[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: Submodule .. subsec_additional_examples
GlobalSectionSubmodule(S) : ShfCoh -> ModMPol
IsSubmodule(M, N) : ModDed, ModDed -> BoolElt, Map
MinimalSubmodule(M) : ModRng -> ModRng
Submodule(I) : RngMPol -> ModMPol
SubmoduleAction(G, S) : GrpMat -> Map, GrpMat
SubmoduleImage(G, S) : GrpMat -> GrpMat
SubmoduleLattice(M) : ModRng -> SubModLat, BoolElt
SubmoduleLatticeAbort(M, n) : ModRng, RngIntElt -> BoolElt, SubModLat
TwistedWindingSubmodule(M, j, eps) : ModSym, RngIntElt, GrpDrchElt -> ModTupFld
WindingSubmodule(M, j : parameters) : ModSym, RngIntElt -> ModTupFld
ModAlg_Submodule (Example H89E3)
ModRng_Submodule (Example H54E4)
Construction (MODULES OVER AN ALGEBRA)
Construction of Submodules (FREE MODULES)
Lattice of Submodules (MODULES OVER AN ALGEBRA)
Operations on Submodules (FREE MODULES)
Socle Series (MODULES OVER AN ALGEBRA)
Submodules (FREE MODULES)
Construction (MODULES OVER AN ALGEBRA)
Lattice of Submodules (MODULES OVER AN ALGEBRA)
SubmoduleAction(G, S) : GrpMat -> Map, GrpMat
SubmoduleImage(G, S) : GrpMat -> GrpMat
SubmoduleLattice(M) : ModRng -> SubModLat, BoolElt
SubmoduleLatticeAbort(M, n) : ModRng, RngIntElt -> BoolElt, SubModLat
MaximalSubmodules(M) : ModRng -> [ ModRng ], BoolElt
MaximalSubmodules(e) : SubModLatElt -> { SubModLatElt }
MinimalSubmodules(M) : ModRng -> [ ModRng ], BoolElt
MinimalSubmodules(M, F) : ModRng, ModRng -> [ ModRng ], BoolElt
Submodules(M) : ModRng -> [ModRng]
Submodules (MODULES OVER AN ALGEBRA)
IsSubnormal(G, H) : GrpFin, GrpFin -> BoolElt
IsSubnormal(G, H) : GrpMat, GrpMat -> BoolElt
IsSubnormal(G, H) : GrpPC, GrpPC -> BoolElt
IsSubnormal(G, H) : GrpPerm, GrpPerm -> BoolElt
SubnormalSeries(G, H) : GrpFin, GrpFin -> [ GrpFin ]
SubnormalSeries(G, H) : GrpMat, GrpMat -> [ GrpMat ]
SubnormalSeries(G, H) : GrpPC, GrpPC -> [GrpPC]
SubnormalSeries(G, H) : GrpPerm, GrpPerm -> [ GrpPerm ]
SubnormalSeries(G, H) : GrpFin, GrpFin -> [ GrpFin ]
SubnormalSeries(G, H) : GrpMat, GrpMat -> [ GrpMat ]
SubnormalSeries(G, H) : GrpPC, GrpPC -> [GrpPC]
SubnormalSeries(G, H) : GrpPerm, GrpPerm -> [ GrpPerm ]
SubOrder(O) : RngFunOrd -> RngFunOrd
SubOrder(O) : RngOrd -> RngOrd
BaerSubplane(P) : PlaneProj -> PlaneProj, PlanePtSet, PlaneLnSet
SubfieldSubplane(P, F) : Plane, FldFin -> Plane, PlanePtSet, PlaneLnSet
Subplanes (FINITE PLANES)
PMod_SubQuoEmbedded (Example H109E3)
PMod_SubQuoReduced (Example H109E4)
Subring(phi) : MapModAbVar -> HomModAbVar
Subring(X) : [MapModAbVar] -> HomModAbVar
Construction of Subalgebras, Ideals and Quotient Algebras (GROUP ALGEBRAS)
Construction of Subalgebras, Ideals and Quotient Rings (MATRIX ALGEBRAS)
Construction of Subalgebras, Ideals and Quotient Algebras (GROUP ALGEBRAS)
Construction of Subalgebras, Ideals and Quotient Rings (MATRIX ALGEBRAS)
Construction of Subalgebras, Ideals and Quotient Algebras (ALGEBRAS)
Subalgebras and Ideals (ALGEBRAS)
Construction of Subalgebras, Ideals and Quotient Algebras (ALGEBRAS)
DefiningSubschemePolynomial(G) : SchGrpEll -> RngUPolElt
EmptyScheme(X) : Sch -> Sch
IsSubscheme(C,D) : Sch,Sch -> BoolElt
IsSubscheme(X, Y) : Sch,Sch -> BoolElt
ReducedSubscheme(X) : Sch -> Sch, MapSch
SingularSubscheme(X) : Sch -> Sch
ZeroSubscheme(S, s) : ShfCoh, ModMPolElt -> Sch
Schemes in Toric Varieties (TORIC VARIETIES)
Access Functions (RATIONAL CURVES AND CONICS)
Automorphisms of Conics (RATIONAL CURVES AND CONICS)
Automorphisms of Rational Curves (RATIONAL CURVES AND CONICS)
Rational Curve and Conic Creation (RATIONAL CURVES AND CONICS)
Isomorphisms with Standard Models (RATIONAL CURVES AND CONICS)
Abelian Varieties Attached to Modular Forms (MODULAR ABELIAN VARIETIES)
Abelian Varieties Attached to Modular Symbols (MODULAR ABELIAN VARIETIES)
Additional Examples (MODULAR ABELIAN VARIETIES)
Additional Examples (MODULAR ABELIAN VARIETIES)
Additional Examples (MODULAR ABELIAN VARIETIES)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013