[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: G  ..  GaloisGroup


G

   G-Sets (PERMUTATION GROUPS)
   Lattices from Matrix Groups (LATTICES WITH GROUP ACTION)

G-lattices

   Lattices from Matrix Groups (LATTICES WITH GROUP ACTION)

G-sets

   G-Sets (PERMUTATION GROUPS)

g1minred

   Minimisation and Reduction (MODELS OF GENUS ONE CURVES)

G2

   G2Invariants(C) : CrvHyp -> SeqEnum
   G2ToIgusaInvariants(GI) : SeqEnum -> SeqEnum
   HyperellipticCurveFromG2Invariants(S) : SeqEnum[FldFin] -> CrvHyp, GrpFP
   IgusaToG2Invariants(JI) : SeqEnum -> SeqEnum

G23

   GrpFP_1_G23 (Example H70E67)

G2Invariants

   G2Invariants(C) : CrvHyp -> SeqEnum

G2RootSystem

   RootDtm_G2RootSystem (Example H97E3)
   RootSys_G2RootSystem (Example H96E3)

G2ToIgusaInvariants

   G2ToIgusaInvariants(GI) : SeqEnum -> SeqEnum

G4

   QuarticG4Covariant(q) : RngUPolElt -> RngUPolElt
   QuarticHSeminvariant(q) : RngUPolElt -> RngIntElt
   QuarticPSeminvariant(q) : RngUPolElt -> RngIntElt
   QuarticQSeminvariant(q) : RngUPolElt -> RngIntElt
   QuarticRSeminvariant(q) : RngUPolElt -> RngIntElt


   QuarticIInvariant(q) : RngUPolElt -> RngIntElt

Gabidulin

   GabidulinCode(A, W, Z, t) : [ FldFinElt ], [ FldFinElt ], [ FldFinElt ], RngIntElt -> Code

GabidulinCode

   GabidulinCode(A, W, Z, t) : [ FldFinElt ], [ FldFinElt ], [ FldFinElt ], RngIntElt -> Code

gal-desc

   RngLoc_gal-desc (Example H47E9)

GalCohom

   GrpLie_GalCohom (Example H103E2)

Gallager

   GallagerCode(n, a, b) : RngIntElt, RngIntElt, RngIntElt -> Code

GallagerCode

   GallagerCode(n, a, b) : RngIntElt, RngIntElt, RngIntElt -> Code

Galois

   FINITE FIELDS
   varphi-modules and Galois Representations in Magma (MOD P GALOIS REPRESENTATIONS)
   AbsoluteGaloisGroup(A) : FldAb -> GrpPerm, SeqEnum, GaloisData
   ExtendGaloisCocycle(c) : OneCoC -> OneCoC
   FiniteField(q) : RngIntElt -> FldFin
   FiniteField(p, n) : RngIntElt, RngIntElt -> FldFin
   GaloisCohomology(A) : GGrp -> SeqEnum
   GaloisConjugacyRepresentatives(G) : GrpDrch -> [GrpDrchElt]
   GaloisConjugate(x, j) : AlgChtrElt, RngIntElt -> AlgChtrElt
   GaloisGroup(K, k) : FldFin, FldFin -> GrpPerm, [FldFinElt]
   GaloisGroup(F) : FldFun -> GrpPerm, [RngElt], GaloisData
   GaloisGroup(K) : FldNum -> GrpPerm, SeqEnum, GaloisData
   GaloisGroup(K) : FldNum -> GrpPerm, [RngElt], GaloisData
   GaloisGroup(f) : RngUPolElt -> GrpPerm, [ RngElt ], GaloisData
   GaloisGroup(f) : RngUPolElt[RngInt] -> GrpPerm, SeqEnum, GaloisData
   GaloisGroupInvariant(G, H) : GrpPerm, GrpPerm -> RngSLPolElt
   GaloisImage(x, i) : RngPadElt, RngIntElt -> RngPadElt
   GaloisOrbit(x) : AlgChtrElt -> { AlgChtrElt }
   GaloisProof(f, S) : RngUPolElt, GaloisData -> BoolElt
   GaloisQuotient(K, Q) : FldNum, GrpPerm -> SeqEnum[FldNum]
   GaloisRepresentation(pi) : RepLoc -> GrpPerm, Map, RngPad, ModGrp
   GaloisRing(q, d) : RngIntElt, RngIntElt -> RngGal
   GaloisRing(p, a, d) : RngIntElt, RngIntElt, RngIntElt -> RngGal
   GaloisRing(p, a, D) : RngIntElt, RngIntElt, RngUPol -> RngGal
   GaloisRing(q, D) : RngIntElt, RngUPol -> RngGal
   GaloisRoot(i, S) : RngIntElt, GaloisData -> RngElt
   GaloisRoot(f, i, S) : RngUPolElt, RngIntElt, GaloisData -> RngElt
   GaloisSplittingField(f) : RngUPolElt -> FldNum, [FldNumElt], GrpPerm, [[FldNumElt]]
   GaloisSubfieldTower(S, L) : GaloisData, [GrpPerm] -> FldNum, [Tup<RngSLPolElt, RngUPolElt, [GrpPermElt]>], UserProgram, UserProgram
   GaloisSubgroup(K, U) : FldNum, GrpPerm -> FldNum, UserProgram

