[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: IsSimpleStarAlgebra .. IsSquare
IsSimpleStarAlgebra(A) : AlgMat -> BoolElt
IsSimpleSurfaceSingularity(p) : Pt -> BoolElt, MonStr, RngIntElt
IsSimplex(P) : TorPol -> BoolElt
IsSimplicial(P) : TorPol -> BoolElt
IsQFactorial(C) : TorCon -> BoolElt
IsSimplicial(C) : TorCon -> BoolElt
IsSimplifiedModel(E) : CrvEll -> BoolElt
IsSimplifiedModel(C) : CrvHyp -> BoolElt
IsSimplyConnected(G) : GrpLie -> BoolElt
IsSimplyConnected(R) : RootDtm -> BoolElt
IsSimplyLaced(C) : AlgMatElt -> BoolElt
IsSimplyLaced(M) : AlgMatElt -> BoolElt
IsSimplyLaced(D) : GrphDir -> BoolElt
IsSimplyLaced(G) : GrphUnd -> BoolElt
IsSimplyLaced(G) : GrpLie-> BoolElt
IsSimplyLaced(W) : GrpMat -> BoolElt
IsSimplyLaced(W) : GrpPermCox-> BoolElt
IsSimplyLaced(N) : MonStgElt -> BoolElt
IsSimplyLaced(R) : RootStr -> BoolElt
IsSimplyLaced(R) : RootSys-> BoolElt
IsSinglePrecision(n) : RngIntElt -> BoolElt
IsSingular(A) : Mtrx -> BoolElt
IsSingular(C) : Sch -> BoolElt
IsSingular(X) : Sch -> BoolElt
IsSingular(p) : Sch,Pt -> BoolElt
IsSingular(p) : Sch,Pt -> BoolElt
IsSingular(C) : TorCon -> BoolElt
IsSingular(F) : TorFan -> BoolElt
IsSingular(X) : TorVar -> BoolElt
IsSIntegral(P, S) : PtEll, SeqEnum -> BoolElt
IsSkew(t) : Tbl -> BoolElt
IsSLZConjugate(A, B) : AlgMatElt, AlgMatElt -> BoolElt, GrpMatElt
IsGLZConjugate(A, B) : AlgMatElt, AlgMatElt -> BoolElt, GrpMatElt
IsSmooth(P) : TorPol -> BoolElt
IsSolvable(L) : AlgLie -> BoolElt
IsSoluble(L) : AlgLie -> BoolElt
IsSoluble(D, o, n) : DB, RngIntElt, RngIntElt -> Grp
IsSoluble(A) : GrpAuto -> BoolElt
IsSoluble(G) : GrpFin -> BoolElt
IsSoluble(G) : GrpGPC -> BoolElt
IsSoluble(G) : GrpMat -> BoolElt
IsSoluble(G) : GrpPC -> BoolElt
IsSoluble(G) : GrpPerm -> BoolElt
IsSoluble(G : parameters) : GrpMat -> BoolElt
IsSolvableAutomorphismGroupPGroup(A) : GrpAuto -> BoolElt
IsSolubleAutomorphismGroupPGroup(A) : GrpAuto -> BoolElt
IsSolubleByFinite(G : parameters) : GrpMat -> BoolElt
IsSolvable(L) : AlgLie -> BoolElt
IsSoluble(L) : AlgLie -> BoolElt
IsSoluble(D, o, n) : DB, RngIntElt, RngIntElt -> Grp
IsSoluble(A) : GrpAuto -> BoolElt
IsSoluble(G) : GrpFin -> BoolElt
IsSoluble(G) : GrpGPC -> BoolElt
IsSoluble(G) : GrpMat -> BoolElt
IsSoluble(G) : GrpPC -> BoolElt
IsSoluble(G) : GrpPerm -> BoolElt
IsSolvableAutomorphismGroupPGroup(A) : GrpAuto -> BoolElt
IsSolubleAutomorphismGroupPGroup(A) : GrpAuto -> BoolElt
IsSpecial(D) : DivCrvElt -> BoolElt
IsSpecial(G) : GrpFin -> BoolElt
IsSpecial(G) : GrpMat -> BoolElt
IsSpecial(G) : GrpPC -> BoolElt
IsSpecial(G) : GrpPerm -> BoolElt
IsSpinorGenus(G) : SymGen -> BoolElt
IsSpinorNorm(G,p) : SymGen, RngIntElt -> RngIntElt
IsSplit(G) : GrpLie -> BoolElt
IsSplit(P) : RngFunOrdIdl -> BoolElt
IsSplit(P, O) : RngFunOrdIdl, RngFunOrd -> BoolElt
IsSplit(P) : RngOrdIdl -> BoolElt
IsSplit(P, O) : RngOrdIdl, RngOrd -> BoolElt
IsSplit(R) : RootDtm -> BoolElt
IsSplitAsIdealAt(I, l) : RngOrdFracIdl, UserProgram -> BoolElt, UserProgram, [RngOrdIdl]
IsSplittingCartanSubalgebra(L, H) : AlgLie, AlgLie -> BoolElt
HasEmbedding(K, A) : Fld, AlgQuat -> BoolElt, AlgQuatElt, Map
IsSplittingField(K, A) : Fld, AlgQuat -> BoolElt, AlgQuatElt, Map
IsSplitToralSubalgebra(L, H) : AlgLie, AlgLie -> BoolElt
IsSPrincipal(D, S) : DivFunElt, SetEnum[PlcFunElt] -> BoolElt, FldFunElt
IsSquare(a) : FldAlgElt -> BoolElt, FldAlgElt
IsPower(a, k) : FldAlgElt, RngIntElt -> BoolElt, FldAlgElt
IsPower(a, k) : FldNumElt, RngIntElt -> BoolElt, FldNumElt
IsSquare(a) : FldACElt -> BoolElt
IsSquare(a) : FldFinElt -> BoolElt
IsSquare(I) : RngFunOrdIdl -> BoolElt, RngFunOrdIdl
IsSquare(n) : RngIntElt -> BoolElt, RngIntElt
IsSquare(n) : RngIntResElt -> BoolElt, RngIntResElt
IsSquare(I) : RngOrdFracIdl -> BoolElt, RngOrdFracIdl
IsSquare(x) : RngPadElt -> BoolElt, RngPadElt
IsSquare(s) : RngPowLazElt -> BoolElt, RngPowLazElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013