[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: Adjoin .. Affine
Adjoin(O, x) : AlgAssVOrd, AlgAssVElt -> AlgAssVOrd
Adjoint(a) : AlgMatElt -> AlgMatElt
Adjoint(A) : Mtrx -> AlgMatElt
Adjoint(L) : RngDiffOpElt -> RngDiffOpElt
AdjointAlgebra(S : parameters) : SeqEnum -> AlgMat
AdjointIdeal(C) : Crv -> RngMPol
AdjointIdealForNodalCurve(C) : Crv -> RngMPol
AdjointLinearSystemFromIdeal(I, d) : RngMPol, RngIntElt -> LinearSys
AdjointMatrix(L, x) : AlgLie, AlgLieElt -> AlgMatLieElt
AdjointPreimage (G, g) : GrpMat, GrpMatElt -> GrpMatElt
AdjointRepresentation(L) : AlgLie -> Map
AdjointRepresentation(G) : GrpLie -> Map, AlgLie
AdjointRepresentation(G) : GrpLie -> Map, AlgLie
AdjointRepresentationDecomposition(R) : RootDtm -> LieRepDec
AdjointVersion(R) : RootDtm -> RootDtm, Map
CanonicalLinearSystem(C) : Crv -> LinearSys
IsAdjoint(G) : GrpLie -> BoolElt
IsAdjoint(R) : RootDtm -> BoolElt
IsWeaklyAdjoint(G) : GrpLie -> BoolElt
IsWeaklyAdjoint(R) : RootDtm -> BoolElt
RecogniseAdjoint (G) : GrpMat -> BoolElt, GrpMat
Adjoint Algebras (ALGEBRAS WITH INVOLUTION)
AdjointAlgebra(S : parameters) : SeqEnum -> AlgMat
AlgInv_AdjointAlgebra (Example H87E2)
AdjointIdeal(C) : Crv -> RngMPol
AdjointLinearSystemForNodalCurve(C, d) : Crv -> LinearSys
AdjointIdealForNodalCurve(C) : Crv -> RngMPol
AdjointLinearSystem(C) : Crv -> LinearSys
Adjoints(C,d) : Crv, RngIntElt -> LinearSys
CanonicalLinearSystem(C) : Crv -> LinearSys
AdjointLinearSystemForNodalCurve(C, d) : Crv -> LinearSys
AdjointIdealForNodalCurve(C) : Crv -> RngMPol
AdjointLinearSystemFromIdeal(I, d) : RngMPol, RngIntElt -> LinearSys
RightAdjointMatrix(L, x) : AlgLie, AlgLieElt -> AlgMatLieElt
AdjointMatrix(L, x) : AlgLie, AlgLieElt -> AlgMatLieElt
AdjointPreimage (G, g) : GrpMat, GrpMatElt -> GrpMatElt
AdjointRepresentation(L) : AlgLie -> Map
AdjointRepresentation(G) : GrpLie -> Map, AlgLie
AdjointRepresentation(G) : GrpLie -> Map, AlgLie
LieReps_AdjointRepresentation (Example H104E1)
AdjointRepresentationDecomposition(R) : RootDtm -> LieRepDec
AdjointLinearSystem(C) : Crv -> LinearSys
Adjoints(C,d) : Crv, RngIntElt -> LinearSys
CanonicalLinearSystem(C) : Crv -> LinearSys
HomAdjoints(m,n,S) : RngIntElt, RngIntElt, Srfc -> SeqEnum
Adjoint Systems and Birational Invariants (ALGEBRAIC SURFACES)
AdjointVersion(R) : RootDtm -> RootDtm, Map
AdmissableTriangleGroups() : -> SeqEnum
AdmissableTriangleGroups() : -> SeqEnum
AdmissiblePair(pi) : RepLoc -> RngPad, Map
AdmissiblePair(pi) : RepLoc -> RngPad, Map
Advance(~p) : Process ->
Advance(~p) : Process ->
Advance(~p) : Process ->
