[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: element-access .. Elementary
Access Functions for Elements (POLYCYCLIC GROUPS)
Arithmetic with Elements (MODULES OVER DEDEKIND DOMAINS)
Predicates on Algebra Elements (FINITELY PRESENTED ALGEBRAS)
Predicates on Nearfield Elements (NEARFIELDS)
Predicates on Ring Elements (ALGEBRAICALLY CLOSED FIELDS)
Predicates on Ring Elements (FINITE FIELDS)
Predicates on Ring Elements (GALOIS RINGS)
Predicates on Ring Elements (INTEGER RESIDUE CLASS RINGS)
Predicates on Ring Elements (INTRODUCTION TO RINGS [BASIC RINGS])
Predicates on Ring Elements (MULTIVARIATE POLYNOMIAL RINGS)
Predicates on Ring Elements (POWER, LAURENT AND PUISEUX SERIES)
Predicates on Ring Elements (RATIONAL FIELD)
Predicates on Ring Elements (RATIONAL FUNCTION FIELDS)
Predicates on Ring Elements (RING OF INTEGERS)
Predicates on Ring Elements (UNIVARIATE POLYNOMIAL RINGS)
Construction of Elements (LIE ALGEBRAS)
Construction of Matrix Elements (LIE ALGEBRAS)
Construction of Elements of Structure Constant Algebras (LIE ALGEBRAS)
Constructing Elements (GROUPS OF LIE TYPE)
Creation of Elements (BRANDT MODULES)
Operations on Elements (BRANDT MODULES)
Id(A) : GrpAb -> GrpAbElt
A ! 0 : GrpAb, RngIntElt -> GrpAbElt
Construction of Elements (ABELIAN GROUPS)
Element Creation (INTEGER RESIDUE CLASS RINGS)
Id(G) : GrpGPC -> GrpGPCElt
G ! 1 : GrpGPC, RngIntElt -> GrpGPCElt
Specification of Elements (POLYCYCLIC GROUPS)
Functions related to Norm and Trace (ALGEBRAIC FUNCTION FIELDS)
GrpPSL2_Element-of-congruence-subgroup-in-terms-of-generators (Example H130E4)
Element Operations on Differential Ring Elements (DIFFERENTIAL RINGS)
Element Operations on Differential Operators (DIFFERENTIAL RINGS)
Basic Operations (GROUPS OF LIE TYPE)
Conjugacy and Cohomology (GROUPS OF LIE TYPE)
Decompositions (GROUPS OF LIE TYPE)
Operations on Elements (GROUPS OF LIE TYPE)
Properties of Elements (GROUPS OF LIE TYPE)
RngIntRes_element-ops (Example H19E4)
Minimum(a, O) : FldFunElt, RngFunOrd -> RngElt, RngElt
Functions related to Orders and Integrality (ALGEBRAIC FUNCTION FIELDS)
Other Element Operations (ALGEBRAIC FUNCTION FIELDS)
Other Element Operations (ALGEBRAIC FUNCTION FIELDS)
Functions related to Places and Divisors (ALGEBRAIC FUNCTION FIELDS)
Finding Elements with Prescribed Properties (MATRIX GROUPS OVER FINITE FIELDS)
Properties of Groups of Lie Type (GROUPS OF LIE TYPE)
AlgQuat_Element_Arithmetic (Example H86E9)
Attributes of Elements (BLACK-BOX GROUPS)
Elementary Invariants (BRANDT MODULES)
AbelianSubgroups(G) : GrpPC -> SeqEnum
ElementaryAbelianGroup(GrpGPC, p, n) : Cat, RngIntElt, RngIntElt -> GrpGPC
ElementaryAbelianNormalSubgroup(G) : GrpPerm -> GrpPerm
ElementaryAbelianQuotient(G, p) : GrpAb, RngIntElt -> GrpAb, Map
ElementaryAbelianQuotient(G, p) : GrpFP, RngIntElt -> GrpAb, Map
ElementaryAbelianQuotient(G, p) : GrpGPC, RngIntElt -> GrpAb, Map
ElementaryAbelianQuotient(G, p) : GrpMat, RngIntElt -> GrpAb, Map
ElementaryAbelianQuotient(G, p) : GrpPC, RngIntElt -> GrpAb, Map
ElementaryAbelianQuotient(G, p) : GrpPerm, RngIntElt -> GrpAb, Map
ElementaryAbelianSeries(G) : GrpPC -> [GrpPC]
ElementaryAbelianSeries(G: parameters) : GrpMat -> [ GrpMat ]
ElementaryAbelianSeries(G: parameters) : GrpPerm -> [ GrpPerm ]
ElementaryAbelianSeriesCanonical(G) : GrpMat -> [ GrpMat ]
ElementaryAbelianSeriesCanonical(G) : GrpPC -> [GrpPC]
ElementaryAbelianSeriesCanonical(G) : GrpPerm -> [ GrpPerm ]
ElementaryAbelianSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
ElementaryAbelianSubgroups(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
ElementaryDivisors(a) : AlgMatElt -> [RngElt]
ElementaryDivisors(M, N) : ModDed, ModDed -> SeqEnum
ElementaryDivisors(A) : Mtrx -> [RngElt]
ElementaryDivisors(A) : MtrxSprs -> [RngElt]
ElementaryPhiModule(S,d,h) : RngSerLaur, RngIntElt, RngIntElt -> PhiMod
ElementarySymmetricPolynomial(P, k) : RngMPol, RngIntElt -> RngMPolElt
ElementarySymmetricPolynomial(P, k) : RngMPol, RngIntElt -> RngMPolElt
ElementaryToHomogeneousMatrix(n): RngIntElt -> AlgMatElt
ElementaryToMonomialMatrix(n): RngIntElt -> AlgMatElt
ElementaryToPowerSumMatrix(n): RngIntElt -> AlgMatElt
ElementaryToSchurMatrix(n): RngIntElt -> AlgMatElt
ExtensionsOfElementaryAbelianGroup(p, d, G) : RngIntElt, RngIntElt, GrpPerm -> SeqEnum
HasHomogeneousBasis(A): AlgSym -> BoolElt
HomogeneousToElementaryMatrix(n): RngIntElt -> AlgMatElt
IsElementaryAbelian(G) : GrpAb -> BoolElt
IsElementaryAbelian(G) : GrpFin -> BoolElt
IsElementaryAbelian(G) : GrpGPC -> BoolElt
IsElementaryAbelian(G) : GrpMat -> BoolElt
IsElementaryAbelian(G) : GrpPC -> BoolElt
IsElementaryAbelian(G) : GrpPerm -> BoolElt
MonomialToElementaryMatrix(n): RngIntElt -> AlgMatElt
PowerSumToElementaryMatrix(n): RngIntElt -> AlgMatElt
PowerSumToElementarySymmetric(I) : [] -> []
SchurToElementaryMatrix(n): RngIntElt -> AlgMatElt
SymmetricFunctionAlgebraElementary(R) : Rng -> AlgSym
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013