[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: j .. JenningsLieAlgebra
jNInvariant(p,N) : Pt, RngIntElt -> RngElt
j
GrpData_J2 (Example H66E23)
Points on the Jacobian (HYPERELLIPTIC CURVES)
CrvHyp_Jac_Point_Counting (Example H125E19)
AlgAss_jac_rad (Example H81E2)
CrvHyp_Jac_WeilPairing (Example H125E18)
Jacobi(~P, c, b, a, ~r) : GrpPCpQuotientProc, RngIntElt, RngIntElt, RngIntElt -> RngIntElt ->
JacobiSymbol(n, m) : RngIntElt, RngIntElt -> RngIntElt
JacobiSymbol(a,b) : RngUPol, RngUPol -> RngIntElt
JacobiTheta(q, z) : FldReElt, FldReElt -> FldReElt
JacobiTheta(q, z) : FldReElt, RngSerElt[FldRe] -> RngSerElt
JacobiThetaNullK(q, k) : FldReElt, RngIntElt -> FldReElt
The Jacobi θand Dedekind η- functions (REAL AND COMPLEX FIELDS)
The Jacobi θand Dedekind η- functions (REAL AND COMPLEX FIELDS)
AnalyticJacobian(f) : RngUPolElt -> AnHcJac
FromAnalyticJacobian(z, A) : Mtrx, AnHcJac -> SeqEnum
Jacobian(C) : CrvHyp -> JacHyp
Jacobian(model) : ModelG1 -> CrvEll
Jacobian(C) : RngMPolElt -> CrvEll
JacobianIdeal(f) : RngMPolElt -> RngMPol
JacobianIdeal(C) : Sch -> RngMPol
JacobianIdeal(X) : Sch -> RngMPol
JacobianMatrix(C) : Sch -> ModMatRngElt
JacobianMatrix(X) : Sch -> ModMatRngElt
JacobianMatrix( [ f ] ) : [ RngMPolElt ] -> RngMPol
JacobianOrdersByDeformation(Q, Y) : RngMPolElt, SeqEnum -> SeqEnum
ToAnalyticJacobian(x, y, A) : FldComElt, FldComElt, AnHcJac -> Mtrx
Descent on the Jacobian (HYPERELLIPTIC CURVES)
Isomorphisms, Isogenies and Endomorphism Rings of Analytic Jacobians (HYPERELLIPTIC CURVES)
Jacobians (HYPERELLIPTIC CURVES)
Descent on the Jacobian (HYPERELLIPTIC CURVES)
Creation of a Jacobian (HYPERELLIPTIC CURVES)
JacobianIdeal(f) : RngMPolElt -> RngMPol
JacobianIdeal(C) : Sch -> RngMPol
JacobianIdeal(X) : Sch -> RngMPol
JacobianMatrix(C) : Sch -> ModMatRngElt
JacobianMatrix(X) : Sch -> ModMatRngElt
JacobianMatrix( [ f ] ) : [ RngMPolElt ] -> RngMPol
EulerFactorsByDeformation(Q, Y) : RngMPolElt, SeqEnum -> SeqEnum
ZetaFunctionsByDeformation(Q, Y) : RngMPolElt, SeqEnum -> SeqEnum
JacobianOrdersByDeformation(Q, Y) : RngMPolElt, SeqEnum -> SeqEnum
Jacobians over Number Fields or Q (HYPERELLIPTIC CURVES)
Jacobians over Number Fields or Q (HYPERELLIPTIC CURVES)
JacobiSymbol(n, m) : RngIntElt, RngIntElt -> RngIntElt
JacobiSymbol(a,b) : RngUPol, RngUPol -> RngIntElt
JacobiTheta(q, z) : FldReElt, FldReElt -> FldReElt
JacobiTheta(q, z) : FldReElt, RngSerElt[FldRe] -> RngSerElt
JacobiThetaNullK(q, k) : FldReElt, RngIntElt -> FldReElt
JacobsonRadical(A) : AlgAssV -> AlgAssV
JacobsonRadical(A) : AlgGen -> AlgGen
JacobsonRadical(M) : ModAlg -> ModAlg
JacobsonRadical(M) : ModRng -> ModRng, Map
JacobsonRadical(e) : SubModLatElt -> SubModLatElt
AlgGrp_jacobson (Example H84E4)
JacobsonRadical(A) : AlgAssV -> AlgAssV
JacobsonRadical(A) : AlgGen -> AlgGen
JacobsonRadical(M) : ModAlg -> ModAlg
JacobsonRadical(M) : ModRng -> ModRng, Map
JacobsonRadical(e) : SubModLatElt -> SubModLatElt
JBessel(n, s) : RngIntElt, FldReElt -> FldReElt
JellyfishConstruction(G: parameters) : GrpPerm -> BoolElt
JellyfishImage(G) : GrpPerm -> GrpPerm
JellyfishImage(G, x) : GrpPerm, GrpPermElt -> GrpPermElt
JellyfishPreimage(G, x) : GrpPerm, GrpPermElt -> GrpPermElt
The Jellyfish Algorithm (PERMUTATION GROUPS)
JellyfishConstruction(G: parameters) : GrpPerm -> BoolElt
JellyfishImage(G) : GrpPerm -> GrpPerm
JellyfishImage(G, x) : GrpPerm, GrpPermElt -> GrpPermElt
JellyfishPreimage(G, x) : GrpPerm, GrpPermElt -> GrpPermElt
JenningsLieAlgebra(G) : Grp -> AlgLie, SeqEnum
JenningsSeries(G) : GrpFin -> [ GrpFin ]
JenningsSeries(G) : GrpMat -> [ GrpMat ]
JenningsSeries(G) : GrpPC -> [GrpPC]
JenningsSeries(G) : GrpPerm -> [ GrpPerm ]
AlgLie_JenningsLie (Example H100E49)
JenningsLieAlgebra(G) : Grp -> AlgLie, SeqEnum
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013