[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: CharacteristicPolynomialFromTraces  ..  Chief


CharacteristicPolynomialFromTraces

   CharacteristicPolynomialFromTraces(traces) : [ Fld ] -> RngUPolElt
   CharacteristicPolynomialFromTraces(traces, d, q, i) : [ Fld ], RngIntElt, RngIntElt, RngIntElt -> RngUPolElt, RngUPolElt

Characteristics

   MatRepCharacteristics(A) : GrpAtlas -> SetEnum[RngIntElt]

CharacteristicSeries

   CharacteristicSeries(A) : GrpAuto -> SeqEnum

characteristicsubgps

   GrpAuto_characteristicsubgps (Example H67E7)

CharacteristicVector

   CharacteristicVector(M, S) : ModRng, { RngIntElt } -> ModRngElt
   CharacteristicVector(V, S) : ModTupFld, { RngElt } -> ModTupFldElt

CharacterMultiset

   CharacterMultiset(V) : ModAlg -> LieRepDec
   CharacterMultiset(V) : ModAlg -> LieRepDec

CharacterRing

   CharacterRing(G) : Grp -> AlgChtr
   ClassFunctionSpace(G) : Grp -> AlgChtr

Characters

   DirichletCharacters(A) : ModAbVar -> List
   DirichletCharacters(M) : ModFrm -> [GrpDrchElt]
   LiftCharacters(T, f, G) : [AlgChtrElt], Map, Grp -> AlgChtrElt
   LinearCharacters(G): Grp -> SeqEnum
   LinearCharacters(G) : GrpMat -> [ Chtr ]
   ReduceCharacters(I, C) : [ AlgChtrElt ], [ AlgChtrElt ] -> [ AlgChtrElt ], [ AlgChtrElt ]
   SpinorCharacters(G) : SymGen -> [ GrpDrchElt ]

characters

   Brauer Characters (CHARACTERS OF FINITE GROUPS)
   Characters (NUMBER FIELDS)
   Dirichlet Characters (INTEGER RESIDUE CLASS RINGS)

CharacterTable

   CharacterTable(G) : GrpAb -> TabChtr
   CharacterTable(G) : GrpFin -> TabChtr
   CharacterTable(G :parameters) : Grp -> SeqEnum
   CharacterTable(G: parameters) : GrpMat -> TabChtr
   CharacterTable(G: parameters) : GrpPC -> TabChtr
   CharacterTable(G: parameters) : GrpPerm -> TabChtr
   Chtr_CharacterTable (Example H91E1)

CharacterTable2

   Chtr_CharacterTable2 (Example H91E2)

CharacterTableConlon

   CharacterTableConlon(G) : Grp -> SeqEnum
   CharacterTableConlon(G) : GrpPC -> [ AlgChtrElt ]

CharacterTableDS

   CharacterTableDS(G :parameters) : Grp -> SeqEnum, SeqEnum

CharacterWithSchurIndex

   CharacterWithSchurIndex(n: parameters) : RngIntElt -> AlgChtrElt. GrpPC

charalt

   Characters of the Alternating Group (REPRESENTATIONS OF SYMMETRIC GROUPS)

charsym

   Characters of the Symmetric Group (REPRESENTATIONS OF SYMMETRIC GROUPS)

Chebyshev

   ChebyshevT(n) : RngIntElt -> RngUPolElt
   ChebyshevFirst(n) : RngIntElt -> RngUPolElt
   ChebyshevSecond(n) : RngIntElt -> RngUPolElt

ChebyshevFirst

   ChebyshevT(n) : RngIntElt -> RngUPolElt
   ChebyshevFirst(n) : RngIntElt -> RngUPolElt

ChebyshevSecond

   ChebyshevU(n) : RngIntElt -> RngUPolElt
   ChebyshevSecond(n) : RngIntElt -> RngUPolElt

ChebyshevT

   ChebyshevT(n) : RngIntElt -> RngUPolElt
   ChebyshevFirst(n) : RngIntElt -> RngUPolElt

ChebyshevU

   ChebyshevU(n) : RngIntElt -> RngUPolElt
   ChebyshevSecond(n) : RngIntElt -> RngUPolElt

