[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: special-ideals .. Split
Special Functions for Ideals (QUADRATIC FIELDS)
Special Lattices (LATTICES)
AlgLie_special-lie-alg-ex (Example H100E21)
Special Presentations (FINITE SOLUBLE GROUPS)
Special Basic Algebras (BASIC ALGEBRAS)
SpecialEvaluate(F, x) : RngUPolElt, Any -> RngElt
SpecialEvaluate(F, x) : RngUPolTwstElt, RngElt -> RngElt
IndexOfSpeciality(D) : DivCrvElt -> RngIntElt
IndexOfSpeciality(D) : DivFunElt -> RngIntElt
ConformalSpecialLieAlgebra(F, m, n) : Fld, RngIntElt, SeqEnum[RngIntElt] -> AlgLie, AlgLie, AlgLie, Map, Map
SpecialLieAlgebra(F, m, n) : Fld, RngIntElt, SeqEnum[RngIntElt] -> AlgLie, AlgLie, Map, Map
SL(n, q) : RngIntElt, RngIntElt -> GrpMat
SpecialLinearGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
SO(n, q) : RngIntElt, RngIntElt -> GrpMat
SpecialOrthogonalGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
SOMinus(n, q) : RngIntElt, RngIntElt -> GrpMat
SpecialOrthogonalGroupMinus(n, q) : RngIntElt, RngIntElt -> GrpMat
SOPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
SpecialOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
SpecialPresentation(G) : GrpPC -> GrpPC
GrpPC_SpecialPresentation (Example H63E35)
GrpMatGen_SpecialQuotient (Example H59E16)
GrpPerm_SpecialQuotient (Example H58E22)
SU(n, q) : RngIntElt, RngIntElt -> GrpMat
SpecialUnitaryGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
SpecialWeights(G) : GrpPC -> [ <RngIntElt, RngIntElt, RngIntElt> ]
Specific Factorization Algorithms (RING OF INTEGERS)
Specification of a Generic Abelian Group (ABELIAN GROUPS)
Spectrum(G) : GrphUnd -> SetEnum
Spectrum(R, v, t) : RootDtm, ModTupRngElt, SeqEnum -> SeqEnum
LieReps_Spectrum (Example H104E10)
Sphere(u, n) : GrphVert, RngIntElt -> { GrphVert }
Sphere(n) : RngIntElt -> SmpCpx
SpherePackingBound(K, n, d) : FldFin, RngIntElt, RngIntElt -> RngIntElt
SpherePackingBound(K, n, d) : FldFin, RngIntElt, RngIntElt -> RngIntElt
Spin(n, q) : RngIntElt, RngIntElt -> GrpMat
SpinMinus(n, q) : RngIntElt, RngIntElt -> GrpMat
SpinPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
SpinMinus(n, q) : RngIntElt, RngIntElt -> GrpMat
SpinorRepresentatives(L) : Lat -> [ Lat ]
Representatives(G) : SymGen -> [ Lat ]
GenusRepresentatives(L) : Lat -> [ Lat ]
IsSpinorGenus(G) : SymGen -> BoolElt
IsSpinorNorm(G,p) : SymGen, RngIntElt -> RngIntElt
SpinorCharacters(G) : SymGen -> [ GrpDrchElt ]
SpinorGenera(G) : SymGen -> [ SymGen ]
SpinorGenerators(G) : SymGen -> [ RngIntElt ]
SpinorGenus(L) : Lat -> SymGen
SpinorNorm(g, form): GrpMatElt, AlgMatElt -> RngIntElt
SpinorNorm(V, f) : ModTupFld, Mtrx -> RngIntElt
SpinorCharacters(G) : SymGen -> [ GrpDrchElt ]
SpinorGenera(G) : SymGen -> [ SymGen ]
SpinorGenerators(G) : SymGen -> [ RngIntElt ]
SpinorGenus(L) : Lat -> SymGen
SpinorNorm(g, form): GrpMatElt, AlgMatElt -> RngIntElt
SpinorNorm(V, f) : ModTupFld, Mtrx -> RngIntElt
