[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: action .. Add
Action of Automorphisms (GRAPHS)
Action of Automorphisms (INCIDENCE STRUCTURES AND DESIGNS)
Action of Frobenius (ELLIPTIC CURVES OVER FUNCTION FIELDS)
Action of PSL2(R) on the Upper Half Plane (CONGRUENCE SUBGROUPS OF PSL2(R))
Action on a Coset Space (FINITE SOLUBLE GROUPS)
Action on a Coset Space (GROUPS)
Action on a Coset Space (MATRIX GROUPS OVER GENERAL RINGS)
Action on a Coset Space (PERMUTATION GROUPS)
Action on a G-invariant Partition (PERMUTATION GROUPS)
Action on a Polynomial Ring (K[G]-MODULES AND GROUP REPRESENTATIONS)
Action on Orbits (MATRIX GROUPS OVER GENERAL RINGS)
Action on Orbits (PERMUTATION GROUPS)
Automorphism Groups (LINEAR CODES OVER FINITE FIELDS)
General Action of Collineations (FINITE PLANES)
Group Actions on Polynomials (INVARIANT THEORY)
Matrix Action on Forms (BINARY QUADRATIC FORMS)
Reduced Permutation Actions (PERMUTATION GROUPS)
Root Actions (COXETER GROUPS)
Roots, Coroots and Reflections (REFLECTION GROUPS)
Standard Action (COXETER GROUPS)
The Action of an Algebra Element (MODULES OVER AN ALGEBRA)
Action on a Coset Space (MATRIX GROUPS OVER GENERAL RINGS)
Reduced Permutation Actions (PERMUTATION GROUPS)
Root Actions (COXETER GROUPS)
Standard Action (COXETER GROUPS)
ActionGenerator(B, i) : AlgBas, RngIntElt -> SeqEnum
ActionGenerator(L, i) : Lat, RngIntElt -> GrpMat
ActionGenerator(M, i) : ModGrp, RngIntElt -> AlgMatElt
ActionGenerator(M, i) : ModRng, RngIntElt -> AlgMatElt
ActionGenerators(M) : ModGrp -> [ AlgMatElt ]
ActionGroup(M) : ModGrp -> GrpMat
ActionImage(A, Y) : GrpPerm, GSet -> GrpPerm
ActionImage(G, Y) : GrpPerm, GSet -> GrpPerm
ActionImage(G, Y) : GrpPerm, GSet -> GrpPerm
ActionImage(G, Y) : GrpPerm, GSet -> GrpPerm
ActionKernel(A, Y) : GrpPerm, GSet -> GrpPerm
ActionKernel(G, Y) : GrpPerm, GSet -> GrpPerm
ActionKernel(G, Y) : GrpPerm, GSet -> GrpPerm
ActionKernel(G, Y) : GrpPerm, GSet -> GrpPerm
ActionMatrix(A,x) : AlgBas, Mtrx -> ModMatFldElt
ActionMatrix(M, a): ModAlg, AlgElt -> AlgMatElt
GrpMatGen_Actions (Example H59E22)
GrpPerm_Actions (Example H58E25)
Action on an Elementary Abelian Section (K[G]-MODULES AND GROUP REPRESENTATIONS)
Group Actions (LINEAR CODES OVER FINITE FIELDS)
Matrix Group Actions (MATRIX GROUPS OVER GENERAL RINGS)
Permutation Group Actions (PERMUTATION GROUPS)
AdamsOperator(R, n, v) : RootDtm, RngIntElt, ModTupRngElt -> LieRepDec
AdamsOperator(R, n, v) : RootDtm, RngIntElt, ModTupRngElt -> LieRepDec
AddVertex(~G) : Grph ->
AddVertices(~G, n) : Grph, RngIntElt ->
G +:= n : Grph, RngIntElt ->
G +:= n : GrphMult, RngIntElt ->
AddAttribute(C, F) : Cat, MonStgElt -> ;
AddColumn(~a, u, i, j) : AlgMatElt, RngElt, RngIntElt, RngIntElt ->
AddColumn(A, c, i, j) : Mtrx, RngElt, RngIntElt, RngIntElt -> Mtrx
AddColumn(A, c, i, j) : MtrxSprs, RngElt, RngIntElt, RngIntElt -> MtrxSprs
AddConstraints(L, lhs, rhs) : LP, Mtrx, Mtrx ->
AddCubics(cubic1, cubic2 : parameters) : RngMPolElt, RngMPolElt -> RngMPolElt
