (-1263867503*$.1 - 1604687071 + O(b^40))*x +

1252549104*$.1 + 1718732948 + O(b^40), 1>

]

1 + O(b^40)

> R<b> := ext<ext<pAdicRing(3, 25) | 2> | y^2 + 3*y + 3>;

> P<x> := PolynomialRing(R);

> f := x^12 + 100*x^11 + 4050*x^10 + 83700*x^9 + 888975*x^8 + 3645000*x^7 -

> 10570500*x^6 - 107163000*x^5 + 100875375*x^4 + 1131772500*x^3 -

> 329614375*x^2 + 1328602500*x + 332150625;

> Factorization(f);

[

<x + 143905694229 + O(b^50), 1>,

<x - 399882754935 + O(b^50), 1>,

<x + 46601526664*$.1 + 229090274400 + O(b^50), 1>,

<x + -46601526664*$.1 + 135887221072 + O(b^50), 1>,

<x^4 + (242476655332*$.1 + 187976437999 + O(b^50))*x^3 + (372805509192*$.1 -

38457626466 + O(b^50))*x^2 + (126788105939*$.1 + 60198382752 +

O(b^50))*x + 347425890996*$.1 + 215394267602 + O(b^50), 1>,

<x^4 + (-242476655332*$.1 - 296976872665 + O(b^50))*x^3 + (-372805509192*$.1

+ 63219964593 + O(b^50))*x^2 + (-126788105939*$.1 - 193377829126 +

O(b^50))*x + -347425890996*$.1 + 367831095053 + O(b^50), 1>

]

1 + O(b^50)

Note that the polynomial itself must have coefficients with precision at least that given by
SuggestedPrecision (and not just the coefficient ring) for Factorization to succeed. Some-
times this will not be possible if the coefficients of the polynomial are not known to sufficient
precision.

Example H47E21

In this example we demonstrate how factorizations of a rational polynomial over some local rings
can give information on the Galois group.

> Zx<x> := PolynomialRing(Integers());

> g := x^5 - x + 1;

> Factorization(Discriminant(g));

[ <19, 1>, <151, 1> ]

> g2 := Factorization( PolynomialRing(pAdicRing(2, 10)) ! g );

> g2;

[

<$.1^2 + 367*$.1 - 93, 1>,

<$.1^3 - 367*$.1^2 - 386*$.1 + 11, 1>

]
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> g3 := Factorization( PolynomialRing(pAdicRing(3, 10)) ! g );

> g3;

[

<$.1^5 - $.1 + 1, 1>

]

> g7 := Factorization( PolynomialRing(pAdicRing(7, 10)) ! g );

> g7;

[

<$.1^2 + 138071312*$.1 + 2963768, 1>,

<$.1^3 - 138071312*$.1^2 + 132202817*$.1 - 84067650, 1>

]

This shows that the Galois group of g contains elements of orders 2, 3, 5 and 6, and therefore is
isomorphic to S5.

47.12 Automorphisms of Local Rings and Fields
The automorphisms of a local ring or field are determined by their images on the generators
of the ring. All computations necessary to determine the automorphism group can be
performed in the local ring.

Automorphisms(L)

Given a local ring or field L, returns the automorphisms of L over its p-adic sub-field
Qp as a sequence of maps of L into L.

Automorphisms(K, k)

Given a local ring or field K over k, returns the k-automorphisms of K as a sequence
of maps of K into K.

AutomorphismGroup(L)

Return the automorphism group acting on L over its p-adic sub-field Qp as a per-
mutation group (representing the regular action). Also return the map from the
permutation group to the group of automorphisms represented explicitly (i.e. like
returned from the function above).

AutomorphismGroup(K, k)

Return the automorphism group acting on K over its p-adic k as a permutation
group (representing the regular action). Also return the map from the permutation
group to the group of automorphisms represented explicitly (i.e. like returned from
the function above).

IsNormal(K)

Given a p-adic ring or field K, test if K is normal over it’s prime field Qp, ie. if K
admits exactly n automorphisms where n is the degree of K.
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IsNormal(K, k)

Given a p-adic ring or field K, test if K is normal over the subfield k.

IsAbelian(K, k)

Given p-adic fields K/k, test if the automorphism group of K over k is abelian.

Continuations(m, L)

For an automorphism m of the p-adic ring L, compute all possible extensions of m
to L.

IsIsomorphic(E, K)

For two p-adic rings or fields, test if they are isomorphic over Qp.

Example H47E22

We define an extension of Z2 with ramification degree 2 and inertia degree 2 and compute auto-
morphisms.

> I<a> := ext<pAdicRing(2, 10) | 2>;

> R<x> := PolynomialRing(I);

> L<b> := ext<I | x^2 + 2*a*x + 2*a^2>;

> L;

Totally ramified extension defined by the polynomial

x^2 + (2*a)*x + -2*a - 2 over Unramified extension

defined by the polynomial x^2 + x + 1 over 2-adic ring

mod 2^10

> A := Automorphisms(L);

> [<A[i](a), A[i](b)> : i in [1 .. #A]];

[ <a, b + O(b^18)>, <a, -b + -2*a + O(b^18)>, <-a - 1,

a*b + O(b^18)>, <-a - 1, -a*b + 2*a + 2 + O(b^18)> ]

> AutomorphismGroup(L);

Permutation group acting on a set of cardinality 4

Id($)

(1, 2)(3, 4)

(1, 3)(2, 4)

Mapping from: GrpPerm: $, Degree 4 to Power Structure

of Map given by a rule
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47.13 Completions

Local Rings can be obtained by completing an order at a prime ideal (see Chapter 34 and
Completion on page 3-891).

Completion(O, P)

Completion(K, P)

Precision RngIntElt Default : 20
The completion (as an unbounded precision local ring or field with default precision
given by Precision) of the order or number field at the prime ideal P , and the
embedding of the order or number field into the resulting local ring.

LocalRing(P, k)

The completion (as a local ring) of the order of the prime ideal P at P with precision
k and the embedding of the order into the resulting local ring.

Example H47E23

Here we demonstrate the use of Completion.

> K := NumberField(x^6 - 5*x^5 + 31*x^4 - 85*x^3 + 207*x^2 - 155*x + 123);

> lp := Decomposition(K, 7);

> C, mC := Completion(K, lp[2][1]);

> C;

Totally ramified extension defined by a map over Unramified extension defined by

a map over 7-adic field

> mC;

Mapping from: FldNum: K to FldPad: C given by a rule

> mC(K.1);

(46564489*$.1 - 47959419)*C.1 - 116434149*$.1 - 61099304 + O(C.1^20)

> mC(K.1)@@mC - K.1;

8337821493402521350488*K.1^5 - 69073506960056896464432*K.1^4 +

189847416443444330877726*K.1^3 - 453361530291976951337876*K.1^2 +

336979647814116799276099*K.1 - 267520869714197002579071

> Valuation($1, lp[2][1]);

18

> C‘DefaultPrecision := 30;

> mC(K.1);

(1090965976127*$.1 - 1208477074641)*C.1 - 589359803563*$.1 + 288063654676 +

O(C.1^30)

> mC(K.1)@@mC - K.1;

-61980024244160371672868773433490783*K.1^5 +

1189796803064803092593291088768968754*K.1^4 -

3202353946933190588864309180653868957*K.1^3 +

7537386928046164580731145031872017049*K.1^2 -

5511297002936682579964210586013308810*K.1 +

4438099444806431313582533435941098722
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> Valuation($1, lp[2][1]);

28

> C‘DefaultPrecision := 10;

> mC(K.1);

(-7708*$.1 + 7759)*C.1 + 4747*$.1 - 5859 + O(C.1^10)

> mC(K.1)@@mC - K.1;

1908210240*K.1^5 - 7326424608*K.1^4 + 16701662320*K.1^3 - 35965440540*K.1^2 +

41324075079*K.1 - 30476856505

> Valuation($1, lp[2][1]);

8

47.14 Class Field Theory

The class field theory of local fields classifies abelian extensions of local field in a way
similar to the way global class field theory deals with extensions of number fields and
global function fields.

While the origins of local class field theory are, via completions and localisations, in the
global case, today it is a theory in its own. Although local class field theory can be used to
obtain global results, it has very powerful generalisations that the global case (currently)
does not allow.

Local class fields are classified in terms of the norm group, ie. the multiplicative group
of norms of elements, rather than some ideal or divisor class group as in the global case.
Since the multiplicative group of a local field is far better understood than the ideal group
of a global field, the theory is much more explicit and easier in the local case.

47.14.1 Unit Group
In contrast to the case of global fields, the multiplicative group of both p-adic rings and
fields has a well understood structure which can be computed by algorithms developed
and implemented by S. Pauli [Pau06]. It should be noted that all the unit group related
functions operate on fixed-precision rings only.

PrincipalUnitGroupGenerators(R)

The principal units of a p-adic ring or field R are elements of the form 1 + πZR

where π is a uniformizing element of R and ZR is the ring of integers. This function
returns a sequence of generators for this group.

PrincipalUnitGroup(R)

The principal units of a p-adic ring or field R are elements of the form 1 + πZR

where π is a uniformizing element of R and ZR is the ring of integers. This function
returns an abstract abelian group isomorphic to the group of principal units and an
explicit isomorphism, ie. a map between the abstract group and the p-adic ring or
field.
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UnitGroup(R)

Given a p-adic ring R of fixed precision, this function computes an abstract abelian
group isomorphic to the unit group as well as an explicit map between the abstract
group and R.

UnitGroup(F)

Given a p-adic field F of fixed precision, this function computes an abstract abelian
gorup isomorphic to the multiplicative group of F as well as an explicit map between
the abstract group and F .

UnitGroupGenerators(R)

Given a p-adic ring with fixed precision, this function computes generators for its
unit group.

UnitGroupGenerators(F)

Given a p-adic field with fixed precision, this function computes generators for its
multiplicative group.

pSelmerGroup(p,F)

Given a l-adic field F , return the p-Selmer group, i.e., the group F ∗/F ∗p, as an
abstract group, as well as the map from F ∗ to the abstract group.

47.14.2 Norm Group
Given two p-adic field F/k the norm group of F in k, ie. the image of the norm map from F
to k is the central object of local class field theory. Since the norm map will always operate
on some multiplicative group, all functions in this section will take the map returned by
UnitGroup as an argument as this then allows the convenient way of describing the norm
group as a subgroup of some explicit finitely generated abelian group.

NormGroup(R, m)

Given a p-adic ring or field R extending S and a description of the unit group of
S encoded by a map m from some abstract abelian group to S as computed by
UnitGroup, compute the image of the norm map as a subgroup. The map returned
is the embedding map returned form the subgroup constructor.

NormEquation(R, m, b)

Given a p-adic ring R defined over S, the unit group of S encoded by the map m
as computed by UnitGroup(S) and some element b ∈ S, try to compute an element
a ∈ R such that the norm of a equals b. In case such an element exists, it is returned
as a second value.
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NormEquation(m1, m2, G)

Given two p-adic rings R and S and their unit groups UR and US as parameterized
by the maps m1 : UR → R and US → S as well as a subgroup G < US , compute the
preimage of G under the norm map operating on the unit groups.

Norm(m1, m2, G)

Given two p-adic rings R and S and their unit groups UR and US as parameterized
by the maps m1 : UR → R and US → S as well as a subgroup G < UR, compute
the image of G under the norm map operating on the unit groups.

NormKernel(m1, m2)

Given two p-adic rings R and S and their unit groups UR and US as parameterized
by the maps m1 : UR → R and US → S compute the kernel of the norm map from
UR to US as a subgroup of UR.

47.14.3 Class Fields
Class fields, that is abelian extensions are parameterized by their norm groups. Pauli, in
[Pau06] gave explicit algorithms to solve the reverse problem of class field theory: given
a suitable subgroup of some (abstractly given) multiplicatively group of some p-adic field,
compute explicit defining equations for the class field.

ClassField(m, G)

Given a p-adic field S and its multiplicative group US specified by the map m :
US → S and a suitable subgroup G < US , this function computes for each cyclic
factor of US/G an explicit defining equation for the class field corresponding to this
factor.

NormGroupDiscriminant(m, G)

Given a p-adic field S and its multiplicative group US specified by the map m :
US → S and a suitable subgroup G < US , this function computes the valuation of
the discriminant of the extension parameterized by G without computing explicit
equations for it.

47.15 Extensions

It is a well known classical theorem that p-adic fields admit only finitely many different
extensions of bounded degree (in contrast to number fields which have an infinite number
of extensions of any degree). In his thesis, Pauli [Pau01a] developed explicit methods to
enumerate those extensions.
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AllExtensions(R, n)

E RngIntElt Default : 0
F RngIntElt Default : 0
Galois BoolElt Default : false

D RngIntElt Default : 0
j RngIntElt Default : −1

Given a p-adic ring or field R and some positive integer n, compute defining equa-
tions for all extensions of R of degree n. The optional parameters can be used to
limit the extensions in various ways:
E specifies the ramification index. 0 implies no restriction.
F specifies the inertia degree, 0 implies no restriction.
D specified the valuation of the discriminant, 0 implies no restriction.
j specifies the valuation of the discriminant via the formula D := d+j−1

where d is the degree of R.
Galois when set to true, limits the extensions to only list normal extensions.

NumberOfExtensions(R, n)

E RngIntElt Default : 0
F RngIntElt Default : 0
Galois BoolElt Default : false

D RngIntElt Default : 0
j RngIntElt Default : −1

Given a p-adic ring or field R and some positive integer n, compute the number of
extensions of R of degree n. Similarly to the above function, the optional parameters
can be used to impose restrictions on the fields returned.

OreConditions(R, n, j)

Given a p-adic ring or field R and positive integers n and j, test if there exists
extensions of R of degree n with valuation of the discriminant being n + j − 1.
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Chapter 48

GALOIS RINGS

48.1 Introduction
Magma provides facilities for computing with Galois rings. The features are currently
very basic, but advanced features will be available in the near future, including support
for the creation of subrings and appropriate embeddings, allowing lattices of compatible
embeddings, just as for finite fields.

A Galois ring R in Magma is considered as a finite algebraic extension of Zpa (where
p is prime) by a monic polynomial D ∈ Z[x] which is irreducible modulo p. Thus R is
presented as the polynomial quotient ring

Zpa [x]/〈D〉
and is usually written as GR(pa, d), where d is the degree of D. The cardinality of R is
easily seen to be pad.

R has a unique maximal ideal generated by p, and the quotient ring R/〈p〉 is a finite
field isomorphic to Zp[x]/〈D〉, where D is here considered as a polynomial in Zp[x] (the
coefficients are reduced modulo p). This finite field is called the residue field of R. In the
following, we will also call the integer residue ring Zpa the base ring of R, because this is
the subring of R generated by 1 and we can think of R as an extension of Zpa .

For an non-zero element x of R, the valuation of x is defined to be the largest power of
p which divides the coefficients of x, where x is considered as a polynomial in Zp[x]/〈D〉.
x is a unit if and only if the valuation of x is zero.

Because of the valuation defined on them, Galois rings are Euclidean rings, so they may
be used in Magma in any place where general Euclidean rings are valid. This includes
many matrix and module functions, and the computation of Gröbner bases. Linear codes
over Galois rings will be supported in the near future.

48.2 Creation Functions

48.2.1 Creation of Structures

GaloisRing(q, d)

GR(q, d)

Given integers q, d ≥ 1, where q = pa for prime p and a ≥ 1, create the default
Galois ring GR(pa, d). The defining polynomial used to construct the ring will be
that used for Fpd , lifted to Zpa . If p is very large, it is advised to use the next
function instead, because Magma must first factor q completely.

The angle bracket notation can be used to assign names to the generator; e.g.:
R<w> := GaloisRing(2, 3).
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GaloisRing(p, a, d)

GR(p, a, d)

Check BoolElt Default : true

Given a prime p and integers a, d ≥ 1, create the default Galois ring GR(pa, d).
The defining polynomial used to construct the ring will be that used for Fpd , lifted
to Zpa .

By default p is checked to be a strong pseudoprime for 20 random bases b with
1 < b < p; if the parameter Check is false, then no check is done on p at all (this is
useful when p is very large and one does not wish to perform an expensive primality
test on p).

GaloisRing(q, D)

GR(q, D)

Given an integer q, where q = pa for prime p and a ≥ 1, and a monic polynomial
D over Z such that D is irreducible mod p, create the Galois ring R = GR(pa, D).
The coefficients of D are reduced modulo pa, and R is constructed to behave like
the polynomial quotient ring Zpa [x]/〈D〉. If p is very large, it is advised to use the
next function instead, because Magma must first factor q completely.

GaloisRing(p, a, D)

GR(p, a, D)

Check BoolElt Default : true

Given a prime p, an integer a ≥ 1, and a monic polynomial D over Z such that D
is irreducible mod p, create the Galois ring R = GR(pa, D). The coefficients of D
are reduced modulo pa, and R is constructed to behave like the polynomial quotient
ring Zpa [x]/〈D〉. The parameter Check is as above.

48.2.2 Names

AssignNames(∼R, [f])

Procedure to change the name of the generating element in the Galois ring R to the
contents of the string f . When R is created, the name will be R.1.

This procedure only changes the name used in printing the elements of R. It
does not assign to an identifier called f the value of the generator in R; to do this,
use an assignment statement, or use angle brackets when creating the ring.

Note that since this is a procedure that modifies R, it is necessary to have a
reference ∼R to R in the call to this function.

Name(R, 1)

Given a Galois ring R, return the element which has the name attached to it, that
is, return the element R.1 of R.
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48.2.3 Creation of Elements

R . 1

Generator(R)

The generator for R as an algebra over its base ring Zpa . Thus, if R is viewed as
Zpa [x]/〈D〉, then R.1 corresponds to x in this presentation.

R ! a

Given a Galois ring R create the element specified by a; here a is allowed to be an
element coercible into R, which means that a may be
(i) An element of R;
(ii) An integer, to be identified with a modulo the characteristic pa of R;
(iii) An element of the base ring Zpa of R, to be identified with the corresponding

element of R.
(iv) A sequence of elements of the base ring Zpa of R. In this case the element

a0 + a1w + · · · + an−1w
n−1 is created, where a = [a0, . . . an−1] and w is the

generator R.1 of R over Zpa .

One(R) Identity(R)

Zero(R) Representative(R)

These generic functions create 1, 1, 0, and 0 respectively, in any Galois ring.

Random(R)

Create a pseudo-random element of Galois ring R.

48.2.4 Sequence Conversions

ElementToSequence(a)

Eltseq(a)

Given an element a of the Galois ring R, return the sequence of coefficients
[a0, . . . , an−1] in the base ring Zpa of R (where R is Zpa [x]/〈D〉), such that
a = a0 + a1w + · · · + an−1w

d−1, with w the generator of R, and d the degree
of D.

Example H48E1

We can define the Galois ring GR(23, 2) using the default function:

> R<w> := GaloisRing(2^3, 2);

> R;

GaloisRing(2, 3, 2)

We note that R has characteristic 8 and that w2 + w + 1 = 0 in R.

> R!8;
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0

> R!9;

1

> w;

w

> 4*w;

4*w

> 4*w + 4*w;

0

> w^2;

7*w + 7

> w^2 + w + 1;

0

We can list all the elements of R by simply looping over R:

> [x: x in R];

[ 0, 1, 2, 3, 4, 5, 6, 7, w, w + 1, w + 2, w + 3, w + 4, w + 5, w + 6,

w + 7, 2*w, 2*w + 1, 2*w + 2, 2*w + 3, 2*w + 4, 2*w + 5, 2*w + 6, 2*w

+ 7, 3*w, 3*w + 1, 3*w + 2, 3*w + 3, 3*w + 4, 3*w + 5, 3*w + 6,

3*w + 7, 4*w, 4*w + 1, 4*w + 2, 4*w + 3, 4*w + 4, 4*w + 5, 4*w +

6, 4*w + 7, 5*w, 5*w + 1, 5*w + 2, 5*w + 3, 5*w + 4, 5*w + 5, 5*w

+ 6, 5*w + 7, 6*w, 6*w + 1, 6*w + 2, 6*w + 3, 6*w + 4, 6*w + 5,

6*w + 6, 6*w + 7, 7*w, 7*w + 1, 7*w + 2, 7*w + 3, 7*w + 4, 7*w +

5, 7*w + 6, 7*w + 7 ]

We see that the elements of R can be considered as polynomials of degree at most 1, with coeffi-
cients in the range {0 . . . 7}.
We can easily create elements of R also using the ! operator, and use the Eltseq function to
recover the corresponding sequence of coefficients.

> R ! [1, 2];

2*w + 1

> Eltseq(2*w + 1);

[ 1, 2 ]

> Eltseq(w);

[ 0, 1 ]

48.3 Structure Operations

48.3.1 Related Structures

Category(R) Parent(R) Centre(R)

PrimeRing(R) PrimeField(R)

FieldOfFractions(R)
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48.3.2 Numerical Invariants

Characteristic(R)

The characteristic of R, which is pa where R is considered as Zpa [x]/〈D〉.
#R

The cardinality of R, which is pad where R is considered as Zpa [x]/〈D〉 and d is the
degree of D.

Degree(R)

The degree of R, which is the degree of D, where R is considered as Zpa [x]/〈D〉.
ResidueField(R)

The residue field of R, which is the finite field Zp[x]/〈D〉, where R is considered as
Zpa [x]/〈D〉.

48.3.3 Ring Predicates and Booleans
The following functions are described for rings in general in Section 17.4.3.

IsCommutative(R) IsUnitary(R)

IsFinite(R) IsOrdered(R)

IsField(R) IsEuclideanDomain(R)

IsPID(R) IsUFD(R)

IsDivisionRing(R) IsEuclideanRing(R)

IsPrincipalIdealRing(R) IsDomain(R)

R eq G R ne G

48.4 Element Operations

See also Section 17.5.

48.4.1 Arithmetic Operators

+ a - a

a + b a - b a * b a ^ k

a +:= b a -:= b a *:= b
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48.4.2 Euclidean Operations

a div b a mod b Quotrem(a, b)

GCD(a, b) LCM(a, b) XGCD(a, b)

48.4.3 Equality and Membership

a eq b a ne b

a in R a notin R

48.4.4 Parent and Category

Parent(a) Category(a)

48.4.5 Predicates on Ring Elements

IsZero(a) IsOne(a) IsMinusOne(a)

IsNilpotent(a) IsIdempotent(a)

IsUnit(a) IsZeroDivisor(a)

Example H48E2

This simple example shows how one can compute Gröbner bases over Galois rings. We create an
ideal in 3 variables over a Galois ring and compute its Gröbner basis.

> R<w> := GaloisRing(3, 3, 2);

> #R;

729

> P<x,y,z> := PolynomialRing(R, 3);

> I := ideal<P | [x^2 - w*y, 3*y^3 - 3*w*x*z, 9*z^5 - 9*w]>;

> GroebnerBasis(I);

[

x^2 + 26*w*y,

3*x*y^3 + (6*w + 6)*y*z,

3*x*z + (15*w + 3)*y^3,

9*x + (9*w + 9)*y^3*z^4,

3*y^6 + (21*w + 15)*y*z^2,

9*z^5 + 18*w

]

Notice that the leading coefficients include 3 and 9, which are not units in the ring. See Chapter 105
for much more information on such Gröbner bases.
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Chapter 49

POWER, LAURENT AND PUISEUX SERIES

49.1 Introduction
This chapter describes the operations on formal power, Laurent and Puiseux series available
in Magma.

49.1.1 Kinds of Series
Internally Magma has only one kind of formal series, where general fractional exponents
are allowed, but externally there are three kinds of series: power, Laurent and Puiseux.
Power series must have a non-negative integral valuation and integral exponents, Laurent
series must have an integral valuation and integral exponents (possibly negative), while
Puiseux series may have a general rational valuation and general rational exponents. The
main reason for the three kinds is simply to supply error checking for operations illegal to
a specific kind, so the user will not move into the next kind of exponents inadvertently.
Apart from these error checks, there is no difference at all between the different kinds of
series, so one can simply use Puiseux series always if the restrictions on exponents are not
desired, and this will cause no loss of efficiency or functionality at all even if all exponents
remain integral or integral and non-negative.

In Magma, the set of all power series over a given base ring R is called a power
series ring (denoted by R[[x]]) and the category names are RngSerPow for the ring and
RngSerPowElt for the elements. The set of all Laurent series over a given base ring R is
called a Laurent series ring (denoted by R((x))) and the category names are RngSerLaur
for the ring and RngSerLaurElt for the elements. Finally, the set of all Puiseux series over
a given base ring R is called a Puiseux series ring (denoted by R〈〈x〉〉) and the category
names are RngSerPuis for the ring and RngSerPuisElt for the elements. For the rest of
this chapter, the term “series ring” refers to any of the above rings and the corresponding
virtual category name is RngSer; the term “series” refers to any of the above series kinds
and the corresponding virtual category name is RngSerElt.

49.1.2 Puiseux Series
Puiseux series in a variable x are often mathematically defined to be Laurent series in
another variable y say, where y = x1/d, for a fixed positive integer d; this d is usually
fixed for all the series under consideration. Magma is more general, in that although
each series is internally represented in this way (i.e., its valuation, exponents and precision
are thought to be divided by a single denominator associated with it), different Puiseux
series may have different exponent denominators and may be freely mixed (for example,
in addition, where the exponent denominator of the result will be derived from that of the
arguments). Thus there is no restriction whatsoever to a fixed exponent denominator for
a given Puiseux series ring.
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49.1.3 Representation of Series
Formal series are stored in truncated form, unless only finitely many terms are non-zero.
If a series has precision p, that means that its coefficients are unknown from exponent p
onwards. This truncated form is similar to the floating point representation of real numbers
except for one significant difference: because for series terms do not “carry” in arithmetic
operations like they do in integer and real arithmetic, error propagation common in floating
point methods does not occur. Consequently, given a result of any sequence of arithmetic
operations with formal series, the coefficients of the known terms (the ones up to the given
precision) will always be exactly correct, with no error (assuming the coefficient ring has
exact arithmetic for its elements of course).

Elements
cvxv + cv+1x

v+1 + . . .

(with v ∈ Q and rv 6= 0) of series ring over a commutative ring R are stored in the form
of approximations

cvxv + cv+1x
v+1 + . . . + O(xp)

to a certain precision p ≥ v. The O(xp) notation is used to refer to terms of degree at
least the precision p in x. For Laurent series v must be an integer and for power series v
must be a non-negative integer. Note that for Puiseux series the above element is actually
internally stored in the form

cwxw/d + cw+1x
(w+1)/d + . . . + O(xq/d)

where v = w/d and p = q/d and d (the exponent denominator) is minimal.

49.1.4 Precision
Associated with any series there are two types of precision: the absolute precision and the
relative precision. For the element

cvxv + cv+1x
v+1 + · · ·+ O(xp)

(with v ∈ Q and rv 6= 0), the absolute precision is p and the relative precision is p− v.
The absolute precision indicates the largest known term, and the relative precision

indicates the size of the range over which terms are known. The two types of precision
and the valuation of the series, which equals v in the above, are therefore always related
via p = v + r.

49.1.5 Free and Fixed Precision
For each type of series ring, there are two sub-kinds: a free precision ring (the usual case),
where elements of the ring have arbitrary precision, and a fixed precision ring, where all
elements of the ring have a fixed precision. In the latter case, for power series rings the
fixed precision is absolute, while for Laurent and Puiseux series ring the fixed precision is
relative.
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The free precision rings most closely resemble the mathematical objects R[[x]] and
R((x)); elements in these free rings and fields carry their own precision with them. Op-
erations usually return results to a precision that is maximal given the input (and the
nature of the operation). Operations which are given infinite precision series but which
must return finite precision series (e.g., division) return series whose precision is the de-
fault precision for the series ring (this is different from the fixed precision of fixed precision
rings); the default precision is 20 by default but may be set to another value at creation
by a parameter (see below). Elements of free structures that have finite series expansion
(i.e., polynomials) can be created and stored exactly, with infinite (absolute and relative)
precision. Also note that the relative precision will be 0 for approximations to 0.

