[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: hecke .. Height
Hecke Operators (BRANDT MODULES)
Hecke Operators (MODULAR FORMS OVER IMAGINARY QUADRATIC FIELDS)
Passing between Dirichlet and Hecke Characters (NUMBER FIELDS)
The Hecke Algebra (MODULAR SYMBOLS)
ModFrmBianchi_hecke (Example H138E2)
ModFrmHil_hecke (Example H137E3)
The Hecke Algebra (MODULAR SYMBOLS)
Hecke Operators (BRANDT MODULES)
Hecke Operators (MODULAR FORMS OVER IMAGINARY QUADRATIC FIELDS)
HeckeAlgebra(M : Bound) : ModSym -> AlgMat
HeckeAlgebra(A) : ModAbVar -> HomModAbVar
ModSym_HeckeAlgebra (Example H133E17)
HeckeBound(M) : ModSym -> RngIntElt
HeckeCharacter(I, B) : RngOrdIdl, Tup -> GrpHeckeElt
DirichletCharacter(I, B) : RngOrdIdl, Tup -> GrpDrchNFElt, GrpDrchNF
HeckeCharacterGroup(I) : RngOrdIdl -> GrpHecke
HeckeEigenvalue(f, p) : ModBrdtElt, RngElt -> RngElt
HeckeEigenvalue(f, P) : ModFrmHilElt, RngOrdIdl -> FldAlgElt
HeckeEigenvalueBound(M, P) : ModFrmHil, RngOrdIdl -> RngIntElt
HeckeEigenvalueField(M) : ModFrmHil -> Fld
HeckeEigenvalueField(M) : ModSym -> Fld, Map
HeckeEigenvalueRing(M : parameters) : ModSym -> Rng, Map
Level(M) : ModBrdt -> RngElt
Discriminant(M) : ModBrdt -> RngElt
Conductor(M) : ModBrdt -> RngElt
Ideals(M) : ModBrdt -> []
InnerProductMatrix(M) : ModBrdt -> AlgMatElt
HeckeOperator(M, n) : ModBrdtNew, RngElt -> Mtrx
HeckeEigenvectors(M) : ModBrdt -> [ ModBrdt ]
QuaternionOrder(M) : ModBrdt -> AlgQuatOrd
HeckeLift(chi) : GrpDrchNFElt -> GrpHeckeElt, GrpHecke
HeckeOperator(A, n) : ModAbVar, RngIntElt -> MapModAbVar
HeckeOperator(M, n) : ModBrdt, RngIntElt -> AlgMatElt
HeckeOperator(M, n) : ModFrm, RngIntElt -> AlgMatElt
HeckeOperator(M, P) : ModFrmBianchi, RngOrdIdl -> Mtrx
HeckeOperator(M, P) : ModFrmHil, RngOrdIdl -> Mtrx
HeckeOperator(M, n) : ModSS, RngIntElt -> AlgMatElt
HeckeOperator(M, n) : ModSym, RngIntElt -> AlgMatElt
HeckeOperator(n,f) : RngIntElt, ModFrmElt -> ModFrmElt
QuaternionOrder(M) : ModBrdt -> AlgQuatOrd
ModSym_HeckeOperators (Example H133E14)
HeckePolynomial(A, n) : ModAbVar, RngIntElt -> RngUPolElt
HeckePolynomial(M, n) : ModSym, RngIntElt -> RngUPolResElt
HeckePolynomial(M, n : parameters) : ModFrm, RngIntElt -> RngUPolElt
ModFrm_HeckePolynomials (Example H132E13)
HeegnerDiscriminants(E,lo,hi) : CrvEll[FldRat], RngIntElt, RngIntElt -> SeqEnum
HeegnerForms(E,D : parameters) : CrvEll[FldRat], RngIntElt -> SeqEnum
HeegnerForms(N,D : parameters) : RngIntElt, RngIntElt -> SeqEnum
HeegnerPoint(E : parameters) : CrvEll -> BoolElt, PtEll
HeegnerPoint(C : parameters) : CrvHyp -> BoolElt, PtHyp
HeegnerPoints(E, D : parameters) : CrvEll[FldRat], RngIntElt -> Tup, PtEll
HeegnerTorsionElement(E) : CrvEll[FldRat], RngIntElt -> PtEll
