[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: pezzo  ..  pipes-creation


pezzo

   Parametrization of Del Pezzo Surfaces (ALGEBRAIC SURFACES)

Pfaffian

   Pfaffians(M, r) : Mtrx, RngIntElt -> SeqEnum
   Pfaffian(M) : Mtrx -> RngElt

Pfaffians

   Pfaffians(M, r) : Mtrx, RngIntElt -> SeqEnum
   Pfaffian(M) : Mtrx -> RngElt

pfgps

   Database of Perfect Groups (DATABASES OF GROUPS)

pFundamental

   pFundamentalUnits(O, p) : RngOrd, RngIntElt -> GrpAb, Map

pFundamentalUnits

   pFundamentalUnits(O, p) : RngOrd, RngIntElt -> GrpAb, Map

PGamma

   PGammaL(arguments)
   ProjectiveGammaLinearGroup(arguments)
   ProjectiveGammaUnitaryGroup(arguments)

PGammaL

   PGammaL(arguments)
   ProjectiveGammaLinearGroup(arguments)

PGammaU

   PGammaU(arguments)
   ProjectiveGammaUnitaryGroup(arguments)

PGL

   PGL(arguments)
   ProjectiveGeneralLinearGroup(arguments)

PGO

   ProjectiveGeneralOrthogonalGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
   PGO(arguments)

PGOMinus

   ProjectiveGeneralOrthogonalGroupMinus(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
   PGOMinus(arguments)

PGOPlus

   ProjectiveGeneralOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
   PGOPlus(arguments)

PGroup

   CharacterDegreesPGroup(G) : GrpFin -> [ RngIntElt ]
   CharacterDegreesPGroup(G): GrpPC -> SeqEnum
   CompactProjectiveResolutionPGroup(M, n) : ModAlgBas, RngIntElt -> Rec
   FPGroupStrong(G) : GrpPerm -> GrpFP, Hom(Grp)
   InvariantsMetacyclicPGroup (P) : Grp -> Tup
   IsMetacyclicPGroup (P) : Grp -> BoolElt
   IsSolubleAutomorphismGroupPGroup(A) : GrpAuto -> BoolElt
   NumberOfSubgroupsAbelianPGroup (A) : SeqEnum -> SeqEnum
   OrderAutomorphismGroupAbelianPGroup (A) : SeqEnum -> RngIntElt
   PCGroupAutomorphismGroupPGroup(A) : GrpAuto -> BoolElt, Map, GrpPC
   PGroupToForms(G) : GrpPC -> SeqEnum
   ProjectiveResolutionPGroup(PR) : Rec -> ModCpx
   StandardMetacyclicPGroup (P): Grp -> GrpPC

PGroups

   CountPGroups(p, n: parameters) : RngIntElt, RngIntElt -> SeqEnum
   MetacyclicPGroups(p, n: parameters) : RngIntElt, RngIntElt -> SeqEnum
   NumberOfMetacyclicPGroups (p, n): RngIntElt, RngIntElt -> SeqEnum
   SearchPGroups(p, n: parameters) : RngIntElt, RngIntElt -> SeqEnum

pgroups

   Series for p-groups (FINITE SOLUBLE GROUPS)

PGroupStrong

   PGroupStrong(G) : GrpMat -> GrpFP, Hom(Grp)
   FPGroupStrong(G) : GrpPerm -> GrpFP, Hom(Grp)

PGroupToForms

   PGroupToForms(G) : GrpPC -> SeqEnum
   AlgInv_PGroupToForms (Example H87E1)

PGU

   PGU(arguments)
   ProjectiveGeneralUnitaryGroup(arguments)

Phase

   PhaseFlip(e, B) : HilbSpcElt, RngIntElt -> HilbSpcElt
   PhaseFlip(e, k) : HilbSpcElt,RngIntElt -> HilbSpcElt

PhaseFlip

   PhaseFlip(e, B) : HilbSpcElt, RngIntElt -> HilbSpcElt
   PhaseFlip(e, k) : HilbSpcElt,RngIntElt -> HilbSpcElt

Phi

   ElementaryPhiModule(S,d,h) : RngSerLaur, RngIntElt, RngIntElt -> PhiMod
   EulerPhi(n) : RngIntElt -> RngIntElt
   EulerPhiInverse(m) : RngIntElt -> RngIntElt
   FactoredEulerPhi(n) : RngIntElt -> RngIntEltFact
   FactoredEulerPhiInverse(n) : RngIntElt -> RngIntEltFact
   IsogenyMapPhi(I) : Map -> RngUPolElt
   IsogenyMapPhiMulti(I) : Map -> RngUPolElt
   Phi(D, x) : PhiMod, PhiModElt -> PhiModElt
   PhiModule(M) : AlgMatElt -> PhiMod
   PhiModuleElement(x,D) : AlgMatElt, PhiMod -> PhiModElt
   PhiSelmerGroup(f,q) : RngUPolElt, RngIntElt -> GrpAb, Map

phi

   phi(A) : ModAbVar, MapModAbVar -> ModAbVar
   A @ phi : ModAbVar, MapModAbVar -> ModAbVar
   x @ phi : ModAbVarElt, MapModAbVar -> ModAbVarElt
   G @ phi : ModAbVarSubGrp, MapModAbVar -> ModAbVarSubGrp

PhiModule

   PhiModule(M) : AlgMatElt -> PhiMod

PhiModuleElement

   PhiModuleElement(x,D) : AlgMatElt, PhiMod -> PhiModElt

PhiSelmerGroup

   RankBound(f,q) : RngUPolElt, RngIntElt -> RngIntElt
   RankBounds(f,q) : RngUPolElt, RngIntElt -> RngIntElt, RngIntElt
   PhiSelmerGroup(f,q) : RngUPolElt, RngIntElt -> GrpAb, Map

PHom

   PHom(M,N) : ModAlg, ModAlg -> ModMatFld

Pi

   Pi(R) : FldRe -> FldReElt

pi

   Hall π-Subgroups and Sylow Systems (FINITE SOLUBLE GROUPS)

Picard

   PicardClass(D) : DivTorElt -> TorLatElt
   PicardGroup(O) : RngQuad -> GrpAb, Map
   RingClassGroup(O) : RngOrd -> GrpAb, Map

PicardClass

   PicardClass(D) : DivTorElt -> TorLatElt

PicardGroup

   PicardNumber(O) : RngQuad -> RngIntElt
   PicardGroup(O) : RngQuad -> GrpAb, Map
   RingClassGroup(O) : RngOrd -> GrpAb, Map

PicardNumber

   PicardNumber(O) : RngQuad -> RngIntElt
   PicardGroup(O) : RngQuad -> GrpAb, Map

PID

   IsPrincipalIdealDomain(R) : Rng -> BoolElt
   IsPID(R) : Rng -> BoolElt

pIntegral

   pIntegralModel(C, p) : CrvHyp, RngIntElt -> CrvHyp, MapIsoSch

pIntegralModel

   pIntegralModel(C, p) : CrvHyp, RngIntElt -> CrvHyp, MapIsoSch

Pipe

   Pipe(C, S) : MonStgElt, MonStgElt -> MonStgElt

pipes

   Operations on Pipes (INPUT AND OUTPUT)
   Pipe Creation (INPUT AND OUTPUT)
   Pipes (INPUT AND OUTPUT)

pipes-creation

   Pipe Creation (INPUT AND OUTPUT)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013