[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: CryptographicCurve .. Curve
ValidateCryptographicCurve(E, P, ordP, h) : CrvEll, PtEll, RngIntElt, RngIntElt -> BoolElt
CryptographicCurve(F) : FldFin -> CrvEll, PtEll, RngIntElt, RngIntElt
CrvEllFldFin_CryptographicCurve (Example H121E5)
CrystalGraph(R, hw) : RootDtm, SeqEnum -> GrphDir, SeqEnum
CrystalGraph(R, hw) : RootDtm, SeqEnum -> GrphDir, SeqEnum
IsCrystallographic(C) : AlgMatElt -> BoolElt
IsCrystallographic(W) : GrpMat -> BoolElt
IsCrystallographic(W) : GrpPermCox -> BoolElt
IsCrystallographic(R) : RootStr -> BoolElt
IsCrystallographic(R) : RootSys -> BoolElt
AlgQEA_CrystGrph (Example H102E12)
CSp(n, q) : RngIntElt, RngIntElt -> GrpMat
ConformalSymplecticGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
CSS Codes (QUANTUM CODES)
CSS Codes (QUANTUM CODES)
CalderbankShorSteaneCode(C1, C2) : Code, Code -> CodeQuantum
CSSCode(C1, C2) : Code, Code -> CodeQuantum
QECC_CSSQuantConstr (Example H157E9)
CU(n, q) : RngIntElt, RngIntElt -> GrpMat
ConformalUnitaryGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
ClassicalCovariantsOfCubicSurface(f) : RngMPolElt -> SeqEnum
ContravariantsOfCubicSurface(f) : RngMPolElt -> SeqEnum
CubicFromPoint(E, P) : CrvEll, PtEll -> RngMPolElt, MapSch, Pt
CubicSurfaceByHexahedralCoefficients(p) : RngUPolElt -> RngMPolElt
CubicSurfaceFromClebschSalmon(inv) : SeqEnum -> RngMPolElt
IsIsomorphicCubicSurface(f,g) : MPolElt, MPolElt -> BoolElt, List
MinimizeCubicSurface(f, p) : RngMPolElt, RngIntElt -> RngMPolElt, Mtrx
MinimizeReduceCubicSurface(f) : MPolElt -> RngMPolElt, Mtrx
NumberOfPointsOnCubicSurface(f) : RngMPolElt -> RngIntElt, RngIntElt
PointsCubicModel(C, B : parameters) : Crv, RngIntElt -> SeqEnum
ReduceCubicSurface(f) : RngMPolElt -> RngMPolElt, Mtrx
ThreeDescentCubic(E, α: parameters) : CrvEll, Tup -> Crv, MapSch
ThreeIsogenyDescentCubic(φ, α) : MapSch, Any -> Crv, MapSch
Cubic Surfaces over Finite Fields (ALGEBRAIC SURFACES)
CubicFromPoint(E, P) : CrvEll, PtEll -> RngMPolElt, MapSch, Pt
AddCubics(cubic1, cubic2 : parameters) : RngMPolElt, RngMPolElt -> RngMPolElt
AddCubics(cubic1, cubic2 : parameters) : RngMPolElt, RngMPolElt -> RngMPolElt
CubicSurfaceByHexahedralCoefficients(p) : RngUPolElt -> RngMPolElt
CubicSurfaceFromClebschSalmon(inv) : SeqEnum -> RngMPolElt
Cunningham(b, k, c) : RngIntElt, RngIntElt, RngIntElt -> SeqEnum
Current(p) : Process -> Grp
Current(p) : Process -> GrpMat
Current(p) : Process -> GrpPerm, MonStgElt
Current(p) : Process -> GrpPerm, MonStgElt
CurrentLabel(p) : Process -> RngIntElt, RngIntElt
CurrentLabel(p) : Process -> RngIntElt, RngIntElt
CurrentLabel(p) : Process -> RngIntElt, RngIntElt