Advance(~p) : Process ->
Advance(X, L, P, h) : StkPtnOrd, seqEnum[RngIntElt], StkPtnOrd, RngIntElt ->
A Pair of Twisted Cubics (SCHEMES)
Advanced Examples (SCHEMES)
Curves in Space (SCHEMES)
FINITELY PRESENTED GROUPS: ADVANCED
AlgSrf_aff_crv_res (Example H116E10)
AlgSrf_aff_res (Example H116E12)
AbsoluteQuotientRing(A) : FldAC -> RngUPolRes
AbsoluteAffineAlgebra(A) : FldAC -> RngUPolRes
AffineAction(G) : GrpPerm -> Hom, GrpPerm, GrpPerm
AffineAlgebra< R, X | L > : Fld, List, List -> RngMPolRes
AffineAlgebra(A) : FldAC -> RngMPolRes
AffineAlgebraMapKernel(phi) : Map -> MPol
AffineDecomposition(f) : MapSch -> MapSch,MapSch
AffineDecomposition(P) : Prj -> [MapSch],Pt
AffineGammaLinearGroup(arguments)
AffineGeneralLinearGroup(arguments)
AffineGeneralLinearGroup(GrpMat, n, q) : Cat, RngIntElt, RngIntElt -> GrpMat
AffineGroup(M) : GrpMat[FldFin] -> GrpPerm, { at ModTupFldElt atbrace
AffineGroup(N) : Nfd -> GrpMat
AffineImage(G) : GrpPerm -> GrpPerm
AffineKernel(G) : GrpPerm -> GrpPerm
AffineLieAlgebra(C, F) : AlgMatElt, Fld -> AlgKac
AffineLieAlgebra(N, F) : MonStgElt, Fld -> AlgKac
AffinePatch(C,i) : Crv,RngIntElt -> SeqEnum
AffinePatch(X,p) : Sch,Pt -> Sch,Pt
AffinePatch(X,i) : Sch,RngIntElt -> Sch
AffineSigmaLinearGroup(arguments)
AffineSpace(k,n) : Rng, RngIntElt -> Aff
AffineSpace(k,n) : Rng,RngIntElt -> Aff
AffineSpace(R) : RngMPol -> Aff
AffineSpecialLinearGroup(arguments)
AffineSpecialLinearGroup(GrpMat, n, q) : Cat, RngIntElt, RngIntElt -> GrpMat
CentredAffinePatch(S, p) : Sch, Pt -> Sch, MapSch
FanOfAffineSpace(n) : RngIntElt -> TorFac
FiniteAffinePlane(D) : Inc -> Plane, PlanePtSet, PlaneLnSet
FiniteAffinePlane(W) : ModFld -> PlaneAff
FiniteAffinePlane< v | X : parameters > : RngIntElt, List -> PlaneAff
FiniteAffinePlane(P, l) : PlaneProj, PlaneLn -> PlaneAff, PlanePtSet, PlaneLnSet, Map
HasAffinePatch(X, i) : Sch, RngIntElt -> BoolElt
IsAffine(W) : GrpFPCox -> BoolElt
IsAffine(G) : GrpPerm -> BoolElt, GrpPerm
IsAffine(X) : Sch -> BoolElt
IsAffine(X) : Sch -> BoolElt
IsAffineLinear(f) : MapSch -> BoolElt
IsAffineLinear(P) : TorPol -> BoolElt
IsCoxeterAffine(M) : AlgMatElt -> BoolElt
IsStandardAffinePatch(A) : Aff -> BoolElt, RngIntElt
NumberOfAffinePatches(X) : Sch -> BoolElt
NumberOfPrimitiveGroups(d) : RngIntElt -> RngIntElt
ResolveAffineCurve(p) : RngMPolElt -> List, List, List, RngIntElt
ResolveAffineMonicSurface(s) : RngUPolElt -> List, RngIntElt
ToricAffinePatch(X,i) : TorVar,RngIntElt -> TorVar,TorMap
ToricAffinePatch(X,S) : TorVar,[RngIntElt] -> TorVar,TorMap
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013