The structures with fixed precision, which we will sometimes refer to as quotient struc-
tures, behave differently. All elements in a power series ring of fixed precision have the
same fixed absolute precision p, and the relative precision may be anything from 0 to p.
This means that the ring with fixed precision p behaves like a quotient of a polynomial
ring, R[x]/xp. All elements in a Laurent or Puiseux series ring of fixed precision have the
same fixed relative precision; the only exception to this rule is that 0 in the ring is stored as
zero with infinite absolute precision. The absolute precision of elements in a free Laurent
or Puiseux series ring can be anything.

49.1.6 Equality
Since a given series ring will contain series truncated at arbitrary precision, care has to be
taken as to the meaning of equality of two elements. Two series are considered equal iff
they are identical (the equality operator eq follows this convention). But we call two series
A and B in the same ring weakly equal if and only if their coefficients are the same whenever
both are defined, that is, if and only if for every n ≤ p the coefficients An and Bn are equal,
where p is the minimum of the precisions of A and B. Thus, for example, A = 3+x+O(x2)
and B = 3+x+17x2 +O(x4) are the same, but C = 3+x+17x2 +x3 +O(x4) is different
from B. Note that A and C are equal under this definition, and hence weak equality is
not transitive!

49.1.7 Polynomials over Series Rings
For a discussion of operations for polynomials over series rings see Chapter 46 and Sec-
tion 49.7.

49.2 Creation Functions

49.2.1 Creation of Structures

PowerSeriesRing(R)

PowerSeriesRing(R, p)

Global BoolElt Default : true

Precision RngIntElt Default : 20
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Given a commutative ring R, create the ring R[[x]] of formal power series over R.
If a second integer argument p is given, the resulting ring is a fixed precision series
ring with fixed precision p; otherwise the resulting ring is a free precision series
ring and the optional argument Precision may be used to set the default precision
for elements of the power series ring (it will be 20 otherwise; see the section above
on free and fixed precision). By default, a global series ring will be returned; if the
parameter Global is set to false, a non-global series ring will be returned (to which
a separate name for the indeterminate can be assigned). The angle bracket notation
can be used to assign a name to the indeterminate: S<x> := PowerSeriesRing(R).

LaurentSeriesRing(R)

LaurentSeriesRing(R, p)

Global BoolElt Default : true

Precision RngIntElt Default : 20

Given a commutative ring R, create the ring R((x)) of formal Laurent series over
R. If a second integer argument p is given, the resulting ring is a fixed precision
series ring with fixed precision p; otherwise the resulting ring is a free precision
series ring and the optional argument Precision may be used to set the default
precision for elements of the power series ring (it will be 20 otherwise; see the
section above on free and fixed precision). By default, a global series ring will be
returned; if the parameter Global is set to false, a non-global series ring will be
returned (to which a separate name for the indeterminate can be assigned). The
angle bracket notation can be used to assign a name to the indeterminate: S<x> :=
LaurentSeriesRing(R).

PuiseuxSeriesRing(R)

PuiseuxSeriesRing(R, p)

Global BoolElt Default : true

Precision RngIntElt Default : 20

Given a commutative ring R, create the ring R〈〈x〉〉 of formal Puiseux series over R.
If a second integer argument p is given, the resulting ring is a fixed precision series
ring with fixed precision p; otherwise the resulting ring is a free precision series ring
and the optional argument Precision may be used to set the default precision for
elements of the power series ring (it will be 20 otherwise; see the section above on
free and fixed precision). The optional argument Precision may be used to set the
default precision for elements of the power series ring. By default, a global series ring
will be returned; if the parameter Global is set to false, a non-global series ring
will be returned (to which a separate name for the indeterminate can be assigned).
The angle bracket notation can be used to assign a name to the indeterminate: S<x>
:= PuiseuxSeriesRing(R).



Ch. 49 POWER, LAURENT AND PUISEUX SERIES 1325

Example H49E1

We demonstrate the difference between global and non-global rings. We first create the global
power series ring over Q twice.

> Q := RationalField();

> P<x> := PowerSeriesRing(Q);

> PP := PowerSeriesRing(Q);

> P;

Power series ring in x over Rational Field

> PP;

Power series ring in x over Rational Field

> PP.1;

x

PP is identical to P . We now create non-global series rings (which are also different to the global
series ring). Note that elements of all the rings are mathematically equal by automatic coercion.

> Pa<a> := PowerSeriesRing(Q: Global := false);

> Pb<b> := PowerSeriesRing(Q: Global := false);

> Pa;

Power series ring in a over Rational Field

> Pb;

Power series ring in b over Rational Field

> a;

a

> b;

b

> P;

Power series ring in x over Rational Field

> x;

x

> x eq a; // Automatic coercion

true

> x + a;

2*x

49.2.2 Special Options

AssertAttribute(S,"DefaultPrecision", n)

Procedure to change the default precision on a free series ring series S; the default
precision will be set to n, which must be a non-negative integer.

HasAttribute(S, "DefaultPrecision")

Function that returns a Boolean indicating whether a default precision has been set
on the free series ring S (which will always be true), as well as its (non-negative)
integer value (which is 20 by default).
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AssignNames(∼S, ["x"])

Procedure to change the name of the ‘indeterminate’ transcendental element gener-
ating the series ring or field S; the name (used in printing elements of S) is changed
to the string x. Note that no assignment to the identifier x is made (so x cannot be
used for the specification of elements of S without further assignment).

Name(S, 1)

S . 1

Return the element of the series ring or field with a name attached to it, that is,
return the ‘indeterminate’ transcendental element generating S over its coefficient
ring.

49.2.3 Creation of Elements
The easiest way to create power and Laurent series in a given ring is to use the angle
bracket construction to attach names to the indeterminate, and to use these names to
express the series (see the examples). Below we list other options.

R . 1

UniformizingElement(R)

Return the generator (indeterminate) for the series ring R.

elt< R | v, [ a1, ..., ad], p >

Given a series ring R, integers v and p (where p > 0 or p = ∞), and a sequence
a = [a1, . . . , ad] of elements of R, create the element in R with valuation v, known
coefficients given by a and relative precision p. That is, this function returns the
series a1x

v + · · ·+ adx
v+d−1 + O(xv+p), or, if p = −1, the exact series a1x

v + · · ·+
adx

v+d−1. If R is a power series ring, then v must be non-negative.
The integer v or the integer p or both may be omitted. If v is omitted, it will

be set to zero by default; if p is omitted it will be taken to be v + d, where d is the
length of the sequence a.

R ! s

Coerce s into the series ring R. Here s is allowed to be a sequence of elements from
(or coercible into) the coefficient ring of R, or just an element from (or coercible into)
R. A sequence [a1, . . . , ad] is converted into the series a1+a2x

1+· · ·+adx
d−1+O(xd).
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BigO(f)

O(f)

Create the series O(xv) where x is the generator of the parent of f and v is the
valuation of f . The most typical usage of this function is the expression O(xn)
where x is the generator of a series ring, but a general series f is actually allowed.

One(Q) Identity(Q)

Zero(Q) Representative(Q)

49.3 Structure Operations

49.3.1 Related Structures

Parent(R) Category(R)

BaseRing(R)

CoefficientRing(R)

Return the coefficient ring of the series ring R.

IntegerRing(R)

Integers(R)

RingOfIntegers(R)

Return the power series ring which is the integer ring of the laurent series ring R.

FieldOfFractions(R)

Return the laurent series ring which is the field of fractions of the series ring R.

ChangePrecision(R, r)

ChangePrecision(∼R, r)

Return a series ring identical to the series ring R but having precision r.

ChangeRing(R, C)

Return the series ring identical to the series ring R but having coefficient ring C.

ResidueClassField(R)

Return the residue class field of the series ring R (which will be the same as the
coefficient ring of R) and the map from R into the residue class field.
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49.3.2 Invariants

Characteristic(R)

Precision(R)

GetPrecision(R)

Return the precision of the fixed precision series ring R. If R is a fixed precision
power series ring, then this is the fixed absolute precision for all elements of the
ring. If R is a fixed precision Laurent series ring, then this is the maximum relative
precision for all elements of the ring.

49.3.3 Ring Predicates and Booleans

IsCommutative(Q) IsUnitary(Q)

IsFinite(Q) IsOrdered(Q)

IsField(Q) IsEuclideanDomain(Q)

IsPID(Q) IsUFD(Q)

IsDivisionRing(Q) IsEuclideanRing(Q)

IsPrincipalIdealRing(Q) IsDomain(Q)

R eq S R ne S

49.4 Basic Element Operations

49.4.1 Parent and Category

Parent(r) Category(r)

49.4.2 Arithmetic Operators

+ b - b

a + b a - b a * b a ^ k

a div b a / b
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49.4.3 Equality and Membership

a eq b a ne b

a in R a notin R

49.4.4 Predicates on Ring Elements
Note the definition of equality in the introduction to this Chapter. This not only affects the
result of the application of eq and ne, but also that of IsOne, IsZero and IsMinusOne.

IsZero(a) IsOne(a) IsMinusOne(a)

IsNilpotent(x) IsIdempotent(x)

IsUnit(a) IsZeroDivisor(x) IsRegular(x)

IsIrreducible(x) IsPrime(x)

IsWeaklyZero(f)

Given a series f , return whether f is weakly zero, which is whether f is exactly zero
or of the form O(xp) for some p.

IsWeaklyEqual(f, g)

Given series f and g, return whether f is weakly equal to g, which is whether (f−g)
is weakly zero (see IsWeaklyZero).

IsIdentical(f, g)

Given series f and g, return whether f is identical to g, which is whether f and g
have exactly the same valuation, precision, and coefficients.

49.4.5 Precision

AbsolutePrecision(f)

Given a series f , this returns the absolute precision that is stored with f . If f is
a series in x, the absolute precision of f is the exponent p such that xp is the first
term of f of which the coefficient is not known, that is, it is the least p such that
f ∈ O(xp). If f is known exactly (in a free ring), the absolute precision is infinite
and an error occurs. Note that the absolute precision may be a non-integral rational
number if f is a Puiseux series.
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RelativePrecision(f)

Given a series f , this returns the relative precision that is stored with f . The relative
precision counts the number of coefficients of f that is known, starting at the first
non-zero term. Hence the relative precision is the difference between the absolute
precision and the valuation of f , and is therefore always non-negative; however, if f
is exact, the relative precision is infinite and the value ∞ is returned. Note that the
relative precision may be a non-integral rational number if f is a Puiseux series.

ChangePrecision(f, r)

ChangePrecision(∼f, r)

The (non puiseux) series f with absolute precision r (which can be positive infinity).

49.4.6 Coefficients and Degree

Coefficients(f)

ElementToSequence(f)

Eltseq(f)

Let f be a series with coefficients in a ring R and with indeterminate x. This
function returns the sequence Q of coefficients of f , the unscaled valuation v and
the exponent denominator d of f (v is the true valuation of f multiplied by d). The
i-th entry Q[i] of Q equals the coefficient of

x
v+i−1

d

in f . Thus the first entry of Q is the ‘first’ (lowest order) non-zero coefficient of f ,
i.e., the coefficient of xw where w is the true valuation of f .

Coefficient(f, i)

Given a series f with coefficients in a ring R, and a rational or integer i, return the
coefficient of the i-th power of the indeterminate x of f as an element of R. If f is
a Puiseux series i may be a (non-integral) rational; otherwise i must be an integer
(and also must be non-negative if f is a power series). Also, i must be less than p,
the precision of f .

LeadingCoefficient(f)

Given a series f with coefficients in a ring R, return the leading coefficient of f as
an element of R, which is the first non-zero coefficient of f (i.e., the coefficient xv

in f , where x is the indeterminate of f and v is the valuation of f).

LeadingTerm(f)

Given a series f with coefficients in a ring R, return the leading term of f , which is
the first non-zero term of f (i.e., the term of f whose monomial is xv, where x is
the indeterminate of f and v is the valuation of f).
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Truncate(f)

Given a series f , return the exact series obtained by truncating f after the last
known non-zero coefficient.

ExponentDenominator(f)

Given a series f , return the exponent denominator of f , i.e., the lowest common
denominator of all the exponents of the non-zero terms of f (always an integer).
For power series and Laurent series, this will always be 1 of course.

Degree(f)

Given a series f , return the degree of the truncation of f , that is, the exponent of
the last known non-zero term. Note that this may be a non-integral rational number
if f is a Puiseux series.

Valuation(f)

Given a series f , return the smallest integer v (possibly negative for Laurent series)
such that the coefficient of xv in f is not known to be zero. For the exact 0 element
(in a free ring), the valuation is ∞. Note that the valuation may be a non-integral
rational number if f is a Puiseux series.

ExponentDenominator(f)

The exponent denominator of the series f . This is the lowest common denominator
of the exponents of the non-zero terms of f .

49.4.7 Evaluation and Derivative

Derivative(f)

Given a series f ∈ R, return the derivative of f with respect to its indeterminate,
as an element of R. Note that the precision decreases by 1 (unless f has infinite
precision).

Derivative(f, n)

Given a series f ∈ R and an integer n > 0, return the n-th derivative of f with
respect to its indeterminate, as an element of R. Note that the precision decreases
by n (unless f has infinite precision).

Integral(f)

Given a series f ∈ R, return an anti-derivative F of f with respect to its indetermi-
nate, which is an element of R which has derivative f . The coefficient of x−1 in f
must be zero. Note that the precision of F will be exceeding that of f by 1 (unless
f has infinite precision).
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Evaluate(f, s)

Given an element f of a series ring over the coefficient ring R, and an element s of
the ring S, return the value of f(s) when the indeterminate x is evaluated at s. The
result will be an element of the common overstructure over R and S.

Laplace(f)

The Laplace transform of the series f ; if f has expansion
∑

i≥0 aix
i, its Laplace

transform has expansion
∑

i≥0(i!ai)xi. The valuation of f must be integral and
non-negative.

49.4.8 Square Root

SquareRoot(f)

Sqrt(f)

Return the square root of the series f , f must have even valuation if it is a power
or Laurent series.

49.4.9 Composition and Reversion

Composition(f, g)

Given elements f and g from the same series ring P , return their composition,
defined by

f ◦ g =
∑

i<p

fi(gi),

where f =
∑

i<p fix
i.

Reversion(f)

Reverse(f)

Given a series f (in x, say), this returns the inverse of f under composition, that is,
an element g of the same power series ring such that its composition with f equals
x to the best possible precision. If f is a power or Laurent series, the valuation of
f must be 1. If f is a Puiseux series, the valuation of f must be positive (but need
not equal 1), and if the valuation of f is not 1, the leading coefficient of f must be
1.

Convolution(f, g)

Given elements f and g from the same series ring P , return their convolution f ∗ g,
defined by

f ∗ g =
∑

i<min(p,q)

figix
i,

where f =
∑

i<p fix
i + O(xp) and g =

∑
i<q gix

i + O(xq).
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Example H49E2

We demonstrate the functions Composition and Reversion. First we check that Arcsin is the
reversion of Sin.

> S<x> := PowerSeriesRing(RationalField());

> f := Sin(x);

> g := Arcsin(x);

> f;

x - 1/6*x^3 + 1/120*x^5 - 1/5040*x^7 + 1/362880*x^9 -

1/39916800*x^11 + 1/6227020800*x^13 - 1/1307674368000*x^15 +

1/355687428096000*x^17 - 1/121645100408832000*x^19 + O(x^21)

> g;

x + 1/6*x^3 + 3/40*x^5 + 5/112*x^7 + 35/1152*x^9 + 63/2816*x^11 +

231/13312*x^13 + 143/10240*x^15 + 6435/557056*x^17 +

12155/1245184*x^19 + O(x^21)

> Composition(f, g);

x + O(x^21)

> Composition(g, f);

x + O(x^21)

> Reversion(f) - g;

O(x^21)

> Reversion(g) - f;

O(x^21)

Next we compute the reversion of a series whose valuation is not 1.

> S<x> := PuiseuxSeriesRing(RationalField());

> f := x^3 - x^5 + 2*x^8;

> r := Reversion(f);

> f;

x^3 - x^5 + 2*x^8

> r;

x^(1/3) + 1/3*x + 4/9*x^(5/3) - 2/3*x^2 + 65/81*x^(7/3) -

22/9*x^(8/3) + 5/3*x^3 - 208/27*x^(10/3) + 5005/729*x^(11/3)

- 70/3*x^4 + 206264/6561*x^(13/3) - 50830/729*x^(14/3) +

134*x^5 - 498674/2187*x^(16/3) + 31389020/59049*x^(17/3) +

O(x^6)

> Composition(r, f);

x + O(x^18)

> Composition(f, r);

x + O(x^(20/3))

Finally we compute the reversion of a proper Puiseux series.

> f := x^(2/5) - x^(2/3) + x^(3/2) + O(x^2);

> r := Reversion(f);

> r;

x^(5/2) + 5/2*x^(19/6) + 145/24*x^(23/6) + 715/48*x^(9/2) +

389795/10368*x^(31/6) - 5/2*x^(21/4) + O(x^(11/2))

> Composition(f, r);



1334 LOCAL ARITHMETIC FIELDS Part VIII

x + O(x^4)

> Composition(r, f);

x + O(x^(11/5))

49.5 Transcendental Functions
In each of the functions below, the precision of the result will be approximately equal to
the precision of the argument if that is finite; otherwise it will be approximately equal to
the default precision of the parent of the argument. An error will result if the coefficient
ring of the series is not a field. If the first argument has a non-zero constant term, an error
will result unless the coefficient ring of the parent is a real or complex domain (so that the
transcendental function can be evaluated in the constant term).

See also the chapter on real and complex fields for elliptic and modular functions which
are also defined for formal series.

49.5.1 Exponential and Logarithmic Functions

Exp(f)

Given a series f defined over a field, return the exponential of f .

Log(f)

Given a series f defined over a field of characteristic zero, return the logarithm of
f . The valuation of f must be zero.

Example H49E3

In this example we show how one can compute the Bernoulli number Bn for given n using gen-
erating functions. The function BernoulliNumber now actually uses this method (since V2.4).
Using this method, the Bernoulli number B10000 has been computed, taking about 14 hours on a
250MHz Sun Ultrasparc (the computation depends on the new asymptotically fast methods for
series division).

The exponential generating function for the Bernoulli numbers is:

E(x) =
x

ex − 1
.

This means that the n-th Bernoulli number Bn is n! times the coefficient of xn in E(x). The
Bernoulli numbers B0, . . . , Bn for any n can thus be calculated by computing the above power
series and scaling the coefficients.

In this example we will compute B500. We first set the final coefficient index n we desire to be 500.
We then create the denominator D = ex − 1 of the exponential generating function to precision
n+2 (we need n+2 since we lose precision when we divide by the denominator and the valuation
changes). For each series we create, we print the sum of it and O(x20), which will only print the
terms up to x19.

> n := 500;
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> S<x> := LaurentSeriesRing(RationalField(), n + 2);

> time D := Exp(x) - 1;

Time: 0.040

> D + O(x^20);

x + 1/2*x^2 + 1/6*x^3 + 1/24*x^4 + 1/120*x^5 + 1/720*x^6 + 1/5040*x^7 +

1/40320*x^8 + 1/362880*x^9 + 1/3628800*x^10 + 1/39916800*x^11 +

1/479001600*x^12 + 1/6227020800*x^13 + 1/87178291200*x^14 +

1/1307674368000*x^15 + 1/20922789888000*x^16 + 1/355687428096000*x^17 +

1/6402373705728000*x^18 + 1/121645100408832000*x^19 + O(x^20)

We then form the quotient E = x/D which gives the exponential generating function.

> time E := x / D;

Time: 5.330

> E + O(x^20);

1 - 1/2*x + 1/12*x^2 - 1/720*x^4 + 1/30240*x^6 - 1/1209600*x^8 +

1/47900160*x^10 - 691/1307674368000*x^12 + 1/74724249600*x^14 -

3617/10670622842880000*x^16 + 43867/5109094217170944000*x^18 + O(x^20)

We finally compute the Laplace transform of E (which multiplies the coefficient of xi by i!) to
yield the generating function of the Bernoulli numbers up to the xn term. Thus the coefficient of
xn here is Bn.

> time B := Laplace(E);

Time: 0.289

> B + O(x^20);

1 - 1/2*x + 1/6*x^2 - 1/30*x^4 + 1/42*x^6 - 1/30*x^8 + 5/66*x^10 -

691/2730*x^12 + 7/6*x^14 - 3617/510*x^16 + 43867/798*x^18 + O(x^20)

> Coefficient(B, n);

-16596380640568557229852123088077134206658664302806671892352650993155331641220\

960084014956088135770921465025323942809207851857992860213463783252745409096420\

932509953165466735675485979034817619983727209844291081908145597829674980159889\

976244240633746601120703300698329029710482600069717866917229113749797632930033\

559794717838407415772796504419464932337498642714226081743688706971990010734262\

076881238322867559275748219588404488023034528296023051638858467185173202483888\

794342720837413737644410765563213220043477396887812891242952336301344808165757\

942109887803692579439427973561487863524556256869403384306433922049078300720480\

361757680714198044230522015775475287075315668886299978958150756677417180004362\

981454396613646612327019784141740499835461/8365830

> n;

500
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49.5.2 Trigonometric Functions and their Inverses

Sin(f)

Given a series f defined over a field of characteristic zero, return the sine of f . The
valuation of f must be zero.

Cos(f)

Given a series f defined over a field of characteristic zero, return the cosine of f .
The valuation of f must be zero.

Sincos(f)

Given a series f defined over a field of characteristic zero, return both the sine and
cosine of f . The valuation of f must be zero.

Tan(f)

Return the tangent of the series f defined over a field.

Arcsin(f)

Given a series f defined over a field of characteristic zero, return the inverse sine of
f .

Arccos(f)

Given a series f defined over the real or complex field, return the inverse cosine of
f .

Arctan(f)

Given a series f defined over a field of characteristic zero, return the inverse tangent
of f .

49.5.3 Hyperbolic Functions and their Inverses

Sinh(f)

Given a series f defined over a field, return the hyperbolic sine of f .

Cosh(f)

Given a series f defined over a field, return the hyperbolic cosine of f .

Tanh(f)

Given a series f defined over a field, return the hyperbolic tangent of f .

Argsinh(f)

Given a series f defined over a field of characteristic zero, return the inverse hyper-
bolic sine of f .
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Argcosh(f)

Given a series f defined over the real or complex field, return the inverse hyperbolic
cosine of f .

Argtanh(f)

Given a series f defined over a field of characteristic zero, return the inverse hyper-
bolic tangent of f .

49.6 The Hypergeometric Series
For more information on the Hypergeometric Series, see [Hus87], page 176.

HypergeometricSeries(a,b,c, z)

Return the hypergeometric series F (a, b, c; z) defined by

F (a, b, c; z) =
∑

0≤n

(a)n(b)n

n!(c)nzn

where (a)n = a(a + 1) · · · (a + n− 1).

49.7 Polynomials over Series Rings
Factorization is available for polynomials over series rings defined over finite fields. We
recommend constructing polynomials from sequences rather than by addition of terms,
especially over fields, to avoid some precision loss. For example, x4 + t will not have
full precision in the constant coefficient as there will be a O term in the constant coeffi-
cient of x4 which will reduce its precision as a field element. The equivalent polynomial
Polynomial([t, 0, 0, 0, 1]) will have more precision than that constructed as x4 + t.

HenselLift(f, L)

Given a polynomial f over a series ring over a finite field or an extension of a series
ring and a factorization L of f to precision 1 return a factorization of f known to
the full precision of the coefficient ring of f .

Factorization(f)

Certificates BoolElt Default : false

Ideals BoolElt Default : false

Extensions BoolElt Default : false

The factorization of the polynomial f over a power series ring, laurent series field
over a finite field or an extension of either into irreducibles.

If Certificates is set to true, a two-element certificate for each factor, proving
its irreducibility, is returned.

If Ideals is set to true, two generators of some ideal for each factor are returned
within the certificates.

If Extensions is set to true, an extension for each factor is returned within the
certificates.



1338 LOCAL ARITHMETIC FIELDS Part VIII

Example H49E4

We illustrate factorizations over series rings and the extensions which can be gained through them.

