[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: classfields .. ClassicalSylow
FldFunAb_classfields (Example H43E2)
CharacterRing(G) : Grp -> AlgChtr
ClassFunctionSpace(G) : Grp -> AlgChtr
ClassGroup(C) : Crv[FldFin] -> GrpAb, Map, Map
ClassGroup(K) : FldQuad -> GrpAb, Map
ClassGroup(Q) : FldRat -> GrpAb, Map
ClassGroup(K: parameters) : FldAlg -> GrpAb, Map
ClassGroup(F : parameters) : FldFun -> GrpAb, Map, Map
ClassGroup(F : parameters) : FldFunG -> GrpAb, Map, Map
ClassGroup(Q: parameters) : QuadBin -> GrpAb, Map
ClassGroup(O: parameters) : RngOrd -> GrpAb, Map
ClassGroup(O) : RngFunOrd -> GrpAb, Map, Map
ClassGroup(Z) : RngInt -> GrpAb, Map
RngOrd_ClassGroup (Example H37E18)
ClassGroupAbelianInvariants(C) : Crv[FldFin] -> [RngIntElt]
ClassGroupAbelianInvariants(F : parameters) : FldFun -> SeqEnum
ClassGroupAbelianInvariants(F : parameters) : FldFunG -> SeqEnum
ClassGroupAbelianInvariants(O) : RngFunOrd -> SeqEnum
ClassGroupCyclicFactorGenerators(O) : RngOrd -> ModHomElt
ClassGroupExactSequence(F) : FldFunG -> Map, Map, Map
ClassGroupExactSequence(O) : RngFunOrd -> Map, Map, Map
ClassGroupGenerationBound(F) : FldFunG -> RngIntElt
ClassGroupGenerationBound(q, g) : RngIntElt, RngIntElt -> RngIntElt
ClassGroupGetUseMemory(O) : RngOrd -> BoolElt
ClassGroupPRank(C) : Crv[FldFin] -> RngIntElt
ClassGroupPRank(F) : FldFunG -> RngIntElt
ClassGroupPRank(F) : FldFunG -> RngIntElt
ClassGroupPrimeRepresentatives(O, I) : RngOrd, RngOrdIdl -> Map
ClassGroupSetUseMemory(O, f) : RngOrd, BoolElt ->
ClassGroupStructure(Q: parameters) : QuadBin -> [ RngIntElt ]
ClassicalChangeOfBasis(G): GrpMat[FldFin] -> GrpMatElt[FldFin]
ClassicalConstructiveRecognition(G : parameters) : GrpMat[FldFin] -> BoolElt, [], [], GrpMatElt
ClassicalCovariantsOfCubicSurface(f) : RngMPolElt -> SeqEnum
ClassicalForms(G: parameters): GrpMat -> Rec
ClassicalIntersection(S) : SeqEnum -> GrpMat
ClassicalMaximals(type, d, q : parameters) : MonStgElt, RngIntElt, RngIntElt -> SeqEnum
ClassicalModularPolynomial(N) : RngIntElt -> RngMPolElt
ClassicalPeriod(M, j, prec) : ModSym, RngIntElt, RngIntElt -> FldPrElt
ClassicalRewrite(G, gens, type, dim, q, g : parameters): Grp, SeqEnum, MonStgElt, RngIntElt, RngIntElt, GrpElt -> BoolElt, GrpElt
ClassicalRewriteNatural(type, CB, g): MonStgElt, GrpMatElt, GrpMatElt-> BoolElt, GrpElt
ClassicalStandardGenerators(type, d, q) : MonStgElt, RngIntElt, RngIntElt -> []
ClassicalStandardPresentation (type, d, q : parameters) : MonStgElt, RngIntElt, RngIntElt -> SLPGroup, []
ClassicalSylow(G,p) : GrpMat, RngIntElt -> GrpMat
ClassicalSylowConjugation(G,P,S) : GrpMat, GrpMat, GrpMat -> GrpMatElt
ClassicalSylowNormaliser(G,P) : GrpMat, GrpMat -> GrpMatElt
ClassicalSylowToPC(G,P) : GrpMat, GrpMat -> GrpPC, UserProgram, Map
ClassicalType(G) : GrpMat -> MonStgElt
InvolutionClassicalGroupEven(G : parameters) : GrpMat[FldFin] ->GrpMatElt[FldFin], GrpSLPElt, RngIntElt
IsClassicalType(L) : AlgLie -> BoolElt
RecogniseClassicalSSA(A) : AlgMat -> BoolElt, AlgMat, Map, Map
RecognizeClassical( G : parameters): GrpMat -> BoolElt
Automorphisms of Classical- type Reductive Algebras (LIE ALGEBRAS)
Classical Groups (ALMOST SIMPLE GROUPS)
Constructive Recognition for Simple Groups (MATRIX GROUPS OVER FINITE FIELDS)
Maximal Subgroups of the Classical Groups (ALMOST SIMPLE GROUPS)
Sylow Subgroups of the Classical Groups (ALMOST SIMPLE GROUPS)
ModFrmHil_classical-example (Example H137E8)
Maximal Subgroups of the Classical Groups (ALMOST SIMPLE GROUPS)
Sylow Subgroups of the Classical Groups (ALMOST SIMPLE GROUPS)
ClassicalChangeOfBasis(G): GrpMat[FldFin] -> GrpMatElt[FldFin]
ClassicalConstructiveRecognition(G : parameters) : GrpMat[FldFin] -> BoolElt, [], [], GrpMatElt
GrpMatFF_ClassicalConstructiveRecognition (Example H60E10)
ClassicalCovariantsOfCubicSurface(f) : RngMPolElt -> SeqEnum
ClassicalForms(G: parameters): GrpMat -> Rec
GrpASim_ClassicalForms (Example H65E7)
Classical Forms (ALMOST SIMPLE GROUPS)
ClassicalIntersection(S) : SeqEnum -> GrpMat
AlgInv_ClassicalIntersection (Example H87E10)
ClassicalMaximals(type, d, q : parameters) : MonStgElt, RngIntElt, RngIntElt -> SeqEnum
ClassicalModularPolynomial(N) : RngIntElt -> RngMPolElt
ClassicalPeriod(M, j, prec) : ModSym, RngIntElt, RngIntElt -> FldPrElt
ClassicalRewrite(G, gens, type, dim, q, g : parameters): Grp, SeqEnum, MonStgElt, RngIntElt, RngIntElt, GrpElt -> BoolElt, GrpElt
ClassicalRewriteNatural(type, CB, g): MonStgElt, GrpMatElt, GrpMatElt-> BoolElt, GrpElt
ClassicalStandardGenerators(type, d, q) : MonStgElt, RngIntElt, RngIntElt -> []
ClassicalStandardPresentation (type, d, q : parameters) : MonStgElt, RngIntElt, RngIntElt -> SLPGroup, []
ClassicalSylow(G,p) : GrpMat, RngIntElt -> GrpMat
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013