[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: generalized-cartan  ..  GeneratorMatrix


generalized-cartan

   AlgLieKM_generalized-cartan (Example H101E1)

GeneralizedFibonacciNumber

   GeneralizedFibonacciNumber(g0, g1, n) : RngIntElt, RngIntElt, RngIntElt -> RngIntElt
   GeneralizedFibonacciNumber(g0, g1, n) : RngIntElt, RngIntElt, RngIntElt -> RngIntElt

GeneralizedSrivastavaCode

   GeneralizedSrivastavaCode(A, W, Z, t, S) : [ FldFinElt ], [ FldFinElt ], [ FldFinElt ], RngIntElt, FldFin -> Code

GeneralLinearGroup

   GL(n, R) : RngIntElt, Rng -> GrpMat
   GeneralLinearGroup(n, R) : RngIntElt, Rng -> GrpMat
   GeneralLinearGroup(n, q) : RngIntElt, RngIntElt -> GrpMat

GeneralOrthogonalGroup

   GO(n, q) : RngIntElt, RngIntElt -> GrpMat
   GeneralOrthogonalGroup(n, q) : RngIntElt, RngIntElt -> GrpMat

GeneralOrthogonalGroupMinus

   GOMinus(n, q) : RngIntElt, RngIntElt -> GrpMat
   GeneralOrthogonalGroupMinus(n, q) : RngIntElt, RngIntElt -> GrpMat

GeneralOrthogonalGroupPlus

   GOPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
   GeneralOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpMat

GeneralUnitaryGroup

   GU(n, q) : RngIntElt, RngIntElt -> GrpMat
   GeneralUnitaryGroup(n, q) : RngIntElt, RngIntElt -> GrpMat

Generate

   GenerateGraphs(n : parameters) : RngIntElt -> File

Generated

   RandomIdealGeneratedBy(A, n) : AlgBas, RngIntElt -> ModTupFld
   RingGeneratedBy(H) : HomModAbVar -> HomModAbVar

GenerateGraphs

   GenerateGraphs(n : parameters) : RngIntElt -> File

Generatep

   GeneratepGroups (p, d, c : parameters) : RngIntElt, RngIntElt,RngIntElt -> [GrpPC], RngIntElt

GeneratepGroups

   GeneratepGroups (p, d, c : parameters) : RngIntElt, RngIntElt,RngIntElt -> [GrpPC], RngIntElt
   GrpPC_GeneratepGroups (Example H63E28)

Generating

   GeneratingWords(G, H) : GrpFP, GrpFP -> { GrpFPElt }

Generating_p_groups

   GrpPC_Generating_p_groups (Example H63E27)

GeneratingWords

   GeneratingWords(G, H) : GrpFP, GrpFP -> { GrpFPElt }

Generation

   ClassGroupGenerationBound(F) : FldFunG -> RngIntElt
   ClassGroupGenerationBound(q, g) : RngIntElt, RngIntElt -> RngIntElt

generation

   Generating Graphs (GRAPHS)

Generator

   Generator(F) : FldFin -> FldFinElt
   F . 1 : FldFin, RngIntElt -> FldFinElt
   R . 1 : RngGal -> RngGalElt
   ActionGenerator(B, i) : AlgBas, RngIntElt -> SeqEnum
   ActionGenerator(L, i) : Lat, RngIntElt -> GrpMat
   ActionGenerator(M, i) : ModGrp, RngIntElt -> AlgMatElt
   ActionGenerator(M, i) : ModRng, RngIntElt -> AlgMatElt
   AddGenerator(G) : GrpFP -> GrpFP
   AddGenerator(G, x) : GrpFP, . -> BoolElt, GrpFP, Map
   AddGenerator(G, w) : GrpFP, GrpFPElt -> GrpFP
   AddGenerator(S) : SgpFP -> SgpFP
   AddGenerator(S, w) : SgpFP, SgpFPElt -> SgpFP
   AddNormalizingGenerator(~H, x) : GrpPerm, GrpPermElt ->
   AddSubgroupGenerator(~P, w) : GrpFPCosetEnumProc, GrpFPElt ->
   CohomologyGeneratorToChainMap(P,Q,C,n) : ModCpx, ModCpx, Rec, RngIntElt -> MapChn
   CohomologyGeneratorToChainMap(P, C, n) : ModCpx, Tup, RngIntElt -> MapChn
   DeleteGenerator(G, x) : GrpFP, GrpFPElt -> GrpFP
   DeleteGenerator(S, y) : SgpFP, SgpFPElt -> SgpFP
   Generator(F, E) : FldFin, FldFin -> FldFinElt
   Generator(I) : RngInt -> RngIntElt
   GeneratorMatrix(C) : Code -> ModMatFldElt
   GeneratorMatrix(C) : Code -> ModMatFldElt
   GeneratorMatrix(C) : Code -> ModMatRngElt
   GeneratorNumber(w) : GrpFPElt -> RngIntElt
   GeneratorOrder(G) : GrpAtc -> SeqEnum
   GeneratorPolynomial(C) : Code -> RngUPolElt
   GeneratorStructure(P) : GrpPCpQuotientProc ->
   LeadingGenerator(w) : GrpFPElt -> GrpFPElt
   LeadingGenerator(x) : GrpGPCElt -> GrpGPCElt
   LeadingGenerator(x) : GrpPCElt -> GrpPCElt
   MinimalGeneratorForm(A) : AlgBas -> Rec
   MinimalGeneratorFormAlgebra(A) : AlgBas -> AlgBas
   NaturalActionGenerator(L, i) : Lat, RngIntElt -> GrpMat
   SemisimpleGeneratorData(A) : AlgMat -> SeqEnum
   ShrinkingGenerator(C1, S1, C2, S2, t) : RngUPolElt, SeqEnum, RngUPolElt,SeqEnum, RngIntElt -> SeqEnum
   UnivariateEliminationIdealGenerator(I, i) : RngMPol, RngIntElt -> RngMPolElt

generator

   Base and Strong Generating Set (MATRIX GROUPS OVER GENERAL RINGS)
   Base and Strong Generating Set (PERMUTATION GROUPS)
   Construction of a Base and Strong Generating Set (PERMUTATION GROUPS)
   Finding Special Elements (NUMBER FIELDS)
   Finding Special Elements (ORDERS AND ALGEBRAIC FIELDS)
   Generator Assignment (STATEMENTS AND EXPRESSIONS)
   Special Elements (FINITE FIELDS)
   The Generator Polynomial (LINEAR CODES OVER FINITE FIELDS)
   Univariate Elimination Ideal Generators (POLYNOMIAL RING IDEAL OPERATIONS)

generator-assignment

   Generator Assignment (STATEMENTS AND EXPRESSIONS)

generator-polynomial

   The Generator Polynomial (LINEAR CODES OVER FINITE FIELDS)

generator-primitive

   Finding Special Elements (NUMBER FIELDS)
   Finding Special Elements (ORDERS AND ALGEBRAIC FIELDS)

generator-primitive-normal

   Special Elements (FINITE FIELDS)

generator_reduction

   Reducing Generating Sets (FINITELY PRESENTED GROUPS)

GeneratorMatrix

   BasisMatrix(C) : Code -> ModMatRngElt
   GeneratorMatrix(C) : Code -> ModMatFldElt
   GeneratorMatrix(C) : Code -> ModMatFldElt
   GeneratorMatrix(C) : Code -> ModMatRngElt
   CodeFld_GeneratorMatrix (Example H152E8)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013