galois

   Automorphisms and Galois Theory (GENERAL LOCAL FIELDS)
   Connection with Galois Representations (MOD P GALOIS REPRESENTATIONS)
   Galois Cohomology (GROUPS OF LIE TYPE)
   Galois Groups (ALGEBRAIC FUNCTION FIELDS)
   Galois Groups (GALOIS THEORY OF NUMBER FIELDS)
   Galois Module Structure (CLASS FIELD THEORY)
   GALOIS RINGS
   Galois Theory (NUMBER FIELDS)
   GALOIS THEORY OF NUMBER FIELDS
   Local Galois Representations (ADMISSIBLE REPRESENTATIONS OF GL2(Qp))

galois-cohomology

   Galois Cohomology (GROUPS OF LIE TYPE)

galois-module-structure

   Galois Module Structure (CLASS FIELD THEORY)

galois-ring

   GALOIS RINGS

galois-subfield

   RngOrdGal_galois-subfield (Example H38E5)

galois-theory

   Subfields(K) : FldNum -> [<FldNum, Map>]
   AutomorphismGroup(K) : FldNum -> GrpPerm, [Map], Map
   Galois Theory (NUMBER FIELDS)
   GALOIS THEORY OF NUMBER FIELDS

GaloisCohomology

   GaloisCohomology(A) : GGrp -> SeqEnum

GaloisConjugacyRepresentatives

   GaloisConjugacyRepresentatives(G) : GrpDrch -> [GrpDrchElt]

GaloisConjugate

   GaloisConjugate(x, j) : AlgChtrElt, RngIntElt -> AlgChtrElt

GaloisField

   GaloisField(q) : RngIntElt -> FldFin
   GF(q) : RngIntElt -> FldFin
   FiniteField(q) : RngIntElt -> FldFin
   FiniteField(p, n) : RngIntElt, RngIntElt -> FldFin

GaloisGroup

   GaloisGroup(K, k) : FldFin, FldFin -> GrpPerm, [FldFinElt]
   GaloisGroup(F) : FldFun -> GrpPerm, [RngElt], GaloisData
   GaloisGroup(K) : FldNum -> GrpPerm, SeqEnum, GaloisData
   GaloisGroup(K) : FldNum -> GrpPerm, [RngElt], GaloisData
   GaloisGroup(f) : RngUPolElt -> GrpPerm, [ RngElt ], GaloisData
   GaloisGroup(f) : RngUPolElt[RngInt] -> GrpPerm, SeqEnum, GaloisData

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013