[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: real-complex .. RecogniseSL3
REAL AND COMPLEX FIELDS
Real and Complex Valued Functions (NUMBER FIELDS)
Real and Complex Valued Functions (ORDERS AND ALGEBRAIC FIELDS)
RealEmbeddings(a) : FldNumElt -> []
RealEmbeddings(a) : RngOrdElt -> []
RealField() : -> FldRe
RealField(p) : RngIntElt -> FldRe
RealHomology(A) : ModAbVar -> ModTupFld
RealInjection(R) : RootSys -> .
FldRe_RealIntro (Example H25E1)
IsRealisableOverSmallerField(M) : ModGrp -> BoolElt, ModGrp
IsRealisableOverSubfield(M, F) : ModGrp, FldFin -> BoolElt, ModGrp
RealMatrix(phi) : MapModAbVar -> ModMatFldElt
RealPeriod(E: parameters) : CrvEll -> FldReElt
RealPlaces(K) : FldRat -> [PlcNumElt]
RealPlaces(K) : FldRat -> [PlcNumElt]
GrpRfl_RealReflectionGroupByCartan (Example H99E6)
GrpRfl_RealReflectionGroupByRootDatum (Example H99E7)
Overview of Real Numbers in Magma (REAL AND COMPLEX FIELDS)
RealSigns(a) : FldNumElt -> []
RealSigns(a) : RngOrdElt -> []
RealTamagawaNumber(M) : ModSym -> RngIntElt
Realtime() : -> FldReElt
Realtime(t) : FldReElt -> FldReElt
RealVectorSpace(H) : ModAbVarHomol -> ModTupFld
RealVolume(M, prec) : ModSym, RngIntElt -> FldPrElt
Recognition Functions (ALMOST SIMPLE GROUPS)
rec< F | L > : RecFormat, FieldAssignmentList -> Rec
recformat< L > : FieldnameList -> RecFormat
Chtr_recipe-for-schur-index (Example H91E4)
ReciprocalPolynomial(f) : RngUPolElt -> RngUPolElt
ReciprocalPolynomial(f) : RngUPolElt -> RngUPolElt
Recognition of Arbitrary *-Algebras (ALGEBRAS WITH INVOLUTION)
Recognition of Simple *-Algebras (ALGEBRAS WITH INVOLUTION)
RecogniseAdjoint (G) : GrpMat -> BoolElt, GrpMat
RecogniseAlternating(G, n: parameters) : Grp, RngIntElt -> BoolElt, Map, Map, Map, Map, BoolElt
RecogniseAlternating(G, n: parameters) : Grp, RngIntElt -> BoolElt, Map, Map, Map, Map, BoolElt
RecogniseAlternatingOrSymmetric(G, n) : Grp, RngIntElt -> BoolElt, BoolElt, UserProgram, UserProgram
RecogniseAlternatingOrSymmetric(G, n) : Grp, RngIntElt -> BoolElt, BoolElt, UserProgram, UserProgram
RecogniseAlternatingSquare (G) : GrpMat -> BoolElt, GrpMat
RecogniseClassicalSSA(A) : AlgMat -> BoolElt, AlgMat, Map, Map
RecogniseDelta (G) : GrpMat -> BoolElt, GrpMat
RecogniseExchangeSSA(A) : AlgMat -> BoolElt, AlgMat, Map, Map
RecogniseLargeRee(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map
RecogniseRee(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map
RecogniseSL(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
RecogniseSL3(G) : GrpMat -> BoolElt, Map, Map, Map, Map
RecogniseSU3(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
RecogniseSU4(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
RecogniseSp4Even(G, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
RecogniseSpOdd(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
RecogniseStarAlgebra(A) : AlgMat -> BoolElt
RecogniseSymmetric(G, n: parameters) : Grp, RngIntElt -> BoolElt, Map, Map, Map, Map, BoolElt
RecogniseSymmetric(G, n: parameters) : Grp, RngIntElt -> BoolElt, Map, Map, Map, Map, BoolElt
RecogniseSymmetricSquare (G) : GrpMat -> BoolElt, GrpMat
RecogniseSz(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map
RecogniseAdjoint (G) : GrpMat -> BoolElt, GrpMat
RecogniseAlternating(G, n: parameters) : Grp, RngIntElt -> BoolElt, Map, Map, Map, Map, BoolElt
RecogniseAlternating(G, n: parameters) : Grp, RngIntElt -> BoolElt, Map, Map, Map, Map, BoolElt
RecogniseAlternatingOrSymmetric(G, n) : Grp, RngIntElt -> BoolElt, BoolElt, UserProgram, UserProgram
RecogniseAlternatingOrSymmetric(G, n) : Grp, RngIntElt -> BoolElt, BoolElt, UserProgram, UserProgram
RecogniseAlternatingSquare (G) : GrpMat -> BoolElt, GrpMat
GrpASim_RecogniseAltsym1 (Example H65E3)
GrpPerm_RecogniseAltsym1 (Example H58E39)
GrpASim_RecogniseAltsym2 (Example H65E4)
GrpPerm_RecogniseAltsym2 (Example H58E40)
RecogniseClassicalSSA(A) : AlgMat -> BoolElt, AlgMat, Map, Map
AlgInv_RecogniseClassicalSSA (Example H87E6)
RecogniseDelta (G) : GrpMat -> BoolElt, GrpMat
RecogniseExchangeSSA(A) : AlgMat -> BoolElt, AlgMat, Map, Map
RecognizeLargeRee(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map
RecogniseLargeRee(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map
RecognizeRee(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map
RecogniseRee(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map
RecognizeSL(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
RecogniseSL(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
GrpASim_RecogniseSL2-2 (Example H65E10)
RecogniseSL3(G) : GrpMat -> BoolElt, Map, Map, Map, Map
GrpASim_RecogniseSL3 (Example H65E11)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013