[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: Unique .. unit-group
IsUniqueFactorizationDomain(R) : Rng -> BoolElt
IsUFD(R) : Rng -> BoolElt
IsUniquePartialRoot(f, c) : RngUPolElt, RngSerElt -> BoolElt
ExceptionalUnitOrbit(u) : RngOrdElt -> [ RngOrdElt ]
ExtendedUnitGroup(D) : NfdDck -> GrpMat
FundamentalUnit(K) : FldQuad -> FldQuadElt
GlobalUnitGroup(C) : Crv[FldFin] -> GrpAb, Map
GlobalUnitGroup(F) : FldFun -> GrpAb, Map
GlobalUnitGroup(F) : FldFunG -> GrpAb, Map
HasAllRootsOnUnitCircle(f) : RngUPolElt -> BoolElt
IsExceptionalUnit(u) : RngOrdElt -> BoolElt
IsGlobalUnit(a) : FldFunElt -> BoolElt
IsGlobalUnit(a) : FldFunElt -> BoolElt
IsGlobalUnitWithPreimage(a) : FldFunElt -> BoolElt, GrpAbElt
IsGlobalUnitWithPreimage(a) : FldFunElt -> BoolElt, GrpAbElt
IsTorsionUnit(w) : RngOrdElt -> BoolElt
IsUnit(a) : AlgAssVOrdElt -> BoolElt
IsUnit(f) : AlgFPElt -> BoolElt
IsUnit(a) : AlgGenElt -> BoolElt, AlgGenElt
IsUnit(a) : AlgMatElt -> BoolElt
IsUnit(A) : Mtrx -> BoolElt
IsUnit(a) : RngElt -> BoolElt
IsUnit(f) : RngMPolResElt -> BoolElt
IsUnit(a) : RngOrdResElt -> BoolElt
IsUnit(x) : RngPadElt -> BoolElt
IsUnit(s) : RngPowLazElt -> BoolElt
IsUnitWithPreimage(a) : RngFunOrdElt -> BoolElt, GrpAbElt
MatrixUnit(R, i, j) : AlgMat, RngIntElt, RngIntElt -> AlgMatElt
MultiplicativeGroup(S) : AlgQuatOrd[RngInt] -> GrpPerm, Map
MultiplicativeGroup(F) : FldFin -> GrpAb, Map
MultiplicativeGroup(Z) : RngInt -> GrpAb, Map
MultiplicativeGroup(R) : RngIntRes -> GrpAb, Map
PrincipalUnitGroup(R) : RngPad -> GrpAb, Map
PrincipalUnitGroupGenerators(R) : RngPad -> SeqEnum
SetOrderTorsionUnit(O, e, r) : RngOrd, RngOrdElt, RngIntElt ->
ShimuraReduceUnit(delta, gammagens, G, D) : AlgAssVOrdElt, SeqEnum[AlgAssVOrdElt], GrpPSL2, SpcHyd -> SeqEnum
TorsionUnitGroup(K) : FldNum -> GrpAb, Map
TorsionUnitGroup(O) : RngOrd -> GrpAb, Map
TotallyUnitTrivialSubgroup(G) : GrpDrchNF -> GrpDrchNF
UnitDisc() : -> SpcHyd
UnitEquation(a, b, c) : FldNumElt, FldNumElt, FldNumElt -> [ ModHomElt ]
UnitGenerators(G) : GrpDrch -> [RngIntElt]
UnitGroup(K) : FldNum -> GrpAb, Map
UnitGroup(F) : FldPad -> GrpAb, Map
UnitGroup(Q) : FldRat -> GrpAb, Map
UnitGroup(N) : Nfd -> GrpMat, Map
UnitGroup(O) : RngFunOrd -> GrpAb, Map
UnitGroup(R) : RngIntRes -> GrpAb, Map
UnitGroup(O) : RngOrd -> GrpAb, Map
UnitGroup(OQ) : RngOrdRes -> GrpAb, Map
UnitGroup(R) : RngPad -> GrpAb, Map
UnitGroupAsSubgroup(O) : RngOrd -> GrpAb
UnitGroupGenerators(F) : FldPad -> SeqEnum
UnitGroupGenerators(R) : RngPad -> SeqEnum
UnitRank(K) : FldNum -> RngIntElt
UnitRank(K) : FldNum -> RngIntElt
UnitRank(O) : RngFunOrd -> RngIntElt
UnitRank(O) : RngOrd -> RngIntElt
UnitRank(O) : RngOrd -> RngIntElt
UnitTrivialSubgroup(G) : GrpDrchNF -> GrpDrchNF
UnitVector(M, i) : ModMPol, RngIntElt -> ModMPolElt
ValuesOnUnitGenerators(chi) : GrpDrchElt -> [RngElt]
Class and Unit Groups (NUMBER FIELDS)
The Unit Group (INTEGER RESIDUE CLASS RINGS)
Unit Disc (ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES)
Unit Equations (ORDERS AND ALGEBRAIC FIELDS)
Unit Group (p-ADIC RINGS AND THEIR EXTENSIONS)
Unit Groups (ORDERS AND ALGEBRAIC FIELDS)
Units and Unit Groups (QUATERNION ALGEBRAS)
Unit Disc (ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES)
Unit Equations (ORDERS AND ALGEBRAIC FIELDS)
The Unit Group (INTEGER RESIDUE CLASS RINGS)
Unit Group (p-ADIC RINGS AND THEIR EXTENSIONS)
Unit Groups (ORDERS AND ALGEBRAIC FIELDS)
Units and Unit Groups (QUATERNION ALGEBRAS)
RngIntRes_unit-group (Example H19E5)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013