[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: j  ..  JenningsLieAlgebra


j

   jNInvariant(p,N) : Pt, RngIntElt -> RngElt

j-key

   j

J2

   GrpData_J2 (Example H66E23)

jac

   Points on the Jacobian (HYPERELLIPTIC CURVES)

Jac_Point_Counting

   CrvHyp_Jac_Point_Counting (Example H125E19)

jac_rad

   AlgAss_jac_rad (Example H81E2)

Jac_WeilPairing

   CrvHyp_Jac_WeilPairing (Example H125E18)

Jacobi

   Jacobi(~P, c, b, a, ~r) : GrpPCpQuotientProc, RngIntElt, RngIntElt, RngIntElt -> RngIntElt ->
   JacobiSymbol(n, m) : RngIntElt, RngIntElt -> RngIntElt
   JacobiSymbol(a,b) : RngUPol, RngUPol -> RngIntElt
   JacobiTheta(q, z) : FldReElt, FldReElt -> FldReElt
   JacobiTheta(q, z) : FldReElt, RngSerElt[FldRe] -> RngSerElt
   JacobiThetaNullK(q, k) : FldReElt, RngIntElt -> FldReElt

jacobi

   The Jacobi θand Dedekind η- functions (REAL AND COMPLEX FIELDS)

jacobi-dedekind

   The Jacobi θand Dedekind η- functions (REAL AND COMPLEX FIELDS)

Jacobian

   AnalyticJacobian(f) : RngUPolElt -> AnHcJac
   FromAnalyticJacobian(z, A) : Mtrx, AnHcJac -> SeqEnum
   Jacobian(C) : CrvHyp -> JacHyp
   Jacobian(model) : ModelG1 -> CrvEll
   Jacobian(C) : RngMPolElt -> CrvEll
   JacobianIdeal(f) : RngMPolElt -> RngMPol
   JacobianIdeal(C) : Sch -> RngMPol
   JacobianIdeal(X) : Sch -> RngMPol
   JacobianMatrix(C) : Sch -> ModMatRngElt
   JacobianMatrix(X) : Sch -> ModMatRngElt
   JacobianMatrix( [ f ] ) : [ RngMPolElt ] -> RngMPol
   JacobianOrdersByDeformation(Q, Y) : RngMPolElt, SeqEnum -> SeqEnum
   ToAnalyticJacobian(x, y, A) : FldComElt, FldComElt, AnHcJac -> Mtrx

jacobian

   Descent on the Jacobian (HYPERELLIPTIC CURVES)
   Isomorphisms, Isogenies and Endomorphism Rings of Analytic Jacobians (HYPERELLIPTIC CURVES)
   Jacobians (HYPERELLIPTIC CURVES)

jacobian-descent

   Descent on the Jacobian (HYPERELLIPTIC CURVES)

jacobian_creation

   Creation of a Jacobian (HYPERELLIPTIC CURVES)

JacobianIdeal

   JacobianIdeal(f) : RngMPolElt -> RngMPol
   JacobianIdeal(C) : Sch -> RngMPol
   JacobianIdeal(X) : Sch -> RngMPol

JacobianMatrix

   JacobianMatrix(C) : Sch -> ModMatRngElt
   JacobianMatrix(X) : Sch -> ModMatRngElt
   JacobianMatrix( [ f ] ) : [ RngMPolElt ] -> RngMPol

JacobianOrdersByDeformation

   EulerFactorsByDeformation(Q, Y) : RngMPolElt, SeqEnum -> SeqEnum
   ZetaFunctionsByDeformation(Q, Y) : RngMPolElt, SeqEnum -> SeqEnum
   JacobianOrdersByDeformation(Q, Y) : RngMPolElt, SeqEnum -> SeqEnum

jacobians

   Jacobians over Number Fields or Q (HYPERELLIPTIC CURVES)

jacobians-number-fields

   Jacobians over Number Fields or Q (HYPERELLIPTIC CURVES)

JacobiSymbol

   JacobiSymbol(n, m) : RngIntElt, RngIntElt -> RngIntElt
   JacobiSymbol(a,b) : RngUPol, RngUPol -> RngIntElt

JacobiTheta

   JacobiTheta(q, z) : FldReElt, FldReElt -> FldReElt
   JacobiTheta(q, z) : FldReElt, RngSerElt[FldRe] -> RngSerElt

JacobiThetaNullK

   JacobiThetaNullK(q, k) : FldReElt, RngIntElt -> FldReElt

Jacobson

   JacobsonRadical(A) : AlgAssV -> AlgAssV
   JacobsonRadical(A) : AlgGen -> AlgGen
   JacobsonRadical(M) : ModAlg -> ModAlg
   JacobsonRadical(M) : ModRng -> ModRng, Map
   JacobsonRadical(e) : SubModLatElt -> SubModLatElt

jacobson

   AlgGrp_jacobson (Example H84E4)

JacobsonRadical

   JacobsonRadical(A) : AlgAssV -> AlgAssV
   JacobsonRadical(A) : AlgGen -> AlgGen
   JacobsonRadical(M) : ModAlg -> ModAlg
   JacobsonRadical(M) : ModRng -> ModRng, Map
   JacobsonRadical(e) : SubModLatElt -> SubModLatElt

JBessel

   JBessel(n, s) : RngIntElt, FldReElt -> FldReElt

Jellyfish

   JellyfishConstruction(G: parameters) : GrpPerm -> BoolElt
   JellyfishImage(G) : GrpPerm -> GrpPerm
   JellyfishImage(G, x) : GrpPerm, GrpPermElt -> GrpPermElt
   JellyfishPreimage(G, x) : GrpPerm, GrpPermElt -> GrpPermElt

jellyfish

   The Jellyfish Algorithm (PERMUTATION GROUPS)

JellyfishConstruction

   JellyfishConstruction(G: parameters) : GrpPerm -> BoolElt

JellyfishImage

   JellyfishImage(G) : GrpPerm -> GrpPerm
   JellyfishImage(G, x) : GrpPerm, GrpPermElt -> GrpPermElt

JellyfishPreimage

   JellyfishPreimage(G, x) : GrpPerm, GrpPermElt -> GrpPermElt

Jennings

   JenningsLieAlgebra(G) : Grp -> AlgLie, SeqEnum
   JenningsSeries(G) : GrpFin -> [ GrpFin ]
   JenningsSeries(G) : GrpMat -> [ GrpMat ]
   JenningsSeries(G) : GrpPC -> [GrpPC]
   JenningsSeries(G) : GrpPerm -> [ GrpPerm ]

JenningsLie

   AlgLie_JenningsLie (Example H100E49)

JenningsLieAlgebra

   JenningsLieAlgebra(G) : Grp -> AlgLie, SeqEnum

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013