[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: sequence  ..  Series


sequence

   Element Decomposers (p-ADIC RINGS AND THEIR EXTENSIONS)
   Factorization Sequences (RING OF INTEGERS)
   Parents of Sets and Sequences (INTRODUCTION TO AGGREGATES [SETS, SEQUENCES, AND MAPPINGS])
   Power Sequences (SEQUENCES)
   Sequence Conversions (ALGEBRAIC FUNCTION FIELDS)
   Sequence Conversions (FINITE FIELDS)
   Sequence Conversions (GALOIS RINGS)
   Sequence Conversions (RATIONAL FIELD)

SequenceOfRadicalGenerators

   SequenceOfRadicalGenerators(A) : AlgMat -> SeqEnum

Sequences

   MaximalIncreasingSequences(w, k) : SeqEnum,RngIntElt -> RngIntElt

sequences

   Ordering of Sequences (RATIONAL FUNCTION FIELDS)
   PSEUDO-RANDOM BIT SEQUENCES

sequences-degrees-and-types

   Ordering of Sequences (RATIONAL FUNCTION FIELDS)

SequenceToElement

   Seqelt(s, F) : [ FldFinElt ] -> FldFinElt
   SequenceToElement(s, F) : [ FldFinElt ] -> FldFinElt

SequenceToFactorization

   SequenceToFactorization(s) : SeqEnum -> RngIntEltFact
   SeqFact(s) : SeqEnum -> RngIntEltFact

SequenceToInteger

   Seqint(s, b) : [RngIntElt], RngIntElt -> RngIntElt
   SequenceToInteger(s, b) : [RngIntElt], RngIntElt -> RngIntElt

SequenceToList

   Seqlist(Q) : SeqEnum -> List
   SequenceToList(Q) : SeqEnum -> List

SequenceToMultiset

   SequenceToMultiset(Q) : SeqEnum -> SetMulti

SequenceToSet

   SequenceToSet(S) : SeqEnum -> SetEnum
   Seqset(S) : SeqEnum -> SetEnum

serext-simple

   RngSer_serext-simple (Example H49E7)

