[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: glex .. GModule
Graded Lexicographical: glex (GRÖBNER BASES)
RandomGLnZ(n, k, l) : RngIntElt, RngIntElt, RngIntElt -> AlgMatElt
DimensionOfGlobalSections(S) : ShfCoh -> RngIntElt
GlobalSectionSubmodule(S) : ShfCoh -> ModMPol
GlobalUnitGroup(C) : Crv[FldFin] -> GrpAb, Map
GlobalUnitGroup(F) : FldFun -> GrpAb, Map
GlobalUnitGroup(F) : FldFunG -> GrpAb, Map
IsGlobal(F) : FldFunG -> BoolElt
IsGlobalUnit(a) : FldFunElt -> BoolElt
IsGlobalUnit(a) : FldFunElt -> BoolElt
IsGlobalUnitWithPreimage(a) : FldFunElt -> BoolElt, GrpAbElt
IsGlobalUnitWithPreimage(a) : FldFunElt -> BoolElt, GrpAbElt
SetGlobalTCParameters(: parameters) : ->
UnsetGlobalTCParameters() : ->
RngMPol_Global (Example H24E2)
Functions related to Class Group (ALGEBRAIC FUNCTION FIELDS)
Global Function Field Places (ALGEBRAIC FUNCTION FIELDS)
Global Function Fields (ALGEBRAIC FUNCTION FIELDS)
Global Function Fields (ALGEBRAIC FUNCTION FIELDS)
Global Geometry (ALGEBRAIC CURVES)
Global Geometry of Schemes (SCHEMES)
Global Properties (MATRIX GROUPS OVER GENERAL RINGS)
Local Conditions for Conics (RATIONAL CURVES AND CONICS)
Local-Global Correspondence (RATIONAL CURVES AND CONICS)
Norm Residue Symbol (RATIONAL CURVES AND CONICS)
Special Forms of Curves (ALGEBRAIC CURVES)
Functions related to Class Group (ALGEBRAIC FUNCTION FIELDS)
FldFunG_global-class-ex (Example H42E21)
Global Geometry (ALGEBRAIC CURVES)
FldFunG_global-function-fields (Example H42E19)
Global Properties (MATRIX GROUPS OVER GENERAL RINGS)
Special Forms of Curves (ALGEBRAIC CURVES)
FldFunG_global1 (Example H42E20)
Functions Relative to the Constant Field (ALGEBRAIC FUNCTION FIELDS)
Functions relative to the Exact Constant Field (ALGEBRAIC FUNCTION FIELDS)
IsGloballySplit(C, l) : , UserProgram -> BoolElt, UserProgram
GlobalSectionSubmodule(S) : ShfCoh -> ModMPol
GlobalUnitGroup(C) : Crv[FldFin] -> GrpAb, Map
GlobalUnitGroup(F) : FldFun -> GrpAb, Map
GlobalUnitGroup(F) : FldFunG -> GrpAb, Map
IsGLQConjugate(G, H) : GrpMat, GrpMat -> BoolElt, GrpMatElt
GrpMatGen_GLSylow (Example H59E4)
Glue(X, e) : SmpCpx, SeqEnum -> SmpCpx
CentralizerGLZ(A) : AlgMatElt -> GrpMat
NormalizerGLZ(G) : GrpMat[RngInt] -> GrpMat[RngInt]
IsSLZConjugate(A, B) : AlgMatElt, AlgMatElt -> BoolElt, GrpMatElt
IsGLZConjugate(A, B) : AlgMatElt, AlgMatElt -> BoolElt, GrpMatElt
IsGLZConjugate(G, H) : GrpMat[RngInt], GrpMat[RngInt] -> BoolElt, GrpMatElt
GModule(M) : AlgBasGrpP -> ModGrp, ModGrp
GModule(G, A) : Grp, AlgMat -> ModGrp
GModule(G, S) : Grp, AlgMat -> ModGrp
GModule(G, A, B) : Grp, Grp, Grp -> ModGrp, Map
GModule(G, A, B) : Grp, Grp, Grp -> ModGrp, Map
GModule(G, P, d) : Grp, RngMPol, RngIntElt -> ModGrp, Map, @ RngMPolElt @
GModule(G, P, d) : Grp, RngMPol, RngIntElt -> ModGrp, Map, @ RngMPolElt @
GModule(G, I, J) : Grp, RngMPol, RngMPol -> ModGrp, Map, @ RngMPolElt @
GModule(G, I, J) : Grp, RngMPol, RngMPol -> ModGrp, Map, @ RngMPolElt @
GModule(G, Q) : Grp, RngMPolRes -> ModGrp, Map, @ RngMPolElt @
GModule(G, Q) : Grp, RngMPolRes -> ModGrp, Map, @ RngMPolElt @
GModule(G, Q) : Grp, [ GrpMatElt ] -> ModGrp
GModule(G, Q) : Grp, [ MtrxS ] -> ModGrp
GModule(G, S) : GrpFin, AlgMat -> ModGrpFin
GModule(G, A, B) : GrpFin, GrpFin, GrpFin -> ModGrpFin, Map
GModule(G, A, B, p) : GrpFP, GrpFP, GrpFP, RngIntElt -> ModGrp, Map
GModule(G, A, p) : GrpFP, GrpFP, RngIntElt -> ModGrp, Map
GModule(G, A, B, p) : GrpGPC, GrpGPC, GrpGPC, RngIntElt -> ModGrp, Map
GModule(G, A, p) : GrpGPC, GrpGPC, RngIntElt -> ModGrp, Map
GModule(G) : GrpMat -> ModGrp
GModule(G) : GrpMat -> ModGrp
GModule(G) : GrpMat -> ModGrp
GModule(G) : GrpMat -> ModGrp
GModule(G, A) : GrpMat, AlgMat -> ModGrp
GModule(G, A, B) : GrpMat, GrpMat, GrpMat -> ModGrp, Map
GModule(G, Q) : GrpMat, [ AlgMatElt ] -> ModGrp
GModule(G, M) : GrpPC, AlgMat -> ModAlg
GModule(G, A) : GrpPC, GrpPC -> ModAlg, Map
GModule(G, A, B) : GrpPC, GrpPC, GrpPC -> ModAlg, Map
GModule(G, K) : GrpPerm, Rng -> ModGrp
GModule(M) : ModAlgBas -> ModGrp
GModuleAction(M) : ModGrp -> Map(Hom)
GModulePrimes(G, A) : GrpFP, GrpFP -> SetMulti
GModulePrimes(G, A, B) : GrpFP, GrpFP, GrpFP -> SetMulti
GModulePrimes(G, A) : GrpGPC, GrpGPC -> SetMulti
GModulePrimes(G, A, B) : GrpGPC, GrpGPC, GrpGPC -> SetMulti
QuaternionicGModule(M, I, J) : ModGrp, AlgMatElt, AlgMatElt -> ModGrp
WriteGModuleOver(M, K) : ModGrp, FldAlg -> ModGrp
GrpMatGen_GModule (Example H59E28)
GrpPerm_GModule (Example H58E38)
RngInvar_GModule (Example H110E4)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013