[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: IsQuaternionAlgebra  ..  IsRingHomomorphism


IsQuaternionAlgebra

   IsQuaternionAlgebra(B) : AlgAss -> BoolElt, AlgQuat, Map

IsQuaternionic

   IsQuaternionic(A) : ModAbVar -> BoolElt

IsQuotient

   IsQuotient(L) : TorLat -> BoolElt

IsRadical

   IsRadical(I) : RngMPol -> BoolElt
   IsRadical(I) : RngMPolRes -> BoolElt

IsRamified

   IsRamified(A, p) : ArtRep, RngIntElt -> BoolElt
   IsRamified(p, A) : RngElt, AlgQuat -> BoolElt
   IsRamified(P) : RngFunOrdIdl -> BoolElt
   IsRamified(P, O) : RngFunOrdIdl, RngFunOrd -> BoolElt
   IsRamified(L) : RngLocA -> BoolElt
   IsRamified(P) : RngOrdIdl -> BoolElt
   IsRamified(P, O) : RngOrdIdl, RngOrd -> BoolElt
   IsRamified(R) : RngPad -> BoolElt

IsRational

   IsRational(X) : Srfc -> BoolElt

IsRationalCurve

   IsRationalCurve(S) : Sch -> BoolElt, CrvRat
   IsRationalCurve(X) : Sch -> BoolElt,CrvRat

IsRationalFunctionField

   IsRationalFunctionField(F) : FldFunG -> BoolElt

IsRC

   IsRC(X) : IncGeom -> BoolElt
   IsResiduallyConnected(X) : IncGeom -> BoolElt

IsReal

   IsReal(x) : AlgChtrElt -> BoolElt
   IsReal(c) : FldComElt -> BoolElt
   IsReal(a) : FldCycElt -> BoolElt
   IsReal(p) : PlcNumElt -> BoolElt
   IsReal(p) : PlcNumElt -> BoolElt
   IsReal(z) : SpcHypElt -> BoolElt

IsRealisableOverSmallerField

   IsRealisableOverSmallerField(M) : ModGrp -> BoolElt, ModGrp

IsRealisableOverSubfield

   IsRealisableOverSubfield(M, F) : ModGrp, FldFin -> BoolElt, ModGrp

IsRealReflectionGroup

   IsRealReflectionGroup(G) : GrpMat -> BoolElt, [], []

IsReduced

   IsReduced(s) : GrphSpl -> BoolElt
   IsReduced(M) : ModMPol -> BoolElt
   IsReduced(p) : Pt -> BoolElt
   IsReduced(f) : QuadBinElt -> BoolElt
   IsReduced(R) : RootDtm -> BoolElt
   IsReduced(R) : RootStr -> BoolElt
   IsReduced(R) : RootSys -> BoolElt
   IsReduced(C) : Sch -> BoolElt
   IsReduced(X) : Sch -> BoolElt

IsReductive

   IsReductive(L) : AlgLie -> BoolElt

IsReeGroup

   IsReeGroup(G) : GrpMat -> BoolElt, RngIntElt

IsReflection

   IsReflection(w) : GrpFPElt -> BoolElt
   IsReflection(r) : Mtrx -> BoolElt, ModTupRngElt, ModTupRngElt

IsReflectionGroup

   IsReflectionGroup(G) : GrpMat -> BoolElt
   IsReflectionGroup(G) : GrpMat -> BoolElt
   GrpRfl_IsReflectionGroup (Example H99E21)

IsReflectionSubgroup

   IsReflectionSubgroup(W, H) : GrpPermCox, GrpPermCox -> BoolElt

IsReflexive

   IsReflexive(P) : TorPol -> BoolElt

IsRegular

   IsRegular(a) : AlgGenElt -> BoolElt
   IsRegular(G) : Grph -> BoolElt
   IsRegular(G) : GrphMult -> BoolElt
   IsRegular(s) : GrphSpl -> BoolElt
   IsRegular(G, Y) : GrpPerm, GSet -> BoolElt
   IsRegular(f) : MapSch -> BoolElt
   IsRegular(f) : TorMap -> BoolElt

