[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: DefiningPolynomials .. Degree
DefiningPolynomials(F) : FldFun -> [RngUPolElt]
DefiningPolynomials(H) : HypGeomData -> RngUPolElt, RngUPolElt
DefiningPolynomials(f) : MapSch -> SeqEnum
DefiningPolynomials(X) : Sch -> SeqEnum
DefiningSubschemePolynomial(G) : SchGrpEll -> RngUPolElt
DefiniteGramMatrix(B) : SeqEnum[AlgQuatElt] -> FldReElt
DefiniteNorm(gamma) : AlgQuatElt -> FldReElt
IsDefinite(A) : AlgQuat -> BoolElt
IsDefinite(M) : ModFrmHil -> BoolElt
IsNegativeDefinite(F) : ModMatRngElt -> BoolElt
IsNegativeSemiDefinite(F) : ModMatRngElt -> BoolElt
IsPositiveDefinite(F) : ModMatRngElt -> BoolElt
IsPositiveSemiDefinite(F) : ModMatRngElt -> BoolElt
PositiveDefiniteForm(G) : GrpMat -> Mtrx
PositiveDefiniteForm(L) : Lat -> AlgMatElt
Algorithm I (Using Definite Quaternion Orders) (HILBERT MODULAR FORMS)
Testing Matrices for Definiteness (LATTICES)
DefiniteGramMatrix(B) : SeqEnum[AlgQuatElt] -> FldReElt
DefiniteNorm(gamma) : AlgQuatElt -> FldReElt
FieldOfDefinition(H) : HomModAbVar -> ModAbVar
FieldOfDefinition(phi) : MapModAbVar -> ModAbVar
FieldOfDefinition(A) : ModAbVar -> Fld
FieldOfDefinition(x) : ModAbVarElt -> ModTupFldElt
FieldOfDefinition(G) : ModAbVarSubGrp -> Fld
Creation of a Group (FINITE SOLUBLE GROUPS)
Definition of Elements (FINITE SOLUBLE GROUPS)
General Modules (INTRODUCTION TO MODULES [MODULES])
Introduction (FINITE PLANES)
Introduction (GRAPHS)
Introduction (INCIDENCE STRUCTURES AND DESIGNS)
Specification of Elements (POLYCYCLIC GROUPS)
Terminology (MAGMA SEMANTICS)
Terminology (PERMUTATION GROUPS)
Definitions (ADMISSIBLE REPRESENTATIONS OF GL2(Qp))
Definitions (MOD P GALOIS REPRESENTATIONS)
EulerFactorsByDeformation(Q, Y) : RngMPolElt, SeqEnum -> SeqEnum
ZetaFunctionsByDeformation(Q, Y) : RngMPolElt, SeqEnum -> SeqEnum
JacobianOrdersByDeformation(Q, Y) : RngMPolElt, SeqEnum -> SeqEnum
DefRing(G) : GrpLie -> Rng
Definition of the Class Invariants (BRAID GROUPS)
NumberOfPlacesDegECF(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOverExactConstantField(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOverExactConstantField(F, m) : FldFun, RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOverExactConstantField(F, m) : FldFunG, RngIntElt -> RngIntElt
Adjacency and Degree (MULTIGRAPHS)
Adjacency and Degree Functions for Mul-tigraphs (MULTIGRAPHS)
Adjacency and Degree Functions for Multidigraphs (MULTIGRAPHS)
MinimizeDeg4delPezzo(f, p) : SeqEnum, RngIntElt -> SeqEnum, Mtrx
MinimizeReduceDeg4delPezzo(f) : SeqEnum -> SeqEnum, Mtrx
ParametrizeDelPezzoDeg6(X) : Sch -> BoolElt, MapIsoSch
CodeLDPC_DEGaussian (Example H154E7)
DegeneracyMap(M1, M2, d) : ModSym, ModSym, RngIntElt -> Map
DegeneracyMatrix(M1, M2, d) : ModSym, ModSym, RngIntElt -> AlgMatElt
DegeneracyOperator(M, P, Q) : ModFrmHil, RngOrdIdl, RngOrdIdl -> Mtrx
DegeneracyMap(M1, M2, d) : ModSym, ModSym, RngIntElt -> Map
DegeneracyMatrix(M1, M2, d) : ModSym, ModSym, RngIntElt -> AlgMatElt
DegeneracyOperator(M, P, Q) : ModFrmHil, RngOrdIdl, RngOrdIdl -> Mtrx
IsDegenerate(N) : NwtnPgon -> BoolElt
