[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: subsec_structural_invariants  ..  subset


subsec_structural_invariants

   Structural Invariants (MODULAR ABELIAN VARIETIES)

subsec_subgroups__and_subrings

   Subgroups and Subrings (MODULAR ABELIAN VARIETIES)

subsec_sum_in_an_ambient_variety

   Sum in an Ambient Variety (MODULAR ABELIAN VARIETIES)

subsec_tamagawa_numbers

   Tamagawa Numbers (MODULAR ABELIAN VARIETIES)

subsec_torsion_subgroup

   Torsion Subgroup (MODULAR ABELIAN VARIETIES)

subsec_underlying_abelian_group_and_lattice

   Underlying Abelian Group and Lattice (MODULAR ABELIAN VARIETIES)

subsec_upper_and_lower_bounds

   Upper and Lower Bounds (MODULAR ABELIAN VARIETIES)

subsec_values_at_integers_in_the_critical_strip

   Values at Integers in the Critical Strip (MODULAR ABELIAN VARIETIES)

subsemigroup

   Subsemigroups and Ideals (FINITELY PRESENTED SEMIGROUPS)
   Subsemigroups, Ideals and Quotients (FINITELY PRESENTED SEMIGROUPS)

subsemigroup-ideal

   Subsemigroups and Ideals (FINITELY PRESENTED SEMIGROUPS)

subsemigroup-ideal-quotient

   Subsemigroups, Ideals and Quotients (FINITELY PRESENTED SEMIGROUPS)

Subsequence

   IsSubsequence(S, T) : SeqEnum, SeqEnum -> BoolElt

Subsequences

   Subsequences(S, k) : SetEnum, RngIntElt -> SetEnum
   Subsequences(S, k) : SetEnum, RngIntElt -> SetEnum

Subset

   RandomSubset(S, k) : SetEnum, RngIntElt -> SetEnum

subset

   X subset R : { AlgMatElt } , AlgMat -> BoolElt
   x in R : AlgMatElt, AlgMat -> BoolElt
   e le f : SubGrpLatElt, SubGrpLatElt -> BoolElt
   I subset J : AlgAssVOrdIdl, AlgAssVOrdIdl -> BoolElt
   I subset J : AlgFP, AlgFP -> BoolElt
   I subset J : AlgFr, AlgFr -> BoolElt
   A subset B : AlgGen, AlgGen -> BoolElt
   L subset K : AlgLie, AlgLie -> BoolElt
   C subset D : Code, Code -> BoolElt
   C subset D : Code, Code -> BoolElt
   C subset D : Code, Code -> BoolElt
   A subset B : FldAb, FldAb -> BoolElt
   A subset B : FldFunAb, FldFunAb -> BoolElt
   H subset G : GrpAb, GrpAb -> BoolElt
   A subset B: GrpAutCrv, GrpAutCrv -> BoolElt
   H subset G : GrpFin, GrpFin -> BoolElt
   H ⊂K : GrpFP, GrpFP -> BoolElt
   H subset G : GrpGPC, GrpGPC -> BoolElt
   S subset T : GrphVertSet, GrphVertSet -> BoolElt
   G subset H : GrpLie, GrpLie -> BoolElt
   H subset G : GrpMat, GrpMat -> BoolElt
   H subset G : GrpPC, GrpPC -> BoolElt
   H subset G : GrpPerm, GrpPerm -> BoolElt
   H subset G : GrpPSL2, GrpPSL2 -> BoolElt
   H1 subset H2 : HomModAbVar, HomModAbVar -> BoolElt
   L subset M: Lat, Lat -> BoolElt
   K subset L : LinearSys,LinearSys -> BoolElt
   A subset B : ModAbVar, ModAbVar -> BoolElt
   A subset G : ModAbVar, ModAbVarSubGrp -> BoolElt
   G subset A : ModAbVarSubGrp, ModAbVar -> BoolElt
   G1 subset G2 : ModAbVarSubGrp, ModAbVarSubGrp -> BoolElt
   M1 subset M2 : ModBrdt, ModBrdt -> BoolElt
   M subset N : ModDed, ModDed -> BoolElt
   M subset N : ModMPol, ModMPol -> BoolElt
   N subset M : ModRng, ModRng -> BoolElt
   M1 subset M2 : ModSS, ModSS -> BoolElt
   U subset V : ModTupFld, ModTupFld -> BoolElt
   N subset M : ModTupRng, ModTupRng -> BoolElt
   P subset Q : Plane, Plane -> BoolElt
   O1 subset O2 : RngFunOrd, RngFunOrd -> BoolElt
   I subset J : RngIdl, RngIdl -> BoolElt
   I subset J : RngMPol, RngMPol -> BoolElt
   I subset J : RngMPolLoc, RngMPolLoc -> BoolElt
   I subset J : RngMPolRes, RngMPolRes -> BoolElt
   I subset J : RngOrdIdl, RngOrdIdl -> BoolElt
   I subset J : RngUPol, RngUPol -> BoolElt
   R1 subset R2 : RootDtm, RootDtm -> BoolElt, .
   R1 subset R2 : RootSys, RootSys -> BoolElt, .
   R subset S : SetEnum, Set -> BoolElt
   S subset X : Setq,Sch -> BoolElt
   e subset f : SubFldLatElt, SubFldLatElt -> BoolElt
   e subset f : SubModLatElt, SubModLatElt -> SubModLatElt
   P subset Q : TorPol,TorPol -> BoolElt
   S subset G : { GrpAbElt } , GrpAb -> BoolElt
   S subset G : { GrpFinElt }, GrpFin -> BoolElt
   S subset G : { GrpGPCElt } , GrpGPC -> BoolElt
   S subset G : { GrpMatElt }, GrpMat -> BoolElt
   S subset G : { GrpPCElt } , GrpPC -> BoolElt
   S subset G : { GrpPermElt }, GrpPerm -> BoolElt
   S subset G : { GrpSLPElt } , GrpSLP -> BoolElt
   S subset B : { IncPt }, IncBlk -> BoolElt
   S subset l : { PlanePt }, PlaneLn -> BoolElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013