[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: GCLD  ..  Generalized


GCLD

   GCLD(A, B) : RngDiffOpElt, RngDiffOpElt -> RngDiffOpElt
   GreatestCommonLeftDivisor(A, B) : RngDiffOpElt, RngDiffOpElt -> RngDiffOpElt

GCRD

   GCRD(A, B) : RngDiffOpElt, RngDiffOpElt -> RngDiffOpElt
   GreatestCommonRightDivisor(A, B) : RngDiffOpElt, RngDiffOpElt -> RngDiffOpElt

GE

   IsGE(u, v: parameters) : GrpBrdElt, GrpBrdElt -> BoolElt
   IsGe(u, v: parameters) : GrpBrdElt, GrpBrdElt -> BoolElt
   u ≥v : GrpBrdElt, GrpBrdElt -> BoolElt

Ge

   IsGE(u, v: parameters) : GrpBrdElt, GrpBrdElt -> BoolElt
   IsGe(u, v: parameters) : GrpBrdElt, GrpBrdElt -> BoolElt
   u ≥v : GrpBrdElt, GrpBrdElt -> BoolElt

ge

   IsGE(u, v: parameters) : GrpBrdElt, GrpBrdElt -> BoolElt
   IsGe(u, v: parameters) : GrpBrdElt, GrpBrdElt -> BoolElt
   u ≥v : GrpBrdElt, GrpBrdElt -> BoolElt
   u ge v : GrpFPElt, GrpFPElt -> BoolElt
   s ge t : MonStgElt, MonStgElt -> BoolElt
   a ge b : RngElt, RngElt -> BoolElt
   S ge T : SeqEnum, SeqEnum -> BoolElt
   u ge v : SgpFPElt, SgpFPElt -> BoolElt
   e ge f : SubGrpLatElt, SubGrpLatElt -> BoolElt
   e ge f : SubGrpLatElt, SubGrpLatElt -> BoolElt

Gegenbauer

   GegenbauerPolynomial(n, m) : RngIntElt, RngElt ->RngUPolElt

GegenbauerPolynomial

   GegenbauerPolynomial(n, m) : RngIntElt, RngElt ->RngUPolElt

gen

   General Surfaces (ALGEBRAIC SURFACES)
   General Vertex and Edge Connectivity in Graphs and Digraphs (GRAPHS)
   General Vertex and Edge Connectivity in Multigraphs and Multidigraphs (MULTIGRAPHS)
   Introduction (ALGEBRAIC SURFACES)
   Recognition of Arbitrary *-Algebras (ALGEBRAS WITH INVOLUTION)
   Updating the Databases (HADAMARD MATRICES)

gen-connectivity

   General Vertex and Edge Connectivity in Graphs and Digraphs (GRAPHS)

gen-recog

   Recognition of Arbitrary *-Algebras (ALGEBRAS WITH INVOLUTION)

gen-sfcs

   General Surfaces (ALGEBRAIC SURFACES)

Genera

   LocalGenera(G) : SymGen -> Lat
   SpinorGenera(G) : SymGen -> [ SymGen ]

General

   AGL(arguments)
   AffineGeneralLinearGroup(arguments)
   AffineGeneralLinearGroup(GrpMat, n, q) : Cat, RngIntElt, RngIntElt -> GrpMat
   GeneralLinearGroup(n, R) : RngIntElt, Rng -> GrpMat
   GeneralLinearGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
   GeneralOrthogonalGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
   GeneralOrthogonalGroupMinus(n, q) : RngIntElt, RngIntElt -> GrpMat
   GeneralOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
   GeneralUnitaryGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
   MinimalModelGeneralType(S) : Srfc -> Map, BoolElt
   PGO(arguments)
   PGOMinus(arguments)
   PGOPlus(arguments)
   ProjectiveGeneralLinearGroup(arguments)
   ProjectiveGeneralUnitaryGroup(arguments)

general

   Constructing a General L-Series (L-FUNCTIONS)
   Constructing a General Matrix Algebra (MATRIX ALGEBRAS)
   Construction of a General Group (GROUPS)
   Construction of a General Matrix Group (MATRIX GROUPS OVER GENERAL RINGS)
   Construction of a General Permutation Group (PERMUTATION GROUPS)
   Construction of General Additive Codes (ADDITIVE CODES)
   Construction of General Linear Codes (LINEAR CODES OVER FINITE FIELDS)
   Construction of General Linear Codes (LINEAR CODES OVER FINITE RINGS)
   Construction of General Quantum Codes (QUANTUM CODES)
   Creation of a Matrix Group (MATRIX GROUPS OVER GENERAL RINGS)
   FREE MODULES
   General Constructions (MODULES OVER AN ALGEBRA)
   General Factorization (RING OF INTEGERS)
   General Function Field Places (ALGEBRAIC FUNCTION FIELDS)
   General function fields (ALGEBRAIC FUNCTION FIELDS)
   General Functions (NUMBER FIELDS)
   General Functions (ORDERS AND ALGEBRAIC FIELDS)
   General Functions and Clifford Index One (ALGEBRAIC CURVES)
   General L-series (L-FUNCTIONS)
   Generalized Attacks (LINEAR CODES OVER FINITE FIELDS)
   K[G]-MODULES AND GROUP REPRESENTATIONS
   MODULES OVER AN ALGEBRA
   Presentations (FINITELY PRESENTED SEMIGROUPS)

general-magma

   Constructing a General Matrix Algebra (MATRIX ALGEBRAS)
   Presentations (FINITELY PRESENTED SEMIGROUPS)

general-mceliece

   Generalized Attacks (LINEAR CODES OVER FINITE FIELDS)

general-module-constructions

   General Constructions (MODULES OVER AN ALGEBRA)

generalform

   FldForms_generalform (Example H29E1)

Generalised

   GeneralisedRowReduction(ρ) : GrpLie, Map -> Map
   GeneralisedRowReduction(ρ) : Map -> Map

GeneralisedRowReduction

   GeneralisedRowReduction(ρ) : GrpLie, Map -> Map
   GeneralisedRowReduction(ρ) : Map -> Map

Generalized

   GeneralizedFibonacciNumber(g0, g1, n) : RngIntElt, RngIntElt, RngIntElt -> RngIntElt
   GeneralizedFibonacciNumber(g0, g1, n) : RngIntElt, RngIntElt, RngIntElt -> RngIntElt
   GeneralizedSrivastavaCode(A, W, Z, t, S) : [ FldFinElt ], [ FldFinElt ], [ FldFinElt ], RngIntElt, FldFin -> Code
   IsGeneralizedCartanMatrix(C) : AlgMatElt -> BoolElt
   IsGeneralizedCharacter(x) : AlgChtrElt -> BoolElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013