> P<t> := PowerSeriesRing(GF(101));

> R<x> := PolynomialRing(P);

> Factorization(x^5 + t*x^4 - t^2*x^3 + (1 + t^20)*x^2 + t*x + t^6);

[

<(1 + O(t^20))*x + t^5 + O(t^8), 1>,

<(1 + O(t^20))*x + t + 100*t^4 + 100*t^5 + t^7 + O(t^8), 1>,

<(1 + O(t^20))*x + 1 + 34*t^2 + 34*t^3 + 34*t^4 + 90*t^5 + 29*t^6 + 16*t^8 +

32*t^9 + 6*t^10 + 66*t^11 + 41*t^12 + 93*t^13 + t^14 + 69*t^15 + 8*t^16

+ 61*t^17 + 86*t^18 + 19*t^19 + O(t^20), 1>,

<(1 + O(t^20))*x^2 + (100 + 67*t^2 + 67*t^3 + 68*t^4 + 11*t^5 + 72*t^6 +

100*t^7 + 85*t^8 + 69*t^9 + 94*t^10 + 31*t^11 + 59*t^12 + 16*t^13 +

14*t^14 + 35*t^15 + 77*t^16 + 28*t^17 + 33*t^18 + 72*t^19 + O(t^20))*x +

1 + 67*t^2 + 68*t^3 + 11*t^4 + 67*t^5 + 57*t^6 + 16*t^7 + 57*t^8 +

21*t^9 + 68*t^10 + 68*t^11 + 61*t^12 + 98*t^13 + 4*t^14 + 21*t^15 +

7*t^16 + 95*t^17 + 23*t^18 + 76*t^19 + O(t^20), 1>

]

1 + O(t^20)

> P<t> := PowerSeriesRing(GF(101), 50);

> R<x> := PolynomialRing(P);

> Factorization(x^5 + t*x^4 - t^2*x^3 + (1 + t^20)*x^2 + t*x + t^6 :

> Extensions);

[

<x + t^5 + t^9 + 2*t^13 + t^16 + 5*t^17 + 6*t^20 + 14*t^21 + 26*t^24 +

42*t^25 + 3*t^27 + 4*t^28 + 32*t^29 + 35*t^31 + 10*t^32 + 29*t^33 +

46*t^35 + t^36 + 31*t^37 + O(t^38), 1>,

<x + t + 100*t^4 + 100*t^5 + t^7 + 100*t^9 + t^10 + 4*t^11 + t^12 + 91*t^13

+ 86*t^14 + 98*t^15 + 15*t^16 + 7*t^17 + 83*t^18 + 10*t^19 + 23*t^20 +

54*t^21 + 47*t^22 + 72*t^23 + 87*t^24 + 55*t^25 + 4*t^26 + 15*t^27 +

90*t^28 + 82*t^29 + 97*t^30 + 15*t^31 + 23*t^32 + 86*t^33 + 57*t^34 +

10*t^35 + 79*t^36 + 52*t^37 + O(t^38), 1>,

<x + 1 + 34*t^2 + 34*t^3 + 34*t^4 + 90*t^5 + 29*t^6 + 16*t^8 + 32*t^9 +

6*t^10 + 66*t^11 + 41*t^12 + 93*t^13 + t^14 + 69*t^15 + 8*t^16 + 61*t^17

+ 86*t^18 + 19*t^19 + 47*t^20 + 11*t^21 + 42*t^22 + 38*t^23 + 46*t^24 +

90*t^25 + 14*t^26 + 7*t^27 + 89*t^28 + 85*t^29 + 70*t^30 + 24*t^31 +

28*t^32 + 71*t^33 + 53*t^34 + 55*t^35 + 90*t^36 + 26*t^37 + 4*t^38 +

56*t^39 + 44*t^40 + 8*t^41 + 25*t^42 + 94*t^43 + 14*t^44 + 92*t^45 +

56*t^46 + 83*t^47 + 26*t^48 + 41*t^49 + O(t^50), 1>,

<x^2 + (100 + 67*t^2 + 67*t^3 + 68*t^4 + 11*t^5 + 72*t^6 + 100*t^7 + 85*t^8

+ 69*t^9 + 94*t^10 + 31*t^11 + 59*t^12 + 16*t^13 + 14*t^14 + 35*t^15 +

77*t^16 + 28*t^17 + 33*t^18 + 72*t^19 + 25*t^20 + 22*t^21 + 12*t^22 +

92*t^23 + 43*t^24 + 15*t^25 + 83*t^26 + 76*t^27 + 19*t^28 + 3*t^29 +

35*t^30 + 27*t^31 + 40*t^32 + 16*t^33 + 92*t^34 + 91*t^35 + 32*t^36 +

93*t^37 + 84*t^38 + 98*t^39 + 85*t^40 + 54*t^41 + 25*t^42 + 88*t^43 +

35*t^44 + 17*t^45 + t^46 + 39*t^47 + 89*t^48 + 67*t^49 + O(t^50))*x + 1

+ 67*t^2 + 68*t^3 + 11*t^4 + 67*t^5 + 57*t^6 + 16*t^7 + 57*t^8 + 21*t^9



Ch. 49 POWER, LAURENT AND PUISEUX SERIES 1339

+ 68*t^10 + 68*t^11 + 61*t^12 + 98*t^13 + 4*t^14 + 21*t^15 + 7*t^16 +

95*t^17 + 23*t^18 + 76*t^19 + 62*t^20 + 59*t^21 + 66*t^22 + 35*t^23 +

41*t^24 + 45*t^25 + 32*t^26 + 56*t^27 + 35*t^28 + 19*t^29 + 21*t^30 +

59*t^31 + 50*t^32 + 72*t^33 + 58*t^34 + 75*t^35 + 59*t^36 + 76*t^37 +

83*t^38 + 66*t^39 + 6*t^40 + 8*t^41 + 94*t^42 + 77*t^43 + 100*t^44 +

30*t^45 + 72*t^46 + 26*t^47 + 54*t^48 + 21*t^49 + O(t^50), 1>

]

1 + O(t^50)

[

rec<recformat<F: RngIntElt, Rho: RngUPolElt, E: RngIntElt, Pi: RngUPolElt,

IdealGen1, IdealGen2: RngUPolElt, Extension> |

F := 1,

Rho := 1 + O($.1^50),

E := 1,

Pi := $.1 + O($.1^50),

Extension := Power series ring in t over GF(101) with fixed absolute

precision 50>,

rec<recformat<F: RngIntElt, Rho: RngUPolElt, E: RngIntElt, Pi: RngUPolElt,

IdealGen1, IdealGen2: RngUPolElt, Extension> |

F := 1,

Rho := 1 + O($.1^50),

E := 1,

Pi := $.1 + O($.1^50),

Extension := Power series ring in t over GF(101) with fixed absolute

precision 50>,

rec<recformat<F: RngIntElt, Rho: RngUPolElt, E: RngIntElt, Pi: RngUPolElt,

IdealGen1, IdealGen2: RngUPolElt, Extension> |

F := 1,

Rho := 1 + O($.1^50),

E := 1,

Pi := $.1 + O($.1^50),

Extension := Power series ring in t over GF(101) with fixed absolute

precision 50>,

rec<recformat<F: RngIntElt, Rho: RngUPolElt, E: RngIntElt, Pi: RngUPolElt,

IdealGen1, IdealGen2: RngUPolElt, Extension> |

F := 2,

Rho := (1 + O($.1^50))*$.1 + O($.1^50),

E := 1,

Pi := $.1 + O($.1^50),

Extension := Extension of Power series ring in t over GF(101) with fixed

absolute precision 50 by x^2 + (100 + O(t^50))*x + 1 + O(t^50)>

]
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49.8 Extensions of Series Rings
Extensions of series rings are either unramified or totally ramified. Only series rings defined
over finite fields can be extended. We recommend constructing polynomials from sequences
rather than by addition of terms, especially over fields, to avoid some precision loss. For
example, x4 + t will not have full precision in the constant coefficient as there will be a
O term in the constant coefficient of x4 which will reduce its precision as a field element.
Extensions require full precision polynomials and some polynomials such as x4 + t may
not have enough precision to be used to construct an extension whereas the equivalent
Polynomial([t, 0, 0, 0, 1]) will.

49.8.1 Constructions of Extensions

UnramifiedExtension(R, f)

Construct the unramified extension of R, a series ring or an extension thereof, defined
by the inertial polynomial f , that is, adjoin a root of f to R.

TotallyRamifiedExtension(R, f)

MaxPrecision RngIntElt Default :

Construct a totally ramified extension of R, a series ring or an extension thereof,
defined by the eisenstein polynomial f , that is, adjoin a root of f to R.

The parameter MaxPrecision defaults to the precision of R. It can be set to
the maximum precision the coefficients of f are known to, which must not be less
than the precision of R. This allows the precision of the result to be increased to
the degree of f multiplied by this maximum precision.

The polynomial f may be given over a series ring or an extension of a series
ring having a higher precision than R. This allows the precision of the result to be
increased up to the precision the polynomial is known to (or MaxPrecision if set)
without losing any of the polynomial known past the precision of R.

The precision of a ramified extension cannot be increased unless the defining
polynomial is known to more precision than the coefficient ring, indicated either
by providing the polynomial to greater precision or by setting MaxPrecision. This
should be taken into account when constructing ramified extensions, especially if
polynomials are to be factored over the extension.

ChangePrecision(E, r)

ChangePrecision(∼E, r)

The extension of a series ring E with precision r. It is not possible to increase the
precision of a ramified extension unless the parameter MaxPrecision was set on
construction of the extension and r is less than or equal to this value multiplied by
the ramification degree or the polynomial used in creating the extension was given
to more precision than the coefficient ring of E.

FieldOfFractions(E)

The field of fractions of the extension of a series ring E.



Ch. 49 POWER, LAURENT AND PUISEUX SERIES 1341

Example H49E5

We show a simple creation of a two-step extension and change its precision.

> P<t> := PowerSeriesRing(GF(101), 50);

> PP<tt> := PowerSeriesRing(GF(101));

> R<x> := PolynomialRing(PP);

> U := UnramifiedExtension(P, x^2 + 2);

> T := TotallyRamifiedExtension(U, x^2 + tt*x + tt); T;

Extension of Extension of Power series ring in t over GF(101) with fixed

absolute precision 50 by x^2 + 2 + O(t^50) by x^2 + (t + O(t^50))*x + t +

O(t^50)

> Precision($1);

100

> ChangePrecision($2, 200);

Extension of Extension of Power series ring in $.1 over GF(101) with fixed

absolute precision 100 by x^2 + 2 + O($.1^100) by x^2 + ($.1 + O($.1^100))*x +

$.1 + O($.1^100)

> ChangePrecision($1, 1000);

Extension of Extension of Power series ring in $.1 over GF(101) with fixed

absolute precision 500 by x^2 + 2 + O($.1^500) by x^2 + ($.1 + O($.1^500))*x +

$.1 + O($.1^500)

> ChangePrecision($1, 20);

Extension of Extension of Power series ring in $.1 over GF(101) with fixed

absolute precision 10 by x^2 + 2 + O($.1^10) by x^2 + ($.1 + O($.1^10))*x + $.1

+ O($.1^10)

Both U and T have a field of fractions.

> FieldOfFractions(U);

Extension of Laurent series field in $.1 over GF(101) with fixed relative

precision 50 by (1 + O($.1^50))*x^2 + O($.1^50)*x + 2 + O($.1^50)

> FieldOfFractions(T);

Extension of Extension of Laurent series field in $.1 over GF(101) with fixed

relative precision 50 by (1 + O($.1^50))*x^2 + O($.1^50)*x + 2 + O($.1^50) by (1

+ O($.1^50))*x^2 + ($.1 + O($.1^50))*x + $.1 + O($.1^50)

49.8.2 Operations on Extensions

Precision(E)

GetPrecision(E)

The maximum precision elements of the extension of a series ring E may have.

CoefficientRing(E)

BaseRing(E)

The ring the extension of a series ring E was defined over.
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DefiningPolynomial(E)

The polynomial used to define the extension E.

InertiaDegree(E)

The degree of the extension E if E is an unramified extension, 1 otherwise.

RamificationIndex(E)

RamificationDegree(E)

The degree of the extension E if E is a totally ramified extension, 1 otherwise.

ResidueClassField(E)

The residue class field of the extension E, that is, E/π ∗ E.

UniformizingElement(E)

A uniformizing element for the extension E, that is, an element of E of valuation 1.

IntegerRing(E)

Integers(E)

RingOfIntegers(E)

The ring of integers of the extension E of a series ring if E is a field (extension of a
laurent series ring).

E1 eq E2

Whether extensions E1 and E2 are considered to be equal.

E . i

The primitive element of the extension E, that is, the root of the defining polynomial
of E adjoined to the coefficient ring of E to construct E.

AssignNames(∼E, S)

Assign the string in the sequence S to be the name of the primitive element of E,
that is, the root of the defining polynomial adjoined to the coefficient ring of E to
construct E.
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Example H49E6

A number of the operations above are applied to a two-step extension

> L<t> := LaurentSeriesRing(GF(53), 30);

> P<x> := PolynomialRing(L);

> U := UnramifiedExtension(L, x^3 + 3*x^2 + x + 4);

> P<y> := PolynomialRing(U);

> T := TotallyRamifiedExtension(U, Polynomial([t, 0, 0, 0, 1]));

> Precision(U);

30

> Precision(T);

120

> CoefficientRing(U);

Laurent series field in t over GF(53) with fixed relative precision 30

> CoefficientRing(T);

Extension of Laurent series field in t over GF(53) with fixed relative precision

30 by (1 + O(t^30))*x^3 + (3 + O(t^30))*x^2 + (1 + O(t^30))*x + 4 + O(t^30)

> DefiningPolynomial(U);

(1 + O(t^30))*x^3 + (3 + O(t^30))*x^2 + (1 + O(t^30))*x + 4 + O(t^30)

> DefiningPolynomial(T);

(1 + O(t^30))*y^4 + O(t^30)*y^3 + O(t^30)*y^2 + O(t^30)*y + t + O(t^30)

> InertiaDegree(U);

3

> InertiaDegree(T);

1

> RamificationDegree(U);

1

> RamificationDegree(T);

4

> ResidueClassField(U);

Finite field of size 53^3

Mapping from: RngSerExt: U to GF(53^3)

> ResidueClassField(T);

Finite field of size 53^3

Mapping from: RngSerExt: T to GF(53^3)

> UniformizingElement(U);

t + O(t^31)

> UniformizingElement(T);

(1 + O(t^30))*$.1 + O(t^30)

> Integers(T);

Extension of Extension of Power series ring in $.1 over GF(53) with fixed

absolute precision 30 by x^3 + (3 + O($.1^30))*x^2 + x + 4 + O($.1^30) by x^4 +

$.1 + O($.1^30)

> U.1;

(1 + O(t^30))*$.1 + O(t^30)

> T.1;
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(1 + O(t^30))*$.1 + O(t^30)

49.8.3 Elements of Extensions

x * y x + y x - y - x x ^ n x div y x / y

x eq y IsZero(e) IsOne(e) IsMinusOne(e) IsUnit(e)

Valuation(e)

The valuation of the element e of an extension of a series ring. This is the index of
the largest power of π which divides e.

RelativePrecision(e)

The relative precision of the element e of an extension of a series ring. This is the
number of digits of e (in π) which are known.

AbsolutePrecision(e)

The absolute precision of the element e of an extension of a series ring. This is the
same as the sum of the relative precision of e and the valuation of e.

Coefficients(e)

Eltseq(e)

ElementToSequence(e)

Given an element e of an extension of a series ring, return the coefficients of e with
respect to the powers of the uniformizing element of the extension.

Example H49E7

We show some simple arithmetic with some elements of some extensions.

> P<t> := PowerSeriesRing(GF(101), 50);

> R<x> := PolynomialRing(P);

> U<u> := UnramifiedExtension(P, x^2 + 2*x + 3);

> UF := FieldOfFractions(U);

> R<y> := PolynomialRing(U);

> T<tt> := TotallyRamifiedExtension(U, y^2 + t*y + t);

> TF<tf> := FieldOfFractions(T);

> UF<uf> := FieldOfFractions(U);

> u + t;

u + t + O(t^50)

> uf * t;

($.1 + O($.1^50))*uf + O($.1^51)

> tf eq tt;

false

> tf - tt;
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O($.1^50)*tf + O($.1^50)

> IsZero($1);

false

> Valuation($2);

100

> Valuation(tt);

1

> Valuation(U!t);

1

> Valuation(T!t);

2

> RelativePrecision(u);

50

> AbsolutePrecision(u);

50

> AbsolutePrecision(uf);

50

> RelativePrecision(uf);

50

> RelativePrecision(u - uf);

0

> AbsolutePrecision(u - uf);

50

> u^7;

(13 + O(t^50))*u + 71 + O(t^50)

> Coefficients($1);

[

71 + O(t^50),

13 + O(t^50)

]

> tt^8;

(4*t^4 + 91*t^5 + 6*t^6 + 100*t^7 + O(t^50))*tt + t^4 + 95*t^5 + 5*t^6 + 100*t^7

+ O(t^50)

> Coefficients($1);

[ t^4 + 95*t^5 + 5*t^6 + 100*t^7 + O(t^50), 4*t^4 + 91*t^5 + 6*t^6 + 100*t^7 +

O(t^50) ]

49.8.4 Optimized Representation

OptimizedRepresentation(E)

OptimisedRepresentation(E)

An optimized representation for the unramified extension E of a series ring. The
defining polynomial of E must be coercible into the residue class field. The result is
a series ring over the residue class field of E and a map from E to this series ring.
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Example H49E8

We give a simple example of the use of OptimizedRepresentation.

> P<t> := PowerSeriesRing(GF(101), 50);

> R<x> := PolynomialRing(P);

> U<u> := UnramifiedExtension(P, x^2 + 2*x + 3);

> U;

Extension of Power series ring in t over GF(101) with fixed absolute precision

50 by x^2 + (2 + O(t^50))*x + 3 + O(t^50)

> OptimizedRepresentation(U);

Power series ring in $.1 over GF(101^2) with fixed absolute precision 50

Mapping from: RngSerExt: U to Power series ring in s over GF(101^2) with fixed

absolute precision 50 given by a rule
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Chapter 50

LAZY POWER SERIES RINGS

50.1 Introduction
The lazy series rings RngLaz and their elements RngLazElt allow the creation of infinite

precision series by providing series for which all coefficients can be calculated by some given
formula. Only finitely many coefficients of such a series can be known at any one time
but all infinitely many of the coefficients are knowable. Any coefficient of a lazy series can
be generated and once a coefficient is computed it will be stored in the series for quick
retrieval.

The simplest implementation of this idea is creating a series by providing a map. This
map is a formula for computing coefficients of a series. Given the exponents of the variables
of a term it will give you the coefficient of that term. Series with finitely many non–zero
terms can be created in special ways and several usual arithmetic operations can be applied
to lazy series. Such constructions yield lazy series with more complicated formulas for their
coefficients.

Consider the series
∑n

i=0 i ∗ xi. A formula for the coefficients is given by i 7→ i. This
series can be created as a lazy series as follows:

> L<x> := LazyPowerSeriesRing(Integers(), 1);
> m := map<Integers() -> Integers() | i :-> i>;
> s := elt<L | m>;
> s;
Lazy power series

Currently s does not know what any of its coefficients are yet it is possible to calculate
any coefficient of s.

> Coefficient(s, 0);
0
> Coefficient(s, 100);
100
> Coefficient(s, 100000000000000000000000);
100000000000000000000000
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50.2 Creation of Lazy Series Rings
Both univariate and multivariate lazy series rings can be created.

LazyPowerSeriesRing(C, n)

The lazy power series ring with coefficient ring C and n variables. Any ring is valid
input for C and n can be any positive integer.

ChangeRing(L, C)

Given a lazy series ring L defined over a ring R and some ring C, return the lazy
series ring with coefficient ring C but the same number of variables as L. A map
from L to the new lazy series ring is also returned which takes an series s in L to a
series whose coefficients are those of s coerced into C.

Example H50E1

Here we illustrate the creation and printing of lazy power series rings.

> L := LazyPowerSeriesRing(Rationals(), 5);

> L;

Lazy power series ring in 5 variables over Rational Field

> ChangeRing(L, MaximalOrder(CyclotomicField(7)));

Lazy power series ring in 5 variables over Maximal Equation Order with defining

polynomial x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 over Z

50.3 Functions on Lazy Series Rings
Lazy series rings have variables, names for their variables and a coefficient ring.

R . i

The ith variable of the lazy power series ring R, where i is between 1 and the rank
of R.

AssignNames(∼R, S)

Given a lazy series ring R with n indeterminates and a sequence S of n strings,
assign the elements of S to the names of the variables of R.

BaseRing(R)

CoefficientRing(R)

The coefficient ring of the lazy power series ring R. The coefficients of all the series
in R will lie in this ring.

Rank(R)

The number of variables associated with the lazy power series ring R.

R1 eq R2

Return true if the lazy series rings R1 and R2 are the same ring, that is, they have
the same coefficient ring and rank.
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Example H50E2

The functions on lazy power series rings are illustrated here.

> L := LazyPowerSeriesRing(FiniteField(73), 7);

> L.4;

Lazy power series

> AssignNames(~L, ["a", "b", "c", "d", "fifth", "sixth", "seventh"]);

> L.4;

Lazy power series

The names for the variables of L are not used in default series printing. However they are used
when printing an element to a given precision using PrintToPrecision.

> CoefficientRing(L);

Finite field of size 73

> Rank(L);

7

> L eq LazyPowerSeriesRing(CoefficientRing(L), Rank(L));

true

50.4 Elements

Lazy series may be created in a number of ways. Arithmetic for ring elements is available
as well as a few predicates. Coefficients of the monomials in the series can be calculated.

50.4.1 Creation of Finite Lazy Series

R ! c

Return the series in the lazy series ring R with constant term c and every other
coefficient 0 where c is any ring element coercible into the coefficient ring of R.

R ! s

Return the lazy series in the lazy series ring R whose coefficients are those of the
lazy series s coerced into the coefficient ring of R.

R ! S

Return the series in the lazy series ring R whose coefficients are the elements of S
where S is a sequence of elements each coercible into the coefficient ring of R. The
coefficients are taken to be given in the order which Coefficients will return them
and PrintToPrecision will print the terms of the series. Any coefficient not given
is assumed to be zero so that all coefficients are calculable. The resulting series can
only have finitely many non zero terms and all such non zero coefficients must be
given in S.
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LazySeries(R, f)

Create the lazy series in the lazy series ring R with finitely many non zero terms
which are the terms of the polynomial f . The number of variables of the parent
ring of f must be the same as the number of variables of R. The coefficients of f
must be coercible into the coefficient ring of R.

It is also possible for f to be a rational function, p/q. The series created from f
will be LazySeries(R, p)*LazySeries(R, q)−1.

Example H50E3

Creation of series using the above functions is shown here.

> L := LazyPowerSeriesRing(AlgebraicClosure(), 3);

> LR := LazyPowerSeriesRing(Rationals(), 3);

> s := L!1;

> s;

Lazy power series

> LR!s;

Lazy power series

> P<x, y, z> := RationalFunctionField(Rationals(), 3);

> LazySeries(L, (x + y + 8*z)^7/(1 + 5*x*y*z + x^8)^3);

Lazy power series

50.4.1.1 Creation of Lazy Series from Maps
Creating a lazy series from a map simulates the existence of lazy series as series for which
coefficients are not known on creation of the series but calculated by some rule given when
creating the series.

This rule can be coded in a map where the input to the map is the exponents of the
variables in a term and the output is the coefficient of the term described by the input.
So for a lazy series ring with variables x, y and z, a general term of a series will look like
cijk ∗ xr

i ∗ ys
j ∗ zt

k. The coefficient of this term, cijk, in a series defined by a map m is the
result of m(〈i, j, k〉).

elt< R | m >

Creates a series in the lazy series ring R from the map m. The map m must take as
input either an integer (when R is univariate only) or a tuple of integers (of length
the number of variables of R) and return an element of the coefficient ring of R.
This element will be taken as the coefficient of the term of the series whose variables
have the exponents given in the input tuple, as described above.
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Example H50E4

We first illustrate the univariate case.

> L<x> := LazyPowerSeriesRing(MaximalOrder(QuadraticField(5)), 1);

> Z := Integers();

> m := map<Z -> CoefficientRing(L) | t :-> 2*t>;

> s := elt<L | m>;

> PrintToPrecision(s, 10);

2*x + 4*x^2 + 6*x^3 + 8*x^4 + 10*x^5 + 12*x^6 + 14*x^7 + 16*x^8 + 18*x^9 +

20*x^10

> Coefficient(s, 34);

68

> m(34);

68

> Coefficient(s, 2^30 + 10);

2147483668

> m(2^30 + 10);

2147483668

Example H50E5

And now for the multivariate case.

> L<x, y, z> := LazyPowerSeriesRing(AlgebraicClosure(), 3);

> Z := Integers();

> m := map<car<Z, Z, Z> -> CoefficientRing(L) | t :-> t[1]*t[2]*t[3]>;

> s := elt<L | m>;

> PrintToPrecision(s, 5);

x*y*z + 2*x^2*y*z + 2*x*y^2*z + 2*x*y*z^2 + 3*x^3*y*z + 4*x^2*y^2*z +

4*x^2*y*z^2 + 3*x*y^3*z + 4*x*y^2*z^2 + 3*x*y*z^3

> Coefficient(s, [1, 1, 1]);

1

> m(<1, 1, 1>);

1

> Coefficient(s, [3, 1, 2]);

6

> m(<3, 1, 2>);

6
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50.4.2 Arithmetic with Lazy Series
All the usual arithmetic operations are possible for lazy series.

s + t

The sum of the two lazy series s and t.

-s

The negation of the lazy series s.

s - t

The difference between lazy series s and t.

s * t

The product of the lazy series s and t.

s + r

r + s

The sum of the lazy series s and the element r of the coefficient ring of the parent
ring of s.

c * s

s * c

The product of the lazy series s and the element c of the coefficient ring of the
parent ring of s.

s * n

The product of the lazy series s and the monomial xn, where xn is xn1
1 × . . . ×

xnr
r where r is the number of variables of the parent ring of s, n is the sequence

[n1, . . . , nr] and x = x1, . . . , xr are the series variables of the parent ring of s.

s ^ n

Given a lazy series s and an integer n, return the nth power of s. It is allowed for
n to be negative and inverses will be taken where possible.

Example H50E6

Here we demonstrate the above arithmetic operations.

> L<a, b, c, d> := LazyPowerSeriesRing(Rationals(), 4);

> (a + 4*b + (-c)*[8, 9, 2^30 + 10, 2] - d*b + 5)^-8;

Lazy power series
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50.4.3 Finding Coefficients of Lazy Series
In theory, all the coefficients of most series can be calculated. In practice it is not possible
to compute infinitely many. Some problems arise however when a series has been created
using multiplication, inversion, evaluation or by taking square roots. For such series the
jth coefficient for all j < i must be known for the ith coefficient to be calculated. In
such cases the exponents specified for each variable in the monomial whose coefficient is
required must be small integers (< 230).

The default ordering of coefficients is by total degree of the corresponding monomials.
This is the same order on multivariate polynomials by default. When drawn on paper or
imagined in 3 or more dimensions this looks like a spiral if the coordinates representing
the monomial exponents are joined. This is the same ordering which is used to compute
the valuation of a series.

Once computed, coefficients are stored with the series so any subsequent call to these
functions will be faster in non–trivial cases than the first call. It is possible to interrupt
any of these functions and return to the prompt.

Coefficient(s, i)

Returns the coefficient in the univariate lazy series s of xi where x is the series
variable of the parent of s and i is a non negative integer.

Coefficient(s, T)

Returns the coefficient in the multivariate lazy series s of the monomial xT1
1 ∗. . .∗xTr

r

where T is the sequence [T1, . . . , Tr], x1, . . . , xr are the variables of the parent ring
of s and r is the rank of the parent of s.

Coefficients(s, n)

Coefficients(s, l, n)

The coefficients of the lazy series s whose monomials have total degree at least l
(0 if not given) and at most n where the monomials are ordered using the default
“spiral” degree order. The bounds l and n must be non negative integers.

Valuation(s)

The valuation of the lazy series s. This is the exponent of the monomial with the
first non–zero coefficient as returned by Coefficients above. The return value will
be either Infty, an integer (univariate case) or a sequence (multivariate case).

PrintToPrecision(s, n)

Print the sum of all terms of the lazy series s whose degree is no more than n where
n is a non negative integer. The series is printed using the “spiral” ordering.

PrintTermsOfDegree(s, l, n)

Print the sum of the terms of the lazy series s whose degree is at least l and at most
n. The terms are printed using the spiral ordering. The bounds l and n must be
non negative integers.
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LeadingCoefficient(s)

The coefficient in the lazy series s whose monomial exponent is the valuation of
s. That is, the first non–zero coefficient of s where the ordering which determines
“first” is the “spiral” ordering used by Coefficients and Valuation.

LeadingTerm(s)

The term in the lazy series s whose monomial exponent is the valuation of s. That
is, the first non–zero term of s where the ordering which determines “first” is the
“spiral” ordering used by Coefficients and Valuation.

Example H50E7

In this example we look at some coefficients of an infinite series.

> L<a, b, c, d> := LazyPowerSeriesRing(Rationals(), 4);

> s := (1 + 2*a + 3*b + 4*d)^-5;

Find the coefficient of a ∗ b ∗ c ∗ d.

> Coefficient(s, [1, 1, 1, 1]);

0

Find the coefficients of all monomials with total degree at most 6.

> time Coefficients(s, 6);

[ 1, -10, -15, 0, -20, 60, 180, 0, 240, 135, 0, 360, 0, 0, 240, -280, -1260, 0,

-1680, -1890, 0, -5040, 0, 0, -3360, -945, 0, -3780, 0, 0, -5040, 0, 0, 0,

-2240, 1120, 6720, 0, 8960, 15120, 0, 40320, 0, 0, 26880, 15120, 0, 60480, 0, 0,

80640, 0, 0, 0, 35840, 5670, 0, 30240, 0, 0, 60480, 0, 0, 0, 53760, 0, 0, 0, 0,

17920, -4032, -30240, 0, -40320, -90720, 0, -241920, 0, 0, -161280, -136080, 0,

-544320, 0, 0, -725760, 0, 0, 0, -322560, -102060, 0, -544320, 0, 0, -1088640,

0, 0, 0, -967680, 0, 0, 0, 0, -322560, -30618, 0, -204120, 0, 0, -544320, 0, 0,

0, -725760, 0, 0, 0, 0, -483840, 0, 0, 0, 0, 0, -129024, 13440, 120960, 0,

161280, 453600, 0, 1209600, 0, 0, 806400, 907200, 0, 3628800, 0, 0, 4838400, 0,

0, 0, 2150400, 1020600, 0, 5443200, 0, 0, 10886400, 0, 0, 0, 9676800, 0, 0, 0,

0, 3225600, 612360, 0, 4082400, 0, 0, 10886400, 0, 0, 0, 14515200, 0, 0, 0, 0,

9676800, 0, 0, 0, 0, 0, 2580480, 153090, 0, 1224720, 0, 0, 4082400, 0, 0, 0,

7257600, 0, 0, 0, 0, 7257600, 0, 0, 0, 0, 0, 3870720, 0, 0, 0, 0, 0, 0, 860160 ]

Time: 0.140

> #$1;

210

PrintToPrecision will display the monomials to which these coefficients correspond.

