[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: Near  ..  Network


Near

   IsNearLinearSpace(D) : Inc -> BoolElt
   NearLinearSpace(I) : Inc -> IncNsp
   NearLinearSpace< v | X : parameters > : RngIntElt, List -> IncNsp

Nearfield

   DicksonNearfield(q, v : parameters) : RngIntElt, RngIntElt -> NfdDck
   ZassenhausNearfield(n) : RngIntElt -> NfdZss

nearfield

   Automorphisms (NEARFIELDS)
   Constructing Nearfields (NEARFIELDS)
   Nearfield Planes (NEARFIELDS)
   Nearfield Properties (NEARFIELDS)
   Operations on Elements (NEARFIELDS)
   Operations on Nearfields (NEARFIELDS)
   The Group of Units (NEARFIELDS)

nearfield-code

   Constructing Nearfields (NEARFIELDS)

nearfield-eltops

   Operations on Elements (NEARFIELDS)

nearfield-iso

   Automorphisms (NEARFIELDS)

nearfield-ops

   Operations on Nearfields (NEARFIELDS)

nearfield-planes

   Nearfield Planes (NEARFIELDS)

nearfield-properties

   Nearfield Properties (NEARFIELDS)

nearfield-units

   The Group of Units (NEARFIELDS)

NearLinearSpace

   NearLinearSpace(I) : Inc -> IncNsp
   NearLinearSpace< v | X : parameters > : RngIntElt, List -> IncNsp

Nearly

   IsNearlyPerfect(C) : Code -> BoolElt

Neat

   IsNeat(G, H) : GrpAb, GrpAb -> BoolElt

Nef

   IsNef(D) : DivSchElt -> BoolElt
   IsNef(D) : DivTorElt -> BoolElt
   IsNefAndBig(D) : DivSchElt -> BoolElt
   NefCone(X) : TorVar -> TorCon

NefCone

   NefCone(X) : TorVar -> TorCon

Negation

   NegationMap(E) : CrvEll -> Map

NegationMap

   NegationMap(E) : CrvEll -> Map

Negative

   PositiveGammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
   NegativeGammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
   ZeroGammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
   GammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
   HasNegativeWeightCycle(G) : Grph -> BoolElt
   HasNegativeWeightCycle(u : parameters) : GrphVert -> BoolElt
   IsNegative(W, r) : GrpPermCox, RngIntElt -> BoolElt
   IsNegative(R, r) : RootStr, RngIntElt -> BoolElt
   IsNegative(R, r) : RootSys, RngIntElt -> BoolElt
   IsNegativeDefinite(F) : ModMatRngElt -> BoolElt
   IsNegativeSemiDefinite(F) : ModMatRngElt -> BoolElt
   Negative(W, r) : GrpPermCox, RngIntElt -> RngIntElt
   Negative(R, r) : RootStr, RngIntElt -> RngIntElt
   Negative(R, r) : RootSys, RngIntElt -> RngIntElt
   NegativePrimeDivisors(D) : DivSchElt -> SeqEnum
   RelativeRoots(R) : RootDtm -> SetIndx

NegativeGammaOrbitsOnRoots

   PositiveGammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
   NegativeGammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
   ZeroGammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
   GammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]

NegativePrimeDivisors

   NegativePrimeDivisors(D) : DivSchElt -> SeqEnum

NegativeRelativeRoots

   PositiveRelativeRoots(R) : RootDtm -> SetIndx
   NegativeRelativeRoots(R) : RootDtm -> SetIndx
   SimpleRelativeRoots(R) : RootDtm -> SetIndx
   RelativeRoots(R) : RootDtm -> SetIndx

Neighbor

   Neighbor(L, v, p) : Lat, LatElt, RngIntElt -> Lat
   Neighbour(L, v, p) : Lat, LatElt, RngIntElt -> Lat
   NeighbourClosure(L, p) : Lat, RngIntElt -> Lat

NeighborClosure

   NeighborClosure(L, p) : Lat, RngIntElt -> Lat
   NeighbourClosure(L, p) : Lat, RngIntElt -> Lat

Neighbors

   InNeighbors(u) : GrphVert -> { GrphVert }
   InNeighbours(u) : GrphVert -> { GrphVert }
   InNeighbours(u) : GrphVert -> { GrphVert }
   Neighbours(u) : GrphVert -> { GrphVert }
   Neighbours(u) : GrphVert -> { GrphVert }
   Neighbours(L, p) : Lat, RngIntElt -> Lat
   OutNeighbours(u) : GrphVert -> { GrphVert }
   OutNeighbours(u) : GrphVert -> { GrphVert }

Neighbour

   Neighbor(L, v, p) : Lat, LatElt, RngIntElt -> Lat
   Neighbour(L, v, p) : Lat, LatElt, RngIntElt -> Lat
   NeighbourClosure(L, p) : Lat, RngIntElt -> Lat
   Lat_Neighbour (Example H30E19)

NeighbourClosure

   NeighborClosure(L, p) : Lat, RngIntElt -> Lat
   NeighbourClosure(L, p) : Lat, RngIntElt -> Lat

Neighbours

   InNeighbors(u) : GrphVert -> { GrphVert }
   InNeighbours(u) : GrphVert -> { GrphVert }
   InNeighbours(u) : GrphVert -> { GrphVert }
   Neighbours(u) : GrphVert -> { GrphVert }
   Neighbours(u) : GrphVert -> { GrphVert }
   Neighbours(L, p) : Lat, RngIntElt -> Lat
   OutNeighbours(u) : GrphVert -> { GrphVert }
   OutNeighbours(u) : GrphVert -> { GrphVert }

neighbours

   Neighbour Relations and Graphs (LATTICES)

NEQ

   SimNEQ(K, e, f) : FldNum, FldNumElt, FldNumElt -> BoolElt, [FldNumElt]
   SimNEQ(K, e, f) : FldNum, FldNumElt, FldNumElt -> BoolElt, [FldNumElt]

NestedExists

   Set_NestedExists (Example H9E13)

NestedIteration

   Seq_NestedIteration (Example H10E6)

nesting

   Nested Aggregates (INTRODUCTION TO AGGREGATES [SETS, SEQUENCES, AND MAPPINGS])

Network

   Network<n | edges > : RngIntElt, List -> GrphNet, GrphVertSet, GrphEdgeSet
   UnderlyingNetwork(G) : Grph -> GrphNet, GrphVertSet, GrphEdgeSet

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013