[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: IsHomomorphism .. IsInner
IsHomomorphism(G, H, Q) : GrpMat, GrpMat, SeqEnum[GrpMatElt] -> Bool, Map
IsHomomorphism(G, H, L) : GrpPC, GrpPC, SeqEnum -> BoolElt, Map
IsHomomorphism(G, H, Q) : GrpPerm, GrpPerm, SeqEnum[GrpPermElt] -> Bool, Map
IsHyperbolic(W) : GrpFPCox -> BoolElt
IsGeometricallyHyperelliptic(C) : Crv -> BoolElt, Crv, MapSch
IsHyperelliptic(C) : Crv -> BoolElt, CrvHyp, MapSch
IsHyperellipticCurve(X) : Sch -> BoolElt,CrvHyp
IsHyperellipticCurve([f, h]) : [ RngUPolElt ] -> BoolElt, CrvHyp
IsHyperellipticCurveOfGenus(g, [f, h]) : RngIntElt, [RngUPolElt] -> BoolElt, CrvHyp
IsHyperellipticWeierstrass(C) : Crv -> BoolElt
IsHypersurface(X) : Sch -> BoolElt, RngMPolElt
IsHypersurfaceDivisor(D) : DivCrvElt -> BoolElt, RngElt, RngIntElt
IsHypersurfaceSingularity(p,prec) : Pt, RngIntElt -> BoolElt, RngMPolElt, SeqEnum, Rec
IsIdentity(g) : GrpElt -> BoolElt
IsId(g) : GrpElt -> BoolElt
IsId(g) : GrpPermElt -> BoolElt
IsId(w) : GrpRWSElt -> BoolElt
IsId(w) : GrpRWSElt -> BoolElt
IsId(w) : MonRWSElt -> BoolElt
IsId(P) : PtEll -> BoolElt
IsIdentity(u) : GrpAbElt -> BoolElt
IsIdentity(g) : GrpGPCElt -> BoolElt
IsIdentity(g) : GrpMatElt -> BoolElt
IsIdentity(g) : GrpPCElt -> BoolElt
IsIdentity(u: parameters) : GrpBrdElt -> BoolElt
IsIdeal(A, S) : AlgBas, ModTupFld -> Bool
IsIdeal(S) : AlgGrpSub -> BoolElt
IsIdempotent(a) : AlgGenElt -> BoolElt
IsIdempotent(x) : RngElt -> BoolElt
IsIdentical(R, F) : RngDiff, RngDiff -> BoolElt
IsIdentical(R, F) : RngDiffOp, RngDiffOp -> BoolElt
IsIdentical(f, g) : RngSerElt, RngSerElt -> BoolElt
IsIdenticalPresentation(G, H) : GrpGPC, GrpGPC -> BoolElt
IsIdenticalPresentation(G, H) : GrpPC, GrpPC -> BoolElt
IsIdentity(g) : GrpElt -> BoolElt
IsId(g) : GrpElt -> BoolElt
IsId(g) : GrpPermElt -> BoolElt
IsId(w) : GrpRWSElt -> BoolElt
IsId(w) : GrpRWSElt -> BoolElt
IsId(w) : MonRWSElt -> BoolElt
IsId(P) : PtEll -> BoolElt
IsIdentity(u) : GrpAbElt -> BoolElt
IsIdentity(g) : GrpGPCElt -> BoolElt
IsIdentity(g) : GrpMatElt -> BoolElt
IsIdentity(g) : GrpPCElt -> BoolElt
IsIdentity(f) : Map -> BoolElt
IsIdentity(u: parameters) : GrpBrdElt -> BoolElt
IsIdentity(f) : QuadBinElt -> BoolElt
IsZero(P) : JacHypPt -> BoolElt
IsInArtinSchreierRepresentation(K) : FldFun -> BoolElt, FldFunElt
IsInCorootSpace(R,v) : RootDtm, ModTupFldElt -> BoolElt
IsInRootSpace(R,v) : RootDtm, ModTupFldElt -> BoolElt
IsIndecomposable(M, B) : ModBrdt, RngIntElt -> BoolElt
IsIndefinite(A) : AlgQuat -> BoolElt
IsDefinite(A) : AlgQuat -> BoolElt
IsIndependent(Q) : [ AlgGen ] -> BoolElt
IsIndependent(Q) : [ AlgLieElt ] -> BoolElt
IsIndependent(Q) : [ ModTupFldElt ] -> BoolElt
IsIndependent(S) : { ModTupFldElt } -> BoolElt
IsIndivisibleRoot(R, r) : RootStr, RngIntElt -> BoolElt
IsIndivisibleRoot(R, r) : RootSys, RngIntElt -> BoolElt
IsInduced(AmodB) : GGrp -> BoolElt, GGrp, GGrp, Map, Map
IsInert(P) : RngFunOrdIdl -> BoolElt
IsInert(P, O) : RngFunOrdIdl, RngFunOrd -> BoolElt
IsInert(P) : RngOrdIdl -> BoolElt
IsInert(P, O) : RngOrdIdl, RngOrd -> BoolElt
IsInertial(f) : RngUPolElt -> BoolElt
IsInfinite(G) : GrpAb -> BoolElt
IsInfinite(p) : PlcNumElt -> BoolElt, RngIntElt
IsInfinite(p) : PlcNumElt -> BoolElt, RngIntElt
IsInfinite(z) : SpcHypElt -> BoolElt
IsFlex(C,p) : Sch,Pt -> BoolElt,RngIntElt
IsInflectionPoint(p) : Sch,Pt -> BoolElt,RngIntElt
IsInImage(f, p) : Map, RngMPolElt -> [ BoolElt ]
IsInjective(f) : MapChn -> BoolElt
IsInjective(phi) : MapModAbVar -> BoolElt
IsInjective(M) : ModAlg -> BoolElt, SeqEnum
IsInjective(a) : ModMatRngElt -> BoolElt
IsInjective(f) : ModMPolHom -> BoolElt
IsInKummerRepresentation(K) : FldFun -> BoolElt, FldFunElt
IsInner(f) : GrpAutoElt -> BoolElt, GrpElt
IsInner(R) : RootDtm -> BoolElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013