> time PrintToPrecision(s, 6);

1 - 10*a - 15*b - 20*d + 60*a^2 + 180*a*b + 240*a*d + 135*b^2 + 360*b*d +

240*d^2 - 280*a^3 - 1260*a^2*b - 1680*a^2*d - 1890*a*b^2 - 5040*a*b*d -

3360*a*d^2 - 945*b^3 - 3780*b^2*d - 5040*b*d^2 - 2240*d^3 + 1120*a^4 +

6720*a^3*b + 8960*a^3*d + 15120*a^2*b^2 + 40320*a^2*b*d + 26880*a^2*d^2 +

15120*a*b^3 + 60480*a*b^2*d + 80640*a*b*d^2 + 35840*a*d^3 + 5670*b^4 +
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30240*b^3*d + 60480*b^2*d^2 + 53760*b*d^3 + 17920*d^4 - 4032*a^5 -

30240*a^4*b - 40320*a^4*d - 90720*a^3*b^2 - 241920*a^3*b*d - 161280*a^3*d^2

- 136080*a^2*b^3 - 544320*a^2*b^2*d - 725760*a^2*b*d^2 - 322560*a^2*d^3 -

102060*a*b^4 - 544320*a*b^3*d - 1088640*a*b^2*d^2 - 967680*a*b*d^3 -

322560*a*d^4 - 30618*b^5 - 204120*b^4*d - 544320*b^3*d^2 - 725760*b^2*d^3 -

483840*b*d^4 - 129024*d^5 + 13440*a^6 + 120960*a^5*b + 161280*a^5*d +

453600*a^4*b^2 + 1209600*a^4*b*d + 806400*a^4*d^2 + 907200*a^3*b^3 +

3628800*a^3*b^2*d + 4838400*a^3*b*d^2 + 2150400*a^3*d^3 + 1020600*a^2*b^4 +

5443200*a^2*b^3*d + 10886400*a^2*b^2*d^2 + 9676800*a^2*b*d^3 +

3225600*a^2*d^4 + 612360*a*b^5 + 4082400*a*b^4*d + 10886400*a*b^3*d^2 +

14515200*a*b^2*d^3 + 9676800*a*b*d^4 + 2580480*a*d^5 + 153090*b^6 +

1224720*b^5*d + 4082400*b^4*d^2 + 7257600*b^3*d^3 + 7257600*b^2*d^4 +

3870720*b*d^5 + 860160*d^6

Time: 0.010

The valuation of s can be obtained as follows. The valuation of zero is a special case.

> Valuation(s);

[ 0, 0, 0, 0 ]

> Valuation(s*0);

Infinity

CoefficientsNonSpiral(s, n)

Returns the coefficients of the monomials in the lazy series s whose exponents are
given by [i1, ..., ir] where each ij ≤ nj . The argument n may either be a non negative
integer (univariate case) or a sequence of non negative integers of length r where r
is the rank of the parent ring of s. The index of the [i1, ..., ir]-th coefficient in the
return sequence is given by

r∑

j=1

ij ∗ (
r∏

k=j+1

(nk + 1)).

Index(s, i, n)

Return the index in the return value of CoefficientsNonSpiral(s, n) of the
monomial in the lazy series s whose exponents are given by the (trivial in the
univariate case) sequence i.
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Example H50E8

We find the coefficients of the series used in the last example using the alternative algorithm.

> L<a, b, c, d> := LazyPowerSeriesRing(Rationals(), 4);

> s := (1 + 2*a + 3*b + 4*d)^-5;

> time CoefficientsNonSpiral(s, [3, 3, 3, 2]);

[ 1, -20, 240, 0, 0, 0, 0, 0, 0, 0, 0, 0, -15, 360, -5040, 0, 0, 0, 0, 0, 0, 0,

0, 0, 135, -3780, 60480, 0, 0, 0, 0, 0, 0, 0, 0, 0, -945, 30240, -544320, 0, 0,

0, 0, 0, 0, 0, 0, 0, -10, 240, -3360, 0, 0, 0, 0, 0, 0, 0, 0, 0, 180, -5040,

80640, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1890, 60480, -1088640, 0, 0, 0, 0, 0, 0, 0,

0, 0, 15120, -544320, 10886400, 0, 0, 0, 0, 0, 0, 0, 0, 0, 60, -1680, 26880, 0,

0, 0, 0, 0, 0, 0, 0, 0, -1260, 40320, -725760, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15120,

-544320, 10886400, 0, 0, 0, 0, 0, 0, 0, 0, 0, -136080, 5443200, -119750400, 0,

0, 0, 0, 0, 0, 0, 0, 0, -280, 8960, -161280, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6720,

-241920, 4838400, 0, 0, 0, 0, 0, 0, 0, 0, 0, -90720, 3628800, -79833600, 0, 0,

0, 0, 0, 0, 0, 0, 0, 907200, -39916800, 958003200, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

Time: 0.370

> #$1;

192

It appears that the “spiral” algorithm may be faster since it computed more coefficients in less
time. This may be because of the operations (inversion) involved in calculating s and that
CoefficientsNonSpiral computed coefficients of larger degree monomials than Coefficients.
In calculating these coefficients for larger degrees, coefficients which were not asked for may have
been calculated. Coefficients will only need to calculate the coefficients which have been asked
for — all intermediate calculations would have been asked for.

50.4.4 Predicates on Lazy Series

s eq t

Return true if the lazy series s and t are exactly the same series.

IsZero(s)

Return true if the lazy series s was created as the zero series.

IsOne(s)

Return true if the lazy series s was created as the one series.

IsMinusOne(s)

Return true if the lazy series s was created as the minus one series.

IsUnit(s)

Return true if the lazy series s is a unit.
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IsWeaklyZero(s, n)

Return true if all the terms of the lazy series s with degree at most n are zero.
Calling this function without the second argument returns IsZero(s).

IsWeaklyEqual(s, t, n)

Return true if the terms of the lazy series s and t with degree at most n are the
same. Calling this function without the third argument returns s eq t.

50.4.5 Other Functions on Lazy Series

Derivative(s)

Derivative(s, v)

Derivative(s, v, n)

Return the (nth) derivative of the lazy series s with respect to the vth variable of
the parent ring of s. If v is not given, the parent ring of s must be univariate and
the derivative with respect to the unique variable is returned. It is only allowed to
give values of v from 1 to the rank of the parent of s and for n to be a positive
integer.

Integral(s)

Integral(s, v)

Return the integral of the lazy series s with respect to the vth variable of the parent
ring of s. If v is not given, the parent ring of s must be univariate and the integral
with respect to the unique variable is returned. It is only allowed to give values of
v from 1 to the rank of the parent of s.

Evaluate(s, t)

Evaluate(s, T)

Return the lazy series s evaluated at the lazy series t or the sequence T of lazy
series. The series t or the series in T must have zero constant term so that every
coefficient of the result can be finitely calculated.

Example H50E9

Some usage of Evaluate is shown below.

> R := LazyPowerSeriesRing(Rationals(), 2);

> AssignNames(~R, ["x","y"]);

> m := map<car<Integers(), Integers()> -> Rationals() | t :-> 1>;

> s := elt<R | m>;

> PrintToPrecision(s, 3);

1 + x + y + x^2 + x*y + y^2 + x^3 + x^2*y + x*y^2 + y^3

> R1 := LazyPowerSeriesRing(Rationals(), 1);

> AssignNames(~R1, ["z"]);
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> m1 := map<car<Integers()> -> Rationals() | t :-> t[1]>;

> s1 := elt<R1 | m1>;

> PrintToPrecision(s1, 3);

z + 2*z^2 + 3*z^3

> e := Evaluate(s, [s1,s1]);

> PrintToPrecision(e, 10);

1 + 2*z + 7*z^2 + 22*z^3 + 67*z^4 + 200*z^5 + 588*z^6 + 1708*z^7 + 4913*z^8 +

14018*z^9 + 39725*z^10

> Parent(e);

Lazy power series ring in 1 variable over Rational Field

> f := Evaluate(s1, s - 1);

> PrintToPrecision(f, 10);

x + y + 3*x^2 + 5*x*y + 3*y^2 + 8*x^3 + 18*x^2*y + 18*x*y^2 + 8*y^3 + 20*x^4 +

56*x^3*y + 75*x^2*y^2 + 56*x*y^3 + 20*y^4 + 48*x^5 + 160*x^4*y + 264*x^3*y^2

+ 264*x^2*y^3 + 160*x*y^4 + 48*y^5 + 112*x^6 + 432*x^5*y + 840*x^4*y^2 +

1032*x^3*y^3 + 840*x^2*y^4 + 432*x*y^5 + 112*y^6 + 256*x^7 + 1120*x^6*y +

2496*x^5*y^2 + 3600*x^4*y^3 + 3600*x^3*y^4 + 2496*x^2*y^5 + 1120*x*y^6 +

256*y^7 + 576*x^8 + 2816*x^7*y + 7056*x^6*y^2 + 11616*x^5*y^3 +

13620*x^4*y^4 + 11616*x^3*y^5 + 7056*x^2*y^6 + 2816*x*y^7 + 576*y^8 +

1280*x^9 + 6912*x^8*y + 19200*x^7*y^2 + 35392*x^6*y^3 + 47280*x^5*y^4 +

47280*x^4*y^5 + 35392*x^3*y^6 + 19200*x^2*y^7 + 6912*x*y^8 + 1280*y^9 +

2816*x^10 + 16640*x^9*y + 50688*x^8*y^2 + 103168*x^7*y^3 + 154000*x^6*y^4 +

175344*x^5*y^5 + 154000*x^4*y^6 + 103168*x^3*y^7 + 50688*x^2*y^8 +

16640*x*y^9 + 2816*y^10

> f := Evaluate(s1 + 1, s - 1);

> PrintToPrecision(f, 10);

1 + x + y + 3*x^2 + 5*x*y + 3*y^2 + 8*x^3 + 18*x^2*y + 18*x*y^2 + 8*y^3 + 20*x^4

+ 56*x^3*y + 75*x^2*y^2 + 56*x*y^3 + 20*y^4 + 48*x^5 + 160*x^4*y +

264*x^3*y^2 + 264*x^2*y^3 + 160*x*y^4 + 48*y^5 + 112*x^6 + 432*x^5*y +

840*x^4*y^2 + 1032*x^3*y^3 + 840*x^2*y^4 + 432*x*y^5 + 112*y^6 + 256*x^7 +

1120*x^6*y + 2496*x^5*y^2 + 3600*x^4*y^3 + 3600*x^3*y^4 + 2496*x^2*y^5 +

1120*x*y^6 + 256*y^7 + 576*x^8 + 2816*x^7*y + 7056*x^6*y^2 + 11616*x^5*y^3 +

13620*x^4*y^4 + 11616*x^3*y^5 + 7056*x^2*y^6 + 2816*x*y^7 + 576*y^8 +

1280*x^9 + 6912*x^8*y + 19200*x^7*y^2 + 35392*x^6*y^3 + 47280*x^5*y^4 +

47280*x^4*y^5 + 35392*x^3*y^6 + 19200*x^2*y^7 + 6912*x*y^8 + 1280*y^9 +

2816*x^10 + 16640*x^9*y + 50688*x^8*y^2 + 103168*x^7*y^3 + 154000*x^6*y^4 +

175344*x^5*y^5 + 154000*x^4*y^6 + 103168*x^3*y^7 + 50688*x^2*y^8 +

16640*x*y^9 + 2816*y^10

SquareRoot(s)

Sqrt(s)

The square root of the lazy series s.
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IsSquare(s)

Return true if the lazy series s is a square and the square root if so.

PolynomialCoefficient(s, i)

Given a series s in a lazy series ring whose coefficient ring is a polynomial ring
(either univariate or multivariate), consider the polynomial which would be formed
if this series was written as a polynomial with series as the coefficients. For i a non
negative integer and the coefficient ring of the series ring a univariate polynomial
ring this function returns the series which is the ith coefficient of the polynomial
resulting from the rewriting of the series.

When the coefficient ring of the parent of s is a multivariate polynomial ring i
should be a sequence of non negative integers of length the rank of the coefficient
ring. The series returned will be the series which is the coefficient of xi1

1 ∗ . . . ∗ xir
r

in the rewritten series where r is the rank of the coefficient ring and xj are the
indeterminates of the coefficient ring.
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Chapter 51

GENERAL LOCAL FIELDS

51.1 Introduction
The local fields described in this chapter are extensions of any local field in Magma by
any irreducible polynomial over that field. They are not constrained by requirements that
the polynomial defining the extension be inertial or eisenstein. These local fields allow
for ramified and inertial extensions to be made in one step rather than forcing such an
extension to be split into two – being a ramified extension and an unramified extension.
They are typed RngLocA with elements of type RngLocAElt. To compare these fields to
the local fields where extensions are either totally ramified or unramified, see Chapter 47.

The fields are represented as a polynomial quotient ring. A map into an isomorphic
FldPad can be constructed and the isomorphic field used for various calculations.

51.2 Constructions
Local fields can be constructed as extensions of other local fields and as subfields of other
local fields.

LocalField(L, f)

Construct a local field F as an extension of the local field L by the polynomial f
over L.

Example H51E1

We can use the 2 step local fields to help us find an irreducible polynomial over a p-adic field
which can be used to extend that p-adic field in 1 step.

> P<x> := PolynomialRing(Integers());

> Zp := pAdicRing(7, 50);

> U := UnramifiedExtension(Zp, x^2 + 6*x + 3);

> R := TotallyRamifiedExtension(U, x^3 + 7*x^2 + 7*x + 7);

> L<a> := LocalField(pAdicField(7, 50), MinimalPolynomial(R.1 + U.1, Zp));

> L;

Extension of 7-adic field mod 7^50 by x^6 + (32 + O(7^50))*x^5 + (390 +

O(7^50))*x^4 + (2284 + O(7^50))*x^3 + (6588 + O(7^50))*x^2 + (8744 +

O(7^50))*x + 5452 + O(7^50)

We can also use any irreducible polynomial we can find to define a 1 step extension.

> LocalField(pAdicField(7, 50), x^6 - 49*x^2 + 686);

Extension of 7-adic field mod 7^50 by x^6 + O(7^50)*x^5 + O(7^50)*x^4 +

O(7^50)*x^3 - (7^2 + O(7^52))*x^2 + O(7^50)*x + 2*7^3 + O(7^53)
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sub< L | a1, ..., an >

sub< L | S >

Construct the local field F as a subfield of the local field L containing the elements
ai of L or the elements of the sequence S.

Example H51E2

> Qp := pAdicField(5, 20);

> P<x> := PolynomialRing(Qp);

> L<a> := LocalField(Qp, x^4 + 4*x^2 + 2);

> P<x> := PolynomialRing(L);

> LL<aa> := LocalField(L, x^4 + 4*L.1);

> r := (10236563738184*a^3 - 331496727861*a^2 + 10714284669258*a +

> 8590525712453*5)*aa^2

> -12574685904653*a^3 + 19786544763736*a^2 + 4956446023134*a + 37611818678747;

> S, m := sub< LL | r >;

> S;

Extension of Extension of 5-adic field mod 5^20 by x^4 + O(5^20)*x^3 + (4 +

O(5^20))*x^2 + (4 + O(5^20))*x + 2 + O(5^20) by (O(5^20)*a^3 + O(5^20)*a^2 +

O(5^20)*a + (1 + O(5^20)))*x^2 + (O(5^20)*a^3 + O(5^20)*a^2 + O(5^20)*a +

O(5^20))*x + O(5^20)*a^3 + O(5^20)*a^2 + (4 + O(5^20))*a + O(5^20)

> m(S.1);

(O(5^20)*a^3 + O(5^20)*a^2 + O(5^20)*a + O(5^20))*aa^3 + (O(5^20)*a^3 +

O(5^20)*a^2 + O(5^20)*a + (1 + O(5^20)))*aa^2 + (O(5^20)*a^3 + O(5^20)*a^2 +

O(5^20)*a + O(5^20))*aa + O(5^20)*a^3 + O(5^20)*a^2 + O(5^20)*a + O(5^20)

51.3 Operations with Fields

BaseRing(L)

CoefficientRing(L)

Return the coefficient field of the local field L. This is the field which was extended
to construct L.

DefiningPolynomial(L)

Return the polynomial used to define the local field L as an extension of its coefficient
field.

Degree(L)

Return the degree of the local field L, that is, the degree of its defining polynomial.

Degree(L, R)

Return the degree of L as an extension of R where R is some coefficient ring of L.
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InertiaDegree(L)

RamificationDegree(L)

RamificationIndex(L)

Return the degree of the inertial or totally ramified subfield of the local field L as
an extension of the coefficient field of L.

Precision(L)

Return the precision of the local field L. This is the maximum number of digits
which can occur in an element of L, the difference between the valuation of an
element of L and the valuation of the term of highest valuation occurring in that
element.

Prime(L)

Return the prime of the local field L. This is the same as the prime of the coefficient
field of L.

Example H51E3

Continuing from the first example we have :

> CoefficientRing(L);

7-adic field mod 7^50

> DefiningPolynomial(L);

$.1^6 + (32 + O(7^50))*$.1^5 + (390 + O(7^50))*$.1^4 + (2284 + O(7^50))*$.1^3 +

(6588 + O(7^50))*$.1^2 + (8744 + O(7^50))*$.1 + 5452 + O(7^50)

> Precision(L);

150

> Prime(L);

7

> Degree(L); RamificationDegree(L); InertiaDegree(L);

6

3

2

QuotientRepresentation(L)

Return the polynomial quotient ring which is isomorphic to the local field L and is
used to represent L.

RamifiedRepresentation(L)

Return the local field isomorphic to the local field L constructed as an unramified
then a ramified extension and the map from L into the isomorphic field.
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Example H51E4

We create a 1 step local field and compute its representation as a 2 step local field.

> P<x> := PolynomialRing(Integers());

> L<a> := LocalField(pAdicField(7, 50), x^6 - 49*x^2 + 686);

> L;

Extension of 7-adic field mod 7^50 by x^6 + O(7^50)*x^5 + O(7^50)*x^4 +

O(7^50)*x^3 - (7^2 + O(7^52))*x^2 + O(7^50)*x + 2*7^3 + O(7^53)

> QuotientRepresentation(L);

Univariate Quotient Polynomial Algebra in $.1 over 7-adic field mod 7^50

with modulus $.1^6 + O(7^50)*$.1^5 + O(7^50)*$.1^4 + O(7^50)*$.1^3 - (7^2 +

O(7^52))*$.1^2 + O(7^50)*$.1 + 2*7^3 + O(7^53)

> RR, m := RamifiedRepresentation(L);

> RR;

Totally ramified extension defined by the polynomial x^2 +

417092732355694537113348201703437033788663*$.1^2 +

586194602218356762336379252895075698537137*$.1 -

130094113224633998166887533755901214096597

over Unramified extension defined by the polynomial x^3 + 6*x + 2

over 7-adic field mod 7^50

> m(L.1);

RR.1 + O(RR.1^92)

> RR.1 @@ m;

O(7^48)*$.1^5 + O(7^48)*$.1^4 + O(7^49)*$.1^3 + O(7^49)*$.1^2 + $.1 + O(7^50)

> CoefficientRing(RR).1 @@ m;

O(7^34)*$.1^5 - (954564700580430506024960512238*7^-1 + O(7^35))*$.1^4 +

O(7^36)*$.1^3 + (1031213687115590174398504554631*7^-1 + O(7^35))*$.1^2 +

O(7^37)*$.1 + 131284877366067295106350173568*7 + O(7^36)

AssignNames(∼L, S)

Assign the name in the sequence S to the generator of the extension defining the
local field L.

Name(L, i)

Return the generator of the local field L which has assigned to it the name in the
sequence S which was input to AssignNames. The only valid input for i is 1.

Discriminant(L)

Return the discriminant of the local field L.

ResidueClassField(L)

Return the residue class field of the maximal order of the local field L and the map
between L and its residue class field.

RelativeField(L, m)

Return L as an extension of the domain of the map m which should be a map from
a subfield of L (having the same coefficient ring as L) into L.
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51.3.1 Predicates on Fields

IsRamified(L)

Return whether the local field L has an non trivial ramified subfield, that is, the
ramification degree of L is greater than 1.

IsTamelyRamified(L)

IsWildlyRamified(L)

Return whether the local field L is tamely or wildly ramified.

IsTotallyRamified(L)

Return whether the local field L is a totally ramified extension, that is, L has a
trivial inertial subfield.

IsUnramified(L)

Return whether the local field L is equal to its inertial subfield.

51.4 Maximal Order

IntegralBasis(L)

Return a basis for the maximal order of the local field L.

IsIntegral(a)

Return whether the local field element a lies in the maximal order of its parent L
and a sequence giving the coordinates of a with respect to the integral basis of L if
so.

Example H51E5

We construct a local field and compute an integral basis for it.

> P<x> := PolynomialRing(Integers());

> L := LocalField(pAdicField(7, 50), x^6 - 49*x^2 + 686);

> IntegralBasis(L);

[ 1 + O(7^50), (7^-1 + O(7^49))*$.1^2 + O(7^49)*$.1 + O(7^49), (7^-2 +

O(7^48))*$.1^4 + O(7^48)*$.1^3 + O(7^48)*$.1^2 + O(7^50)*$.1 + O(7^50), $.1

+ O(7^50), (7^-1 + O(7^49))*$.1^3 + O(7^49)*$.1^2 + O(7^49)*$.1 + O(7^99),

(7^-2 + O(7^48))*$.1^5 + O(7^48)*$.1^4 + O(7^48)*$.1^3 + O(7^50)*$.1^2 +

O(7^50)*$.1 + O(7^50) ]
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51.5 Homomorphisms from Fields

hom< L → R | a >

hom< L → R | cfm, a >

Return the homomorphism from the local field L into the ring R whose image of
the generator of L is a and whose action on the coefficient field of L is given by cfm
if given.

51.6 Automorphisms and Galois Theory

FrobeniusAutomorphism(L)

Return the automorphism of the unramified extension L which is the lift of the
frobenius automorphism on the residue class field of L.

AutomorphismGroup(L)

Return the automorphism group of the local field L and a map from the group to
the parent of automorphisms of L.

DecompositionGroup(L)

InertiaGroup(L)

RamificationGroup(L, i)

Return the subgroup of the automorphism group of the local field L whose elements
are the automorphisms (represented as group elements) σ such that v(σ(z) − z) ≥
i+1. The decomposition group is the −1th ramification group and the inertia group
is the 0th ramification group.

FixedField(L, G)

Return the subfield of the local field L which is fixed by the automorphisms (repre-
sented as group elements) in the subgroup G of the automorphism group of L.

Example H51E6

The automorphism and inertia groups of a local field are computed and their fixed fields examined.

> P<x> := PolynomialRing(Integers());

> L := LocalField(pAdicField(7, 50), x^6 - 49*x^2 + 686);

> A, am := AutomorphismGroup(L);

> am(Random(A));

Mapping from: RngLocA: L to RngLocA: L

> $1(L.1);

-(279674609046925265141076018485*7^-2 + O(7^34))*$.1^5 + O(7^35)*$.1^4 +

(1035905251748988129458881464123*7^-1 + O(7^35))*$.1^3 + O(7^36)*$.1^2 -

(1009443907710864908501983735501 + O(7^36))*$.1 + O(7^37)

> FixedField(L, A);

Extension of 7-adic field mod 7^50 by (1 + O(7^33))*x + O(7^33)
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> InertiaGroup(L);

Permutation group acting on a set of cardinality 6

Id($)

(1, 2)(3, 5)(4, 6)

> FixedField(L, InertiaGroup(L));

Extension of 7-adic field mod 7^50 by (1 + O(7^37))*x^3 - (2*7^2 + O(7^37))*x^2

+ (7^4 + O(7^37))*x - 4*7^6 + O(7^37)

51.7 Local Field Elements

L ! r

Return the element of the local field L described by r where r may be anything
which is coercible into the quotient representation of L.

L . i

Return the generator of the local field L. The only valid input for i is 1.

InertialElement(L)

Return a generator for the inertial subfield of the local field L.

UniformizingElement(L)

Return an element of the local field L of valuation 1.

51.7.1 Arithmetic

a * b a + b a - b - a a ^ n a / b

51.7.2 Predicates on Elements

a eq b

Return whether the local field elements a and b are considered equal.

IsOne(a)

IsMinusOne(a)

Return whether the local field element a is known to be 1 or −1 to the precision of
the field.

IsWeaklyZero(a)

Return whether the local field element a is not known to be non zero.

IsZero(a)

Return whether the local field element a is known to be zero.
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51.7.3 Other Operations on Elements

Valuation(a)

The valuation of the element a in a local field.

RelativePrecision(a)

The relative precision of the element a in a local field.

Eltseq(a)

Return the coefficients of powers of the generator of the parent of a in a.

RepresentationMatrix(a)

The representation matrix of the element a of a local field.

Example H51E7

Continuing from the first example we have :

> UniformizingElement(L);

a^2 + (6 + O(7^50))*a + 3 + O(7^50)

> InertialElement(L);

a + O(7^50)

> Valuation(UniformizingElement(L));

1

> Valuation(InertialElement(L));

0

> Eltseq(UniformizingElement(L));

[ 3 + O(7^50), 6 + O(7^50), 1 + O(7^50) ]
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51.8 Polynomials over General Local Fields

Polynomials over local fields can be factored and their roots computed.

Factorization(f)

Certificates BoolElt Default : false

The factorization of the polynomial f over a local field defined by an arbitrary poly-
nomial. The factorization is returned as a sequence of tuples of prime polynomials
and exponents along with a scalar factor. If the parameter Certificates is true
then certificates proving the primality of each prime are also returned.

SuggestedPrecision(f)

For a polynomial f over a general local field, return a precision at which the fac-
torization of f as given by Factorization(f) will be Hensel liftable to the correct
factorization.

The precision returned is not guaranteed to be enough to obtain a factorization
of the polynomial. It may be that a correct factorization cannot be found at that
precision but may be possible with a little more precision.

Roots(f)

Roots(f, R)

The roots of the polynomial f over the general local field R where R is taken to be
the coefficient ring of f if it is not given.

Example H51E8

> Q3:=pAdicField(3,40);

> Q3X<x>:=PolynomialRing(Q3);

> L<a>:=LocalField(Q3,x^6-6*x^4+9*x^2-27);

> Factorization(Polynomial(L,x^6-6*x^4+9*x^2-27));

[

<(O(3^38)*a^5 + O(3^38)*a^4 + O(3^39)*a^3 + O(3^39)*a^2 + O(3^40)*a + (1 +

O(3^40)))*$.1 + (5*3^35 + O(3^38))*a^5 + O(3^38)*a^4 - (10*3^36 +

O(3^39))*a^3 + O(3^39)*a^2 + (2701703435345984179 + O(3^40))*a +

O(3^40), 1>,

<(O(3^38)*a^5 + O(3^38)*a^4 + O(3^39)*a^3 + O(3^39)*a^2 + O(3^40)*a + (1 +

O(3^40)))*$.1 + -(29642867960*3^-1 + O(3^23))*a^5 + O(3^24)*a^4 +

(148214339800*3^-1 + O(3^24))*a^3 + O(3^25)*a^2 - (116512378274*3 +

O(3^25))*a + O(3^26), 1>,

<(O(3^38)*a^5 + O(3^38)*a^4 + O(3^39)*a^3 + O(3^39)*a^2 + O(3^40)*a + (1 +

O(3^40)))*$.1 + -(29642867960*3^-1 + O(3^23))*a^5 + O(3^24)*a^4 +

(148214339800*3^-1 + O(3^24))*a^3 + O(3^25)*a^2 - (349537134821 +

O(3^25))*a + O(3^26), 1>,

<(O(3^38)*a^5 + O(3^38)*a^4 + O(3^39)*a^3 + O(3^39)*a^2 + O(3^40)*a + (1 +

O(3^40)))*$.1 + -(5*3^35 + O(3^38))*a^5 + O(3^38)*a^4 + (10*3^36 +

O(3^39))*a^3 + O(3^39)*a^2 - (2701703435345984179 + O(3^40))*a +
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O(3^40), 1>,

<(O(3^38)*a^5 + O(3^38)*a^4 + O(3^39)*a^3 + O(3^39)*a^2 + O(3^40)*a + (1 +

O(3^40)))*$.1 + (29642867960*3^-1 + O(3^23))*a^5 + O(3^24)*a^4 -

(148214339800*3^-1 + O(3^24))*a^3 + O(3^25)*a^2 + (116512378274*3 +

O(3^25))*a + O(3^26), 1>,

<(O(3^38)*a^5 + O(3^38)*a^4 + O(3^39)*a^3 + O(3^39)*a^2 + O(3^40)*a + (1 +

O(3^40)))*$.1 + (29642867960*3^-1 + O(3^23))*a^5 + O(3^24)*a^4 -

(148214339800*3^-1 + O(3^24))*a^3 + O(3^25)*a^2 + (349537134821 +

O(3^25))*a + O(3^26), 1>

]

O(3^38)*a^5 + O(3^38)*a^4 + O(3^39)*a^3 + O(3^39)*a^2 + O(3^40)*a + 1 + O(3^40)
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Chapter 52

ALGEBRAIC POWER SERIES RINGS

52.1 Introduction
Algebraic Power Series are a lazy representation of multivariate power series with frac-
tional exponents, which are roots of univariate polynomials with coefficients in multivari-
ate polynomial rings. The functionality allows the “lazy” computation of the power series
expansion to any finite degree, this being well-determined by the defining algebraic equa-
tion.

