[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: PrimePolynomials  ..  Primitive


PrimePolynomials

   PrimePolynomials(R, d) : RngUPol, RngIntElt -> SeqEnum[ RngUPolElt ]

PrimePowerRepresentation

   PrimePowerRepresentation(x, k, a) : FldFunGElt, RngIntElt, FldFunGElt -> SeqEnum

PrimeRing

   PrimeField(F) : FldFun -> Rng
   PrimeRing(F) : FldFun -> Rng
   PrimeRing(R) : Rng -> Rng
   PrimeRing(L) : RngPad -> RngPad

Primes

   BadPrimes(C) : CrvCon -> SeqEnum
   BadPrimes(E) : CrvEll -> [ RngIntElt ]
   BadPrimes(C) : CrvHyp -> SeqEnum
   ExtensionPrimes(D, Q) : DB, MonStgElt -> SetEnum
   GModulePrimes(G, A) : GrpFP, GrpFP -> SetMulti
   GModulePrimes(G, A, B) : GrpFP, GrpFP, GrpFP -> SetMulti
   GModulePrimes(G, A) : GrpGPC, GrpGPC -> SetMulti
   GModulePrimes(G, A, B) : GrpGPC, GrpGPC, GrpGPC -> SetMulti
   Primes(V) : LatLat -> [ RngIntElt ]
   PrimesInInterval(b, e) : RngIntElt, RngIntElt -> [RngIntElt]
   PrimesUpTo(B) : RngIntElt -> [RngIntElt]
   RamifiedPrimes(A) : AlgQuat -> SeqEnum

primes

   Calculating the Relevant Primes (FINITELY PRESENTED GROUPS: ADVANCED)

PrimesInInterval

   PrimesInInterval(b, e) : RngIntElt, RngIntElt -> [RngIntElt]

PrimesUpTo

   PrimesUpTo(B) : RngIntElt -> [RngIntElt]

primgp

   Database of Primitive Groups (DATABASES OF GROUPS)

primgp-data

   Database of Primitive Groups (DATABASES OF GROUPS)

Primitive

   AssociatedPrimitiveCharacter(chi) : GrpDrchElt -> GrpDrchElt
   AssociatedPrimitiveCharacter(chi) : GrpDrchNFElt -> GrpDrchNFElt
   Conductor(psi) : GrossenChar -> RngOrdIdl, SeqEnum
   ContentAndPrimitivePart(f) : RngMPolElt -> RngIntElt, RngMPolElt
   ContentAndPrimitivePart(p) : RngUPolElt -> RngIntElt, RngUPolElt
   IsPrimitive(C) : CosetGeom -> BoolElt
   IsPrimitive(a) : FldAlgElt -> BoolElt
   IsPrimitive(a) : FldFinElt -> BoolElt
   IsPrimitive(a) : FldNumElt -> BoolElt
   IsPrimitive(chi) : GrpDrchElt -> BoolElt
   IsPrimitive(chi) : GrpDrchNFElt -> BoolElt
   IsPrimitive(G) : GrphUnd -> BoolElt
   IsPrimitive(G) : GrpPerm -> BoolElt
   IsPrimitive(G, Y) : GrpPerm, GSet -> BoolElt
   IsPrimitive(H) : HypGeomData -> BoolElt, RngIntElt
   IsPrimitive(G: parameters) : GrpMat -> BoolElt
   IsPrimitive(n, m) : RngIntElt, RngIntElt -> BoolElt
   IsPrimitive(n) : RngIntResElt -> BoolElt
   IsPrimitive(f) : RngUPolElt -> BoolElt
   IsPrimitive(v) : TorLatElt -> BoolElt
   IsPrimitiveFiniteNilpotent(G : parameters): GrpMat -> BoolElt, Any
   IsResiduallyPrimitive(C) : CosetGeom -> BoolElt
   IsResiduallyWealyPrimitive(C) : CosetGeom -> BoolElt
   IsWeaklyPrimitive(C) : CosetGeom -> BoolElt
   IsolIsPrimitive(n, p, i) : RngIntElt, RngIntElt, RngIntElt -> BoolElt
   NonPrimitiveAlternantCode(n, m, r) : RngIntElt,RngIntElt,RngIntElt->Code
   NumberOfPrimitiveGroups(d) : RngIntElt -> RngIntElt
   PrimitiveData(H) : HypGeomData -> HypGeomData
   PrimitiveElement(F) : FldFin -> FldFinElt
   PrimitiveElement(K) : FldNum -> FldNumElt
   PrimitiveElement(K) : FldNum -> FldNumElt
   PrimitiveElement(O) : RngFunOrd -> RngFunOrdElt
   PrimitiveElement(R) : RngIntRes -> RngIntResElt
   PrimitiveElement(O) : RngOrd -> RngOrdElt
   PrimitiveElement(I) : RngOrdIdl -> RngOrdElt
   PrimitiveGroup(d) : RngIntElt -> GrpPerm, MonStgElt, MonStgElt
   PrimitiveGroup(d, f) : RngIntElt, Program -> GrpPerm, MonStgElt
   PrimitiveGroup(d, n) : RngIntElt, RngIntElt -> GrpPerm, MonStgElt, MonStgElt
   PrimitiveGroup(S, f) : [RngIntElt], Program -> GrpPerm, MonStgElt
   PrimitiveGroupDatabaseLimit() : -> RngIntElt
   PrimitiveGroupDescription(d, n) : RngIntElt, RngIntElt -> MonStgElt
   PrimitiveGroupIdentification(G) : GrpPerm -> RngIntElt, RngIntElt
   PrimitiveGroupProcess(d: parameters) : RngIntElt -> Process
   PrimitiveGroupProcess(d, f: parameters) : RngIntElt, Program -> Process
   PrimitiveGroups(d: parameters) : RngIntElt -> [GrpPerm]
   PrimitiveGroups(d, f: parameters) : RngIntElt, Program -> [GrpPerm]
   PrimitiveGroups(S: parameters) : [RngIntElt] -> [GrpPerm]
   PrimitiveIdempotentData(A) : AlgMat -> SeqEnum, Map, SeqEnum
   PrimitiveIdempotents(A) : AlgMat -> SeqEnum
   PrimitiveLatticeVector(v) : TorLatElt -> TorLatElt
   PrimitivePart(f) : RngMPolElt -> RngMPolElt
   PrimitivePart(p) : RngUPolElt -> RngUPolElt
   PrimitivePolynomial(F, m) : FldFin, RngIntElt -> RngUPolElt
   PrimitiveQuotient(G) : GrpPerm -> GrpPerm, Hom, GrpPerm
   PrimitiveRoot(m) : RngIntElt -> RngIntElt
   PrimitiveWreathProduct(G, H) : GrpPerm, GrpPerm -> GrpPerm
   PrimitiveWreathProduct(Q) : [ GrpPerm ] -> GrpPerm
   RanksOfPrimitiveIdempotents(A) : AlgMat -> SeqEnum
   SetPrimitiveElement(F, x) : FldFin, FldFinElt ->
   GrpData_Primitive (Example H66E12)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013