[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: decomposition  ..  Defined


decomposition

   Accessing the Decomposition Information (MATRIX GROUPS OVER FINITE FIELDS)
   Canonical Decomposition (ABELIAN GROUPS)
   Composition and Decomposition (CHARACTERS OF FINITE GROUPS)
   Decomposition (MODULAR SYMBOLS)
   Decomposition of Toric Morphisms (TORIC VARIETIES)
   Decompositions with Respect to a Normal Subgroup (MATRIX GROUPS OVER FINITE FIELDS)
   Equidimensional Decomposition (POLYNOMIAL RING IDEAL OPERATIONS)
   Primary Decomposition (POLYNOMIAL RING IDEAL OPERATIONS)
   Radical and Decomposition of Ideals (POLYNOMIAL RING IDEAL OPERATIONS)
   Triangular Decomposition (POLYNOMIAL RING IDEAL OPERATIONS)

DecompositionField

   DecompositionField(p, A) : PlcNumElt, FldAb -> FldAb
   DecompositionField(p) : RngOrdIdl -> FldNum, Map
   DecompositionField(p, A) : RngOrdIdl, FldAb -> FldAb

DecompositionGroup

   DecompositionGroup(P) : PlcNumElt -> GrpPerm
   DecompositionGroup(P) : PlcNumElt -> GrpPerm
   DecompositionGroup(p, A) : PlcNumElt, FldAb -> GrpAb
   DecompositionGroup(p) : RngIntElt -> GrpPerm
   DecompositionGroup(p, A) : RngIntElt, FldAb -> GrpAb
   DecompositionGroup(L) : RngLocA -> GrpPerm

DecompositionMatrix

   DecompositionMatrix(G, K) : Grp, FldFin -> AlgMatElt

DecompositionMultiset

   DecompositionMultiset(V) : ModAlg -> LieRepDec
   DecompositionMultiset(V) : ModAlg -> LieRepDec

decompositions

   Decompositions of *-Algebras (ALGEBRAS WITH INVOLUTION)

DecompositionType

   DecompositionType(m, U, p) : DivFunElt, GrpAb, PlcFunElt -> [<f,e>]
   DecompositionType(A, p) : FldAb, PlcNumElt -> [Tpl]
   DecompositionType(A, p) : FldAb, RngIntElt -> [Tpl]
   DecompositionType(A, p) : FldAb, RngOrdIdl -> [Tpl]
   DecompositionType(F, P) : FldFun, PlcFunElt -> [ <RngIntElt, RngIntElt> ]
   DecompositionType(A, p) : FldFunAb, PlcFunElt -> [<f,e>]
   DecompositionType(O) : RngFunOrd -> [ <RngIntElt, RngIntElt> ]
   DecompositionType(O, p) : RngFunOrd, RngElt -> [ <RngIntElt, RngIntElt> ]
   DecompositionType(O, p) : RngOrd, RngIntElt -> [<RngIntElt, RngIntElt>]

DecompositionTypeFrequency

   DecompositionTypeFrequency(A, a, b) : FldAb, RngIntElt, RngIntElt -> Mset
   DecompositionTypeFrequency(A, l) : FldAb, [ ] -> Mset

decon

   Plane_decon (Example H141E8)

deconstruction

   Deconstruction Functions (FINITE PLANES)
   Deconstruction of a Vector (VECTOR SPACES)
   Deconstruction of Elements (FREE MODULES)
   Deconstruction of Module Elements (MODULES OVER AN ALGEBRA)

decorations

   DeleteCapacities(~G) : GrphMult ->
   DeleteWeights(~G) : GrphMult ->
   Edge Decorations (MULTIGRAPHS)
   Vertex and Edge Decorations (MULTIGRAPHS)
   Vertex Decorations: Labels (MULTIGRAPHS)

decs

   AssignCapacities(~G, D) : GrphMult, [RngIntElt] ->
   AssignWeights(~G, D) : GrphMult, [RngElt] ->
   Assigning Edge Decorations (MULTIGRAPHS)
   Deleting Edge Decorations (MULTIGRAPHS)
   Reading Edge Decorations (MULTIGRAPHS)
   Testing for Edge Decorations (MULTIGRAPHS)
   Unlabelled, or Uncapacitated, or Unweighted Graphs (MULTIGRAPHS)

Decycle

   Decycle(~u: parameters) : GrpBrdElt ->
   Decycle(u: parameters) : GrpBrdElt -> GrpBrdElt

Dedekind

   DedekindEta(s) : FldComElt -> FldComElt
   DedekindEta(z) : RngSerElt -> RngSerElt
   DedekindTest(p, m) : RngUPolElt, RngIntElt -> Boolelt

dedekind

   MODULES OVER DEDEKIND DOMAINS
   The Jacobi θand Dedekind η- functions (REAL AND COMPLEX FIELDS)

dedekind-modules

   MODULES OVER DEDEKIND DOMAINS

DedekindEta

   DedekindEta(s) : FldComElt -> FldComElt
   DedekindEta(z) : RngSerElt -> RngSerElt

DedekindTest

   DedekindTest(p, m) : RngUPolElt, RngIntElt -> Boolelt

Deep

   DeepHoles(L) : Lat -> [ ModTupFldElt ]

DeepHoles

   DeepHoles(L) : Lat -> [ ModTupFldElt ]

Def

   DefRing(G) : GrpLie -> Rng

def

   Definition of Subgroups by Generators (FINITE SOLUBLE GROUPS)

def-by-gens

   Definition of Subgroups by Generators (FINITE SOLUBLE GROUPS)

def_hyp_point_cnt

   Deformation Point Counting (HYPERELLIPTIC CURVES)

def_hyp_pt_cnt_ex

   CrvHyp_def_hyp_pt_cnt_ex (Example H125E25)

Default

   GetDefaultRealField() : -> FldRe
   IsDefault(F) : FldFin -> BoolElt
   L`DefaultPrecision : RngPad -> RngIntElt
   SetDefaultRealField(R) : FldRe ->

default

   Default Presentations (BRAID GROUPS)

Deficient

   IsDeficient(C, p) : CrvHyp, RngIntElt -> BoolElt

Defined

   HasDefinedModuleMap(C,n) : ModCpx, RngIntElt -> BoolElt
   IsDefined(A, x) : Assoc, Elt -> Bool, Elt
   IsDefined(L, i) : List, RngIntElt -> Elt
   IsDefined(S, i) : SeqEnum, RngIntElt -> BoolElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013