[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: Coefficients  ..  Cohomological


Coefficients

   Coefficients(f) : AlgFrElt -> [ RngElt ]
   Coefficients(a) : AlgGrpElt -> SeqEnum
   Coefficients(u) : AlgPBWElt -> SeqEnum
   Coefficients(u) : AlgQUEElt -> SeqEnum
   Coefficients(f) : RngMPolElt -> [ RngElt ]
   Coefficients(f, i) : RngMPolElt, RngIntElt -> [ RngElt ]
   Coefficients(s, n) : RngPowLazElt, RngIntElt -> [RngElt]
   Coefficients(f) : RngSerElt -> [ RngElt ], RngIntElt, RngIntElt
   Coefficients(e) : RngSerExtElt -> [ RngElt ]
   Coefficients(p) : RngUPolElt -> [ RngElt ]
   CoefficientsAndMonomials(f) : RngMPolElt -> [ RngElt ], [ RngMPolElt ]
   CoefficientsNonSpiral(s, n) : RngPowLazElt, [RngIntElt] -> SeqEnum
   CubicSurfaceByHexahedralCoefficients(p) : RngUPolElt -> RngMPolElt
   EhrhartCoefficients(P,l) : TorPol,RngIntElt -> [RngIntElt]
   ElementToSequence(x) : RngPadElt -> [ RngElt ]
   Eltseq(L) : RngDiffOpElt -> SeqEnum
   HilbertCoefficients(D,l) : DivTor,RngIntElt -> [RngIntElt]
   InitialCoefficients(X) : GRSch -> SeqEnum
   LGetCoefficients(L, N) : LSer, RngIntElt -> List
   LSetCoefficients(L,cffun) : LSer, Any ->
   TorsionCoefficients(X, q) : SmpCpx, RngIntElt -> SeqEnum[RngElt]
   TruncateCoefficients(L) : RngDiffOpElt -> RngDiffOpElt
   aInvariants(E) : CrvEll -> [ RngElt ]
   RngMPol_Coefficients (Example H24E4)

coefficients

   Coefficients and Terms (DIFFERENTIAL RINGS)

coefficients-terms-diff-ring-elts

   Coefficients and Terms (DIFFERENTIAL RINGS)

CoefficientsAndMonomials

   CoefficientsAndMonomials(f) : RngMPolElt -> [ RngElt ], [ RngMPolElt ]

CoefficientsNonSpiral

   CoefficientsNonSpiral(s, n) : RngPowLazElt, [RngIntElt] -> SeqEnum

CoefficientSpace

   CoefficientSpace(L) : LinearSys -> ModTupFld

coeffs

   Finding Coefficients of Lazy Series (LAZY POWER SERIES RINGS)

coerce-quo

   ModDed_coerce-quo (Example H55E7)

Coercible

   A ! f : AlgSym, RngMPolElt -> AlgSymElt
   IsCoercible(A, f) : AlgSym, RngMPolElt -> BoolElt, AlgSymElt
   IsCoercible(X,Q) : Sch,SeqEnum -> BoolElt,Pt
   IsCoercible(S, x) : Str, Elt -> Bool, Elt

Coercion

   Bang(D, C) : Str, Str -> Map
   Coercion(D, C) : Str, Str -> Map
   FldRat_Coercion (Example H20E1)
   RngIntRes_Coercion (Example H19E3)

coercion

   Coercion (ALGEBRAICALLY CLOSED FIELDS)
   Coercion (GROUPS)
   Coercion (INTEGER RESIDUE CLASS RINGS)
   Coercion (INTRODUCTION TO RINGS [BASIC RINGS])
   Coercion (PERMUTATION GROUPS)
   Coercion (RATIONAL FIELD)
   Coercion (REAL AND COMPLEX FIELDS)
   Coercion (RING OF INTEGERS)
   Coercion (STATEMENTS AND EXPRESSIONS)
   Coercion between Matrix Structures (MATRIX GROUPS OVER GENERAL RINGS)
   Coercion Maps (MAPPINGS)
   Coercions Between Groups and Subgroups (ABELIAN GROUPS)
   Coercions Between Groups and Subgroups (POLYCYCLIC GROUPS)
   Coercions Between Related Groups (BLACK-BOX GROUPS)
   Coercions Between Related Groups (GROUPS OF STRAIGHT-LINE PROGRAMS)
   Membership and Coercion (FINITE SOLUBLE GROUPS)
   Predicates for Permutations (PERMUTATION GROUPS)
   Properties of Permutations (PERMUTATION GROUPS)
   GrpPC_coercion (Example H63E14)

Coercion-spaces

   ModSym_Coercion-spaces (Example H133E9)

coercions

   Class Group Coercions (BINARY QUADRATIC FORMS)

Cofactor

   Cofactor(M, i, j) : Mtrx, RngIntElt, RngIntElt -> RngElt

Cofactors

   Cofactors(M) : Mtrx, RngIntElt -> SeqEnum
   Cofactors(M, r) : Mtrx, RngIntElt -> SeqEnum

Cohen

   CohenCoxeterName(k) : RngIntElt -> MonStgElt, RngIntElt
   IsArithmeticallyCohenMacaulay(S) : ShfCoh -> BoolElt
   IsCohenMacaulay(R) : RngInvar -> BoolElt
   IsCohenMacaulay(X) : Sch -> BoolElt

CohenCoxeterName

   CohenCoxeterName(k) : RngIntElt -> MonStgElt, RngIntElt

coherent

   COHERENT SHEAVES

coherent-sheaves

   COHERENT SHEAVES

coho-example

   GrpCoh_coho-example (Example H68E2)

coho-module1

   GrpCoh_coho-module1 (Example H68E1)

cohom

   PMod_cohom (Example H109E17)

Cohomological

   CohomologicalDimension(G, M, i) : GrpFin, ModRng, RngIntElt -> RngIntElt
   CohomologicalDimension(G, M, i) : GrpPerm, ModRng, RngIntElt -> RngIntElt
   CohomologicalDimension(G, M, n) : GrpPerm, ModRng, RngIntElt -> RngIntElt
   CohomologicalDimension(CM, n) : ModCoho, RngIntElt -> RngIntElt
   CohomologicalDimension(M, n) : ModGrp, n -> RngIntElt
   CohomologicalDimension(M, n) : ModGrp, n -> RngIntElt
   CohomologicalDimensions(M, n) : ModGrp, n -> RngIntElt
   CohomologicalDimensions(M, n) : ModGrp, n -> RngIntElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013