The package was designed with the computation of formal resolutions of singularities
of surfaces in mind but should provide a useful general tool for users. As well as allowing
definition directly from a polynomial equation, the user can compose algebraic power
series and recursively define series which are roots of polynomials whose coefficients are
polynomial functions in other algebraic power series. There are also functions for basic
arithmetic operations and tests for exact equality and the like.

The defined series must be expandable in fractional (positive) powers of the base vari-
ables. This is true for all roots of a quasi-ordinary polynomial possibly after a finite
extension of the base field.

The package was designed and implemented by Tobias Beck at the RICAM institute in
Linz, Austria. Some low-level adaptations for added efficiency and integration were carried
out by the Magma group. The algorithms are described in [Bec07, Sec. 4].

52.2 Basics
In Magma, algebraic power series are represented in a hybrid lazy-exact way. Eventually
every power series is given by a defining polynomial and a sufficiently large initial segment.
Intermediate operations are represented in a lazy way. This makes it possible to compute
both quickly and to high precision if necessary.

Note, however, that decision procedures may be very time intensive. In the sequel we
have indicated in each function whether it is fast or whether it has to be used with care.

52.2.1 Data Structures
Algebraic power series are of type RngPowAlgElt.
There are two types of algebraic series: Atomic and Substitution which we sometimes

refer to briefly as type A or type B. There is no difference in the functionality available
but they are structurally different. The user can determine the type of a series, if (s)he
desires, from the attribute type which is 0 for type A and 1 for type B.

Atomic series are the basic type that are given directly as the root of a univariate
polynomial p(z) with given initial expansion. p(z) comes from a polynomial f(z) with
coefficients in a multivariate polynomial ring. Either p = f or p is determined from f by
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evaluating the coefficients of f at a given array, subs, of algebraic power series. This allows
the construction of algebraic power series as roots of polynomials over finitely-generated
fields of already-constructed series. Most of the constructors return a series of this type.

Substitution series allow the composition of algebraic power series. The principal
defining data is an algebraic power series s in n variables and an array of n algebraic
series that are substituted into this. In fact, the substitution is not necessarily direct, but
through n given elements in the dual lattice of the exponent lattice of s as explained in
the constructor EvaluationPowerSeries.

Both types of series have an associated exponent lattice specified by two components:
Γ, a sublattice of a standard integral lattice, and e, a positive integer. The expansion of
the series will in general have fractional exponents and e is the LCM of the denominators
of these (e may be 1). The finite expansions that are returned are always integral-exponent
multivariate polynomials. The actual mathematical expansion is derived from this return
value by dividing all exponents by e. With this scaling up of fractional exponents by e
to get integral exponents, all exponent vectors for monomials occurring in the expansion
(up to any degree) will lie in the lattice Γ. So the actual exponent lattice for the series is
(1/e)Γ.

The user doesn’t have to worry too much about the lattice Γ. It is automatically
computed by most of the constructors for algebraic power series and the default of the
standard integral lattice can always be used (assuming e is correct!). It’s utility is that, in
computing the exponent lattice for composite constructions on series, factors of e may be
cancelled out from the resulting lattice. So an algebraic construction involving series with
non-integral exponents may produce a result with only integral exponents. Such lattice
computations are carried out automatically.

Important note: To speed up some of the basic internal polynomial operations, it
is assumed that the domain of an algebraic power series is a multivariate polynomial ring
with a degree ordering (glex or grevlex). Attempts to create series using polynomial rings
with a non-degree ordering will result in a user error.

52.2.2 Verbose Output
A verbose flag AlgSeries exists which can take values true, false, 0 or 1. Setting

to true (or 1) will output information on the progress of some of the potentially more
time-consuming intrinsics.

52.3 Constructors

Using constructors one can construct power series starting from polynomial data or using
other power series recursively.

PolyToSeries(s)

Given a multivariate polynomial s, returns the series representation of s.
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AlgebraicPowerSeries(dp, ip, L, e)

subs SeqEnum Default : []
Define a power series root of a polynomial p using an initial expansion ip and its
exponent lattice 1/e L. The defining polynomial p is either dp when subs is empty
or obtained by substituting the elements of subs into the variables of dp. The initial
expansion has to be sufficiently long in order to uniquely identify a root, see [Bec07,
Cond. 4.3]. In this initial finite expansion and in subsequent ones, the variables
occurring actually represent e-th roots, ie x1x

2
2 is really x

1/e
1 x

2/e
2 . All exponents of

monomials occurring in these expansions and the coefficients of p should lie in L
(although this is not checked in many places), monomials of p giving true values
rather than e-th roots.

There are simpler constructors where L is omitted (when it is assumed to be the
standard integral lattice) or e is (when it is taken as 1).

As noted earlier, no strong checks are performed at construction time on the
correctness of L or e or whether ip is indeed the initial expansion of a unique root in
this “raw data” constructor. Incorrect initial data will only be revealed when failure
occurs in further expansion of the series. The preferred methods of series creation
are ImplicitFunction, EvaluationPowerSeries and RationalPuiseux because in
these cases the sanity checks are more easily verified.

EvaluationPowerSeries(s, nu, v)

Given a series s, a sequence nu of vectors in the dual of its exponent lattice of s and
a sequence v (of the same length) of power series in some other common domain
(with compatible coefficient field). Returns the series obtained by substituting xµ 7→∏

i v[i]
〈nu[i],µ〉. This requires that nu and v fulfill a certain condition on the

orders to guarantee convergence of the resulting series, see [Bec07, Cond. 4.6].

ImplicitFunction(dp)

subs SeqEnum Default : []
The unique series with zero constant term defined by a polynomial p ∈ k[x1, .., xn][z]
or k[[x1, . . . , xn]][z], fulfilling the conditions of the implicit function theorem, i.e.,
p(0, . . . , 0) = 0 and ∂p/∂z(0, . . . , 0) 6= 0. The polynomial p is equal to dp possibly
substituted with the series in subs as in AlgebraicPowerSeries. dp should have
coefficients in a multivariate polynomial ring.

52.3.1 Rational Puiseux Expansions
Let p ∈ k[[x1, . . . , xn]][z] be a quasi-ordinary polynomial over a field k of characteristic
zero. This means that p is non-zero, squarefree and monic (i.e., its leading coefficient in z
is a unit in the power series ring) and if d ∈ k[[x1, . . . , xn]] denotes its discriminant then
d = xe1

1 · · ·xen
n u(x1, . . . , xn) where u is a unit in the power series ring.

In this case the Theorem of Jung-Abhyankar states that p has deg(p) distinct Puiseux
series roots, i.e., power series roots with fractionary exponents and coefficients in the
algebraic closure of k.
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These roots are computed by a generalization of the so called Newton-Puiseux algo-
rithm. Also Duval’s extension for computing rational parametrization has been imple-
mented.

RationalPuiseux(p)

Gamma Lattice Default : StandardLattice

subs SeqEnum Default : []
Duval BoolElt Default : false

OnlySingular BoolElt Default : false

ExtName MonStgElt Default : “gamma”
ExtCount RngIntElt Default : 0

We first specify the behavior of this function in the case that no special value of
subs has been given. This function assumes that p is a univariate polynomial over
a multivariate polynomial ring S = k[x1, ..., xr] and that p is quasi-ordinary. In this
case it will compute a set of rational parametrizations of p. Note that for reasons of
efficiency the user has to make sure that p is actually quasi-ordinary! (Otherwise,
further processing of the output may result in runtime errors.)

The first return value will be the exponent lattice of the input polynomial in
the usual format < Γ0, e0 >. If the parameter Gamma has been specified, then
Γ0 = Gamma and e0 = 1. In this case Gamma has to be an integral ‘r’-dimensional
lattice of full rank containing all the exponents of p. Otherwise Γ0 will be set to the
r-dimensional standard lattice and again e0 = 1.

As a second value a complete list of rational parametrizations in the format
< λ, s, N, E > is returned. Here λ is a sequence of r field elements and s is a
fractionary algebraic power series of type RngPowAlgElt. Let p1 denote the image
of p under the transformation xµi 7→ λix

µi where (µi)i is the basis of the exponent
lattice e−1

0 Γ0 then s is a solution of p1, i.e., we have p1(s) = 0. Note that if neither
Gamma nor subs have been supplied this just means that xi is substituted by λixi.
Finally N is the index of e−1

0 Γ0 in the exponent lattice of s and E is the degree of
the extension of the coefficient field needed for defining s.

The behavior described above corresponds to the Newton-Puiseux algorithm with
Duval’s trick. The field extensions that are used for expressing the series fulfill a
certain minimality condition. If Duval is set to false then the function returns
a complete set of representatives (up to conjugacy) of Puiseux series roots of the
original polynomial p, in other words, the λ-vectors will always be vectors of ones.

If OnlySingular is set to true then only those parametrizations that correspond
to singular branches are returned.

If the ground field has to be extended, the algebraic elements will be assigned the
name ExtName i where i starts from ExtCount. The last return value is the value
of ExtCount plus the number of field extensions that have been introduced during
the computation.

Finally, if the parameter subs is passed, then it has to be a sequence of r power
series in a common domain and internally the variables in p will be substituted by
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the corresponding series. Again the resulting polynomial has to be quasi-ordinary.
In this case Γ0 and e0 are determined by building the sum of the exponent lattices
of all series in subs. The parameter Gamma then has no effect.

For further details on the algorithm and other references see [Bec07, Sec. 4.3]

Example H52E1

We illustrate the constructors by examples. For displaying results we already use the command
Expand that will be explained later.

> Q := Rationals(); Qs<s> := FunctionField(Q);

> Qxy<x,y> := PolynomialRing(Q, 2, "glex");

> Qxyz<z> := PolynomialRing(Qxy);

> Qst<t> := PolynomialRing(Qs, 1, "glex");

> Qstu<u> := PolynomialRing(Qst);

One can consider polynomials as series.

> s0 := PolyToSeries(1 - 3*x + x^2*y + y^20);

> Expand(s0, 10);

true x^2*y - 3*x + 1

One can define series by the implicit function theorem at the origin.

> s1 := ImplicitFunction(z*(1 - x - y) - x - y);

> Expand(s1, 4);

true x^3 + 3*x^2*y + 3*x*y^2 + y^3 + x^2 + 2*x*y + y^2 + x + y

One can define a power series if an initial expansion is known. Note that the following power
series has exponent lattice Z( 1

5
,− 2

5
)+Z( 2

5
, 1

5
) but its “expansions” are polynomials supported on

Z(1,−2) + Z(2, 1).

> defpol := (1+5*y+10*y^3+10*y^2+5*y^4+y^5)*z^5+(-20*y^3*x-

> 30*y^2*x-5*y^4*x-5*x-20*y*x)*z^4+(10*x^2+30*y^2*x^2+10*y^3*x^2+

> 30*x^2*y)*z^3+(-20*y*x^3-10*x^3-10*y^2*x^3)*z^2+

> (5*y*x^4+5*x^4)*z-x^5-x^2*y;

> Gamma := Lattice(RMatrixSpace(Integers(), 2, 2) ! [1,-2, 2,1]);

> init := x^2*y;

> s2 := AlgebraicPowerSeries(defpol, init, Gamma, 5);

> Expand(s2, 20);

true

-x^2*y^16 + x^5*y^10 + x^2*y^11 - x^5*y^5 - x^2*y^6 + x^5 + x^2*y

We can “substitute” series into each other.

> X := AlgebraicPowerSeries(u^3-t+s*t^2, t, StandardLattice(1), 3);

> Y := PolyToSeries(t);

> duals := [RSpace(Integers(), 2) | [1, 3], [2, 1]];

> s3 := EvaluationPowerSeries(s2, duals, [X, Y]);

> Expand(s3, 13);
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true (-1/9*s^2 - 1/3*s - 1)*t^10 + (-1/3*s + 1)*t^7 + t^4

We can compute all the Puiseux series roots of a quasi-ordinary polynomial up to conjugacy over
Q.

> qopol := z^6 + 3*x*y^2*z^4 + x*y*z^3 + 3*x^2*y^4*z^2 + x^3*y^6;

> _, prms := RationalPuiseux(qopol : Duval := false); prms;

[*

<[ 1, 1 ], Algebraic power series -x*y, 3, 1>,

<[ 1, 1 ], Algebraic power series gamma_0*x*y, 3, 2>,

<[ 1, 1 ], Algebraic power series -x^2*y^5, 3, 1>,

<[ 1, 1 ], Algebraic power series gamma_1*x^2*y^5, 3, 2>

*]

> Domain(prms[2][2]); ExponentLattice(prms[2][2]);

Polynomial ring of rank 2 over Number Field with defining

polynomial $.1^2 - $.1 + 1 over the Rational Field

Graded Lexicographical Order

Variables: x, y

<

Lattice of rank 2 and degree 2

Basis:

( 1 1)

( 1 -2),

3

>

> Expand(prms[2][2], 15);

true x^3*y^9 + (gamma_0 - 1)*x^2*y^5 + gamma_0*x*y

We find that the sum over all field extensions 1 + 2 + 1 + 2 = 6 is equal to the degree of the
defining polynomial qopol. The third parametrization involves a field extension of Q by gamma 0

s.t. gamma 02 − gamma 0 + 1 = 0 and an extension of the exponent lattice to Z( 1
3
, 1

3
) + Z( 1

3
,− 2

3
).

It turns out that the field extension is not necessary if we are only interested in parametrizations.

> _, prms := RationalPuiseux(qopol : Duval := true); prms;

[*

<[ -1, -1 ], Algebraic power series -x*y, 3, 1>,

<[ -1, 1 ], Algebraic power series -x^2*y^5, 3, 1>

*]

No field extensions have been introduced, but this required the application of automorphisms
Q[[x, y]] → Q[[x, y]] in advance (more precisely x 7→ −x, y 7→ −y resp. x 7→ −x, y 7→ y). This
time we can sum up the overall extension degrees (i.e., for fields and lattices) 3 · 1 + 3 · 1 = 6 to
the degree of qopol.
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52.4 Accessors and Expansion
The following functions provide an interface to conveniently extract information from a
power series defined as above.

Domain(s)

Return the multivariate polynomial ring that is used for approximating the series s
by its truncations.

ExponentLattice(s)

Return the exponent lattice (1/e)Γ of the series as tuple (Γ, e) where Γ is an integral
lattice and e is an integer.

DefiningPolynomial(s)

Return a defining polynomial of the series which is a squarefree univariate poly-
nomial over the multivariate polynomial domain Domain(s). In the case of series
defined with substitutions, the computation may be expensive and can involve re-
cursive resultant computations.

Order(s)

TestZero BoolElt Default : false

Given a series s, return the integral order (total degree of smallest non-zero term
occurring) of its expansion as returned by Expand, i.e., its fractionary order times
the exponent denominator. If s is zero, this function will not terminate. Set
TestZero to true to get a return value −1 in this case, but note that this involves
the computationally complex call IsZero.

Expand(s,ord)

Given the power series β which is represented by s, let α be the result of substituting
variables xi 7→ xe

i where e is taken from the output of ExponentLattice(s) (i.e., α
is β without exponent denominators). Returns true and the truncation of α modulo
terms of order greater or equal ord. A return of false indicates that the represen-
tation is inconsistent (which should only happen when RationalPuiseux is called
with non quasi-ordinary input or AlgebraicPowerSeries is used inconsistently).

Example H52E2

We can study the series s3.

> Domain(s3);

Polynomial ring of rank 1 over Univariate rational function

field over Rational Field

Graded Lexicographical Order

Variables: t

> ExponentLattice(s3);

<

Standard Lattice of rank 1 and degree 1,
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3

>

> DefiningPolynomial(s3);

(s^45*t^45 - ... - 15*s^30*t^2 - s^30)*u^15 + ... +

(5*s^37*t^41 - ... + 120*s^31*t^19 - 30*s^30*t^18)*u^3 -

s^35*t^40 + ... - 5*s^31*t^21 + s^30*t^20

> Order(s3);

4

These commands reveal the following about s3: It is a power series in Q(s)[[t1/3]], because it is
approximated in Q(s)[t] and has exponent lattice 1

3
Z. A defining polynomial in Q(s)[t][u] was

also computed. (Recall that s3 has been defined recursively.) The order is 4
3

which we know
already from a previous expansion.

52.5 Arithmetic
There are functions to perform basic arithmetic operations (addition, subtraction etc.) on
power series.

AlgComb(c,ss)

Given a polynomial c in r variables and a sequence ss of r power series (in a common
domain with compatible coefficient field) return the series obtained by substituting
the elements of ss for the variables of c. This allows the construction of completely
arbitrary algebraic combinations.

s + t

s - t

s * t

Add, subtract or multiply two power series.

Example H52E3

One can easily substitute power series into polynomials.

> // construct the series s0^2+s1^2

> h0 := AlgComb(x^2 + y^2, [s0,s1]);

> Expand(h0, 3);

true 10*x^2 + 2*x*y + y^2 - 6*x + 1

This includes of course the ring operations.

> h1 := Add(s1, PolyToSeries(One(Qxy)));

> Expand(h1, 4);

true

x^3 + 3*x^2*y + 3*x*y^2 + y^3 + x^2 + 2*x*y + y^2 + x + y + 1

> h2 := Mult(h1, PolyToSeries(1 - x - y));

> Expand(h2, 4);

true 1
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> h3 := Add(h2, PolyToSeries(-One(Qxy)));

> Expand(h3, 4);

true 0

52.6 Predicates

The following functions provide decision algorithms for algebraic power series. They may
involve recursive resultant computations, hence, have a high complexity and should
be used with care.

IsZero(s)

Decides if the series is zero.

s eq t

Decides if two series are equal.

IsPolynomial(s)

Decides whether the series is actually a polynomial (with integral exponents) in the
multivariate polynomial domain as returned by Domain(s). In the positive case also
returns that polynomial. This function relies on SimplifyRep.

Example H52E4

The previous computations suggest that h2 is 1, in particular it is polynomial (in contrast to h1).
In this case h3 would be zero.

> IsPolynomial(h1);

false

> IsPolynomial(h2);

true 1

> IsEqual(h2, PolyToSeries(One(Qxy)));

true

> IsZero(h3);

true
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52.7 Modifiers
The following functions modify the representation of the power series or apply a simple
automorphism.

ScaleGenerators(s,ls)

Let {γi}i be the basis (determined from the representation chosen by MAGMA) of the
exponent lattice of the series s, and let σ : xγi 7→ ls[i]xγi . Return the series σ(s).

ChangeRing(s,R)

If R is a multivariate polynomial domain compatible with the approximation domain
Domain(s), return the same power series with new approximation domain R. This
is sort of a “coercion between power series rings”.

SimplifyRep(s)

Factorizing BoolElt Default : true

“Simplifies” the internal representation of a series. The result will be a series of
atomic type without recursive (substitution) dependencies on other power series.
The defining polynomial of the simplified series will be irreducible and therefore
a minimal polynomial over Domain(s) (unless Factorizing is false when it will
only be guaranteed to be squarefree). After the simplification, DefiningPolynomial
returns this polynomial, which can be useful (e.g., for IsPolynomial). However,
experience shows that the resulting representation is in general neither simple nor
more efficient for subsequent computations.

There is a dangerous pitfall:
Assume we have a series represented by a tree with nodes of type A and B.

Assume further that the leaves have been constructed by RationalPuiseux with
parameter Gamma set to some value. Then the intention was probably to work over
the subring of a polynomial ring with restricted support. If now SimplifyRep,
with Factorizing as true, is called, then a minimal polynomial over the whole
polynomial ground ring is computed which is maybe not what one wants.

Example H52E5

We can modify s2 by mapping generators (of Laurent polynomials) x1/5y−2/5 7→ 3x1/5y−2/5 and
x2/5y1/5 7→ 4x2/5y1/5.

> Expand(ScaleGenerators(s2, [3,4]), 15);

true

64/81*x^2*y^11 - 64/3*x^5*y^5 - 16/9*x^2*y^6 + 48*x^5 + 4*x^2*y

One can naturally view h1 as a series in Q(i)[[u, v]].

> Qi<i> := NumberField(R.1^2 + 1) where R is PolynomialRing(Q);

> Qiuv<u,v> := PolynomialRing(Qi, 2, "glex");

> h4 := ChangeRing(s1, Qiuv);

> Expand(h4, 4); Domain(h4);

true u^3 + 3*u^2*v + 3*u*v^2 + v^3 + u^2 + 2*u*v + v^2 + u + v
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Polynomial ring of rank 2 over Qi

Graded Lexicographical Order

Variables: u, v

We have seen that the power series h3 is zero, but its representation does not show this immedi-
ately. We can “explicitize” its representation.

> SimplifyRep(h3 : Factorizing := true);

Algebraic power series

0

> DefiningPolynomial($1);

z
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Chapter 53

INTRODUCTION TO MODULES

53.1 Overview
This section of the Handbook describes the Magma facilities for linear algebra and module
theory. Since this topic is absolutely fundamental for much of algebra, it is important that
the reader understand how linear algebra is presented in Magma. The structures covered
under this heading include:
(i) Vector spaces;
(ii) Inner product spaces;
(iii) Modules defined over any ring or algebra
(iv) R[G]-modules, where R is a ring and G is a group;
(v) Linear transformations and R-module homomorphisms.
Although vector spaces are, of course, subsumed under general modules, we present a
separate treatment of them, firstly because of their importance and secondly because their
theory is somewhat cleaner than that of a general module. Magma users who are unfamiliar
with the language of module theory will find a self-contained treatment of the vector space
machinery in Chapter 28.

In the Magma universe, rectangular matrices are regarded as forming a module (actually
a bimodule). We shall regard a rectangular matrix as the concrete realization of a linear
transformation or R-module homomorphism. Thus, an m × n matrix over a ring R is
considered to be an element of the module HomR(M,N). Reflecting the dual nature of
matrices, the HomR(M, N) operations include the standard module-theoretic operations
as well as operations that interpret an element of HomR(M, N) as a homomorphism.

53.2 General Modules
A module M is always regarded as a submodule or quotient module of the free module
S(n), for some ring or algebra S. The types of module that are definable in the system fall
into three classes:
(a)Abstract Modules: Given a ring R, a set M and a mapping φ : R×M → M , the pair

(M, φ) will be referred to as an abstract R-module. Because of the very general nature
of this construction, only the basic arithmetic operations may be applied to modules
of this type.

(b)Modules with Scalar Action: Given a general ring R, an R-module with scalar
action is a submodule or quotient module of the free R-module R(n), where the action
is that of ring multiplication in R.

(c) Modules with Matrix Action: Let R be a PIR and suppose S is a R-algebra. Thus
there exists a ring homomorphism φ : R → S, and so S is a (left) R-module with the
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R-action defined by r ∗ s = φ(r) ∗ s. Indeed, any S-module M is a (left) S-module with
action defined by r ∗m = φ(r) ∗m. Furthermore, if φ(R) lies in the centre of S, then
S acts on M as a ring of R-module endomorphisms. Consequently, M is an S-module.
We take M to be the free R-module R(n), and so the action of S on M is given by the
action of a subring of Mn(R) on M . Thus, given an R-algebra S, an S-module of the
form M = R(n) may be specified by giving M together with a homomorphism of S into
Mn(R).

53.3 The Presentation of Submodules
Let N be a submodule of the module M = R(m). For simplicity, assume that N is free,
and has dimension n where n < m. There are two ways in which N may be viewed:
(a)As a submodule embedded in M . Thus, though N is a module of dimension n, its

elements are regarded as elements of M .
(b)As the module R(n) represented on a reduced basis, together with a morphism φ defining

the inclusion of N into M .
The presentation (a) is the usual way submodules are regarded in elementary linear algebra.
However, this presentation is inconvenient for more advanced applications. For example,
many of the major functions available for studying an R[G]-module N expect that N is
given relative to a reduced basis. We shall refer to a submodule presentation (a) as the
embedded presentation, and (b) as the reduced presentation.

To provide the user with the maximum flexibility, Magma supports both forms of
submodule presentation for the important classes of modules. Usually, a module calculation
commences with the definition of one or two modules from which further modules are
created by the operations of forming submodules, quotient modules and extensions. Let
us call these latter modules descendants of the original module. Magma provides parallel
creation functions which allow the user to choose the form of submodule presentation.
Once that choice has been made, all descendants of the initial module(s) will follow the
same presentation convention.

The module creation functions that select the embedded form are usually of the form
QualifierSpace, while those that adopt the standard form are usually of the form Quali-
fierModule. Thus in the case of vector spaces the function KSpace(K, n) constructs the
n-dimensional vector space over the field K, where submodules are to be presented in
embedded form. On the other hand, RModule(K, n) constructs the n-dimensional vector
space over the field K, where submodules are to be presented in reduced form.
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Chapter 54

FREE MODULES

54.1 Introduction

54.1.1 Free Modules
This chapter describes the facilities provided for modules in the following representations:

Tuple Modules: Modules whose elements are n-tuples over a fixed ring R, i.e., modules
R(n);

Matrix Modules: Modules whose elements are homomorphisms of modules, i.e.,
HomR(M,N). The elements of these modules are m× n matrices over the ring R;
The ring R acts on the right of the module element by scalar multiplication. If R

is not an Euclidean Domain then, currently, only arithmetic with vectors is supported.
In particular, the ability to work with submodules and quotient modules is restricted to
situations where R is either a field or Euclidean Domain.

In the first part of the chapter we describe the operations that apply to modules gener-
ally, while in the second half we describe the creation of modules HomR(M, N) together
with the operations that are specific to them. Insofar as elementary module-theoretic
operations are concerned, there is no real difference between tuple modules and matrix
modules except for the input and display of elements. Many special operations provided
for matrices are described in the chapter on matrices.

The reader is referred to the chapter on vector spaces for descriptions of the extensive
functionality provided for modules over fields.

54.1.2 Module Categories
The family of all finitely generated modules over a given ring R forms a category, while
the set of all finitely generated modules forms a family of categories indexed by the ring
R. In this family of categories, objects are modules and the morphisms are module ho-
momorphisms. The category name for modules is ModRng. We distinguish the following
subcategories of ModRng:

ModTupFld - the category of modules of n-tuples over a field;

ModMatFld - the category of modules of m× n matrices over a field;

ModTupEd - the category of modules of n-tuples over an euclidean domain.

