[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: DefiningPolynomials  ..  Degree


DefiningPolynomials

   DefiningPolynomials(F) : FldFun -> [RngUPolElt]
   DefiningPolynomials(H) : HypGeomData -> RngUPolElt, RngUPolElt
   DefiningPolynomials(f) : MapSch -> SeqEnum
   DefiningPolynomials(X) : Sch -> SeqEnum

DefiningSubschemePolynomial

   DefiningSubschemePolynomial(G) : SchGrpEll -> RngUPolElt

Definite

   DefiniteGramMatrix(B) : SeqEnum[AlgQuatElt] -> FldReElt
   DefiniteNorm(gamma) : AlgQuatElt -> FldReElt
   IsDefinite(A) : AlgQuat -> BoolElt
   IsDefinite(M) : ModFrmHil -> BoolElt
   IsNegativeDefinite(F) : ModMatRngElt -> BoolElt
   IsNegativeSemiDefinite(F) : ModMatRngElt -> BoolElt
   IsPositiveDefinite(F) : ModMatRngElt -> BoolElt
   IsPositiveSemiDefinite(F) : ModMatRngElt -> BoolElt
   PositiveDefiniteForm(G) : GrpMat -> Mtrx
   PositiveDefiniteForm(L) : Lat -> AlgMatElt

definite

   Algorithm I (Using Definite Quaternion Orders) (HILBERT MODULAR FORMS)
   Testing Matrices for Definiteness (LATTICES)

DefiniteGramMatrix

   DefiniteGramMatrix(B) : SeqEnum[AlgQuatElt] -> FldReElt

DefiniteNorm

   DefiniteNorm(gamma) : AlgQuatElt -> FldReElt

Definition

   FieldOfDefinition(H) : HomModAbVar -> ModAbVar
   FieldOfDefinition(phi) : MapModAbVar -> ModAbVar
   FieldOfDefinition(A) : ModAbVar -> Fld
   FieldOfDefinition(x) : ModAbVarElt -> ModTupFldElt
   FieldOfDefinition(G) : ModAbVarSubGrp -> Fld

definition

   Creation of a Group (FINITE SOLUBLE GROUPS)
   Definition of Elements (FINITE SOLUBLE GROUPS)
   General Modules (INTRODUCTION TO MODULES [MODULES])
   Introduction (FINITE PLANES)
   Introduction (GRAPHS)
   Introduction (INCIDENCE STRUCTURES AND DESIGNS)
   Specification of Elements (POLYCYCLIC GROUPS)
   Terminology (MAGMA SEMANTICS)
   Terminology (PERMUTATION GROUPS)

definitions

   Definitions (ADMISSIBLE REPRESENTATIONS OF GL2(Qp))
   Definitions (MOD P GALOIS REPRESENTATIONS)

Deformation

   EulerFactorsByDeformation(Q, Y) : RngMPolElt, SeqEnum -> SeqEnum
   ZetaFunctionsByDeformation(Q, Y) : RngMPolElt, SeqEnum -> SeqEnum
   JacobianOrdersByDeformation(Q, Y) : RngMPolElt, SeqEnum -> SeqEnum

DefRing

   DefRing(G) : GrpLie -> Rng

defs

   Definition of the Class Invariants (BRAID GROUPS)

Deg

   NumberOfPlacesDegECF(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
   NumberOfPlacesOfDegreeOverExactConstantField(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
   NumberOfPlacesOfDegreeOverExactConstantField(F, m) : FldFun, RngIntElt -> RngIntElt
   NumberOfPlacesOfDegreeOverExactConstantField(F, m) : FldFunG, RngIntElt -> RngIntElt

deg

   Adjacency and Degree (MULTIGRAPHS)
   Adjacency and Degree Functions for Mul-tigraphs (MULTIGRAPHS)
   Adjacency and Degree Functions for Multidigraphs (MULTIGRAPHS)

Deg4del

   MinimizeDeg4delPezzo(f, p) : SeqEnum, RngIntElt -> SeqEnum, Mtrx
   MinimizeReduceDeg4delPezzo(f) : SeqEnum -> SeqEnum, Mtrx

