[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: NPCGenerators  ..  Number


NPCGenerators

   NPCGenerators(A) : GrpAuto -> RngIntElt
   NPCgens(A) : GrpAuto -> RngIntElt
   NumberOfPCGenerators(A) : GrpAuto -> RngIntElt
   NumberOfPCGenerators(G) : GrpPC -> RngIntElt

NPCgens

   Ngens(G) : GrpGPC -> RngIntElt
   NumberOfPCGenerators(G) : GrpGPC -> RngIntElt
   NPCgens(G) : GrpGPC -> RngIntElt
   NumberOfGenerators(G) : GrpGPC -> RngIntElt
   NumberOfPCGenerators(A) : GrpAuto -> RngIntElt
   NumberOfPCGenerators(G) : GrpPC -> RngIntElt

Nqubits

   Nqubits(H) : HilbSpc -> RngIntElt
   NumberOfQubits(H) : HilbSpc -> RngIntElt

Nrels

   Nrels(P) : GrpFPTietzeProc -> RngIntElt
   NumberOfRelations(P) : GrpFPTietzeProc -> RngIntElt
   NumberOfRelations(G) : GrpRWS -> RngIntElt
   NumberOfRelations(M) : MonRWS -> RngIntElt

Nrows

   Nrows(phi) : MapModAbVar -> RngIntElt
   NumberOfRows(a) : AlgMatElt -> RngIntElt
   NumberOfRows(u) : ModTupFldElt -> RngIntElt
   NumberOfRows(A) : Mtrx -> RngIntElt
   NumberOfRows(A) : MtrxSprs -> RngIntElt

Nsgens

   Nsgens(G) : GrpMat -> RngIntElt
   NumberOfStrongGenerators(G) : GrpMat -> RngIntElt
   NumberOfStrongGenerators(G) : GrpPerm -> RngIntElt
   NumberOfStrongGenerators(G, i) : GrpPerm, RngIntElt -> RngIntElt

ntbg

   BlumBlumShubModulus(b) : RngIntElt -> RngIntElt
   Number Theoretic Bit Generators (PSEUDO-RANDOM BIT SEQUENCES)

Nth

   NthPrime(n) : RngIntElt -> RngIntElt

NthPrime

   NthPrime(n) : RngIntElt -> RngIntElt

Nthreads

   GetNthreads() : -> RngIntElt
   SetNthreads(n) : RngIntElt ->

nTorsionSubgroup

   nTorsionSubgroup(A, n) : ModAbVar, RngIntElt -> ModAbVarSubGrp
   nTorsionSubgroup(G, n) : ModAbVarSubGrp, RngIntElt -> ModAbVarSubGrp

Nuclear

   NuclearRank(G) : GrpPC -> RngIntElt

NuclearRank

   NuclearRank(G) : GrpPC -> RngIntElt

Null

   IsNull(G) : Grph -> BoolElt
   IsNull(G) : GrphMult -> BoolElt
   IsNull(S) : SeqEnum -> BoolElt
   IsNull(R) : SetEnum -> BoolElt
   IsNullHomotopy(f,H) : MapChn, MapChn -> BoolElt
   JacobiThetaNullK(q, k) : FldReElt, RngIntElt -> FldReElt
   Kernel(a) : AlgMatElt -> ModTup
   Kernel(a) : ModMatRngElt -> ModTupFld, Map
   Kernel(a) : ModMatRngElt -> ModTupRng
   NullGraph( : parameters) : -> GrphUnd
   NullHomotopy(f) : MapChn -> MapChn
   NullspaceOfTranspose(X) : AlgMatLieElt -> ModTupRng
   RowNullSpace(a) : AlgMatElt -> ModTup

NullGraph

   NullGraph( : parameters) : -> GrphUnd

NullHomotopy

   NullHomotopy(f) : MapChn -> MapChn

Nullhomotopy

   AlgBas_Nullhomotopy (Example H85E24)

Nullity

   Nullity(phi) : MapModAbVar -> RngIntElt

NullSpace

   NullSpace(a) : AlgMatElt -> ModTup
   Kernel(a) : AlgMatElt -> ModTup
   Kernel(a) : ModMatRngElt -> ModTupFld, Map
   Kernel(a) : ModMatRngElt -> ModTupRng

