[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: S  ..  Scaled


S

   S-algebras (FINITELY PRESENTED ALGEBRAS)

s

   DivisorGroup(K) : FldNum -> DivNum
   Creation of Structures (NUMBER FIELDS)
   Creation of Structures (ORDERS AND ALGEBRAIC FIELDS)
   Operations on Structures (NUMBER FIELDS)
   Operations on Structures (ORDERS AND ALGEBRAIC FIELDS)

S-algebra

   S-algebras (FINITELY PRESENTED ALGEBRAS)

S-key

   S

s-key

   s

S-Units

   RngOrd_S-Units (Example H37E30)

S-Units, advanced

   RngOrd_S-Units, advanced (Example H37E31)

S5Degree10

   RngInvar_S5Degree10 (Example H110E10)

Safe

   Valuation(a, P) : FldFunElt, PlcFunElt -> RngIntElt
   SafeUniformizer(P) :
   SafeUniformizer(P) : RngFunOrdIdl -> RngFunOrdElt

SafeUniformizer

   Valuation(a, P) : FldFunElt, PlcFunElt -> RngIntElt
   SafeUniformizer(P) :
   SafeUniformizer(P) : RngFunOrdIdl -> RngFunOrdElt

Salmon

   ClebschSalmonInvariants(f) : RngMPolElt -> SeqEnum, RngElt
   CubicSurfaceFromClebschSalmon(inv) : SeqEnum -> RngMPolElt

SAT

   SAT(B) : [ RngMPolBoolElt ] -> BoolElt, [ FldFinElt ]
   GB_SAT (Example H105E15)

sat

   SAT solver (GRÖBNER BASES)

Satisfied

   IsSatisfied(U, E) : { RelElt }, [ GrpElt ] -> BoolElt

Satisfies

   SatisfiesSzPresentation(G) : GrpMat -> BoolElt

SatisfiesSzPresentation

   SatisfiesSzPresentation(G) : GrpMat -> BoolElt

Satisfying

   CosetSatisfying(P : parameters) : GrpFPCosetEnumProc -> { GrpFPElt }
   CosetsSatisfying(P : parameters) : GrpFPCosetEnumProc -> { GrpFPElt }
   CosetsSatisfying(T, S: parameters) : Map, { GrpFPElt }: -> { GrpFPCosElt }
   ExistsCosetSatisfying(P : parameters) : GrpFPCosetEnumProc -> BoolElt, GrpFPElt
   IsolGroupOfDegreeFieldSatisfying(d, p, f) : RngIntElt, RngIntElt, Any -> GrpMat
   IsolGroupOfDegreeSatisfying(d, f) : RngIntElt, Any -> GrpMat
   IsolGroupSatisfying(f) : Any -> GrpMat
   IsolGroupsOfDegreeFieldSatisfying(d, p, f) : RngIntElt, RngIntElt, Any -> SeqEnum
   IsolGroupsOfDegreeSatisfying(d, f) : RngIntElt, Any -> SeqEnum
   IsolGroupsSatisfying(f) : Any -> SeqEnum

Saturate

   Saturate(~X) : Sch ->
   SaturateSheaf(~S) : ShfCoh ->

Saturated

   IsSaturated(H) : HomModAbVar -> BoolElt
   IsSaturated(X) : Sch -> BoolElt

SaturateSheaf

   SaturateSheaf(~S) : ShfCoh ->

Saturation

   Saturation(I, f) : RngMPol, RngMPolElt -> RngMPol, RngMPolElt
   ColonIdealEquivalent(I, f) : RngMPol, RngMPolElt -> RngMPol, RngMPolElt
   Saturation(H) : HomModAbVar -> HomModAbVar
   Saturation(A) : Mtrx -> Mtrx
   Saturation(I): RngMPol -> RngMPol
   Saturation(I, J) : RngMPol, RngMPol -> RngMPol
   Saturation(points, n) : [ PtEll ], RngIntElt -> [ PtEll ]

Save

   HypergeometricMotiveClearTable() : Void -> Void
   HypergeometricMotiveSaveLimit(n) : RngIntElt -> Void

save

   save "filename";

sc

   Construction of Elements of Structure Constant Algebras (LIE ALGEBRAS)

Scalar

   IsScalar(a) : AlgAssElt -> BoolElt, RngElt
   IsScalar(x) : AlgAssVOrdElt -> BoolElt, RngElt
   IsScalar(a) : AlgMatElt -> BoolElt
   IsScalar(g) : GrpMatElt -> BoolElt
   IsScalar(A) : Mtrx -> BoolElt
   IsScalar(A) : MtrxSprs -> BoolElt
   ScalarLattice() : -> TorLat
   ScalarMatrix(R, t) : AlgMat, RngElt -> AlgMatElt
   ScalarMatrix(L, r) : AlgMatLie, RngElt -> AlgMatLieElt
   ScalarMatrix(R, n, s) : Rng, RngIntElt, RngElt -> Mtrx
   ScalarMatrix(n, s) : RngIntElt, RngElt -> Mtrx
   ScalarSparseMatrix(R, n, s) : Rng, RngIntElt, RngElt -> MtrxSprs
   ScalarSparseMatrix(n, s) : RngIntElt, RngElt -> MtrxSprs

ScalarLattice

   ScalarLattice() : -> TorLat

ScalarMatrix

   ScalarMatrix(R, t) : AlgMat, RngElt -> AlgMatElt
   ScalarMatrix(L, r) : AlgMatLie, RngElt -> AlgMatLieElt
   ScalarMatrix(R, n, s) : Rng, RngIntElt, RngElt -> Mtrx
   ScalarMatrix(n, s) : RngIntElt, RngElt -> Mtrx

Scalarproduct

   Inner Product (SYMMETRIC FUNCTIONS)

Scalars

   WeilRestriction(S, F) : Sch, Fld -> Sch, MapSch, UserProgram, Map
   RestrictionOfScalars(S, F) : Sch, Fld -> Sch, MapSch, UserProgram, Map

scalars

   WeilRestriction(S, F) : Sch, Fld -> Sch, MapSch, UserProgram, Map
   Restriction of Scalars (SCHEMES)

ScalarSparseMatrix

   ScalarSparseMatrix(R, n, s) : Rng, RngIntElt, RngElt -> MtrxSprs
   ScalarSparseMatrix(n, s) : RngIntElt, RngElt -> MtrxSprs

Scale

   ScaleGenerators(s,ls) : RngPowAlgElt, SeqEnum -> RngPowAlgElt

scale

   RngPowAlg_scale (Example H52E5)

Scaled

   AddScaledMatrix(~A, s, B) : Mtrx, RngElt, Mtrx ->
   AddScaledMatrix(A, s, B) : Mtrx, RngElt, Mtrx -> Mtrx
   ScaledIgusaInvariants(f): RngUPolElt -> SeqEnum
   ScaledIgusaInvariants(f, h): RngUPolElt, RngUPolElt -> SeqEnum
   ScaledLattice(L,n) : Lat, RngIntElt -> Lat

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013