Deg6

   ParametrizeDelPezzoDeg6(X) : Sch -> BoolElt, MapIsoSch

DEGaussian

   CodeLDPC_DEGaussian (Example H154E7)

Degeneracy

   DegeneracyMap(M1, M2, d) : ModSym, ModSym, RngIntElt -> Map
   DegeneracyMatrix(M1, M2, d) : ModSym, ModSym, RngIntElt -> AlgMatElt
   DegeneracyOperator(M, P, Q) : ModFrmHil, RngOrdIdl, RngOrdIdl -> Mtrx

DegeneracyMap

   DegeneracyMap(M1, M2, d) : ModSym, ModSym, RngIntElt -> Map

DegeneracyMatrix

   DegeneracyMatrix(M1, M2, d) : ModSym, ModSym, RngIntElt -> AlgMatElt

DegeneracyOperator

   DegeneracyOperator(M, P, Q) : ModFrmHil, RngOrdIdl, RngOrdIdl -> Mtrx

Degenerate

   IsDegenerate(N) : NwtnPgon -> BoolElt
   IsDegenerate(F) : NwtnPgonFace -> BoolElt

Degree

   AbsoluteDegree(A) : FldAb -> RngIntElt
   AbsoluteDegree(F) : FldFunG -> RngIntElt
   AbsoluteDegree(F) : FldNum -> RngIntElt
   AbsoluteDegree(O) : RngOrd -> RngIntElt
   AbsoluteDegree(L) : RngPad -> RngIntElt
   AbsoluteInertiaDegree(L) : RngPad -> RngIntElt
   AbsoluteRamificationDegree(L) : RngPad -> RngIntElt
   BlockDegree(D) : Dsgn -> RngIntElt
   BlockDegree(D, B) : Inc, IncBlk -> RngIntElt
   Degree(O) : AlgAssVOrd -> RngIntElt
   Degree(x) : AlgChtrElt -> RngIntElt
   Degree(A) : AlgGen -> RngIntElt
   Degree(a) : AlgGenElt -> RngIntElt
   Degree(L) : AlgLie -> RngIntElt
   Degree(a) : AlgLieElt -> RngIntElt
   Degree(R) : AlgMat -> RngIntElt
   Degree(u, i) : AlgPBWElt -> RngIntElt
   Degree(u, i) : AlgQUEElt, RngIntElt -> RngIntElt
   Degree(s) : AlgSymElt -> RngIntElt
   Degree(A) : ArtRep -> RngIntElt
   Degree(Z) : Clstr -> RngIntElt
   Degree(C) : CrvHyp -> RngIntElt
   Degree(D) : DB -> RngIntElt
   Degree(D) : DB -> RngIntElt
   Degree(D) : DivCrvElt -> RngIntElt
   Degree(D) : DivFunElt -> RngIntElt
   Degree(D) : DivNumElt -> RngElt
   Degree(D) : DivNumElt -> RngElt
   Degree(D) : DivSchElt -> FldRatElt
   Degree(A) : FldAb -> RngIntElt
   Degree(A) : FldAC -> RngIntElt
   Degree(A, v) : FldAC, RngIntElt -> RngIntElt
   Degree(F) : FldFin -> RngIntElt
   Degree(F, E) : FldFin, FldFin -> RngIntElt
   Degree(A) : FldFunAb -> RngIntElt
   Degree(a) : FldFunElt -> RngIntElt
   Degree(f) : FldFunFracSchElt[Crv] -> RngIntElt
   Degree(F) : FldFunG -> RngIntElt
   Degree(f) : FldFunRatElt -> RngIntElt
   Degree(F) : FldNum -> RngIntElt
   Degree(Q) : FldRat -> RngIntElt
   Degree(C) : GRCrvS -> RngIntElt
   Degree(s) : GrphSpl -> RngIntElt
   Degree(u) : GrphVert -> RngIntElt
   Degree(u) : GrphVert -> RngIntElt
   Degree(u) : GrphVert -> RngIntElt
   Degree(u) : GrphVert -> RngIntElt
   Degree(G) : GrpMat -> RngIntElt
   Degree(g) : GrpMatElt -> RngIntElt
   Degree(G, Y) : GrpPerm, GSet -> RngIntElt
