[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: code .. Coefficient
ADDITIVE CODES
ALGEBRAIC-GEOMETRIC CODES
Constructing Nearfields (NEARFIELDS)
Construction from Groups, Codes and Designs (GRAPHS)
Graphs Constructed from Designs (GRAPHS)
Incidence Structures, Graphs and Codes (INCIDENCE STRUCTURES AND DESIGNS)
Lattices from Linear Codes (LATTICES)
LINEAR CODES OVER FINITE FIELDS
LINEAR CODES OVER FINITE RINGS
LOW DENSITY PARITY CHECK CODES
Planes, Graphs and Codes (FINITE PLANES)
QUANTUM CODES
The Code Space (ADDITIVE CODES)
The Code Space (LINEAR CODES OVER FINITE FIELDS)
Graphs Constructed from Designs (GRAPHS)
CodeRng_code-elts (Example H155E26)
The Code Space (ADDITIVE CODES)
The Code Space (LINEAR CODES OVER FINITE FIELDS)
CodeAdd_CodeAddFromCode (Example H156E3)
CodeAdd_CodeAddFromCodeFail (Example H156E4)
CodeAdd_CodeAddFromMatrix (Example H156E2)
CodeComplement(C, C1) : Code, Code -> Code
CodeComplement(C, S) : Code, Code -> Code
CodeFld_CodeFromMatrix (Example H152E2)
CodeRng_CodeFromMatrix (Example H155E2)
BasicCodegrees(W) : GrpFPCox -> RngIntElt
BasicCodegrees(W) : GrpMat -> RngIntElt
ReedMullerCodesLRMZ4(r, m) : RngIntElt, RngIntElt -> SeqEnum
ReedMullerCodesRMZ4(s, m) : RngIntElt, RngIntElt -> Tup
Algebraic Geometric Codes (ALGEBRAIC CURVES)
Best Known Linear Codes (LINEAR CODES OVER FINITE FIELDS)
Best Known Quantum Codes (QUANTUM CODES)
Codes over Z4 (LINEAR CODES OVER FINITE RINGS)
Combining Codes (ADDITIVE CODES)
Combining Codes (LINEAR CODES OVER FINITE FIELDS)
CSS Codes (QUANTUM CODES)
Derived Binary Codes (LINEAR CODES OVER FINITE RINGS)
Maximum Distance Separable Codes (LINEAR CODES OVER FINITE FIELDS)
New Codes From Old (QUANTUM CODES)
Plane_codes (Example H141E18)
CodeToString(n) : RngIntElt -> MonStgElt
CodeRng_codeword-ops (Example H155E27)
Codifferent(I) : RngFunOrdIdl -> RngFunOrdIdl
Codifferent(I) : RngOrdFracIdl -> RngOrdFracIdl
ApparentEquationDegrees(X) : GRSch -> RngIntElt
ApparentSyzygyDegrees(X) : GRSch -> RngIntElt
BettiNumbers(X) : GRSch -> RngIntElt
ApparentCodimension(X) : GRSch -> RngIntElt
ApparentCodimension(f) : RngUPolElt -> RngIntElt
CheckCodimension(X) : GRSch -> BoolElt
Codimension(X) : GRSch -> RngIntElt
Codimension(X) : Sch -> RngIntElt
ConesOfCodimension(F,i) : TorFan,RngIntElt -> SeqEnum
Coding Theory and Cryptography (LINEAR CODES OVER FINITE FIELDS)
Codomain(H) : HomModAbVar -> ModAbVar
Codomain(f) : Map -> Grp
Codomain(f) : Map -> Grp
Codomain(f) : Map -> Grp
Codomain(f) : Map -> Grp
Codomain(f) : Map -> Str
Codomain(f) : MapIsoSch -> CrvHyp
