[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: symmetric  ..  Symplectic


symmetric

   Construction of Elements (GROUPS)
   Creation of a Permutation Group (PERMUTATION GROUPS)
   Creation of Symmetric Functions (SYMMETRIC FUNCTIONS)
   Invariants of the Symmetric Group (INVARIANT THEORY)
   Symmetric Polynomials (POLYNOMIAL RING IDEAL OPERATIONS)
   Symmetric Powers (DIFFERENTIAL RINGS)

symmetric polynomials and symmetric functions

   AlgSym_symmetric polynomials and symmetric functions (Example H146E12)

symmetric-functions

   Creation of Symmetric Functions (SYMMETRIC FUNCTIONS)

Symmetric-Group-Character

   Symmetric Group Character (SYMMETRIC FUNCTIONS)

symmetric-polynomials-and-symmetric-functions

   AlgSym_symmetric-polynomials-and-symmetric-functions (Example H146E16)

symmetric-power

   Symmetric Powers (DIFFERENTIAL RINGS)

Symmetric1

   GrpFP_1_Symmetric1 (Example H70E5)

Symmetric2

   GrpFP_1_Symmetric2 (Example H70E6)
   GrpGPC_Symmetric2 (Example H72E5)

SymmetricBilinearForm

   SymmetricBilinearForm(G: parameters) : GrpMat -> BoolElt, AlgMatElt, MonStgElt [,SeqEnum]
   SymmetricBilinearForm(f) : RngMPolElt -> ModMatRngElt

SymmetricCharacter

   SymmetricCharacter(sf): AlgSymElt -> AlgChtrElt
   SymmetricCharacter(pa) : SeqEnum -> AlgChtrElt

SymmetricCharacterTable

   SymmetricCharacterTable(d) : RngIntElt -> SeqEnum

SymmetricCharacterValue

   SymmetricCharacterValue(pa, pe) : SeqEnum, GrpPermElt -> RngElt

SymmetricComponents

   SymmetricComponents(x, n) : AlgChtrElt, RngIntElt -> SetEnum

SymmetricElementToWord

   SymmetricElementToWord (G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt
   SymmetricElementToWord (G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt

SymmetricForms

   SymmetricForms(G) : GrpMat -> [ AlgMatElt ]
   AntisymmetricForms(G) : GrpMat -> [ AlgMatElt ]
   InvariantForms(G) : GrpMat -> [ AlgMatElt ]
   InvariantForms(G, n) : GrpMat, RngIntElt -> [ AlgMatElt ]
   SymmetricForms(L) : Lat -> [ AlgMatElt ]
   SymmetricForms(L, n) : Lat, RngIntElt -> [ AlgMatElt ]

SymmetricFunctionAlgebra

   SFA(R) : Rng -> AlgSym
   SymmetricFunctionAlgebra(R) : Rng -> AlgSym

SymmetricFunctionAlgebraElementary

   SFAElementary(R) : Rng -> AlgSym
   SymmetricFunctionAlgebraElementary(R) : Rng -> AlgSym

SymmetricFunctionAlgebraHomogeneous

   SFAHomogeneous(R) : Rng -> AlgSym
   SymmetricFunctionAlgebraHomogeneous(R) : Rng -> AlgSym

SymmetricFunctionAlgebraMonomial

   SFAMonomial(R) : Rng -> AlgSym
   SymmetricFunctionAlgebraMonomial(R) : Rng -> AlgSym

SymmetricFunctionAlgebraPower

   SFAPower(R) : Rng -> AlgSym
   SymmetricFunctionAlgebraPower(R) : Rng -> AlgSym

SymmetricFunctionAlgebraSchur

   SFASchur(R) : Rng -> AlgSym
   SymmetricFunctionAlgebraSchur(R) : Rng -> AlgSym

SymmetricGroup

   SymmetricGroup(GrpPerm, n) : Cat, RngIntElt -> GrpPerm
   Sym(GrpPerm, n) : Cat, RngIntElt -> GrpPerm
   Sym(n) : RngIntElt -> GrpPerm
   Sym(X) : Set -> GrpPerm
   SymmetricGroup(C, n) : Cat, RngIntElt -> GrpFin
   SymmetricGroup(GrpFP, n) : Cat, RngIntElt -> GrpFP