   Degree(G) : GrpPermElt -> RngIntElt
   Degree(g) : GrpPermElt -> RngIntElt
   Degree(g, Y) : GrpPermElt, GSet -> RngIntElt
   Degree(X) : GRSch -> FldRatElt
   Degree(H) : HypGeomData -> RngIntElt
   Degree(L) : Lat -> RngIntElt
   Degree(v) : LatElt -> RngIntElt
   Degree(L) : LinearSys -> RngIntElt
   Degree(I) : Map -> RngIntElt
   Degree(f) : MapChn -> RngIntElt
   Degree(phi) : MapModAbVar -> RngIntElt
   Degree(m) : MapSch -> RngIntElt
   Degree(x) : ModAbVarElt -> RngIntElt
   Degree(M) : ModBrdt -> RngIntElt
   Degree(M) : ModDed -> RngIntElt
   Degree(model) : ModelG1 -> RngIntElt
   Degree(f) : ModFrmElt -> RngIntElt
   Degree(M) : ModMPol -> RngIntElt
   Degree(f) : ModMPolElt -> RngIntElt
   Degree(f) : ModMPolHom -> RngIntElt
   Degree(P) : ModSSElt -> RngElt
   Degree(V) : ModTupFld -> RngIntElt
   Degree(u) : ModTupFldElt -> RngIntElt
   Degree(P) : PlcCrvElt -> RngIntElt
   Degree(P) : PlcFunElt -> RngIntElt
   Degree(I) : RngFunOrdIdl -> RngIntElt
   Degree(R) : RngGal -> RngIntElt
   Degree(I) : RngInt -> RngIntElt
   Degree(L) : RngLocA -> RngIntElt
   Degree(L, R) : RngLocA, Rng -> RngIntElt
   Degree(f) : RngMPolElt -> RngIntElt
   Degree(f, i) : RngMPolElt, RngIntElt -> RngIntElt
   Degree(O) : RngOrd -> RngIntElt
   Degree(I) : RngOrdIdl -> RngIntElt
   Degree(L) : RngPad -> RngIntElt
   Degree(K, L) : RngPad, RngPad -> RngIntElt
   Degree(f) : RngSerElt -> RngIntElt
   Degree(p) : RngUPolElt -> RngIntElt
   Degree(F) : RngUPolTwstElt -> RngIntElt
   Degree(C) : Sch -> RngIntElt
   Degree(X) : Sch -> RngIntElt
   Degree(f) : ShfHom -> RngIntElt
   Degree(P) : StkPtnOrd -> RngIntElt
   Degree(e) : SubFldLatElt -> RngIntElt
   DegreeMap(M : parameters) : ModSym -> [ Tup ], Fld
   DegreeOfExactConstantField(m) : DivFunElt -> RngIntElt
   DegreeOfExactConstantField(m, U) : DivFunElt, GrpAb -> RngIntElt
   DegreeOfExactConstantField(A) : FldFunAb -> RngIntElt
   DegreeOfFieldExtension(G) : GrpMat -> RngIntElt
   DegreeOnePrimeIdeals(O, B) : RngOrd, RngIntElt -> [ RngOrdIdl ]
   DegreeRange(D) : DB -> RngIntElt, RngIntElt
   DegreeReduction(G) : GrpPerm -> GrpPerm, Hom
   DegreeSequence(G) : Grph -> [ { GrphVert } ]
   DegreeSequence(G) : Grph -> [ { GrphVert } ]
   DegreeSequence(G) : GrphMultDir -> [ GrphVert ]
   DegreeSequence(G) : GrphMultUnd -> [ { GrphVert } ]
   DimensionOfExactConstantField(F) : FldFunG -> RngIntElt
   DistinctDegreeFactorization(f) : RngUPolElt -> [ <RngIntElt, RngUPolElt> ]
   DivisorOfDegreeOne(C) : Crv[FldFin] -> DivCrvElt
   DivisorOfDegreeOne(F) : FldFunG -> DivFunElt
   EqualDegreeFactorization(f, d, g) : RngUPolElt, RngIntElt, RngUPolElt -> [ RngUPolElt ]
   FunctionDegree(f) : MapSch -> RngIntElt