IsDegenerate(F) : NwtnPgonFace -> BoolElt
AbsoluteDegree(A) : FldAb -> RngIntElt
AbsoluteDegree(F) : FldFunG -> RngIntElt
AbsoluteDegree(F) : FldNum -> RngIntElt
AbsoluteDegree(O) : RngOrd -> RngIntElt
AbsoluteDegree(L) : RngPad -> RngIntElt
AbsoluteInertiaDegree(L) : RngPad -> RngIntElt
AbsoluteRamificationDegree(L) : RngPad -> RngIntElt
BlockDegree(D) : Dsgn -> RngIntElt
BlockDegree(D, B) : Inc, IncBlk -> RngIntElt
Degree(O) : AlgAssVOrd -> RngIntElt
Degree(x) : AlgChtrElt -> RngIntElt
Degree(A) : AlgGen -> RngIntElt
Degree(a) : AlgGenElt -> RngIntElt
Degree(L) : AlgLie -> RngIntElt
Degree(a) : AlgLieElt -> RngIntElt
Degree(R) : AlgMat -> RngIntElt
Degree(u, i) : AlgPBWElt -> RngIntElt
Degree(u, i) : AlgQUEElt, RngIntElt -> RngIntElt
Degree(s) : AlgSymElt -> RngIntElt
Degree(A) : ArtRep -> RngIntElt
Degree(Z) : Clstr -> RngIntElt
Degree(C) : CrvHyp -> RngIntElt
Degree(D) : DB -> RngIntElt
Degree(D) : DB -> RngIntElt
Degree(D) : DivCrvElt -> RngIntElt
Degree(D) : DivFunElt -> RngIntElt
Degree(D) : DivNumElt -> RngElt
Degree(D) : DivNumElt -> RngElt
Degree(D) : DivSchElt -> FldRatElt
Degree(A) : FldAb -> RngIntElt
Degree(A) : FldAC -> RngIntElt
Degree(A, v) : FldAC, RngIntElt -> RngIntElt
Degree(F) : FldFin -> RngIntElt
Degree(F, E) : FldFin, FldFin -> RngIntElt
Degree(A) : FldFunAb -> RngIntElt
Degree(a) : FldFunElt -> RngIntElt
Degree(f) : FldFunFracSchElt[Crv] -> RngIntElt
Degree(F) : FldFunG -> RngIntElt
Degree(f) : FldFunRatElt -> RngIntElt
Degree(F) : FldNum -> RngIntElt
Degree(Q) : FldRat -> RngIntElt
Degree(C) : GRCrvS -> RngIntElt
Degree(s) : GrphSpl -> RngIntElt
Degree(u) : GrphVert -> RngIntElt
Degree(u) : GrphVert -> RngIntElt
Degree(u) : GrphVert -> RngIntElt
Degree(u) : GrphVert -> RngIntElt
Degree(G) : GrpMat -> RngIntElt
Degree(g) : GrpMatElt -> RngIntElt
Degree(G, Y) : GrpPerm, GSet -> RngIntElt
Degree(G) : GrpPermElt -> RngIntElt
Degree(g) : GrpPermElt -> RngIntElt
Degree(g, Y) : GrpPermElt, GSet -> RngIntElt
Degree(X) : GRSch -> FldRatElt
Degree(H) : HypGeomData -> RngIntElt
Degree(L) : Lat -> RngIntElt
Degree(v) : LatElt -> RngIntElt
Degree(L) : LinearSys -> RngIntElt
Degree(I) : Map -> RngIntElt
Degree(f) : MapChn -> RngIntElt
Degree(phi) : MapModAbVar -> RngIntElt
Degree(m) : MapSch -> RngIntElt
Degree(x) : ModAbVarElt -> RngIntElt
Degree(M) : ModBrdt -> RngIntElt
Degree(M) : ModDed -> RngIntElt
Degree(model) : ModelG1 -> RngIntElt
Degree(f) : ModFrmElt -> RngIntElt
Degree(M) : ModMPol -> RngIntElt
Degree(f) : ModMPolElt -> RngIntElt
Degree(f) : ModMPolHom -> RngIntElt
Degree(P) : ModSSElt -> RngElt
Degree(V) : ModTupFld -> RngIntElt
Degree(u) : ModTupFldElt -> RngIntElt
Degree(P) : PlcCrvElt -> RngIntElt
Degree(P) : PlcFunElt -> RngIntElt
Degree(I) : RngFunOrdIdl -> RngIntElt
Degree(R) : RngGal -> RngIntElt
Degree(I) : RngInt -> RngIntElt
Degree(L) : RngLocA -> RngIntElt
Degree(L, R) : RngLocA, Rng -> RngIntElt
Degree(f) : RngMPolElt -> RngIntElt
Degree(f, i) : RngMPolElt, RngIntElt -> RngIntElt
Degree(O) : RngOrd -> RngIntElt
Degree(I) : RngOrdIdl -> RngIntElt
Degree(L) : RngPad -> RngIntElt
Degree(K, L) : RngPad, RngPad -> RngIntElt
