[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: multig-adj-deg  ..  MultiplicationByMMap


multig-adj-deg

   Adjacency and Degree (MULTIGRAPHS)

multig-adj-deg-dir

   Adjacency and Degree Functions for Multidigraphs (MULTIGRAPHS)

multig-adj-deg-und

   Adjacency and Degree Functions for Mul-tigraphs (MULTIGRAPHS)

multig-assigning-decs

   AssignCapacities(~G, D) : GrphMult, [RngIntElt] ->
   AssignWeights(~G, D) : GrphMult, [RngElt] ->
   Assigning Edge Decorations (MULTIGRAPHS)

multig-connectedness

   Connectedness (MULTIGRAPHS)

multig-connectedness-graph

   Connectedness in a Multigraph (MULTIGRAPHS)

multig-constr

   Construction of Multigraphs (MULTIGRAPHS)

multig-contr-switch

   Vertex Insertion, Contraction (MULTIGRAPHS)

multig-conv

   Converting between Simple Graphs and Multigraphs (MULTIGRAPHS)

multig-conv-orient

   Orientated Graphs (MULTIGRAPHS)

multig-conversion

   Conversion Functions (MULTIGRAPHS)

multig-decorations

   Vertex and Edge Decorations (MULTIGRAPHS)

multig-del-decs

   DeleteCapacities(~G) : GrphMult ->
   DeleteWeights(~G) : GrphMult ->
   Deleting Edge Decorations (MULTIGRAPHS)

multig-digraph

   Connectedness in a Multidigraph (MULTIGRAPHS)

multig-dirconstr

   Construction of a General Multidigraph (MULTIGRAPHS)

multig-edge-decorations

   DeleteCapacities(~G) : GrphMult ->
   DeleteWeights(~G) : GrphMult ->
   Edge Decorations (MULTIGRAPHS)

multig-elem

   Elementary Invariants and Predicates for Multigraphs (MULTIGRAPHS)

multig-gen-connectivity

   General Vertex and Edge Connectivity in Multigraphs and Multidigraphs (MULTIGRAPHS)

multig-introduction

   Introduction (MULTIGRAPHS)

multig-maxmatching

   Maximum Matching in Bipartite Multigraphs (MULTIGRAPHS)

multig-mutation

   RemoveEdge(~G, e) : GrphMult, GrphEdge ->
   RemoveEdges(~G, S) : GrphMult, { GrphEdge } ->
   Incremental Construction of Multigraphs (MULTIGRAPHS)

multig-mutation-add-e

   Adding Edges (MULTIGRAPHS)

multig-mutation-add-v

   Adding Vertices (MULTIGRAPHS)

multig-mutation-rm-e

   RemoveEdge(~G, e) : GrphMult, GrphEdge ->
   RemoveEdges(~G, S) : GrphMult, { GrphEdge } ->
   Removing Edges (MULTIGRAPHS)

multig-mutation-rm-v

   RemoveVertex(~G, v) : GrphMult, GrphVert ->
   RemoveVertices(~G, U) : GrphMult, { GrphVert } ->
   Removing Vertices (MULTIGRAPHS)

multig-reading-decs

   EdgeCapacities(G) : GrphMult -> SeqEnum
   EdgeWeights(G) : GrphMult -> SeqEnum
   Reading Edge Decorations (MULTIGRAPHS)

multig-stand-constr

   Standard Construction for Multigraphs (MULTIGRAPHS)
   Subgraphs (MULTIGRAPHS)

multig-support

   Operations on the Support (MULTIGRAPHS)

multig-testing-decs

   Testing for Edge Decorations (MULTIGRAPHS)

multig-triconnectivity

   Triconnectivity for Multigraphs (MULTIGRAPHS)

multig-un-decs

   Unlabelled, or Uncapacitated, or Unweighted Graphs (MULTIGRAPHS)

multig-undconstr

   Construction of a General Multigraph (MULTIGRAPHS)

multig-union

   Unions of Multigraphs (MULTIGRAPHS)

multig-vertex-decorations

   Vertex Decorations: Labels (MULTIGRAPHS)

multig-vertex-edge-set

   The Vertex--Set and Edge--Set of Multigraphs (MULTIGRAPHS)

