[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: Alphabet  ..  Ambient


Alphabet

   Field(C) : Code -> Rng
   Alphabet(C) : Code -> Rng
   Alphabet(C) : Code -> Rng
   Alphabet(C) : Code -> Rng
   NumberOfTableauxOnAlphabet(P, m) : SeqEnum,RngIntElt -> RngIntElt

alphabet

   Changing the Alphabet of a Code (LINEAR CODES OVER FINITE FIELDS)

alphabet-coeff-field

   CodeAdd_alphabet-coeff-field (Example H156E6)

AlphaBetaData

   AlphaBetaData(H) : HypGeomData -> SeqEnum, SeqEnum

Alt

   Alt(C, n) : Cat, RngIntElt -> GrpFin
   AlternatingGroup(C, n) : Cat, RngIntElt -> GrpFin
   AlternatingGroup(GrpFP, n) : Cat, RngIntElt -> GrpFP
   AlternatingGroup(GrpPerm, n) : Cat, RngIntElt -> GrpPerm

Alternant

   AlternantCode(A, Y, r, S) : [ FldFinElt ], [ FldFinElt ], RngIntElt, FldFin -> Code
   NonPrimitiveAlternantCode(n, m, r) : RngIntElt,RngIntElt,RngIntElt->Code

AlternantCode

   AlternantCode(A, Y, r, S) : [ FldFinElt ], [ FldFinElt ], RngIntElt, FldFin -> Code
   CodeFld_AlternantCode (Example H152E28)

alternate_models

   Creation of Points (HYPERELLIPTIC CURVES)
   Models (HYPERELLIPTIC CURVES)

Alternating

   AlternatingCharacter(pa) : SeqEnum -> AlgChtrElt
   AlternatingCharacter(pa, i) : SeqEnum, RngIntElt -> AlgChtrElt
   AlternatingCharacterTable(d) : RngIntElt -> SeqEnum
   AlternatingCharacterValue(pa, pe) : SeqEnum, GrpPermElt -> RngElt
   AlternatingCharacterValue(pa, i, pe) : SeqEnum, RngIntElt, GrpPermElt -> RngElt
   AlternatingDominant(D) : LieRepDec, GrpPermElt -> LieRepDec
   AlternatingDominant(D, w) : LieRepDec, GrpPermElt -> LieRepDec
   AlternatingElementToWord (G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt
   AlternatingElementToWord (G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt
   AlternatingGroup(C, n) : Cat, RngIntElt -> GrpFin
   AlternatingGroup(GrpFP, n) : Cat, RngIntElt -> GrpFP
   AlternatingGroup(GrpPerm, n) : Cat, RngIntElt -> GrpPerm
   AlternatingPower(R, n, v) : RootDtm, RngIntElt, ModTupRngElt -> LieRepDec
   AlternatingSquarePreimage (G, g) : GrpMat, GrpMatElt -> GrpMatElt
   AlternatingSum(m, i) : Map, RngIntElt -> FldReElt
   AlternatingWeylSum(R, v) : RootDtm, ModTupRngElt -> LieRepDec
   FrobeniusFormAlternating(A) : AlgMatElt -> SeqEnum
   IsAlternating(G) : GrpPerm -> BoolElt
   RecogniseAlternating(G, n: parameters) : Grp, RngIntElt -> BoolElt, Map, Map, Map, Map, BoolElt
   RecogniseAlternating(G, n: parameters) : Grp, RngIntElt -> BoolElt, Map, Map, Map, Map, BoolElt
   RecogniseAlternatingOrSymmetric(G, n) : Grp, RngIntElt -> BoolElt, BoolElt, UserProgram, UserProgram
   RecogniseAlternatingOrSymmetric(G, n) : Grp, RngIntElt -> BoolElt, BoolElt, UserProgram, UserProgram
   RecogniseAlternatingSquare (G) : GrpMat -> BoolElt, GrpMat
   StandardAlternatingForm(n,R) : RngIntElt, Rng -> AlgMatElt
   StandardPseudoAlternatingForm(n,K) : RngIntElt, Fld -> AlgMatElt