Nullspace

   Nullspace(X) : AlgMatLieElt -> ModTupRng
   Kernel(X) : AlgMatLieElt -> ModTupRng
   Nullspace(A) : Mtrx -> ModTupRng
   Nullspace(A) : MtrxSprs -> ModTupRng
   NullspaceMatrix(A) : Mtrx -> ModTupRng
   NullspaceMatrix(A) : MtrxSprs -> Mtrx
   NullspaceOfTranspose(X) : AlgMatLieElt -> ModTupRng
   NullspaceOfTranspose(A) : Mtrx -> ModTupRng
   NullspaceOfTranspose(A) : MtrxSprs -> ModTupRng
   RowNullSpace(a) : AlgMatElt -> ModTup
   Mat_Nullspace (Example H26E7)

NullspaceMatrix

   KernelMatrix(A) : Mtrx -> ModTupRng
   NullspaceMatrix(A) : Mtrx -> ModTupRng
   NullspaceMatrix(A) : MtrxSprs -> Mtrx

NullspaceOfTranspose

   RowNullSpace(X) : AlgMatLieElt -> ModTupRng
   NullspaceOfTranspose(X) : AlgMatLieElt -> ModTupRng
   NullspaceOfTranspose(A) : Mtrx -> ModTupRng
   NullspaceOfTranspose(A) : MtrxSprs -> ModTupRng
   RowNullSpace(a) : AlgMatElt -> ModTup

Num

   NumExtraspecialPairs(R) : RootDtm -> SeqEnum
   NumberOfPositiveRoots(C) : AlgMatElt -> RngIntElt
   NumberOfPositiveRoots(W) : GrpFPCox -> RngIntElt
   NumberOfPositiveRoots(G) : GrpLie -> RngIntElt
   NumberOfPositiveRoots(W) : GrpMat -> RngIntElt
   NumberOfPositiveRoots(W) : GrpPermCox -> RngIntElt
   NumberOfPositiveRoots(N) : MonStgElt -> .
   NumberOfPositiveRoots(R) : RootStr -> RngIntElt
   NumberOfPositiveRoots(R) : RootSys -> RngIntElt

