[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: special-ideals  ..  Split


special-ideals

   Special Functions for Ideals (QUADRATIC FIELDS)

special-lattices

   Special Lattices (LATTICES)

special-lie-alg-ex

   AlgLie_special-lie-alg-ex (Example H100E21)

special-presentation

   Special Presentations (FINITE SOLUBLE GROUPS)

Special_basic_algebras

   Special Basic Algebras (BASIC ALGEBRAS)

SpecialEvaluate

   SpecialEvaluate(F, x) : RngUPolElt, Any -> RngElt
   SpecialEvaluate(F, x) : RngUPolTwstElt, RngElt -> RngElt

Speciality

   IndexOfSpeciality(D) : DivCrvElt -> RngIntElt
   IndexOfSpeciality(D) : DivFunElt -> RngIntElt

SpecialLieAlgebra

   ConformalSpecialLieAlgebra(F, m, n) : Fld, RngIntElt, SeqEnum[RngIntElt] -> AlgLie, AlgLie, AlgLie, Map, Map
   SpecialLieAlgebra(F, m, n) : Fld, RngIntElt, SeqEnum[RngIntElt] -> AlgLie, AlgLie, Map, Map

SpecialLinearGroup

   SL(n, q) : RngIntElt, RngIntElt -> GrpMat
   SpecialLinearGroup(n, q) : RngIntElt, RngIntElt -> GrpMat

SpecialOrthogonalGroup

   SO(n, q) : RngIntElt, RngIntElt -> GrpMat
   SpecialOrthogonalGroup(n, q) : RngIntElt, RngIntElt -> GrpMat

SpecialOrthogonalGroupMinus

   SOMinus(n, q) : RngIntElt, RngIntElt -> GrpMat
   SpecialOrthogonalGroupMinus(n, q) : RngIntElt, RngIntElt -> GrpMat

SpecialOrthogonalGroupPlus

   SOPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
   SpecialOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpMat

SpecialPresentation

   SpecialPresentation(G) : GrpPC -> GrpPC
   GrpPC_SpecialPresentation (Example H63E35)

SpecialQuotient

   GrpMatGen_SpecialQuotient (Example H59E16)
   GrpPerm_SpecialQuotient (Example H58E22)

SpecialUnitaryGroup

   SU(n, q) : RngIntElt, RngIntElt -> GrpMat
   SpecialUnitaryGroup(n, q) : RngIntElt, RngIntElt -> GrpMat

SpecialWeights

   SpecialWeights(G) : GrpPC -> [ <RngIntElt, RngIntElt, RngIntElt> ]

specific

   Specific Factorization Algorithms (RING OF INTEGERS)

specification

   Specification of a Generic Abelian Group (ABELIAN GROUPS)

Spectrum

   Spectrum(G) : GrphUnd -> SetEnum
   Spectrum(R, v, t) : RootDtm, ModTupRngElt, SeqEnum -> SeqEnum
   LieReps_Spectrum (Example H104E10)

Sphere

   Sphere(u, n) : GrphVert, RngIntElt -> { GrphVert }
   Sphere(n) : RngIntElt -> SmpCpx
   SpherePackingBound(K, n, d) : FldFin, RngIntElt, RngIntElt -> RngIntElt

SpherePackingBound

   SpherePackingBound(K, n, d) : FldFin, RngIntElt, RngIntElt -> RngIntElt

Spin

   Spin(n, q) : RngIntElt, RngIntElt -> GrpMat
   SpinMinus(n, q) : RngIntElt, RngIntElt -> GrpMat
   SpinPlus(n, q) : RngIntElt, RngIntElt -> GrpMat

SpinMinus

   SpinMinus(n, q) : RngIntElt, RngIntElt -> GrpMat

Spinor

   SpinorRepresentatives(L) : Lat -> [ Lat ]
   Representatives(G) : SymGen -> [ Lat ]
   GenusRepresentatives(L) : Lat -> [ Lat ]
   IsSpinorGenus(G) : SymGen -> BoolElt
   IsSpinorNorm(G,p) : SymGen, RngIntElt -> RngIntElt
   SpinorCharacters(G) : SymGen -> [ GrpDrchElt ]
   SpinorGenera(G) : SymGen -> [ SymGen ]
   SpinorGenerators(G) : SymGen -> [ RngIntElt ]
   SpinorGenus(L) : Lat -> SymGen
   SpinorNorm(g, form): GrpMatElt, AlgMatElt -> RngIntElt
   SpinorNorm(V, f) : ModTupFld, Mtrx -> RngIntElt

SpinorCharacters

   SpinorCharacters(G) : SymGen -> [ GrpDrchElt ]

SpinorGenera

   SpinorGenera(G) : SymGen -> [ SymGen ]

SpinorGenerators

   SpinorGenerators(G) : SymGen -> [ RngIntElt ]

SpinorGenus

   SpinorGenus(L) : Lat -> SymGen

SpinorNorm

   SpinorNorm(g, form): GrpMatElt, AlgMatElt -> RngIntElt
   SpinorNorm(V, f) : ModTupFld, Mtrx -> RngIntElt

