[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: PreimageIdeal .. Primary
PreimageIdeal(I) : AlgFP -> AlgFr
PreimageIdeal(I) : RngMPolRes -> RngMPol
PreimageRing(A) : AlgFP -> AlgFr
PreimageRing(Q) : RngMPolRes -> RngMPol
PreimageRing(Q) : RngUPolRes -> RngUPol
PreparataCode(m): RngIntElt, RngUPolElt -> Code
PreparataCode(m): RngIntElt, RngUPolElt -> Code
Preprune(C) : ModCpx -> ModCpx
Preprune(C,n) : ModCpx, RngIntElt -> ModCpx
ClassicalStandardPresentation (type, d, q : parameters) : MonStgElt, RngIntElt, RngIntElt -> SLPGroup, []
CompactPresentation(G) : GrpPC -> [RngIntElt]
CoxeterGroup(GrpFP, W) : Cat, GrpPermCox -> GrpFPCox
GetPresentation(B) : GrpBrd -> MonStgElt
IsIdenticalPresentation(G, H) : GrpGPC, GrpGPC -> BoolElt
IsIdenticalPresentation(G, H) : GrpPC, GrpPC -> BoolElt
NilpotentPresentation(G) : GrpGPC -> GrpGPC, Map
Presentation(A) : AlgMat -> AlgFr, AlgFr, Map
Presentation(M) : ModMPol -> [ ModMPol ]
PresentationIsSmall(G) : GrpGPC -> BoolElt
PresentationLength(G) : GrpFP -> RngIntElt
PresentationLength(P) : GrpFPTietzeProc -> RngIntElt
PresentationMatrix(f) : ModMPolHom -> ModMatRngElt
SatisfiesSzPresentation(G) : GrpMat -> BoolElt
SetPresentation(~B, s) : GrpBrd, MonStgElt ->
Simplify(~P : parameters) : GrpFPTietzeProc ->
SpecialPresentation(G) : GrpPC -> GrpPC
StandardPresentation(G): GrpPC -> GrpPC, Map
StandardPresentation(G, str : parameters) : Grp, MonStgElt -> BoolElt, SeqEnum, SeqEnum
SzPresentation(q) : RngIntElt -> GrpFP, HomGrp
AlgMat_Presentation (Example H83E12)
CompactPresentation (FINITE SOLUBLE GROUPS)
Conditioned Presentations (FINITE SOLUBLE GROUPS)
Constructing a Presentation for a Subgroup (FINITELY PRESENTED GROUPS)
Isomorphism and Standard Presentations (FINITE SOLUBLE GROUPS)
Presentation of Submodules (FREE MODULES)
Presentations (MATRIX GROUPS OVER GENERAL RINGS)
Properties of a Polycyclic Presentation (POLYCYCLIC GROUPS)
Special Presentations (FINITE SOLUBLE GROUPS)
Specification of a Presentation (ABELIAN GROUPS)
Specification of a Presentation (FINITELY PRESENTED SEMIGROUPS)
Structuring Presentations (FINITELY PRESENTED ALGEBRAS)
The Presentation of Submodules (INTRODUCTION TO MODULES [MODULES])
Properties of a Polycyclic Presentation (POLYCYCLIC GROUPS)
PresentationIsSmall(G) : GrpGPC -> BoolElt
PresentationLength(G) : GrpFP -> RngIntElt
PresentationLength(P) : GrpFPTietzeProc -> RngIntElt
Matrix(f) : ModMPolHom -> ModMatRngElt
PresentationMatrix(f) : ModMPolHom -> ModMatRngElt
Generators and Presentations (MATRIX ALGEBRAS)
Modifying Presentations (FINITELY PRESENTED GROUPS: ADVANCED)
More About Presentations (FINITE SOLUBLE GROUPS)
Power-Conjugate Presentations (FINITE SOLUBLE GROUPS)
Presentations (PERMUTATION GROUPS)
Presentations for Matrix Algebras (MATRIX ALGEBRAS)
FINITELY PRESENTED ALGEBRAS
Finitely Presented Algebras (FINITELY PRESENTED ALGEBRAS)
FINITELY PRESENTED GROUPS
FINITELY PRESENTED GROUPS: ADVANCED
Finitely Presented Modules (FINITELY PRESENTED ALGEBRAS)
FINITELY PRESENTED SEMIGROUPS
ClearPrevious() : ->
GetPreviousSize() : -> RngIntElt
PreviousPrime(n) : RngIntElt -> RngIntElt
SetPreviousSize(n) : RngIntElt ->
ShowPrevious() : ->
ShowPrevious(i) : RngIntElt ->
PrimeDivisors(n) : RngIntElt -> [RngIntElt]
Other Functions Relating to Primes (RING OF INTEGERS)
PreviousPrime(n) : RngIntElt -> RngIntElt
IsPRI(C) : CosetGeom -> BoolElt
IsPrimitive(C) : CosetGeom -> BoolElt
IsPrimeCertificate(cert) : List -> BoolElt
PrimalityCertificate(n) : RngIntElt -> List
Primality (RING OF INTEGERS)
IsPrimeCertificate(cert) : List -> BoolElt
PrimalityCertificate(n) : RngIntElt -> List
IsPrimary(I) : RngMPol -> BoolElt
IsPrimary(I) : RngMPolRes -> BoolElt
Primary(a) : RngQuadElt -> RngQuadElt
PrimaryAlgebra(R) : RngInvar -> RngMPol
PrimaryComponents(X) : Sch -> SeqEnum
PrimaryDecomposition(I) : RngMPol -> [ RngMPol ], [ RngMPol ]
PrimaryDecomposition(I) : RngMPolRes -> [ RngMPolRes ], [ RngMPolRes ]
PrimaryIdeal(R) : RngInvar -> RngMPol
PrimaryInvariantFactors(a) : AlgMatElt -> [ <RngUPolElt, RngIntElt ]
PrimaryInvariantFactors(A) : Mtrx -> [ <RngUPolElt, RngIntElt> ]
R`PrimaryInvariants
PrimaryInvariants(A) : GrpAb -> [ RngIntElt ]
PrimaryInvariants(R) : RngInvar -> [ RngMPolElt ]
PrimaryRationalForm(a) : AlgMatElt -> AlgMatElt, AlgMatElt, [ <RngUPolElt, RngIntElt ]
PrimaryRationalForm(A) : Mtrx -> AlgMatElt, AlgMatElt, [ <RngUPolElt, RngIntElt ]
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013