CurrentLabel(p) : Process -> RngIntElt, RngIntElt, RngIntElt
GetCurrentDirectory() : ->
GetCurrentDirectory() : ->
PlaceEnumCurrent(R) : PlcEnum -> PlcFunElt
CurrentLabel(p) : Process -> RngIntElt, RngIntElt
CurrentLabel(p) : Process -> RngIntElt, RngIntElt
CurrentLabel(p) : Process -> RngIntElt, RngIntElt
CurrentLabel(p) : Process -> RngIntElt, RngIntElt, RngIntElt
Creation of Subcanonical Curves (HILBERT SERIES OF POLARISED VARIETIES)
AdjointLinearSystemForNodalCurve(C, d) : Crv -> LinearSys
AdjointIdealForNodalCurve(C) : Crv -> RngMPol
AssociatedEllipticCurve(qi) : Crv -> CrvEll, Map
AssociatedEllipticCurve(f) : RngUPolElt -> CrvEll, Map
BaseCurve(X) : CrvMod -> CrvMod, MapSch
CanonicalCurve(H) : HypGeomData -> Crv
CryptographicCurve(F) : FldFin -> CrvEll, PtEll, RngIntElt, RngIntElt
Curve(C) : Code -> Crv
Curve(S) : DiffCrv -> Crv
Curve(a) : DiffCrvElt -> Crv
Curve(Div) : DivCrv -> Crv
Curve(D) : DivCrvElt -> Crv
Curve(F) : FldFunFracSch -> Crv
Curve(d,p,m) : FldRatElt,GRPtS,FldRatElt -> GRCrvS
Curve(A) : GrpAutCrv -> Crv
Curve(J) : JacHyp -> CrvHyp
Curve(model) : ModelG1 -> Crv
Curve(P) : PlcCrv -> Crv
Curve(P) : PlcCrvElt -> Crv
Curve(p) : Pt -> Crv
Curve(p) : Pt -> Crv
Curve(X) : Sch -> Crv
Curve(X) : Sch -> Crv
Curve(A,I) : Sch, RngMPol -> Crv
Curve(A,f) : Sch, RngMPolElt -> CrvPln
Curve(X,S) : Sch, SeqEnum -> Crv
Curve(G) : SchGrpEll -> CrvEll
Curve(P) : SetPt -> Crv
Curve(P) : SetPt -> Crv
Curve(H) : SetPtEll -> CrvEll
CurveQuotient(G): GrpAutCrv -> Crv, MapSch
EllipticCurve(C) : Crv -> CrvEll, MapSch
EllipticCurve(C, pl) : Crv, PlcCrvElt -> CrvEll, MapSch
EllipticCurve(C, P) : Crv, Pt -> CrvEll, MapSch
EllipticCurve(D, S): DB, MonStgElt -> CrvEll
EllipticCurve(D, N, I, J): DB, RngIntElt, RngIntElt, RngIntElt -> CrvEll
EllipticCurve(H) : HypGeomData -> CrvEll
EllipticCurve(A) : ModAbVar -> CrvEll
EllipticCurve(f) : ModFrmElt -> CrvEll
EllipticCurve(M) : ModSym -> CrvEll
EllipticCurve(f) : RngUPolElt -> CrvEll
EllipticCurve(C) : Sch -> CrvEll, MapSch
EllipticCurve([a, b]) : [ RngElt ] -> CrvEll
EllipticCurveDatabase(: parameters) : -> DB
EllipticCurveFromPeriods(om: parameters) : [ FldComElt ] -> CrvEll
EllipticCurveFromjInvariant(j) : RngElt -> CrvEll
EllipticCurveSearch(N, Effort) : RngOrdIdl, RngIntElt -> SeqEnum
EllipticCurveSearch(N, Effort) : [], RngIntElt -> SeqEnum
EmbedPlaneCurveInP3(C) : Crv -> Sch, MapSch
ExistsModularCurveDatabase(t) : MonStgElt -> BoolElt
FunctionFieldPlace(p) : PlcCrvElt -> PlcFunElt
Genus5PlaneCurveModel(C) : Crv -> BoolElt, MapSch
Genus6PlaneCurveModel(C) : Crv -> BoolElt, MapSch
HilbertPolynomialOfCurve(g,m) : RngIntElt,RngIntElt -> RngUPolElt
HyperellipticCurve(E) : CrvEll -> CrvHyp, Map
