[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: QuoAlgFPLie .. Quotient
AlgLie_QuoAlgFPLie (Example H100E8)
Construction of Subalgebras, Ideals and Quotient Algebras (ALGEBRAS)
Quotient Algebras (ALGEBRAS)
p-Quotient (FINITELY PRESENTED GROUPS)
p-Quotients (Process Version) (FINITELY PRESENTED GROUPS: ADVANCED)
AbelianNormalQuotient(G, H) : GrpPerm -> GrpPerm, Hom(GrpPerm), GrpPerm
AbelianQuotient(G) : Grp -> GrpAb, Hom
AbelianQuotient(G) : GrpFP -> GrpAb, Map
AbelianQuotient(G) : GrpGPC -> GrpAb, Map
AbelianQuotient(G) : GrpMat -> GrpAb, Map
AbelianQuotient(G) : GrpPC -> GrpAb, Map
AbelianQuotient(G) : GrpPerm -> GrpAb, Map
AbelianQuotientInvariants(G) : GrpFP -> [ RngIntElt ]
AbelianQuotientInvariants(H) : GrpFP -> [ RngIntElt ]
AbelianQuotientInvariants(G, n) : GrpFP, RngIntElt -> [ RngIntElt ]
AbelianQuotientInvariants(H, n) : GrpFP, RngIntElt -> [ RngIntElt ]
AbelianQuotientInvariants(G) : GrpGPC -> [ RngIntElt ]
AbelianQuotientInvariants(G) : GrpPC -> SeqEnum
AbsoluteAffineAlgebra(A) : FldAC -> RngUPolRes
AffineAlgebra(A) : FldAC -> RngMPolRes
CohomologyRingQuotient(CR) : Rec -> Rng,Map
ColonIdeal(I, J) : RngMPol, RngMPol -> RngMPol
ColonIdeal(I, f) : RngMPol, RngMPolElt -> RngMPol, RngIntElt
ColonIdeal(I, J) : RngOrdIdl, RngOrdIdl -> RngOrdIdl
ConeQuotientByLinearSubspace(C) : TorCon -> TorCon,Map,Map
CurveQuotient(G): GrpAutCrv -> Crv, MapSch
DualQuotient(L) : Lat -> GrpAb, Lat, Map
ElementaryAbelianQuotient(G, p) : GrpAb, RngIntElt -> GrpAb, Map
ElementaryAbelianQuotient(G, p) : GrpFP, RngIntElt -> GrpAb, Map
ElementaryAbelianQuotient(G, p) : GrpGPC, RngIntElt -> GrpAb, Map
ElementaryAbelianQuotient(G, p) : GrpMat, RngIntElt -> GrpAb, Map
ElementaryAbelianQuotient(G, p) : GrpPC, RngIntElt -> GrpAb, Map
ElementaryAbelianQuotient(G, p) : GrpPerm, RngIntElt -> GrpAb, Map
ExactQuotient(n, d) : RngIntElt, RngIntElt -> RngIntElt
ExactQuotient(f, g) : RngUPolElt, RngUPolElt -> RngUPolElt
FreeAbelianQuotient(G) : GrpAb -> GrpAb, Map
FreeAbelianQuotient(G) : GrpGPC -> GrpAb, Map
FundamentalQuotient(Q) : QuadBin -> Map
GaloisQuotient(K, Q) : FldNum, GrpPerm -> SeqEnum[FldNum]
HasComputableAbelianQuotient(G) : GrpFP -> BoolElt, GrpAb, Map
HasInfiniteComputableAbelianQuotient(G) : GrpFP -> BoolElt, GrpAb, Map
HasInfinitePSL2Quotient(G) :: GrpFP -> BoolElt, SeqEnum
IdealQuotient(I, J) : RngFunOrdIdl, RngFunOrdIdl -> RngFunOrdIdl
IsEmptySimpleQuotientProcess(P) : Rec -> BoolElt
IsQuotient(L) : TorLat -> BoolElt
LMGRadicalQuotient(G) : GrpMat -> GrpPerm, Map, GrpMat
LMGSocleStarQuotient(G) : GrpMat -> GrpPerm, Map, GrpMat
ModularCurveQuotient(N,A) : RngIntElt, [RngIntElt] -> Crv
NewQuotient(A) : ModAbVar -> ModAbVar, MapModAbVar
NewQuotient(A, r) : ModAbVar, RngIntElt -> ModAbVar, MapModAbVar
NextSimpleQuotient(~P) : Rec ->
NilpotentQuotient(G, c) : GrpMat, RngIntElt -> GrpGPC, Map
NilpotentQuotient(G, c) : GrpPerm, RngIntElt -> GrpGPC, Map