IsRegularLDPC

   IsRegularLDPC(C) : Code -> BoolElt

IsRegularPlace

   IsRegularPlace(L, p) : RngDiffOpElt, PlcFunElt -> BoolElt

IsRegularSingularOperator

   IsRegularSingularOperator(L) : RngDiffOpElt -> BoolElt, SetEnum

IsRegularSingularPlace

   IsRegularSingularPlace(L, p) : RngDiffOpElt, PlcFunElt -> BoolElt

IsResiduallyConnected

   IsRC(X) : IncGeom -> BoolElt
   IsResiduallyConnected(X) : IncGeom -> BoolElt

IsResiduallyPrimitive

   IsRPRI(C) : CosetGeom -> BoolElt
   IsResiduallyPrimitive(C) : CosetGeom -> BoolElt

IsResiduallyWeaklyPrimitive

   IsRWPRI(C) : CosetGeom -> BoolElt
   IsRWP(C) : CosetGeom -> BoolElt
   IsResiduallyWeaklyPrimitive(C) : CosetGeom -> BoolElt
   IsResiduallyWealyPrimitive(C) : CosetGeom -> BoolElt

IsResiduallyWealyPrimitive

   IsRWPRI(C) : CosetGeom -> BoolElt
   IsRWP(C) : CosetGeom -> BoolElt
   IsResiduallyWeaklyPrimitive(C) : CosetGeom -> BoolElt
   IsResiduallyWealyPrimitive(C) : CosetGeom -> BoolElt

IsResolution

   IsResolution(D, P) : Inc, SetEnum[SetEnum] -> BoolElt, RngIntElt

IsRestrictable

   IsRestricted(L) : AlgLie -> BoolElt, Map
   IspLieAlgebra(L) : AlgLie -> BoolElt, Map
   IsRestrictable(L) : AlgLie -> BoolElt, Map

IsRestricted

   IsRestricted(L) : AlgLie -> BoolElt, Map
   IspLieAlgebra(L) : AlgLie -> BoolElt, Map
   IsRestrictable(L) : AlgLie -> BoolElt, Map
   AlgLie_IsRestricted (Example H100E48)

IsRestrictedSubalgebra

   IspSubalgebra(L, M) : AlgLie, AlgLie -> AlgLie
   IsRestrictedSubalgebra(L, M) : AlgLie, AlgLie -> AlgLie

IsReverseLatticeWord

   IsReverseLatticeWord(w) : MonOrdElt -> BoolElt

IsRightIdeal

   IsRightIdeal(I) : AlgAssVOrdIdl -> BoolElt
   IsTwoSidedIdeal(I) : AlgAssVOrdIdl -> BoolElt
   IsLeftIdeal(I) : AlgAssVOrdIdl -> BoolElt
   IsRightIdeal(A, S) : AlgBas, ModTupFld -> Bool
   IsRightIdeal(S) : AlgGrpSub -> BoolElt

IsRightIsomorphic

   IsRightIsomorphic(I, J) : AlgAssVOrdIdl[RngOrd], AlgAssVOrdIdl[RngOrd] -> BoolElt, AlgQuatElt
   IsLeftIsomorphic(I, J) : AlgAssVOrdIdl[RngOrd], AlgAssVOrdIdl[RngOrd] -> BoolElt, AlgQuatElt
   IsLeftIsomorphic(I, J) : AlgQuatOrdIdl, AlgQuatOrdIdl -> BoolElt, Map, AlgQuatElt

IsRightModule

   IsRightModule(M): ModAlg -> BoolElt

IsRing

   IsRing(H) : HomModAbVar -> BoolElt

IsRingHomomorphism

   IsRingHomomorphism(m) : Map -> BoolElt
   IsRingHomomorphism(m) : Map -> BoolElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013