[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: indecomposable .. Index
Indecomposable Projective Modules (BASIC ALGEBRAS)
The Construction of Projective Indecomposable Modules (K[G]-MODULES AND GROUP REPRESENTATIONS)
Indecomposable Projective Modules (BASIC ALGEBRAS)
IndecomposableSummands(A) : AlgAssV -> [ AlgAssV ], [ AlgAssVElt ]
DirectSumDecomposition(A) : AlgAssV -> [ AlgAssV ], [ AlgAssVElt ]
DirectSumDecomposition(ρ) : Map[AlgLie, AlgMatLie] -> SeqEnum
DirectSumDecomposition(ρ) : Map[GrpLie, GrpMat] -> SeqEnum
DirectSumDecomposition(V) : ModAlg -> SeqEnum
DirectSumDecomposition(M) : ModRng -> [ ModRng ]
DirectSumDecomposition(R) : RootDtm -> [], RootDtm, Map
DirectSumDecomposition(R) : RootSys -> []
IndecomposableSummands(L) : AlgLie -> [ AlgLie ]
IsIndefinite(A) : AlgQuat -> BoolElt
IsDefinite(A) : AlgQuat -> BoolElt
Algorithm II (Using Indefinite Quaternion Orders) (HILBERT MODULAR FORMS)
InDegree(u) : GrphVert -> RngIntElt
InDegree(u) : GrphVert -> RngIntElt
IndentPop() : ->
IndentPush() : ->
SetIndent(n) : RngIntElt ->
Indentation (INPUT AND OUTPUT)
IndentPop() : ->
IndentPush() : ->
IndependenceNumber(G: parameters) : GrphUnd -> RngIntElt
IndependenceNumber(G: parameters) : GrphUnd -> RngIntElt
IndependentUnits(O) : RngFunOrd -> SeqEnum[RngFunOrdElt]
IndependentUnits(O) : RngOrd -> GrpAb, Map
IsIndependent(Q) : [ AlgGen ] -> BoolElt
IsIndependent(Q) : [ AlgLieElt ] -> BoolElt
IsIndependent(Q) : [ ModTupFldElt ] -> BoolElt
IsIndependent(S) : { ModTupFldElt } -> BoolElt
IsLinearlyDependent(points) : [PtEll] -> BoolElt, ModTupRngElt
IsLinearlyIndependent(P, Q) : PtEll, PtEll -> BoolElt, ModTupElt
IsLinearlyIndependent(P, Q, n) : PtEll, PtEll, RngIntElt -> BoolElt
IsLinearlyIndependent(S) : [ PtEll ] -> BoolElt, ModTupElt
IsLinearlyIndependent(S, n) : [ PtEll ], RngIntElt -> BoolElt
MaximumIndependentSet(G: parameters) : GrphUnd -> { GrphVert }
Cliques, Independent Sets (GRAPHS)
IsLinearlyIndependent(points) : [PtEll] -> BoolElt, ModTupRngElt
IndependentGenerators(points) : [PtEll] -> [PtEll]
IsLinearlyDependent(points) : [PtEll] -> BoolElt, ModTupRngElt
IndependentUnits(O) : RngFunOrd -> SeqEnum[RngFunOrdElt]
IndependentUnits(O) : RngOrd -> GrpAb, Map
IndeterminacyLocus(f) : TorMap -> [Sch]
IndeterminacyLocus(f) : TorMap -> [Sch]
AbsoluteInertiaIndex(L) : RngPad -> RngIntElt
AbsoluteInertiaDegree(L) : RngPad -> RngIntElt
AbsoluteRamificationDegree(L) : RngPad -> RngIntElt
CharacterWithSchurIndex(n: parameters) : RngIntElt -> AlgChtrElt. GrpPC
ChromaticIndex(G) : GrphUnd -> RngIntElt
CliffordIndexOne(C) : Crv -> MapSch
FactoredIndex(G, H) : GrpAb, GrpAb -> [<RngIntElt, RngIntElt>]
FactoredIndex(G, H) : GrpFin, GrpFin -> [ <RngIntElt, RngIntElt> ]
FactoredIndex(G, H) : GrpGPC, GrpGPC -> [<RngIntElt, RngIntElt>]
FactoredIndex(G, H) : GrpMat, GrpMat -> [ <RngIntElt, RngIntElt> ]
FactoredIndex(G, H) : GrpPC, GrpPC -> [<RngIntElt, RngIntElt>]
FactoredIndex(G, H) : GrpPerm, GrpPerm -> [ <RngIntElt, RngIntElt> ]
FanoIndex(X) : GRFano -> RngIntElt
FirstIndexOfColumn(t, j) : Tbl,RngIntElt -> RngIntElt
FirstIndexOfRow(t, i) : Tbl,RngIntElt -> RngIntElt
GorensteinIndex(C) : TorCon -> RngIntElt,TorLatElt
