[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: index  ..  Induced


index

   Extracting and Inserting Blocks (MATRICES)
   Extracting and Inserting Blocks (SPARSE MATRICES)
   Index Form Equations (ORDERS AND ALGEBRAIC FIELDS)
   Index of a Subgroup: The Todd- Coxeter Algorithm (FINITELY PRESENTED GROUPS)
   Indexing (LIE ALGEBRAS)
   Indexing (MATRICES)
   Indexing (MATRIX ALGEBRAS)
   Indexing Vectors and Matrices (VECTOR SPACES)
   Integer-Valued Functions (INPUT AND OUTPUT)
   Low Index Subgroups (FINITELY PRESENTED GROUPS)
   Order and Index Functions (GROUPS)
   The Schur Index (CHARACTERS OF FINITE GROUPS)

index-elt-oper

   a[i, j] := r : AlgMatLieElt, RngIntElt, RngIntElt, RngElt -> AlgMatLieElt
   Indexing (LIE ALGEBRAS)

index-form

   Index Form Equations (ORDERS AND ALGEBRAIC FIELDS)
   RngOrd_index-form (Example H37E25)

index-Todd-Coxeter

   Index of a Subgroup: The Todd- Coxeter Algorithm (FINITELY PRESENTED GROUPS)

Index1

   GrpFP_1_Index1 (Example H70E43)

indexcal

   Index Calculus (ALGEBRAIC CURVES)

IndexCalculus

   IndexCalculus(D1, D2, D0, np) : DivCrvElt, DivCrvElt, DivCrvElt, RngIntElt -> RngIntElt

indexcalculus

   Crv_indexcalculus (Example H114E36)

IndexCalculusMatrix

   IndexCalculusMatrix(D1, D2, D0, n, rr) : DivCrvElt, DivCrvElt, DivCrvElt, RngIntElt, RngIntElt -> MtrxSprs, SeqEnum, SeqEnum, DivCrvElt, DivCrvElt, RngIntElt, RngIntElt

Indexed

   GSetFromIndexed(G, Y) : GrpPerm, SetIndx -> GSet
   IndexedCoset(V, C) : GrpFPCos, GrpFPCosElt -> GrpFPCosElt
   IndexedCoset(V, w) : GrpFPCos, GrpFPElt -> GrpFPCosElt
   IndexedSetToSequence(S) : SetIndx -> SeqEnum
   IndexedSetToSet(S) : SetIndx -> SetEnum
   PowerIndexedSet(R) : Str -> PowSetIndx
   SetToIndexedSet(E) : SetEnum -> SetIndx

indexed

   Indexed Assignment (STATEMENTS AND EXPRESSIONS)
   Indexed Sets (SETS)
   Multisets (SETS)
   The Indexed Set Constructor (SETS)

indexed-assignment

   Indexed Assignment (STATEMENTS AND EXPRESSIONS)

IndexedCoset

   IndexedCoset(V, C) : GrpFPCos, GrpFPCosElt -> GrpFPCosElt
   IndexedCoset(V, w) : GrpFPCos, GrpFPElt -> GrpFPCosElt

IndexedSetToSequence

   Isetseq(S) : SetIndx -> SeqEnum
   IndexedSetToSequence(S) : SetIndx -> SeqEnum

IndexedSetToSet

   Isetset(S) : SetIndx -> SetEnum
   IndexedSetToSet(S) : SetIndx -> SetEnum

IndexFormEquation

   IndexFormEquation(O, k) : RngOrd, RngIntElt -> [ RngOrdElt ]

Indexing

   Mat_Indexing (Example H26E4)
   ModFld_Indexing (Example H28E7)
   SMat_Indexing (Example H27E2)
   State_Indexing (Example H1E3)

indexing

   Indexing (FREE MODULES)
   Indexing (MODULES OVER AN ALGEBRA)
   Indexing Elements (STRUCTURE CONSTANT ALGEBRAS)
   Multi-indexing (INTRODUCTION TO AGGREGATES [SETS, SEQUENCES, AND MAPPINGS])

IndexOfPartition

   IndexOfPartition(P) : SeqEnum -> RngIntElt

IndexOfSpeciality

   IndexOfSpeciality(D) : DivCrvElt -> RngIntElt
   IndexOfSpeciality(D) : DivFunElt -> RngIntElt

Indicator

   Indicator(x) : AlgChtrElt -> FldCycElt
   Schur(x, k) : AlgChtrElt, RngIntElt -> FldCycElt

Indices

   ConeIndices(F) : TorFan -> SeqEnum
   ConeIndices(F,C) : TorFan -> SeqEnum
   EdgeIndices(u, v) : GrphVert, GrphVert -> SeqEnum
   EdgeIndices(P) : TorPol -> SeqEnum
   FaceIndices(P,i) : TorPol,RngIntElt -> SeqEnum
   FacetIndices(P) : TorPol -> SeqEnum
   Indices(X) : CrvMod -> SeqEnum
   PureRayIndices(F) : TorFan -> SeqEnum
   SchurIndices(x) : AlgChtrElt -> SeqEnum
   VirtualRayIndices(F) : TorFan -> SeqEnum

Indicial

   IndicialPolynomial(L, p) : RngDiffOpElt, PlcFunElt -> RngElt

indicial

   Indicial Polynomials (DIFFERENTIAL RINGS)

indicial-polynomial

   Indicial Polynomials (DIFFERENTIAL RINGS)

IndicialPolynomial

   IndicialPolynomial(L, p) : RngDiffOpElt, PlcFunElt -> RngElt

indirect

   Implicit Invocation of the Todd- Coxeter Algorithm (FINITELY PRESENTED GROUPS)

indirect-Todd-Coxeter

   Implicit Invocation of the Todd- Coxeter Algorithm (FINITELY PRESENTED GROUPS)

Indivisible

   IndivisibleSubdatum(R) : RootDtm -> RootDtm
   IndivisibleSubsystem(R) : RootSys -> RootSys
   IsIndivisibleRoot(R, r) : RootStr, RngIntElt -> BoolElt
   IsIndivisibleRoot(R, r) : RootSys, RngIntElt -> BoolElt

IndivisibleSubdatum

   IndivisibleSubdatum(R) : RootDtm -> RootDtm

IndivisibleSubsystem

   IndivisibleSubsystem(R) : RootSys -> RootSys

Induce

   InduceWG(W,wg,seq) : GrpFPCox, GrphUnd, SeqEnum -> GrphUnd
   InduceWGtable(J, table, W) : SeqEnum, SeqEnum, GrpFPCox -> SeqEnum[SeqEnum[RngIntElt]]

Induced

   InducedAutomorphism(r, h, c) : Map, Map, RngIntElt -> Map
   InducedGammaGroup(A, B) : GGrp, Grp -> GGrp
   InducedMap(m1, m2, h, c) : Map, Map, Map, RngIntElt -> Map
   InducedMapOnHomology(f, n) : MapChn, RngIntElt -> ModTupFldElt
   InducedOneCocycle(AmodB, alpha) : GGrp, OneCoC -> OneCoC
   InducedPermutation(u) : GrpBrdElt -> GrpPermElt
   IsInduced(AmodB) : GGrp -> BoolElt, GGrp, GGrp, Map, Map
   IsTensorInduced(G : parameters) : GrpMat -> BoolElt
   TensorInducedAction(G, g) : GrpMat, GrpMatElt -> GrpPermElt
   TensorInducedBasis(G) : GrpMat -> GrpMatElt
   TensorInducedPermutations(G) : GrpMat -> SeqEnum

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013