[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: FPGroup1 .. free
GrpFP_1_FPGroup1 (Example H70E11)
GrpFP_1_FPGroup2 (Example H70E13)
FPGroupStrong(G) : GrpMat :-> GrpFP, Hom(Grp)
FPGroupStrong(G) : GrpPerm -> GrpFP, Hom(Grp)
FPGroupStrong(G, N) : GrpPerm, GrpPerm -> GrpFP, Hom(Grp)
FPGroupStrong(G: parameters) : GrpPerm :-> GrpFP, Hom(Grp)
FPQuotient(G, N) : GrpPerm, GrpPerm :-> GrpFP, Hom(Grp)
fprintf file, format, expression, ..., expression;
Automorphism Group and Isometry Testing over Fq[t] (LATTICES WITH GROUP ACTION)
ContinuedFraction(r) : FldRatElt -> [ RngIntElt ]
PartialFractionDecomposition(f) : FldFunRatUElt -> [ <RngUPolElt, RngIntElt, RngUPolElt> ]
SquarefreePartialFractionDecomposition(f) : FldFunRatUElt -> [ <RngUPolElt, RngIntElt, RngUPolElt> ]
Continued Fractions (REAL AND COMPLEX FIELDS)
Partial Fraction Decomposition (RATIONAL FUNCTION FIELDS)
FractionalPart(D) : DivSchElt -> DivSchElt
FractionalPart(D) : DivSchElt -> DivSchElt
FieldOfFractions(Q) : FldRat -> FldRat
FieldOfFractions(R) : RngDiff -> RngDiff, Map
FieldOfFractions(O) : RngFunOrd -> FldFunOrd
FieldOfFractions(Z) : RngInt -> FldRat
FieldOfFractions(O) : RngOrd -> FldOrd
FieldOfFractions(R) : RngPad -> FldPad
FieldOfFractions(R) : RngSer -> RngSerLaur
FieldOfFractions(E) : RngSerExt -> RngSerExt
FieldOfFractions(P) : RngUPol -> FldFunRat
FieldOfFractions(V) : RngVal -> Rng
RingOfFractions(R) : RngDiff -> RngDiff, Map
RingOfFractions(Q) : RngMPolRes -> RngFunFrac
RngOrd_fractions (Example H37E3)
FrattiniSubgroup(G) : GrpAb -> GrpAb
FrattiniSubgroup(G) : GrpFin -> GrpFin
FrattiniSubgroup(G) : GrpMat -> GrpMat
FrattiniSubgroup(G) : GrpPC -> GrpPC
FrattiniSubgroup(G) : GrpPerm -> GrpPerm
FrattiniSubgroup(G) : GrpAb -> GrpAb
FrattiniSubgroup(G) : GrpFin -> GrpFin
FrattiniSubgroup(G) : GrpMat -> GrpMat
FrattiniSubgroup(G) : GrpPC -> GrpPC
FrattiniSubgroup(G) : GrpPerm -> GrpPerm
IsBasePointFree(D) : DivSchElt -> BoolElt
IsMobile(D) : DivSchElt -> BoolElt
BaseLocus(D) : DivSchElt -> Sch
FreeAbelianGroup(GrpGPC, n) : Cat, RngIntElt -> GrpGPC
FreeAbelianGroup(n) : RngIntElt -> GrpAb
FreeAbelianQuotient(G) : GrpAb -> GrpAb, Map
FreeAbelianQuotient(G) : GrpGPC -> GrpAb, Map
FreeAlgebra(K, n) : Fld, RngIntElt -> AlgFr
FreeAlgebra(R, M) : Rng, MonFP -> AlgFPOld
FreeGroup(n) : RngIntElt -> GrpFP
FreeLieAlgebra(F, n) : Rng, RngIntElt -> AlgFPLie
FreeMonoid(n) : RngIntElt -> MonFP
FreeNilpotentGroup(r, e) : RngIntElt, RngIntElt -> GrpGPC
FreeProduct(G, H) : GrpFP, GrpFP -> GrpFP
FreeProduct(R, S) : SgpFP, SgpFP -> SgpFP
FreeProduct(Q) : [ GrpFP ] -> GrpFP
FreeResolution(M) : ModMPol -> ModCpx, ModMPolHom
FreeResolution(R) : RngInvar -> [ ModMPol ]
FreeSemigroup(n) : RngIntElt -> SgpFP
IsBasePointFree(L) : LinearSys -> BoolElt
IsCokernelTorsionFree(f) : TorLatMap -> BoolElt
IsFree(G) : GrpAb -> BoolElt
IsFree(M) : ModMPol -> BoolElt
IsLocallyFree(S) : ShfCoh -> BoolElt, RngIntElt
MinimalFreeResolution(R) : RngInvar -> [ ModMPol ]
NaturalFreeAlgebraCover(A) : AlgMat -> Map
NaturalFreeAlgebraCover(A) : AlgMat -> Map
SquareFreeFactorization(f) : RngUPolElt -> [ < RngUPolElt, RngIntElt > ]
TorsionFreeRank(A) : GrpAb -> RngIntElt
TorsionFreeRank(G) : GrpFP -> RngIntElt
TorsionFreeSubgroup(A) : GrpAb -> GrpAb
GrpFP_1_Free (Example H70E1)
Constructing Free Resolutions (MODULES OVER MULTIVARIATE RINGS)
Construction of a Free Group (FINITELY PRESENTED GROUPS)
Creation of Free Algebras (FINITELY PRESENTED ALGEBRAS)
Free Modules (FREE MODULES)
Free Resolutions (MODULES OVER MULTIVARIATE RINGS)
Structure Constructors (BLACK-BOX GROUPS)
Structure Constructors (FINITELY PRESENTED SEMIGROUPS)
Structure Constructors (GROUPS OF STRAIGHT-LINE PROGRAMS)
The Free Abelian Group (ABELIAN GROUPS)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013