[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: with .. word-access
Construction of a Module with Specified Basis (FREE MODULES)
Modules HomR(M, N) with Given Basis (FREE MODULES)
EllipticCurveWithjInvariant(j) : RngElt -> CrvEll
EllipticCurveFromjInvariant(j) : RngElt -> CrvEll
HasseWittInvariant(C) : Crv[FldFin] -> RngIntElt
HasseWittInvariant(F) : FldFunG -> RngIntElt
HasseWittInvariant(F) : FldFunG -> RngIntElt
WittDecomposition(V) : ModTupFld -> SeqEnum[ModTupFld]
WittDesign(n) : RngIntElt -> Dsgn
WittIndex(V) : ModTupFld -> RngIntElt
WittInvariant(f, p) : RngMPolElt, RngIntElt -> RngIntElt
WittInvariants(f) : RngMPolElt -> SeqEnum
WittLieAlgebra(F, m, n) : Fld, RngIntElt, SeqEnum[RngIntElt] -> AlgLie, Map
WittRing(F, n) : Fld, RngIntElt -> RngWitt
The Ring of Witt Vectors of Finite Length (CLASS FIELD THEORY FOR GLOBAL FUNCTION FIELDS)
The Witt Designs (INCIDENCE STRUCTURES AND DESIGNS)
AlgLie_witt-alg-ex (Example H100E20)
The Ring of Witt Vectors of Finite Length (CLASS FIELD THEORY FOR GLOBAL FUNCTION FIELDS)
WittDecomposition(V) : ModTupFld -> SeqEnum[ModTupFld]
WittDesign(n) : RngIntElt -> Dsgn
Design_wittex (Example H147E4)
WittIndex(V) : ModTupFld -> RngIntElt
HasseMinkowskiInvariant(f, p) : RngMPolElt, RngIntElt -> RngIntElt
WittInvariant(f, p) : RngMPolElt, RngIntElt -> RngIntElt
HasseMinkowskiInvariants(f) : RngMPolElt -> SeqEnum
WittInvariants(f) : RngMPolElt -> SeqEnum
WittLieAlgebra(F, m, n) : Fld, RngIntElt, SeqEnum[RngIntElt] -> AlgLie, Map
WittRing(F, n) : Fld, RngIntElt -> RngWitt
ActingWord(G, x, y) : GrpPerm, Elt, Elt -> GrpFPElt
AlternatingElementToWord (G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt
AlternatingElementToWord (G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt
BaseImageWordStrip(H, x) : GrpPerm, GrpPermElt -> BoolElt, GrpFPElt, RngIntElt
ColumnWord(t) : Tbl -> SeqEnum
CompositionTreeElementToWord(G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt
EcheloniseWord(~P, ~r) : GrpPCpQuotientProc -> RngIntElt
FindWord(G,g) : GrpPSL2, GrpPSL2Elt -> SeqEnum
InverseRSKCorrespondenceDoubleWord(t1, t2) : Tbl, Tbl -> MonOrdElt, MonOrdElt
InverseRSKCorrespondenceSingleWord(t1, t2) : Tbl, Tbl -> MonOrdElt
InverseWordMap(G) : GrpMat -> Map
InverseWordMap(G) : GrpPerm -> Map
IsEmptyWord(u: parameters) : GrpBrdElt -> BoolElt
IsReverseLatticeWord(w) : MonOrdElt -> BoolElt
LargeReeElementToWord(G, g) : GrpMat, GrpMatElt -> BoolElt, GrpSLPElt
MinimumWord(C) : Code -> ModTupFldElt
Random(B, m, n: parameters) : GrpBrd, RngIntElt, RngIntElt -> GrpBrdElt
ReeElementToWord(G, g) : GrpMat, GrpMatElt -> BoolElt, GrpSLPElt
ReflectionWord(W, r) : GrpMat, RngIntElt -> []
ReflectionWord(W, r) : GrpPermCox, RngIntElt -> []
ReflectionWord(R, r) : RootDtm, RngIntElt -> []
ReflectionWord(R, r) : RootSys, RngIntElt -> []
RotateWord(u, n) : GrpFPElt, RngIntElt -> GrpFPElt
RotateWord(u, n) : SgpFPElt, RngIntElt -> SgpFPElt
SL2ElementToWord(G, g) : GrpMat, GrpMatElt -> BoolElt, GrpSLPElt
SL3ElementToWord (G, g) : GrpMat, GrpMatElt -> BoolElt, GrpSLPElt
SymmetricElementToWord (G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt
SymmetricElementToWord (G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt
SzElementToWord(G, g) : GrpMat, GrpMatElt -> BoolElt, GrpSLPElt
WeylWord(p) : PathLS -> SeqEnum
Word(t) : Tbl -> MonOrdElt
WordAcceptor(G) : GrpAtc -> Rec
WordAcceptorSize(G) : GrpAtc -> RngIntElt, RngIntElt
WordDifferenceAutomaton(G) : GrpAtc -> Rec
WordDifferenceSize(G) : GrpAtc -> RngIntElt, RngIntElt
WordDifferences(G) : GrpAtc -> SeqEnum
WordGroup(G) : GrpMat -> GrpSLP, Map
WordGroup(G) : GrpPerm -> GrpBB, Map
WordInStrongGenerators(H, x) : GrpPerm, GrpPermElt -> GrpFPElt
WordMap(G) : GrpMatUnip -> Map
WordProblem(A, x) : AlgMat -> BoolElt, AlgFrElt
WordProblemData(A) : AlgMat -> List
WordStrip(H, x) : GrpPerm, GrpPermElt -> BoolElt, GrpFPElt, RngIntElt
WordToSequence(u: parameters) : GrpBrdElt -> SeqEnum
WordToTableau(w) : MonOrdElt -> Tbl
Access Functions for Words (FINITELY PRESENTED GROUPS)
Arithmetic Operators for Words (FINITELY PRESENTED GROUPS)
Construction of Words (FINITELY PRESENTED GROUPS)
Permutations as Words (PERMUTATION GROUPS)
Access Functions for Words (FINITELY PRESENTED GROUPS)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013