[Next][Prev] [Right] [Left] [Up] [Index] [Root]

Invariants of an Abelian Group

ElementaryAbelianQuotient(G, p) : GrpAb, RngIntElt -> GrpAb, Map
The maximal p-elementary abelian quotient of the group G as GrpAb. The natural epimorphism is returned as second value.
FreeAbelianQuotient(G) : GrpAb -> GrpAb, Map
The maximal free abelian quotient of the group G as GrpAb. The natural epimorphism is returned as second value.
Invariants(A) : GrpAb -> [ RngIntElt ]
The invariants of the abelian group G. Each infinite cyclic factor is represented by zero.
TorsionFreeRank(A) : GrpAb -> RngIntElt
The torsion-free rank of the abelian group G.
TorsionInvariants(A) : GrpAb -> [ RngIntElt ]
The torsion invariants of the abelian group G.
PrimaryInvariants(A) : GrpAb -> [ RngIntElt ]
The primary invariants of the abelian group G.
pPrimaryInvariants(A, p) : GrpAb, RngIntElt -> [ RngIntElt ]
The p-primary invariants of the abelian group G.
 [Next][Prev] [Right] [Left] [Up] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013