[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: A  ..  Abelian


A

   Construction of an A-Module (MODULES OVER AN ALGEBRA)
   A ` PrintStyle : AlgSym -> MonStgElt
   A(n) : RngIntElt, ModAbVar -> ModAbVar

a

   A-infinity Algebra Structures on Group Cohomology (BASIC ALGEBRAS)

a-infinity

   A-infinity Algebra Structures on Group Cohomology (BASIC ALGEBRAS)

A-infinity mod 2

   AlgBas_A-infinity mod 2 (Example H85E22)

A-infinity mod 3

   AlgBas_A-infinity mod 3 (Example H85E23)

A-key

   A

a-key

   a

A-module

   Construction of an A-Module (MODULES OVER AN ALGEBRA)

A5

   Chtr_A5 (Example H91E5)

A`

   A`Components : FldAb -> [Rec]
   A`DefiningGroup : FldAb -> Rec
   A`IsAbelian : FldAb -> Bool
   A`IsCentral : FldAb -> Bool
   A`IsNormal : FldAb -> Bool

A`Components

   A`Components : FldAb -> [Rec]

A`DefiningGroup

   A`NormGroup : FldAb -> Rec
   A`DefiningGroup : FldAb -> Rec

A`IsAbelian

   A`IsAbelian : FldAb -> Bool

A`IsCentral

   A`IsCentral : FldAb -> Bool

A`IsNormal

   A`IsNormal : FldAb -> Bool

A`NormGroup

   A`NormGroup : FldAb -> Rec
   A`DefiningGroup : FldAb -> Rec

Abelian

   A`IsAbelian : FldAb -> Bool
   AbelianBasis(G) : GrpFin -> [ GrpFinElt ], [ RngIntElt ]
   AbelianBasis(G) : GrpPC -> [ GrpPCElt ], [ RngIntElt ]
   AbelianExtension(D, U) : DivFunElt, GrpAb -> FldFunAb
   AbelianExtension(K) : FldAlg -> FldAb
   AbelianExtension(I) : RngOrdIdl -> FldAb
   AbelianExtension(I, P) : RngOrdIdl, [RngIntElt] -> FldAb
   AbelianGroup(GrpAb, Q) : Cat, [ RngIntElt ] -> GrpAb
   AbelianGroup(C, Q) : Cat, [ RngIntElt ] -> GrpFin
   AbelianGroup(GrpFP, [n1,...,nr]): Cat, [ RngIntElt ] -> GrpFP
   AbelianGroup(GrpPerm, Q) : Cat, [ RngIntElt ] -> GrpPerm
   AbelianGroup(GrpGPC, Q) : Cat, [RngIntElt] -> GrpGPC
   AbelianGroup(GrpPC, Q) : Cat, [RngIntElt] -> GrpPC
   AbelianGroup(G) : Grp -> GrpAb, Hom
   AbelianGroup(G) : GrpDrch -> GrpAb, Map
   AbelianGroup(G) : GrpGPC -> GrpAb, Map
   AbelianGroup(G) : GrpPC -> GrpAb, Map
   AbelianGroup(J) : JacHyp -> GrpAb, Map
   AbelianGroup< X | R > : List(Var), List(GrpAbRel) -> GrpAb, Hom(GrpAb)
   AbelianGroup(G) : ModAbVarSubGrp -> GrpAb, Map, Map
   AbelianGroup(A: parameters) : GrpAbGen -> GrpAb, Map
   AbelianGroup(H) : SetPtEll -> GrpAb, Map
   AbelianGroup([n1,...,nr]): [ RngIntElt ] -> GrpAb
   AbelianInvariants(G) : GrpFin -> [ RngIntElt ]
   AbelianInvariants(G) : GrpMat -> [ RngIntElt ]
   AbelianInvariants(G) : GrpPC -> [RngIntElt]
   AbelianLieAlgebra(R, n) : Rng, RngIntElt -> AlgLie
   AbelianNormalQuotient(G, H) : GrpPerm -> GrpPerm, Hom(GrpPerm), GrpPerm
   AbelianNormalSubgroup(G) : GrpPerm -> GrpPerm
   AbelianQuotient(G) : Grp -> GrpAb, Hom
   AbelianQuotient(G) : GrpFP -> GrpAb, Map
   AbelianQuotient(G) : GrpGPC -> GrpAb, Map
   AbelianQuotient(G) : GrpMat -> GrpAb, Map
   AbelianQuotient(G) : GrpPC -> GrpAb, Map
   AbelianQuotient(G) : GrpPerm -> GrpAb, Map
   AbelianQuotientInvariants(G) : GrpFP -> [ RngIntElt ]
   AbelianQuotientInvariants(H) : GrpFP -> [ RngIntElt ]
   AbelianQuotientInvariants(G, n) : GrpFP, RngIntElt -> [ RngIntElt ]
   AbelianQuotientInvariants(H, n) : GrpFP, RngIntElt -> [ RngIntElt ]
   AbelianQuotientInvariants(G) : GrpGPC -> [ RngIntElt ]
   AbelianQuotientInvariants(G) : GrpPC -> SeqEnum
   AbelianSubfield(A, U) : FldAb, GrpAb -> FldAb
   AbelianSubgroups(G) : GrpPC -> SeqEnum
   AbelianSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
   AbelianSubgroups(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
   ClassGroupAbelianInvariants(C) : Crv[FldFin] -> [RngIntElt]
   ClassGroupAbelianInvariants(F : parameters) : FldFun -> SeqEnum
   ClassGroupAbelianInvariants(F : parameters) : FldFunG -> SeqEnum
