[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: clique .. CMPoints
Cliques, Independent Sets (GRAPHS)
Cliques, Independent Sets (GRAPHS)
CliqueComplex(G) : Grph -> SmpCpx
FlagComplex(G) : Grph -> SmpCpx
CliqueNumber(G : parameters) : GrphUnd -> RngIntElt
AllCliques(G : parameters) : GrphUnd -> SeqEnum
AllCliques(G, k : parameters) : GrphUnd, RngIntElt -> SeqEnum
AllCliques(G, k, m : parameters) : GrphUnd, RngIntElt, BoolElt -> SeqEnum
Graph_Cliques (Example H149E16)
ClockCycles() : -> RngIntElt
ClockCycles() : -> RngIntElt
CloseVectors(L, w, u) : Lat, ModTupRngElt, RngElt -> [ <LatElt, RngElt> ]
CloseVectorsMatrix(L, w, u) : Lat, ModTupRngElt, RngElt -> ModMatRngElt
CloseVectorsProcess(L, w, u) : Lat, ModTupRngElt, RngElt -> LatEnumProc
Short and Close Vectors (LATTICES)
HasCompleteCosetTable(P) : GrpFPCosetEnumProc -> BoolElt
HasClosedCosetTable(P) : GrpFPCosetEnumProc -> BoolElt
ALGEBRAICALLY CLOSED FIELDS
ClosestVectors(L, w) : Lat, ModTupRngElt -> [ LatElt ], RngElt
ClosestVectorsMatrix(L, w) : Lat, ModTupRngElt -> ModMatRngElt, RngElt
Lat_Closest (Example H30E12)
Shortest and Closest Vectors (LATTICES)
ClosestVectors(L, w) : Lat, ModTupRngElt -> [ LatElt ], RngElt
ClosestVectorsMatrix(L, w) : Lat, ModTupRngElt -> ModMatRngElt, RngElt
CloseVectors(L, w, u) : Lat, ModTupRngElt, RngElt -> [ <LatElt, RngElt> ]
CloseVectorsMatrix(L, w, u) : Lat, ModTupRngElt, RngElt -> ModMatRngElt
CloseVectorsProcess(L, w, u) : Lat, ModTupRngElt, RngElt -> LatEnumProc
AlgebraicClosure() : -> FldAC
AlgebraicClosure(K) : Fld -> FldAC
Closure(R, S) : RootDtm, SetEnum -> SetEnum
ClosureGraph(P, G) : GrpPerm, GrphUnd -> GrphUnd
FundamentalClosure(R, S) : RootDtm, SetEnum -> SetEnum
GorensteinClosure(O) : AlgAssVOrd -> AlgAssVOrd
IntegralClosure(R, F) : Rng, FldFun -> RngFunOrd
LMGNormalClosure(G, H) : GrpMat, GrpMat -> GrpMat
MakeProjectiveClosureMap(A, P, S) : Aff,Prj,SeqEnum ->
NeighbourClosure(L, p) : Lat, RngIntElt -> Lat
NormalClosureMonteCarlo(G, H ) : GrpMat, GrpMat -> GrpMat
OrbitClosure(G, M, S) : Grp, Any, Any -> Any
OrbitClosure(G, S) : GrpMat, { Elt } -> GSet
OrbitClosure(G, Y, S) : GrpPerm, GSet, { Elt } -> GSet
ProjectiveClosure(f) : MapSch -> MapSch
ProjectiveClosure(A): Sch -> Sch
ProjectiveClosure(C) : Sch -> Sch
ProjectiveClosure(X) : Sch -> Sch
ProjectiveClosureMap(A) : Aff -> MapSch
RandomElementOfNormalClosure(G, N): Grp -> GrpElt
RootClosure(R, S) : RootDtm, SetEnum[RngIntElt] -> SetEnum[RngIntElt]
VarietySizeOverAlgebraicClosure(I) : RngMPol -> RngIntElt
H ^ G : GrpFin -> GrpFin
H ^ G : GrpFin, GrpFin -> GrpFin
H ^ G : GrpFP, GrpFP -> GrpFP
H ^ G : GrpGPC, GrpGPC -> GrpGPC
H ^ G : GrpMat -> GrpMat
H ^ G : GrpMat, GrpMat -> GrpMat
H ^ G : GrpPC, GrpPC -> GrpPC
H ^ G : GrpPerm, GrpPerm -> GrpPerm
Affine Patches and Projective Closure (SCHEMES)
Maps and Closure (SCHEMES)
Projective Closure (ALGEBRAIC CURVES)
Projective Closure (SCHEMES)
Projective Closure and Affine Patches (ALGEBRAIC CURVES)
Projective Closure and Affine Patches (ALGEBRAIC CURVES)
ClosureGraph(P, G) : GrpPerm, GrphUnd -> GrphUnd
Cluster(p) : Pt -> Clstr
Cluster(X,f) : Sch,RngMPolElt -> Clstr
IsCluster(X) : Sch -> BoolElt,Clstr
ReduceCluster(X) : SeqEnum -> SeqEnum, Mtrx, Mtrx
Scheme_cluster-degree5 (Example H112E16)
Zero-dimensional Schemes (SCHEMES)
IsCM(M : parameters) : ModSym -> BoolElt, RngIntElt
HasCM(M : parameters) : ModSym -> BoolElt, RngIntElt
CM Points (ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES)
Creation and Modification of Baskets (HILBERT SERIES OF POLARISED VARIETIES)
Creation and Modification of Baskets (HILBERT SERIES OF POLARISED VARIETIES)
x cmpeq y : Any, Any -> BoolElt
x cmpne y : Any, Any -> BoolElt
CMPoints(G,mu) : GrpPSL2, AlgAssVOrdElt -> RngUPolElt, SeqEnum
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013