   GuessAltsymDegree(G: parameters) : Grp -> BoolElt, MonStgElt, RngIntElt
   GuessAltsymDegree(G: parameters) : Grp -> BoolElt, MonStgElt, RngIntElt
   HasOddDegreeModel(C) : CrvHyp -> BoolElt, CrvHyp, MapIsoSch
   InDegree(u) : GrphVert -> RngIntElt
   InDegree(u) : GrphVert -> RngIntElt
   InertiaDegree(P) : PlcFunElt -> RngIntElt
   InertiaDegree(P) : PlcNumElt -> RngIntElt
   InertiaDegree(P) : PlcNumElt -> RngIntElt
   InertiaDegree(L) : RngLocA -> RngIntElt
   InertiaDegree(L) : RngPad -> RngIntElt
   InertiaDegree(K, L) : RngPad, RngPad -> RngIntElt
   InertiaDegree(E) : RngSerExt -> RngIntElt
   InvariantsOfDegree(R, d) : RngInvar, RngIntElt -> [ RngMPolElt ]
   InvariantsOfDegree(R, d) : RngInvar, RngIntElt -> [ RngMPolElt ]
   InvariantsOfDegree(R, d, k) : RngInvar, RngIntElt, RngIntElt -> [ RngMPolElt ]
   IsolGroupOfDegreeFieldSatisfying(d, p, f) : RngIntElt, RngIntElt, Any -> GrpMat
   IsolGroupOfDegreeSatisfying(d, f) : RngIntElt, Any -> GrpMat
   IsolGroupsOfDegreeFieldSatisfying(d, p, f) : RngIntElt, RngIntElt, Any -> SeqEnum
   IsolGroupsOfDegreeSatisfying(d, f) : RngIntElt, Any -> SeqEnum
   IsolNumberOfDegreeField(n, p) : RngIntElt, RngIntElt -> RngIntElt
   IsolProcessOfDegree(d) : . -> Process
   IsolProcessOfDegreeField(d, p) : ., . -> Process
   LeadingTotalDegree(f) : AlgFrElt -> RngIntElt
   LeadingTotalDegree(f) : RngMPolElt -> RngIntElt
   LeadingWeightedDegree(f) : RngMPolElt -> RngIntElt
   LocalDegree(P) : PlcNumElt -> RngIntElt
   LocalDegree(P) : PlcNumElt -> RngIntElt
   MaximumBettiDegree(M, i) : ModMPol -> RngIntElt
   MaximumDegree(G) : GrphDir -> RngIntElt, GrphVert
   MaximumDegree(G) : GrphMultDir -> RngIntElt, GrphVert
   MaximumDegree(G) : GrphMultUnd -> RngIntElt, GrphVert
   MaximumDegree(G) : GrphUnd -> RngIntElt, GrphVert
   MaximumDegree(f) : SeqEnum -> RngIntElt
   MaximumInDegree(G) : GrphDir -> RngIntElt, GrphVert
   MaximumInDegree(G) : GrphMultDir -> RngIntElt, GrphVert
   MaximumOutDegree(G) : GrphDir -> RngIntElt, GrphVert
   MaximumOutDegree(G) : GrphMultDir -> RngIntElt, GrphVert
   MinimalDegreeModel(E) : CrvEll[FldFunRat] -> CrvEll, Map, Map
   MinimumDegree(G) : GrphDir -> RngIntElt, GrphVert
   MinimumDegree(G) : GrphMultDir -> RngIntElt, GrphVert
   MinimumDegree(G) : GrphMultUnd -> RngIntElt, GrphVert
   MinimumDegree(G) : GrphUnd -> RngIntElt, GrphVert
   MinimumInDegree(G) : GrphDir -> RngIntElt, GrphVert
   MinimumInDegree(G) : GrphMultDir -> RngIntElt, GrphVert
   MinimumOutDegree(G) : GrphDir -> RngIntElt, GrphVert
   MinimumOutDegree(G) : GrphMultDir -> RngIntElt, GrphVert
   ModularDegree(E) : CrvEll -> RngIntElt
   ModularDegree(A) : ModAbVar -> RngIntElt