   ClassGroupAbelianInvariants(O) : RngFunOrd -> SeqEnum
   DefinesAbelianSubvariety(A, V) : ModAbVar, ModTupFld -> BoolElt, ModAbVar
   ElementaryAbelianGroup(GrpGPC, p, n) : Cat, RngIntElt, RngIntElt -> GrpGPC
   ElementaryAbelianNormalSubgroup(G) : GrpPerm -> GrpPerm
   ElementaryAbelianQuotient(G, p) : GrpAb, RngIntElt -> GrpAb, Map
   ElementaryAbelianQuotient(G, p) : GrpFP, RngIntElt -> GrpAb, Map
   ElementaryAbelianQuotient(G, p) : GrpGPC, RngIntElt -> GrpAb, Map
   ElementaryAbelianQuotient(G, p) : GrpMat, RngIntElt -> GrpAb, Map
   ElementaryAbelianQuotient(G, p) : GrpPC, RngIntElt -> GrpAb, Map
   ElementaryAbelianQuotient(G, p) : GrpPerm, RngIntElt -> GrpAb, Map
   ElementaryAbelianSeries(G) : GrpPC -> [GrpPC]
   ElementaryAbelianSeries(G: parameters) : GrpMat -> [ GrpMat ]
   ElementaryAbelianSeries(G: parameters) : GrpPerm -> [ GrpPerm ]
   ElementaryAbelianSeriesCanonical(G) : GrpMat -> [ GrpMat ]
   ElementaryAbelianSeriesCanonical(G) : GrpPC -> [GrpPC]
   ElementaryAbelianSeriesCanonical(G) : GrpPerm -> [ GrpPerm ]
   ElementaryAbelianSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
   ElementaryAbelianSubgroups(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
   ExtensionsOfElementaryAbelianGroup(p, d, G) : RngIntElt, RngIntElt, GrpPerm -> SeqEnum
   FreeAbelianGroup(GrpGPC, n) : Cat, RngIntElt -> GrpGPC
   FreeAbelianGroup(n) : RngIntElt -> GrpAb
   FreeAbelianQuotient(G) : GrpAb -> GrpAb, Map
   FreeAbelianQuotient(G) : GrpGPC -> GrpAb, Map
   GenericAbelianGroup(U: parameters) : . -> GrpAbGen
   Group< X | R > : List(Identifiers), List(GrpFPRel) -> GrpFP, Hom(Grp)
   HasComputableAbelianQuotient(G) : GrpFP -> BoolElt, GrpAb, Map
   HasInfiniteComputableAbelianQuotient(G) : GrpFP -> BoolElt, GrpAb, Map
   IsAbelian(L) : AlgLie -> BoolElt
   IsAbelian(A) : FldAb -> BoolElt
   IsAbelian(F) : FldAlg -> BoolElt
   IsAbelian(F) : FldNum -> BoolElt
   IsAbelian(K, k) : FldPad, FldPad -> BoolElt
   IsAbelian(G) : GrpFin -> BoolElt
   IsAbelian(G) : GrpGPC -> BoolElt
   IsAbelian(G) : GrpLie -> BoolElt
   IsAbelian(G) : GrpMat -> BoolElt
   IsAbelian(G) : GrpPC -> BoolElt
   IsAbelian(G) : GrpPerm -> BoolElt
   IsAbelianByFinite(G : parameters) : GrpMat -> BoolElt
   IsAbelianVariety(A) : ModAbVar -> BoolElt
   IsElementaryAbelian(G) : GrpAb -> BoolElt
   IsElementaryAbelian(G) : GrpFin -> BoolElt
   IsElementaryAbelian(G) : GrpGPC -> BoolElt
   IsElementaryAbelian(G) : GrpMat -> BoolElt
   IsElementaryAbelian(G) : GrpPC -> BoolElt
   IsElementaryAbelian(G) : GrpPerm -> BoolElt
   MaximalAbelianSubfield(K) : FldFunG -> FldFunAb
   MaximalAbelianSubfield(M) : RngOrd -> FldAb
   ModularAbelianVariety(E) : CrvEll -> ModAbVar
   ModularAbelianVariety(L) : ModAbVarLSer -> ModAbVar
   ModularAbelianVariety(f) : ModFrmElt -> ModAbVar
   ModularAbelianVariety(M) : ModSym -> ModAbVar
   ModularAbelianVariety(eps : parameters) : GrpDrchElt -> ModAbVar
   ModularAbelianVariety(M : parameters) : ModFrm -> ModAbVar
   ModularAbelianVariety(s : parameters) : MonStgElt -> ModAbVar
   ModularAbelianVariety(X : parameters) : [ModFrm] -> ModAbVar
   ModularAbelianVariety(X) : [ModSym] -> ModAbVar
   MordellWeilGroup(H: parameters) : SetPtEll -> GrpAb, Map
   NumberOfSubgroupsAbelianPGroup (A) : SeqEnum -> SeqEnum
   OrderAutomorphismGroupAbelianPGroup (A) : SeqEnum -> RngIntElt
   RandomAbelianSurface_d10g6(P) : Prj -> Srfc
   RayClassField(m) : Map -> FldAb
   SClassGroupAbelianInvariants(S) : SetEnum[PlcFunElt] -> SeqEnum
   ZeroModularAbelianVariety() : -> ModAbVar
   ZeroModularAbelianVariety(k) : RngIntElt -> ModAbVar
   pElementaryAbelianNormalSubgroup(G, p) : GrpPerm, RngIntElt -> GrpPerm

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013