[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: gmodule  ..  gr


gmodule

   Construction of G-modules (INVARIANT THEORY)

GModuleAction

   GModuleAction(M) : ModGrp -> Map(Hom)

GModulePrimes

   GModulePrimes(G, A) : GrpFP, GrpFP -> SetMulti
   GModulePrimes(G, A, B) : GrpFP, GrpFP, GrpFP -> SetMulti
   GModulePrimes(G, A) : GrpGPC, GrpGPC -> SetMulti
   GModulePrimes(G, A, B) : GrpGPC, GrpGPC, GrpGPC -> SetMulti

gmoduleprimes

   GrpFP_1_gmoduleprimes (Example H70E74)
   GrpGPC_gmoduleprimes (Example H72E14)

GModules1

   ModGrp_GModules1 (Example H90E12)

GMPVersion

   GetMPFRVersion() : ->
   GetMPCVersion() : ->
   GetGMPVersion() : ->

GNB

   HasGNB(R, n, t) : RngPad, RngIntElt, RngIntElt -> BoolElt

GO

   GO(n, q) : RngIntElt, RngIntElt -> GrpMat
   GeneralOrthogonalGroup(n, q) : RngIntElt, RngIntElt -> GrpMat

Goethals

   DelsarteGoethalsCode(m, delta) : RngIntElt, RngIntElt -> Code
   GoethalsCode(m) : RngIntElt -> Code
   GoethalsDelsarteCode(m, delta) : RngIntElt, RngIntElt -> Code

GoethalsCode

   GoethalsCode(m) : RngIntElt -> Code

GoethalsDelsarteCode

   GoethalsDelsarteCode(m, delta) : RngIntElt, RngIntElt -> Code

Golay

   GolayCode(K, ext) : FldFin, BoolElt -> Code
   GolayCodeZ4(e) : BoolElt -> Code

GolayCode

   GolayCode(K, ext) : FldFin, BoolElt -> Code

GolayCodeZ4

   GolayCodeZ4(e) : BoolElt -> Code

GOMinus

   GOMinus(n, q) : RngIntElt, RngIntElt -> GrpMat
   GeneralOrthogonalGroupMinus(n, q) : RngIntElt, RngIntElt -> GrpMat

gon-gen-ex

   Crv_gon-gen-ex (Example H114E41)

gon-pln_mod-ex

   Crv_gon-pln_mod-ex (Example H114E43)

gon-sm-gen-ex

   Crv_gon-sm-gen-ex (Example H114E42)

Gonal

   Genus2GonalMap(C) : Crv -> MapSch
   Genus3GonalMap(C) : Crv -> RngIntElt, MapSch
   Genus4GonalMap(C) : Crv -> RngIntElt, MapSch
   Genus5GonalMap(C) : Crv -> RngIntElt, MapSch, Crv, UserProgram
   Genus6GonalMap(C) : Crv -> RngIntElt, RngIntElt, MapSch, MapSch

gonal

   General Functions and Clifford Index One (ALGEBRAIC CURVES)
   Small Genus Functions (ALGEBRAIC CURVES)
   Small Genus Plane Models (ALGEBRAIC CURVES)

gonal-general

   General Functions and Clifford Index One (ALGEBRAIC CURVES)

gonal-maps

   Small Genus Functions (ALGEBRAIC CURVES)

gonal-plane-models

   Small Genus Plane Models (ALGEBRAIC CURVES)

Good

   EllipticCurveWithGoodReductionSearch(S, Effort) : Set, RngIntElt -> SeqEnum
   EllipticCurveSearch(N, Effort) : RngOrdIdl, RngIntElt -> SeqEnum
   GoodBasePoints(G, str : parameters) : Grp, MonStgElt -> BoolElt, SeqEnum
   GoodBasePoints(G: parameters) : GrpMat -> []
   GoodLDPCEnsemble(i) : RngIntElt, -> FldReElt, [FldReElt], [FldReElt]

GoodBasePoints

   GoodBasePoints(G, str : parameters) : Grp, MonStgElt -> BoolElt, SeqEnum
   GoodBasePoints(G: parameters) : GrpMat -> []

GoodLDPCEnsemble

   GoodLDPCEnsemble(i) : RngIntElt, -> FldReElt, [FldReElt], [FldReElt]

GOPlus

   GOPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
   GeneralOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpMat

Goppa

   GoppaCode(L, G) : [ FldFinElt ], RngUPolElt -> Code
   GoppaDesignedDistance(C) : Code -> RngIntElt

GoppaCode

   GoppaCode(L, G) : [ FldFinElt ], RngUPolElt -> Code
   CodeFld_GoppaCode (Example H152E27)

GoppaDesignedDistance

   GoppaDesignedDistance(C) : Code -> RngIntElt

Gorenstein

   GorensteinClosure(O) : AlgAssVOrd -> AlgAssVOrd
   GorensteinIndex(C) : TorCon -> RngIntElt,TorLatElt
   GorensteinIndex(P) : TorPol -> RngIntElt
   IsCohenMacaulay(X) : Sch -> BoolElt
   IsGorenstein(O, p) : AlgAssVOrd , RngOrdIdl -> BoolElt
   IsGorenstein(O) : AlgAssVOrd -> BoolElt
   IsGorenstein(C) : TorCon -> BoolElt
   IsGorenstein(F) : TorFan -> BoolElt
   IsGorenstein(X) : TorVar -> BoolElt
   IsGorensteinSurface(B) : GRBskt -> BoolElt
   IsGorensteinSurface(p) : GRPtS -> BoolElt

GorensteinClosure

   GorensteinClosure(O) : AlgAssVOrd -> AlgAssVOrd

GorensteinIndex

   GorensteinIndex(C) : TorCon -> RngIntElt,TorLatElt
   GorensteinIndex(P) : TorPol -> RngIntElt

GPCGroup

   GPCGroup(G) : Grp -> GrpGPC, Hom(Grp)
   GPCGroup(G) : GrpPC -> GrpGPC, Map
   GPCGroup(G) : GrpPerm -> GrpGPC, Map

GR

   GR(q, d) : RngIntElt, RngIntElt -> RngGal
   GaloisRing(q, d) : RngIntElt, RngIntElt -> RngGal
   GaloisRing(p, a, d) : RngIntElt, RngIntElt, RngIntElt -> RngGal
   GaloisRing(p, a, D) : RngIntElt, RngIntElt, RngUPol -> RngGal
   GaloisRing(q, D) : RngIntElt, RngUPol -> RngGal

gr

   Accessing the Key Data (HILBERT SERIES OF POLARISED VARIETIES)
   Building Databases (HILBERT SERIES OF POLARISED VARIETIES)
   Creating and Comparing K3 Surfaces (HILBERT SERIES OF POLARISED VARIETIES)
   Creating Many K3 Surfaces (HILBERT SERIES OF POLARISED VARIETIES)
   K3 Surfaces as Records (HILBERT SERIES OF POLARISED VARIETIES)
   Making New Databases (HILBERT SERIES OF POLARISED VARIETIES)
   Modifying K3 Surfaces (HILBERT SERIES OF POLARISED VARIETIES)
   Reading the Raw Data (HILBERT SERIES OF POLARISED VARIETIES)
   The K3 Database (HILBERT SERIES OF POLARISED VARIETIES)
   Working with the K3 Database (HILBERT SERIES OF POLARISED VARIETIES)
   Writing K3 Surfaces to a File (HILBERT SERIES OF POLARISED VARIETIES)
   Writing the Data and Index Files (HILBERT SERIES OF POLARISED VARIETIES)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013