[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: abs  ..  AbsoluteBasis


abs

   Absolute Value and Sign (RATIONAL FIELD)

abs-and-sign

   Absolute Value and Sign (RATIONAL FIELD)

Absolute

   AbsoluteValue(x) : Infty -> Infty
   Abs(x) : Infty -> Infty
   Abs(z) : SpcHydElt -> FldReElt
   AbsoluteAffineAlgebra(A) : FldAC -> RngUPolRes
   AbsoluteAlgebra(A) : RngUPolRes -> SetCart, Map
   AbsoluteBasis(K) : FldAlg -> [FldAlgElt]
   AbsoluteBasis(K) : FldNum -> [FldNumElt]
   AbsoluteCartanMatrix(G, K) : Grp, FldFin -> AlgMatElt
   AbsoluteCharacteristicPolynomial(a) : FldAlgElt -> RngUPolElt
   AbsoluteCharacteristicPolynomial(a) : FldNumElt -> RngUPolElt
   AbsoluteDegree(A) : FldAb -> RngIntElt
   AbsoluteDegree(F) : FldFunG -> RngIntElt
   AbsoluteDegree(F) : FldNum -> RngIntElt
   AbsoluteDegree(O) : RngOrd -> RngIntElt
   AbsoluteDegree(L) : RngPad -> RngIntElt
   AbsoluteDiscriminant(A) : FldAb -> RngIntElt
   AbsoluteDiscriminant(K) : FldAlg -> FldRatElt
   AbsoluteDiscriminant(K) : FldNum -> FldRatElt
   AbsoluteDiscriminant(O) : RngFunOrd -> .
   AbsoluteDiscriminant(O) : RngOrd -> RngIntElt
   AbsoluteField(F) : FldAlg -> FldAlg
   AbsoluteField(F) : FldNum -> FldNum
   AbsoluteFunctionField(F) : FldFunG -> FldFunG
   AbsoluteGaloisGroup(A) : FldAb -> GrpPerm, SeqEnum, GaloisData
   AbsoluteInertiaDegree(L) : RngPad -> RngIntElt
   AbsoluteInvariants(C) : CrvHyp -> SeqEnum
   AbsoluteLogarithmicHeight(a) : FldAlgElt -> FldPrElt
   AbsoluteLogarithmicHeight(a) : FldNumElt -> FldComElt
   AbsoluteMinimalPolynomial(a) : FldAlgElt -> RngUPolElt
   AbsoluteMinimalPolynomial(a) : FldFunElt -> RngUPolElt
   AbsoluteMinimalPolynomial(a) : FldNumElt -> RngUPolElt
   AbsoluteModuleOverMinimalField(M) : ModGrp -> ModGrp
   AbsoluteModuleOverMinimalField(M, F) : ModGrp, FldFin -> ModGrp
   AbsoluteModulesOverMinimalField(Q, F) : [ ModGrp ], FldFin -> [ ModGrp ]
   AbsoluteNorm(a) : FldAlgElt -> FldRatElt
   AbsoluteNorm(a) : FldFinElt -> FldFinElt
   AbsoluteNorm(a) : FldNumElt -> FldRatElt
   AbsoluteNorm(I) : RngOrdIdl -> RngIntElt
   AbsoluteOrder(O) : RngFunOrd -> RngFunOrd
   AbsoluteOrder(O) : RngOrd -> RngOrd
   AbsolutePolynomial(A) : FldAC ->
   AbsolutePrecision(x) : RngPadElt -> RngIntElt
   AbsolutePrecision(f) : RngSerElt -> RngIntElt
   AbsolutePrecision(e) : RngSerExtElt -> RngIntElt
   AbsoluteRamificationDegree(L) : RngPad -> RngIntElt
   AbsoluteRationalScroll(k,N) : Rng,SeqEnum -> PrjScrl
   AbsoluteRepresentation(G) : GrpMat -> GrpMat, Map
   AbsoluteRepresentationMatrix(a) : FldAlgElt -> AlgMatElt
   AbsoluteRepresentationMatrix(a) : FldNumElt -> NumMatElt
   AbsoluteTotallyRamifiedExtension(R) : RngPad -> RngPad, Map
   AbsoluteTrace(a) : FldAlgElt -> FldRatElt
   AbsoluteTrace(a) : FldFinElt -> FldFinElt
   AbsoluteTrace(a) : FldNumElt -> FldRatElt
   AbsoluteValue(q) : FldRatElt -> FldRatElt
   AbsoluteValue(r) : FldReElt-> FldReElt
   AbsoluteValue(n) : RngIntElt -> RngIntElt
   AbsoluteValue(f) : RngMPolElt -> RngMPolElt
   AbsoluteValue(p) : RngUPolElt -> RngUPolElt
   AbsoluteValues(a) : FldAlgElt -> [FldPrElt]
   AbsoluteValues(a) : FldNumElt -> [FldComElt]
   Basis(Q) : FldRat -> [FldRatElt]
   Degree(Q) : FldRat -> RngIntElt
   Discriminant(Q) : FldRat -> RngIntElt
   IsAbsoluteField(K) : FldAlg -> BoolElt
   IsAbsoluteField(K) : FldNum -> BoolElt
   IsAbsoluteOrder(O) : RngFunOrd -> BoolElt
   IsAbsoluteOrder(O) : RngOrd -> BoolElt
   Rank(R) : RootStr -> RngIntElt

absolute

   Absolute Field (ALGEBRAICALLY CLOSED FIELDS)

AbsoluteAffineAlgebra

   AbsoluteQuotientRing(A) : FldAC -> RngUPolRes
   AbsoluteAffineAlgebra(A) : FldAC -> RngUPolRes

AbsoluteAlgebra

   AbsoluteAlgebra(A) : RngUPolRes -> SetCart, Map

AbsoluteBasis

   AbsoluteBasis(K) : FldAlg -> [FldAlgElt]
   AbsoluteBasis(K) : FldNum -> [FldNumElt]
   Basis(Q) : FldRat -> [FldRatElt]

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013