Codomain(phi) : MapModAbVar -> ModAbVar
Codomain(f) : MapSch -> Sch
Codomain(f) : ModMatFldElt -> ModAlg
Codomain(S) : ModMatRng -> ModTupRng
Codomain(a) : ModMatRngElt -> ModTupRng
Codomain(a) : ModMatRngElt -> ModTupRng
Codomain(f) : ModMPolHom -> ModMPol
Codomain(f) : ShfHom -> ShfCoh
Domain(A) : GrpLieAuto -> GrpLie
Domain(P) : PowMap -> Str
Coefficients and Terms (DIFFERENTIAL RINGS)
Coefficients and Terms (DIFFERENTIAL RINGS)
RngLaz_coeff_non_spiral (Example H50E8)
CoefficientField(D) : DB -> FldFin
BaseField(D) : DB -> FldFin
BaseField(A) : JacHyp -> Fld
BaseField(J) : JacHyp -> Fld
BaseField(M) : ModFrmBianchi ->
BaseField(M) : ModFrmHil ->
BaseField(C) : Sch -> Fld
BaseField(X) : Sch -> Fld
BaseField(K) : SrfKum -> Fld
BaseRing(O) : AlgAssVOrd -> Rng
BaseRing(B) : AlgBas -> Rng
BaseRing(F) : AlgFr -> Rng
BaseRing(R) : AlgMat -> Rng
BaseRing(L) : AlgSym -> Rng
BaseRing(E) : CrvEll -> Rng
BaseRing(A) : FldAb -> Rng
BaseRing(F) : FldFun -> Rng
BaseRing(FF) : FldFunOrd -> Rng
BaseRing(F) : FldFunRat -> Rng
BaseRing(G) : GrpLie -> Rng
BaseRing(G) : GrpLie -> Rng
BaseRing(L) : Lat -> Rng
BaseRing(M) : ModDed -> Rng
BaseRing(M) : ModFrm -> Rng
BaseRing(A) : Mtrx -> Rng
BaseRing(A) : MtrxSprs -> Rng
BaseRing(C) : RngCox -> Fld
BaseRing(R) : RngDiffOp -> Rng
BaseRing(O) : RngFunOrd -> Rng
BaseRing(L) : RngLocA -> Rng
BaseRing(P) : RngMPol -> Rng
BaseRing(O) : RngOrd -> Rng
BaseRing(L) : RngPad -> RngPad
BaseRing(R) : RngPowLaz -> Rng
BaseRing(R) : RngSer -> Rng
BaseRing(R) : RngSLPol -> Rng
BaseRing(P) : RngUPol -> Rng
BaseRing(C) : Sch -> Rng
BaseRing(X) : Sch -> Rng
BaseRing(G) : SchGrpEll -> Rng
Coefficient(a, g) : AlgGrpElt, GrpElt -> RngElt
Coefficient(s, p) : AlgSymElt, SeqEnum -> RngElt
Coefficient(f, n) : ModFrmElt, RngIntElt -> RngElt
Coefficient(L, i) : RngDiffOpElt, RngIntElt -> RngElt
Coefficient(f, i, k) : RngMPolElt, RngIntElt, RngIntElt -> RngElt
Coefficient(x, i) : RngPadElt, RngIntElt -> RngPadElt
Coefficient(s, i) : RngPowLazElt, RngIntElt -> RngElt
Coefficient(s, T) : RngPowLazElt, SeqEnum -> RngElt
Coefficient(f, i) : RngSerElt, RngElt -> RngElt
Coefficient(p, i) : RngUPolElt, RngIntElt -> RngElt
CoefficientField(x) : AlgChtrElt -> Rng
CoefficientField(C) : Code -> Rng
CoefficientField(V) : ModTupFld -> Fld
CoefficientHeight(E) : FldNumElt -> RngIntElt
CoefficientHeight(a) : RngFunOrdElt -> RngIntElt
CoefficientHeight(E) : RngOrdElt -> RngIntElt
CoefficientHeight(I) : RngOrdIdl -> RngIntElt
CoefficientIdeals(P): PMat -> SeqEnum
CoefficientIdeals(O) : RngFunOrd -> [RngFunOrdIdl]
CoefficientIdeals(O) : RngOrd -> [RngOrdFracIdl]
