[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: Centred .. Change
CentredAffinePatch(S, p) : Sch, Pt -> Sch, MapSch
CentredAffinePatch(S, p) : Sch, Pt -> Sch, MapSch
CenterDensity(L) : Lat -> FldReElt
CentreDensity(L) : Lat -> FldReElt
CentreOfEndomorphismAlgebra(G) : GrpMat -> AlgMat
CentreOfEndomorphismRing(G) : GrpMat -> AlgMat
CentreOfEndomorphismAlgebra(G) : GrpMat -> AlgMat
CentreOfEndomorphismRing(G) : GrpMat -> AlgMat
CentreOfEndomorphismRing(L) : Lat -> AlgMat
CentreOfEndomorphismRing(M) : ModRng -> AlgMat
CenterPolynomials(G) : GrpLie ->
CentrePolynomials(G) : GrpLie ->
IsPrimeCertificate(cert) : List -> BoolElt
PrimalityCertificate(n) : RngIntElt -> List
FldFunG_cfe (Example H42E10)
L-series with Unusual Coefficient Growth (L-FUNCTIONS)
Specifying the Coefficients Later (L-FUNCTIONS)
CFP(u: parameters) : GrpBrdElt -> Tup
CanonicalFactorRepresentation(u: parameters) : GrpBrdElt -> Tup
GetForceCFP(B) : GrpBrd -> BoolElt
Random(B, r, s, m, n: parameters) : GrpBrd, RngIntElt, RngIntElt, RngIntElt, RngIntElt -> GrpBrdElt
SetForceCFP(~B, b) : GrpBrd, BoolElt ->
Representation Used for Group Operations (BRAID GROUPS)
CanteautChabaudsAttack(C, v, e, p, l) : Code, ModTupFldElt, RngIntElt, RngIntElt,RngIntElt -> ModTupFldElt
Chabauty(MWmap, Ecov) : Map, MapSch -> SetEnum, RngIntElt
Chabauty(MWmap, Ecov, p) : Map, MapSch, RngIntElt -> RngIntElt, SetEnum, RngIntElt, Tup
Chabauty(P, p: Precision) : JacHypPt, RngIntElt -> SetIndx
Chabauty(P : ptC) : JacHypPt -> SetIndx
Chabauty's Method (HYPERELLIPTIC CURVES)
Elliptic Curve Chabauty (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
Chabauty's Method (HYPERELLIPTIC CURVES)
CrvHyp_chabauty-method1 (Example H125E35)
CrvHyp_chabauty-method2 (Example H125E36)
CrvHyp_chabauty-method3 (Example H125E38)
CrvHyp_chabauty-method4 (Example H125E37)
Chabauty0(J) : JacHyp -> SetIndx
AllCompactChainMaps(PR) : Rec -> Rec
BasicStabilizerChain(G) : GrpMat -> [GrpMat]
BasicStabilizerChain(G) : GrpPerm -> [GrpPerm]
ChainComplex(X, A) : SmpCpx, Rng -> ModCpx
ChainMap(Q, C, D, n) : SeqEnum, ModCpx, ModCpx, RngIntElt -> MapChn
CohomologyElementToChainMap(P, d, n) : ModCpx ,RngIntElt, RngIntElt -> MapChn
CohomologyElementToCompactChainMap(PR, d, n): Rec, RngIntElt, RngIntElt -> ModMatFldElt
CohomologyGeneratorToChainMap(P,Q,C,n) : ModCpx, ModCpx, Rec, RngIntElt -> MapChn
CohomologyGeneratorToChainMap(P, C, n) : ModCpx, Tup, RngIntElt -> MapChn
Homology(C) : ModCpx -> SeqEnum
IsChainMap(L, C, D, n) : List, ModCpx, ModCpx, RngIntElt -> BoolElt
IsChainMap(f) : MapChn -> BoolElt
IsProperChainMap(f) : MapChn -> BoolElt
RestrictionChainMap(P1,P2) : Rec, Rec -> MapChn
Z4CodeFromBinaryChain(C1, C2) : Code, Code -> Code
ZeroChainMap(C, D) : ModCpx, ModCpx -> MapChn