SpinorRepresentatives

   SpinorRepresentatives(L) : Lat -> [ Lat ]
   Representatives(G) : SymGen -> [ Lat ]
   GenusRepresentatives(L) : Lat -> [ Lat ]

SpinPlus

   SpinPlus(n, q) : RngIntElt, RngIntElt -> GrpMat

Spiral

   CoefficientsNonSpiral(s, n) : RngPowLazElt, [RngIntElt] -> SeqEnum

Splice

   MakeSpliceDiagram(g,e,a) : GrphDir,SeqEnum,SeqEnum -> GrphSpl
   MakeSpliceDiagram(e,l,a) : SeqEnum,SeqEnum,SeqEnum -> GrphSpl
   RegularSpliceDiagram(P) : LinearSys -> GrphSpl
   Splice(C, D) : ModCpx, ModCpx -> ModCpx
   Splice(C, D, f) : ModCpx, ModCpx, ModMatRngElt -> ModCpx
   SpliceDiagram(g) : GrphRes -> GrphSpl
   SpliceDiagram(g,v) : GrphRes,GrphResVert -> GrphSpl
   SpliceDiagram(v) : GrphSplVert -> GrphSpl
   SpliceDiagram(C,p) : Sch,Pt -> GrphSpl
   SpliceDiagramVertex(s,i) : GrphSpl,RngIntElt -> GrphSplVert

splice

   Splice Diagrams (RESOLUTION GRAPHS AND SPLICE DIAGRAMS)
   Splice Diagrams from Resolution Graphs (RESOLUTION GRAPHS AND SPLICE DIAGRAMS)

splice-diagrams

   Splice Diagrams (RESOLUTION GRAPHS AND SPLICE DIAGRAMS)

SpliceDiagram

   SpliceDiagram(g) : GrphRes -> GrphSpl
   SpliceDiagram(g,v) : GrphRes,GrphResVert -> GrphSpl
   SpliceDiagram(v) : GrphSplVert -> GrphSpl
   SpliceDiagram(C,p) : Sch,Pt -> GrphSpl

SpliceDiagramVertex

   SpliceDiagramVertex(s,i) : GrphSpl,RngIntElt -> GrphSplVert

Split

   FiniteDivisor(D) : DivFunElt -> DivFunElt
   InfiniteDivisor(D) : DivFunElt -> DivFunElt
   FiniteSplit(D) : DivFunElt -> DivFunElt, DivFunElt
   IntegralSplit(a, O) : FldFunElt, RngFunOrd -> RngFunOrdElt, RngElt
   IntegralSplit(f, X) : FldFunFracSchElt, Sch -> RngMPolElt, RngMPolElt
   IntegralSplit(I) : RngFunOrdIdl -> RngFunOrdIdl, RngElt
   IntegralSplit(I) : RngOrdFracIdl -> RngOrdIdl, RngElt
   IsGloballySplit(C, l) : , UserProgram -> BoolElt, UserProgram
   IsSplit(G) : GrpLie -> BoolElt
   IsSplit(P) : RngFunOrdIdl -> BoolElt
   IsSplit(P, O) : RngFunOrdIdl, RngFunOrd -> BoolElt
   IsSplit(P) : RngOrdIdl -> BoolElt
   IsSplit(P, O) : RngOrdIdl, RngOrd -> BoolElt
   IsSplit(R) : RootDtm -> BoolElt
   IsSplitAsIdealAt(I, l) : RngOrdFracIdl, UserProgram -> BoolElt, UserProgram, [RngOrdIdl]
   IsSplitToralSubalgebra(L, H) : AlgLie, AlgLie -> BoolElt
   IsTotallySplit(P) : RngFunOrdIdl -> BoolElt
   IsTotallySplit(P, O) : RngFunOrdIdl, RngFunOrd -> BoolElt
   IsTotallySplit(P) : RngOrdIdl -> BoolElt
   IsTotallySplit(P, O) : RngOrdIdl, RngOrd -> BoolElt
   Split(S, D) : MonStgElt, MonStgElt -> [ MonStgElt ]
   SplitAllByValues(P, V) : StkPtnOrd, SeqEnum[RngIntElt] -> BoolElt, RngIntElt
   SplitCell(P, i, x) : StkPtnOrd, RngIntElt, RngIntElt -> BoolElt
   SplitCellsByValues(P, C, V) : StkPtnOrd, SeqEnum[RngIntElt], SeqEnum[RngIntElt] -> BoolElt, RngIntElt
   SplitExtension(G, M, F) : GrpPerm, ModRng, GrpFP -> GrpFP
   SplitExtension(G, M, F) : GrpPerm, ModRng, GrpFP -> GrpFP
   SplitExtension(CM) : ModCoho -> Grp, HomGrp, Map
   SplitRealPlace(A) : AlgQuat -> PlcNum
   SplitToralSubalgebra(L) : AlgLie -> AlgLie
   SplittingCartanSubalgebra(L) : AlgLie -> AlgLie
   UntwistedRootDatum(R) : RootDtm -> RootDtm
   FldAC_Split (Example H40E6)
   IO_Split (Example H3E2)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013