[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: differential .. DihedralGroup
Coprime Index 1 and LCLM Factorisation (DIFFERENTIAL RINGS)
Derivation and Differential (DIFFERENTIAL RINGS)
Derivation and Differential (DIFFERENTIAL RINGS)
Derivatives and Differentials (DIFFERENTIAL RINGS)
Right Hand Factors of Operators (DIFFERENTIAL RINGS)
Slope Valuation of an Operator (DIFFERENTIAL RINGS)
Coprime Index 1 and LCLM Factorisation (DIFFERENTIAL RINGS)
Right Hand Factors of Operators (DIFFERENTIAL RINGS)
Slope Valuation of an Operator (DIFFERENTIAL RINGS)
DifferentialBasis(D) : DivCrvElt -> SeqEnum
DifferentialBasis(D) : DivCrvElt -> [DiffCrvElt]
DifferentialBasis(D) : DivFunElt -> [DiffFunElt]
DifferentialBasis(D) : DivFunElt -> [DiffFunElt]
DifferentialFieldExtension(L) : RngDiffOpElt, -> RngDiff
DifferentialIdeal(L) : [RngDiffElt] -> RngMPol
DifferentialLaurentSeriesRing(C) : Fld -> RngDiff
DifferentialOperator(f) : RngUPolElt -> RngDiffOpElt
DifferentialOperatorRing(F) : RngDiff -> RngDiffOp
DifferentialRing(P, f, C) : Rng, Map, Rng -> RngDiff
DifferentialRingExtension(L) : RngDiffOpElt -> RngDiff
BasisOfHolomorphicDifferentials(C) : Crv -> [DiffCrvElt]
BasisOfDifferentialsFirstKind(C) : Crv -> [DiffCrvElt]
BasisOfDifferentialsFirstKind(F) : FldFunG -> SeqEnum[DiffFunElt]
SheafOfDifferentials(X) : Sch -> ShfCoh
SpaceOfDifferentialsFirstKind(C) : Crv -> ModFld, Map
SpaceOfDifferentialsFirstKind(F) : FldFunG -> ModFld, Map
Differentials (ALGEBRAIC FUNCTION FIELDS)
DifferentialSpace(C) : Crv -> DiffCrv
DifferentialSpace(D) : DivCrvElt -> ModFld, Map
DifferentialSpace(D) : DivCrvElt -> ModFld,Map
DifferentialSpace(D) : DivFunElt -> ModFld, Map
DifferentialSpace(D) : DivFunElt -> ModFld, Map
DifferentialSpace(F) : FldFun -> DiffFun
DifferentialSpace(F) : FldFunG -> DiffFun
Differentiation(x, a) : FldFunGElt, FldFunGElt -> FldFunGElt
Differentiation(x, n, a) : FldFunGElt, RngIntElt, FldFunGElt -> FldFunGElt
DifferentiationSequence(x, n, a) : FldFunGElt, RngIntElt, FldFunGElt -> SeqEnum
Numerical Derivatives (REAL AND COMPLEX FIELDS)
DifferentiationSequence(x, n, a) : FldFunGElt, RngIntElt, FldFunGElt -> SeqEnum
DIFFERENTIAL RINGS
CompleteDigraph(n) : RngIntElt -> GrphDir
Digraph< n | edges : parameters> : RngIntElt, List -> GrphDir
DynkinDigraph(C) : AlgMatElt -> GrphDir
DynkinDigraph(G) : GrpLie -> GrphUnd
DynkinDigraph(W) : GrpMat -> GrphDir
DynkinDigraph(W) : GrpPermCox -> GrphDir
DynkinDigraph(N) : MonStgElt -> GrphDir
DynkinDigraph(R) : RootStr -> GrphDir
DynkinDigraph(R) : RootSys -> GrphDir
EmptyDigraph(n : parameters) : RngIntElt -> GrphDir
IncidenceDigraph(A) : ModMatRngElt -> GrphDir
IrreducibleDynkinDigraph(X, n) : MonStgElt, RngIntElt -> GrphDir
IsDynkinDigraph(D) : GrphDir -> BoolElt
MultiDigraph<n | edges > : RngIntElt, List -> GrphMultDir, GrphVertSet, GrphEdgeSet
RandomDigraph(n, r : parameters) : RngIntElt, FldReElt -> GrphDir
UnderlyingDigraph(G) : Grph -> GrphDir
UnderlyingDigraph(G) : GrphMult-> GrphDir, GrphVertSet, GrphEdgeSet
UnderlyingMultiDigraph(G) : Grph -> GrphMultDir, GrphVertSet, GrphEdgeSet
Adjacency and Degree Functions for a Digraph (GRAPHS)
Connectedness in a Multidigraph (MULTIGRAPHS)
Connectedness in a Digraph (GRAPHS)
Construction of a General Digraph (GRAPHS)
Construction of a Standard Digraph (GRAPHS)
Construction of Graphs and Digraphs (GRAPHS)
Converting between Graphs and Digraphs (GRAPHS)
DihedralForms(M) : ModFrm -> List
DihedralGroup(C, n) : Cat, RngIntElt -> GrpFin
DihedralGroup(GrpFP, n) : Cat, RngIntElt -> GrpFP
DihedralGroup(GrpGPC, n) : Cat, RngIntElt -> GrpGPC
DihedralGroup(GrpPC, n) : Cat, RngIntElt -> GrpPC
DihedralGroup(GrpPerm, n) : Cat, RngIntElt -> GrpPerm
DihedralSubspace(M) : ModFrm -> ModFrm
DihedralForms(M) : ModFrm -> List
DihedralGroup(C, n) : Cat, RngIntElt -> GrpFin
DihedralGroup(GrpFP, n) : Cat, RngIntElt -> GrpFP
DihedralGroup(GrpGPC, n) : Cat, RngIntElt -> GrpGPC
DihedralGroup(GrpPC, n) : Cat, RngIntElt -> GrpPC
DihedralGroup(GrpPerm, n) : Cat, RngIntElt -> GrpPerm
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013