[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: induced  ..  Infinite


induced

   Action on a G-Space (PERMUTATION GROUPS)
   Coset Spaces: Induced Homomorphism (FINITELY PRESENTED GROUPS)

induced-homomorphism

   Action on a G-Space (PERMUTATION GROUPS)
   Coset Spaces: Induced Homomorphism (FINITELY PRESENTED GROUPS)

InducedAutomorphism

   InducedAutomorphism(r, h, c) : Map, Map, RngIntElt -> Map

InducedGammaGroup

   InducedGammaGroup(A, B) : GGrp, Grp -> GGrp

InducedMap

   InducedMap(m1, m2, h, c) : Map, Map, Map, RngIntElt -> Map

inducedMap

   FldAb_inducedMap (Example H39E4)

InducedMapOnHomology

   InducedMapOnHomology(f, n) : MapChn, RngIntElt -> ModTupFldElt

InducedOneCocycle

   InducedOneCocycle(AmodB, alpha) : GGrp, OneCoC -> OneCoC

InducedPermutation

   InducedPermutation(u) : GrpBrdElt -> GrpPermElt

InduceWG

   InduceWG(W,wg,seq) : GrpFPCox, GrphUnd, SeqEnum -> GrphUnd

InduceWGtable

   InduceWGtable(J, table, W) : SeqEnum, SeqEnum, GrpFPCox -> SeqEnum[SeqEnum[RngIntElt]]

Inducing

   CuspidalInducingDatum(pi) : RepLoc -> ModGrp

Induction

   Induction(x, G) : AlgChtrElt, Grp -> AlgChtrElt
   Induction(R, G) : Map, Grp -> Map
   Induction(M, G) : ModGrp, Grp -> ModGrp
   NormInduction(K, chi) : FldNum, GrpDrchElt -> GrpHeckeElt

induction

   Induction and Restriction (K[G]-MODULES AND GROUP REPRESENTATIONS)
   Induction, Restriction and Lifting (CHARACTERS OF FINITE GROUPS)
   Tensor-induced Groups (MATRIX GROUPS OVER FINITE FIELDS)

induction-restriction

   Induction and Restriction (K[G]-MODULES AND GROUP REPRESENTATIONS)

induction-restriction-lifting

   Induction, Restriction and Lifting (CHARACTERS OF FINITE GROUPS)

Ineffective

   IneffectiveSubcanonicalCurves(g) : RngIntElt -> SeqEnum

IneffectiveSubcanonicalCurves

   IneffectiveSubcanonicalCurves(g) : RngIntElt -> SeqEnum

Inequalities

   ConeWithInequalities(B) : Set -> TorCon
   Inequalities(C) : TorCon -> SeqEnum

inequalities

   Vertices and Inequalities (CONVEX POLYTOPES AND POLYHEDRA)

Inert

   IsInert(P) : RngFunOrdIdl -> BoolElt
   IsInert(P, O) : RngFunOrdIdl, RngFunOrd -> BoolElt
   IsInert(P) : RngOrdIdl -> BoolElt
   IsInert(P, O) : RngOrdIdl, RngOrd -> BoolElt

Inertia

   AbsoluteInertiaIndex(L) : RngPad -> RngIntElt
   AbsoluteInertiaDegree(L) : RngPad -> RngIntElt
   DecompositionGroup(L) : RngLocA -> GrpPerm
   Degree(I) : RngFunOrdIdl -> RngIntElt
   Degree(I) : RngOrdIdl -> RngIntElt
   InertiaDegree(P) : PlcFunElt -> RngIntElt
   InertiaDegree(P) : PlcNumElt -> RngIntElt
   InertiaDegree(P) : PlcNumElt -> RngIntElt
   InertiaDegree(L) : RngLocA -> RngIntElt
   InertiaDegree(L) : RngPad -> RngIntElt
   InertiaDegree(K, L) : RngPad, RngPad -> RngIntElt
   InertiaDegree(E) : RngSerExt -> RngIntElt
   InertiaField(p) : RngOrdIdl -> FldNum, Map
   InertiaGroup(p) : RngOrdIdl -> GrpPerm

InertiaDegree

   InertiaDegree(I) : RngFunOrdIdl -> RngIntElt
   ResidueClassDegree(I) : RngFunOrdIdl -> RngIntElt
   Degree(I) : RngFunOrdIdl -> RngIntElt
   Degree(I) : RngOrdIdl -> RngIntElt
   InertiaDegree(P) : PlcFunElt -> RngIntElt
   InertiaDegree(P) : PlcNumElt -> RngIntElt
   InertiaDegree(P) : PlcNumElt -> RngIntElt
   InertiaDegree(L) : RngLocA -> RngIntElt
   InertiaDegree(L) : RngPad -> RngIntElt
   InertiaDegree(K, L) : RngPad, RngPad -> RngIntElt
   InertiaDegree(E) : RngSerExt -> RngIntElt

InertiaField

   InertiaField(p) : RngOrdIdl -> FldNum, Map

InertiaGroup

   InertiaGroup(L) : RngLocA -> GrpPerm
   RamificationGroup(L, i) : RngLocA, RngIntElt -> GrpPerm
   DecompositionGroup(L) : RngLocA -> GrpPerm
   InertiaGroup(p) : RngOrdIdl -> GrpPerm

Inertial

   InertialElement(L) : RngLocA -> RngLocAElt
   IsInertial(f) : RngUPolElt -> BoolElt

InertialElement

   InertialElement(L) : RngLocA -> RngLocAElt

inf

   Free Precision Rings and Fields (p-ADIC RINGS AND THEIR EXTENSIONS)
   MATRIX GROUPS OVER INFINITE FIELDS

inf-invar

   AlgSym_inf-invar (Example H146E1)

Infimum

   Infimum(u: parameters) : GrpBrdElt -> RngIntElt
   SuperSummitInfimum(u: parameters) : GrpBrdElt -> RngIntElt

Infinite

   EquationOrderInfinite(F) : FldFun -> RngFunOrd
   FiniteSplit(D) : DivFunElt -> DivFunElt, DivFunElt
   HasInfiniteComputableAbelianQuotient(G) : GrpFP -> BoolElt, GrpAb, Map
   HasInfinitePSL2Quotient(G) :: GrpFP -> BoolElt, SeqEnum
   InfinitePart(P) : TorPol -> TorCon
   InfinitePlaces(K) : FldAlg -> SeqEnum
   InfinitePlaces(F) : FldFun -> [PlcFunElt]
   InfinitePlaces(K) : FldNum -> SeqEnum
   InfiniteSum(m, i) : Map, RngIntElt -> FldReElt
   IsInfinite(G) : GrpAb -> BoolElt
   IsInfinite(p) : PlcNumElt -> BoolElt, RngIntElt
   IsInfinite(p) : PlcNumElt -> BoolElt, RngIntElt
   IsInfinite(z) : SpcHypElt -> BoolElt
   MaximalOrderFinite(A) : FldFunAb -> RngFunOrd
   MaximalOrderInfinite(F) : FldFun -> RngFunOrd
   GrpFP_1_Infinite (Example H70E24)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013