AddCubics(cubic1, cubic2 : parameters) : RngMPolElt, RngMPolElt -> RngMPolElt
AddEdge(~G, u, v) : Grph, GrphVert, GrphVert ->
AddEdge(G, u, v) : Grph, GrphVert, GrphVert -> Grph, GrphEdge
AddEdge(G, u, v, l) : Grph, GrphVert, GrphVert, . -> Grph, GrphEdge
AddEdge(~G, u, v) : GrphMult, GrphVert, GrphVert ->
AddEdge(G, u, v) : GrphMult, GrphVert, GrphVert -> GrphMult, GrphEdge
AddEdge(G, u, v, l) : GrphMultUnd, GrphVert, GrphVert, . -> GrphMult, GrphEdge
AddEdge(~N, u, v, c) : GrphNet, GrphVert, GrphVert, RngIntElt ->
AddEdge(N, u, v, c) : GrphNet, GrphVert, GrphVert, RngIntElt -> GrphNet, GrphEdge
AddEdge(G, u, v, c, l) : GrphNet, GrphVert, GrphVert, RngIntElt, . -> GrphNet, GrphEdge
AddEdge(G, u, v, c) : GrphNet, GrphVert, RngIntElt, . -> GrphNet, GrphEdge
AddEdge(N, u, v, c, l) : GrphNet,GrphVert, GrphVert, RngIntElt, . -> GrphNet, GrphEdge
AddEdges(G, S, L) : Grph, SeqEnum, SeqEnum -> Grph
AddEdges(G, S, L) : GrphMult, SeqEnum, SeqEnum -> GrphMult
AddEdges(~G, S) : GrphMultUnd, { { GrphVert, GrphVert } } ->
AddEdges(G, S) : GrphMultUnd, { { GrphVert, GrphVert } } -> GrphMultUnd
AddEdges(N, S) : GrphNet, { < [ GrphVert, GrphVert ], RngIntElt > } -> GrphNet
AddEdges(~G, S) : GrphUnd, { { GrphVert, GrphVert } } ->
AddEdges(G, S) : GrphUnd, { { GrphVert, GrphVert } } -> GrphUnd
AddGenerator(G) : GrpFP -> GrpFP
AddGenerator(G, x) : GrpFP, . -> BoolElt, GrpFP, Map
AddGenerator(G, w) : GrpFP, GrpFPElt -> GrpFP
AddGenerator(S) : SgpFP -> SgpFP
AddGenerator(S, w) : SgpFP, SgpFPElt -> SgpFP
AddNormalizingGenerator(~H, x) : GrpPerm, GrpPermElt ->
AddRedundantGenerators(G, Q) : GrpSLP, [ GrpSLPElt ] -> GrpSLP
AddRelation(G, g) : GrpFP, GrpFPElt -> GrpFP
AddRelation(G, g, i) : GrpFP, GrpFPElt, RngIntElt -> GrpFP
AddRelation(G, r) : GrpFP, RelElt -> GrpFP
AddRelation(G, r, i) : GrpFP, RelElt, RngIntElt -> GrpFP
AddRelation(E) : RngOrdElt -> BoolElt
AddRelation(S, r) : SgpFP, Rel -> SgpFP
AddRelator(~P, w) : GrpFPCosetEnumProc, GrpFPElt ->
AddRepresentation(~D, E, c) : LieRepDec, LieRepDec, RngIntElt ->
AddRepresentation(~D, v, c) : LieRepDec, ModTupRngElt, RngIntElt ->
AddRow(~a, u, i, j) : AlgMatElt, RngElt, RngIntElt, RngIntElt ->
AddRow(A, c, i, j) : Mtrx, RngElt, RngIntElt, RngIntElt -> Mtrx
AddRow(A, c, i, j) : MtrxSprs, RngElt, RngIntElt, RngIntElt -> MtrxSprs
AddScaledMatrix(~A, s, B) : Mtrx, RngElt, Mtrx ->
AddScaledMatrix(A, s, B) : Mtrx, RngElt, Mtrx -> Mtrx
AddSimplex(X, s) : SmpCpx, SetEnum -> SmpCpx
AddSubgroupGenerator(~P, w) : GrpFPCosetEnumProc, GrpFPElt ->
AddVectorToLattice(v) : TorLatElt -> TorLat,TorLatMap
AddVertex(~G, l) : Grph, . ->
AddVertex(~G, l) : GrphMult, . ->
AddVertices(~G, n, L) : Grph, RngIntElt, SeqEnum ->
AddVertices(~G, n, L) : GrphMult, RngIntElt, SeqEnum ->
PseudoAdd(P1, P2, P3) : SrfKumPt, SrfKumPt, SrfKumPt -> SrfKumPt
PseudoAddMultiple(P1, P2, P3, n) : SrfKumPt, SrfKumPt, SrfKumPt, RngIntElt -> SrfKumPt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013