   ModularDegree(M) : ModSym -> RngIntElt
   MonomialsOfDegree(P, d) : RngMPolElt, RngIntElt -> {@ RngMPolElt @}
   MonomialsOfWeightedDegree(P, d) : RngMPolElt, RngIntElt -> {@ RngMPolElt @}
   MonomialsOfWeightedDegree(X, D) : Sch, [RngIntElt] -> SetIndx
   NumberOfPlacesOfDegreeOne(m, U) : DivFunElt, GrpAb -> RngIntElt
   NumberOfPlacesOfDegreeOne(A) : FldFunAb -> RngIntElt
   NumberOfPlacesOfDegreeOneECFBound(C) : Crv -> RngIntElt
   NumberOfPlacesOfDegreeOneECFBound(F) : FldFunG -> RngIntElt
   NumberOfPlacesOfDegreeOneOverExactConstantField(C) : Crv[FldFin] -> RngIntElt
   NumberOfPlacesOfDegreeOneOverExactConstantField(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
   NumberOfPlacesOfDegreeOneOverExactConstantField(F, m) : FldFun, RngIntElt -> RngIntElt
   NumberOfPlacesOfDegreeOneOverExactConstantField(F) : FldFunG -> RngIntElt
   NumberOfPlacesOfDegreeOneOverExactConstantField(F, m) : FldFunG, RngIntElt -> RngIntElt
   NumberOfPlacesOfDegreeOneOverExactConstantFieldBound(F, m) : FldFun, RngIntElt -> RngIntElt
   NumberOfPlacesOfDegreeOverExactConstantField(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
   NumberOfPlacesOfDegreeOverExactConstantField(F, m) : FldFun, RngIntElt -> RngIntElt
   NumberOfPlacesOfDegreeOverExactConstantField(F, m) : FldFunG, RngIntElt -> RngIntElt
   Order(L) : RngDiffOpElt -> RngIntElt
   OutDegree(u) : GrphVert -> RngIntElt
   OutDegree(u) : GrphVert -> RngIntElt
   OverconvergentHeckeSeriesDegreeBound(p, N, k, m) : RngIntElt, RngIntElt, RngIntElt, RngIntElt -> RngIntElt
   PointDegree(D, p) : Inc, IncPt -> RngIntElt
   PrintTermsOfDegree(s, l, n) : RngPowLazElt, RngIntElt, RngIntElt ->
   RamificationDegree(I) : RngOrdIdl -> RngIntElt
   RamificationDegree(L) : RngPad -> RngIntElt
   RamificationDegree(K, L) : RngPad, RngPad -> RngIntElt
   RamificationIndex(P) : PlcFunElt -> RngIntElt
   RamificationIndex(I) : RngFunOrdIdl -> RngIntElt
   RamificationIndex(I, p) : RngOrdIdl, RngIntElt -> RngIntElt
   RamificationIndex(E) : RngSerExt -> RngIntElt
   RestrictDegree(a, n): AlgSymElt, RngIntElt -> AlgSymElt
   SetAllInvariantsOfDegree(R, d, Q) : RngInvar, RngIntElt, [ RngMPolElt ] ->
   ShiftToDegreeZero(C) : ModCpx -> ModCpx
   TotalDegree(f) : AlgFrElt -> RngIntElt
   TotalDegree(f) : FldFunRatElt -> RngIntElt
   TotalDegree(f) : RngMPolElt -> RngIntElt
   TwistingDegree(R) : RootDtm -> RngIntElt
   WeakOrder(L) : RngDiffOpElt -> RngIntElt
   WeightedDegree(f) : FldFunRatElt -> RngIntElt
   WeilDescentDegree(E,k) : FldFun, FldFin -> RngIntElt
   WeilDescentDegree(E, k, c) : FldFun, FldFin, FldFinElt -> RngIntElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013