SpinorRepresentatives(L) : Lat -> [ Lat ]
Representatives(G) : SymGen -> [ Lat ]
GenusRepresentatives(L) : Lat -> [ Lat ]
SpinPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
CoefficientsNonSpiral(s, n) : RngPowLazElt, [RngIntElt] -> SeqEnum
MakeSpliceDiagram(g,e,a) : GrphDir,SeqEnum,SeqEnum -> GrphSpl
MakeSpliceDiagram(e,l,a) : SeqEnum,SeqEnum,SeqEnum -> GrphSpl
RegularSpliceDiagram(P) : LinearSys -> GrphSpl
Splice(C, D) : ModCpx, ModCpx -> ModCpx
Splice(C, D, f) : ModCpx, ModCpx, ModMatRngElt -> ModCpx
SpliceDiagram(g) : GrphRes -> GrphSpl
SpliceDiagram(g,v) : GrphRes,GrphResVert -> GrphSpl
SpliceDiagram(v) : GrphSplVert -> GrphSpl
SpliceDiagram(C,p) : Sch,Pt -> GrphSpl
SpliceDiagramVertex(s,i) : GrphSpl,RngIntElt -> GrphSplVert
Splice Diagrams (RESOLUTION GRAPHS AND SPLICE DIAGRAMS)
Splice Diagrams from Resolution Graphs (RESOLUTION GRAPHS AND SPLICE DIAGRAMS)
Splice Diagrams (RESOLUTION GRAPHS AND SPLICE DIAGRAMS)
SpliceDiagram(g) : GrphRes -> GrphSpl
SpliceDiagram(g,v) : GrphRes,GrphResVert -> GrphSpl
SpliceDiagram(v) : GrphSplVert -> GrphSpl
SpliceDiagram(C,p) : Sch,Pt -> GrphSpl
SpliceDiagramVertex(s,i) : GrphSpl,RngIntElt -> GrphSplVert
FiniteDivisor(D) : DivFunElt -> DivFunElt
InfiniteDivisor(D) : DivFunElt -> DivFunElt
FiniteSplit(D) : DivFunElt -> DivFunElt, DivFunElt
IntegralSplit(a, O) : FldFunElt, RngFunOrd -> RngFunOrdElt, RngElt
IntegralSplit(f, X) : FldFunFracSchElt, Sch -> RngMPolElt, RngMPolElt
IntegralSplit(I) : RngFunOrdIdl -> RngFunOrdIdl, RngElt
IntegralSplit(I) : RngOrdFracIdl -> RngOrdIdl, RngElt
IsGloballySplit(C, l) : , UserProgram -> BoolElt, UserProgram
IsSplit(G) : GrpLie -> BoolElt
IsSplit(P) : RngFunOrdIdl -> BoolElt
IsSplit(P, O) : RngFunOrdIdl, RngFunOrd -> BoolElt
IsSplit(P) : RngOrdIdl -> BoolElt
IsSplit(P, O) : RngOrdIdl, RngOrd -> BoolElt
IsSplit(R) : RootDtm -> BoolElt
IsSplitAsIdealAt(I, l) : RngOrdFracIdl, UserProgram -> BoolElt, UserProgram, [RngOrdIdl]
IsSplitToralSubalgebra(L, H) : AlgLie, AlgLie -> BoolElt
IsTotallySplit(P) : RngFunOrdIdl -> BoolElt
IsTotallySplit(P, O) : RngFunOrdIdl, RngFunOrd -> BoolElt
IsTotallySplit(P) : RngOrdIdl -> BoolElt
IsTotallySplit(P, O) : RngOrdIdl, RngOrd -> BoolElt
Split(S, D) : MonStgElt, MonStgElt -> [ MonStgElt ]
SplitAllByValues(P, V) : StkPtnOrd, SeqEnum[RngIntElt] -> BoolElt, RngIntElt
SplitCell(P, i, x) : StkPtnOrd, RngIntElt, RngIntElt -> BoolElt
SplitCellsByValues(P, C, V) : StkPtnOrd, SeqEnum[RngIntElt], SeqEnum[RngIntElt] -> BoolElt, RngIntElt
SplitExtension(G, M, F) : GrpPerm, ModRng, GrpFP -> GrpFP
SplitExtension(G, M, F) : GrpPerm, ModRng, GrpFP -> GrpFP
SplitExtension(CM) : ModCoho -> Grp, HomGrp, Map
SplitRealPlace(A) : AlgQuat -> PlcNum
SplitToralSubalgebra(L) : AlgLie -> AlgLie
SplittingCartanSubalgebra(L) : AlgLie -> AlgLie
UntwistedRootDatum(R) : RootDtm -> RootDtm
FldAC_Split (Example H40E6)
IO_Split (Example H3E2)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013