[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: form .. Forms
Canonical Forms (MATRIX ALGEBRAS)
Computing Normal Forms of Elements (BRAID GROUPS)
Index Form Equations (ORDERS AND ALGEBRAIC FIELDS)
Matrix Action on Forms (BINARY QUADRATIC FORMS)
Mixed Canonical Form and Lattice Operations (BRAID GROUPS)
Normal Form for Elements of a Braid Group (BRAID GROUPS)
Operations on Forms (BINARY QUADRATIC FORMS)
Matrix Action on Forms (BINARY QUADRATIC FORMS)
Operations on Forms (BINARY QUADRATIC FORMS)
FormalGroupHomomorphism(phi, prec) : MapSch, RngIntElt -> RngSerPowElt
FormalGroupLaw(E, prec) : CrvEll, RngIntElt -> RngMPolElt
FormalLog(E) : CrvEll -> RngSerPowElt, PtEll
FormalPoint(P) : Pt -> Pt
FormalSet(M) : Str -> SetFormal
PowerFormalSet(R) : Str -> PowSetIndx
Formal Sequences (SEQUENCES)
Formal Sets (SETS)
The Formal Group (ELLIPTIC CURVES)
The Formal Sequence Constructor (SEQUENCES)
The Formal Set Constructor (SETS)
FormalGroupHomomorphism(phi, prec) : MapSch, RngIntElt -> RngSerPowElt
FormalGroupLaw(E, prec) : CrvEll, RngIntElt -> RngMPolElt
FormalLog(E) : CrvEll -> RngSerPowElt, PtEll
FormalPoint(P) : Pt -> Pt
FormalSet(M) : Str -> SetFormal
Format(r) : Rec -> RecFormat
GetElementPrintFormat(B) : GrpBrd -> MonStgElt
SetElementPrintFormat(~B, s) : GrpBrd, MonStgElt ->
RECORDS
The Record Format Constructor (RECORDS)
Data files (RING OF INTEGERS)
AmbiguousForms(Q) : QuadBin -> SeqEnum
AntisymmetricForms(L) : Lat -> [ AlgMatElt ]
AntisymmetricForms(L, n) : Lat, RngIntElt -> [ AlgMatElt ]
BianchiCuspForms(F, N) : FldNum, RngOrdIdl -> ModFrmBianchi
BinaryForms(N, p) : [RngIntElt], RngIntElt -> RngMPol, [[RngMPolElt]], RngMPol
BinaryQuadraticForms(D) : RngIntElt -> QuadBin
ClassicalForms(G: parameters): GrpMat -> Rec
CuspForms(x) : Any -> ModFrm
DihedralForms(M) : ModFrm -> List
DimensionCuspForms(eps, k) : GrpDrchElt, RngIntElt -> RngIntElt
DimensionCuspFormsGamma0(N, k) : RngIntElt, RngIntElt -> RngIntElt
DimensionCuspFormsGamma1(N, k) : RngIntElt, RngIntElt -> RngIntElt
DimensionNewCuspFormsGamma0(N, k) : RngIntElt, RngIntElt -> RngIntElt
DimensionNewCuspFormsGamma1(N, k) : RngIntElt, RngIntElt -> RngIntElt
HalfIntegralWeightForms(chi, w) : GrpDrchElt, FldRatElt -> ModFrm
HalfIntegralWeightForms(G, w) : GrpPSL2, FldRatElt -> ModFrm
HalfIntegralWeightForms(N, w) : RngIntElt, FldRatElt -> ModFrm
HeegnerForms(E,D : parameters) : CrvEll[FldRat], RngIntElt -> SeqEnum
HeegnerForms(N,D : parameters) : RngIntElt, RngIntElt -> SeqEnum
HilbertCuspForms(F, N, k) : FldNum, RngOrdIdl, SeqEnum -> ModFrmHil
InvariantBilinearForms(G) : GrpMat -> SeqEnum[AlgMatElt], SeqEnum[AlgMatElt]
InvariantForms(G) : GrpMat -> SeqEnum
InvariantForms(G) : GrpMat -> [ AlgMatElt ]
InvariantForms(G, n) : GrpMat, RngIntElt -> [ AlgMatElt ]
InvariantForms(L) : Lat -> [ AlgMatElt ]
InvariantForms(L, n) : Lat, RngIntElt -> [ AlgMatElt ]
InvariantQuadraticForms(G) : GrpMat -> SeqEnum[AlgMatElt]
InvariantSesquilinearForms(G) : GrpMat -> SeqEnum[AlgMatElt]
IsRingOfAllModularForms(M) : ModFrm -> BoolElt
ModularForms(G) : -> ModFrm
ModularForms(G, k) : -> ModFrm
ModularForms(eps, k) : GrpDrchElt, RngIntElt -> ModFrm
ModularForms(N) : RngIntElt -> ModFrm
ModularForms(N, k) : RngIntElt, RngIntElt -> ModFrm
ModularForms(chars, k) : [GrpDrchElt], RngIntElt -> ModFrm
NumberOfAntisymmetricForms(L) : Lat -> RngIntElt
NumberOfInvariantForms(G) : GrpMat -> RngIntElt, RngIntElt
NumberOfInvariantForms(L) : Lat -> RngIntElt, RngIntElt
NumberOfSymmetricForms(L) : Lat -> RngIntElt
PGroupToForms(G) : GrpPC -> SeqEnum
PerfectForms(G) : GrpMat[RngInt] -> SeqEnum
ReducedForms(Q) : QuadBin -> [ QuadBinElt ]
SemiInvariantBilinearForms(G) : GrpMat -> SeqEnum
SemiInvariantQuadraticForms(G) : GrpMat -> SeqEnum
SemiInvariantSesquilinearForms(G) : GrpMat -> SeqEnum
SymmetricForms(L) : Lat -> [ AlgMatElt ]
SymmetricForms(L, n) : Lat, RngIntElt -> [ AlgMatElt ]
QuadBin_Forms (Example H33E1)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013