[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: length  ..  lideal


length

   Position(s, t) : MonStgElt, MonStgElt -> RngIntElt
   Integer-Valued Functions (INPUT AND OUTPUT)
   The Length of a Word (FINITELY PRESENTED SEMIGROUPS)

length-index

   Position(s, t) : MonStgElt, MonStgElt -> RngIntElt
   Integer-Valued Functions (INPUT AND OUTPUT)

Lengthen

   LengthenCode(C) : Code -> Code

LengthenCode

   LengthenCode(C) : Code -> Code

Lengths

   BasicOrbitLengths(G) : GrpMat -> [RngIntElt]
   BasicOrbitLengths(G) : GrpPerm -> [RngIntElt]
   Lengths(X) : Sch -> [RngIntElt]

lengths

   CodeRng_lengths (Example H155E24)

Lens

   LensSpace(p) : RngIntElt -> SmpCpx

LensSpace

   LensSpace(p) : RngIntElt -> SmpCpx

Leons

   LeonsAttack(C, v, e, p, l) : Code, ModTupFldElt, RngIntElt, RngIntElt,RngIntElt -> ModTupFldElt

LeonsAttack

   LeonsAttack(C, v, e, p, l) : Code, ModTupFldElt, RngIntElt, RngIntElt,RngIntElt -> ModTupFldElt

Less

   BruhatLessOrEqual(x, y) : GrpPermElt, GrpPermElt -> BoolElt

Level

   AuxiliaryLevel(M) : ModSS -> RngIntElt
   Conductor(S) : AlgQuatOrd -> RngElt
   Level(X) : CrvMod -> RngIntElt
   Level(G) : GrpPSL2 -> RngIntElt
   Level(L) : Lat -> RngElt
   Level(V, i) : LatLat, RngIntElt -> [ LatLatElt ]
   Level(A) : ModAbVar -> RngIntElt
   Level(M) : ModBrdt -> RngIntElt
   Level(M) : ModFrm -> RngIntElt
   Level(M) : ModFrmBianchi -> RngOrdIdl
   Level(f) : ModFrmElt -> RngIntElt
   Level(M) : ModFrmHil -> RngOrdIdl
   Level(M) : ModSS -> RngIntElt
   NewLevel(M) : ModFrmHil -> RngOrdIdl
   QuaternionOrder(M) : ModBrdt -> AlgQuatOrd
   SetDisplayLevel(~P, Level) : GrpPCpQuotientProc, RngIntElt ->
   SetPrintLevel(l) : MonStgElt ->

level

   Degeneracy Maps (MODULAR SYMBOLS)
   Low Level Operations on Presentations and Words (FINITELY PRESENTED GROUPS: ADVANCED)
   Low Level Operations on Words (FINITELY PRESENTED GROUPS: ADVANCED)

level1-modform

   Lseries_level1-modform (Example H127E27)

Levels

   Levels(v) : LatLat -> [ [LatLatElt] ]
   NumberOfLevels( V ) : LatLat -> RngIntElt

Levenshtein

   LevenshteinBound(K, n, d) : FldFin, RngIntElt, RngIntElt -> RngIntElt

LevenshteinBound

   LevenshteinBound(K, n, d) : FldFin, RngIntElt, RngIntElt -> RngIntElt

Levi

   HasLeviSubalgebra(L) : AlgLie -> BoolElt

Lex

   LexProduct(G, H) : GrphDir, GrphDir -> GrphDir

lex

   Lexicographical: lex (GRÖBNER BASES)

Lexicographical

   LexicographicalOrdering(~w1, ~w2) : MonOrdElt, MonOrdElt ->

Lexicographically

   IsLexicographicallyOrdered(w1, w2) : MonOrdElt, MonOrdElt -> boolean

LexicographicalOrdering

   LexicographicalOrdering(~w1, ~w2) : MonOrdElt, MonOrdElt ->

LexProduct

   LexProduct(G, H) : GrphDir, GrphDir -> GrphDir

lfsr

   Linear Feedback Shift Registers (PSEUDO-RANDOM BIT SEQUENCES)

LFSRSequence

   LFSRSequence(C, S, t) : RngUPolElt, SeqEnum, RngIntElt -> SeqEnum

LFSRStep

   LFSRStep(C, S) : RngUPolElt, SeqEnum -> SeqEnum

lfunc-hecke

   FldNum_lfunc-hecke (Example H34E20)

LFunction

   LFunction(E) : CrvEll[FldFunRat] -> RngUPolElt
   LFunction(E, e) : CrvEll[FldFunRat], RngIntElt -> RngUPolElt

Lfunction

   The L-function and Counting Points (ELLIPTIC CURVES OVER FUNCTION FIELDS)

LFunctionbyhand

   CrvEllFldFun_LFunctionbyhand (Example H123E6)

LGet

   LGetCoefficients(L, N) : LSer, RngIntElt -> List

LGetCoefficients

   LGetCoefficients(L, N) : LSer, RngIntElt -> List

lglex

   Local Graded Lexicographical: lglex (LOCAL POLYNOMIAL RINGS)

lgrevlex

   Local Graded Reverse Lexicographical: lgrev-lex (LOCAL POLYNOMIAL RINGS)

LHS

   LHS(r) : Rel -> GrpAbElt
   r[1] : GrpAbRel, RngIntElt -> GrpAbElt
   r[1] : RelElt, RngIntElt -> GrpFPElt
   LHS(r) : Rel -> SgpFPElt

Li

   FromLiE(R, p) : RootDtm, MonStgElt -> LieRepDec
   LiEMaximalSubgroups() : -> SeqEnum
   ToLiE(D) : LieRepDec -> MonStgElt

LIBRARIES

   MAGMA_LIBRARIES

Libraries

   GetLibraries() : -> MonStgElt
   SetLibraries(s) : MonStgElt ->

Library

   GetLibraryRoot() : -> MonStgElt
   SetLibraryRoot(s) : MonStgElt ->

LIBRARY_

   MAGMA_LIBRARY_ROOT

Lichtenbaum

   TateLichtenbaumPairing(D1, D2, m) : DivFunElt, DivFunElt, RngIntElt -> RngElt

lideal

   lideal<S | X> : AlgQuatOrd, [AlgQuatElt] -> AlgQuatOrdIdl
   RightIdeal(S, X) : AlgQuatOrd, [AlgQuatElt] -> AlgQuatOrdIdl
   rideal<S | X> : AlgQuatOrd, [AlgQuatElt] -> AlgQuatOrd
   ideal<S | X> : AlgQuatOrd, [AlgQuatElt] -> AlgQuatOrdIdl
   LeftIdeal(S, X) : AlgQuatOrd, [AlgQuatElt] -> AlgQuatOrdIdl
   ideal<A | L> : AlgFr, List -> AlgFr
   lideal< cat : A | L> : Cat, AlgGrp, List -> AlgGrp, Map
   lideal<O | M> : AlgAssVOrd, PMat -> AlgAssVOrdIdl
   lideal<O | E> : AlgAssVOrd, [AlgAssVOrdElt] -> AlgAssVOrdIdl
   lideal< A | L > : AlgGen, List -> AlgGen, Map
   lideal<R | L> : AlgMat, List -> AlgMat
   lideal<G | L1, ..., Lr> : SgpFP, SgpFPElt, ..., SgpFPElt -> SgpFPIdl

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013