[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: CharacteristicPolynomialFromTraces .. Chief
CharacteristicPolynomialFromTraces(traces) : [ Fld ] -> RngUPolElt
CharacteristicPolynomialFromTraces(traces, d, q, i) : [ Fld ], RngIntElt, RngIntElt, RngIntElt -> RngUPolElt, RngUPolElt
MatRepCharacteristics(A) : GrpAtlas -> SetEnum[RngIntElt]
CharacteristicSeries(A) : GrpAuto -> SeqEnum
GrpAuto_characteristicsubgps (Example H67E7)
CharacteristicVector(M, S) : ModRng, { RngIntElt } -> ModRngElt
CharacteristicVector(V, S) : ModTupFld, { RngElt } -> ModTupFldElt
CharacterMultiset(V) : ModAlg -> LieRepDec
CharacterMultiset(V) : ModAlg -> LieRepDec
CharacterRing(G) : Grp -> AlgChtr
ClassFunctionSpace(G) : Grp -> AlgChtr
DirichletCharacters(A) : ModAbVar -> List
DirichletCharacters(M) : ModFrm -> [GrpDrchElt]
LiftCharacters(T, f, G) : [AlgChtrElt], Map, Grp -> AlgChtrElt
LinearCharacters(G): Grp -> SeqEnum
LinearCharacters(G) : GrpMat -> [ Chtr ]
ReduceCharacters(I, C) : [ AlgChtrElt ], [ AlgChtrElt ] -> [ AlgChtrElt ], [ AlgChtrElt ]
SpinorCharacters(G) : SymGen -> [ GrpDrchElt ]
Brauer Characters (CHARACTERS OF FINITE GROUPS)
Characters (NUMBER FIELDS)
Dirichlet Characters (INTEGER RESIDUE CLASS RINGS)
CharacterTable(G) : GrpAb -> TabChtr
CharacterTable(G) : GrpFin -> TabChtr
CharacterTable(G :parameters) : Grp -> SeqEnum
CharacterTable(G: parameters) : GrpMat -> TabChtr
CharacterTable(G: parameters) : GrpPC -> TabChtr
CharacterTable(G: parameters) : GrpPerm -> TabChtr
Chtr_CharacterTable (Example H91E1)
Chtr_CharacterTable2 (Example H91E2)
CharacterTableConlon(G) : Grp -> SeqEnum
CharacterTableConlon(G) : GrpPC -> [ AlgChtrElt ]
CharacterTableDS(G :parameters) : Grp -> SeqEnum, SeqEnum
CharacterWithSchurIndex(n: parameters) : RngIntElt -> AlgChtrElt. GrpPC
Characters of the Alternating Group (REPRESENTATIONS OF SYMMETRIC GROUPS)
Characters of the Symmetric Group (REPRESENTATIONS OF SYMMETRIC GROUPS)
ChebyshevT(n) : RngIntElt -> RngUPolElt
ChebyshevFirst(n) : RngIntElt -> RngUPolElt
ChebyshevSecond(n) : RngIntElt -> RngUPolElt
ChebyshevT(n) : RngIntElt -> RngUPolElt
ChebyshevFirst(n) : RngIntElt -> RngUPolElt
ChebyshevU(n) : RngIntElt -> RngUPolElt
ChebyshevSecond(n) : RngIntElt -> RngUPolElt
ChebyshevT(n) : RngIntElt -> RngUPolElt
ChebyshevFirst(n) : RngIntElt -> RngUPolElt
ChebyshevU(n) : RngIntElt -> RngUPolElt
ChebyshevSecond(n) : RngIntElt -> RngUPolElt
CheckCodimension(X) : GRSch -> BoolElt
CheckPolynomial(C) : Code -> RngUPolElt
CheckWeilPolynomial(f, q, h20) : RngUPolElt, RngIntElt, RngIntElt -> BoolElt
