[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: Similarity .. simple
IsSimilarity(f) : Map -> BoolElt
IsSimilarity(U, V, f) : ModTupFld, ModTupFld, Map -> BoolElt
IsSimilarity(V, g) : ModTupFld, Mtrx -> BoolElt
SimilarityGroup(V) : ModTupFld) -> GrpMat
SimilarityGroup(F : parameters) : AlgMatElt -> GrpMat
Similarities (POLAR SPACES)
SimilarityGroup(V) : ModTupFld) -> GrpMat
SimilarityGroup(F : parameters) : AlgMatElt -> GrpMat
SimNEQ(K, e, f) : FldNum, FldNumElt, FldNumElt -> BoolElt, [FldNumElt]
SimNEQ(K, e, f) : FldNum, FldNumElt, FldNumElt -> BoolElt, [FldNumElt]
AlmostSimpleGroupDatabase() : -> DB
CompactProjectiveResolutionsOfSimpleModules(A,n) : AlgBas, RngIntElt -> SeqEnum
HasOnlySimpleSingularities(S) : Srfc -> BoolElt, List
IdentifyAlmostSimpleGroup(G) : GrpPerm -> Map, GrpPerm
IrreducibleModule(B, i) : AlgBas, RngIntElt -> ModAlg
IrreducibleSimpleSubalgebraTreeSU(Q, d) : SeqEnum[SeqEnum[Tup]], RngIntElt -> GrphDir
IrreducibleSimpleSubalgebrasOfSU(N) : RngIntElt -> SeqEnum
IsEmptySimpleQuotientProcess(P) : Rec -> BoolElt
IsSimple(A) : AlgGen -> BoolElt
IsSimple(L) : AlgLie -> BoolElt
IsSimple(F) : FldAlg -> BoolElt
IsSimple(F) : FldNum -> BoolElt
IsSimple(G) : GrpFin -> BoolElt
IsSimple(G) : GrpGPC -> BoolElt
IsSimple(G) : GrphMult -> BoolElt
IsSimple(G) : GrpLie -> BoolElt
IsSimple(G) : GrpMat -> BoolElt
IsSimple(G) : GrpPC -> BoolElt
IsSimple(G) : GrpPerm -> BoolElt
IsSimple(D) : Inc -> BoolElt
IsSimple(A) : ModAbVar -> BoolElt
IsSimple(u: parameters) : GrpBrdElt -> BoolElt
IsSimple(P) : TorPol -> BoolElt
IsSimpleStarAlgebra(A) : AlgMat -> BoolElt
IsSimpleSurfaceSingularity(p) : Pt -> BoolElt, MonStr, RngIntElt
NameSimple(G) : GrpPerm -> <RngIntElt, RngIntElt, RngIntElt>
NextSimpleQuotient(~P) : Rec ->
NumberOfPrimitiveGroups(d) : RngIntElt -> RngIntElt
PossibleSimpleCanonicalDissidentPoints(C) : GRCrvS -> SeqEnum
RelativeRoots(R) : RootDtm -> SetIndx
SimpleCanonicalDissidentPoints(C) : GRCrvS -> SeqEnum
SimpleCohomologyDimensions(M) : ModAlg -> SeqEnum
SimpleEpimorphisms(P) : Rec -> SeqEnum, Tup
SimpleExtension(F) : FldAlg -> FldAlg
SimpleExtension(F) : FldNum -> FldNum
SimpleGroupName(G : parameters): GrpMat -> BoolElt, List
SimpleGroupOfLieType(X, n, k) : MonStgElt, RngIntElt, Rng -> GrpLie
SimpleGroupOfLieType(X, n, q) : MonStgElt, RngIntElt, RngIntElt -> GrpLie
SimpleHomologyDimensions(M) : ModAlg -> SeqEnum
SimpleOrders(W) : GrpMat -> [RngIntElt]
SimpleParameters(A) : AlgMat -> SeqEnum
SimpleQuotientAlgebras(A) : AlgMat -> Rec
SimpleQuotientProcess(F, deg1, deg2, ord1, ord2: parameters) : GrpFP, RngIntElt, RngIntElt, RngIntElt, RngIntElt -> Rec
SimpleQuotients(F, deg1, deg2, ord1, ord2: parameters) : GrpFP, RngIntElt, RngIntElt, RngIntElt, RngIntElt -> List
SimpleReflectionMatrices(W) : GrpMat -> [AlgMatElt]
SimpleReflectionMatrices(W) : GrpPermCox -> []
SimpleReflectionMatrices(R) : RootDtm -> []
SimpleReflectionMatrices(R) : RootSys -> []
SimpleReflectionPermutations(W) : GrpMat -> []
SimpleReflectionPermutations(W) : GrpPermCox -> [GrpPermElt]
SimpleReflectionPermutations(R) : RootDtm -> []
SimpleReflectionPermutations(R) : RootSys -> []
SimpleReflections(W) : GrpFPCox -> [GrpFPCoxElt]
SimpleRoots(G) : GrpLie -> Mtrx
SimpleRoots(W) : GrpMat -> Mtrx
SimpleRoots(W) : GrpPermCox -> Mtrx
SimpleRoots(R) : RootStr -> Mtrx
SimpleRoots(R) : RootSys -> Mtrx
SimpleStarAlgebra(name, d, K) : MonStgElt, RngIntElt, FldFin -> AlgMat
SimpleSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
SimpleSubgroups(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
SumOfBettiNumbersOfSimpleModules(A, n) : AlgBas, RngIntElt -> RngIntElt
ALMOST SIMPLE GROUPS
Computing Minimal Simple Elements (BRAID GROUPS)
Construction of Simple Linear Codes (LINEAR CODES OVER FINITE RINGS)
Other Elementary Functions (RING OF INTEGERS)
Recognition of Simple *-Algebras (ALGEBRAS WITH INVOLUTION)
Simple *-Algebras (ALGEBRAS WITH INVOLUTION)
Simple and Positive Roots (ROOT DATA)
Simple and Positive Roots (ROOT SYSTEMS)
Simple Assignment (STATEMENTS AND EXPRESSIONS)
Simple Element Functions (REAL AND COMPLEX FIELDS)
Simple Ideal Constructions (POLYNOMIAL RING IDEAL OPERATIONS)
Some Trivial Additive Codes (ADDITIVE CODES)
Some Trivial Linear Codes (LINEAR CODES OVER FINITE FIELDS)
The Coxeter Group (ROOT SYSTEMS)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013