GorensteinIndex(P) : TorPol -> RngIntElt
HasIndexOne(C,p) : CrvHyp, RngIntElt -> BoolElt
HasIndexOneEverywhereLocally(C) : CrvHyp -> BoolElt
HasValidIndex(P) : GrpFPCosetEnumProc -> BoolElt
Index(x) : CopElt -> RngIntElt
Index(D,X) : DB,GRK3 -> RngIntElt,GRK3
Index(C) : GRCrvS -> RngIntElt
Index(G, H) : GrpAb, GrpAb -> RngIntElt
Index(G, H) : GrpFin, GrpFin -> RngIntElt
Index(P) : GrpFPCosetEnumProc -> RngIntElt
Index(G, H) : GrpGPC, GrpGPC -> RngIntElt
Index(e) : GrphEdge -> RngIntElt
Index(v) : GrphResVert -> RngIntElt
Index(v) : GrphSplVert -> RngIntElt
Index(v) : GrphVert -> RngIntElt
Index(G, H) : GrpMat, GrpMat -> RngIntElt
Index(G, H) : GrpPC, GrpPC -> RngIntElt
Index(G, H) : GrpPerm, GrpPerm -> RngIntElt
Index(G) : GrpPSL2 -> RngIntElt
Index(G,H) : GrpPSL2, GrpPSL2 -> RngIntElt
Index(p) : GRPtS -> RngIntElt
Index(H2, H1) : HomModAbVar, HomModAbVar -> RngIntElt
Index(L, S): Lat, Lat -> RngInt
Index(s, t) : MonStgElt, MonStgElt -> RngIntElt
Index(G, H: parameters) : GrpFP, GrpFP -> RngIntElt
Index(P, l) : PlaneLn -> RngIntElt
Index(P, p) : PlanePt -> RngIntElt
Index(O, S) : RngFunOrd, RngFunOrd -> Any
Index(O, S) : RngOrd, RngOrd -> RngIntElt
Index(O, I) : RngOrd, RngOrdIdl -> RngIntElt
Index(a) : RngOrdElt -> RngIntElt
Index(s, i, n) : RngPowLazElt, [RngIntElt], [RngIntElt] -> RngIntElt
Index(S, x) : SeqEnum, Elt -> RngIntElt
Index(S, x) : SetIndx, Elt -> RngIntElt
Index(FS) : SymFry -> RngIntElt
Index(C) : TorCon -> RngIntElt
IndexCalculus(D1, D2, D0, np) : DivCrvElt, DivCrvElt, DivCrvElt, RngIntElt -> RngIntElt
IndexCalculusMatrix(D1, D2, D0, n, rr) : DivCrvElt, DivCrvElt, DivCrvElt, RngIntElt, RngIntElt -> MtrxSprs, SeqEnum, SeqEnum, DivCrvElt, DivCrvElt, RngIntElt, RngIntElt
IndexFormEquation(O, k) : RngOrd, RngIntElt -> [ RngOrdElt ]
IndexOfPartition(P) : SeqEnum -> RngIntElt
IndexOfSpeciality(D) : DivCrvElt -> RngIntElt
IndexOfSpeciality(D) : DivFunElt -> RngIntElt
InertiaDegree(L) : RngLocA -> RngIntElt
LastIndexOfColumn(t, j) : Tbl,RngIntElt -> RngIntElt
LastIndexOfRow(t, i) : Tbl,RngIntElt -> RngIntElt
LowIndexNormalSubgroups(G, n: parameters) : GrpFP, RngIntElt -> [ Rec ]
LowIndexProcess(G, R : parameters) : GrpFP, RngIntElt -> Process(Lix)
LowIndexSubgroups(G, R : parameters) : GrpFP, RngIntElt -> [ GrpFP ]
LowIndexSubgroups(G, R : parameters) : GrpMat, RngIntElt -> [ GrpMat ]
LowIndexSubgroups(G, n: parameters) : GrpPerm, RngIntElt -> SeqEnum
RamificationDegree(I) : RngOrdIdl -> RngIntElt
RamificationDegree(L) : RngPad -> RngIntElt
RamificationDegree(K, L) : RngPad, RngPad -> RngIntElt
RamificationIndex(P) : PlcFunElt -> RngIntElt
RamificationIndex(P) : PlcNumElt -> RngIntElt
RamificationIndex(P) : PlcNumElt -> RngIntElt
RamificationIndex(I) : RngFunOrdIdl -> RngIntElt
RamificationIndex(I, p) : RngInt, RngIntElt -> RngIntElt
RamificationIndex(I, p) : RngOrdIdl, RngIntElt -> RngIntElt
RamificationIndex(E) : RngSerExt -> RngIntElt
SchurIndex(x) : AlgChtrElt -> RngIntElt
SchurIndexGroup(n: parameters) : RngIntElt -> GrpPC
TerminalIndex(p) : GRPtS -> RngIntElt
TransverseIndex(C) : GRCrvS -> RngIntElt
WittIndex(V) : ModTupFld -> RngIntElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013