[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: sequence .. Series
Element Decomposers (p-ADIC RINGS AND THEIR EXTENSIONS)
Factorization Sequences (RING OF INTEGERS)
Parents of Sets and Sequences (INTRODUCTION TO AGGREGATES [SETS, SEQUENCES, AND MAPPINGS])
Power Sequences (SEQUENCES)
Sequence Conversions (ALGEBRAIC FUNCTION FIELDS)
Sequence Conversions (FINITE FIELDS)
Sequence Conversions (GALOIS RINGS)
Sequence Conversions (RATIONAL FIELD)
SequenceOfRadicalGenerators(A) : AlgMat -> SeqEnum
MaximalIncreasingSequences(w, k) : SeqEnum,RngIntElt -> RngIntElt
Ordering of Sequences (RATIONAL FUNCTION FIELDS)
PSEUDO-RANDOM BIT SEQUENCES
Ordering of Sequences (RATIONAL FUNCTION FIELDS)
Seqelt(s, F) : [ FldFinElt ] -> FldFinElt
SequenceToElement(s, F) : [ FldFinElt ] -> FldFinElt
SequenceToFactorization(s) : SeqEnum -> RngIntEltFact
SeqFact(s) : SeqEnum -> RngIntEltFact
Seqint(s, b) : [RngIntElt], RngIntElt -> RngIntElt
SequenceToInteger(s, b) : [RngIntElt], RngIntElt -> RngIntElt
Seqlist(Q) : SeqEnum -> List
SequenceToList(Q) : SeqEnum -> List
SequenceToMultiset(Q) : SeqEnum -> SetMulti
SequenceToSet(S) : SeqEnum -> SetEnum
Seqset(S) : SeqEnum -> SetEnum
RngSer_serext-simple (Example H49E7)
AlgebraicPowerSeries(dp, ip, L, e) : RngUPolElt, RngMPolElt, Lat, RngIntElt -> RngPowAlgElt
CharacteristicSeries(A) : GrpAuto -> SeqEnum
ChiefSeries(G) : GrpMat -> [ GrpMat ], [ <RngIntElt, RngIntElt, RngIntElt, RngIntElt> ]
ChiefSeries(G) : GrpPC -> [GrpPC]
ChiefSeries(G) : GrpPerm -> [ GrpPerm ], [ <RngIntElt, RngIntElt, RngIntElt, RngIntElt> ]
CompositionSeries(A) : AlgGen -> [ AlgGen ], [ AlgGen ], AlgMatElt
CompositionSeries(L) : AlgLie -> [ Alg ], [ AlgLie ], AlgMatElt
CompositionSeries(G) : GrpAb -> [GrpAb]
CompositionSeries(G) : GrpPC -> [GrpPC]
CompositionSeries(G, i) : GrpPC, RngIntElt -> [GrpPC]
CompositionSeries(G) : GrpPerm -> [ GrpPerm ]
CompositionSeries(M) : ModRng -> [ ModRng ], [ ModRng ], AlgMatElt
CompositionTreeSeries(G) : Grp -> SeqEnum, List, List, List, BoolElt, []
DerivedSeries(L) : AlgLie -> [ AlgLie ]
DerivedSeries(G) : GrpFin -> [ GrpFin ]
DerivedSeries(G) : GrpGPC -> [GrpGPC]
DerivedSeries(G) : GrpMat -> [ GrpMat ]
DerivedSeries(G) : GrpPC -> [GrpPC]
DerivedSeries(G) : GrpPerm -> [ GrpPerm ]
DifferentialLaurentSeriesRing(C) : Fld -> RngDiff
EhrhartSeries(P) : TorPol -> FldFunRatUElt
Eigenform(M, prec) : ModSym, RngIntElt -> RngSerPowElt
EisensteinSeries(M) : ModFrm -> List
ElementaryAbelianSeries(G) : GrpPC -> [GrpPC]
ElementaryAbelianSeries(G: parameters) : GrpMat -> [ GrpMat ]
ElementaryAbelianSeries(G: parameters) : GrpPerm -> [ GrpPerm ]
ElementaryAbelianSeriesCanonical(G) : GrpMat -> [ GrpMat ]
ElementaryAbelianSeriesCanonical(G) : GrpPC -> [GrpPC]
ElementaryAbelianSeriesCanonical(G) : GrpPerm -> [ GrpPerm ]
EvaluateByPowerSeries(m, P) : MapSch, Pt -> Pt
EvaluationPowerSeries(s, nu, v) : Tup, SeqEnum, SeqEnum -> RngPowAlgElt
FittingSeries(G) : GrpGPC -> [GrpGPC]
R`HilbertSeries
HilbertSeries(D) : DivTor -> FldFunRatUElt
HilbertSeries(X) : GRSch -> FldFunRatUElt
HilbertSeries(M) : ModMPol -> FldFunElt
HilbertSeries(M, p) : ModMPol, RngIntElt -> RngSerLaurElt
HilbertSeries(R) : RngInvar -> FldFunUElt
HilbertSeries(I) : RngMPol -> FldFunUElt
HilbertSeries(I, p) : RngMPol, RngIntElt -> RngSerLaurElt
HilbertSeries(p,V) : RngUPolElt, SeqEnum -> FldFunRatUElt
HilbertSeriesApproximation(R, n) : RngInvar, RngIntElt -> RngSerLaurElt
