[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: IsAbelianByFinite .. IsCanonical
IsAbelianByFinite(G : parameters) : GrpMat -> BoolElt
IsAbelianVariety(A) : ModAbVar -> BoolElt
IsAbsoluteField(K) : FldAlg -> BoolElt
IsAbsoluteField(K) : FldNum -> BoolElt
IsAbsolutelyIrreducible(C) : Crv -> BoolElt
IsAbsolutelyIrreducible(G) : GrpMat -> BoolElt
IsAbsolutelyIrreducible(M) : ModRng -> BoolElt, AlgMatElt, RngIntElt
IsAbsolutelyIrreducible(R) : RootStr -> BoolElt
IsAbsoluteOrder(O) : RngFunOrd -> BoolElt
IsAbsoluteOrder(O) : RngOrd -> BoolElt
IsAdditiveOrder(R, Q) : RootStr, [RngIntElt] -> BoolElt
IsAdditiveOrder(R, Q) : RootSys, [RngIntElt] -> BoolElt
IsAdditiveProjective(C) : CodeAdd -> BoolElt
IsAdjoint(G) : GrpLie -> BoolElt
IsAdjoint(R) : RootDtm -> BoolElt
IsAffine(W) : GrpFPCox -> BoolElt
IsAffine(G) : GrpPerm -> BoolElt, GrpPerm
IsAffine(X) : Sch -> BoolElt
IsAffine(X) : Sch -> BoolElt
IsAffineLinear(f) : MapSch -> BoolElt
IsAffineLinear(P) : TorPol -> BoolElt
IsAlgebraHomomorphism(A, B, psi) : AlgBas, AlgBas, Map -> Bool
IsAlgebraHomomorphism(A, B, psi) : AlgBas, Mtrx -> Bool
IsAlgebraHomomorphism(psi): Map -> Bool
IsAlgebraic(h) : GrpLieAutoElt -> BoolElt
IsAlgebraicallyDependent(S) : RngMPolElt -> BoolElt
IsAlgebraicallyIsomorphic(G, H) : GrpLie, GrpLie -> BoolElt, Map
IsAlgebraicDifferentialField(R) : Rng -> BoolElt
IsAlgebraicGeometric(C) : Code -> BoolElt
IsAlternating(G) : GrpPerm -> BoolElt
IsAltsym(G) : GrpPerm -> BoolElt
IsAmbient(M) : ModBrdt -> BoolElt
IsAmbient(M) : ModMPol -> BoolElt
IsAmbient(X) : Sch -> BoolElt
IsAmbientSpace(M) : ModFrm -> BoolElt
IsAmbientSpace(M) : ModSS -> BoolElt
IsAmple(D) : DivTorElt -> BoolElt
IsAnalyticallyIrreducible(p) : CrvPln,Pt -> BoolElt
IsAnisotropic(R) : RootDtm -> BoolElt
IsAnticanonical(D) : DivSchElt -> BoolElt
IsArc(P, A) : Plane, { PlanePt } -> BoolElt
IsArithmeticallyCohenMacaulay(S) : ShfCoh -> BoolElt
IsCohenMacaulay(X) : Sch -> BoolElt
IsGorenstein(X) : Sch -> BoolElt
IsArithmeticallyCohenMacaulay(X) : Sch -> BoolElt
IsArithmeticallyGorenstein(X) : Sch -> BoolElt
IsCohenMacaulay(X) : Sch -> BoolElt
IsAssociative(A) : AlgGen -> BoolElt
IsAttachedToModularSymbols(A) : ModAbVar -> BoolElt
IsAttachedToModularSymbols(H) : ModAbVarHomol -> BoolElt
IsAttachedToNewform(A) : ModAbVar -> BoolElt, ModAbVar, MapModAbVar
IsAutomaticGroup(F: parameters) : GrpFP -> BoolElt, GrpAtc
AutomaticGroup(F: parameters) : GrpFP -> GrpAtc
AutomaticGroup(F: parameters) : GrpFP -> GrpAtc
IsAutomorphism(f) : MapSch -> BoolElt,AutSch
IsBalanced(D, t: parameters) : Inc, RngIntElt -> BoolElt, RngIntElt
IsBasePointFree(D) : DivSchElt -> BoolElt
IsMobile(D) : DivSchElt -> BoolElt
BaseLocus(D) : DivSchElt -> Sch
IsBasePointFree(L) : LinearSys -> BoolElt
IsBiconnected(G) : GrphMultUnd -> BoolElt
IsBiconnected(G) : GrphUnd -> BoolElt
IsBig(D) : DivTorElt -> BoolElt
IsBijective(a) : ModMatRngElt -> BoolElt
IsBijective(f) : ModMPolHom -> BoolElt
IsBipartite(G) : GrphMultUnd -> BoolElt
IsBipartite(G) : GrphUnd -> BoolElt
IsBlock(G, S) : GrpPerm, { Elt } -> BoolElt
IsBlock(D, S) : Inc, IncBlk -> BoolElt, IncBlk
IsBlockTransitive(D) : Inc -> BoolElt
IsBogomolovUnstable(X) : GRFano -> BoolElt
IsBoundary(N, p) : NwtnPgon,Tup -> BoolElt
IsBravaisEquivalent(G, H) : GrpMat[RngInt], GrpMat[RngInt] -> BoolElt, GrpMatElt
IsCanonical(D) : DivCrvElt -> BoolElt, DiffCrvElt
IsCanonical(D) : DivFunElt -> BoolElt, DiffFunElt
IsCanonical(D) : DivFunElt -> BoolElt, DiffFunElt
IsCanonical(D) : DivSchElt -> BoolElt
IsCanonical(B) : GRBskt -> BoolElt
IsCanonical(C) : GRCrvS -> BoolElt
IsCanonical(p) : GRPtS -> BoolElt
IsCanonical(C) : TorCon -> BoolElt
IsCanonical(F) : TorFan -> BoolElt
IsCanonical(X) : TorVar -> BoolElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013