[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: glex  ..  GModule


glex

   Graded Lexicographical: glex (GRÖBNER BASES)

GLn

   RandomGLnZ(n, k, l) : RngIntElt, RngIntElt, RngIntElt -> AlgMatElt

Global

   DimensionOfGlobalSections(S) : ShfCoh -> RngIntElt
   GlobalSectionSubmodule(S) : ShfCoh -> ModMPol
   GlobalUnitGroup(C) : Crv[FldFin] -> GrpAb, Map
   GlobalUnitGroup(F) : FldFun -> GrpAb, Map
   GlobalUnitGroup(F) : FldFunG -> GrpAb, Map
   IsGlobal(F) : FldFunG -> BoolElt
   IsGlobalUnit(a) : FldFunElt -> BoolElt
   IsGlobalUnit(a) : FldFunElt -> BoolElt
   IsGlobalUnitWithPreimage(a) : FldFunElt -> BoolElt, GrpAbElt
   IsGlobalUnitWithPreimage(a) : FldFunElt -> BoolElt, GrpAbElt
   SetGlobalTCParameters(: parameters) : ->
   UnsetGlobalTCParameters() : ->
   RngMPol_Global (Example H24E2)

global

   Functions related to Class Group (ALGEBRAIC FUNCTION FIELDS)
   Global Function Field Places (ALGEBRAIC FUNCTION FIELDS)
   Global Function Fields (ALGEBRAIC FUNCTION FIELDS)
   Global Function Fields (ALGEBRAIC FUNCTION FIELDS)
   Global Geometry (ALGEBRAIC CURVES)
   Global Geometry of Schemes (SCHEMES)
   Global Properties (MATRIX GROUPS OVER GENERAL RINGS)
   Local Conditions for Conics (RATIONAL CURVES AND CONICS)
   Local-Global Correspondence (RATIONAL CURVES AND CONICS)
   Norm Residue Symbol (RATIONAL CURVES AND CONICS)
   Special Forms of Curves (ALGEBRAIC CURVES)

global-class

   Functions related to Class Group (ALGEBRAIC FUNCTION FIELDS)

global-class-ex

   FldFunG_global-class-ex (Example H42E21)

global-curvepl

   Global Geometry (ALGEBRAIC CURVES)

global-function-fields

   FldFunG_global-function-fields (Example H42E19)

global-properties

   Global Properties (MATRIX GROUPS OVER GENERAL RINGS)

global-special

   Special Forms of Curves (ALGEBRAIC CURVES)

global1

   FldFunG_global1 (Example H42E20)

global_const

   Functions Relative to the Constant Field (ALGEBRAIC FUNCTION FIELDS)

global_ecf

   Functions relative to the Exact Constant Field (ALGEBRAIC FUNCTION FIELDS)

Globally

   IsGloballySplit(C, l) : , UserProgram -> BoolElt, UserProgram

GlobalSectionSubmodule

   GlobalSectionSubmodule(S) : ShfCoh -> ModMPol

GlobalUnitGroup

   GlobalUnitGroup(C) : Crv[FldFin] -> GrpAb, Map
   GlobalUnitGroup(F) : FldFun -> GrpAb, Map
   GlobalUnitGroup(F) : FldFunG -> GrpAb, Map

GLQConjugate

   IsGLQConjugate(G, H) : GrpMat, GrpMat -> BoolElt, GrpMatElt

GLSylow

   GrpMatGen_GLSylow (Example H59E4)

Glue

   Glue(X, e) : SmpCpx, SeqEnum -> SmpCpx

GLZ

   CentralizerGLZ(A) : AlgMatElt -> GrpMat
   NormalizerGLZ(G) : GrpMat[RngInt] -> GrpMat[RngInt]

GLZConjugate

   IsSLZConjugate(A, B) : AlgMatElt, AlgMatElt -> BoolElt, GrpMatElt
   IsGLZConjugate(A, B) : AlgMatElt, AlgMatElt -> BoolElt, GrpMatElt
   IsGLZConjugate(G, H) : GrpMat[RngInt], GrpMat[RngInt] -> BoolElt, GrpMatElt

GModule

   GModule(M) : AlgBasGrpP -> ModGrp, ModGrp
   GModule(G, A) : Grp, AlgMat -> ModGrp
   GModule(G, S) : Grp, AlgMat -> ModGrp
   GModule(G, A, B) : Grp, Grp, Grp -> ModGrp, Map
   GModule(G, A, B) : Grp, Grp, Grp -> ModGrp, Map
   GModule(G, P, d) : Grp, RngMPol, RngIntElt -> ModGrp, Map, @ RngMPolElt @
   GModule(G, P, d) : Grp, RngMPol, RngIntElt -> ModGrp, Map, @ RngMPolElt @
   GModule(G, I, J) : Grp, RngMPol, RngMPol -> ModGrp, Map, @ RngMPolElt @
   GModule(G, I, J) : Grp, RngMPol, RngMPol -> ModGrp, Map, @ RngMPolElt @
   GModule(G, Q) : Grp, RngMPolRes -> ModGrp, Map, @ RngMPolElt @
   GModule(G, Q) : Grp, RngMPolRes -> ModGrp, Map, @ RngMPolElt @
   GModule(G, Q) : Grp, [ GrpMatElt ] -> ModGrp
   GModule(G, Q) : Grp, [ MtrxS ] -> ModGrp
   GModule(G, S) : GrpFin, AlgMat -> ModGrpFin
   GModule(G, A, B) : GrpFin, GrpFin, GrpFin -> ModGrpFin, Map
   GModule(G, A, B, p) : GrpFP, GrpFP, GrpFP, RngIntElt -> ModGrp, Map
   GModule(G, A, p) : GrpFP, GrpFP, RngIntElt -> ModGrp, Map
   GModule(G, A, B, p) : GrpGPC, GrpGPC, GrpGPC, RngIntElt -> ModGrp, Map
   GModule(G, A, p) : GrpGPC, GrpGPC, RngIntElt -> ModGrp, Map
   GModule(G) : GrpMat -> ModGrp
   GModule(G) : GrpMat -> ModGrp
   GModule(G) : GrpMat -> ModGrp
   GModule(G) : GrpMat -> ModGrp
   GModule(G, A) : GrpMat, AlgMat -> ModGrp
   GModule(G, A, B) : GrpMat, GrpMat, GrpMat -> ModGrp, Map
   GModule(G, Q) : GrpMat, [ AlgMatElt ] -> ModGrp
   GModule(G, M) : GrpPC, AlgMat -> ModAlg
   GModule(G, A) : GrpPC, GrpPC -> ModAlg, Map
   GModule(G, A, B) : GrpPC, GrpPC, GrpPC -> ModAlg, Map
   GModule(G, K) : GrpPerm, Rng -> ModGrp
   GModule(M) : ModAlgBas -> ModGrp
   GModuleAction(M) : ModGrp -> Map(Hom)
   GModulePrimes(G, A) : GrpFP, GrpFP -> SetMulti
   GModulePrimes(G, A, B) : GrpFP, GrpFP, GrpFP -> SetMulti
   GModulePrimes(G, A) : GrpGPC, GrpGPC -> SetMulti
   GModulePrimes(G, A, B) : GrpGPC, GrpGPC, GrpGPC -> SetMulti
   QuaternionicGModule(M, I, J) : ModGrp, AlgMatElt, AlgMatElt -> ModGrp
   WriteGModuleOver(M, K) : ModGrp, FldAlg -> ModGrp
   GrpMatGen_GModule (Example H59E28)
   GrpPerm_GModule (Example H58E38)
   RngInvar_GModule (Example H110E4)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013