[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: image  ..  in


image

   Images and Preimages (MAPPINGS)
   Images, Orbits and Stabilizers (PERMUTATION GROUPS)
   Orbit and Stabilizer Functions for Large Groups (MATRIX GROUPS OVER GENERAL RINGS)
   Orbits and Stabilizers (MATRIX GROUPS OVER GENERAL RINGS)

image-finder

   Scheme_image-finder (Example H112E53)

image-orbit-stabilizer

   Images, Orbits and Stabilizers (PERMUTATION GROUPS)
   Orbits and Stabilizers (MATRIX GROUPS OVER GENERAL RINGS)

image-orbit-stabilizer-large

   Orbit and Stabilizer Functions for Large Groups (MATRIX GROUPS OVER GENERAL RINGS)

image-preimage

   Images and Preimages (MAPPINGS)

ImageBasis

   ImageBasis(f) : TorLatMap -> SeqEnum

ImageFan

   ImageFan(D) : DivTorElt -> TorFan

Images

   IntersectionOfImages(X) : List -> ModAbVarSubGrp, ModAbVar, MapModAbVar
   RootImages(phi) : Map -> [RngIntElt]
   SumOfImages(phi, psi) : MapModAbVar, MapModAbVar -> ModAbVar, MapModAbVar, List
   SumOfMorphismImages(X) : List -> ModAbVar, MapModAbVar, List

ImageSystem

   ImageSystem(f,S,d) : MapSch,Sch,RngIntElt -> LinearSys

ImageWithBasis

   ImageWithBasis(X, M) : ModMatRngElt, ModRng -> ModRng

Imaginary

   Imaginary(z) : SpcHydElt -> FldReElt
   Im(z) : SpcHydElt -> FldReElt
   Imaginary(c) : FldComElt -> FldReElt
   Imaginary(z) : SpcHypElt -> FldReElt

implementation

   The Magma Number Field Sieve Implementation (RING OF INTEGERS)

Implicit

   ImplicitFunction(dp) : RngUPolElt -> RngPowAlgElt
   ImplicitFunction(f, d, n) : RngUPolElt, RngIntElt, RngIntElt -> RngSerElt

ImplicitCosetEnumeration

   GrpFP_1_ImplicitCosetEnumeration (Example H70E47)

ImplicitFunction

   ImplicitFunction(dp) : RngUPolElt -> RngPowAlgElt
   ImplicitFunction(f, d, n) : RngUPolElt, RngIntElt, RngIntElt -> RngSerElt

Implicitization

   Implicitization(phi) : Map -> RngMPol

import

   Importing Constants (FUNCTIONS, PROCEDURES AND PACKAGES)
   import "filename": ident_list;
   Func_import (Example H2E9)

Imprimitive

   ImprimitiveAction(G, g) : GrpMat, GrpMatElt -> GrpPermElt
   ImprimitiveBasis(G) : GrpMat -> SeqEnum
   ShephardTodd(m, p, n) : RngIntElt, RngIntElt, RngIntElt -> GrpMat, Fld

ImprimitiveAction

   ImprimitiveAction(G, g) : GrpMat, GrpMatElt -> GrpPermElt

ImprimitiveBasis

   ImprimitiveBasis(G) : GrpMat -> SeqEnum

ImprimitiveReflectionGroup

   ImprimitiveReflectionGroup(m, p, n) : RngIntElt, RngIntElt, RngIntElt -> GrpMat, Fld
   ShephardTodd(m, p, n) : RngIntElt, RngIntElt, RngIntElt -> GrpMat, Fld
   GrpRfl_ImprimitiveReflectionGroup (Example H99E11)

imprimitivity

   HypGeomMot_imprimitivity (Example H126E3)

Improve

   ImproveAutomorphismGroup(F, E) : FldAb, SeqEnum -> GrpFP, SeqEnum

ImproveAutomorphismGroup

   ImproveAutomorphismGroup(F, E) : FldAb, SeqEnum -> GrpFP, SeqEnum

ims

   Computing L(s) when Im(s) is Large (ImS Parameter) (L-FUNCTIONS)