ChainComplex(X, A) : SmpCpx, Rng -> ModCpx
SmpCpx_chaincomplex (Example H140E14)
CodeFld_ChainCyclic (Example H152E25)
ChainMap(Q, C, D, n) : SeqEnum, ModCpx, ModCpx, RngIntElt -> MapChn
ChainmapToCohomology(f,CR) : MapChn, Rec -> RngElt
CohomologyToChainmap(xi,CR,P) : RngElt, Rec, ModCpx -> MapChn
LiftToChainmap(P,f,d) : ModCpx, Mtrx, RngIntElt -> MapChn
ModCpx_Chainmaps (Example H56E2)
Chain Maps (CHAIN COMPLEXES)
ChainmapToCohomology(f,CR) : MapChn, Rec -> RngElt
Subgroup Chains (ABELIAN GROUPS)
ChangGraphs() : -> [GrpUnd, GrpUnd, GrpUnd]
BaseExtend(E, h) : CrvEll, Map -> CrvEll
BaseChange(E, h) : CrvEll, Map -> CrvEll
BaseChange(E, K) : CrvEll, Rng -> CrvEll
BaseChange(E, n) : CrvEll, RngIntElt -> CrvEll
BaseChange(J, j) : JacHyp, Map -> JacHyp
BaseChange(J, F) : JacHyp, Rng -> JacHyp
BaseChange(J, n) : JacHyp, RngIntElt -> JacHyp
BaseChange(C, K) : Sch, Fld -> Sch
BaseChange(A,m) : Sch, Map -> Sch
BaseChange(C, j) : Sch, Map -> Sch
BaseChange(C, n) : Sch, RngIntElt -> Sch
BaseChange(C, n) : Sch, RngIntElt -> Sch
BaseChange(X, n) : Sch, RngIntElt -> Sch
BaseChange(C, m) : Sch,Map -> Sch
BaseChange(A,K) : Sch,Rng -> Sch
BaseChange(C, K) : Sch,Rng -> Sch
BaseChange(C, A) : Sch,Sch -> Sch
BaseChange(X,A) : Sch,Sch -> Sch
BaseChange(F,K) : SeqEnum,Rng -> SeqEnum
BaseChange(K, j) : SrfKum, Map -> SrfKum
BaseChange(K, F) : SrfKum, Rng -> SrfKum
BaseChange(K, n): SrfKum, RngIntElt -> SrfKum
BaseChange(~D, P) : ~PhiMod, AlgMatElt ->
BaseChangeMatrix(A) : AlgBas -> ModAlg
BasisChange(R,v) : RootStr, Any -> SeqEnum
CanChangeRing(A, R) : ModAbVar, Rng -> BoolElt, ModAbVar
CanChangeUniverse(S, V) : SeqEnum, Str -> Bool, SeqEnum
CanChangeUniverse(S, V) : SetEnum, Str -> Bool, SeqEnum
ChangeAlgebra(M, B, xi) : ModAlgBas , AlgBas, Map -> ModAlgBas
ChangeAmbient(C,L) : TorCon,TorLat -> TorCon
ChangeBase(~G, Q) : GrpPerm, [Elt] ->
ChangeBasis(A, B) : AlgAss, [AlgAssElt] -> AlgAss
ChangeBasis(A, B) : AlgGen, [AlgGenElt] -> AlgGen
ChangeBasis(L, B) : AlgLie, [AlgLieElt] -> AlgLie
ChangeDerivation(R, f) : RngDiff, RngElt -> RngDiff, Map
ChangeDerivation(R, f) : RngDiffOp, RngElt -> RngDiffOp, Map
ChangeDifferential(F, df) : RngDiff, DiffFunElt -> RngDiff, Map
ChangeDifferential(R, df) : RngDiffOp, DiffFunElt -> RngDiffOp, Map
ChangeDirectory(s) : MonStgElt ->
ChangeField(A,K) : ArtRep, FldNum -> ArtRep, BoolElt
ChangeIdempotents(A, S) : AlgBas, SeqEnum -> AlgBas, Map
ChangeModel(F, p) : FldFun, PlcFunElt -> FldFun
ChangeOfBasisMatrix(G, S) : GrpMat, ModGrp -> AlgMatElt
ChangeOrder(I, order) : RngMPol, ..., -> RngMPol, Map
ChangeOrder(I, Q) : RngMPol, RngMPol -> RngMPol, Map
ChangeOrder(I, T) : RngMPol, Tup -> RngMPol
ChangeOrder(I, order) : RngMPolLoc, ..., -> RngMPolLoc, Map
