[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: NilpotencyClass .. nlac
NilpotencyClass(G) : GrpFin -> RngIntElt
NilpotencyClass(G) : GrpGPC -> RngIntElt
NilpotencyClass(G) : GrpMat -> RngIntElt
NilpotencyClass(G) : GrpPC -> RngIntElt
NilpotencyClass(G) : GrpPerm -> RngIntElt
CyclicSubgroups(G) : GrpPC -> SeqEnum
ElementaryAbelianSubgroups(G) : GrpPC -> SeqEnum
NilpotentSubgroups(G) : GrpPC -> SeqEnum
AbelianSubgroups(G) : GrpPC -> SeqEnum
AllNilpotentLieAlgebras(F, d) : Fld, RngIntElt -> SeqEnum
FreeNilpotentGroup(r, e) : RngIntElt, RngIntElt -> GrpGPC
IsIrreducibleFiniteNilpotent(G : parameters): GrpMat -> BoolElt, Any
IsNilpotent(f) : AlgFPElt -> BoolElt, RngIntElt
IsNilpotent(a) : AlgGenElt -> BoolElt, RngIntElt
IsNilpotent(L) : AlgLie -> BoolElt
IsNilpotent(a) : AlgMatElt -> BoolElt, RngIntElt
IsNilpotent(G) : GrpFin -> BoolElt
IsNilpotent(G) : GrpGPC -> BoolElt
IsNilpotent(G) : GrpMat -> BoolElt
IsNilpotent(G) : GrpMat -> BoolElt
IsNilpotent(G) : GrpPC -> BoolElt
IsNilpotent(G) : GrpPerm -> BoolElt
IsNilpotent(x) : RngElt -> BoolElt
IsNilpotent(f) : RngMPolResElt -> BoolElt, RngIntElt
IsNilpotentByFinite(G : parameters) : GrpMat -> BoolElt
IsPrimitiveFiniteNilpotent(G : parameters): GrpMat -> BoolElt, Any
LMGIsNilpotent(G) : GrpMat -> BoolElt
NilpotentBoundary(G,i) : GrpPC, RngIntElt -> RngIntElt
NilpotentLength(G) : GrpPC -> RngIntElt
NilpotentLieAlgebra( F, r, k : parameters) : Fld, RngIntElt, RngIntElt -> AlgLie
NilpotentOrbit( L, e ) : AlgLie, AlgLieElt -> NilpOrbAlgLie
NilpotentOrbit( L, wd ) : AlgLie, SeqEnum -> NilpOrbAlgLie
NilpotentOrbits( L ) : AlgLie -> SeqEnum
NilpotentPresentation(G) : GrpGPC -> GrpGPC, Map
NilpotentQuotient(G, c) : GrpMat, RngIntElt -> GrpGPC, Map
NilpotentQuotient(G, c) : GrpPerm, RngIntElt -> GrpGPC, Map
NilpotentQuotient(G, c: parameters) : GrpFP, RngIntElt -> GrpGPC, Map
NilpotentQuotient(R, d) : [ AlgFPLieElt ], RngIntElt -> AlgLie, SeqEnum, SeqEnum, UserProgram
NilpotentSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
NilpotentSubgroups(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
NonNilpotentElement(L) : AlgLie -> AlgLieElt
Nilpotent Orbits in Simple Lie Algebras (LIE ALGEBRAS)
Nilpotent Quotient (FINITELY PRESENTED GROUPS)
Properties of Subgroups Requiring a Nil-po-tent Covering Group (POLYCYCLIC GROUPS)
Solvable and Nilpotent Lie Algebras Classification (LIE ALGEBRAS)
Subgroup Constructions Requiring a Nil-po-tent Covering Group (POLYCYCLIC GROUPS)
Nilpotent Orbits in Simple Lie Algebras (LIE ALGEBRAS)
Nilpotent Quotient (FINITELY PRESENTED GROUPS)
Other Functions for Nilpotent Matrix Groups (MATRIX GROUPS OVER INFINITE FIELDS)
NilpotentBoundary(G,i) : GrpPC, RngIntElt -> RngIntElt
NilpotentLength(G) : GrpPC -> RngIntElt
NilpotentLieAlgebra( F, r, k : parameters) : Fld, RngIntElt, RngIntElt -> AlgLie
NilpotentOrbit( L, e ) : AlgLie, AlgLieElt -> NilpOrbAlgLie
NilpotentOrbit( L, wd ) : AlgLie, SeqEnum -> NilpOrbAlgLie
NilpotentOrbits( L ) : AlgLie -> SeqEnum
NilpotentPresentation(G) : GrpGPC -> GrpGPC, Map
NilpotentQuotient(G, c) : GrpMat, RngIntElt -> GrpGPC, Map
NilpotentQuotient(G, c) : GrpPerm, RngIntElt -> GrpGPC, Map
NilpotentQuotient(G, c: parameters) : GrpFP, RngIntElt -> GrpGPC, Map
NilpotentQuotient(R, d) : [ AlgFPLieElt ], RngIntElt -> AlgLie, SeqEnum, SeqEnum, UserProgram
AlgLie_NilpotentQuotient (Example H100E9)
GrpFP_1_NilpotentQuotient0 (Example H70E35)
GrpFP_1_NilpotentQuotient1 (Example H70E36)
GrpFP_1_NilpotentQuotient2 (Example H70E37)
GrpFP_1_NilpotentQuotient3 (Example H70E38)
CyclicSubgroups(G) : GrpPC -> SeqEnum
ElementaryAbelianSubgroups(G) : GrpPC -> SeqEnum
NilpotentSubgroups(G) : GrpPC -> SeqEnum
AbelianSubgroups(G) : GrpPC -> SeqEnum
NilpotentSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
NilpotentSubgroups(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
Nilradical(L) : AlgLie -> AlgLie
NineDescent(C : parameters) : Crv -> SeqEnum, List
NineSelmerSet(C) : Crv -> RngIntElt
Nine-Descent (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
NineDescent(C : parameters) : Crv -> SeqEnum, List
NineSelmerSet(C) : Crv -> RngIntElt
jNInvariant(p,N) : Pt, RngIntElt -> RngElt
nIsogeny(A, n) : ModAbVar, FldRatElt -> MapModAbVar
IdDataNLAC(L) : AlgLie -> MonStgElt, SeqEnum, Map
The List of Nilpotent Lie Algebras (LIE ALGEBRAS)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013