CrvEllQNF_Heegner (Example H122E20)
Heegner Points (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
Heegner Points (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
CrvEllQNF_Heegner2 (Example H122E21)
CrvEllQNF_Heegner3 (Example H122E22)
CrvEllQNF_Heegner4 (Example H122E23)
CrvEllQNF_Heegner5 (Example H122E24)
HeegnerDiscriminants(E,lo,hi) : CrvEll[FldRat], RngIntElt, RngIntElt -> SeqEnum
HeegnerForms(E,D : parameters) : CrvEll[FldRat], RngIntElt -> SeqEnum
HeegnerForms(N,D : parameters) : RngIntElt, RngIntElt -> SeqEnum
HeegnerPoint(E : parameters) : CrvEll -> BoolElt, PtEll
HeegnerPoint(C : parameters) : CrvHyp -> BoolElt, PtHyp
HeegnerPoints(E, D : parameters) : CrvEll[FldRat], RngIntElt -> Tup, PtEll
HeegnerTorsionElement(E) : CrvEll[FldRat], RngIntElt -> PtEll
GrpCox_HeighestRoots (Example H98E18)
GrpLie_HeighestRoots (Example H103E13)
RootSys_HeighestRoots (Example H96E11)
AbsoluteLogarithmicHeight(a) : FldAlgElt -> FldPrElt
AbsoluteLogarithmicHeight(a) : FldNumElt -> FldComElt
CoefficientHeight(E) : FldNumElt -> RngIntElt
CoefficientHeight(a) : RngFunOrdElt -> RngIntElt
CoefficientHeight(E) : RngOrdElt -> RngIntElt
CoefficientHeight(I) : RngOrdIdl -> RngIntElt
FaltingsHeight(E) : CrvEll[FldRat] -> FldReElt
Height(q) : FldRatElt -> RngIntElt
Height(P: parameters) : JacHypPt -> FldPrElt
Height(P : parameters) : PtEll -> FldPrElt
Height(P: parameters) : PtEll -> NFldComElt
Height(P) : PtEll -> FldRatElt
Height(P) : StkPtnOrd -> RngIntElt
HeightConstant(J: parameters) : JacHyp -> FldPrElt, FldPrElt
HeightOnAmbient(P) : Pt -> FldReElt
HeightPairing(P, Q: parameters) : JacHypPt, JacHypPt -> FldPrElt
HeightPairing(P, Q: parameters) : PtEll, PtEll -> FldComElt
HeightPairing(P, Q) : PtEll[FldFunG], PtEll[FldFunG] -> FldRatElt
HeightPairingLattice(S) : [PtEll[FldFunG]] -> AlgMatElt, Map
HeightPairingMatrix(S: parameters) : [PtEll] -> AlgMat
HeightPairingMatrix(P : parameters) : [PtEll] -> AlgMatElt
HeightPairingMatrix(S: Precision) : [JacHypPt] -> AlgMat
HeightPairingMatrix(S) : SeqEnum[PtEll[FldFunG]] -> AlgMatElt
LocalHeight(P, Pl : parameters) : PtEll, PlcNumElt -> FldPrElt
LocalHeight(P, Pl) : PtEll, PlcFunElt -> FldPrElt
LocalHeight(P, p) : PtEll, RngIntElt -> FldComElt
NaiveHeight(P) : JacHypPt -> FldPrElt
NaiveHeight(P) : PtEll -> FldPrElt
NaiveHeight(P) : PtEll -> FldPrElt
NaiveHeight(P) : PtEll -> FldPrElt
RootHeight(G, r) : GrpLie, RngIntElt -> RngIntElt
RootHeight(W, r) : GrpPermCox, RngIntElt -> RngIntElt
RootHeight(R, r) : RootStr, RngIntElt -> RngIntElt
RootHeight(R, r) : RootSys, RngIntElt -> RngIntElt
pAdicHeight(P, p) : PtEll, RngIntElt -> FldPadElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013