HyperellipticCurve(H) : HypGeomData -> CrvHyp
HyperellipticCurve(P, f, h) : Prj, RngUPolElt, RngUPolElt -> CrvHyp
HyperellipticCurve(f, h) : RngUPolElt, RngUPolElt -> CrvHyp
HyperellipticCurveFromG2Invariants(S) : SeqEnum[FldFin] -> CrvHyp, GrpFP
HyperellipticCurveFromIgusaClebsch(S) : SeqEnum -> CrvHyp
HyperellipticCurveFromShiodaInvariants(JI) : SeqEnum[FldFin] -> CrvHyp, GrpPerm
HyperellipticCurveOfGenus(g, f, h) : RngIntElt, RngUPolElt, RngUPolElt -> CrvHyp
IsConstantCurve(E) : CrvEll[FldFunRat] -> BoolElt, CrvEll
IsCurve(X) : Sch -> BoolElt,Crv
IsCurve(X) : Sch -> BoolElt,Crv
IsEllipticCurve(C) : CrvHyp -> BoolElt, CrvEll, MapIsoSch, MapIsoSch
IsEllipticCurve(C) : CrvHyp -> BoolElt, CrvEll, MapIsoSch, MapIsoSch
IsEllipticCurve([a, b]) : [ RngElt ] -> BoolElt, CrvEll
IsHyperellipticCurve(X) : Sch -> BoolElt,CrvHyp
IsHyperellipticCurve([f, h]) : [ RngUPolElt ] -> BoolElt, CrvHyp
IsHyperellipticCurveOfGenus(g, [f, h]) : RngIntElt, [RngUPolElt] -> BoolElt, CrvHyp
IsInSmallModularCurveDatabase(N) : RngIntElt -> Boolelt
IsModularCurve(X) : Sch -> BoolElt
IsNodalCurve(C) : Crv-> BoolElt
IsPlaneCurve(X) : Sch -> BoolElt, CrvPln
IsRationalCurve(S) : Sch -> BoolElt, CrvRat
IsRationalCurve(X) : Sch -> BoolElt,CrvRat
IsSubcanonicalCurve(g,d,Q) : RngIntElt,RngIntElt,SeqEnum -> BoolElt,GRCrvK
ModularCurve(D, N) : DB, RngIntElt -> CrvMod
ModularCurve(X,t,N) : Sch, MonStgElt, RngIntElt -> CrvMod
ModularCurveDatabase(t) : MonStgElt -> DB
ModularCurveQuotient(N,A) : RngIntElt, [RngIntElt] -> Crv
ModularHyperellipticCurve(B) : [ModSym] -> BoolElt, RngUPol
ModularHyperellipticCurve(F) : [RngSerPowElt] -> BoolElt, RngUPol
ModularNonHyperellipticCurveGenus3(F) : [RngSerPowElt] -> BoolElt, RngMPolElt
NewModularHyperellipticCurve(B) : [ModSym] -> BoolElt, RngUPol
NewModularHyperellipticCurve(F) : [RngSerPowElt] -> BoolElt, RngUPol
NewModularNonHyperellipticCurveGenus3(B) : [ModSym] -> BoolElt, RngMPolElt
NewModularNonHyperellipticCurveGenus3(F) : [RngSerPowElt] -> BoolElt, RngMPolElt
Parametrization(C) : CrvCon -> MapSch
RandomCurveByGenus(g, K) : RngIntElt, Fld -> Crv
RandomNodalCurve(d, g, P) : RngIntElt, RngIntElt, Prj -> CrvPln
RandomOrdinaryPlaneCurve(d, S, P) : RngIntElt, SeqEnum, Prj -> CrvPln, RngMPol
RationalCurve(X, f) : Prj, RngMPolElt -> CrvRat
ReducePlaneCurve(f) : MPolElt -> RngMPolElt, Mtrx
ResolveAffineCurve(p) : RngMPolElt -> List, List, List, RngIntElt
ResolveProjectiveCurve(p) : RngMPolElt -> List, List, List, RngIntElt
Scheme(P) : SetPtEll -> CrvEll
SmallModularCurve(N) : RngIntElt -> Crv
SubcanonicalCurve(g,d,Q) : RngIntElt,RngIntElt,SeqEnum -> GRCrvK
SupersingularEllipticCurve(K) : FldFin -> CrvEll
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013