SymmetricMatrix

   SymmetricMatrix(R, Q) : Rng, [ RngElt ] -> Mtrx
   SymmetricMatrix(f) : RngMPolElt -> Mtrx
   SymmetricMatrix(Q) : [ RngElt ] -> Mtrx

SymmetricNormaliser

   SymmetricNormaliser(G) : GrpPerm -> GrpPerm
   SymmetricNormalizer(G) : GrpPerm -> GrpPerm

SymmetricNormalizer

   SymmetricNormaliser(G) : GrpPerm -> GrpPerm
   SymmetricNormalizer(G) : GrpPerm -> GrpPerm

SymmetricPower

   SymmetricPower(a,r) : AlgMatElt, RngIntElt -> AlgMatElt
   SymmetricPower(L, m) : LSer, RngIntElt -> LSer
   SymmetricPower(V, n) : ModAlg, RngIntElt -> ModAlg, Map
   SymmetricPower(V, n) : ModAlg, RngIntElt -> ModAlg, Map
   SymmetricPower(L, m) : RngDiffOpElt, RngIntElt -> RngDiffOpElt
   SymmetricPower(R, n, v) : RootDtm, RngIntElt, ModTupRngElt -> LieRepDec

SymmetricRepresentation

   SymmetricRepresentation(B) : GrpBrd -> Map
   SymmetricRepresentation(pa, pe) : SeqEnum, GrpPermElt -> AlgMatElt

SymmetricRepresentationOrthogonal

   SymmetricRepresentationOrthogonal(pa, pe) : SeqEnum,GrpPermElt -> AlgMatElt

SymmetricRepresentationSeminormal

   SymmetricRepresentationSeminormal(pa, pe) : SeqEnum,GrpPermElt -> AlgMatElt

SymmetricSquare

   SymmetricSquare(a) : AlgMatElt -> AlgMatElt
   SymmetricSquare(L) : Lat -> Lat
   SymmetricSquare(M) : ModGrp -> ModGrp

SymmetricSquarePreimage

   SymmetricSquarePreimage (G, g) : GrpMat, GrpMatElt -> GrpMatElt

SymmetricToQuadraticForm

   SymmetricToQuadraticForm(J) : AlgMatElt -> AlgMatElt

SymmetricWeightEnumerator

   SymmetricWeightEnumerator(C): Code -> RngMPolElt

Symmetrization

   Symmetrization(x, p) : AlgChtrElt, [ RngIntElt ] -> AlgChtrElt

symmetrization

   Symmetrization (CHARACTERS OF FINITE GROUPS)

symmetry

   Symmetry and Regularity Properties of Graphs (GRAPHS)
   Transitivity Properties (FINITE PLANES)

symmetry-regularity

   Symmetry and Regularity Properties of Graphs (GRAPHS)
   Transitivity Properties (FINITE PLANES)

Symplectic

   CSp(n, q) : RngIntElt, RngIntElt -> GrpMat
   ConformalSymplecticGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
   IsPseudoSymplecticSpace(W) : ModTupFld -> BoolElt
   IsSymplecticGroup(G) : GrpMat -> BoolElt
   IsSymplecticMatrix(A) : Mtrx -> BoolElt
   IsSymplecticSelfDual(C) : CodeAdd -> BoolElt
   IsSymplecticSelfOrthogonal(C) : CodeAdd -> BoolElt
   IsSymplecticSpace(W) : ModTupFld -> BoolElt
   ProjectiveSigmaSymplecticGroup(arguments)
   ProjectiveSymplecticGroup(arguments)
   RandomSymplecticMatrix(g, m) : RngIntElt, RngIntElt -> Mtrx
   SymplecticComponent(x, p) : AlgChtrElt, [ RngIntElt ] -> AlgChtrElt
   SymplecticComponents(x, n) : AlgChtrElt, RngIntElt -> SetEnum
   SymplecticDual(C) : CodeAdd -> CodeAdd
   SymplecticForm(G: parameters) : GrpMat -> BoolElt, AlgMatElt [,SeqEnum]
   SymplecticGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
   SymplecticInnerProduct(v1, v2) : ModTupFldElt, ModTupFldElt -> FldFinElt
   SymplecticMatrixGroupDatabase() : -> DB
   SymplecticSpace(J) : AlgMatElt -> ModTupRng
   SymplecticTransvection(a, alpha) : ModTupRngElt, FldElt -> AlgMatElt
   GrpASim_Symplectic (Example H65E1)
   GrpData_Symplectic (Example H66E18)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013