Number

   NumberOfFields(D) : DB -> RngIntElt
   # D : DB -> RngIntElt
   # D : DB -> RngIntElt
   # D : DB -> RngIntElt
   # D : DB -> RngIntElt
   # D : DB -> RngIntElt
   # D : DB -> RngIntElt
   # D : DB -> RngIntElt
   # D : DB -> RngIntElt
   # D: DB -> RngIntElt
   BernoulliNumber(n) : RngIntElt -> FldRatElt
   BernoulliNumber(n) : RngIntElt -> FldRatElt
   BettiNumber(E, i) : CrvEll, RngIntElt -> RngIntElt
   BettiNumber(M, i, j) : ModMPol, RngIntElt -> RngIntElt
   BettiNumber(X,q) : SmpCpx, RngIntElt -> RngIntElt
   BogomolovNumber(X) : GRFano -> FldRatElt
   CellNumber(P, h, x) : StkPtnOrd, RngIntElt, RngIntElt -> RngIntElt
   ChernNumber(S,n) : Srfc, RngIntElt -> RngIntElt
   ChromaticNumber(G) : GrphUnd -> RngIntElt
   ClassNumber(C) : Crv[FldFin] -> RngIntElt
   ClassNumber(F) : FldFun -> RngIntElt
   ClassNumber(F) : FldFunG -> RngIntElt
   ClassNumber(K) : FldQuad -> RngIntElt
   ClassNumber(K: parameters) : FldAlg -> RngIntElt
   ClassNumber(Q: parameters) : QuadBin -> RngIntElt
   ClassNumber(O: parameters) : RngOrd -> RngIntElt
   ClassNumber(O) : RngFunOrd -> RngIntElt
   ClassNumberApproximation(F, e) : FldFunG, FldReElt -> FldReElt
   ClassNumberApproximationBound(q, g, e) : RngIntElt, RngIntElt, RngIntElt, -> RngIntElt
   CliqueNumber(G : parameters) : GrphUnd -> RngIntElt
   CompositionTreeFactorNumber(G, g) : Grp, GrpElt -> RngIntElt
   ConnectionNumber(D, p, B) : Inc, IncPt, IncBlk -> RngIntElt
   CoxeterNumber(W) : GrpFPCox -> SeqEnum
   CoxeterNumber(G) : GrpLie -> RngIntElt
   CoxeterNumber(W) : GrpMat -> SeqEnum
   Dimension(C) : Code -> RngIntElt
   EulerianNumber(n, r) : RngIntElt, RngIntElt -> RngIntElt
   GaussNumber(n, v) : RngIntElt, RngElt -> RngElt
   GeneralizedFibonacciNumber(g0, g1, n) : RngIntElt, RngIntElt, RngIntElt -> RngIntElt
   GeneralizedFibonacciNumber(g0, g1, n) : RngIntElt, RngIntElt, RngIntElt -> RngIntElt
   GeneratorNumber(w) : GrpFPElt -> RngIntElt
   HarmonicNumber(n) : RngIntElt -> FldRatElt
   HermiteNumber(L) : Lat -> FldReElt
   HirschNumber(G) : GrpGPC -> RngIntElt
   HodgeNumber(S,i,j) : Srfc, RngIntElt, RngIntElt -> RngIntElt
   IdentificationNumber(D, i): DB, RngIntElt -> RngIntElt
   IndependenceNumber(G: parameters) : GrphUnd -> RngIntElt
   IntersectionNumber(D1,D2) : DivSchElt, DivSchElt-> FldRatElt
   IntersectionNumber(D, i, j) : Dsgn, RngIntElt, RngIntElt -> RngIntElt
   IntersectionNumber(C,D,p) : Sch,Sch,Pt -> RngIntElt
   IsolNumberOfDegreeField(n, p) : RngIntElt, RngIntElt -> RngIntElt
   KissingNumber(L) : Lat -> RngElt
   KostkaNumber(S, C) : SeqEnum[RngIntElt], SeqEnum[RngIntElt] -> RngIntElt
   MagicNumber(C) : GRCrvS -> RngIntElt
   MaximalNumberOfCosets(P) : GrpFPCosetEnumProc -> RngIntElt
   MilnorNumber(f) : RngMPolElt -> RngElt
   MinimalChernNumber(S,n) : Srfc, RngIntElt -> RngIntElt
   MinusTamagawaNumber(M) : ModSym -> RngIntElt
   NFaces(G) : GrphMultUnd -> RngIntElt
   NFaces(G) : GrphUnd -> RngIntElt
   Ngens(M) : ModDed -> RngIntElt
   NormalNumber(C) : GRCrvS -> RngIntElt
   Number(D,X) : DB,GRK3 -> RngIntElt,GRK3
   NumberField(A) : FldAb -> FldNum
   NumberField(F) : FldOrd -> FldNum
   NumberField(P) : PlcNum -> FldNum
   NumberField(P) : PlcNum -> FldNum
   NumberField(P) : PlcNumElt -> FldNum
   NumberField(P) : PlcNumElt -> FldNum
   NumberField(O) : RngOrd -> FldNum
