[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: direct  ..  DirectSumDecomposition


direct

   Direct Sum (K[G]-MODULES AND GROUP REPRESENTATIONS)
   Direct Sum (MODULES OVER AN ALGEBRA)
   Functions returning Roots (p-ADIC RINGS AND THEIR EXTENSIONS)

direct-sum

   Direct Sum (K[G]-MODULES AND GROUP REPRESENTATIONS)
   Direct Sum (MODULES OVER AN ALGEBRA)
   ModAbVar_direct-sum (Example H136E79)

Directed

   IsDirected(G) : GrphMult -> BoolElt
   MakeDirected(uwg) : GrphUnd -> GrphDir

directed

   Directed Trees (GRAPHS)

directed-tree

   Directed Trees (GRAPHS)

Directory

   ChangeDirectory(s) : MonStgElt ->
   GetCurrentDirectory() : ->
   GetCurrentDirectory() : ->

DirectProduct

   ProductCode(C, D) : Code, Code -> Code
   DirectProduct(C, D) : Code, Code -> Code
   DirectProduct(C, D) : Code, Code -> Code
   DirectProduct(C, D) : Code, Code -> Code
   DirectProduct(G, H) : Grp, Grp -> Grp
   DirectProduct(G, H) : GrpFP, GrpFP -> GrpFP
   DirectProduct(G, H) : GrpGPC, GrpGPC -> GrpGPC, [Map], [Map]
   DirectProduct(G1, G2) : GrpLie, GrpLie -> GrpLie
   DirectProduct(G, H) : GrpMat, GrpMat -> GrpMat
   DirectProduct(G, H) : GrpPC, GrpPC -> GrpPC, [Map], [Map]
   DirectProduct(G, H) : GrpPerm, GrpPerm -> GrpPerm, [ Hom(Grp) ], [ Hom(Grp) ]
   DirectProduct(W1, W2) : GrpPermCox, GrpPermCox -> GrpPermCox
   DirectProduct(A,B) : Prj,Prj -> PrjProd,SeqEnum
   DirectProduct(A,B) : Sch,Sch -> Sch,SeqEnum
   DirectProduct(R, S) : SgpFP, SgpFP -> SgpFP
   DirectProduct(Q) : [ Grp ] -> Grp
   DirectProduct(Q) : [ GrpFP ] -> GrpFP
   DirectProduct(Q) : [ GrpMat ] -> GrpMat
   DirectProduct(Q) : [ GrpPerm ] -> GrpPerm, [ Hom(Grp) ], [ Hom(Grp) ]
   DirectProduct(Q) : [GrpPC] -> GrpPC, [ Map ], [ Map ]
   DirectSum(A, B) : ModAbVar, ModAbVar -> ModAbVar, List, List
   DirectSum(X) : [ModAbVar] -> ModAbVar, List, List
   GrpFP_1_DirectProduct (Example H70E16)

DirectProductDualRadical

   GrpLie_DirectProductDualRadical (Example H103E17)

DirectSum

   DirectSum(R1, R2) : RootDtm, RootDtm -> RootDtm
   R1 + R2 : RootDtm, RootDtm -> RootDtm
   R1 + R2 : RootSys, RootSys -> RootSys
   L + M : TorLat,TorLat -> TorLat,TorLatMap,TorLatMap,TorLatMap,TorLatMap
   DirectSum(A, B) : AlgGen, AlgGen -> AlgGen
   DirectSum(L, M) : AlgLie, AlgLie -> AlgLie
   DirectSum(R, T) : AlgMat, AlgMat -> AlgMat
   DirectSum(a, b) : AlgMatElt, AlgMatElt -> AlgMatElt
   DirectSum(C, D) : Code, Code -> Code
   DirectSum(C, D) : Code, Code -> Code
   DirectSum(C, D) : Code, Code -> Code
   DirectSum(Q1, Q2) : CodeQuantum, CodeQuantum -> CodeQuantum
   DirectSum(A, B) : GrpAb, GrpAb -> GrpAb
   DirectSum(L, M) : Lat, Lat -> Lat
   DirectSum(A, B) : ModAbVar, ModAbVar -> ModAbVar, List, List
   DirectSum(U, V) : ModAlg, ModAlg -> SeqEnum
   DirectSum(ρ, τ) : ModAlg, ModAlg -> SeqEnum
   DirectSum(ρ, τ) : ModAlg, ModAlg -> SeqEnum
   DirectSum(C, D) : ModCpx, ModCpx -> ModCpx
   DirectSum(M, N) : ModGrp, ModGrp -> ModGrp, Map, Map, Map, Map
   DirectSum(M, N) : ModMPol, ModMPol -> ModMPol, [ModMPolHom], [ModMPolHom]
   DirectSum(M, N) : ModRng, ModRng -> ModRng, Map, Map, Map, Map
   DirectSum(M, N) : ModRng, ModRng -> ModRng, Map, Map, Map, Map
   DirectSum(D1, D2) : PhiMod, PhiMod -> PhiMod
   DirectSum(Q): SeqEnum -> ModAlg, SeqEnum, SeqEnum
   DirectSum(S, T) : ShfCoh, ShfCoh -> ShfCoh
   DirectSum(Q) : [ ModGrp ] -> [ ModGrp ], [ Map ], [ Map ]
   DirectSum(Q) : [ ModRng ] -> ModRng, [ Map ], [ Map ]
   DirectSum(Q) : [ ModRng ] -> [ ModRng ], [ Map ], [ Map ]
   DirectSum(Q) : [Code] -> Code
   DirectSum(Q) : [Code] -> Code
   DirectSum(X) : [ModAbVar] -> ModAbVar, List, List
   DirectSum(S) : [ModMPol] -> ModMPol, [ModMPolHom], [ModMPolHom]

DirectSumDecomposition

   IndecomposableSummands(A) : AlgAssV -> [ AlgAssV ], [ AlgAssVElt ]
   DirectSumDecomposition(A) : AlgAssV -> [ AlgAssV ], [ AlgAssVElt ]
   DirectSumDecomposition(ρ) : Map[AlgLie, AlgMatLie] -> SeqEnum
   DirectSumDecomposition(ρ) : Map[GrpLie, GrpMat] -> SeqEnum
   DirectSumDecomposition(V) : ModAlg -> SeqEnum
   DirectSumDecomposition(M) : ModRng -> [ ModRng ]
   DirectSumDecomposition(R) : RootDtm -> [], RootDtm, Map
   DirectSumDecomposition(R) : RootSys -> []
   IndecomposableSummands(L) : AlgLie -> [ AlgLie ]
   AlgLie_DirectSumDecomposition (Example H100E37)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013