[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: boolean .. Bound
Boolean Operations (BINARY QUADRATIC FORMS)
Boolean Operators (SYMMETRIC FUNCTIONS)
Boolean Predicates for Elements (BRAID GROUPS)
Boolean values (STATEMENTS AND EXPRESSIONS)
Comparison Operators for Elements (POLYCYCLIC GROUPS)
Elementary Properties of Incidence Structures and Designs (INCIDENCE STRUCTURES AND DESIGNS)
General Group Properties (POLYCYCLIC GROUPS)
General Properties of Subgroups (POLYCYCLIC GROUPS)
Gröbner Bases of Boolean Polynomial Rings (GRÖBNER BASES)
Membership and Equality (POLYCYCLIC GROUPS)
Predicates on Elements (ALGEBRAIC FUNCTION FIELDS)
Predicates on Elements (ALGEBRAIC FUNCTION FIELDS)
Predicates on Elements (ALGEBRAIC FUNCTION FIELDS)
Predicates on Elements (NUMBER FIELDS)
Predicates on Elements (ORDERS AND ALGEBRAIC FIELDS)
Predicates on Ideals (ALGEBRAIC FUNCTION FIELDS)
Properties of Planes (FINITE PLANES)
Properties of Subgroups Requiring a Nil-po-tent Covering Group (POLYCYCLIC GROUPS)
Ring Predicates and Booleans (MULTIVARIATE POLYNOMIAL RINGS)
Ring Predicates and Booleans (POWER, LAURENT AND PUISEUX SERIES)
Ring Predicates and Booleans (SYMMETRIC FUNCTIONS)
Ring Predicates and Booleans (UNIVARIATE POLYNOMIAL RINGS)
Boolean Operations (BINARY QUADRATIC FORMS)
Operations on Sequences of Booleans (SEQUENCES)
BooleanPolynomialRing(n) : RngIntElt -> RngMPolBool
BooleanPolynomialRing(n, order) : RngIntElt, MonStgElt -> RngMPolBool
BooleanPolynomialRing(B, Q) : RngMPolBool, [RngIntElt] -> RngMPolBoolElt
Booleans() : -> Bool
State_Booleans (Example H1E8)
Boolean Functions (BASIC ALGEBRAS)
Boolean Operations on Ideals (DIFFERENTIAL RINGS)
Predicates and Booleans (DIFFERENTIAL RINGS)
Predicates and Booleans (DIFFERENTIAL RINGS)
Predicates and Booleans (DIFFERENTIAL RINGS)
Predicates and Booleans (DIFFERENTIAL RINGS)
Boolean Operations on Ideals (DIFFERENTIAL RINGS)
BorderedDoublyCirculantQRCode(p, a, b) : RngIntElt, RngElt, RngElt -> Code
BorderedDoublyCirculantQRCode(p, a, b) : RngIntElt, RngElt, RngElt -> Code
BorelSubgroup(C) : CosetGeom -> GrpPerm
Borel(C) : CosetGeom -> GrpPerm
ConjugateIntoBorel(g) : GrpLieElt -> GrpLieElt, GrpLieElt
BorelSubgroup(C) : CosetGeom -> GrpPerm
Borel(C) : CosetGeom -> GrpPerm
KleinBottle() : -> SmpCpx
Bottom(L) : SubFldLat -> SubFldLatElt
Bottom(L): SubGrpLat -> SubGrpLatElt
Bottom(L): SubModLat -> SubModLatElt
BDLCLowerBound(F, n, d) : FldFin, RngIntElt, RngIntElt -> RngIntElt
BDLCUpperBound(F, n, d) : FldFin, RngIntElt, RngIntElt -> RngIntElt
BKLCLowerBound(F, n, k) : FldFin, RngIntElt, RngIntElt -> RngIntElt
BKLCUpperBound(F, n, k) : FldFin, RngIntElt, RngIntElt -> RngIntElt
BLLCLowerBound(F, k, d) : FldFin, RngIntElt, RngIntElt -> RngIntElt
BLLCUpperBound(F, k, d) : FldFin, RngIntElt, RngIntElt -> RngIntElt
BachBound(K) : FldNum -> RngIntElt
BachBound(K) : FldNum -> RngIntElt
Bound(I, B) : RngSLPolElt, RngElt -> RngElt
Bound(I, B) : RngSLPolElt, RngIntElt -> RngIntElt
ClassGroupGenerationBound(F) : FldFunG -> RngIntElt
ClassGroupGenerationBound(q, g) : RngIntElt, RngIntElt -> RngIntElt
ClassNumberApproximationBound(q, g, e) : RngIntElt, RngIntElt, RngIntElt, -> RngIntElt
EliasAsymptoticBound(K, delta) : FldFin, FldPrElt -> FldPrElt
