[Next][Prev] [Right] [Left] [Up] [Index] [Root]

Structure Operations

Subsections

Related Structures

Category(R) : RngGal -> Cat
Parent(R) : RngGal -> PowerStructure
Centre(R) : RngGal -> RngGal

PrimeRing(R) : RngGal -> RngGal
PrimeField(R) : RngGal -> RngGal

FieldOfFractions(R) : RngGal -> RngGal

Numerical Invariants

Characteristic(R) : RngGal -> RngIntElt
The characteristic of R, which is pa where R is considered as Z_(p^a)[x]/<D>.
# R : RngGal -> RngIntElt
The cardinality of R, which is pad where R is considered as Z_(p^a)[x]/<D> and d is the degree of D.
Degree(R) : RngGal -> RngIntElt
The degree of R, which is the degree of D, where R is considered as Z_(p^a)[x]/<D>.
ResidueField(R) : RngGal -> FldFin
The residue field of R, which is the finite field Zp[x]/< D >, where R is considered as Z_(p^a)[x]/<D>.

Ring Predicates and Booleans

The following functions are described for rings in general in Section Predicates and Boolean Operations.

IsCommutative(R) : RngGal -> BoolElt
IsUnitary(R) : RngGal -> BoolElt

IsFinite(R) : RngGal -> BoolElt
IsOrdered(R) : RngGal -> BoolElt

IsField(R) : RngGal -> BoolElt
IsEuclideanDomain(R) : RngGal -> BoolElt

IsPID(R) : RngGal -> BoolElt
IsUFD(R) : RngGal -> BoolElt

IsDivisionRing(R) : RngGal -> BoolElt
IsEuclideanRing(R) : RngGal -> BoolElt

IsPrincipalIdealRing(R) : RngGal -> BoolElt
IsDomain(R) : RngGal -> BoolElt

R eq G : RngGal, Rng -> BoolElt
R ne G : RngGal, Rng -> BoolElt

 [Next][Prev] [Right] [Left] [Up] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013