[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: pCore  ..  Permutation


pCore

   pCore(G, p) : GrpFin, RngIntElt -> GrpFin
   pCore(G, p) : GrpMat, RngIntElt -> GrpMat
   pCore(G, S) : GrpPC, { RngIntElt } -> GrpPC
   pCore(G, S) : GrpPC, { RngIntElt } -> GrpPC
   pCore(G, p) : GrpPerm, RngIntElt -> GrpPerm
   pCoreQuotient(G, p) : GrpPerm, RngIntElt -> GrpPerm, Map, GrpPerm

pCoreQuotient

   pCoreQuotient(G, p) : GrpPerm, RngIntElt -> GrpPerm, Map, GrpPerm

pCover

   pCover(G, F, p) : GrpPerm, GrpFP, RngIntElt -> GrpFinFP
   pCover(G, F, p) : GrpPerm, GrpFP, RngIntElt -> GrpFP
   pCover(G, F, p) : GrpPerm, GrpFP, RngIntElt -> GrpFP

pCovering

   pCoveringGroup(~P) : GrpPCpQuotientProc ->

pCoveringGroup

   pCoveringGroup(~P) : GrpPCpQuotientProc ->

PCPresentation

   PCPresentation(G) : GrpMatUnip -> GrpPC, Map, Map

PCPrimes

   PCPrimes(G) : GrpPC -> [RngIntElt]

pElementary

   pElementaryAbelianNormalSubgroup(G, p) : GrpPerm, RngIntElt -> GrpPerm

pElementaryAbelianNormalSubgroup

   pElementaryAbelianNormalSubgroup(G, p) : GrpPerm, RngIntElt -> GrpPerm

Pencil

   ParametrizePencil(phi, P2) : MapSch, Prj -> BoolElt, MapSch
   Pencil(P, p) : Plane, PlanePt -> { PlaneLn }

pencil

   Creation from Pencils (RESOLUTION GRAPHS AND SPLICE DIAGRAMS)
   GrphRes_pencil (Example H115E2)

penta

   The Pentahedron of a Cubic Surface (ALGEBRAIC SURFACES)
   AlgSrf_penta (Example H116E30)

Pentahedron

   PentahedronIdeal(f) : RngMPolElt -> RngMPol

PentahedronIdeal

   PentahedronIdeal(f) : RngMPolElt -> RngMPol

Perfect

   ExtendedPerfectCodeZ4(δ, m) : RngIntElt, RngIntElt -> CodeLinRng, Mtrx
   IsNearlyPerfect(C) : Code -> BoolElt
   IsPerfect(C) : Code -> BoolElt
   IsPerfect(C) : Code -> BoolElt
   IsPerfect(F) : Fld -> BoolElt
   IsPerfect(G) : GrpFin -> BoolElt
   IsPerfect(G) : GrpFP -> BoolElt
   IsPerfect(G) : GrpGPC -> BoolElt
   IsPerfect(G) : GrpMat -> BoolElt
   IsPerfect(G) : GrpPC -> BoolElt
   IsPerfect(G) : GrpPerm -> BoolElt
   IsProbablyPerfect(G : parameters): Grp -> BoolElt
   PerfectForms(G) : GrpMat[RngInt] -> SeqEnum
   PerfectGroupDatabase() : -> DB
   PerfectSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
   PerfectSubgroups(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
   RngInt_Perfect (Example H18E7)

PerfectForms

   PerfectForms(G) : GrpMat[RngInt] -> SeqEnum

PerfectGroupDatabase

   PerfectGroupDatabase() : -> DB

PerfectSubgroups

   PerfectSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
   PerfectSubgroups(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]

perfgps

   GrpData_perfgps (Example H66E7)

Period

   BigPeriodMatrix(A) : AnHcJac -> AlgMatElt
   ClassicalPeriod(M, j, prec) : ModSym, RngIntElt, RngIntElt -> FldPrElt
   IsIsogenousPeriodMatrices(P1, P2) : Mtrx, Mtrx -> Bool, Mtrx
   IsIsomorphicBigPeriodMatrices(P1, P2) : Mtrx, Mtrx -> Bool, Mtrx, Mtrx
   IsIsomorphicSmallPeriodMatrices(t1,t2) : Mtrx, Mtrx -> Bool, Mtrx
   PeriodMapping(A, prec) : ModAbVar, RngIntElt -> Map
   PeriodMapping(M, prec) : ModSym, RngIntElt -> Map
   RealPeriod(E: parameters) : CrvEll -> FldReElt
   SmallPeriodMatrix(A) : AnHcJac -> AlgMatElt

period

   The Period Map (MODULAR SYMBOLS)

period-map

   The Period Map (MODULAR SYMBOLS)

PeriodMapping

   PeriodMapping(A, prec) : ModAbVar, RngIntElt -> Map
   PeriodMapping(M, prec) : ModSym, RngIntElt -> Map

Periods

   EllipticCurveFromPeriods(om: parameters) : [ FldComElt ] -> CrvEll
   EllipticPeriods(A, n) : ModAbVar, RngIntElt -> FldReElt, FldReElt
   Periods(A, n) : ModAbVar, RngIntElt -> SeqEnum
   Periods(M, prec) : ModSym, RngIntElt -> SeqEnum
   Periods(E: parameters) : CrvEll -> [ FldComElt ]

periods

   Complex Period Lattice (MODULAR ABELIAN VARIETIES)