MultiGraph

   MULTIGRAPHS
   MultiGraph<n | edges > : RngIntElt, List -> GrphMultUnd, GrphVertSet, GrphEdgeSet

Multinomial

   Multinomial(n, [a1, ... an]) : RngIntElt, [RngIntElt] -> RngIntElt
   Multinomial(n, [r1, ... rn]) : RngIntElt, [RngIntElt] -> RngIntElt

Multipartite

   MultipartiteGraph(Q) : [RngIntElt] -> GrphUnd

MultipartiteGraph

   MultipartiteGraph(Q) : [RngIntElt] -> GrphUnd

Multiple

   ExtendedLeastCommonLeftMultiple(A, B) : RngDiffOpElt, RngDiffOpElt -> RngDiffOpElt, RngDiffOpElt, RngDiffOpElt
   ExtendedLeastCommonLeftMultiple(S) : [RngDiffOpElt] -> RngDiffOpElt, SeqEnum
   IntegralMultiple(D) : DivSchElt -> DivSchElt,RngIntElt
   LCM(D1, D2) : DivCrvElt, DivCrvElt -> DivCrvElt
   LCM(D1, D2) : DivFunElt, DivFunElt -> DivFunElt
   LCM(I, J) : RngOrdFracIdl, RngOrdFracIdl -> RngOrdFracIdl
   Lcm(a, b) : RngQuadElt, RngQuadElt -> RngQuadElt
   LeastCommonLeftMultiple(L) : RngDiffOpElt -> RngDiffOpElt
   LeastCommonLeftMultiple(A, B) : RngDiffOpElt, RngDiffOpElt -> RngDiffOpElt
   LeastCommonMultiple(m, n) : RngIntElt, RngIntElt -> RngIntElt
   LeastCommonMultiple(a, b) : RngIntResElt, RngIntResElt -> RngIntResElt
   LeastCommonMultiple(f, g) : RngMPolElt, RngMPolElt -> RngMPolElt
   LeastCommonMultiple(f, g) : RngUPolElt, RngUPolElt -> RngUPolElt
   LeastCommonMultiple(s) : [RngIntElt] -> RngIntElt
   LeastCommonMultiple(Q) : [RngIntResElt] -> RngIntResElt
   LeftLCM(u, v: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
   LeftLCM(S: parameters) : Setq -> GrpBrdElt
   PseudoAddMultiple(P1, P2, P3, n) : SrfKumPt, SrfKumPt, SrfKumPt, RngIntElt -> SrfKumPt
   RightLCM(u, v: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
   RightLCM(S: parameters) : Setq -> GrpBrdElt
   TorsionMultiple(A) : ModAbVar -> RngIntElt

MultipleReturns

   State_MultipleReturns (Example H1E2)

Multiplication

   HasComplexMultiplication(E) : CrvEll -> BoolElt, RngIntElt
   HasComplexMultiplication(E) : CrvEll -> BoolElt, RngIntElt
   MultiplicationByMMap(E, m) : CrvEll, RngIntElt -> Map
   MultiplicationTable(O) : AlgAssVOrd -> SeqEnum
   MultiplicationTable(~L) : AlgLieExtr ->
   MultiplicationTable(L) : AlgLieExtr -> SeqEnum
   MultiplicationTable(O) : RngOrd -> [AlgMatElt]

multiplication

   Complex Multiplication (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
   Complex Multiplication (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
   Multiplication (SYMMETRIC FUNCTIONS)

MultiplicationByMMap

   MultiplicationByMMap(E, m) : CrvEll, RngIntElt -> Map

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013