   NumberField(O) : RngQuad -> FldQuad
   NumberField(f) : RngUPolElt -> FldNum
   NumberField(f) : RngUPolElt -> FldNum
   NumberField(e) : SubFldLatElt -> FldNum
   NumberField(s) : [ RngUPolElt ] -> FldNum
   NumberField(s) : [ RngUPolElt ] -> FldNum
   NumberFieldDatabase(d) : RngIntElt -> DB
   NumberFieldSieve(n, F, m1, m2) : RngIntElt, RngMPolElt, RngIntElt, RngIntElt -> RngIntElt
   NumberFields(D) : DB -> [ FldNum ]
   NumberFields(D, d) : DB, RngIntElt -> [ FldNum ]
   NumberOfActionGenerators(L) : Lat -> RngIntElt
   NumberOfActionGenerators(M) : ModGrp -> RngIntElt
   NumberOfActionGenerators(M) : ModRng -> RngIntElt
   NumberOfAffinePatches(X) : Sch -> BoolElt
   NumberOfAlgebraicGenerators(G) : GrpLie -> RngIntElt
   NumberOfAntisymmetricForms(L) : Lat -> RngIntElt
   NumberOfBlocks(D) : Inc -> RngIntElt
   NumberOfCells(P, h) : StkPtnOrd, RngIntElt -> RngIntElt
   NumberOfClasses(D) : DB -> RngIntElt
   NumberOfClasses(G) : GrpFin -> RngIntElt
   NumberOfClasses(G) : GrpMat -> RngIntElt
   NumberOfClasses(G) : GrpPC -> RngIntElt
   NumberOfClasses(G) : GrpPerm -> RngIntElt
   NumberOfColumns(a) : AlgMatElt -> RngIntElt
   NumberOfColumns(u) : ModTupFldElt -> RngIntElt
   NumberOfColumns(A) : Mtrx -> RngIntElt
   NumberOfColumns(A) : MtrxSprs -> RngIntElt
   NumberOfComponents(C) : SetCart -> RngIntElt
   NumberOfComponents(K) : SymKod -> RngIntElt
   NumberOfConstantWords(C, i) : Code, RngIntElt -> RngIntElt
   NumberOfConstraints(L) : LP -> RngIntElt
   NumberOfCoordinates(X) : Sch -> RngIntElt
   NumberOfCurves(D, N) : DB, RngIntElt -> RngIntElt
   NumberOfCurves(D, N, i) : DB, RngIntElt, RngIntElt -> RngIntElt
   NumberOfDivisors(n) : RngIntElt -> RngIntElt
   NumberOfExtensions(R, n) : RngPad, RngIntElt -> RngIntElt
   NumberOfFacets(P) : TorPol -> RngIntElt
   NumberOfFields(D, d) : DB, RngIntElt -> RngIntElt
   NumberOfFixedSpaces(x, s) : GrpMatElt, RngIntElt -> RngIntElt
   NumberOfGenerators(B) : AlgBas -> RngIntElt
   NumberOfGenerators(L) : AlgLieExtr -> RngIntElt
   NumberOfGenerators(R) : AlgMat -> { AlgMatElt }
   NumberOfGenerators(C) : Code -> RngIntElt
   NumberOfGenerators(G) : Grp -> RngIntElt
   NumberOfGenerators(A) : GrpAb -> RngIntElt
   NumberOfGenerators(A) : GrpAbGen -> RngIntElt
   NumberOfGenerators(A) : GrpAutCrv -> RngIntElt
   NumberOfGenerators(A) : GrpAuto -> RngIntElt
   NumberOfGenerators(G) : GrpBB -> RngIntElt
   NumberOfGenerators(B) : GrpBrd -> RngIntElt
   NumberOfGenerators(G) : GrpDrch -> RngIntElt
   NumberOfGenerators(G) : GrpFP -> RngIntElt
   NumberOfGenerators(P) : GrpFPTietzeProc -> RngIntElt
   NumberOfGenerators(G) : GrpGPC -> RngIntElt
   NumberOfGenerators(G) : GrpLie -> RngIntElt
   NumberOfGenerators(G) : GrpMat -> RngIntElt
   NumberOfGenerators(G) : GrpPC -> RngIntElt
   NumberOfGenerators(G) : GrpPerm -> RngIntElt
   NumberOfGenerators(G) : GrpRWS -> RngIntElt
   NumberOfGenerators(G) : GrpRWS -> RngIntElt
   NumberOfGenerators(G) : GrpSLP -> RngIntElt
   NumberOfGenerators(M) : ModTupFld -> RngIntElt
   NumberOfGenerators(M) : MonRWS -> RngIntElt
   NumberOfGenerators(H) : SetPtEll -> RngIntElt
   NumberOfGenerators(H) : SetPtEll -> RngIntElt
   NumberOfGenerators(S) : SgpFP -> RngIntElt
   NumberOfGradings(C) : RngCox -> RngIntElt
   NumberOfGradings(X) : Sch -> RngIntElt
