[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: HilbertSeriesApproximation  ..  hom


HilbertSeriesApproximation

   HilbertSeriesApproximation(R, n) : RngInvar, RngIntElt -> RngSerLaurElt

HilbertSeriesBetti

   PMod_HilbertSeriesBetti (Example H109E12)

HilbertSeriesMultipliedByMinimalDenominator

   HilbertSeriesMultipliedByMinimalDenominator(p,V) : RngUPolElt, SeqEnum -> RngUPolElt, SeqEnum

HilbertSpace

   HilbertSpace(F, n) : FldCom, RngIntElt -> HilbSpc

HilbertSpaceCreate

   QECC_HilbertSpaceCreate (Example H157E29)

HilbertSymbol

   HilbertSymbol(a, b, p) : FldRatElt, FldRatElt, RngIntElt -> RngIntElt
   HilbertSymbol(a, b, p : parameters) : FldRatElt, FldRatElt, RngIntElt -> RngIntElt

Hirsch

   HirschNumber(G) : GrpGPC -> RngIntElt

HirschNumber

   HirschNumber(G) : GrpGPC -> RngIntElt

History

   GetHistorySize() : ->
   SetHistorySize(n) : RngIntElt ->

history

   History (ENVIRONMENT AND OPTIONS)

HKZ

   HKZ(L) : Lat -> Lat, AlgMatElt
   HKZ(X) : ModMatRngElt -> ModMatRngElt, AlgMatElt
   Lat_HKZ (Example H30E10)

hkz

   HKZ Reduction (LATTICES)

HKZGram

   HKZGram(F) : ModMatRngElt -> ModMatRngElt, AlgMatElt

hm

   AlgSym_hm (Example H146E20)

hmf

   Definitions and Background (HILBERT MODULAR FORMS)

HN

   GrpFP_1_HN (Example H70E45)

Hodge

   HodgeNumber(S,i,j) : Srfc, RngIntElt, RngIntElt -> RngIntElt

HodgeNumber

   HodgeNumber(S,i,j) : Srfc, RngIntElt, RngIntElt -> RngIntElt

Holes

   DeepHoles(L) : Lat -> [ ModTupFldElt ]
   Holes(L) : Lat -> [ ModTupFldElt ]

Holomorph

   Holomorph(G) : Grp -> GrpPerm, HomGrp, HomGrp
   Holomorph(G, A) : Grp, GrpAuto -> GrpPerm, HomGrp, HomGrp

holomorph

   GrpAuto_holomorph (Example H67E9)

Holomorphic

   BasisOfHolomorphicDifferentials(C) : Crv -> [DiffCrvElt]
   BasisOfDifferentialsFirstKind(C) : Crv -> [DiffCrvElt]
   BasisOfDifferentialsFirstKind(F) : FldFunG -> SeqEnum[DiffFunElt]
   SpaceOfDifferentialsFirstKind(C) : Crv -> ModFld, Map
   SpaceOfDifferentialsFirstKind(F) : FldFunG -> ModFld, Map

holomorphs

   Holomorphs (AUTOMORPHISM GROUPS)

Hom

   The Hom Module and Ext (MODULES OVER MULTIVARIATE RINGS)
   Hom(G, H) : GrpPC, GrpPC -> GrpAb, Map
   Hom(A, B) : ModAbVar, ModAbVar -> HomModAbVar
   Hom(C, N) : ModCpx, ModMPol -> ModMPol
   Hom(M, N) : ModDed, ModDed -> ModDed, Map
   Hom(M, N, "left") : ModMatRng, ModMatRng, MonStgElt -> ModMatRng
   Hom(M, N, "right") : ModMatRng, ModMatRng, MonStgElt -> ModMatRng
   Hom(M, N) : ModMPol, ModMPol -> ModMPol, Map
   Hom(M, N) : ModRng, ModRng -> ModMatRng
   Hom(V, W) : ModTupFld, ModTupFld -> ModMatFld
   Hom(M, N) : ModTupRng, ModTupRng -> ModMatRng
   HomAdjoints(m,n,S) : RngIntElt, RngIntElt, Srfc -> SeqEnum
   HomGenerators(G, H) : GrpAb, GrpAb -> GrpAb, Map
   HomGenerators(G, U) : GrpPC, GrpPC -> [<AlgMatElt, RngIntElt>]
   PMod_Hom (Example H109E15)
   PMod_Hom (Example H109E16)

