[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: symplectic  ..  system


symplectic

   RecognizeSp4Even(G, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
   Constructive Recognition of Symplectic Groups (ALMOST SIMPLE GROUPS)
   Symplectic Groups (ALMOST SIMPLE GROUPS)

SymplecticComponent

   SymplecticComponent(x, p) : AlgChtrElt, [ RngIntElt ] -> AlgChtrElt

SymplecticComponents

   SymplecticComponents(x, n) : AlgChtrElt, RngIntElt -> SetEnum

SymplecticDual

   SymplecticDual(C) : CodeAdd -> CodeAdd

SymplecticEg

   QECC_SymplecticEg (Example H157E17)

SymplecticForm

   SymplecticForm(G: parameters) : GrpMat -> BoolElt, AlgMatElt [,SeqEnum]

SymplecticGroup

   Sp(n, q) : RngIntElt, RngIntElt -> GrpMat
   SymplecticGroup(n, q) : RngIntElt, RngIntElt -> GrpMat

SymplecticInnerProduct

   SymplecticInnerProduct(v1, v2) : ModTupFldElt, ModTupFldElt -> FldFinElt

SymplecticMatrixGroupDatabase

   SymplecticMatrixGroupDatabase() : -> DB

symplecticselforthog

   QECC_symplecticselforthog (Example H157E18)

SymplecticSpace

   SymplecticSpace(J) : AlgMatElt -> ModTupRng

SymplecticTransvection

   SymplecticTransvection(a, alpha) : ModTupRngElt, FldElt -> AlgMatElt

symplgps

   Database of Finite Symplectic Matrix Groups (DATABASES OF GROUPS)

sympow

   Symmetric Powers (L-FUNCTIONS)

sympow-ec

   Lseries_sympow-ec (Example H127E31)
   Lseries_sympow-ec (Example H127E32)
   Lseries_sympow-ec (Example H127E33)

sympow-ec2

   Lseries_sympow-ec2 (Example H127E34)

sympspace

   Symplectic Spaces (POLAR SPACES)

Syndrome

   Syndrome(w, C) : ModTupFldElt, Code -> ModTupFldElt
   SyndromeSpace(C) : Code -> ModTupFld

syndrome

   The Syndrome Space (LINEAR CODES OVER FINITE FIELDS)

syndrome-space

   The Syndrome Space (LINEAR CODES OVER FINITE FIELDS)

SyndromeSpace

   SyndromeSpace(C) : Code -> ModTupFld

sys

   Operators on Root Systems (ROOT SYSTEMS)

System

   AdjointLinearSystemForNodalCurve(C, d) : Crv -> LinearSys
   AdjointIdealForNodalCurve(C) : Crv -> RngMPol
   AdjointLinearSystemFromIdeal(I, d) : RngMPol, RngIntElt -> LinearSys
   CanonicalLinearSystem(C) : Crv -> LinearSys
   CanonicalLinearSystemFromIdeal(I, d) : RngMPol, RngIntElt -> LinearSys
   GetHelpExternalSystem() : -> MonStgElt
   ImageSystem(f,S,d) : MapSch,Sch,RngIntElt -> LinearSys
   IrreducibleRootSystem(X, n) : MonStgElt, RngIntElt -> RootSys
   IsLinearSystemNonEmpty(D) : DivSchElt -> BoolElt, DivSchElt
   LinearSystem(L,V) : LinearSys,ModTupFld -> LinearSys
   LinearSystem(L,p) : LinearSys,Pt -> LinearSys
   LinearSystem(L,p,m) : LinearSys,Pt,RngIntElt -> LinearSys
   LinearSystem(L,X) : LinearSys,Sch -> LinearSys
   LinearSystem(L,F) : LinearSys,SeqEnum -> LinearSys
   LinearSystem(P, d) : Sch, [RngIntElt] -> LinearSys
   LinearSystem(P,d) : Sch,RngIntElt -> LinearSys
   LinearSystem(P,F) : Sch,SeqEnum[RngMPolElt] -> LinearSys
   LinearSystemTrace(L,X) : LinearSys,Sch -> LinearSys
   ResidueSystem(R) : RngPad -> [RngPadElt]
   ResolveLinearSystem(D) : DivTorElt -> TorVar
   RootSystem(L) : AlgLie -> [ ModTupRngElt ], [ AlgLieElt ], [ ModTupRngElt ], AlgMatElt
   RootSystem(C) : AlgMatElt -> RootSys
   RootSystem(M) : AlgMatElt -> RootSys
   RootSystem(M) : AlgMatElt -> RootSys
   RootSystem(D) : GrphDir -> RootSys
   RootSystem(W) : GrpMat -> RootDtm
   RootSystem(W) : GrpPermCox -> RootDtm
   RootSystem(N) : MonStgElt -> RootSys
   RootSystem(A, B) : Mtrx, Mtrx -> RootSys
   RootSystem(R) : RootDtm -> RootSys
   SchreierSystem(G, H) : GrpFP, GrpFP -> {@ GrpFPElt @}, Map
   SetHelpExternalSystem(s) : MonStgElt ->
   SetHelpUseExternalSystem(b) : BoolElt ->
   StandardRootSystem(X, n) : MonStgElt, RngIntElt -> RootSys
   SylowSystem(G : parameters) : GrpMat[FldFin] -> []
   System(C) : MonStgElt -> RngIntElt
   SystemNormalizer(G) : GrpPC -> GrpPC
   SystemOfEigenvalues(M, prec) : ModSym, RngIntElt -> SeqEnum
   TeichmuellerSystem(R) : Any -> [RngLocElt]
   ToralRootSystem(n) : RngIntElt -> RootSys
   TrivialRootSystem() : -> RootSys

system

   Building Root Systems (ROOT SYSTEMS)
   Constructing Root Systems (ROOT SYSTEMS)
   GROUPS DEFINED BY REWRITE SYSTEMS
   Memory Usage (INPUT AND OUTPUT)
   MONOIDS GIVEN BY REWRITE SYSTEMS
   Predefined System Attributes (FUNCTIONS, PROCEDURES AND PACKAGES)
   Properties of Root Systems (ROOT SYSTEMS)
   System Calls (INPUT AND OUTPUT)
   Systems of Reflexive Forms (ALGEBRAS WITH INVOLUTION)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013