CoefficientIdeals(I) : RngOrdFracIdl -> [RngOrdFracIdl]
CoefficientIdeals(I) : RngOrdFracIdl -> [RngOrdFracIdl]
CoefficientLength(E) : FldNumElt -> RngIntElt
CoefficientLength(a) : RngFunOrdElt -> RngIntElt
CoefficientLength(E) : RngOrdElt -> RngIntElt
CoefficientLength(I) : RngOrdIdl -> RngIntElt
CoefficientMap(L) : LinearSys -> ModTupFldElt
CoefficientRing(A) : AlgFP -> Rng
CoefficientRing(L) : AlgFPLie -> Rng
CoefficientRing(A) : AlgGen -> Rng
CoefficientRing(A) : AlgGrp -> Rng
CoefficientRing(A) : AlgGrpSub -> Rng
CoefficientRing(L) : AlgKac -> Rng
CoefficientRing(L) : AlgLie -> Rng
CoefficientRing(L) : AlgLieExtr -> Rng
CoefficientRing(U) : AlgPBW -> Rng
CoefficientRing(U) : AlgQUE -> Fld
CoefficientRing(A) : FldAb -> Fld
CoefficientRing(G) : GrpMat -> Rng
CoefficientRing(M): ModAlg -> Fld
CoefficientRing(M) : ModMPol -> ModMPol
CoefficientRing(M) : ModRng -> Rng
CoefficientRing(M) : ModTupRng -> Rng
CoefficientRing(D) : PhiMod -> RngSerLaur
CoefficientRing(R) : RngInvar -> Grp
CoefficientRing(Q) : RngMPolRes -> Rng
CoefficientRing(E) : RngSerExt -> Rng
CoefficientRing(V) : SSGalRep -> FldFin
CoefficientSpace(L) : LinearSys -> ModTupFld
ConstantCoefficient(p) : RngUPolElt -> RngElt
ConstantCoefficient(F) : RngUPolTwstElt -> RngElt
EhrhartCoefficient(P,k) : TorPol,RngIntElt -> RngIntElt
GroundField(F) : FldAlg -> Fld
GroundField(F) : FldNum -> Fld
HilbertCoefficient(D,i) : DivTor,RngIntElt -> RngIntElt
LSeriesLeadingCoefficient(M, j, prec) : ModSym, RngIntElt, RngIntElt -> FldPrElt, RngIntElt
LeadingCoefficient(f) : AlgFrElt -> RngElt
LeadingCoefficient(L, s, prec) : ModAbVarLSer, RngIntElt, RngIntElt -> FldReElt, RngIntElt
LeadingCoefficient(L) : RngDiffOpElt -> RngElt
LeadingCoefficient(f) : RngMPolElt -> RngElt
LeadingCoefficient(f, i) : RngMPolElt, RngIntElt -> RngElt
LeadingCoefficient(s) : RngPowLazElt -> RngElt
LeadingCoefficient(f) : RngSerElt -> RngElt
LeadingCoefficient(p) : RngUPolElt -> RngElt
LeadingCoefficient(F) : RngUPolTwstElt -> RngElt
MonomialCoefficient(f, m) : AlgFrElt, AlgFrElt -> RngElt
MonomialCoefficient(f, m) : RngMPolElt, RngMPolElt -> RngElt
MonomialCoefficient(p, m) : RngUPolElt, RngUPolElt -> RngElt
NormalisationCoefficient(e) : HilbSpc -> FldComElt
PolynomialCoefficient(s, i) : RngPowLazElt, RngIntElt -> RngPowLazElt
TrailingCoefficient(f) : AlgFrElt -> RngElt
TrailingCoefficient(f) : RngMPolElt -> RngElt
TrailingCoefficient(f, i) : RngMPolElt, RngIntElt -> RngElt
TrailingCoefficient(p) : RngUPolElt -> RngElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013