[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: SuzukiMaximalSubgroupsConjugacy  ..  Symbol


SuzukiMaximalSubgroupsConjugacy

   SuzukiMaximalSubgroupsConjugacy(G, R, S) : GrpMat, GrpMat, GrpMat -> GrpMatElt, GrpSLPElt

SuzukiSylow

   SuzukiSylow(G, p) : GrpMat, RngIntElt -> GrpMat, SeqEnum

SuzukiSylowConjugacy

   SuzukiSylowConjugacy(G, R, S, p) : GrpMat, GrpMat, GrpMat, RngIntElt -> GrpMatElt, GrpSLPElt

SVPermutation

   SVPermutation(G, i, a) : GrpPerm, RngIntElt, Elt -> GrpPermElt

SVWord

   SVWord(G, i, a) : GrpPerm, RngIntElt, Elt -> GrpFPElt

Swap

   SwapColumns(~a, i, j) : AlgMatElt, RngIntElt, RngIntElt ->
   SwapColumns(A, i, j) : Mtrx, RngIntElt, RngIntElt -> Mtrx
   SwapColumns(A, i, j) : MtrxSprs, RngIntElt, RngIntElt -> MtrxSprs
   SwapRows(~a, i, j) : AlgMatElt, RngIntElt, RngIntElt ->
   SwapRows(A, i, j) : Mtrx, RngIntElt, RngIntElt -> Mtrx
   SwapRows(A, i, j) : MtrxSprs, RngIntElt, RngIntElt -> MtrxSprs

SwapColumns

   SwapColumns(~a, i, j) : AlgMatElt, RngIntElt, RngIntElt ->
   SwapColumns(A, i, j) : Mtrx, RngIntElt, RngIntElt -> Mtrx
   SwapColumns(A, i, j) : MtrxSprs, RngIntElt, RngIntElt -> MtrxSprs

SwapRows

   SwapRows(~a, i, j) : AlgMatElt, RngIntElt, RngIntElt ->
   SwapRows(A, i, j) : Mtrx, RngIntElt, RngIntElt -> Mtrx
   SwapRows(A, i, j) : MtrxSprs, RngIntElt, RngIntElt -> MtrxSprs

Swinnerton

   SwinnertonDyerPolynomial(n) : RngIntElt -> RngUPolElt

swinnerton

   Swinnerton-Dyer Polynomials (UNIVARIATE POLYNOMIAL RINGS)

swinnerton-dyer

   Swinnerton-Dyer Polynomials (UNIVARIATE POLYNOMIAL RINGS)

SwinnertonDyer

   FldAC_SwinnertonDyer (Example H40E2)

SwinnertonDyerPolynomial

   SwinnertonDyerPolynomial(n) : RngIntElt -> RngUPolElt
   RngPol_SwinnertonDyerPolynomial (Example H23E6)

Switch

   Switch(u) : GrphVert -> GrphUnd
   Switch(S) : { GrphVert } -> Grph

switch

   Vertex Insertion, Contraction (MULTIGRAPHS)

switching

   Constructing Complements, Line Graphs; Contraction, Switching (GRAPHS)

Sylow

   Hall π-Subgroups and Sylow Systems (FINITE SOLUBLE GROUPS)
   ClassicalSylow(G,p) : GrpMat, RngIntElt -> GrpMat
   ClassicalSylowConjugation(G,P,S) : GrpMat, GrpMat, GrpMat -> GrpMatElt
   ClassicalSylowNormaliser(G,P) : GrpMat, GrpMat -> GrpMatElt
   ClassicalSylowToPC(G,P) : GrpMat, GrpMat -> GrpPC, UserProgram, Map
   LargeReeSylow(G, p) : GrpMat, RngIntElt -> GrpMat, SeqEnum
   PrintSylowSubgroupStructure(G) : GrpLie ->
   ReeSylow(G, p) : GrpMat, RngIntElt -> GrpMat, SeqEnum
   ReeSylowConjugacy(G, R, S, p) : GrpMat, GrpMat, GrpMat, RngIntElt -> GrpMatElt, GrpSLPElt
   SuzukiSylow(G, p) : GrpMat, RngIntElt -> GrpMat, SeqEnum
   SuzukiSylowConjugacy(G, R, S, p) : GrpMat, GrpMat, GrpMat, RngIntElt -> GrpMatElt, GrpSLPElt
   Sylow(J, p) : JacHyp, RngIntElt -> GrpAb, Map, Eseq
   SylowBasis(G) : GrpPC -> [GrpPC]
   SylowSubgroup(G, p) : GrpFin, RngIntElt -> GrpFin
   SylowSubgroup(G, p) : GrpLie, RngIntElt -> List
   SylowSubgroup(G, p) : GrpMat, RngIntElt -> GrpMat
   SylowSubgroup(G, p) : GrpPC, RngIntElt -> GrpPC
   SylowSubgroup(G, p) : GrpPerm, RngIntElt -> GrpPerm
   SylowSubgroup(G, p : parameters) : GrpAb, RngIntElt -> GrpAb
   SylowSystem(G : parameters) : GrpMat[FldFin] -> []