Check

   CheckCodimension(X) : GRSch -> BoolElt
   CheckPolynomial(C) : Code -> RngUPolElt
   CheckWeilPolynomial(f, q, h20) : RngUPolElt, RngIntElt, RngIntElt -> BoolElt
   LSeries(weight, gamma, conductor, cffun) : FldReElt,[FldRatElt],FldReElt,Any -> LSer
   ParityCheckMatrix(C) : Code -> ModMatFldElt
   ParityCheckMatrix(C) : Code -> ModMatFldElt
   ParityCheckMatrix(C) : Code -> ModMatRngElt

check

   Automorphism Group and Isomorphism Testing (HYPERELLIPTIC CURVES)

CheckCodimension

   CheckCodimension(X) : GRSch -> BoolElt

CheckFunctionalEquation

   CheckFunctionalEquation(L) : LSer -> FldComElt
   LSeries(weight, gamma, conductor, cffun) : FldReElt,[FldRatElt],FldReElt,Any -> LSer

checking

   Checking of Maps (MAPPINGS)

CheckPolynomial

   CheckPolynomial(C) : Code -> RngUPolElt

CheckWeilPolynomial

   CheckWeilPolynomial(f, q, h20) : RngUPolElt, RngIntElt, RngIntElt -> BoolElt

Chern

   ChernNumber(S,n) : Srfc, RngIntElt -> RngIntElt
   MinimalChernNumber(S,n) : Srfc, RngIntElt -> RngIntElt

ChernNumber

   ChernNumber(S,n) : Srfc, RngIntElt -> RngIntElt

Chevalley

   ChevalleyBasis(L) : AlgLie -> [ AlgLieElt ], [ AlgLieElt ], [ AlgLieElt ]
   ChevalleyBasis(L, H, R) : AlgLie, AlgLie, RootDtm -> [ AlgLieElt ], [ AlgLieElt ], [ AlgLieElt ]
   ChevalleyGroup(X, n, K: parameters) : MonStgElt, RngIntElt, FldFin -> GrpMat
   ChevalleyOrderPolynomial(type, n: parameters) : MonStgElt, RngIntElt -> RngUPolElt
   FactoredChevalleyGroupOrder(type, n, F: parameters) : MonStgElt, RngIntElt, FldFin -> RngIntEltFact
   IsChevalleyBasis(L, R, x, y, h) : AlgLie, RootDtm, [ AlgLieElt ], [ AlgLieElt ], [ AlgLieElt ] -> BoolElt, [ Tup ]

ChevalleyBasis

   ChevalleyBasis(L) : AlgLie -> [ AlgLieElt ], [ AlgLieElt ], [ AlgLieElt ]
   ChevalleyBasis(L, H, R) : AlgLie, AlgLie, RootDtm -> [ AlgLieElt ], [ AlgLieElt ], [ AlgLieElt ]
   AlgLie_ChevalleyBasis (Example H100E34)

ChevalleyBasisSmallChar

   AlgLie_ChevalleyBasisSmallChar (Example H100E35)

ChevalleyGroup

   ChevalleyGroup(X, n, K: parameters) : MonStgElt, RngIntElt, FldFin -> GrpMat

ChevalleyGroupOrder

   ChevalleyGroupOrder(type, n, F: parameters) : MonStgElt, RngIntElt, FldFin -> RngIntEltFact
   FactoredChevalleyGroupOrder(type, n, F: parameters) : MonStgElt, RngIntElt, FldFin -> RngIntEltFact

ChevalleyOrderPolynomial

   ChevalleyOrderPolynomial(type, n: parameters) : MonStgElt, RngIntElt -> RngUPolElt

chevorder

   ChevalleyGroupOrder(type, n, F: parameters) : MonStgElt, RngIntElt, FldFin -> RngIntEltFact
   The Orders of the Chevalley Groups (ALMOST SIMPLE GROUPS)

chi

   chi(n) : GrpDrchElt, RngIntElt -> RngElt
   Evaluate(chi,n) : GrpDrchElt, RngIntElt -> RngElt

Chief

   ChiefFactors(G) : GrpMat -> [ <RngIntElt, RngIntElt, RngIntElt, RngIntElt> ]
   ChiefFactors(G) : GrpPerm -> [ <RngIntElt, RngIntElt, RngIntElt, RngIntElt> ]
   ChiefSeries(G) : GrpMat -> [ GrpMat ], [ <RngIntElt, RngIntElt, RngIntElt, RngIntElt> ]
   ChiefSeries(G) : GrpPC -> [GrpPC]
   ChiefSeries(G) : GrpPerm -> [ GrpPerm ], [ <RngIntElt, RngIntElt, RngIntElt, RngIntElt> ]

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013