hom

   Endomorphisms (LATTICES WITH GROUP ACTION)
   HomR(M, N) for Matrix Modules (FREE MODULES)
   Homomorphisms (ALGEBRAIC FUNCTION FIELDS)
   Homomorphisms (STRUCTURE CONSTANT ALGEBRAS)
   Homomorphisms of the Free Lie Algebra (LIE ALGEBRAS)
   The Hom Functor (ABELIAN GROUPS)
   The Homomorphism Type (MODULES OVER MULTIVARIATE RINGS)
   hom< G -> H | x : -> e(x) > : Grp, Grp -> Map
   hom< A -> B | x : -> e(x) > : Str, Str -> Map
   hom< A -> B | x : -> e(x), y : -> i(y) > : Str, Str -> Map
   hom<A -> B | S> : AlgBas, AlgBas, ModMatFldElt -> Map
   hom<L -> M | Q> : AlgFPLie, AlgFPLie, [ AlgFPLieElt ] -> Map
   hom< F -> S | f, y1, ..., yn > : AlgFr, Rng -> Map
   hom< A -> B | Q > : AlgGen, AlgGen, [ AlgGenElt ] -> Map
   hom<L -> M | Q> : AlgLie, AlgLie, [ AlgLieElt ] -> Map
   hom< A -> B | f > : AlgMat, AlgMat, Map -> Map
   hom< F -> R | r > : FldAlg, Rng, RngElt -> Map
   hom< F -> G | x > : FldFin, Rng -> Map
   hom<F -> R | g> : FldFun, Rng, RngElt -> Map
   hom< P -> S | f, y1, ..., yn > : FldFunRat, Rng -> Map
   hom< F -> R | r > : FldNum, Rng, RngElt -> Map
   hom< G -> H | L > : Grp, Grp -> Map
   hom< A -> B | L> : Grp, Grp, List -> Map
   hom<G -> H | L> : GrpMat, Grp, List -> Map
   hom< G -> H | L > : GrpPC, GrpPC, List -> Map
   hom<G -> H | L> : GrpPerm, List -> Map
   hom<M -> N | T> : ModDed, ModDed, Map -> Map
   hom< M -> N | X > : ModRng, ModRng, ModMatElt -> Map
   hom< B -> G | S : parameters > : Struct , Struct -> Map
   hom< G -> H | L: parameters> : GrpSLP, Grp -> Map
   hom< P -> G | S : parameters> : Struct , Struct -> Map
   hom< O -> R | g > : RngFunOrd, Rng, RngElt -> Map
   hom< O -> R | b1, ..., bn > : RngFunOrd, Rng, RngElt, ..., RngElt -> Map
   hom< O -> R | b1, ..., bn > : RngFunOrd, Rng, RngElt, ..., RngElt -> Map
   hom< Z -> R | > : RngInt, Rng -> Map
   hom< R -> S | > : RngIntRes, Rng -> Map
   hom< L -> R | a > : RngLocA, Rng, RngElt -> Map
   hom< P -> S | f, y1, ..., yn > : RngMPol, Rng -> Map
   hom< O -> R | r > : RngOrd, Rng, RngElt -> Map
   hom< P -> S | f, y > : RngUPol, Rng, Map, RngElt -> Map
   hom<R -> S | phiX, phiY> : RootDtm, RootDtm, Map, Map -> Map
   hom<R -> S | Q> : RootDtm, RootDtm, [RngIntElt] -> Map
   hom< A -> B | G > : Str, Str -> Map
   hom< A -> B | y1, ..., yn > : Str, Str -> Map
   hom< A -> G | S > : Struct , Struct -> Map
   hom< M -> N | S > : Struct , Struct -> Map
   hom< P -> G | S > : Struct , Struct -> Map
   hom< R -> G | S > : Struct , Struct -> Map
   hom< L -> K | M > : TorLat,TorLat,Mtrx -> TorLatMap
   FldFunG_hom (Example H42E24)
   FldQuad_hom (Example H35E2)
   ModDed_hom (Example H55E6)
   RngInt_hom (Example H18E1)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013