[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: pRank  ..  predicate


pRank

   pRank(D, p) : Inc, RngIntElt -> RngIntElt
   pRank(P) : Plane -> RngIntElt
   pRank(P, p) : Plane -> RngIntElt

pRanks

   pRanks(G) : GrpPC-> [ RngIntElt ]

prec

   Precision and Valuation (p-ADIC RINGS AND THEIR EXTENSIONS)
   Precision of Extensions (p-ADIC RINGS AND THEIR EXTENSIONS)

prec-ext

   Precision of Extensions (p-ADIC RINGS AND THEIR EXTENSIONS)

prec-val

   Precision and Valuation (p-ADIC RINGS AND THEIR EXTENSIONS)

precedence

   Appendix A: Precedence (MAGMA SEMANTICS)
   Appendix B: Reserved Words (MAGMA SEMANTICS)

Precision

   AbsolutePrecision(x) : RngPadElt -> RngIntElt
   AbsolutePrecision(f) : RngSerElt -> RngIntElt
   AbsolutePrecision(e) : RngSerExtElt -> RngIntElt
   BitPrecision(R) : FldCom -> RngIntElt
   BitPrecision(r) : FldReElt -> RngIntElt
   ChangePrecision(r, n) : FldReElt, RngIntElt -> FldReElt
   ChangePrecision(~D, prec) : PhiMod, RngIntElt ->
   ChangePrecision(F, p) : RngDiff, RngElt -> RngDiff, Map
   ChangePrecision(~ R, k) : RngOrdRecoEnv, RngIntElt ->
   ChangePrecision(L, k) : RngPad, Any -> RngPad
   ChangePrecision(R, r) : RngSer, Any -> RngSer
   ChangePrecision(f, r) : RngSerElt, RngIntElt -> RngSerElt
   ChangePrecision(E, r) : RngSerExt, RngIntElt -> RngSerExt
   ChangePrecision(x, k) : RngUPolElt, RngIntElt -> RngPadElt
   ExpandToPrecision(f, c, n) : RngUPolElt, RngSerElt, RngIntElt -> RngSerElt
   IsSinglePrecision(n) : RngIntElt -> BoolElt
   LSetPrecision(L,precision) : LSer, RngIntElt ->
   L`DefaultPrecision : RngPad -> RngIntElt
   Precision(R) : FldCom -> RngIntElt
   Precision(r) : FldReElt -> RngIntElt
   Precision(M) : ModFrm -> RngIntElt
   Precision(L) : RngLocA -> RngIntElt
   Precision(L) : RngPad -> RngIntElt
   Precision(x) : RngPadElt -> RngIntElt
   Precision(R) : RngSer -> ExtReElt
   Precision(E) : RngSerExt -> RngIntElt
   Precision(L) : [FldReElt] -> RngIntElt
   PrecisionBound(M : parameters) : ModFrm -> RngIntElt
   PrintToPrecision(s, n) : RngPowLazElt, RngIntElt ->
   RelativePrecision(F) : RngDiff -> RngElt
   RelativePrecision(a) : RngLocAElt -> RngExtReElt
   RelativePrecision(x) : RngPadElt -> RngIntElt
   RelativePrecision(f) : RngSerElt -> RngIntElt
   RelativePrecision(e) : RngSerExtElt -> RngIntElt
   RelativePrecisionOfDerivation(F) : RngDiff -> RngElt
   RelativePrecisionOfDerivation(R) : RngDiffOp -> RngElt
   SetKantPrecision(n) : RngIntElt ->
   SetPrecision(M, prec) : ModFrm, RngIntElt ->
   SuggestedPrecision(f) : RngUPolElt -> RngIntElt
   SuggestedPrecision(f) : RngUPolElt[RngLocA] -> RngIntElt

precision

   Free and Fixed Precision (POWER, LAURENT AND PUISEUX SERIES)
   Precision (DIFFERENTIAL RINGS)
   Precision (DIFFERENTIAL RINGS)
   Precision (L-FUNCTIONS)
   Precision (POWER, LAURENT AND PUISEUX SERIES)
   Precision (POWER, LAURENT AND PUISEUX SERIES)
   Precision (REAL AND COMPLEX FIELDS)

precision-diff-op-rings

   Precision (DIFFERENTIAL RINGS)

precision-diff-rings

   Precision (DIFFERENTIAL RINGS)

PrecisionBound

   PrecisionBound(M : parameters) : ModFrm -> RngIntElt

Precomputation

   DeleteHeckePrecomputation(O) : AlgAssVOrd ->

pred

   Predicates of Orders (QUATERNION ALGEBRAS)
   Predicates on Elements (ALGEBRAIC FUNCTION FIELDS)
   Predicates on Elements (ASSOCIATIVE ALGEBRAS)
   Predicates on Lazy Series (LAZY POWER SERIES RINGS)
   Predicates on Prime Ideals (ALGEBRAIC FUNCTION FIELDS)
   Structure Predicates (ALGEBRAIC FUNCTION FIELDS)

pred-ideal-prime

   Predicates on Prime Ideals (ALGEBRAIC FUNCTION FIELDS)

predicate

   Ideal Predicates (FINITELY PRESENTED ALGEBRAS)
   Ideal Predicates (LOCAL POLYNOMIAL RINGS)
   Ideal Predicates (POLYNOMIAL RING IDEAL OPERATIONS)
   Predicates (RING OF INTEGERS)
   Predicates and Boolean Operations (INTRODUCTION TO RINGS [BASIC RINGS])
   Predicates on Ring Elements (VALUATION RINGS)
   Ring Predicates and Booleans (FINITE FIELDS)
   Ring Predicates and Booleans (GALOIS RINGS)
   Ring Predicates and Booleans (INTEGER RESIDUE CLASS RINGS)
   Ring Predicates and Booleans (RATIONAL FUNCTION FIELDS)
   Ring Predicates and Properties (ALGEBRAICALLY CLOSED FIELDS)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013