[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: scrolls .. Seek
Scrolls and Products (SCHEMES)
R sdiff S : SetEnum, SetEnum -> SetEnum
SEA(H : parameters) : SetPtEll -> RngIntElt
CrvEllFldFin_SEA (Example H121E1)
BFSTree(u) : GrphVert -> Grph
BreadthFirstSearchTree(u) : GrphVert -> Grph, GrphVertSet, GrphEdgeSet
BreadthFirstSearchTree(u) : GrphVert -> GrphMult, GrphVertSet, GrphEdgeSet
DepthFirstSearchTree(u) : GrphVert -> Grph, GrphVertSet, GrphEdgeSet, SeqEnum
DepthFirstSearchTree(u) : GrphVert -> GrphMult, GrphVertSet, GrphEdgeSet, SeqEnum
EllipticCurveSearch(N, Effort) : RngOrdIdl, RngIntElt -> SeqEnum
EllipticCurveSearch(N, Effort) : [], RngIntElt -> SeqEnum
PointSearch(S,H : parameters) : Sch[FldRat], RngIntElt -> SeqEnum
Search(~P: parameters) : GrpFPTietzeProc ->
SearchEqual(~P: parameters) : GrpFPTietzeProc ->
SearchForDecomposition(G, S) : GrpMat, [GrpMatElt] -> BoolElt
SearchForIsomorphism(F, G, m : parameters) : GrpFP, GrpFP, RngIntElt -> BoolElt, HomGrp, HomGrp
SearchPGroups(p, n: parameters) : RngIntElt, RngIntElt -> SeqEnum
Metacyclic p-groups (DATABASES OF GROUPS)
Searching for Points (SCHEMES)
SearchEqual(~P: parameters) : GrpFPTietzeProc ->
SearchForDecomposition(G, S) : GrpMat, [GrpMatElt] -> BoolElt
GrpFP_1_SearchForIso1 (Example H70E27)
GrpFP_1_SearchForIso2 (Example H70E28)
SearchForIsomorphism(F, G, m : parameters) : GrpFP, GrpFP, RngIntElt -> BoolElt, HomGrp, HomGrp
Searching with Predicates (DATABASES OF GROUPS)
SearchPGroups(p, n: parameters) : RngIntElt, RngIntElt -> SeqEnum
Sec(c) : FldComElt -> FldComElt
Sec(f) : RngSerElt -> RngSerElt
Tangent and Secant Varieties and Isomorphic Projections (SCHEMES)
Automorphisms (RATIONAL CURVES AND CONICS)
Introduction (RATIONAL CURVES AND CONICS)
Isomorphisms (RATIONAL CURVES AND CONICS)
Rational Curves and Conics (RATIONAL CURVES AND CONICS)
Conics (RATIONAL CURVES AND CONICS)
Rational Points on Conics (RATIONAL CURVES AND CONICS)
IsInSecantVariety(X,P) : Sch,Pt -> BoolElt
SecantVariety(X) : Sch -> Sch
Secant Varieties (SCHEMES)
Secant Varieties (SCHEMES)
AllSecants(P, A) : Plane, { PlanePt } -> { PlaneLn }
SecantVariety(X) : Sch -> Sch
Scheme_SecantVariety (Example H112E50)
Sech(r) : FldReElt -> FldReElt
BesselFunctionSecondKind(n, r) : RngIntElt, FldReElt -> FldReElt
ChebyshevSecond(n) : RngIntElt -> RngUPolElt
DicksonSecond(n, a) : RngIntElt, RngElt -> RngUPolElt
DicksonSecond(n, a) : RngIntElt, RngElt -> RngUPolElt
StirlingSecond(n, k) : RngIntElt, RngIntElt -> RngIntElt
StirlingSecond(n, k) : RngIntElt, RngIntElt -> RngIntElt
Crv_second-affine-patch (Example H114E14)
QuadForm_second-example-Witt (Example H32E2)
IrreducibleSecondaryInvariants(R) : RngInvar -> [ RngMPolElt ]
R`SecondaryInvariants
SecondaryInvariants(R) : RngInvar -> [ RngMPolElt ]
SecondaryInvariants(R, H) : RngInvar, Grp -> [ RngMPolElt ]
Secondary Invariants (INVARIANT THEORY)
R`SecondaryInvariants
SecondaryInvariants(R) : RngInvar -> [ RngMPolElt ]
SecondaryInvariants(R, H) : RngInvar, Grp -> [ RngMPolElt ]
RngInvar_SecondaryInvariants (Example H110E7)
GlobalSectionSubmodule(S) : ShfCoh -> ModMPol
HyperplaneSectionDivisor(X) : Sch -> DivSchElt
RefineSection(G, M, N) : GrpPerm, GrpPerm, GrpPerm -> [ GrpPerm ]
SectionCentraliser(G, H, K) : GrpPerm, GrpPerm, GrpPerm -> GrpPerm
Action on an Elementary Abelian Section (K[G]-MODULES AND GROUP REPRESENTATIONS)
Action on an Elementary Abelian Section (K[G]-MODULES AND GROUP REPRESENTATIONS)
SectionCentralizer(G, H, K) : GrpPerm, GrpPerm, GrpPerm -> GrpPerm
SectionCentraliser(G, H, K) : GrpPerm, GrpPerm, GrpPerm -> GrpPerm
SectionCentralizer(G, H, K) : GrpPerm, GrpPerm, GrpPerm -> GrpPerm
SectionCentraliser(G, H, K) : GrpPerm, GrpPerm, GrpPerm -> GrpPerm
DimensionOfGlobalSections(S) : ShfCoh -> RngIntElt
Sections (G) : GrpMat -> List
Sections(L) : LinearSys -> SeqEnum
ModGrp_Sections (Example H90E10)
GetSeed() : -> RngIntElt, RngIntElt
SetSeed(s, c) : RngIntElt ->
SetSeed(s, c) : RngIntElt ->
Seek(F, o, p) : File, RngIntElt, RngIntElt ->
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013