[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: relations  ..  remove


relations

   Algebraic Relations (MODULAR FORMS)
   Cohomology Rings (BASIC ALGEBRAS)
   Linear Relations (GALOIS THEORY OF NUMBER FIELDS)
   Relations (CONGRUENCE SUBGROUPS OF PSL2(R))
   The Algebra of an Invariant Ring and Algebraic Relations (INVARIANT THEORY)

relations-GrpPsl2

   Relations (CONGRUENCE SUBGROUPS OF PSL2(R))

Relative

   CyclotomicRelativeField(k, K) : FldCyc, FldCyc -> FldNum
   RelativeField(F, L) : FldAlg, FldAlg -> FldAlg
   RelativeField(F, L) : FldNum, FldNum -> FldNum
   RelativeField(L, m) : RngLocA, Map -> RngLocA, Map, Map
   RelativeInvariant(G, H) : GrpPerm, GrpPerm -> RngSLPolElt
   RelativePrecision(F) : RngDiff -> RngElt
   RelativePrecision(a) : RngLocAElt -> RngExtReElt
   RelativePrecision(x) : RngPadElt -> RngIntElt
   RelativePrecision(f) : RngSerElt -> RngIntElt
   RelativePrecision(e) : RngSerExtElt -> RngIntElt
   RelativePrecisionOfDerivation(F) : RngDiff -> RngElt
   RelativePrecisionOfDerivation(R) : RngDiffOp -> RngElt
   RelativeProj(D) : DivTorElt -> TorVar
   RelativeRank(R) : RootDtm -> RngIntElt
   RelativeRootDatum(R) : RootDtm -> RootDtm
   RelativeRootElement(G,delta,t) : GrpLie, RngIntElt, [FldElt] -> GrpLieElt
   RelativeRootSpace(R) : RootDtm -> ModTupFld, Map
   RelativeRoots(R) : RootDtm -> SetIndx

RelativeField

   RelativeField(F, L) : FldAlg, FldAlg -> FldAlg
   RelativeField(F, L) : FldNum, FldNum -> FldNum
   RelativeField(L, m) : RngLocA, Map -> RngLocA, Map, Map

RelativeInvariant

   RelativeInvariant(G, H) : GrpPerm, GrpPerm -> RngSLPolElt

RelativePrecision

   RelativePrecision(F) : RngDiff -> RngElt
   RelativePrecision(a) : RngLocAElt -> RngExtReElt
   RelativePrecision(x) : RngPadElt -> RngIntElt
   RelativePrecision(f) : RngSerElt -> RngIntElt
   RelativePrecision(e) : RngSerExtElt -> RngIntElt

RelativePrecisionOfDerivation

   RelativePrecisionOfDerivation(F) : RngDiff -> RngElt
   RelativePrecisionOfDerivation(R) : RngDiffOp -> RngElt

RelativeProj

   RelativeProj(D) : DivTorElt -> TorVar

RelativeRank

   RelativeRank(R) : RootDtm -> RngIntElt

RelativeRootDatum

   RelativeRootDatum(R) : RootDtm -> RootDtm

RelativeRootElement

   RelativeRootElement(G,delta,t) : GrpLie, RngIntElt, [FldElt] -> GrpLieElt

RelativeRootElts

   GrpLie_RelativeRootElts (Example H103E4)

RelativeRoots

   PositiveRelativeRoots(R) : RootDtm -> SetIndx
   NegativeRelativeRoots(R) : RootDtm -> SetIndx
   SimpleRelativeRoots(R) : RootDtm -> SetIndx
   RelativeRoots(R) : RootDtm -> SetIndx

RelativeRootSpace

   RelativeRootSpace(R) : RootDtm -> ModTupFld, Map

Relator

   AddRelator(~P, w) : GrpFPCosetEnumProc, GrpFPElt ->

Relevant

   VoronoiRelevantVectors(L) : Lat -> [ ModTupFldElt ]

relevant

   Calculating the Relevant Primes (FINITELY PRESENTED GROUPS: ADVANCED)

relevant-primes

   Calculating the Relevant Primes (FINITELY PRESENTED GROUPS: ADVANCED)

Remainder

   ChineseRemainderTheorem(I1, L1, e1, L2) : RngOrdIdl, [RngIntElt], RngOrdElt, [RngIntElt] -> RngOrdElt
   CRT(I1, L1, e1, L2) : RngOrdIdl, [RngIntElt], RngOrdElt, [RngIntElt] -> RngOrdElt
   ChineseRemainderTheorem(I1, I2, e1, e2) : RngFunOrdIdl, RngFunOrdIdl, RngFunOrdElt, RngFunOrdElt -> RngFunOrdElt
   ChineseRemainderTheorem(I, J, a, b) : RngInt, RngInt, RngIntElt, RngIntElt -> RngIntElt
   ChineseRemainderTheorem(I1, I2, e1, e2) : RngOrdIdl, RngOrdIdl, RngOrdElt, RngOrdElt -> RngOrdElt
   ChineseRemainderTheorem(X, N) : [RngIntElt], [RngIntElt] -> RngIntElt
   ChineseRemainderTheorem(X, M) : [RngUPolElt], [RngUPolElt] -> RngUPolElt
   PseudoRemainder(f, g) : RngUPolElt, RngUPolElt -> RngUPolElt

Remaining

   TransversalProcessRemaining(P) : GrpPermTransProc -> RngIntElt

Remove

   RemoveEdge(~G, e) : Grph, GrphEdge ->
   RemoveEdges(~G, S) : Grph, { GrphEdge } ->
   G -:= e : Grph, GrphEdge ->
   G -:= e : GrphMult, GrphEdge ->
   G -:= v : Grph, GrphVert ->
   G -:= v : GrphMult, GrphVert ->
   Remove(~ A, x) : Assoc, Elt ->
   Remove(~S, i) : SeqEnum, RngIntElt ->
   RemoveColumn(A, j) : Mtrx, RngIntElt -> Mtrx
   RemoveColumn(A, j) : MtrxSprs, RngIntElt -> MtrxSprs
   RemoveConstraint(L, n) : LP, RngIntElt ->
   RemoveFiles(P) : NFSProc -> .
   RemoveIrreducibles(I, C) : [ AlgChtrElt ], [ AlgChtrElt ] -> [ AlgChtrElt ], [ AlgChtrElt ]
   RemoveLinearRelations(X) : Sch -> Sch, MapIsoSch
   RemoveRow(A, i) : Mtrx, RngIntElt -> Mtrx
   RemoveRow(A, i) : MtrxSprs, RngIntElt -> MtrxSprs
   RemoveRowColumn(A, i, j) : Mtrx, RngIntElt -> Mtrx
   RemoveRowColumn(A, i, j) : MtrxSprs, RngIntElt -> MtrxSprs
   RemoveWeight(X,w) : GRK3,RngIntElt -> GRK3
   RemoveWeight(~X,w) : GRSch,RngIntElt ->
   RemoveZeroRows(A) : Mtrx -> Mtrx
   RemoveZeroRows(A) : MtrxSprs -> MtrxSprs

remove

   Scheme_remove (Example H112E12)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013