[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: polynomial  ..  polytope-example


polynomial

   Action on a Polynomial Ring (K[G]-MODULES AND GROUP REPRESENTATIONS)
   Defining Polynomial (FINITE FIELDS)
   Indicial Polynomials (DIFFERENTIAL RINGS)
   LOCAL POLYNOMIAL RINGS
   Minimal and Characteristic Polynomial (FINITE FIELDS)
   Minimal Polynomial, Norm and Trace (ALGEBRAICALLY CLOSED FIELDS)
   MULTIVARIATE POLYNOMIAL RINGS
   Polynomials for Finite Fields (FINITE FIELDS)
   The Bernoulli Polynomial (UNIVARIATE POLYNOMIAL RINGS)
   The Generator Polynomial (LINEAR CODES OVER FINITE FIELDS)
   UNIVARIATE POLYNOMIAL RINGS

polynomial-ring-action

   Action on a Polynomial Ring (K[G]-MODULES AND GROUP REPRESENTATIONS)

PolynomialAlgebra

   PolynomialRing(R) : Rng -> RngUPol
   PolynomialAlgebra(R) : Rng -> RngUPol
   PolynomialRing(R, n) : Rng, RngIntElt -> RngMPol
   PolynomialRing(R, n) : Rng, RngIntElt -> RngMPol
   PolynomialRing(R, n, order) : Rng, RngIntElt, MonStgElt, ... -> RngMPol
   PolynomialRing(R, n, order) : Rng, RngIntElt, MonStgElt, ... -> RngMPol
   PolynomialRing(R, n, T) : Rng, RngIntElt, Tup -> RngMPol
   PolynomialRing(R, Q) : Rng, [ RngIntElt ] -> RngMPol

PolynomialCoefficient

   PolynomialCoefficient(s, i) : RngPowLazElt, RngIntElt -> RngPowLazElt

PolynomialMap

   PolynomialMap(L) : LinearSys -> RngMPolElt

PolynomialRing

   PolynomialRing(R) : Rng -> RngUPol
   PolynomialAlgebra(R) : Rng -> RngUPol
   PolynomialRing(model) : ModelG1 -> RngMPol
   PolynomialRing(R, n) : Rng, RngIntElt -> RngMPol
   PolynomialRing(R, n) : Rng, RngIntElt -> RngMPol
   PolynomialRing(R, n, order) : Rng, RngIntElt, MonStgElt, ... -> RngMPol
   PolynomialRing(R, n, order) : Rng, RngIntElt, MonStgElt, ... -> RngMPol
   PolynomialRing(R, n, T) : Rng, RngIntElt, Tup -> RngMPol
   PolynomialRing(R, Q) : Rng, [ RngIntElt ] -> RngMPol
   PolynomialRing(R) : RngInvar -> RngMPol

Polynomials

   Multivariate Polynomials (SYMMETRIC FUNCTIONS)
   AllDefiningPolynomials(f) : MapSch -> SeqEnum
   AllInverseDefiningPolynomials(f) : MapSch -> SeqEnum
   AllIrreduciblePolynomials(F, m) : FldFin, RngIntElt -> { RngUPolElt }
   CentrePolynomials(G) : GrpLie ->
   DefiningPolynomials(F) : FldFun -> [RngUPolElt]
   DefiningPolynomials(H) : HypGeomData -> RngUPolElt, RngUPolElt
   DefiningPolynomials(f) : MapSch -> SeqEnum
   DefiningPolynomials(X) : Sch -> SeqEnum
   FactoredDefiningPolynomials(f) : MapSch -> SeqEnum
   FactoredInverseDefiningPolynomials(f) : MapSch -> SeqEnum
   FactoredMinimalAndCharacteristicPolynomials(A: parameters) : Mtrx -> [<RngUPolElt, RngIntElt>], [<RngUPolElt, RngIntElt>]
   FrobeniusTracesToWeilPolynomials(tr, q, i, deg) : SeqEnum, RngIntElt, RngIntElt, RngIntElt -> SeqEnum
   HessePolynomials(n, r, invariants : parameters) : RngIntElt, RngIntElt, [RngElt] -> RngElt, RngElt, RngElt
   HyperellipticPolynomials(E) : CrvEll -> RngUPolElt, RngUPolElt
   HyperellipticPolynomials(C) : CrvHyp -> RngUPolElt, RngUPolElt
   HyperellipticPolynomialsFromShiodaInvariants(JI) : SeqEnum -> SeqEnum, GrpPerm
   InverseDefiningPolynomials(f) : MapSch -> SeqEnum
   IsolatedPointsLiftToMinimalPolynomials(S,P) : Sch, SeqEnum -> BoolElt, SeqEnum
   MinimalAndCharacteristicPolynomials(A: parameters) : Mtrx -> RngUPolElt, RngUPolElt
   NewtonPolynomials(L) : RngDiffOpElt -> SeqEnum, SeqEnum
   NumberOfPrimePolynomials(q, d) : RngIntElt, RngIntElt -> RngIntElt
   PrimePolynomials(R, d) : RngUPol, RngIntElt -> SeqEnum[ RngUPolElt ]
   RubinSilverbergPolynomials(n, J : parameters) : RngIntElt, RngElt -> RngElt, RngElt
   TwistedPolynomials(R) : Rng -> RngUPolTwst
   RngPol_Polynomials (Example H23E2)

polynomials

   Orthogonal Polynomials (UNIVARIATE POLYNOMIAL RINGS)
   Permutation Polynomials (FINITE FIELDS)
   Permutation Polynomials (UNIVARIATE POLYNOMIAL RINGS)
   Polynomials (p-ADIC RINGS AND THEIR EXTENSIONS)
   Polynomials Associated with Newton Polygons (NEWTON POLYGONS)
   Polynomials over Series Rings (POWER, LAURENT AND PUISEUX SERIES)
   Polynomials over Series Rings (POWER, LAURENT AND PUISEUX SERIES)
   Special Families of Polynomials (UNIVARIATE POLYNOMIAL RINGS)
   The Ring of Twisted Polynomials (CLASS FIELD THEORY FOR GLOBAL FUNCTION FIELDS)

PolynomialSieve

   PolynomialSieve(F, m, J0, J1,MaxAlpha) : RngMPolElt, RngIntElt, RngIntElt, RngIntElt, FldReElt -> List

polyquad

   FldForms_polyquad (Example H29E12)

polys

   Hilbert Series and Hilbert Polynomials (HILBERT SERIES OF POLARISED VARIETIES)

Polytope

   CrossPolytope(L) : TorLat -> TorPol
   CyclicPolytope(L,n) : TorLat,RngIntElt -> TorPol
   Polytope(Q) : SeqEnum -> TorPol
   RandomPolytope(L,n,k) : TorLat,RngIntElt,RngIntElt -> TorPol
   RiemannRochPolytope(D) : DivTorElt -> TorPol

polytope-automorphism-example

   Polyhedra_polytope-automorphism-example (Example H143E5)

polytope-example

   Polyhedra_polytope-example (Example H143E1)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013