sylow

   Sylow Subgroups (GROUPS OF LIE TYPE)
   Sylow Subgroups of Exceptional Groups (ALMOST SIMPLE GROUPS)
   Sylow Subgroups of the Classical Groups (ALMOST SIMPLE GROUPS)

sylow-subgroups

   Sylow Subgroups (GROUPS OF LIE TYPE)

sylow_ex

   GrpASim_sylow_ex (Example H65E18)

SylowBasis

   SylowBasis(G) : GrpPC -> [GrpPC]

SylowSubgroup

   Sylow(G, p) : GrpFin, RngIntElt -> GrpFin
   SylowSubgroup(G, p) : GrpFin, RngIntElt -> GrpFin
   SylowSubgroup(G, p) : GrpLie, RngIntElt -> List
   SylowSubgroup(G, p) : GrpMat, RngIntElt -> GrpMat
   SylowSubgroup(G, p) : GrpPC, RngIntElt -> GrpPC
   SylowSubgroup(G, p) : GrpPerm, RngIntElt -> GrpPerm
   SylowSubgroup(G, p : parameters) : GrpAb, RngIntElt -> GrpAb

SylowSystem

   SylowSystem(G : parameters) : GrpMat[FldFin] -> []

Sym

   SymmetricGroup(GrpPerm, n) : Cat, RngIntElt -> GrpPerm
   Sym(GrpPerm, n) : Cat, RngIntElt -> GrpPerm
   Sym(n) : RngIntElt -> GrpPerm
   Sym(X) : Set -> GrpPerm
   SymmetricGroup(C, n) : Cat, RngIntElt -> GrpFin
   SymmetricGroup(GrpFP, n) : Cat, RngIntElt -> GrpFP
   GrpPerm_Sym (Example H58E1)

sym

   Operations Related to the Symmetric Group (REPRESENTATIONS OF LIE GROUPS AND ALGEBRAS)

Sym_Bi_Linear

   RngMPol_Sym_Bi_Linear (Example H24E7)

Symbol

   BiquadraticResidueSymbol(a, b) : RngQuadElt, RngQuadElt -> RngQuadElt
   ConvertFromManinSymbol(M, x) : ModSym, Tup -> ModSymElt
   DisplayFareySymbolDomain(FS,file) : SymFry, MonStgElt -> SeqEnum
   FareySymbol(G) : GrpPSL2 -> SymFry
   HilbertSymbol(a, b, p) : FldRatElt, FldRatElt, RngIntElt -> RngIntElt
   HilbertSymbol(a, b, p : parameters) : FldRatElt, FldRatElt, RngIntElt -> RngIntElt
   JacobiSymbol(n, m) : RngIntElt, RngIntElt -> RngIntElt
   JacobiSymbol(a,b) : RngUPol, RngUPol -> RngIntElt
   KodairaSymbol(E, p) : CrvEll, RngIntElt -> SymKod
   KodairaSymbol(s) : MonStgElt -> SymKod
   KroneckerSymbol(n, m) : RngIntElt, RngIntElt -> RngIntElt
   LegendreSymbol(n, m) : RngIntElt, RngIntElt -> RngIntElt
   ManinSymbol(x) : ModSymElt -> SeqEnum
   ModularSymbolToIntegralHomology(A, x) : ModAbVar, SeqEnum -> ModTupFldElt
   ModularSymbolToRationalHomology(A, x) : ModAbVar, ModSymElt -> ModTupFldElt
   NormResidueSymbol(a, b, p) : FldRatElt, FldRatElt, RngIntElt -> RngIntElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013