   NumberOfGraphs(D) : DB -> RngIntElt
   NumberOfGraphs(D, S) : DB, SeqEnum -> RngIntElt
   NumberOfGroups(D, d) : DB, RngIntElt -> RngIntElt
   NumberOfGroups(D, d) : DB, RngIntElt -> RngIntElt
   NumberOfGroups(D, d) : DB, RngIntElt -> RngIntElt
   NumberOfGroups(D, d) : DB, RngIntElt -> RngIntElt
   NumberOfGroups(D, o) : DB, RngIntElt -> RngIntElt
   NumberOfGroups(D, o1, o2): DB, RngIntElt, RngIntElt -> RngIntElt, RngIntElt
   NumberOfInclusions(e, f) : SubGrpLatElt, SubGrpLatElt -> RngIntElt
   NumberOfInvariantForms(G) : GrpMat -> RngIntElt, RngIntElt
   NumberOfInvariantForms(L) : Lat -> RngIntElt, RngIntElt
   NumberOfIrreducibleMatrixGroups(k, p) : RngIntElt, RngIntElt -> RngIntElt
   NumberOfIsogenyClasses(D, N) : DB, RngIntElt -> RngIntElt
   NumberOfLattices(D, N): DB, MonStgElt -> RngIntElt
   NumberOfLattices(D, d): DB, RngIntElt -> RngIntElt
   NumberOfLevels( V ) : LatLat -> RngIntElt
   NumberOfLines(P) : Plane -> RngIntElt
   NumberOfMatrices(D, n) : DB, RngIntElt -> RngIntElt
   NumberOfMetacyclicPGroups (p, n): RngIntElt, RngIntElt -> SeqEnum
   NumberOfNewformClasses(M : parameters) : ModFrm -> RngIntElt
   NumberOfNonZeroEntries(A) : Mtrx -> RngIntElt
   NumberOfNonZeroEntries(A) : MtrxSprs -> RngIntElt
   NumberOfPCGenerators(A) : GrpAuto -> RngIntElt
   NumberOfPCGenerators(G) : GrpPC -> RngIntElt
   NumberOfPCGenerators(P) : GrpPCpQuotientProc -> RngIntElt
   NumberOfPartitions(n) : RngIntElt -> RngIntElt
   NumberOfPartitions(n) : RngIntElt -> RngIntElt
   NumberOfPermutations(n, k) : RngIntElt, RngIntElt -> RngIntElt
   NumberOfPlacesOfDegreeOne(m, U) : DivFunElt, GrpAb -> RngIntElt
   NumberOfPlacesOfDegreeOne(A) : FldFunAb -> RngIntElt
   NumberOfPlacesOfDegreeOneECFBound(C) : Crv -> RngIntElt
   NumberOfPlacesOfDegreeOneECFBound(F) : FldFunG -> RngIntElt
   NumberOfPlacesOfDegreeOneOverExactConstantField(C) : Crv[FldFin] -> RngIntElt
   NumberOfPlacesOfDegreeOneOverExactConstantField(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
   NumberOfPlacesOfDegreeOneOverExactConstantField(F, m) : FldFun, RngIntElt -> RngIntElt
   NumberOfPlacesOfDegreeOneOverExactConstantField(F) : FldFunG -> RngIntElt
   NumberOfPlacesOfDegreeOneOverExactConstantField(F, m) : FldFunG, RngIntElt -> RngIntElt
   NumberOfPlacesOfDegreeOneOverExactConstantFieldBound(F, m) : FldFun, RngIntElt -> RngIntElt
   NumberOfPlacesOfDegreeOverExactConstantField(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
   NumberOfPlacesOfDegreeOverExactConstantField(F, m) : FldFun, RngIntElt -> RngIntElt
   NumberOfPlacesOfDegreeOverExactConstantField(F, m) : FldFunG, RngIntElt -> RngIntElt
   NumberOfPoints(D) : Inc -> RngInt
   NumberOfPoints(P) : Plane -> RngIntElt
   NumberOfPoints(P) : TorPol -> RngIntElt
   NumberOfPointsAtInfinity(C) : CrvHyp -> RngIntElt
   NumberOfPointsOnCubicSurface(f) : RngMPolElt -> RngIntElt, RngIntElt
   NumberOfPointsOnSurface(E, e) : CrvEll, RngIntElt -> RngIntElt
   NumberOfPositiveRoots(C) : AlgMatElt -> RngIntElt
   NumberOfPositiveRoots(W) : GrpFPCox -> RngIntElt
   NumberOfPositiveRoots(G) : GrpLie -> RngIntElt
   NumberOfPositiveRoots(W) : GrpMat -> RngIntElt
   NumberOfPositiveRoots(W) : GrpPermCox -> RngIntElt
   NumberOfPositiveRoots(N) : MonStgElt -> .
   NumberOfPositiveRoots(R) : RootStr -> RngIntElt
   NumberOfPositiveRoots(R) : RootSys -> RngIntElt