HilbertSeriesMultipliedByMinimalDenominator(p,V) : RngUPolElt, SeqEnum -> RngUPolElt, SeqEnum
HypergeometricSeries(a,b,c, z) : RngElt, RngElt, RngElt, RngElt -> RngElt
HypergeometricSeries(a,b,c, z) : RngElt, RngElt, RngElt, RngElt -> RngElt
IsDifferentialLaurentSeriesRing(R) : Rng -> BoolElt
IsDifferentialSeriesRing(R) : Rng -> BoolElt
IsEisensteinSeries(f) : ModFrmElt -> BoolElt
IsEisensteinSeries(f) : ModFrmElt -> BoolElt
IsPrincipalSeries(pi) : RepLoc -> BoolElt
JenningsSeries(G) : GrpFin -> [ GrpFin ]
JenningsSeries(G) : GrpMat -> [ GrpMat ]
JenningsSeries(G) : GrpPC -> [GrpPC]
JenningsSeries(G) : GrpPerm -> [ GrpPerm ]
LMGChiefSeries(G) : GrpMat[FldFin] -> SeqEnum
LMGCompositionSeries(G) : GrpMat[FldFin] -> SeqEnum
LaurentSeriesRing(L) : AlgKac -> RngSerLaur
LaurentSeriesRing(R) : Rng -> RngSerLaur
LazyPowerSeriesRing(C, n) : Rng, RngIntElt -> RngPowLaz
LazySeries(R, f) : RngPowLaz, RngMPolElt -> RngPowLazElt
LowerCentralSeries(L) : AlgLie -> [ AlgLie ]
LowerCentralSeries(G) : GrpFin -> [ GrpFin ]
LowerCentralSeries(G) : GrpGPC -> [GrpGPC]
LowerCentralSeries(G) : GrpMat -> [ GrpMat ]
LowerCentralSeries(G) : GrpPC -> [GrpPC]
LowerCentralSeries(G) : GrpPerm -> [ GrpPerm ]
MolienSeries(G) : GrpMat -> FldFunUElt
MolienSeriesApproximation(G, n) : GrpPerm, RngIntElt -> RngSerLaurElt
OverconvergentHeckeSeries(p, N, k, m) : RngIntElt, RngIntElt, RngIntElt, RngIntElt -> RngUPolElt
OverconvergentHeckeSeries(p, N, kseq, m) : RngIntElt, RngIntElt, SeqEnum, RngIntElt -> RngUPolElt
OverconvergentHeckeSeriesDegreeBound(p, N, k, m) : RngIntElt, RngIntElt, RngIntElt, RngIntElt -> RngIntElt
PolyToSeries(s) : RngMPolElt -> RngPowAlgElt
PowerSeriesRing(R) : Rng -> RngSerPow
PrincipalSeriesParameters(pi) : RepLoc -> GrpDrchElt, GrpDrchElt
PuiseuxSeriesRing(R) : Rng -> RngSerPuis
SocleSeries(G) : GrpPerm -> [ GrpPerm ]
SocleSeries(M) : ModRng -> [ ModRng ], [ ModRng ], AlgMatElt
SubnormalSeries(G, H) : GrpFin, GrpFin -> [ GrpFin ]
SubnormalSeries(G, H) : GrpMat, GrpMat -> [ GrpMat ]
SubnormalSeries(G, H) : GrpPC, GrpPC -> [GrpPC]
SubnormalSeries(G, H) : GrpPerm, GrpPerm -> [ GrpPerm ]
ThetaSeries(L, n) : Lat, RngIntElt -> RngSerElt
ThetaSeries(x, y, prec) : ModBrdtElt, ModBrdtElt, RngIntElt -> RngSerElt
ThetaSeries(f, n) : QuadBinElt, RngIntElt -> RngSerElt
ThetaSeriesIntegral(L, n) : Lat, RngIntElt -> RngSerElt
ThetaSeriesModularForm(L) : Lat -> ModFrmElt
ThetaSeriesModularFormSpace(L) : Lat -> ModFrm
UpperCentralSeries(L) : AlgLie -> [ AlgLie ]
UpperCentralSeries(G) : GrpFin -> [ GrpFin ]
UpperCentralSeries(G) : GrpGPC -> [GrpGPC]
UpperCentralSeries(G) : GrpMat -> [ GrpMat ]
UpperCentralSeries(G) : GrpPC -> [GrpPC]
UpperCentralSeries(G) : GrpPerm -> [ GrpPerm ]
WeierstrassSeries(z, t) : RngSerElt, FldComElt -> RngSerElt
WeierstrassSeries(z, F) : RngSerElt, QuadBinElt -> RngSerElt
WeierstrassSeries(z, f) : RngSerElt, QuadBinElt -> RngSerElt
WeierstrassSeries(z, q) : RngSerElt, RngSerElt -> RngSerElt
WeierstrassSeries(z, L) : RngSerElt, SeqEnum -> RngSerElt
pCentralSeries(G, p) : GrpFin, RngIntElt -> [ GrpFin ]
pCentralSeries(G, p) : GrpMat, RngIntElt -> [ GrpMat ]
pCentralSeries(G, p) : GrpPC, RngIntElt -> [GrpPC]
pCentralSeries(G, p) : GrpPerm, RngIntElt -> [ GrpPerm ]
qExpansion(f) : ModFrmElt -> RngSerPowElt
AlgLie_Series (Example H100E41)
GrpMatGen_Series (Example H59E24)
GrpPerm_Series (Example H58E29)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013