[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: function-application .. Fundamental
Function Application (MAGMA SEMANTICS)
Function Expressions (MAGMA SEMANTICS)
ALGEBRAIC FUNCTION FIELDS
CLASS FIELD THEORY FOR GLOBAL FUNCTION FIELDS
Functions and Procedures (FUNCTIONS, PROCEDURES AND PACKAGES)
FUNCTIONS, PROCEDURES AND PACKAGES
Function Values Assigned to Identifiers (MAGMA SEMANTICS)
Function Field (HYPERELLIPTIC CURVES)
Function Fields (ALGEBRAIC CURVES)
Polynomials (ELLIPTIC CURVES)
Function Field and Polynomial Ring (HYPERELLIPTIC CURVES)
CheckFunctionalEquation(L) : LSer -> FldComElt
LSeries(weight, gamma, conductor, cffun) : FldReElt,[FldRatElt],FldReElt,Any -> LSer
HypergeometricMotiveClearTable() : Void -> Void
Functionality (HYPERGEOMETRIC MOTIVES)
Related Functionality (MODELS OF GENUS ONE CURVES)
FunctionDegree(f) : MapSch -> RngIntElt
FunctionField(A) : Aff -> FldFunFracSch
FunctionField(C) : Crv -> FldFunFracSch
FunctionField(X) : CrvMod -> FldFun
FunctionField(D) : DiffFun -> FldFun
FunctionField(d) : DiffFunElt -> FldFun
FunctionField(G) : DivFun -> FldFun
FunctionField(D) : DivFunElt -> FldFun
FunctionField(A) : FldFunAb -> FldFun
FunctionField(F) : FldInvar -> FldFunRat
FunctionField(f : parameters) : RngMPolElt -> FldFun
FunctionField(S) : PlcFun -> FldFun
FunctionField(P) : PlcFunElt -> FldFun
FunctionField(R) : Rng -> FldFunG
FunctionField(R) : Rng -> FldFunRat
FunctionField(R, r) : Rng, RngIntElt -> FldFunRat
FunctionField(O) : RngFunOrd -> FldFun
FunctionField(e) : RngWittElt -> FldFun, Map
FunctionField(A) : Sch -> FldFunFracSch
FunctionField(C) : Sch -> FldFunG
FunctionField(S) : [RngMPolElt] -> FldFun
FunctionField(S) : [RngUPolElt] -> FldFun
ext< K | f > : FldFunRat, RngUPolElt -> FldFun
FldFunRat_FunctionField (Example H41E1)
FunctionFieldDatabase(q, d) : RngIntElt, RngIntElt -> DB
CurvePlace(C, p) : Crv, PlcFunElt -> PlcCrvElt
FunctionFieldDivisor(d) : DivCrvElt -> DivFunElt
CurveDivisor(C, d) : Crv, DivFunElt -> DivCrvElt
FunctionFieldDifferential(d) : DiffCrvElt -> DiffFunElt
CurveDifferential(C, d) : Crv, DiffFunElt -> DiffCrvElt
FunctionFieldPlace(p) : PlcCrvElt -> PlcFunElt
CurvePlace(C, p) : Crv, PlcFunElt -> PlcCrvElt
FunctionFieldDivisor(d) : DivCrvElt -> DivFunElt
CurveDivisor(C, d) : Crv, DivFunElt -> DivCrvElt
FunctionFieldDifferential(d) : DiffCrvElt -> DiffFunElt
CurveDifferential(C, d) : Crv, DiffFunElt -> DiffCrvElt
FunctionFieldPlace(p) : PlcCrvElt -> PlcFunElt
CurvePlace(C, p) : Crv, PlcFunElt -> PlcCrvElt
FunctionFieldDivisor(d) : DivCrvElt -> DivFunElt
CurveDivisor(C, d) : Crv, DivFunElt -> DivCrvElt
FunctionFieldDifferential(d) : DiffCrvElt -> DiffFunElt
CurveDifferential(C, d) : Crv, DiffFunElt -> DiffCrvElt
FunctionFieldPlace(p) : PlcCrvElt -> PlcFunElt
FunctionFields(D) : DB -> [ FldFunG ]
EulerFactorsByDeformation(Q, Y) : RngMPolElt, SeqEnum -> SeqEnum
ZetaFunctionsByDeformation(Q, Y) : RngMPolElt, SeqEnum -> SeqEnum
JacobianOrdersByDeformation(Q, Y) : RngMPolElt, SeqEnum -> SeqEnum
FldAC_Functions (Example H40E4)
FldFin_Functions (Example H21E3)
FldFin_Functions (Example H21E4)
Associated Structures (MODULAR CURVES)
Constructing Artin Representations (ARTIN REPRESENTATIONS)
Construction Functions (FINITE SOLUBLE GROUPS)
Conversion Functions (INCIDENCE GEOMETRY)
Creation Functions (NUMBER FIELDS)
Creation of Symmetric Functions (SYMMETRIC FUNCTIONS)
Differential Operators of Algebraic Functions (DIFFERENTIAL RINGS)
Elementary Functions (MODULES OVER DEDEKIND DOMAINS)
Functions (INVARIANT THEORY)
Functions and Homogeneity on Ambient Spaces (SCHEMES)
Functions for Invariant Fields (INVARIANT THEORY)
The Functions (FINITELY PRESENTED GROUPS: ADVANCED)
Transfer Between Group Categories (FINITE SOLUBLE GROUPS)
FundamentalClosure(R, S) : RootDtm, SetEnum -> SetEnum
FundamentalCoweights(R) : RootDtm -> Mtrx
FundamentalDiscriminant(D) : RngIntElt -> RngIntElt
FundamentalDomain(G) : GrpPSL2 -> SeqEnum
FundamentalDomain(G) : GrpPSL2 -> SeqEnum
FundamentalDomain(G,D) : GrpPSL2, SpcHyd -> SeqEnum
FundamentalDomain(FS) : SymFry -> SeqEnum
FundamentalElement(B: parameters) : GrpBrd -> GrpBrdElt
FundamentalGroup(C) : AlgMatElt -> GrpAb
FundamentalGroup(D) : GrphDir -> GrpAb
FundamentalGroup(G) : GrpLie -> GrpAb, Map
FundamentalGroup(W) : GrpMat -> GrpAb
FundamentalGroup(W) : GrpPermCox -> GrpAb
FundamentalGroup(N) : MonStgElt -> GrpAb
FundamentalGroup(R) : RootDtm -> GrpAb, Map
FundamentalInvariants(F) : FldInvar -> RngMPol
FundamentalInvariants(R) : RngInvar -> RngMPol
FundamentalInvariants(R) : RngInvar -> [ RngMPolElt ]
FundamentalQuotient(Q) : QuadBin -> Map
FundamentalUnit(K) : FldQuad -> FldQuadElt
FundamentalUnits(O) : RngFunOrd -> SeqEnum[RngFunOrdElt]
FundamentalWeights(G) : GrpLie -> Mtrx
FundamentalWeights(W) : GrpMat -> Mtrx
FundamentalWeights(W) : GrpPermCox -> SeqEnum
FundamentalWeights(R) : RootDtm -> Mtrx
IsFundamental(D) : RngIntElt -> BoolElt
SetOrderUnitsAreFundamental(O) : RngOrd ->
To2DUpperHalfSpaceFundamentalDomian(z) : Mtrx -> Mtrx, Mtrx
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013