Degree(f) : RngSerElt -> RngIntElt
Degree(p) : RngUPolElt -> RngIntElt
Degree(F) : RngUPolTwstElt -> RngIntElt
Degree(C) : Sch -> RngIntElt
Degree(X) : Sch -> RngIntElt
Degree(f) : ShfHom -> RngIntElt
Degree(P) : StkPtnOrd -> RngIntElt
Degree(e) : SubFldLatElt -> RngIntElt
DegreeMap(M : parameters) : ModSym -> [ Tup ], Fld
DegreeOfExactConstantField(m) : DivFunElt -> RngIntElt
DegreeOfExactConstantField(m, U) : DivFunElt, GrpAb -> RngIntElt
DegreeOfExactConstantField(A) : FldFunAb -> RngIntElt
DegreeOfFieldExtension(G) : GrpMat -> RngIntElt
DegreeOnePrimeIdeals(O, B) : RngOrd, RngIntElt -> [ RngOrdIdl ]
DegreeRange(D) : DB -> RngIntElt, RngIntElt
DegreeReduction(G) : GrpPerm -> GrpPerm, Hom
DegreeSequence(G) : Grph -> [ { GrphVert } ]
DegreeSequence(G) : Grph -> [ { GrphVert } ]
DegreeSequence(G) : GrphMultDir -> [ GrphVert ]
DegreeSequence(G) : GrphMultUnd -> [ { GrphVert } ]
DimensionOfExactConstantField(F) : FldFunG -> RngIntElt
DistinctDegreeFactorization(f) : RngUPolElt -> [ <RngIntElt, RngUPolElt> ]
DivisorOfDegreeOne(C) : Crv[FldFin] -> DivCrvElt
DivisorOfDegreeOne(F) : FldFunG -> DivFunElt
EqualDegreeFactorization(f, d, g) : RngUPolElt, RngIntElt, RngUPolElt -> [ RngUPolElt ]
FunctionDegree(f) : MapSch -> RngIntElt
GuessAltsymDegree(G: parameters) : Grp -> BoolElt, MonStgElt, RngIntElt
GuessAltsymDegree(G: parameters) : Grp -> BoolElt, MonStgElt, RngIntElt
HasOddDegreeModel(C) : CrvHyp -> BoolElt, CrvHyp, MapIsoSch
InDegree(u) : GrphVert -> RngIntElt
InDegree(u) : GrphVert -> RngIntElt
InertiaDegree(P) : PlcFunElt -> RngIntElt
InertiaDegree(P) : PlcNumElt -> RngIntElt
InertiaDegree(P) : PlcNumElt -> RngIntElt
InertiaDegree(L) : RngLocA -> RngIntElt
InertiaDegree(L) : RngPad -> RngIntElt
InertiaDegree(K, L) : RngPad, RngPad -> RngIntElt
InertiaDegree(E) : RngSerExt -> RngIntElt
InvariantsOfDegree(R, d) : RngInvar, RngIntElt -> [ RngMPolElt ]
InvariantsOfDegree(R, d) : RngInvar, RngIntElt -> [ RngMPolElt ]
InvariantsOfDegree(R, d, k) : RngInvar, RngIntElt, RngIntElt -> [ RngMPolElt ]
IsolGroupOfDegreeFieldSatisfying(d, p, f) : RngIntElt, RngIntElt, Any -> GrpMat
IsolGroupOfDegreeSatisfying(d, f) : RngIntElt, Any -> GrpMat
IsolGroupsOfDegreeFieldSatisfying(d, p, f) : RngIntElt, RngIntElt, Any -> SeqEnum
IsolGroupsOfDegreeSatisfying(d, f) : RngIntElt, Any -> SeqEnum
IsolNumberOfDegreeField(n, p) : RngIntElt, RngIntElt -> RngIntElt
IsolProcessOfDegree(d) : . -> Process
IsolProcessOfDegreeField(d, p) : ., . -> Process
LeadingTotalDegree(f) : AlgFrElt -> RngIntElt
LeadingTotalDegree(f) : RngMPolElt -> RngIntElt
LeadingWeightedDegree(f) : RngMPolElt -> RngIntElt
LocalDegree(P) : PlcNumElt -> RngIntElt
LocalDegree(P) : PlcNumElt -> RngIntElt
MaximumBettiDegree(M, i) : ModMPol -> RngIntElt
MaximumDegree(G) : GrphDir -> RngIntElt, GrphVert
MaximumDegree(G) : GrphMultDir -> RngIntElt, GrphVert
MaximumDegree(G) : GrphMultUnd -> RngIntElt, GrphVert
MaximumDegree(G) : GrphUnd -> RngIntElt, GrphVert
MaximumDegree(f) : SeqEnum -> RngIntElt
MaximumInDegree(G) : GrphDir -> RngIntElt, GrphVert
MaximumInDegree(G) : GrphMultDir -> RngIntElt, GrphVert