ModTupRng - the category of modules of n-tuples over a ring;

ModMatRng - the category of modules of m× n matrices over a ring;
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54.1.3 Presentation of Submodules
Let N be a free submodule of the R-module M . We have two alternative ways of presenting
N . Firstly, we can present it on a set of generators that are elements of M ; we call such
a presentation an embedded presentation. Alternatively, given that N has rank r, we can
present it as the module S(r), with appropriate action induced from the action of R on M .
We call this presentation of N a reduced presentation.

The user can control the method of submodule presentation at the time of creation
of an initial module through selection of the appropriate creation function. Thus, the
function RModule will create a module with the convention that it and all its submodules
and quotient modules will have their submodules presented in reduced form. The use of
RSpace, on the other hand, signifies that submodules are to be presented in embedded
form.

54.1.4 Notation
Throughout this chapter, R will denote a ring (possibly a field) while K will denote a field.
The letters M and N will denote modules, while U and V will denote vector spaces.

54.2 Definition of a Module

54.2.1 Construction of Modules of n-tuples

RSpace(R, n)

RModule(R, n)

Given a ring R and a non-negative integer n, create the free right R-module R(n),
consisting of all n-tuples over R. The module is created with the standard basis,
e1, . . . , en, where ei (i = 1, . . . , n) is the vector containing a 1 in the i-th position
and zeros elsewhere.

The function RModule creates a module in reduced mode while RSpace creates a
module in embedded mode.

RSpace(R, n, F)

Given a ring R, a non-negative integer n and a square n × n symmetric matrix
F , create the free right R-module R(n) (in embedded form), with inner product
matrix F . This is the same as RSpace(R, n), except that the functions Norm and
InnerProduct (see below) will be with respect to the inner product matrix F .

Example H54E1

We construct the module consisting of 6-tuples over the integers.

> Z := IntegerRing();

> M := RModule(Z, 6);

> M;

RModule M of dimension 6 with base ring Integer Ring
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54.2.2 Construction of Modules of m× n Matrices

RMatrixSpace(R, m, n)

The module comprising all m× n matrices over the ring R.

54.2.3 Construction of a Module with Specified Basis

RModuleWithBasis(Q)

RSpaceWithBasis(Q)

RSpaceWithBasis(a)

Given a sequence Q (or matrix a) of k independent vectors each lying in a module
M , construct the submodule of M of dimension k whose basis is Q (or the rows of
a). The basis is echelonized internally but all functions which depend on the basis
of the space (e.g. Coordinates) will use the given basis.

RMatrixSpaceWithBasis(Q)

The module of m × n matrices whose basis is given by the linearly independent
matrices of the sequence Q.

54.3 Accessing Module Information

M . i

Given an R-module M and a positive integer i, return the i-th generator of M . The
integer i must lie in the range [1, r], where r is the number of generators for M .

CoefficientRing(M)

BaseRing(M)

CoefficientRing(M)

BaseRing(M)

CoefficientField(M)

BaseField(M)

Given an R-module M which is defined as a submodule of S(n), return the ring S.

Generators(M)

The generators for the R-module M , returned as a set.

OverDimension(M)

Given an R-module M which is an embedded submodule of the module S(n), return
n.
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OverDimension(u)

Given an element u of an embedded submodule of the module S(n), return n.

Moduli(M)

The column moduli of the module M over a euclidean domain.

Parent(u)

Given an element u belonging to the R-module M , return M .

Generic(M)

Given an R-module M which is a submodule of the module R(n), return the module
R(n) as an R-module.

54.4 Standard Constructions
Given one or more existing modules, various standard constructions are available to con-
struct new modules.

54.4.1 Changing the Coefficient Ring

ChangeRing(M, S)

Given a module M with base ring R, together with a ring S, construct the module
N with base ring S obtained by coercing the components of elements of M into N ,
together with the homomorphism from M to N .

ChangeRing(M, S, f)

Given a module M with base ring R, together with a ring S, and a homomorphism
f : R → S, construct the module N with base ring S obtained by mapping the
components of elements of M into N by f , together with the homomorphism from
M to N .

ChangeUniverse(∼x, R)

Change the coefficient ring of x to be R.

54.4.2 Direct Sums

DirectSum(M, N)

Given R-modules M and N , construct the direct sum D of M and N as an R-
module. The embedding maps from M into D and from N into D respectively,
and the projection maps from D onto M and from D onto N respectively are also
returned.

DirectSum(Q)

Given a sequence Q of R-modules, construct the direct sum D of these modules.
The embedding maps from each of the elements of Q into D and the projection
maps from D onto each of the elements of Q are also returned.
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54.5 Elements

54.6 Construction of Elements

elt< M | a1, ..., an >

Given a module M with base module S(n), and elements a1, . . . , an belonging to S,
construct the element m = (a1, . . . , an) of M . Note that if m is not an element of
M , an error will result.

M ! Q

Given the module M with base module S(n), and elements a1, . . . , an belonging to
S, construct the element m = (a1, . . . , an) of M . Note that if m is not an element
of M , an error will result.

CharacteristicVector(M, S)

Given a submodule M of the module R(n) together with a set S of integers lying in
the interval [1, n], return the characteristic number of S as a vector of R.

Zero(M)

M ! 0

The zero element for the R-module M .

Random(M)

Given a module M defined over a finite ring or field, return a random vector.

Example H54E2

We create the module of 4-tuples over the polynomial ring Z[x] and define various elements.

> P<x> := PolynomialRing(IntegerRing());

> M := RModule(P, 4);

> a := elt< M | 1+x, -x, 2+x, 0 >;

> a;

(x + 1 -x x + 2 0)

> b := M ! [ 1+x+x^2, 0, 1-x^7, 2*x ];

> b;

(x^2 + x + 1 0 -x^7 + 1 2*x)

> zero := M ! 0;

> zero;

(0 0 0 0)
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54.6.1 Deconstruction of Elements

ElementToSequence(u)

Eltseq(u)

Given an element u belonging to the R-module M , return u in the form of a sequence
Q of elements of R. Thus, if u is an element of R(n), then Q[i] = u[i], 1 ≤ i ≤ n,
while if u is an element of R(m×n), then Q[(i−1)n+j] = u[i, j], 1 ≤ i ≤ m, 1 ≤ j ≤ n.

54.6.2 Operations on Module Elements

54.6.2.1 Arithmetic

u + v

Sum of the elements u and v, where u and v lie in the same R-module M .

-u

Additive inverse of the element u.

u - v

Difference of the elements u and v, where u and v lie in the same R-module M .

x * u

Given an element x belonging to a ring R, and an element u belonging to the left
R-module M , return the (left) scalar product x ∗ u as an element of M .

u * x

Given an element x belonging to a ring R, and an element u belonging to the right
R-module M , return the (right) scalar product u ∗ x as an element of M .

u / x

Given a non-zero element x belonging to a field K, and an element u belonging to
the right K-module M , return the scalar product u ∗ (1/x) as an element of M .

54.6.2.2 Indexing

u[i]

Given an element u belonging to a submodule M of the R-module R(n) and a positive
integer i, 1 ≤ i ≤ n, return the i-th component of u (as an element of the ring R).

u[i] := x

Given an element u belonging to a submodule M of the R-module T = R(n), a
positive integer i, 1 ≤ i ≤ n, and an element x of the ring R, redefine the i-th
component of u to be x. The parent of u is changed to T (since the modified
element u need not lie in M).
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54.6.2.3 Normalization

Normalize(u)

Normalise(u)

The element u must belong to an R-module, where R is either a field, the ring of
integers or a univariate polynomial ring over a field. Assume that the vector u is
non-zero. If R is a field then Normalize returns 1

a ∗ u, where a is the first non-zero
component of u. If R is the ring of integers, Normalize returns ε ∗ u, where ε is
+1 if the first non-zero component of u is positive, and −1 otherwise. If R is the
polynomial ring K[x], K a field, then Normalize returns 1

a ∗u, where a is the leading
coefficient of the first non-zero (polynomial) component of u. If u is the zero vector,
it is returned as the value of this function.

Rotate(u, k)

Given a vector u, return the vector obtained from u by rotating by k coordinate
positions.

Rotate(∼u, k)

Given a vector u, destructively rotate u by k coordinate positions.

Example H54E3

We illustrate the use of the arithmetic operators for module elements by applying them to elements
of the module of 4-tuples over the polynomial ring Z[x].

> P<x> := PolynomialRing(IntegerRing());

> M := RModule(P, 4);

> a := M ! [ 1+x, -x, 2+x, 0 ];

> b := M ! [ 1+x+x^2, 0, 1-x^7, 2*x ];

> a + b;

(x^2 + 2*x + 2 -x -x^7 + x + 3 2*x)

> -a;

(-x - 1 x -x - 2 0)

> a - b;

( -x^2 -x x^7 + x + 1 -2*x)

> (1-x + x^2)*a;

(x^3 + 1 -x^3 + x^2 - x x^3 + x^2 - x + 2 0)

> a*(1-x);

( -x^2 + 1 x^2 - x -x^2 - x + 2 0)

> a[3];

x + 2

> a[3] := x - 2;

> a;

(x + 1 -x x - 2 0)

> ElementToSequence(a - b);

[

-x^2,



1404 MODULES Part IX

-x,

x^7 + x - 3,

-2*x

]

> Support(a);

{ 1, 2, 3 }

54.6.3 Properties of Vectors

IsZero(u)

Returns true if the element u of the R-module M is the zero element.

Depth(v)

The index of the first non-zero entry of the vector v (0 if none such).

Support(u)

A set of integers giving the positions of the non-zero components of the vector u.

Weight(u)

The number of non-zero components of the vector u.

54.6.4 Inner Products

(u, v)

InnerProduct(u, v)

Return the inner product of the vectors u and v with respect to the inner product
defined on the space. If an inner product matrix F is given when the space is
created, then this is defined to be u · F · vtr. Otherwise, this is simply u · vtr.

Norm(u)

Return the norm product of the vector u with respect to the inner product defined
on the space. If an inner product matrix F is given when the space is created, then
this is defined to be u · F · utr. Otherwise, this is simply u · utr.
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54.7 Bases
The application of the functions in this section is restricted either to vector spaces or to
torsion-free modules over a Euclidean Domain.

For a full description of the basis functions for a module defined over a field, the reader
is referred to the chapter on vector spaces.

Basis(M)

The current basis for the free R-module M , R an ED, returned as a sequence of
module elements.

Rank(M)

The rank of the free R-module M .

Coordinates(M, u)

Given a vector u belonging to the rank r free R-module M , R an Euclidean Domain,
with basis u1, . . . , ur, return a sequence [a1, . . . , ar] giving the coordinates of u
relative to the M -basis: u = a1 ∗ u1 + · · ·+ ar ∗ ur.

54.8 Submodules

54.8.1 Construction of Submodules
Submodules may be defined for any type of module. However, functions that depend upon
membership testing are only implemented for modules over Euclidean Domains (EDs).
The conventions defining the presentations of submodules are as follows:

If M has been created using the function RSpace, then every submodule of M is given
in terms of a generating set consisting of elements of M , i.e. by means of an embedded
generating set.

If M has been created using the function RModule, then every submodule of M is given
in terms of a reduced basis.

sub< M | L >

Given an R-module M , construct the submodule N generated by the elements of
M specified by the list L. Each term Li of the list L must be an expression defining
an object of one of the following types:
(a)A sequence of n elements of R defining an element of M ;
(b)A set or sequence whose terms are elements of M ;
(c) A submodule of M ;
(d)A set or sequence whose terms are submodules of M .
The generators stored for N consist of the elements specified by terms Li together
with the stored generators for submodules specified by terms of Li. Repetitions of
an element and occurrences of the zero element are removed (unless N is trivial).

The constructor returns the submodule N and the inclusion homomorphism f :
N → M .
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Example H54E4

We construct a submodule of the 4-dimensional vector space over the field of rational function
F [x], where F is F5.

> P := PolynomialRing(GF(5));

> R<x> := FieldOfFractions(P);

> M := RSpace(R, 4);

> N := sub< M | [1, x, 1-x, 0], [1+2*x-x^2, 2*x, 0, 1-x^4 ] >;

> N;

Vector space of degree 4, dimension 2 over Field of Fractions in x over

Univariate Polynomial Algebra over GF(5)

Generators:

(1 x 4*x + 1 0)

(4*x^2 + 2*x + 1 2*x 0 4*x^4 + 1)

Echelonized basis:

(1 0 3/(x + 4) (x^3 + x^2 + x + 1) / (x + 4))

(0 1 (4*x^2 + 2*x + 1) / (x^2 + 4*x) (4*x^3 + 4*x^2 + 4*x + 4) / (x^2 + 4*x))

54.8.2 Operations on Submodules

54.8.3 Membership and Equality
The following operations are only available for submodules of R(n), HomR(M, N) and
R[G], where R is a Euclidean Domain. If the modules involved are R[G]-modules, the
operators refer to the underlying R-module.

u in M

Returns true if the element u lies in the R-module M , where u and M belong to
the same R-module.

u notin M

Returns true if the element u does not lie in the R-module M , where u and M
belong to the same R-module.

N subset M

Returns true if the R-module N is contained in the R-module M , where M and N
belong to a common R-module.

N notsubset M

Returns true if the R-module N is not contained in the R-module M , where M
and N belong to a common R-module.

M eq N

Returns true if the R-modules N and M are equal, where N and M belong to a
common R-module.
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M ne N

Returns true if the R-modules N and M are not equal, where N and M belong to
a common R-module.

54.8.4 Operations on Submodules

The following operations are only available for submodules of R(n), HomR(M, N) and
R[G], where R is a Euclidean Domain. If the modules involved are R[G]-modules, the
operators refer to the underlying R-module.

M + N

Sum of the submodules M and N , where M and N belong to a a common R-module.

M meet N

Intersection of the submodules M and N , where M and N belong to a common
R-module.

54.9 Quotient Modules

54.9.1 Construction of Quotient Modules

quo< M | L >

Given an R-module M , construct the quotient module P = M/N , where N is the
submodule generated by the elements of M specified by the list L. Each term Li of
the list L must be an expression defining an object of one of the following types:

(a)A sequence of n elements of R defining an element of M ;

(b)A set or sequence whose terms are elements of M ;

(c) A submodule of M ;

(d)A set or sequence whose terms are submodules of M .

The generators constructed for N consist of the elements specified by terms Li

together with the stored generators for submodules specified by terms of Li.
The constructor returns the quotient module P and the natural homomorphism

f : M → P .
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54.10 Homomorphisms

Throughout this part of the chapter, when discussing the set of all R-homomorphisms from
the R-module M into the R-module N , it will be assumed that R is a commutative ring.
We further assume that M and N are free R-modules and that bases for these modules are
present. The module HomR(M, N) will be identified with the module of m × n matrices
over R. Thus, an element of HomR(M, N) is represented as a matrix relative to the bases
of the generic modules corresponding to M and N . For this reason, we will refer to these
modules as matrix modules.

We remind the reader that submodules of HomR(M, N) are always presented in embed-
ded form. If the user wishes to have submodules presented in reduced form then he/she
should use the natural isomorphism between R(m×n) and R(mn).

It should be noted that essentially operation defined for tuple modules, their elements
and submodules applies to matrix modules. Thus, all of the operations discussed earlier
in this chapter apply to matrix modules.

The modules M and N may themselves be matrix modules. In this case, the resulting
matrix module has either a right or left action and an element belonging to it transforms
a (homomorphism) element of M into a (homomorphism) element of N .

The function Reduce may be used to construct for a matrix module H the matrix
module H ′ equivalent to H whose elements are with respect to the actual bases of the
domain and codomain of elements of H (not the generic bases of the domain and codomain).

54.10.1 HomR(M, N) for R-modules

Hom(M, N)

If M is the tuple module R(m) and N is the tuple module R(n), create the module
HomR(M,N) as the (R, R)-bimodule R(m×n), represented as the set of all m ×
n matrices over R. The module is created with the standard basis, {Eij | i =
1 . . . , m, j = 1 . . . , n}, where Eij is the matrix having a 1 in the (i, j)-th position
and zeros elsewhere.

RMatrixSpace(R, m, n)

Given a ring R and positive integers m and n, construct H = Hom(M, N), where
M = R(m) and N = R(n), as the free (R, R)-bimodule R(m×n), consisting of all
m × n matrices over R. The module is created with the standard basis, {Eij | i =
1 . . . , m, j = 1 . . . , m}. Note that the modules M and N are created by this function
and may be accessed as Domain(H) and Codomain(H), respectively.

Example H54E5

We construct the vector spaces V and W of dimensions 3 and 4, respectively, over the field of two
elements and then define M to be the module of homomorphisms from V into W .

> F2 := GaloisField(2);

> V := VectorSpace(F2, 3);

> W := VectorSpace(F2, 4);
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> M := Hom(V, W);

> M;

Full KMatrixSpace of 3 by 4 matrices over GF(2)

54.10.2 HomR(M, N) for Matrix Modules

Hom(M, N, "right")

Suppose M is a matrix module over the coefficient ring R whose elements are a by
b matrices and have domain D and codomain C. Suppose also that N is a matrix
module over the coefficient ring R whose elements are a by c matrices and have
domain D and codomain C ′. Then the homomorphism module H = Hom(M,N)
with right multiplication action exists and consists of all b by c matrices over R
which multiply an element of M on the right to yield an element of N . This
function constructs H explicitly. The domain of elements of H is then M and the
codomain of elements of H is N and the elements are b by c matrices over R which
multiply an element of M on the right to yield an element of N . Note that if M
and N are proper submodules of their respective generic modules, then H may be a
proper submodule of its generic module, and the correct basis of H will be explicitly
constructed.

Hom(M, N, "left")

Suppose M is a matrix module over the coefficient ring R whose elements are a by
c matrices and have domain D and codomain C. Suppose also that N is a matrix
module over the coefficient ring R whose elements are b by c and have domain
D′ and codomain C. Then the homomorphism module H = Hom(M, N) with left
multiplication action exists and consists of all b by a matrices over R which multiply
an element of M on the left to yield an element of N . This function constructs H
explicitly. The domain of elements of H is then M and the codomain of elements of
H is N and the elements are b by a matrices over R which multiply an element of M
on the right to yield an element of N . Note that if M and N are proper submodules
of their respective generic modules, then H may be a proper submodule of its generic
module, and the correct basis of H will be explicitly constructed.

Example H54E6

We construct two homomorphism modules H1 and H2 over Q and then the homomorphism module
H = Hom(H1, H2) with right matrix action.

> Q := RationalField();

> H1 := sub<RMatrixSpace(Q, 2, 3) | [1,2,3, 4,5,6], [0,0,1, 1,3,3]>;

> H2 := sub<RMatrixSpace(Q, 2, 4) | [6,5,7,1, 15,14,16,4], [0,0,0,0, 1,2,3,4]>;

> H := Hom(H1, H2, "right");

> H: Maximal;

KMatrixSpace of 3 by 4 matrices and dimension 1 over Rational Field
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Echelonized basis:

[ 1 2 3 4]

[-1/2 -1 -3/2 -2]

[ 0 0 0 0]

> H1.1 * H.1;

[ 0 0 0 0]

[3/2 3 9/2 6]

> H1.1 * H.1 in H2;

true

> Image(H.1): Maximal;

KMatrixSpace of 2 by 4 matrices and dimension 1 over Rational Field

Echelonized basis:

[0 0 0 0]

[1 2 3 4]

> Kernel(H.1): Maximal;

KMatrixSpace of 2 by 3 matrices and dimension 1 over Rational Field

Echelonized basis:

[ 1 2 6]

[ 7 14 15]

> H1 := sub<RMatrixSpace(Q,2,3) | [1,2,3, 4,5,6]>;

> H2 := sub<RMatrixSpace(Q,3,3) | [1,2,3, 5,7,9, 4,5,6]>;

> H := Hom(H1, H2, "left");

> H: Maximal;

KMatrixSpace of 3 by 2 matrices and dimension 1 over Rational Field

Echelonized basis:

[1 0]

[1 1]

[0 1]

> Image(H.1);

KMatrixSpace of 3 by 3 matrices and dimension 1 over Rational Field

> Kernel(H.1);

KMatrixSpace of 2 by 3 matrices and dimension 0 over Rational Field
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54.10.3 Modules HomR(M, N) with Given Basis

RMatrixSpaceWithBasis(Q)

Given a sequence Q of k independent matrices each lying in a matrix space H =
Hom(M, N), where M = R(m) and N = R(n), construct the subspace of H of
dimension k whose basis is Q. The basis is echelonized internally but all functions
which depend on the basis of the matrix space (e.g. Coordinates) will use the given
basis Q.

KMatrixSpaceWithBasis(Q)

Given a sequence Q of k independent matrices each lying in a matrix space
H = Hom(M, N), where M = K(m) and N = K(n), with K a field, construct the
subspace of H of dimension k whose basis is Q. The basis is echelonized internally
but all functions which depend on the basis of the matrix space (e.g. Coordinates)
will use the given basis Q.

54.10.4 The Endomorphsim Ring

EndomorphismAlgebra(M)

If M is the free R-module R(m), create the matrix algebra Matm(R). The algebra
is created with the standard basis, {Eij | i = 1 . . . , m, j = 1 . . . , m}, where Eij is
the matrix having a 1 in the (i, j)-th position and zeros elsewhere.

Example H54E7

We construct the endomorphism ring of the 4-dimensional vector space over the rational field.

> Q := RationalField();

> R4 := RModule(Q, 4);

> M := EndomorphismAlgebra(R4);

> M;

Full Matrix Algebra of degree 4 over Rational Field
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54.10.5 The Reduced Form of a Matrix Module

Reduce(H)

Suppose H is a matrix module whose elements have domain A and codomain B. Sup-
pose first that A and B are tuple modules (R-spaces, R-modules, or RG-modules)
and that A has degree a and dimension d while B has degree b and dimension e.
(For the reduced cases (R-modules or RG-modules), a equals d and b equals e). The
elements of H have the natural representation with respect to the standard embed-
ded basis of the generic modules of A and B. Thus H has degree a by b. So one can
multiply a 1 by a vector of A directly by an element h of H (in the natural matrix
way) to get a 1 by b vector of B. Now suppose A and B are in the embedded form
(R-space) and h is in H. Then h is an a by b matrix but there is a corresponding
d by e matrix h′ which gives the same transformation of h from A to B but is with
respect to the bases of A and B. We call h′ the reduced form of h. Also, there is
the reduced module H ′ corresponding to H. This function constructs the reduced
module H ′ corresponding to H, together with the epimorphism f from H onto H ′.
Note that if A and B are in reduced form, then H ′ is the same as H.

Suppose secondly that A and B are matrix modules themselves. Suppose A =
Hom(D1, C1), B = Hom(D1, C2), and H = Hom(A,B) with the right multiplication
action. Suppose also that A has degree r by s and dimension d while B has degree
r by t, and dimension e. Then H would have degree s by t so an element h of H
would be s by t and would multiply a r by s element of A on the right to yield
an r by t element of B. Then the reduced matrix h′ corresponding to a matrix
h of H would be a d by e matrix corresponding to the bases of A and B. This
function similarly constructs the reduced module H ′ corresponding to H, together
with the epimorphism f from H onto H ′. Note also that in this case the domain
and codomains of H ′ are the generic R-spaces (tuple modules) corresponding to A
(of dimension d) and B (of dimension e). Similarly, for the left multiplication action
there is the corresponding reduced module constructed in the obvious way.

Note also that the kernel of the epimorphism f is the submodule of H which
consists of all matrices which transform all elements of A to the zero element of B.

Example H54E8

We demonstrate the function Reduce for a homomorphism module from one vector space to
another.

> V1 := sub<VectorSpace(GF(3), 3) | [1,0,1], [0,1,2]>;

> V2 := sub<VectorSpace(GF(3), 4) | [1,1,0,2], [0,0,1,2]>;

> H := Hom(V1, V2);

> H;

KMatrixSpace of 3 by 4 matrices and dimension 8 over GF(3)

> R, f := Reduce(H);

> R;

Full KMatrixSpace of 2 by 2 matrices over GF(3)

> H.1;
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[1 0 0 0]

[0 1 0 2]

[0 1 0 2]

> f(H.1);

[1 0]

[0 0]

> V1.1;

(1 0 1)

> V1.1 * H.1;

(1 1 0 2)

> Coordinates(V2, V1.1 * H.1);

[ 1, 0 ]

> Coordinates(V2, V1.2 * H.1);

[ 0, 0 ]

> Kernel(f): Maximal;

KMatrixSpace of 3 by 4 matrices and dimension 4 over GF(3)

Echelonized basis:

[1 0 0 0]

[2 0 0 0]

[2 0 0 0]

[0 1 0 0]

[0 2 0 0]

[0 2 0 0]

[0 0 1 0]

[0 0 2 0]

[0 0 2 0]

[0 0 0 1]

[0 0 0 2]

[0 0 0 2]

> R.1@@f;

[1 0 0 0]

[0 1 0 2]

[0 1 0 2]

Example H54E9

We demonstrate the function Reduce for a homomorphism module from one homomorphism mod-
ule to another. Note that the reduced module has the same dimension as the original module but
larger degrees!

> V1 := VectorSpace(GF(3), 2);

> V2 := VectorSpace(GF(3), 3);

> V3 := VectorSpace(GF(3), 4);

> H1 := Hom(V1, V2);
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> H2 := Hom(V1, V3);

> H := Hom(H1, H2, "right");

> H1;

Full KMatrixSpace of 2 by 3 matrices over GF(3)

> H2;

Full KMatrixSpace of 2 by 4 matrices over GF(3)

> H;

Full KMatrixSpace of 3 by 4 matrices over GF(3)

> R,f := Reduce(H);

> R;

KMatrixSpace of 6 by 8 matrices and dimension 12 over GF(3)

> X := H.1;

> X;

[1 0 0 0]

[0 0 0 0]

[0 0 0 0]

> f(X);

[1 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0]

[0 0 0 0 1 0 0 0]

[0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0]

> Domain(X);

Full KMatrixSpace of 2 by 3 matrices over GF(3)

> Domain(f(X));

Full Vector space of degree 6 over GF(3)

> Image(X): Maximal;

KMatrixSpace of 2 by 4 matrices and dimension 2 over GF(3)

Echelonized basis:

[1 0 0 0]

[0 0 0 0]

[0 0 0 0]

[1 0 0 0]

> Image(f(X));

Vector space of degree 8, dimension 2 over GF(3)

Echelonized basis:

(1 0 0 0 0 0 0 0)

(0 0 0 0 1 0 0 0)

> Kernel(X): Maximal;

KMatrixSpace of 2 by 3 matrices and dimension 4 over GF(3)

Echelonized basis:

[0 1 0]

[0 0 0]
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[0 0 1]

[0 0 0]

[0 0 0]

[0 1 0]

[0 0 0]

[0 0 1]

> Kernel(f(X)): Maximal;

Vector space of degree 6, dimension 4 over GF(3)

Echelonized basis:

(0 1 0 0 0 0)

(0 0 1 0 0 0)

(0 0 0 0 1 0)

(0 0 0 0 0 1)

54.10.6 Construction of a Matrix

M ! Q

Given the matrix bimodule M over the ring R, and the sequence Q = [a11, . . ., a1n,
a21, . . ., a2n, . . ., am1, . . ., amn] whose terms are elements of the ring R, construct
the m× n matrix



a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn




as an element of M . In the context of the sub or quo constructors the coercion
clause M ! may be omitted.

Example H54E10

We create the 4×4 Hilbert matrix h4 as an element of the endomorphism ring of the 4-dimensional
vector space over the rational field.

> Q := RationalField();

> R4 := RModule(Q, 4);

> M := EndomorphismAlgebra(R4);

> h4 := M ! [ 1/i : i in [1 .. 16 ] ];

> h4;

[ 1 1/2 1/3 1/4]

[ 1/5 1/6 1/7 1/8]

[ 1/9 1/10 1/11 1/12]

[1/13 1/14 1/15 1/16]
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54.10.7 Element Operations
All operations that apply to elements of tuple modules also apply to elements of matrix
modules. Here, we confine our discussion to those operations which are special to matrix
modules.