LSeries(weight, gamma, conductor, cffun) : FldReElt,[FldRatElt],FldReElt,Any -> LSer
ParityCheckMatrix(C) : Code -> ModMatFldElt
ParityCheckMatrix(C) : Code -> ModMatFldElt
ParityCheckMatrix(C) : Code -> ModMatRngElt
Automorphism Group and Isomorphism Testing (HYPERELLIPTIC CURVES)
CheckCodimension(X) : GRSch -> BoolElt
CheckFunctionalEquation(L) : LSer -> FldComElt
LSeries(weight, gamma, conductor, cffun) : FldReElt,[FldRatElt],FldReElt,Any -> LSer
Checking of Maps (MAPPINGS)
CheckPolynomial(C) : Code -> RngUPolElt
CheckWeilPolynomial(f, q, h20) : RngUPolElt, RngIntElt, RngIntElt -> BoolElt
ChernNumber(S,n) : Srfc, RngIntElt -> RngIntElt
MinimalChernNumber(S,n) : Srfc, RngIntElt -> RngIntElt
ChernNumber(S,n) : Srfc, RngIntElt -> RngIntElt
ChevalleyBasis(L) : AlgLie -> [ AlgLieElt ], [ AlgLieElt ], [ AlgLieElt ]
ChevalleyBasis(L, H, R) : AlgLie, AlgLie, RootDtm -> [ AlgLieElt ], [ AlgLieElt ], [ AlgLieElt ]
ChevalleyGroup(X, n, K: parameters) : MonStgElt, RngIntElt, FldFin -> GrpMat
ChevalleyOrderPolynomial(type, n: parameters) : MonStgElt, RngIntElt -> RngUPolElt
FactoredChevalleyGroupOrder(type, n, F: parameters) : MonStgElt, RngIntElt, FldFin -> RngIntEltFact
IsChevalleyBasis(L, R, x, y, h) : AlgLie, RootDtm, [ AlgLieElt ], [ AlgLieElt ], [ AlgLieElt ] -> BoolElt, [ Tup ]
ChevalleyBasis(L) : AlgLie -> [ AlgLieElt ], [ AlgLieElt ], [ AlgLieElt ]
ChevalleyBasis(L, H, R) : AlgLie, AlgLie, RootDtm -> [ AlgLieElt ], [ AlgLieElt ], [ AlgLieElt ]
AlgLie_ChevalleyBasis (Example H100E34)
AlgLie_ChevalleyBasisSmallChar (Example H100E35)
ChevalleyGroup(X, n, K: parameters) : MonStgElt, RngIntElt, FldFin -> GrpMat
ChevalleyGroupOrder(type, n, F: parameters) : MonStgElt, RngIntElt, FldFin -> RngIntEltFact
FactoredChevalleyGroupOrder(type, n, F: parameters) : MonStgElt, RngIntElt, FldFin -> RngIntEltFact
ChevalleyOrderPolynomial(type, n: parameters) : MonStgElt, RngIntElt -> RngUPolElt
ChevalleyGroupOrder(type, n, F: parameters) : MonStgElt, RngIntElt, FldFin -> RngIntEltFact
The Orders of the Chevalley Groups (ALMOST SIMPLE GROUPS)
chi(n) : GrpDrchElt, RngIntElt -> RngElt
Evaluate(chi,n) : GrpDrchElt, RngIntElt -> RngElt
ChiefFactors(G) : GrpMat -> [ <RngIntElt, RngIntElt, RngIntElt, RngIntElt> ]
ChiefFactors(G) : GrpPerm -> [ <RngIntElt, RngIntElt, RngIntElt, RngIntElt> ]
ChiefSeries(G) : GrpMat -> [ GrpMat ], [ <RngIntElt, RngIntElt, RngIntElt, RngIntElt> ]
ChiefSeries(G) : GrpPC -> [GrpPC]
ChiefSeries(G) : GrpPerm -> [ GrpPerm ], [ <RngIntElt, RngIntElt, RngIntElt, RngIntElt> ]
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013