MaximumOutDegree(G) : GrphDir -> RngIntElt, GrphVert
MaximumOutDegree(G) : GrphMultDir -> RngIntElt, GrphVert
MinimalDegreeModel(E) : CrvEll[FldFunRat] -> CrvEll, Map, Map
MinimumDegree(G) : GrphDir -> RngIntElt, GrphVert
MinimumDegree(G) : GrphMultDir -> RngIntElt, GrphVert
MinimumDegree(G) : GrphMultUnd -> RngIntElt, GrphVert
MinimumDegree(G) : GrphUnd -> RngIntElt, GrphVert
MinimumInDegree(G) : GrphDir -> RngIntElt, GrphVert
MinimumInDegree(G) : GrphMultDir -> RngIntElt, GrphVert
MinimumOutDegree(G) : GrphDir -> RngIntElt, GrphVert
MinimumOutDegree(G) : GrphMultDir -> RngIntElt, GrphVert
ModularDegree(E) : CrvEll -> RngIntElt
ModularDegree(A) : ModAbVar -> RngIntElt
ModularDegree(M) : ModSym -> RngIntElt
MonomialsOfDegree(P, d) : RngMPolElt, RngIntElt -> {@ RngMPolElt @}
MonomialsOfWeightedDegree(P, d) : RngMPolElt, RngIntElt -> {@ RngMPolElt @}
MonomialsOfWeightedDegree(X, D) : Sch, [RngIntElt] -> SetIndx
NumberOfPlacesOfDegreeOne(m, U) : DivFunElt, GrpAb -> RngIntElt
NumberOfPlacesOfDegreeOne(A) : FldFunAb -> RngIntElt
NumberOfPlacesOfDegreeOneECFBound(C) : Crv -> RngIntElt
NumberOfPlacesOfDegreeOneECFBound(F) : FldFunG -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField(C) : Crv[FldFin] -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField(F, m) : FldFun, RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField(F) : FldFunG -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField(F, m) : FldFunG, RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantFieldBound(F, m) : FldFun, RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOverExactConstantField(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOverExactConstantField(F, m) : FldFun, RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOverExactConstantField(F, m) : FldFunG, RngIntElt -> RngIntElt
Order(L) : RngDiffOpElt -> RngIntElt
OutDegree(u) : GrphVert -> RngIntElt
OutDegree(u) : GrphVert -> RngIntElt
OverconvergentHeckeSeriesDegreeBound(p, N, k, m) : RngIntElt, RngIntElt, RngIntElt, RngIntElt -> RngIntElt
PointDegree(D, p) : Inc, IncPt -> RngIntElt
PrintTermsOfDegree(s, l, n) : RngPowLazElt, RngIntElt, RngIntElt ->
RamificationDegree(I) : RngOrdIdl -> RngIntElt
RamificationDegree(L) : RngPad -> RngIntElt
RamificationDegree(K, L) : RngPad, RngPad -> RngIntElt
RamificationIndex(P) : PlcFunElt -> RngIntElt
RamificationIndex(I) : RngFunOrdIdl -> RngIntElt
RamificationIndex(I, p) : RngOrdIdl, RngIntElt -> RngIntElt
RamificationIndex(E) : RngSerExt -> RngIntElt
RestrictDegree(a, n): AlgSymElt, RngIntElt -> AlgSymElt
SetAllInvariantsOfDegree(R, d, Q) : RngInvar, RngIntElt, [ RngMPolElt ] ->
ShiftToDegreeZero(C) : ModCpx -> ModCpx
TotalDegree(f) : AlgFrElt -> RngIntElt
TotalDegree(f) : FldFunRatElt -> RngIntElt
TotalDegree(f) : RngMPolElt -> RngIntElt
TwistingDegree(R) : RootDtm -> RngIntElt
WeakOrder(L) : RngDiffOpElt -> RngIntElt
WeightedDegree(f) : FldFunRatElt -> RngIntElt
WeilDescentDegree(E,k) : FldFun, FldFin -> RngIntElt
WeilDescentDegree(E, k, c) : FldFun, FldFin, FldFinElt -> RngIntElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013