EliasBound(K, n, d) : FldFin, RngIntElt, RngIntElt -> RngIntElt
GeometricTorsionBound(E) : CrvEll[FldFunG] -> RngIntElt
GilbertVarshamovAsymptoticBound(K, delta) : FldFin, FldPrElt -> FldPrElt
GilbertVarshamovBound(K, n, d) : FldFin, RngIntElt, RngIntElt -> RngIntElt
GilbertVarshamovLinearBound(K, n, d) : FldFin, RngIntElt, RngIntElt -> RngIntElt
GriesmerBound(K, n, d) : FldFin, RngIntElt, RngIntElt -> RngIntElt
GriesmerLengthBound(K, k, d) : FldFin, RngIntElt, RngIntElt -> RngIntElt
GriesmerMinimumWeightBound(K, n, k) : FldFin, RngIntElt, RngIntElt->RngIntElt
HammingAsymptoticBound(K, delta) : FldFin, FldPrElt -> FldPrElt
HeckeBound(M) : ModSym -> RngIntElt
HeckeEigenvalueBound(M, P) : ModFrmHil, RngOrdIdl -> RngIntElt
IharaBound(F) : FldFunG -> RngIntElt
JohnsonBound(n, d) : RngIntElt, RngIntElt -> RngIntElt
L`MinimumBound : Lat -> RngElt
LevenshteinBound(K, n, d) : FldFin, RngIntElt, RngIntElt -> RngIntElt
McElieceEtAlAsymptoticBound(delta) : FldPrElt -> FldPrElt
MinkowskiBound(K) : FldNum -> RngIntElt
MinkowskiBound(K) : FldNum -> RngIntElt
NumberOfPlacesOfDegreeOneECFBound(C) : Crv -> RngIntElt
NumberOfPlacesOfDegreeOneECFBound(F) : FldFunG -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantFieldBound(F, m) : FldFun, RngIntElt -> RngIntElt
OverconvergentHeckeSeriesDegreeBound(p, N, k, m) : RngIntElt, RngIntElt, RngIntElt, RngIntElt -> RngIntElt
PhiSelmerGroup(f,q) : RngUPolElt, RngIntElt -> GrpAb, Map
PlotkinAsymptoticBound(K, delta) : FldFin, FldPrElt -> FldPrElt
PlotkinBound(K, n, d) : FldFin, RngIntElt, RngIntElt -> RngIntElt
PrecisionBound(M : parameters) : ModFrm -> RngIntElt
QECCLowerBound(F, n, k) : FldFin, RngIntElt, RngIntElt -> RngIntElt
QECCUpperBound(F, n, k) : FldFin, RngIntElt, RngIntElt -> RngIntElt
RankBound(E) : CrvEll -> RngIntElt
RankBound(J) : JacHyp -> RngIntElt
RankBounds(E) : CrvEll[FldFunG] -> RngIntElt, RngIntElt
RegulatorLowerBound(K) : FldNum -> FldComElt
RegulatorLowerBound(O) : RngOrd -> FldPrElt
SerreBound(C) : Crv[FldFin] -> RngIntElt
SerreBound(F) : FldFunG -> RngIntElt
SetClassGroupBoundMaps(f1, f2) : Map, Map ->
SetHeckeBound(M, n) : ModSym, RngIntElt -> RngIntElt
SetLMGSchreierBound(n) : RngIntElt ->
SetLowerBound(L, n, b) : LP, RngIntElt, RngElt ->
SetUpperBound(L, n, b) : LP, RngIntElt, RngElt ->
SiksekBound(H: parameters) : SetPtEll -> FldPrElt
SilvermanBound(H) : SetPtEll -> FldPrElt
SingletonAsymptoticBound(delta) : FldPrElt -> FldPrElt
SingletonBound(K, n, d) : FldFin, RngIntElt, RngIntElt -> RngIntElt
SpherePackingBound(K, n, d) : FldFin, RngIntElt, RngIntElt -> RngIntElt
TorsionBound(E, n) : CrvEll, RngIntElt -> RngIntElt
TorsionBound(E, n) : CrvEll[FldFunG], RngIntElt -> RngIntElt
TorsionBound(J, n) : JacHyp, RngIntElt -> RngIntElt
TorsionBound(M, maxp) : ModSym, RngIntElt -> RngIntElt
TorsionLowerBound(A) : ModAbVar -> RngIntElt
VanLintBound(K, n, d) : FldFin, RngIntElt, RngIntElt -> RngIntElt
VerifyMinimumDistanceLowerBound(C, d) : Code, RngIntElt -> BoolElt, RngIntElt, BoolElt
VerifyMinimumDistanceUpperBound(C, d) : Code, RngIntElt -> BoolElt, RngIntElt, BoolElt
WeilPolynomialToRankBound(f, q) : RngUPolElt, RngIntElt -> RngIntElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013