Throughout this section, M is a submodule of R(m), N is a submodule of R(n) and a
is a homomorphism belonging to HomR(M,N), where R is a Euclidean Domain.

See also the chapter on general matrices for many other functions applicable to matrices
(e.g., EchelonForm).

u * a

a(u)

Given an element u belonging to the module M , return the image of u under the
homomorphism a as an element of the module N .

a * b

Given a homomorphism a belonging to a submodule of Hom(M, N), and a homo-
morphism b belonging to a submodule of Hom(N, P ), return the composition of the
homomorphisms a and b as an element of Hom(M, P ). Note that if Hom(M, P )
does not already exist, it will be created.

a ^ -1

Given a homomorphism a belonging to a submodule of Hom(M, N) with M and N
having the same dimension, return the inverse of a as an element of Hom(N, M).

Codomain(S)

Given a submodule S of the module Hom(M, N), return the module N .

Codomain(a)

The codomain N of the homomorphism a belonging to Hom(M,N).

Cokernel(a)

The cokernel for the homomorphism a belonging to the module Hom(M, N).

Domain(S)

The domain M of the submodule S belonging to the module Hom(M, N).

Domain(a)

The domain M of the homomorphism a belonging to the module Hom(M, N).

Image(a)

The image of the homomorphism a belonging to the module H = Hom(M, N),
returned as a submodule of N . Note that if the domain and codomain of a are
matrix modules themselves, the image will be with respect to the appropriate action
(right or left).
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Kernel(a)

NullSpace(a)

The kernel of the homomorphism a belonging to the module Hom(M, N), returned
as a submodule of M . Note that if the domain and codomain of a are matrix
modules themselves, the kernel will be with respect to the appropriate action (right
or left).

Morphism(M, N)

Assuming the R-module M was created as a submodule of the module N , return
the matrix defining the inclusion homomorphism φ : M → N as an element of
HomR(M,N). Thus φ gives the correspondence between elements of M (represented
with respect to the standard basis of M) and elements for N .

Rank(a)

The dimension of the image of the homomorphism a, i.e. the rank of a.

IsBijective(a)

Returns true if the homomorphism a belonging to the module Hom(M, N) is a
bijective mapping.

IsInjective(a)

Returns true if the homomorphism a belonging to the module Hom(M, N) is an
injective mapping.

IsSurjective(a)

Returns true if the homomorphism a belonging to the module HomR(M, N) is a
surjective mapping.

Example H54E11

We illustrate some of these operations in the context of the module HomR(M, N), where M and
N are, respectively, the 4-dimensional and 3-dimensional vector spaces over GF (8).

> K<w> := GaloisField(8);

> V3 := VectorSpace(K, 3);

> V4 := VectorSpace(K, 4);

> M := Hom(V4, V3);

> A := M ! [1, w, w^5, 0, w^3, w^4, w, 1, w^6, w^3, 1, w^4 ];

> A;

[ 1 w w^5]

[ 0 w^3 w^4]

[ w 1 w^6]

[w^3 1 w^4]

> Rank(A);

3

> Image(A);
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Full Vector space of degree 3 over GF(2^3)

> Kernel(A);

Vector space of degree 4, dimension 1 over GF(2^3)

Echelonized basis:

( 1 w^5 1 1)

> Cokernel(A);

Vector space of degree 3, dimension 0 over GF(2^3)
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Chapter 55

MODULES OVER DEDEKIND DOMAINS

55.1 Introduction

Since the structure theory for modules over arbitrary orders (which are in general not
Dedekind domains) is very unsatisfactory, modules over orders in Magma are always
modules over some maximal order of a number field or function field, they form a magma
of type ModDed.

Let k be a number field or function field and Ok its ring of integers. Since Ok is a
Dedekind domain, every finitely generated torsion free module M over Ok has a represen-
tation as a direct sum

M =
m∑

i=1

Aiαi = {
m∑

i=1

aiαi | ai ∈ Ai}

with (fractional) ideals Ai and elements αi ∈ kM ∼= kr.
A (not necessarily direct) sum

∑m
i=1Aiαi will be represented as a pseudo–matrix (A|A)

where A = (A1, . . . ,Am)t is a column vector of ideals and A = (α1, . . . , αm)t ∈ km×r is a
matrix. The ideals Ai are called coefficient ideals.

This pseudo–matrix is called a pseudo–basis iff the sum is direct. A pseudo–matrix
(A|A) is in Hermite normal form iff there are s ≤ m, 1 ≤ i1 < i2 < · · · < is such that
Aj,l = 0 (1 ≤ l < ij), Aj,ij = 1 and Aj,l is reduced modulo AjAl

−1. For j > s we have
Aj,l = 0.

This normal form is unique if a suitable reduction is used.
As a consequence of this normalisation, usually αi 6∈ M . To be precise: αi ∈ M iff

1 ∈ Ai.
All modules are in Hermite normal form, i.e. every module is represented by a pseudo–

basis in Hermite normal form.
General (non torsion free) modules are represented as quotients of a torsion free module

M and a submodule S. Elements of Q := M/S are represented as elements of M , arith-
metic in Q is reduced to arithmetic in M followed by a reduction modulo the pseudo–basis
of S.
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55.2 Creation of Modules
Modules over dedekind domains can be created from orders of number fields and function
fields and combinations of ideals and vector space elements. Submodules and quotient
modules by submodules can also be created.

Module(O, n)

Create the free module On where O is a dedekind domain.

Module(O)

Create the relative order O as a module over its coefficient ring. Also returns the
map from the resulting module into O.

Module(I)

Create the ideal I of a relative order O as a module over the coefficient ring of the
order. Also returns the map from the module into O.

Module(S)

Create a module from the sequence of tuples of ideals of a dedekind domain and
ModElts with entries in the dedekind domain or its field of fractions. The elements
of the resulting module will be the sum of products of an element of an ideal and the
corresponding ModElt. Also returns the map from the vector space into the module.

Module(S)

Create the module which is equal to the direct sum of the ideals in the sequence.

Module(S)

Create the module which is freely generated by the elements of the sequence S. The
elements of the sequence must be ModElts with entries in a dedekind domain or field
of fractions of a dedekind domain. Also returns the map from the vector space into
the module.

Example H55E1

The creation of some simple modules is shown.

> x := ext<Integers()|>.1;

> M := MaximalOrder(x^2 + 5);

> Module(M, 5);

Module over Maximal Equation Order with defining polynomial x^2 + 5 over Z

generated by: (in echelon form)

Principal Ideal of M

Generator:

M.1 * ( M.1 0 0 0 0 )

Principal Ideal of M

Generator:

M.1 * ( 0 M.1 0 0 0 )

Principal Ideal of M
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Generator:

M.1 * ( 0 0 M.1 0 0 )

Principal Ideal of M

Generator:

M.1 * ( 0 0 0 M.1 0 )

Principal Ideal of M

Generator:

M.1 * ( 0 0 0 0 M.1 )

> I := 1/5*M;

> Module([I, I^3, I^8]);

Module over Maximal Equation Order with defining polynomial x^2 + 5 over Z

generated by: (in echelon form)

Fractional Principal Ideal of M

Generator:

1/5*M.1 * ( M.1 0 0 )

Fractional Principal Ideal of M

Generator:

1/125*M.1 * ( 0 M.1 0 )

Fractional Principal Ideal of M

Generator:

1/390625*M.1 * ( 0 0 M.1 )

> V := RModule(M, 3);

> Module([<I, V![0, 1, 0]>, <I^4, V![2, 3, 5]>]);

Module over Maximal Equation Order with defining polynomial x^2 + 5 over Z

Fractional Principal Ideal of M

Generator:

1/5*M.1 car Fractional Principal Ideal of M

Generator:

1/125*M.1

The same can be done using orders of function fields.

> P<x> := PolynomialRing(Rationals());

> P<y> := PolynomialRing(P);

> F<c> := FunctionField(x^2 - y);

> M := MaximalOrderFinite(F);

> Module(M, 5);

Module over Maximal Equation Order of F over Univariate Polynomial Ring in x over

Rational Field

generated by: (in echelon form)

Ideal of M

Generator:

1 * ( 1 0 0 0 0 )

Ideal of M

Generator:

1 * ( 0 1 0 0 0 )

Ideal of M

Generator:

1 * ( 0 0 1 0 0 )
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Ideal of M

Generator:

1 * ( 0 0 0 1 0 )

Ideal of M

Generator:

1 * ( 0 0 0 0 1 )

> I := 1/5*M;

> Module([I, I^3, I^8]);

Module over Maximal Equation Order of F over Univariate Polynomial Ring in x over

Rational Field

generated by: (in echelon form)

Ideal of M

Generator:

1/5 * ( 1 0 0 )

Ideal of M

Generator:

1/125 * ( 0 1 0 )

Ideal of M

Generator:

1/390625 * ( 0 0 1 )

> V := RModule(M, 3);

> Module([<I, V![0, 1, 0]>, <I^4, V![2, 3, 5]>]);

Integral Module over Maximal Equation Order of F over Univariate Polynomial Ring

in x over Rational

Field

Ideal of M

Generator:

1/5 car Ideal of M

Generator:

1/125

sub< M | m >

sub< M | m1, .., mn >

Construct the submodule of the module M generated by the elements in the sequence
or list of elements m. Also returns the inclusion map of the submodule into M .

quo< M | S >

quo< M | m >

quo< M | m1, .., mn >

Construct the quotient of the module M by the submodule S or the submodule
generated by the elements of the sequence or list of elements m. Also returns the
inclusion map of the quotient module into M .
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Example H55E2

Use of the sub and quo constructors is illustrated below. Let M and V be as above when they
were referring to number fields.

> Mod := Module([V|[0,1,0], [4,4,0]]);

> S1 := sub<Mod | >;

> S1;

Integral Module over Maximal Equation Order with defining polynomial x^2 + 5

over Z

(0)

> Q1 := quo<Mod | Mod>;

> Q1;

Quotient of Module over Maximal Equation Order with defining polynomial x^2 + 5

over Z

Principal Ideal of M

Generator:

4/1*M.1 car Principal Ideal of M

Generator:

M.1

by Integral Module over Maximal Equation Order with defining polynomial

x^2 + 5 over Z

Principal Ideal of M

Generator:

4/1*M.1 car Principal Ideal of M

Generator:

M.1

> S2 := sub<Mod | Mod.2>;

> S2;

Integral Module over Maximal Equation Order with defining polynomial x^2 + 5

over Z

Principal Ideal of M

Generator:

M.1

> Q2 := quo<Mod | Mod.2>;

> Q2;

Quotient of Module over Maximal Equation Order with defining polynomial x^2 + 5

over Z

Principal Ideal of M

Generator:

4/1*M.1 car Principal Ideal of M

Generator:

M.1

by Integral Module over Maximal Equation Order with defining polynomial

x^2 + 5 over Z

Principal Ideal of M

Generator:

M.1

> S3 := sub<Mod | 4*Mod.1, Mod.2>;
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> S3;

Integral Module over Maximal Equation Order with defining polynomial x^2 + 5

over Z

Principal Ideal of M

Generator:

4/1*M.1 car Principal Ideal of M

Generator:

M.1

> Q3 := quo<Mod | >;

> Q3;

Integral Module over Maximal Equation Order with defining polynomial x^2 + 5

over Z

Principal Ideal of M

Generator:

4/1*M.1 car Principal Ideal of M

Generator:

M.1

> Q4 := quo<Mod | S1>;

> Q4;

Quotient of Module over Maximal Equation Order with defining polynomial x^2 + 5

over Z

Principal Ideal of M

Generator:

4/1*M.1 car Principal Ideal of M

Generator:

M.1

by Integral Module over Maximal Equation Order with defining polynomial

x^2 + 5 over Z

(0)

55.3 Elementary Functions
Various simple properties of a module can be retrieved using the following functions.

BaseRing(M)

CoefficientRing(M)

The dedekind domain which M is a module over.

Degree(M)

The dimension of the vector space the module M embeds into.

Ngens(M)

NumberOfGenerators(M)

The minimum number of vectors and ideals which generate the module M .
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M . i

The vector of the ith vector and ideal pair generating the module M .

Determinant(M)

The determinant of the module M .

Dimension(M)

The dimension of the vector space spanned by the module M over its coefficient
ring. This is the same as the number of generators of a pseudo basis of M .

Contents(M)

UseBasis BoolElt Default : false

The contents of the module M , ie. the gcd of the ideals obtained by multiplying
the coefficient ideals by the ideal generated by the coefficients in the corresponding
generators. The parameter UseBasis decides whether a pseudo basis or pseudo
generators are used.

Simplify(M)

UseBasis BoolElt Default : false

Computes a module of contents 1 by scaling each coefficient ideal by the inverse of
the contents of the module M . The parameter UseBasis determines if the operations
are performed on the pseudo generators or the pseudo basis of M .

EmbeddingSpace(M)

The canonical vector space containing the module M , ie.. M tensored with the field
of fractions of the coefficient ring.

Example H55E3

The use of some elementary functions on a module is shown below.

> P<x> := PolynomialRing(Rationals());

> P<y> := PolynomialRing(P);

> F<c> := FunctionField(x^2 - y);

> M := MaximalOrderFinite(F);

> Vs := RModule(M, 2);

> s := [Vs | [1, 3], [2, 3]];

> Mods := Module(s);

> CoefficientRing(Mods);

Maximal Equation Order of F over Univariate Polynomial Ring in x over Rational

Field

> Mods.1;

(1 0)

> Determinant(Mods);

Ideal of M

Generator:
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-3

> Vs := RSpace(M, 2);

> s := [Vs | [1, 3], [2, 3]];

> Mods := Module(s);

> sMods := sub<Mods | Mods!Vs![1, 3]>;

> qMods := quo<Mods | sMods>;

> Degree(Mods);

2

> Ngens(Mods);

2

> Ngens(sMods);

1

> Degree(sMods);

2

> Degree(qMods);

2

> Ngens(qMods);

2

> Determinant(Mods);

Ideal of M

Basis:

[1]

> Determinant(sMods);

>> Determinant(sMods);

^

Runtime error in ‘Determinant’: Module must be square

> Determinant(qMods);

Ideal of M

Basis:

[1]

55.4 Predicates on Modules

Modules and potential elements can be tested against each other for a few properties.

M eq N

Return true if M and N are equal as modules.

x in M

Return true if x can be coerced into the module M .

M subset N

Return true if M is a submodule of N . An embedding map of M in N can be
returned by IsSubmodule(M, N).
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55.5 Arithmetic with Modules
Some arithmetic operations can be carried out involving modules and their elements and
compatible ideals to gain more modules.

I * M

M * I

The module generated by the products of the ideals of the module M with I.

M1 + M2

The union of the modules M1 and M2.

u * I

I * u

The module containing elements which are products of the dedekind module element
u and an element lying in the ideal I.

Example H55E4

Some module predicates and arithmetic are shown below.

> P<x> := PolynomialRing(Integers());

> K := NumberField([x^5 + 3, x^2 + 2]);

> M := MaximalOrder(K);

> Vs := RModule(M, 2);

> s := [Vs | [1, 3], [2, 3]];

> Mods := Module(s);

> sMods := sub<Mods | Mods!Vs![1, 3]>;

> Mods eq sMods;

false

> [1, 0] in Mods;

true

> [1, 0] in sMods;

false

> sMods subset Mods;

true

> Vs := RSpace(M, 2);

> s := [Vs | [Random(M, 3), 3], [2, Random(M, 2)]];

> Mods := Module(s);

> sMods := sub<Mods | Mods!s[1]>;

> (7*M + 11*K.1*M)*sMods;

Module over Maximal Equation Order with defining polynomial x^5 + [3, 0] over

its ground order

generated by:

Ideal of M

Two element generators:

7/1*$.1*M.1

11/1*$.1*M.2 * ( M.1 + (-$.1 - 2/1*$.2)*M.2 + $.2*M.3 + (2/1*$.1 +

2/1*$.2)*M.5 3/1*$.1*M.1 )
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in echelon form:

Ideal of M

Two element generators:

21/1*$.1*M.1

33/1*$.1*M.2 * ( 1/3*$.1*M.1 + (-1/3*$.1 - 2/3*$.2)*M.2 + 1/3*$.2*M.3 +

(2/3*$.1 + 2/3*$.2)*M.5 M.1 )

> Mods + sMods;

Module over Maximal Equation Order with defining polynomial x^5 + [3, 0] over

its ground order

generated by: (in echelon form)

Ideal of M

Two element generators:

148919257164/1*$.1*M.1

(148919257048/1*$.1 + 26/1*$.2)*M.1 + (32/1*$.1 + 148919257015/1*$.2)*M.2 +

(196/1*$.1 + 148919257117/1*$.2)*M.3 + (148919257163/1*$.1 + 76/1*$.2)*M.4 +

(148919257077/1*$.1 + 148919257116/1*$.2)*M.5 * ( M.1 0 )

Ideal of M

Two element generators:

3/1*$.1*M.1

($.1 - $.2)*M.1 + -M.3 + M.4 + ($.1 + $.2)*M.5 * ( (-19866460521/1*$.1 -

33/1*$.2)*M.1 + (1/3*$.1 + 1/3*$.2)*M.4 + (1/3*$.1 + 1/3*$.2)*M.5 M.1 )

> 4*sMods;

Module over Maximal Equation Order with defining polynomial x^5 + [3, 0] over

its ground order

generated by:

Principal Ideal of M

Generator:

4/1*$.1*M.1 * ( (2/1*$.1 - 2/1*$.2)*M.1 + ($.1 + 2/1*$.2)*M.2 + (2/1*$.1 +

2/1*$.2)*M.3 + (2/1*$.1 - $.2)*M.5 3/1*$.1*M.1 )

in echelon form:

Principal Ideal of M

Generator:

12/1*$.1*M.1 * ( (2/3*$.1 - 2/3*$.2)*M.1 + (1/3*$.1 + 2/3*$.2)*M.2 +

(2/3*$.1 + 2/3*$.2)*M.3 + (2/3*$.1 - 1/3*$.2)*M.5 M.1 )

55.6 Basis of a Module

The basis of a module is given by vectors. However, more complete information can be
supplied which includes the ideals.

Basis(M)

A sequence of vectors which correspond to a pseudo basis of the module M .
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PseudoBasis(M)

A sequence of tuples containing ideals and vectors which generate the module M .
The vectors are guaranteed to be linearly independent.

PSeudoGenerators(M)

A sequence of tuples containing ideals and vectors which generate the module
M . This will return the data used to define the module, so that in contrast to
PseudoBasis the vectors will in general not be independent.

55.7 Other Functions on Modules
Intersections of modules can taken. Several other functions are also available.

M1 meet M2

Return the intersection of the modules M1 and M2.

Dual(M)

The module dual to M .

ElementaryDivisors(M, N)

The elementary divisors (ideals) of the torsion part of the quotient R-module M/N :
For N ⊆ M we get

T (M/N) ∼= ⊕n
i=1R/Ai

The Ai are unique if we require R ⊆ A1 ⊆ · · · ⊆ An. The Ai are called the
elementary divisors (or elementary ideals) of M/N . This corresponds to the Smith
normal form for integral matrices.

SteinitzClass(M)

The Steinitz class of the module M .

SteinitzForm(M)

The Steinitz (almost–free) form of the module M .

Example H55E5

Some bases and other functions are demonstrated below.

> P<x> := PolynomialRing(Rationals());

> P<y> := PolynomialRing(P);

> F<c> := FunctionField(y^3 - x^3*y^2 + y - x^7);

> M := MaximalOrderFinite(F);

> Vs := RSpace(M, 2);

> s := [Vs | [1, Random(M, 3)], [Random(M, 3), 3]];

> Mods := Module(s);

> qMods := quo<Mods | Mods!s[2]>;

> Basis(Mods);

[
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([ 1, 0, 0 ] [ 2*x^2 - 3*x + 1/2, -2/3*x^2 - x + 1/3, 2/3*x^2 - 2*x + 1/2

]),

([ -x^2 + x + 2/3, -1/3*x^2 - 1, -3/2*x^2 - 2/3*x + 1 ] [ 3, 0, 0 ])

]

> Basis(qMods);

[

([ 1, 0, 0 ] [ 2*x^2 - 3*x + 1/2, -2/3*x^2 - x + 1/3, 2/3*x^2 - 2*x + 1/2

]),

([ -x^2 + x + 2/3, -1/3*x^2 - 1, -3/2*x^2 - 2/3*x + 1 ] [ 3, 0, 0 ])

]

> PseudoBasis(Mods) eq PseudoBasis(qMods);

> Vs := RModule(M, 2);

> s := [Vs | [Random(M, 3), Random(M, 3)], [2, 3]];

> Mods := Module(s);

> sMods := sub<Mods | Mods!s[1]>;

> Mods meet sMods;

Module over Maximal Equation Order of F over Univariate Polynomial Ring in x

over Rational Field

Ideal of M

Generator:

(x + 1)*c^2 + (-3/2*x^2 - 3/2*x)*c + 1/2*x^2 + 2/3*x + 1/2

> ElementaryDivisors(Mods, sMods);

[ Ideal of M

Basis:

[1 0 0]

[0 1 0]

[0 0 1], Ideal of M

Generator:

0 ]

> Dual(Mods);

Module over Maximal Equation Order of F over Univariate Polynomial Ring in x

over Rational Field

Fractional ideal of M

Generator:

(-3*x^4 + 21*x^3 + 20*x^2 + 80*x - 387)/(x^17 - 24*x^16 + 192*x^15 - 510*x^14 -

94/3*x^13 + 304/3*x^12 + 902/3*x^11 - 3109/3*x^10 - 389/9*x^9 + 664/9*x^8 +

1094/3*x^7 - 1540/3*x^6 - 101/9*x^5 + 128/3*x^4 + 2000/27*x^3 - 4361/9*x^2 -

427*x + 2056)*c^2 + (-3*x^9 + 48*x^8 - 189*x^7 - 24*x^6 + 3*x^5 - 48*x^4 +

195*x^3 - 3*x^2 - x + 24)/(x^17 - 24*x^16 + 192*x^15 - 510*x^14 - 94/3*x^13

+ 304/3*x^12 + 902/3*x^11 - 3109/3*x^10 - 389/9*x^9 + 664/9*x^8 + 1094/3*x^7

- 1540/3*x^6 - 101/9*x^5 + 128/3*x^4 + 2000/27*x^3 - 4361/9*x^2 - 427*x +

2056)*c + (3*x^12 - 48*x^11 + 192*x^10 + 3*x^9 - 20*x^8 - 56*x^7 + 192*x^6 +

3*x^5 - 5*x^4 - 8*x^3 + 272/3*x^2 + 128*x - 771)/(x^17 - 24*x^16 + 192*x^15

- 510*x^14 - 94/3*x^13 + 304/3*x^12 + 902/3*x^11 - 3109/3*x^10 - 389/9*x^9 +

664/9*x^8 + 1094/3*x^7 - 1540/3*x^6 - 101/9*x^5 + 128/3*x^4 + 2000/27*x^3 -

4361/9*x^2 - 427*x + 2056) car Ideal of M

Generator:

1/3
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> Dual(sMods);

Module over Maximal Equation Order of F over Univariate Polynomial Ring in x

over Rational Field

Fractional ideal of M

Generator:

(3/2*x^6 + 3*x^5 - 3/4*x^4 - 4*x^3 - 25/12*x^2 - 5/6*x - 1/2)/(x^17 + 3*x^16 +

21/4*x^15 + 27/4*x^14 + 1/24*x^13 - 247/24*x^12 - 173/24*x^11 + 61/24*x^10 +

305/72*x^9 + 17/72*x^8 - 4*x^7 - 53/12*x^6 - 1/8*x^5 + 23/6*x^4 +

377/108*x^3 + 23/18*x^2 + 1/3*x + 1/8)*c^2 + (-5/2*x^9 - 5*x^8 - 1/4*x^7 +

9/2*x^6 + 13/4*x^5 + 5/4*x^4 - 3/4*x^3 - 7/4*x^2 - 3/4*x)/(x^17 + 3*x^16 +

21/4*x^15 + 27/4*x^14 + 1/24*x^13 - 247/24*x^12 - 173/24*x^11 + 61/24*x^10 +

305/72*x^9 + 17/72*x^8 - 4*x^7 - 53/12*x^6 - 1/8*x^5 + 23/6*x^4 +

377/108*x^3 + 23/18*x^2 + 1/3*x + 1/8)*c + (x^12 + 2*x^11 - 1/2*x^10 -

7/2*x^9 - 8/3*x^8 - 5/12*x^7 + 11/4*x^6 + 19/4*x^5 - 1/4*x^4 - 25/6*x^3 -

67/36*x^2 - 1/3*x - 1/4)/(x^17 + 3*x^16 + 21/4*x^15 + 27/4*x^14 + 1/24*x^13

- 247/24*x^12 - 173/24*x^11 + 61/24*x^10 + 305/72*x^9 + 17/72*x^8 - 4*x^7 -

53/12*x^6 - 1/8*x^5 + 23/6*x^4 + 377/108*x^3 + 23/18*x^2 + 1/3*x + 1/8)

> SteinitzClass(Mods) eq SteinitzClass(sMods);

false

> SteinitzForm(Mods);

Module over Maximal Equation Order of F over Univariate Polynomial Ring in x

over Rational Field

Ideal of M

Generator:

3 car Ideal of M

Generator:

1

> SteinitzForm(sMods);

Module over Maximal Equation Order of F over Univariate Polynomial Ring in x

over Rational Field

Ideal of M

Generator:

1

55.8 Homomorphisms between Modules

It is possible to create a homomorphism between two modules, take the image and kernel
of such and verify that these are submodules of the codomain and domain respectively.
The Hom–module can also be created as a module of a dedekind domain.
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hom< M -> N | T >

ModuleBasis BoolElt Default : true

Return a homomorphism from the module M into the module N as specified by
T from which the images of the generators can be inferred. T may be a map
between the vector spaces of same degree as M and N , a matrix over the field
of fractions or a sequence of vectors. If ModuleBasis is true then the matrix
will be taken to be a transformation between the modules and as such will be
expected to have size Dimension(M)∗Dimension(N) otherwise it will be interpreted
as a transformation between the corresponding vector spaces and will be expected
to have size Degree(M)∗Degree(N).

Hom(M, N)

The module of homomorphisms between the module M and the module N and the
map from the hom–module to the collection of maps from M to N , (such that given
an element of the hom–module a homomorphism from M to N is returned). The
module is over the same dedekind domain as M and N .

IsSubmodule(M, N)

Return true if M is a submodule of N and the map embedding M into N .

Morphism(M, N)

The map giving the morphism from the module M to the module N . Either M is
a submodule of N , in which case the embedding of M into N is returned, or N is
a quotient module of M , in which case the natural epimorphism from M onto N is
returned.

Example H55E6

This example demonstrates the use of homomorphisms between modules over dedekind domains.
Let M and V be as above referring to function fields.

> S := [V|[0,1,0], [4,4,0]];

> Mod := Module(S);

> W := KModule(FieldOfFractions(M), 4);

> S := [W|[3, 2, 1, 0]];

> N := Module(S);

> h := hom<Mod -> N | >;

>> h := hom<Mod -> N | >;

^

Runtime error in map< ... >: No images given

> h := hom<Mod -> N | V.1, V.2, V.3>;

>> h := hom<Mod -> N | V.1, V.2, V.3>;

^

Runtime error in map< ... >: An image for each generator is required

> h := hom<Mod -> N | W![3, 2, 1, 0], W![3*(M!F.1 + 1), 2*(M!F.1 + 1),

> M!F.1 + 1, 0] >;
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> h(Mod!(4*V.1));

( 4 )

> h(Mod!V![0, 1, 0]);

( x^2 + 1 )

> I := Image(h);

> I;

Module over Maximal Equation Order of F over Univariate Polynomial Ring in x

over Rational Field

Ideal of M

Generator:

1

> K := Kernel(h);

> K;

Integral Module over Maximal Equation Order of F over Univariate Polynomial Ring

in x over Rational Field

Ideal of M

Generator:

1

> IsSubmodule(K, Mod);

true Mapping from: ModDed: K to ModDed: Mod

> H, m := Hom(Mod, N);

> H; m;

Module over Maximal Equation Order of F over Univariate Polynomial Ring in x over

Rational Field

generated by: (in echelon form)

Ideal of M

Generator:

1/4 * ( 1 0 )

Ideal of M

Generator:

1 * ( 0 1 )

Mapping from: ModDed: H to Power Structure of Map given by a rule [no inverse]

> m(H![5, 20]);

Mapping from: ModDed: Mod to ModDed: N

using

[5]

[20]
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55.9 Elements of Modules

55.9.1 Creation of Elements

M ! v

Coerce v into an element of M . v can be a sequence of length dimension of M , a
module element or vector or an element of another module over a dedekind domain
which is compatible with M .

