[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: related-diff-ring-op-elts .. Relations
Related Differential Operators (DIFFERENTIAL RINGS)
Related Functionality (MODELS OF GENUS ONE CURVES)
Related Maps (DIFFERENTIAL RINGS)
Related Matrices (DIFFERENTIAL RINGS)
Related Structures (ALGEBRAIC FUNCTION FIELDS)
Related Structures (ROOT DATA)
Related Structures (ROOT SYSTEMS)
Related Structures of an Algebra Module (MODULES OVER AN ALGEBRA)
FldFunG_related-structures (Example H42E8)
Related Structures (DIFFERENTIAL RINGS)
Related Structures (DIFFERENTIAL RINGS)
FldFunG_related-structures-rat-ext (Example H42E9)
AddRelation(G, g) : GrpFP, GrpFPElt -> GrpFP
AddRelation(G, g, i) : GrpFP, GrpFPElt, RngIntElt -> GrpFP
AddRelation(G, r) : GrpFP, RelElt -> GrpFP
AddRelation(G, r, i) : GrpFP, RelElt, RngIntElt -> GrpFP
AddRelation(E) : RngOrdElt -> BoolElt
AddRelation(S, r) : SgpFP, Rel -> SgpFP
DeleteRelation(G, g) : GrpFP, GrpFPElt -> GrpFP
DeleteRelation(G, r) : GrpFP, RelElt -> GrpFP
DeleteRelation(G, i) : GrpFP, RngIntElt -> GrpFP
DeleteRelation(S, r) : SgpFP, Rel -> SgpFP
DeleteRelation(S, i) : SgpFP, RngIntElt -> SgpFP
LinearRelation(q: parameters) : [ FldComElt ] -> [ RngIntElt ]
PowerRelation(r, k: parameters) : FldReElt, RngIntElt -> RngUPolElt
RelationIdeal(R) : RngInvar -> RngMPol
RelationIdeal(Q) : [ RngMPol ] -> RngMPol
RelationMatrix(K, B) : FldNum, RngIntElt -> ModHomElt
RelationMatrix(A) : GrpAb -> Mtrx
RelationMatrix(M) : ModMPol -> ModMatRngElt
RelationMatrix(O) : RngOrd -> ModHomElt
RelationModule(M) : ModMPol -> [ ModMPol ]
ReplaceRelation(G, s, r) : GrpFP, RelElt, RelElt -> GrpFP
ReplaceRelation(G, i, g) : GrpFP, RngIntElt, GrpFPElt -> GrpFP
ReplaceRelation(G, i, r) : GrpFP, RngIntElt, RelElt -> GrpFP
ReplaceRelation(S, r1, r2) : SgpFP, Rel, Rel -> SgpFP
ReplaceRelation(S, i, r) : SgpFP, RngIntElt, Rel -> SgpFP
VerifyRelation(f, F) : RngUPolElt, RngSLPolElt -> BoolElt
Relation Ideals (POLYNOMIAL RING IDEAL OPERATIONS)
Relations (ABELIAN GROUPS)
Relations (FINITELY PRESENTED GROUPS)
Relations (FINITELY PRESENTED SEMIGROUPS)
RelationIdeal(R) : RngInvar -> RngMPol
RelationIdeal(Q) : [ RngMPol ] -> RngMPol
Ideal_RelationIdeal (Example H106E8)
RelationMatrix(K, B) : FldNum, RngIntElt -> ModHomElt
RelationMatrix(A) : GrpAb -> Mtrx
RelationMatrix(M) : ModMPol -> ModMatRngElt
RelationMatrix(O) : RngOrd -> ModHomElt
RelationModule(M) : ModMPol -> [ ModMPol ]
AllLinearRelations(q,p): SeqEnum, RngIntElt -> Lat
CollectRelations(~P) : GrpPCpQuotientProc ->
FindRelations(P) : NFSProc -> RngIntElt
FindRelationsInCWIFormat(P) : NFSProc -> RngIntElt
LinearRelations(f) : RngUPolElt -> Mtrx, GaloisData
LinearRelations(f, I) : RngUPolElt, [RngSLPolElt] -> Mtrx, GaloisData
MinimalRelations(R) : Rec -> SeqEnum
NumberOfRelations(P) : GrpFPTietzeProc -> RngIntElt
NumberOfRelations(G) : GrpRWS -> RngIntElt
NumberOfRelations(M) : MonRWS -> RngIntElt
NumberOfRelationsRequired(P) : NFSProc -> RngIntElt
Relations(A) : GrpAb -> [ Rel ]
Relations(G) : GrpFP -> [ GrpFPRel ]
Relations(G) : GrpRWS -> [GrpFPRel]
Relations(M, d, prec) : ModFrm, RngIntElt, RngIntElt -> SeqEnum
Relations(M) : ModMPol -> [ ModMPol ]
Relations(M) : MonRWS -> [MonFPRel]
Relations(R) : RngInvar -> [ RngMPolElt ]
Relations(O) : RngOrd -> ModHomElt
Relations(L, R) : SeqEnum[ DiffFunElt ], Rng -> ModTupRng
Relations(L, R) : SeqEnum[ FldFunElt ], Rng -> ModTupRng
Relations(S) : SgpFP -> [ Rel ]
Relations(L) : [DiffCrvElt] -> ModTupFld
Relations(S) : [FldFunFracSchElt[Crv]] -> ModTupRng
RemoveLinearRelations(X) : Sch -> Sch, MapIsoSch
GrpAb_Relations (Example H69E14)
GrpAb_Relations (Example H69E2)
GrpFP_1_Relations (Example H70E4)
ModFrm_Relations (Example H132E20)
RngInvar_Relations (Example H110E12)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013