AlternatingCharacter

   AlternatingCharacter(pa) : SeqEnum -> AlgChtrElt
   AlternatingCharacter(pa, i) : SeqEnum, RngIntElt -> AlgChtrElt

AlternatingCharacterTable

   AlternatingCharacterTable(d) : RngIntElt -> SeqEnum

AlternatingCharacterValue

   AlternatingCharacterValue(pa, pe) : SeqEnum, GrpPermElt -> RngElt
   AlternatingCharacterValue(pa, i, pe) : SeqEnum, RngIntElt, GrpPermElt -> RngElt

AlternatingDominant

   AlternatingDominant(D) : LieRepDec, GrpPermElt -> LieRepDec
   AlternatingDominant(D, w) : LieRepDec, GrpPermElt -> LieRepDec
   LieReps_AlternatingDominant (Example H104E13)

AlternatingElementToWord

   AlternatingElementToWord (G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt
   AlternatingElementToWord (G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt

alternatingform

   FldForms_alternatingform (Example H29E7)

AlternatingGroup

   Alt(C, n) : Cat, RngIntElt -> GrpFin
   AlternatingGroup(C, n) : Cat, RngIntElt -> GrpFin
   AlternatingGroup(GrpFP, n) : Cat, RngIntElt -> GrpFP
   AlternatingGroup(GrpPerm, n) : Cat, RngIntElt -> GrpPerm

AlternatingPower

   AlternatingPower(R, n, v) : RootDtm, RngIntElt, ModTupRngElt -> LieRepDec

AlternatingSquarePreimage

   AlternatingSquarePreimage (G, g) : GrpMat, GrpMatElt -> GrpMatElt

AlternatingSum

   AlternatingSum(m, i) : Map, RngIntElt -> FldReElt

AlternatingWeylSum

   AlternatingWeylSum(R, v) : RootDtm, ModTupRngElt -> LieRepDec

altirred

   Irreducible Characters (REPRESENTATIONS OF SYMMETRIC GROUPS)

Altsym

   GuessAltsymDegree(G: parameters) : Grp -> BoolElt, MonStgElt, RngIntElt
   GuessAltsymDegree(G: parameters) : Grp -> BoolElt, MonStgElt, RngIntElt
   IsAltsym(G) : GrpPerm -> BoolElt

altsym

   Constructive Recognition of Alternating Groups (ALMOST SIMPLE GROUPS)

alttable

   Character Table (REPRESENTATIONS OF SYMMETRIC GROUPS)

altvalues

   Single Values (REPRESENTATIONS OF SYMMETRIC GROUPS)

Ambient

   AmbientSpace(L) : LinearSys -> Prj
   Ambient(L) : LinearSys -> Prj
   Ambient(M) : ModMPol -> ModMPol
   Ambient(C) : TorCon -> TorLat
   Ambient(F) : TorFan -> TorLat
   AmbientMatrix(f) : ModMPolHom -> ModMatRngElt
   AmbientModule(M) : ModBrdt -> ModBrdt
   AmbientSpace(C) : Code -> ModTupRng
   AmbientSpace(C) : Code -> ModTupRng
   AmbientSpace(C) : Code -> ModTupRng
   AmbientSpace(L) : Lat -> ModTupFld, Map
   AmbientSpace(M) : ModFrm -> ModFrm
   AmbientSpace(C) : Sch -> Sch
   AmbientSpace(X) : Sch -> Sch
   AmbientVariety(G) : ModAbVarSubGrp -> ModAbVar
   ChangeAmbient(C,L) : TorCon,TorLat -> TorCon
   HeightOnAmbient(P) : Pt -> FldReElt
   IsAmbient(M) : ModBrdt -> BoolElt
   IsAmbient(M) : ModMPol -> BoolElt
   IsAmbient(X) : Sch -> BoolElt
   IsAmbientSpace(M) : ModFrm -> BoolElt
   IsAmbientSpace(M) : ModSS -> BoolElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013