Series

   AlgebraicPowerSeries(dp, ip, L, e) : RngUPolElt, RngMPolElt, Lat, RngIntElt -> RngPowAlgElt
   CharacteristicSeries(A) : GrpAuto -> SeqEnum
   ChiefSeries(G) : GrpMat -> [ GrpMat ], [ <RngIntElt, RngIntElt, RngIntElt, RngIntElt> ]
   ChiefSeries(G) : GrpPC -> [GrpPC]
   ChiefSeries(G) : GrpPerm -> [ GrpPerm ], [ <RngIntElt, RngIntElt, RngIntElt, RngIntElt> ]
   CompositionSeries(A) : AlgGen -> [ AlgGen ], [ AlgGen ], AlgMatElt
   CompositionSeries(L) : AlgLie -> [ Alg ], [ AlgLie ], AlgMatElt
   CompositionSeries(G) : GrpAb -> [GrpAb]
   CompositionSeries(G) : GrpPC -> [GrpPC]
   CompositionSeries(G, i) : GrpPC, RngIntElt -> [GrpPC]
   CompositionSeries(G) : GrpPerm -> [ GrpPerm ]
   CompositionSeries(M) : ModRng -> [ ModRng ], [ ModRng ], AlgMatElt
   CompositionTreeSeries(G) : Grp -> SeqEnum, List, List, List, BoolElt, []
   DerivedSeries(L) : AlgLie -> [ AlgLie ]
   DerivedSeries(G) : GrpFin -> [ GrpFin ]
   DerivedSeries(G) : GrpGPC -> [GrpGPC]
   DerivedSeries(G) : GrpMat -> [ GrpMat ]
   DerivedSeries(G) : GrpPC -> [GrpPC]
   DerivedSeries(G) : GrpPerm -> [ GrpPerm ]
   DifferentialLaurentSeriesRing(C) : Fld -> RngDiff
   EhrhartSeries(P) : TorPol -> FldFunRatUElt
   Eigenform(M, prec) : ModSym, RngIntElt -> RngSerPowElt
   EisensteinSeries(M) : ModFrm -> List
   ElementaryAbelianSeries(G) : GrpPC -> [GrpPC]
   ElementaryAbelianSeries(G: parameters) : GrpMat -> [ GrpMat ]
   ElementaryAbelianSeries(G: parameters) : GrpPerm -> [ GrpPerm ]
   ElementaryAbelianSeriesCanonical(G) : GrpMat -> [ GrpMat ]
   ElementaryAbelianSeriesCanonical(G) : GrpPC -> [GrpPC]
   ElementaryAbelianSeriesCanonical(G) : GrpPerm -> [ GrpPerm ]
   EvaluateByPowerSeries(m, P) : MapSch, Pt -> Pt
   EvaluationPowerSeries(s, nu, v) : Tup, SeqEnum, SeqEnum -> RngPowAlgElt
   FittingSeries(G) : GrpGPC -> [GrpGPC]
   R`HilbertSeries
   HilbertSeries(D) : DivTor -> FldFunRatUElt
   HilbertSeries(X) : GRSch -> FldFunRatUElt
   HilbertSeries(M) : ModMPol -> FldFunElt
   HilbertSeries(M, p) : ModMPol, RngIntElt -> RngSerLaurElt
   HilbertSeries(R) : RngInvar -> FldFunUElt
   HilbertSeries(I) : RngMPol -> FldFunUElt
   HilbertSeries(I, p) : RngMPol, RngIntElt -> RngSerLaurElt
   HilbertSeries(p,V) : RngUPolElt, SeqEnum -> FldFunRatUElt
   HilbertSeriesApproximation(R, n) : RngInvar, RngIntElt -> RngSerLaurElt
   HilbertSeriesMultipliedByMinimalDenominator(p,V) : RngUPolElt, SeqEnum -> RngUPolElt, SeqEnum
   HypergeometricSeries(a,b,c, z) : RngElt, RngElt, RngElt, RngElt -> RngElt
   HypergeometricSeries(a,b,c, z) : RngElt, RngElt, RngElt, RngElt -> RngElt
   IsDifferentialLaurentSeriesRing(R) : Rng -> BoolElt
   IsDifferentialSeriesRing(R) : Rng -> BoolElt
   IsEisensteinSeries(f) : ModFrmElt -> BoolElt
   IsEisensteinSeries(f) : ModFrmElt -> BoolElt
   IsPrincipalSeries(pi) : RepLoc -> BoolElt
   JenningsSeries(G) : GrpFin -> [ GrpFin ]
   JenningsSeries(G) : GrpMat -> [ GrpMat ]
   JenningsSeries(G) : GrpPC -> [GrpPC]
   JenningsSeries(G) : GrpPerm -> [ GrpPerm ]
   LMGChiefSeries(G) : GrpMat[FldFin] -> SeqEnum
   LMGCompositionSeries(G) : GrpMat[FldFin] -> SeqEnum
   LaurentSeriesRing(L) : AlgKac -> RngSerLaur
   LaurentSeriesRing(R) : Rng -> RngSerLaur
   LazyPowerSeriesRing(C, n) : Rng, RngIntElt -> RngPowLaz
   LazySeries(R, f) : RngPowLaz, RngMPolElt -> RngPowLazElt
   LowerCentralSeries(L) : AlgLie -> [ AlgLie ]
   LowerCentralSeries(G) : GrpFin -> [ GrpFin ]
   LowerCentralSeries(G) : GrpGPC -> [GrpGPC]
   LowerCentralSeries(G) : GrpMat -> [ GrpMat ]
   LowerCentralSeries(G) : GrpPC -> [GrpPC]
   LowerCentralSeries(G) : GrpPerm -> [ GrpPerm ]
   MolienSeries(G) : GrpMat -> FldFunUElt
   MolienSeriesApproximation(G, n) : GrpPerm, RngIntElt -> RngSerLaurElt
   OverconvergentHeckeSeries(p, N, k, m) : RngIntElt, RngIntElt, RngIntElt, RngIntElt -> RngUPolElt
   OverconvergentHeckeSeries(p, N, kseq, m) : RngIntElt, RngIntElt, SeqEnum, RngIntElt -> RngUPolElt
   OverconvergentHeckeSeriesDegreeBound(p, N, k, m) : RngIntElt, RngIntElt, RngIntElt, RngIntElt -> RngIntElt
   PolyToSeries(s) : RngMPolElt -> RngPowAlgElt
   PowerSeriesRing(R) : Rng -> RngSerPow
   PrincipalSeriesParameters(pi) : RepLoc -> GrpDrchElt, GrpDrchElt
   PuiseuxSeriesRing(R) : Rng -> RngSerPuis
   SocleSeries(G) : GrpPerm -> [ GrpPerm ]
   SocleSeries(M) : ModRng -> [ ModRng ], [ ModRng ], AlgMatElt
   SubnormalSeries(G, H) : GrpFin, GrpFin -> [ GrpFin ]
   SubnormalSeries(G, H) : GrpMat, GrpMat -> [ GrpMat ]
   SubnormalSeries(G, H) : GrpPC, GrpPC -> [GrpPC]
   SubnormalSeries(G, H) : GrpPerm, GrpPerm -> [ GrpPerm ]
   ThetaSeries(L, n) : Lat, RngIntElt -> RngSerElt
   ThetaSeries(x, y, prec) : ModBrdtElt, ModBrdtElt, RngIntElt -> RngSerElt
   ThetaSeries(f, n) : QuadBinElt, RngIntElt -> RngSerElt
   ThetaSeriesIntegral(L, n) : Lat, RngIntElt -> RngSerElt
   ThetaSeriesModularForm(L) : Lat -> ModFrmElt
   ThetaSeriesModularFormSpace(L) : Lat -> ModFrm
   UpperCentralSeries(L) : AlgLie -> [ AlgLie ]
   UpperCentralSeries(G) : GrpFin -> [ GrpFin ]
   UpperCentralSeries(G) : GrpGPC -> [GrpGPC]
   UpperCentralSeries(G) : GrpMat -> [ GrpMat ]
   UpperCentralSeries(G) : GrpPC -> [GrpPC]
   UpperCentralSeries(G) : GrpPerm -> [ GrpPerm ]
   WeierstrassSeries(z, t) : RngSerElt, FldComElt -> RngSerElt
   WeierstrassSeries(z, F) : RngSerElt, QuadBinElt -> RngSerElt
   WeierstrassSeries(z, f) : RngSerElt, QuadBinElt -> RngSerElt
   WeierstrassSeries(z, q) : RngSerElt, RngSerElt -> RngSerElt
   WeierstrassSeries(z, L) : RngSerElt, SeqEnum -> RngSerElt
   pCentralSeries(G, p) : GrpFin, RngIntElt -> [ GrpFin ]
   pCentralSeries(G, p) : GrpMat, RngIntElt -> [ GrpMat ]
   pCentralSeries(G, p) : GrpPC, RngIntElt -> [GrpPC]
   pCentralSeries(G, p) : GrpPerm, RngIntElt -> [ GrpPerm ]
   qExpansion(f) : ModFrmElt -> RngSerPowElt
   AlgLie_Series (Example H100E41)
   GrpMatGen_Series (Example H59E24)
   GrpPerm_Series (Example H58E29)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013