NilpotentQuotient(G, c: parameters) : GrpFP, RngIntElt -> GrpGPC, Map
NilpotentQuotient(R, d) : [ AlgFPLieElt ], RngIntElt -> AlgLie, SeqEnum, SeqEnum, UserProgram
NumberOfQuotientGradings(C) : RngCox -> RngIntElt
NumberOfQuotientGradings(X) : TorVar -> SeqEnum
OldQuotient(A) : ModAbVar -> ModAbVar, MapModAbVar
OldQuotient(A, r) : ModAbVar, RngIntElt -> ModAbVar, MapModAbVar
PrimitiveQuotient(G) : GrpPerm -> GrpPerm, Hom, GrpPerm
Quotient(C, K) : CosetGeom, GrpPerm -> CosetGeom
Quotient(H2, H1) : HomModAbVar, HomModAbVar -> GrpAb, Map, Map
Quotient(A, G) : ModAbVar, ModAbVarSubGrp -> ModAbVar, MapModAbVar
Quotient(G) : ModAbVarSubGrp -> ModAbVar, MapModAbVar, MapModAbVar
Quotient(C) : TorCon -> TorLat,TorLatMap
QuotientDimension(I) : RngMPol -> RngIntElt
QuotientDimension(I) : RngMPol -> RngIntElt
QuotientGradings(C) : RngCox -> RngIntElt
QuotientGradings(X) : TorVar -> SeqEnum
QuotientMap(Q1, Q2) : QuadBin, QuadBin -> Map
QuotientModule(A, S) : AlgFP, AlgFP -> AlgFP
QuotientModule(A, S) : AlgFP, AlgFP -> AlgFP
QuotientModule(A, S) : AlgFP, AlgFP -> AlgFP
QuotientModule(A, S) : AlgFP, AlgFP -> AlgFP
QuotientModule(A, S) : AlgFPOld, AlgFPOld -> [AlgMatElt], [ModTupFldElt], [AlgFPEltOld]
QuotientModule(I) : RngMPol -> ModMPol
QuotientModuleAction(G, S) : GrpMat -> Map, GrpMat
QuotientModuleImage(G, S) : GrpMat -> GrpMat
QuotientRepresentation(L) : RngLocA -> RngUPolRes
QuotientRing(R, I) : RngDiff, RngMPol -> RngDiff, Map
QuotientWithPullback(L, I) : AlgLie, AlgLie -> AlgLie, Map, UserProgram, UserProgram
RadicalQuotient(G) : GrpMat -> GrpPerm, Hom(Grp), GrpMat
RadicalQuotient(G) : GrpPerm -> GrpPerm, Hom(GrpPerm), GrpPerm
SimpleQuotientAlgebras(A) : AlgMat -> Rec
SimpleQuotientProcess(F, deg1, deg2, ord1, ord2: parameters) : GrpFP, RngIntElt, RngIntElt, RngIntElt, RngIntElt -> Rec
SocleQuotient(G) : GrpPerm -> GrpPerm, Hom, GrpPerm
SolubleNormalQuotient(G, H) : GrpPerm -> GrpPerm, Hom(GrpPerm), GrpPerm
SolubleQuotient(G) : Grp -> GrpPC, Map
SolubleQuotient(F, n : parameters): GrpFP, RngIntElt -> GrpPC, Map, SeqEnum, MonStgElt
SolvableQuotient(G): GrpMat -> GrpPC, Map
SolvableQuotient(G): GrpPerm, RngIntElt -> GrpPC, Map, SeqEnum, MonStgElt
SolvableQuotient(G : parameters): GrpFP, RngIntElt -> GrpPC, Map, SeqEnum, MonStgElt
SolvableQuotient(F, n : parameters): GrpFP, RngIntElt -> GrpPC, Map, SeqEnum, MonStgElt
TransitiveQuotient(G) : GrpPerm -> GrpPerm, Hom, GrpPerm
UnramifiedQuotientRing(K, k) : FldFin, RngIntElt -> Rng
f div g : RngMPolElt, RngMPolElt -> RngMPolElt
pAdicQuotientRing(p, k) : RngIntElt, RngIntElt -> RngPadRes
pCoreQuotient(G, p) : GrpPerm, RngIntElt -> GrpPerm, Map, GrpPerm
AlgFP_Quotient (Example H82E10)
Graph_Quotient (Example H149E10)
GrpMatGen_Quotient (Example H59E15)
GrpPerm_Quotient (Example H58E21)
Grp_Quotient (Example H57E7)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013