[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: IsParabolicSubgroup .. IsPrimeField
IsParabolicSubgroup(W, H) : GrpPermCox, GrpPermCox -> BoolElt
IsParallel(P, l, m) : Plane, PlaneLn, PlaneLn -> BoolElt
IsParallelClass(D, B, C) : Inc, IncBlk, IncBlk -> BoolElt, { IncBlk }
IsParallelism(D, P) : Inc, SetEnum[SetEnum] -> BoolElt, RngIntElt
IsPartialRoot(f, c) : RngUPolElt, RngSerElt -> BoolElt
IsPartition(S) : SeqEnum -> BoolElt
IsPartitionRefined(G: parameters) : Grph -> BoolElt
IsPath(G) : Grph -> BoolElt
IsPathTree(B) : AlgBas -> Bool
IsPerfect(C) : Code -> BoolElt
IsPerfect(C) : Code -> BoolElt
IsPerfect(F) : Fld -> BoolElt
IsPerfect(G) : GrpFin -> BoolElt
IsPerfect(G) : GrpFP -> BoolElt
IsPerfect(G) : GrpGPC -> BoolElt
IsPerfect(G) : GrpMat -> BoolElt
IsPerfect(G) : GrpPC -> BoolElt
IsPerfect(G) : GrpPerm -> BoolElt
IsPermutationModule(M) : ModRng -> BoolElt
IspGroup(G) : GrpAb -> BoolElt
IsPrincipalIdealDomain(R) : Rng -> BoolElt
IsPID(R) : Rng -> BoolElt
IspIntegral(C, p) : CrvHyp, RngIntElt -> BoolElt
IsPrincipalIdealRing(R) : Rng -> BoolElt
IsPIR(R) : Rng -> BoolElt
IsPlanar(G) : GrphMultUnd -> BoolElt, GrphMultUnd
IsPlanar(G) : GrphUnd -> BoolElt, GrphUnd
IsPlanar(X) : Sch -> BoolElt
IsPlaneCurve(X) : Sch -> BoolElt, CrvPln
IsRestricted(L) : AlgLie -> BoolElt, Map
IspLieAlgebra(L) : AlgLie -> BoolElt, Map
IsRestrictable(L) : AlgLie -> BoolElt, Map
IspMaximal(O, p) : AlgAssVOrd, RngOrdIdl -> BoolElt
IspMinimal(C, p) : CrvHyp, RngIntElt -> BoolElt, BoolElt
IspNormal(C, p) : CrvHyp, RngIntElt -> BoolElt
IsPoint(C, S) : CrvHyp, SeqEnum -> BoolElt, PtHyp
IsPoint(N,p) : NwtnPgon,Tup -> BoolElt
IsPoint(H, x) : SetPtEll, RngElt -> BoolElt, PtEll
IsPoint(H, S) : SetPtEll, [ RngElt ] -> BoolElt, PtEll
IsPoint(K, S) : SrfKum, [RngElt] -> BoolElt, SrfKumPt
IsPointRegular(D) : IncNsp -> BoolElt, RngIntElt
IsPointTransitive(D) : Inc -> BoolElt
IsPointTransitive(P) : Plane -> BoolElt
IsPolarSpace(V) : ModTupFld -> BoolElt
IsPolycyclic(G : parameters) : GrpMat -> BoolElt
IsPolycyclicByFinite(G : parameters) : GrpMat -> BoolElt
IsPolygon(G) : Grph -> BoolElt
IsPolynomial(s) : RngPowAlgElt -> BoolElt, RngMPolElt
IsRegular(f) : MapSch -> BoolElt
IsPositive(D) : DivCrvElt -> BoolElt
IsEffective(D) : DivCrvElt -> BoolElt
IsPositive(W, r) : GrpPermCox, RngIntElt -> BoolElt
IsPositive(R, r) : RootStr, RngIntElt -> BoolElt
IsPositive(R, r) : RootSys, RngIntElt -> BoolElt
IsPositiveDefinite(F) : ModMatRngElt -> BoolElt
IsPositiveSemiDefinite(F) : ModMatRngElt -> BoolElt
IsPower(a, n) : FldACElt, RngIntElt -> BoolElt, FldACElt
IsPower(a, k) : FldAlgElt, RngIntElt -> BoolElt, FldAlgElt
IsPower(a, n) : FldFinElt, RngIntElt -> BoolElt, FldFinElt
IsPower(a, k) : FldNumElt, RngIntElt -> BoolElt, FldNumElt
IsPower(I, n) : RngFunOrdIdl, RngIntElt -> BoolElt, RngFunOrdIdl
IsPower(n) : RngIntElt -> BoolElt
IsPower(n, k) : RngIntElt -> BoolElt
IsPower(w, n) : RngOrdElt, RngIntElt -> BoolElt, RngOrdElt
IsPower(I, k) : RngOrdFracIdl, RngIntElt -> BoolElt, RngOrdFracIdl
IsPower(x, n) : RngPadElt, RngIntElt -> BoolElt, RngPadElt
IsPRI(C) : CosetGeom -> BoolElt
IsPrimitive(C) : CosetGeom -> BoolElt
IsPrimary(I) : RngMPol -> BoolElt
IsPrimary(I) : RngMPolRes -> BoolElt
IsPrime(D) : DivSchElt -> BoolElt
IsPrime(x) : RngElt -> BoolElt
IsPrime(I) : RngFunOrdIdl -> BoolElt
IsPrime(n) : RngIntElt -> BoolElt
IsPrime(n) : RngIntElt -> BoolElt
IsPrime(I) : RngMPol -> BoolElt
IsPrime(I) : RngMPolRes -> BoolElt
IsPrime(I) : RngOrdIdl -> BoolElt, RngOrdIdl
RngInt_IsPrime (Example H18E4)
IsPrimeCertificate(cert) : List -> BoolElt
PrimalityCertificate(n) : RngIntElt -> List
IsPrimeField(F) : Fld -> BoolElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013