Example H55E7

Let Mod and its submodules and quotient modules be as in the sub and quotient module example
above.

> m := 4*Mod.1;

> m;

(4/1*M.1 0)

> Q1!m;

( 4/1*M.1 0 )

> Q2!m;

( 4/1*M.1 0 )

> m := Mod!m;

> Q3!m;

( 4/1*M.1 0 )

> Q4!m;

( 4/1*M.1 0 )

> S1!m;

>> S1!m;

^

Runtime error in ‘!’: Illegal coercion

LHS: ModDed

RHS: ModDedElt

> S1!Mod!V!0;

( )

> S2!Mod!Mod.2;

( M.1 )

> S3!Mod!(4*Mod.1);

( 4/1*M.1 0 )
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55.9.2 Arithmetic with Elements

Basic arithmetic can be performed with elements of a module over a dedekind domain.

x + y

The sum of the module elements.

x - y

The difference of the module elements.

u * c

c * u

The product of the module element u and the ring element c.

u / c

The product of u and 1/c if it lies in the parent module of u.

I * u

u * I

The module containing elements which are products of u and an element lying in I.

55.9.3 Other Functions on Elements

Elements of modules over a dedekind domain can be tested for equality and represented
as a sequence.

x eq y

Return true if x and y are the same element of a module.

ElementToSequence(a)

Eltseq(a)

The module element a expressed as a sequence.
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55.10 Pseudo Matrices

A pseudo matrix, ie. an object of type PMat, is a sequence of ideals together with a matrix.
Pseudo matrices arise naturally in the (computational) theory of finitely generated torsion
free modules over Dedekind domains, they are a natural extension of ordinary matrices
which should be thought of as pseudo matrices where all the ideals are generated by 1.
Pseudo matrices are generally used to represent the module that is generated by the rows
of the matrix scaled by the elements of the corresponding ideal. Thus, if the matrix is
regular, a linear combination of the rows lies in the module if and only if the coefficient of
the ith row is a member of the ith ideal. The ideals are therefore called coefficient ideals.

55.10.1 Construction of a Pseudo Matrix

PseudoMatrix(I, m)

Construct the pseudo matrix with coefficient ideals the elements of the sequence I
and matrix m.

PseudoMatrix(m)

Construct the pseudo matrix with trivial coefficient ideals and the matrix m.

PseudoMatrix(M)

Generators BoolElt Default : false

Construct the pseudo matrix described by the pseudo basis of the module M . If
Generators is true the pseudo matrix described by the pseudo generators of M is
returned.

55.10.2 Elementary Functions

CoefficientIdeals(P)

Return the coeffficient ideals of the pseudo matrix P .

Matrix(P)

Return the matrix of the pseudo matrix P .

Order(pm)

Return the order the pseudo matrix pm is over.

Dimension(pm)

The dimension of the pseudo matrix pm. This is the numer of columns of the matrix.

Length(pm)

The length or dimension of the pseudo matrix pm. This is the number of coefficient
ideals of pm.
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55.10.3 Basis of a Pseudo Matrix

Basis(P)

Return a list of sequences of ring elements corresponding to the entries of each row
of the matrix of the pseudo matrix P .

55.10.4 Predicates

p1 eq p2

Return whether the pseudo matrices p1 and p2 are equal, that is, whether they have
the same matrix and the same sequence of coefficient ideals.

55.10.5 Operations with Pseudo Matrices

Transpose(P)

Return the pseudo matrix whose coefficient ideals are the same as those of P but
whose matrix is the transpose of the matrix of P . This function requires the matrix
to be square.

HermiteForm(X)

Return the Hermite normal form H of the pseudo matrix X together with a regular
transformation matrix such that the module generated by X is the same as the one
generated by H and such that (for the matrix parts) H = TX holds.

VerticalJoin(X, Y)

Return the pseudo matrix whose matrix is the vertical join of the matrices of the
pseudo matrices X and Y with coefficient ideals the concatenation of those of X
and Y .

X meet Y

Return the intersection of the pseudo matrices X and Y.

Module(X)

Return the module
∑

Ci∗mi where Ci are the coefficient ideals of the pseudo matrix
X and mi are the rows of the matrix of X.

I * X

X * I

The pseudo matrix whose coefficient ideals are those of the pseudo matrix X mul-
tiplied by I and whose matrix is the matrix of X.
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Chapter 56

CHAIN COMPLEXES

56.1 Complexes of Modules
Complexes of modules are a fundamental object in homological algebra. Magma supports
the type ModCpx representing a complex of modules. Conceptually, a complex is an infinite
sequence of modules, indexed by integers, with maps between successive modules such that
the composition of any two maps is zero. Complexes are often written

. . .
fn+1−→Mn

fn−→Mn−1
fn−1−→Mn−2

fn−2−→ . . .

where the map fn has domain Mn and codomain Mn−1. The indices on the modules and
maps decrease to the right. In practice, Magma requires all but a finite number of the
modules and maps to be zero.

The homomorphism from Mn to Mn−1 in the complex is the nth boundary map of the
complex. The homology of the complex in degree n is the quotient of the kernel of the nth

boundary map by the cokernel of the boundary map of degree n − 1. Magma computes
the homology only if both boundary maps are defined. A complex is said to be exact if
the image of each map is equal to the kernel of the next.

Currently, there are two types of modules over which complexes are supported:
(a)Modules over a basic algebra A (see Chapter 85);
(b)Modules over a multivariate polynomial ring over a field (see Chapter 109 and in par-

ticular the function FreeResolution).
Most of the functions in this chapter work for either type of module but exceptions are
noted.

56.1.1 Creation

Complex(L, d)

Given a list L of maps between successive A-modules create the corresponding com-
plex. The last term of the complex has degree d. This function returns an error if
the maps don’t actually form a complex.

Complex(f, d)

Given a map f between A-modules M and N , form the complex consisting of the
two term complex whose only map is f . The term N is in degree d.

ZeroComplex(A, m, n)

Given a basic algebra A and integers m and n such that m > n, create a complex
of modules over the basic algebra A, starting with a term of degree m and ending
with a term of degree n, where all the modules and maps are zero.
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Dual(C)

Dual(C, n)

The dual of the complex C over a basic algebra A as a complex over the opposite
algebra of A. If an integer n is supplied then the last term of the dual complex is
in degree n. Otherwise, the last term of the dual complex is in degree 0.

56.1.2 Subcomplexes and Quotient Complexes
Let C be a complex of A-modules, Mm, . . . , Mn. A subcomplex S of C is a complex whose
terms are submodules of the terms of C and whose maps are the restrictions of the maps
of C to the terms of S.

sub< C | Q >

sub< C | L >

Given a complex C and a sequence Q of submodules of the terms of C, returns the
smallest subcomplex whose terms contain the modules in Q. The input can also
be a list L of sequences of elements of the successive terms of C. In this case the
submodules generated by the elements is computed. The function also returns the
chain map giving the inclusion of the subcomplex in C.

RandomSubcomplex(C, Q)

Given a chain complex C over a basic algebra in degrees a to a−t+1 and a sequence
Q = [q1, . . . , qt] of natural numbers, the function creates the minimal chain complex
whose term in degree a− i + 1 is a submodule generated by qi random elements of
the term in degree a− i + 1 of C. The function also returns the chain map that is
the inclusion of the subcomplex into C.

quo< C | D >

quo< C | S >

quo< C | L >

Given a complex C and a subcomplex D of C, returns the quotient complex C/D
together with the natural quotient map. If given as a sequence S of submodules
of the terms of C or a list L of sequences of elements of the terms of C, then the
submodule generated by S or L is created and the quotient computed. The function
also returns the chain map of C on the quotient.

56.1.3 Access Functions

Degrees(C)

Returns the first and last degrees of the defined terms of the complex C.

Algebra(C)

Given a complex C over a basic algebra A, this function returns the algebra A.
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BoundaryMap(C, n)

Returns the boundary map of the complex C from the term of degree n to the term
of degree n− 1.

BoundaryMaps(C)

The list of boundary maps of the complex C.

DimensionsOfHomology(C)

Returns the list of the dimensions of the homology groups of the complex C.

DimensionOfHomology(C, n)

Returns the dimension of the homology group of the complex C in degree n.

DimensionsOfTerms(C)

Returns the list of the dimensions of the terms of the complex C.

Term(C, n)

The module in the complex C in degree n.

Terms(C)

The sequence of terms of the complex C.

56.1.4 Elementary Operations

DirectSum(C, D)

Returns the direct sum of the complex C and the complex D.

Homology(C)

HomologyOfChainComplex(C)

The sequence of homology groups of the complex C as a sequence of modules.

Homology(C, n)

Returns the homology group in degree n of the complex C, as an A-module.

Prune(C)

Returns the complex that consists of the terms of C with the right end term (term
of lowest degree) removed.

Prune(C,n)

Returns the complex that consists of the terms of C with n terms removed from the
right end.
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Preprune(C)

Returns the complex that consists of the terms of C with the left end term (term of
highest degree) removed.

Preprune(C,n)

Returns the complex that consists of the terms of C with n terms removed from the
left end.

Shift(C, n)

Given the complex C in degrees r to s, returns the complex in shifted degrees r + n
to s+n. The integer n may be either positive or negative. The maps in the complex
are all multiplied by the scalar (−1)n.

ShiftToDegreeZero(C)

Given the complex C, returns the shift of C so that the last term, the term of lowest
degree, is in degree 0.

Splice(C, D)

Given two complexes C and D over the same basic algebra, such that the end term
of C coincides with the initial term of D, form the complex that corresponds to
the concatenation of C and D (as sequences of maps) This function checks that
the resulting sequence of maps forms a complex. The degrees of complex D remain
unchanged while the degrees of the terms in complex C are changed to fit.

Splice(C, D, f)

The splice of the complex C with the complex D along the map f from the last
term of C to the first term of D. The degree of the last term of the splice is the
same as the degree of the last term of the complex D.

56.1.5 Extensions
The following are elementary operations related to extending complexes

LeftExactExtension(C)

Given a complex C of modules over a basic algebra, returns the complex of length
one greater that is obtained by adjoining the inclusion map from the kernel of the
boundary map in highest degree to the term of highest degree in C.

RightExactExtension(C)

Given a complex C of modules over a basic algebra, returns the complex of length
one greater that is obtained by adjoining the quotient map to the cokernel of the
boundary map of lowest degree from the term of lowest degree in C.
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ExactExtension(C)

Returns the left and right exact extensions of the complex C.

LeftZeroExtension(C)

LeftZeroExtension(C, n)

Given a complex C of modules over a basic algebra, returns the complex of length
one greater that is obtained by adjoining the zero map from the zero module to the
term of highest degree in the complex. If a natural number n is included in the
input then the operation is performed n times.

RightZeroExtension(C)

RightZeroExtension(C, n)

Given a complex C of modules over a basic algebra, returns the complex of length
one greater that is obtained by adjoining the zero map to the zero module from the
term of lowest degree in the complex. If a natural number n is included in the input
then the operation is performed n times.

ZeroExtension(C)

Returns the left and right zero extensions of the complex C.

EqualizeDegrees(C, D)

EqualizeDegrees(Q)

Given complexes C and D over the same algebra, the function returns the complexes
obtained by taking zero extensions of C and D, if necessary, so that both complexes
have the same degrees. The input can also be given as a sequence Q of complexes,
in which case the function returns the sequence of complexes obtained by taking
zero extensions of the elements of Q, if necessary, until all of the elements of the
sequence have the same degrees.

EqualizeDegrees(C, D, n)

The two complexes, C and D, with zero extension sufficient that the first and the
shift by degree n of the second have the same degrees.

56.1.6 Predicates
The following functions return a Boolean value.

IsExact(C)

Returns true if and only if the complex C is an exact sequence, i.e. the image
of each map in C is equal to the kernel of the succeeding map (with the obvious
exceptions of the first and last maps of the complex). If the complex has only two
terms then this is true trivially.
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IsShortExactSequence(C)

Returns true if the complex C consists of a short exact sequence together with
other terms that are zero. The function returns also the degrees of the complex of
nonzero terms.

IsExact(C, n)

Returns true if and only if the complex C is an exact sequence in degree n, i.e.
the image of the map in C into the term of degree n is equal to the kernel of the
succeeding map.

IsZeroComplex(C)

Returns true if and only if the complex C is composed entirely of zero modules and
maps.

IsZeroMap(C, n)

Returns true if and only if the boundary map in degree n of the complex C is the
zero map.

IsZeroTerm(C, n)

Returns true if and only if the term in degree n of the complex C is the zero object.

Example H56E1

We construct the quiver algebra of a quiver with three nodes and three arrows going from node 1
to node 2, from 2 to 1 and 2 to 3. The relation is that (ab)3a = 0 where a is the first arrow and b
is the second. Then we construct projective and injective resolutions of the first simple module.

> ff := GF(8);

> FA<e1,e2,e3,a,b,c> := FreeAlgebra(ff,6);

> rrr := [a*b*a*b*a*b*a];

> D := BasicAlgebra(FA,rrr,3,[<1,2>,<2,1>,<2,3>]);

> D;

Basic algebra of dimension 23 over GF(2^3)

Number of projective modules: 3

Number of generators: 6

> DimensionsOfProjectiveModules(D);

[ 10, 12, 1 ]

> DimensionsOfInjectiveModules(D);

[ 8, 7, 8 ]

Here is the opposite algebra:

> OD := OppositeAlgebra(D);

reverse trees

> OD;

Basic algebra of dimension 23 over GF(2^3)

Number of projective modules: 3

Number of generators: 6
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> s1 := SimpleModule(D,1);

> P,mu := ProjectiveResolution(s1,7);

> P;

Basic algebra complex with terms of degree 7 down to 0

Dimensions of terms: 12 12 12 12 12 12 12 10

> Q,nu := InjectiveResolution(s1,7);

> Q;

Basic algebra complex with terms of degree 0 down to -7

Dimensions of terms: 8 7 0 0 0 0 0 0

Note that the projective and injective resolutions are complexes with the appropriate augmenta-
tion and coaugmentation maps. First we form the two term complex whose boundary map is the
composition of the augmentation and coaugmentation maps.

> theta := MapToMatrix(hom<Term(P,0)-> Term(Q,0)|mu*nu>);

> E := Complex(theta,0);

Then we splice all of this together.

> R := Splice(P,E);

> S := Splice(R,Q);

> S;

Basic algebra complex with terms of degree 8 down to -7

Dimensions of terms: 12 12 12 12 12 12 12 10 8 7 0 0 0 0 0 0

56.2 Chain Maps

A chain map from complex C to complex D is a sequence of homomorphisms between
the terms of C and the terms of D such that the maps commute with the boundary
homomorphisms on the two complexes. The chain map has degree zero if the map on Cn

has it’s image in Dn. Otherwise the degree of the chain map expresses the extent to which
the degrees of the terms are raised or lowered by the chain map.

Chain maps do not have to be defined in every degree for which either its domain or
codomain is defined. On the other hand it must be defined wherever possible, i.e. for
any degree i for which the term of the domain is defined and for which the term of the
codomain is defined in degree i + n where n is the degree of the chain map.

The freedom of definition can cause problems with constructions such as the kernel or
cokernel. That is, the kernel of a chain complex may not be a complex. For this reason
we allow the Kernel and Cokernel functions to work only for proper chain maps where
“proper” is defined as follows. Suppose C is a chain complex in degrees a to b and D is
a complex in degrees u to v. A chain map in degree n from C to D is proper provided
u ≥ a + n and v ≥ b + n.
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56.2.1 Creation

ChainMap(Q, C, D, n)

Returns the chain map given by the sequence of maps in Q. Each element in Q
is a map from a term of the complex C to a corresponding term of the complex
D. The integer n is the degree of the chain map. This means that for any i the
term in degree i of C is mapped to the term of degree n + i of D. There should
be a map defined for any degree i in the range of degrees of C such that there is a
corresponding term in degree n + i for the complex D.

ZeroChainMap(C, D)

Given chain complexes C and D, construct the chain map from C to D all of whose
terms are zero.

56.2.2 Access Functions

Degree(f)

Given a chain map f , returns the degree of f . Note that f : C → D has degree n
if it takes the term in degree i of the complex C to the term in degree i + n of the
complex D.

ModuleMap(f, n)

Given a chain map f : C → D and an integer n, this function returns the map from
the term in degree n of the complex C to the term in degree n + Degree(f) of the
complex D.

Kernel(f)

Returns the kernel complex of f and the inclusion of the kernel in the domain of f .
The function is only defined for proper chain maps. If the chain map is not defined
for a certain term of the domain then that term is equal to the term of the kernel
complex. That is, if f is not defined on a term then the functions acts as if f were
the zero map on that term.

Cokernel(f)

Returns the cokernel complex of f and the projection of the cokernel onto the
codomain of f . The function is only defined for proper chain maps. If the chain
map is not defined for a certain term of the codomain then that term is equal to
the term of the cokernel complex. That is, if f is not defined on a term then the
function acts as if f were the zero map on that term.

Image(f)

Returns the image complex of f and the inclusion of the image in the codomain of f
and the projection of the domain of f on to the image. The function is only defined
for proper chain maps.
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56.2.3 Elementary Operations

f + g

The sum of two chain maps with the same domain and codomain.

a * g

The product of the chain map g by the scalar a in the base ring of the algebra.

f * g

The composition of the two chain maps f and g.

56.2.4 Predicates
The following functions return a Boolean value.

IsSurjective(f)

Returns true if the chain map f is a surjection in every degree, false otherwise.

IsInjective(f)

Returns true if the chain map f is an injection in every degree, false otherwise.

IsZero(f)

Returns true if the chain map f is zero in every degree, false otherwise.

IsIsomorphism(f)

Returns true if the chain map f is an isomorphism of chain complexes, false
otherwise.

IsShortExactSequence(f, g)

Returns true if the sequence of chain complexes, 0 → Domain(f) → Domain(g) →
Codomain(g) → 0, where the internal maps are f and g, is exact.

IsChainMap(L, C, D, n)

Returns true if the list of maps L from the terms of complex C to the terms of the
complex D is a chain map of degree n, i. e. it has the right length and the diagram
commutes.

IsChainMap(f)

Returns true if the supposed chain map f really is a chain map, i. e. the diagrams
commute.

IsProperChainMap(f)

Returns true if the chain map f is a proper chain map, a necessary condition for
taking kernel and cokernel.

HasDefinedModuleMap(C,n)

Returns true if the module map in degree n of the complex C is defined.
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Example H56E2

We from the basic algebra of the direct product of a cyclic group of order 3 with symmetric group
on three letters over the field with three elements.

> FA<e1,e2,a,b> := FreeAlgebra(GF(3),4);

> MM:= [e1 +e2 - FA!1, a*b*a, b*a*b];

> BS3 := BasicAlgebra(FA, MM, 2, [<1,2>,<2,1>]);

> gg := CyclicGroup(3);

> BC3 := BasicAlgebra(gg,GF(3));

> A := TensorProduct(BS3,BC3);

> A;

Basic algebra of dimension 18 over GF(3)

Number of projective modules: 2

Number of generators: 6

Now we want the projective resolution of the second simple module as a complex. This we will
manipulate and take a somewhat random complex.

> PR := ProjectiveResolution(SimpleModule(A,2),12);

> PR;

Basic algebra complex with terms of degree 12 down to 0

Dimensions of terms: 117 108 99 90 81 72 63 54 45 36 27 18 9

> PR := Prune(PR);

> PR := Prune(PR);

> PR := Prune(PR);

> PR;

Basic algebra complex with terms of degree 12 down to 3

Dimensions of terms: 117 108 99 90 81 72 63 54 45 36

> PR := Prune(PR);

> PR := Prune(PR);

> PR;

Basic algebra complex with terms of degree 12 down to 5

Dimensions of terms: 117 108 99 90 81 72 63 54

> PR := ZeroExtension(PR);

> PR;

Basic algebra complex with terms of degree 13 down to 4

Dimensions of terms: 0 117 108 99 90 81 72 63 54 0

> PR := Shift(PR,-4);

> PR;

Basic algebra complex with terms of degree 9 down to 0

Dimensions of terms: 0 117 108 99 90 81 72 63 54 0

> S := [* *];

> for i := 1 to 10 do

> S[i] := [Random(Term(PR,10-i)),Random(Term(PR,10-i))];

> end for;

> C,mu := Subcomplex(PR,S);

> C;

Basic algebra complex with terms of degree 9 down to 0

Dimensions of terms: 0 36 67 64 62 63 58 54 51 0



Ch. 56 CHAIN COMPLEXES 1453

> Homology(C);

[

AModule of dimension 4 over GF(3),

AModule of dimension 6 over GF(3),

AModule of dimension 5 over GF(3),

AModule of dimension 3 over GF(3),

AModule of dimension 2 over GF(3),

AModule of dimension 1 over GF(3),

AModule of dimension 4 over GF(3),

AModule of dimension 26 over GF(3)

]

[

Mapping from: AModule of dimension 4 over GF(3) to AModule of dimension 4

over GF(3),

Mapping from: AModule of dimension 38 over GF(3) to AModule of dimension 6

over GF(3),

Mapping from: AModule of dimension 34 over GF(3) to AModule of dimension 5

over GF(3),

Mapping from: AModule of dimension 33 over GF(3) to AModule of dimension 3

over GF(3),

Mapping from: AModule of dimension 31 over GF(3) to AModule of dimension 2

over GF(3),

Mapping from: AModule of dimension 33 over GF(3) to AModule of dimension 1

over GF(3),

Mapping from: AModule of dimension 29 over GF(3) to AModule of dimension 4

over GF(3),

Mapping from: AModule of dimension 51 over GF(3) to AModule of dimension 26

over GF(3)

]

> D := Cokernel(mu);

> D;

Basic algebra complex with terms of degree 9 down to 0

Dimensions of terms: 0 81 41 35 28 18 14 9 3 0

> Homology(D);

[

AModule of dimension 64 over GF(3)

AModule of dimension 5 over GF(3),

AModule of dimension 3 over GF(3),

AModule of dimension 2 over GF(3),

AModule of dimension 1 over GF(3),

AModule of dimension 4 over GF(3),

AModule of dimension 3 over GF(3),

AModule of dimension 3 over GF(3)

]

[

Mapping from: AModule of dimension 64 over GF(3) to AModule of dimension 64

over GF(3),

Mapping from: AModule of dimension 22 over GF(3) to AModule of dimension 5
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over GF(3),

Mapping from: AModule of dimension 22 over GF(3) to AModule of dimension 3

over GF(3),

Mapping from: AModule of dimension 15 over GF(3) to AModule of dimension 2

over GF(3),

Mapping from: AModule of dimension 14 over GF(3) to AModule of dimension 1

over GF(3),

Mapping from: AModule of dimension 8 over GF(3) to AModule of dimension 4

over GF(3),

Mapping from: AModule of dimension 9 over GF(3) to AModule of dimension 3

over GF(3),

Mapping from: AModule of dimension 3 over GF(3) to AModule of dimension 3

over GF(3)

]

56.2.5 Maps on Homology

InducedMapOnHomology(f, n)

The homomorphism induced on homology by the chain map f in degree n.

ConnectingHomomorphism(f, g, n)

The connecting homomorphism in degree n of the short exact sequence of chain
complexes given by the chain maps f and g.

LongExactSequenceOnHomology(f, g)

The long exact sequence on homology for the exact sequence of complexes given by
the chain maps f and g as a chain complex with the homology group in degree i for
the Cokernel of the complex C appearing in degree 3i.

Example H56E3

We create a basic algebra with two simple modules and four nonidempotent generators. The
relations are given in the sequence rrr.

> ff := GF(3);

> p := Characteristic(ff);

> FA<e1, e2, y, x, a, b> := FreeAlgebra(ff,6);

> rrr := [y^p,x^p,x*y+y*x,x*a*b-a*b*x,y*a*b-a*b*y,(b*a)^2,(b*a)^2];

> A := BasicAlgebra(FA,rrr,2,[<1,1>,<1,1>,<1,2>,<2,1>]);

> A;

Basic algebra of dimension 81 over GF(3)

Number of projective modules: 2

Number of generators: 6

> DimensionsOfProjectiveModules(A);
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[ 45, 36 ]

Now we generate the simple modules and their projective covers. We want a module PP that is
the direct sum of two copies of each of the projective indecomposable module.

> S1 := SimpleModule(A,1);

> PP := ProjectiveModule(A,[2,2]);

Now we are going to create a complex all of whose terms are isomorphic to PP . To make it
interesting we will insist that the first homomorphism have its image in the second radical layer
of PP .

> J1 := JacobsonRadical(PP);

> theta1 := Morphism(J1,PP);

> J2 := JacobsonRadical(J1);

> theta2 := Morphism(J2,J1);

> theta := theta2*theta1;

> HomPJ := AHom(PP, J2);

> HomPJ;

KMatrixSpace of 162 by 150 matrices and dimension 300 over GF(3)

> gamma := Random(HomPJ)*theta;

> LL := [* gamma *];

So we now have the first boundary map of the complex. The other boundary maps are generated
randomly.

> for i := 1 to 15 do

> K, phi := Kernel(gamma);

> HomPK := AHom(PP,K);

> gamma := Random(HomPK)*MapToMatrix(phi);

> LL := [* gamma *] cat LL;

> end for;

Now we make the list into a chain complex.

> C := Complex(LL,0);

> C;

Basic algebra complex with terms of degree 16 down to 0

Dimensions of terms: 162 162 162 162 162 162 162 162 162 162 162 162 162 162

162 162 162

> DimensionsOfHomology(C);

[ 30, 23, 34, 32, 35, 32, 35, 42, 30, 34, 32, 33, 29, 42, 21 ]

Now we will get a random subcomplex.

> a,b := Degrees(C);

> S, mu := RandomSubcomplex(C,[2: i in [1 .. a-b+1]]);

> S;

Basic algebra complex with terms of degree 16 down to 0

Dimensions of terms: 162 155 162 162 162 154 142 162 162 148 154 162 162 152

155 152 162

> DimensionsOfHomology(S);
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[ 27, 27, 34, 32, 35, 33, 48, 42, 28, 44, 38, 33, 29, 48, 24 ]

Now take the quotient.

> Q,nu := quo<C|S>;

> Q;

Basic algebra complex with terms of degree 16 down to 0

Dimensions of terms: 0 7 0 0 0 8 20 0 0 14 8 0 0 10 7 10 0

> DimensionsOfHomology(Q);

[ 7, 0, 0, 0, 6, 18, 0, 0, 12, 6, 0, 0, 8, 5, 10 ]

Now we check to see if this is a short exact sequence of chain maps.

> IsShortExactSequence(mu,nu);

true

> lll := LongExactSequenceOnHomology(mu,nu);

Basic algebra complex with terms of degree 47 down to 3

Dimensions of terms: 27 30 7 27 23 0 34 34 0 32 32 0 35 35 6 33 32 18 48 35 0

42 42 0 28 30 12 44 34 6 38 32 0 33 33 0 29 29 8 48 42 5 24 21 10

> IsExact(lll);

true