Perm

   PermRep(K) : DBAtlasKeyPermRep -> SeqEnum[GrpPermElt]
   PermRepDegrees(A) : GrpAtlas -> SetEnum[RngIntElt]
   PermRepKeys(A) : GrpAtlas -> SeqEnum[DBAtlasKeyPermRep]
   PositiveRootsPerm(U) : AlgQUE -> SeqEnum

perm

   The Burnside Algorithm (K[G]-MODULES AND GROUP REPRESENTATIONS)

PermRep

   PermRep(K) : DBAtlasKeyPermRep -> SeqEnum[GrpPermElt]

PermRepDegrees

   PermRepDegrees(A) : GrpAtlas -> SetEnum[RngIntElt]

PermRepKeys

   PermRepKeys(A) : GrpAtlas -> SeqEnum[DBAtlasKeyPermRep]

permreps

   Induced Permutation Representations (FINITELY PRESENTED GROUPS: ADVANCED)

Permutation

   CosetTableToPermutationGroup(G, T) : GrpFP, Map -> GrpPerm
   InducedPermutation(u) : GrpBrdElt -> GrpPermElt
   IsPermutationModule(M) : ModRng -> BoolElt
   IsProbablyPermutationPolynomial(p) : RngUPolElt -> BoolElt
   Permutation(G, Q) : GrpPerm, [Elt] -> GrpPermElt
   PermutationAutomorphism(A, g) : Sch,GrpPermElt -> MapIsoSch
   PermutationCharacter(K) : FldNum -> ArtRep
   PermutationCharacter(G, H) : Grp, Grp -> AlgChtrElt
   PermutationCharacter(G, H) : GrpFin, GrpFin -> AlgChtrElt
   PermutationCharacter(G, H) : GrpMat, GrpMat -> AlgChtrElt
   PermutationCharacter(G) : GrpPerm -> AlgChtrElt
   PermutationCharacter(G) : GrpPerm -> AlgChtrElt
   PermutationCharacter(G) : GrpPerm -> AlgChtrElt
   PermutationCharacter(G, H) : GrpPerm, GrpPerm -> AlgChtrElt
   PermutationCode(u, G) : ModTupRngElt, GrpPerm -> Code
   PermutationCode(u, G) : ModTupRngElt, GrpPerm -> Code
   PermutationGroup(C) : Code -> GrpPerm, PowMap, Map
   PermutationGroup(C) : CodeAdd -> GrpPerm
   PermutationGroup(Q) : CodeQuantum -> GrpPerm
   PermutationGroup(K) : DBAtlasKeyPermRep -> GrpPerm
   PermutationGroup(A) : GrpAb -> GrpPerm, Hom(Grp)
   PermutationGroup(A) : GrpAutCrv -> GrpPerm
   PermutationGroup(A) : GrpAuto -> GrpPerm
   PermutationGroup(G) : GrpFP -> GrpPerm, GrpHom
   PermutationGroup(D, i: parameters): DB, RngIntElt -> GrpPerm
   PermutationGroup< n | L > : RngIntElt, List -> GrpPerm
   PermutationGroup< X | L > : Set, List -> GrpPerm
   PermutationGroup< X | L > : Set, List -> GrpPerm, Hom
   PermutationMatrix(R, x) : Rng, GrpPermElt -> Mtrx
   PermutationMatrix(R, Q) : Rng, [ RngIntElt ] -> Mtrx
   PermutationModule(G, K) : Grp, Fld -> ModGrp
   PermutationModule(G, H, K) : Grp, Grp, Fld -> ModGrp
   PermutationModule(G, H, R) : Grp, Grp, Rng -> ModGrp
   PermutationModule(G, V) : Grp, ModTupFld -> ModGrp
   PermutationModule(G, u) : Grp, ModTupFldElt -> ModGrp
   PermutationModule(G, H, R) : GrpFin, GrpFin, Rng -> ModGrpFin
   PermutationModule(G, H, R) : GrpMat, GrpMat, Rng -> ModGrp
   PermutationModule(G, K) : GrpPerm, Fld -> ModGrp
   PermutationModule(G, R) : GrpPerm, Rng -> ModGrp
   PermutationModule(G, R) : GrpPerm, Rng -> ModGrpFin
   PermutationRepresentation(A) : GrpAutCrv -> GrpPerm, Map
   PermutationRepresentation(A) : GrpAuto -> Map, GrpPerm, SetIndx
   PermutationRepresentation(D, i: parameters): DB, RngIntElt -> Hom(Grp), GrpFP, GrpPerm
   PermutationSupport(A) : GrpAuto -> SetIndx
   Reflection(W, r) : GrpPermCox, RngIntElt -> GrpPermElt
   ReflectionPermutation(W, r) : GrpMat, RngIntElt -> []
   ReflectionPermutation(R, r) : RootDtm, RngIntElt -> []
   ReflectionPermutation(R, r) : RootSys, RngIntElt -> []
   RootPermutation(phi) : Map -> GrpPermElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013