   NumberOfPrimePolynomials(q, d) : RngIntElt, RngIntElt -> RngIntElt
   NumberOfPrimitiveGroups(d) : RngIntElt -> RngIntElt
   NumberOfProjectives(B) : AlgBas -> RngIntElt
   NumberOfPunctures(C): CrvPln -> RngIntElt
   NumberOfQubits(H) : HilbSpc -> RngIntElt
   NumberOfQuotientGradings(C) : RngCox -> RngIntElt
   NumberOfQuotientGradings(X) : TorVar -> SeqEnum
   NumberOfRationalPoints(A) : ModAbVar -> RngIntElt, RngIntElt
   NumberOfRelations(P) : GrpFPTietzeProc -> RngIntElt
   NumberOfRelations(G) : GrpRWS -> RngIntElt
   NumberOfRelations(M) : MonRWS -> RngIntElt
   NumberOfRelationsRequired(P) : NFSProc -> RngIntElt
   NumberOfRepresentations(D, i): DB, RngIntElt -> RngIntElt
   NumberOfRows(a) : AlgMatElt -> RngIntElt
   NumberOfRows(u) : ModTupFldElt -> RngIntElt
   NumberOfRows(A) : Mtrx -> RngIntElt
   NumberOfRows(A) : MtrxSprs -> RngIntElt
   NumberOfRows(t) : Tbl -> RngIntElt
   NumberOfSkewRows(t) : Tbl -> RngIntElt
   NumberOfSmallGroups(o) : RngIntElt -> RngIntElt
   NumberOfSmoothDivisors(n, m, P) : RngIntElt, RngIntElt, SeqEnum[RngElt] -> RngElt
   NumberOfStandardTableaux(P) : SeqEnum -> RngIntElt
   NumberOfStandardTableauxOnWeight(n) : RngIntElt -> RngIntElt
   NumberOfStrings(B) : GrpBrd -> RngIntElt
   NumberOfStrongGenerators(G) : GrpMat -> RngIntElt
   NumberOfStrongGenerators(G) : GrpPerm -> RngIntElt
   NumberOfStrongGenerators(G, i) : GrpPerm, RngIntElt -> RngIntElt
   NumberOfSubgroupsAbelianPGroup (A) : SeqEnum -> SeqEnum
   NumberOfSymmetricForms(L) : Lat -> RngIntElt
   NumberOfTableauxOnAlphabet(P, m) : SeqEnum,RngIntElt -> RngIntElt
   NumberOfTransitiveGroups(d) : RngIntElt -> RngIntElt
   NumberOfVariables(L) : LP -> RngIntElt
   NumberOfVariants(N) : NfdDck -> RngIntElt
   NumberOfVariants(q, v) : RngIntElt, RngIntElt -> RngIntElt
   NumberOfVertices(P) : TorPol -> RngIntElt
   NumberOfWords(C, w) : Code, RngIntElt -> RngIntElt
   NumberOfWords(C, w) : Code, RngIntElt -> RngIntElt
   Order(G) : Grph -> RngIntElt
   Order(G) : GrphMult -> RngIntElt
   PicardGroup(O) : RngQuad -> GrpAb, Map
   PseudoDimension(C) : Code -> RngIntElt
   QuarticNumberOfRealRoots(q) : RngUPolElt -> RngUPolElt
   Rank(W) : GrpFPCox -> RngIntElt
   Rank(W) : GrpMat -> RngIntElt
   RationalsAsNumberField() : FldRat -> FldNum
   RationalsAsNumberField() : FldRat -> FldNum
   RealTamagawaNumber(M) : ModSym -> RngIntElt
   ReplicationNumber(D) : Dsgn -> RngIntElt
   RepresentationNumber(f, n) : QuadBinElt, RngIntElt -> RngIntElt
   RootNumber(E) : CrvEll -> RngIntElt
   RootNumber(E) : CrvEll -> RngIntElt
   RootNumber(E) : CrvEll -> RngIntElt
   RootNumber(E, p) : CrvEll, RngIntElt -> RngIntElt
   RootNumber(E, P) : CrvEll, RngOrdIdl -> RngIntElt
   SClassNumber(S) : SetEnum[PlcFunElt] -> RngIntElt
   ShephardToddNumber(X, n) : MonStgElt, RngIntElt -> RngIntElt
   Size(G) : Grph -> RngIntElt
   Size(G) : GrphMult -> RngIntElt
   TamagawaNumber(E, p) : CrvEll, RngIntElt -> RngIntElt
   TamagawaNumber(A) : ModAbVar -> RngIntElt, RngIntElt, BoolElt
   TamagawaNumber(A, p) : ModAbVar, RngIntElt -> RngIntElt, RngIntElt, BoolElt
   TamagawaNumber(M, p) : ModSym, RngIntElt -> RngIntElt
   TjurinaNumber(f) : RngMPolElt -> RngElt
   TotalNumberOfCosets(P) : GrpFPCosetEnumProc -> RngIntElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013