ChangeOrder(I, Q) : RngMPolLoc, RngMPolLoc -> RngMPolLoc, Map
ChangePrecision(r, n) : FldReElt, RngIntElt -> FldReElt
ChangePrecision(~D, prec) : PhiMod, RngIntElt ->
ChangePrecision(F, p) : RngDiff, RngElt -> RngDiff, Map
ChangePrecision(~ R, k) : RngOrdRecoEnv, RngIntElt ->
ChangePrecision(L, k) : RngPad, Any -> RngPad
ChangePrecision(R, r) : RngSer, Any -> RngSer
ChangePrecision(f, r) : RngSerElt, RngIntElt -> RngSerElt
ChangePrecision(E, r) : RngSerExt, RngIntElt -> RngSerExt
ChangePrecision(x, k) : RngUPolElt, RngIntElt -> RngPadElt
ChangeRepresentationType(A, Rep) : AlgGrp, MonStgElt -> AlgGrp, Map
ChangeRing(I, S) : AlgFr, Rng -> AlgFr
ChangeRing(A, S) : AlgGen, Rng -> AlgGen, Map
ChangeRing(A, S, f) : AlgGen, Rng, Map -> AlgGen, Map
ChangeRing(L, S) : AlgLie, Rng -> AlgLie, Map
ChangeRing(L, S, f) : AlgLie, Rng, Map -> AlgLie, Map
ChangeRing(A, S) : AlgMat, Rng -> AlgMat, Map
ChangeRing(A, S, f) : AlgMat, Rng, Map -> AlgMat, Map
ChangeRing(U, R) : AlgQUE, Rng -> AlgQUE
ChangeRing(U, S) : AlgUE, Rng -> AlgUE
ChangeRing(E, K) : CrvEll, Rng -> CrvEll
ChangeRing(G, K) : GrpLie, Rng -> GrpLie
ChangeRing(G, S) : GrpMat, Rng -> GrpMat, Map
ChangeRing(G, S, f) : GrpMat, Rng, Map -> GrpMat, Map
ChangeRing(L, S) : Lat, Rng -> Lat, Map
ChangeRing(A, R) : ModAbVar, Rng -> ModAbVar
ChangeRing(model, B) : ModelG1, Rng -> ModelG1
ChangeRing(M, S) : ModRng, Rng -> ModRng, Map
ChangeRing(M, S) : ModRng, Rng -> ModRng, Map
ChangeRing(M, S) : ModRng, Rng -> ModRng, Map
ChangeRing(M, S, f) : ModRng, Rng, Map -> ModRng, Map
ChangeRing(M, S, f) : ModRng, Rng, Map -> ModRng, Map
ChangeRing(M, S, f) : ModRng, Rng, Map -> ModRng, Map
ChangeRing(A, R) : Mtrx, Rng -> Mtrx
ChangeRing(A, R, f) : Mtrx, Rng, Map -> Mtrx
ChangeRing(A, R) : MtrxSprs, Rng -> MtrxSprs
ChangeRing(I, S) : RngMPol, Rng -> RngMPol
ChangeRing(M, S) : RngMPol, Rng -> RngMPol
ChangeRing(P, S) : RngMPol, Rng -> RngMPol
ChangeRing(I, L) : RngMPolLoc, Rng -> RngMPolLoc
ChangeRing(s,R) : RngPowAlgElt, RngMPol -> RngPowAlgElt
ChangeRing(L, C) : RngPowLaz, Rng -> RngPowLaz, Map
ChangeRing(R, C) : RngSer, Rng -> RngSer, Map
ChangeRing(P, S) : RngUPol, Rng -> RngUPol, Map
ChangeRing(P, S, f) : RngUPol, Rng, Map -> RngUPol, Map
ChangeRing(C, K) : Sch, Rng -> Sch
ChangeSupport(~G, S) : Grph, SetIndx ->
ChangeSupport(G, S) : Grph, SetIndx -> Grph, GrphVertSet, GrphEdgeSet
ChangeSupport(~G, S) : GrphMult, SetIndx ->
ChangeSupport(G, S) : GrphMult, SetIndx -> GrphMult, GrphVertSet, GrphEdgeSet
ChangeUniverse(~x, R) : ModTupRngElt, Rng -> ModRng, Map
ChangeUniverse(S, V) : SeqEnum, Str ->
ChangeUniverse(~S, V) : SetEnum, Str ->
ClassicalChangeOfBasis(G): GrpMat[FldFin] -> GrpMatElt[FldFin]
RandomBaseChange(~D) : PhiMod ->
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013