in

   Equality and Membership (p-ADIC RINGS AND THEIR EXTENSIONS)
   Planes in Magma (FINITE PLANES)
   x in S
   x in L : ., RngPad -> BoolElt
   x in O : AlgAssVElt, AlgAssVOrd -> BoolElt
   a in I : AlgAssVElt, AlgAssVOrdIdl -> BoolElt
   x in y : AlgChtrElt, AlgChtrElt -> BoolElt
   f in I : AlgFrElt, AlgFr -> BoolElt
   a in A : AlgGenElt, AlgGen -> BoolElt
   x in R : AlgMatElt, AlgMat -> BoolElt
   x in A : AlgQuatElt, AlgQuat -> BoolElt
   x in D : Any, DiffFun -> BoolElt
   x in M : Any, ModDed -> BoolElt
   a in S : Any,DiffCrv -> BoolElt
   x in S : Elt, SeqEnum -> BoolElt
   x in R : Elt, Set -> BoolElt
   g in G : GrpAbElt, GrpAb -> BoolElt
   a in A: GrpAutCrvElt, GrpAutCrv -> BoolElt
   g in G : GrpBBElt, GrpBB -> BoolElt
   u in B : GrpBrdElt, GrpBrd -> BoolElt
   u in P : GrpBrdElt, GrpBrdClassProc -> BoolElt, GrpBrdElt
   g in G : GrpFinElt, GrpFin -> BoolElt
   u ∈H : GrpFPElt, GrpFP -> BoolElt
   g in C : GrpFPElt, GrpFPCosElt -> BoolElt
   g in G : GrpGPCElt, GrpGPC -> BoolElt
   u in e : GrphVert, GrphEdge -> BoolElt
   u in e : GrphVert, GrphEdge -> BoolElt
   s in S : GrphVert, GrphVertSet -> BoolElt
   g in G : GrpMatElt, GrpMat -> BoolElt
   g in G : GrpMatElt, GrpMatUnip -> BoolElt
   g in G : GrpPCElt, GrpPC -> BoolElt
   x in C : GrpPermElt, Elt -> BoolElt
   g in G : GrpPermElt, GrpPerm -> BoolElt
   g in G : GrpPSL2Elt, GrpPSL2 -> BoolElt
   g in G : GrpSLPElt, GrpSLP -> BoolElt
   p in B : IncPt, IncBlk -> BoolElt
   v in L : LatElt, Lat -> BoolElt
   f in M : MapIsoSch, PowIsoSch -> BoolElt
   phi in X : MapModAbVar, List -> BoolElt
   x in X : ModAbVarElt, List -> BoolElt
   x in M : ModBrdtElt, ModBrdt -> BoolElt
   f in M : ModMPolElt, ModMPol -> BoolElt
   u in M : ModRngElt, ModRng -> BoolElt
   v in V : ModTupFldElt, ModTupFld -> BoolElt
   u in C : ModTupRngElt, Code -> BoolElt
   u in C : ModTupRngElt, Code -> BoolElt
   u in C : ModTupRngElt, CodeAdd -> BoolElt
   u in M : ModTupRngElt, ModTupRng -> BoolElt
   s in t : MonStgElt, MonStgElt -> BoolElt
   p in l : PlanePt, PlaneLn -> BoolElt
   p in C : Pt,Sch -> BoolElt
   p in X : Pt,Sch -> BoolElt
   P in E : PtEll, CrvEll -> BoolElt
   P in H : PtEll, SetPtEll -> BoolElt
   f in Q : QuadBinElt, QuadBin -> BoolElt
   a in R : RngElt, Rng -> BoolElt
   a in I : RngElt, RngIdl -> BoolElt
   N in D: RngIntElt, DB -> BoolElt
   f in R : RngMPol, RngInvar -> FldFunUElt, ModMPolElt
   f in I : RngMPolElt, RngMPol -> BoolElt
   f in L : RngMPolElt,LinearSys -> BoolElt
   f in I : RngMPolLocElt, RngMPolLoc -> BoolElt
   E in I: RngOrdElt, RngOrdIdl -> BoolElt
   a in I : RngUPolElt, RngUPol -> BoolElt
   X in L : Sch,LinearSys -> BoolElt
   S in P : SeqEnum, PowSeqEnum -> BoolElt
   Q in X : SeqEnum,Sch -> BoolElt
   S in P : SetEnum, PowSetEnum -> BoolElt
   S in P : SetIndx, PowSetIndx -> BoolElt
   S in P : SetMulti, PowSetMulti -> BoolElt
   C in F : TorCon,TorFan -> BoolElt
   v in L : TorLatElt,TorLat -> BoolElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013