[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: F .. Factor
WeberF(s) : FldComElt -> FldComElt
f(p) : Pt, FldFunFracSchElt -> RngElt
Evaluate(f, p) : RngElt,Pt -> RngElt
p @ f : Pt, FldFunFracSchElt -> RngElt
p @ f : Pt, FldFunFracSchElt -> RngElt
Image(f) : MapSch -> Sch
f(X): GrpAutCrvElt, Pt -> Pt
f(p) : MapSch,Pt -> Pt
f(K) : MapSch,Rng -> Map
fValueProof(L, x, b) : AlgLieExtr, RngIntElt, RngIntElt ->
F<char>
f<char>
HypergeometricSeries2F1(A,B,C,z) : FldRatElt, FldRatElt, FldRatElt, FldComElt -> FldComElt
WeberF1(s) : FldComElt -> FldComElt
Creation: f=1, 2 or ≥3 (HILBERT SERIES OF POLARISED VARIETIES)
WeberF2(s) : FldComElt -> FldComElt
WeberF1(s) : FldComElt -> FldComElt
WeberF2(g) : RngSerElt -> RngSerElt
GrpFP_1_F27 (Example H70E29)
GrpFP_1_F276 (Example H70E69)
GrpFP_1_F29 (Example H70E71)
DualFaceInDualFan(P,Q) : TorPol,[RngIntElt] -> TorFan
Face(e) : GrphEdge -> SeqEnum
Face(e) : GrphEdge -> SeqEnum
Face(u, v) : GrphVert, GrphVert -> SeqEnum
Face(u, v) : GrphVert, GrphVert -> SeqEnum
Face(F,C) : TorFan,TorCon -> TorCon
FaceFunction(F) : NwtnPgonFace -> RngElt
FaceIndices(P,i) : TorPol,RngIntElt -> SeqEnum
FaceSupportedBy(C,H) : TorCon,TorLatElt -> TorCon
IsFace(N, F) : NwtnPgon,Tup -> BoolElt
FaceFunction(F) : NwtnPgonFace -> RngElt
FaceIndices(P,i) : TorPol,RngIntElt -> SeqEnum
AllFaces(N) : NwtnPgon -> SeqEnum
Faces(G) : GrphMultUnd -> SeqEnum[GrphVert]
Faces(G) : GrphUnd -> SeqEnum[GrphVert]
Faces(N) : NwtnPgon -> SeqEnum
Faces(X, d) : SmpCpx, RngIntElt -> SeqEnum[SetEnum]
Faces(C) : TorCon -> SeqEnum
FacesContaining(N,p) : NwtnPgon,Tup -> SeqEnum
InnerFaces(N) : NwtnPgon -> SeqEnum
LowerFaces(N) : NwtnPgon -> SeqEnum
NFaces(G) : GrphMultUnd -> RngIntElt
NFaces(G) : GrphUnd -> RngIntElt
OuterFaces(N) : NwtnPgon -> SeqEnum
Facets and Faces (CONVEX POLYTOPES AND POLYHEDRA)
SmpCpx_faces (Example H140E3)
Newton_faces-ex (Example H46E2)
FacesContaining(N,p) : NwtnPgon,Tup -> SeqEnum
FaceSupportedBy(C,H) : TorCon,TorLatElt -> TorCon
FacetIndices(P) : TorPol -> SeqEnum
FacetIndices(P) : TorPol -> SeqEnum
Facets(X) : SmpCpx -> SeqEnum[SetEnum]
Facets(C) : TorCon -> SeqEnum
NumberOfFacets(P) : TorPol -> RngIntElt
Facets and Faces (CONVEX POLYTOPES AND POLYHEDRA)
SmpCpx_facets (Example H140E4)
Facets and Faces (CONVEX POLYTOPES AND POLYHEDRA)
FactorizationToInteger(f) : RngIntEltFact -> RngIntElt
Facint(f) : RngIntEltFact -> RngIntElt
FactorizationToInteger(s) : [ <RngIntElt, RngIntElt> ] -> RngIntElt
Facpol(f) : [Tup] -> BoolElt
FactorisationToPolynomial(f) : [Tup] -> BoolElt
SequenceToFactorization(s) : SeqEnum -> RngIntEltFact
SeqFact(s) : SeqEnum -> RngIntEltFact
Factorization (p-ADIC RINGS AND THEIR EXTENSIONS)
CFP(u: parameters) : GrpBrdElt -> Tup
CanonicalFactorRepresentation(u: parameters) : GrpBrdElt -> Tup
ClassGroupCyclicFactorGenerators(O) : RngOrd -> ModHomElt
CompositionTreeFactorNumber(G, g) : Grp, GrpElt -> RngIntElt
EulerFactor(A, p) : ArtRep, RngIntElt -> RngUPolElt
EulerFactor(H, t, p) : HypGeomData, FldRatElt, RngIntElt -> RngUPolElt
EulerFactor(J) : JacHyp -> RngUPolElt
EulerFactor(J, K) : JacHyp, FldFin -> RngUPolElt
EulerFactor(L, p) : LSer, RngIntElt -> .var Degree : RngIntElt : var Precision: RngIntElt Default: desGiven an L-series and a prime p, this computes thepth Euler factor, either as a polynomial or a power series.The optional parameter Degree will truncate the series to that length,and the optional parameter Precision is of use when the series isdefined over the complex numbers.
EulerFactorModChar(J) : JacHyp -> RngUPolElt
Factor(P) : NFSProc -> RngIntElt
Factor(P,k) : NFSProc, RngIntElt -> RngIntElt
FactorBasis(K, B) : FldNum, RngIntElt -> [ RngOrdIdl ]
FactorBasis(O) : RngOrd -> [ RngOrdIdl ], Integer
FactorBasisCreate(O,B): RngOrd, RngIntElt -> SeqEnum
FactorBasisVerify(O, L, U): RngOrd, RngIntElt, RngIntElt ->
ScalingFactor(g) : Tup -> RngElt
SocleFactor(G) : GrpPerm -> GrpPerm
StoreFactor(n) : RngIntElt ->
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013