[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: InverseJeuDeTaquin .. Irreducible
InverseJeuDeTaquin(~t, i, j) : Tbl, RngIntElt, RngIntElt ->
InverseKrawchouk(A, K, n) : RngUPolElt, FldFin, RngIntElt -> RngUPolElt
InverseMattsonSolomonTransform(A, n) : RngUPolElt, RngIntElt -> RngUPolElt
Modinv(E, M) : RngOrdElt, RngOrdIdl -> RngOrdElt
InverseMod(E, M) : RngOrdElt, RngIntElt -> RngOrdElt
Modinv(n, m) : RngIntElt, RngIntElt -> RngIntElt
InverseRoot(x, n) : RngPadElt, RngIntElt -> RngPadElt
InverseRoot(x, y, n) : RngPadElt, RngPadElt, RngIntElt -> RngPadElt
InverseRowInsert(~t, i, j) : Tbl, RngIntElt, RngIntElt ->
InverseRSKCorrespondenceDoubleWord(t1, t2) : Tbl, Tbl -> MonOrdElt, MonOrdElt
InverseRSKCorrespondenceMatrix(t1, t2) : Tbl, Tbl -> Mat
InverseRSKCorrespondenceSingleWord(t1, t2) : Tbl, Tbl -> MonOrdElt
InverseSqrt(x) : RngPadElt -> RngPadElt
InverseSquareRoot(x) : RngPadElt -> RngPadElt
InverseSquareRoot(x, y) : RngPadElt, RngPadElt -> RngPadElt
InverseSqrt(x) : RngPadElt -> RngPadElt
InverseSquareRoot(x) : RngPadElt -> RngPadElt
InverseSquareRoot(x, y) : RngPadElt, RngPadElt -> RngPadElt
InverseWordMap(G) : GrpMat -> Map
InverseWordMap(G) : GrpPerm -> Map
IsInvertible(f) : MapSch -> Bool, MapSch
IsInvertible(f) : MapSchGrph -> BoolElt, MapSchGrph
Invariant Forms (POLAR SPACES)
Involution(P) : PtHyp -> PtHyp
- P : PtHyp -> PtHyp
AtkinLehnerInvolution(CN,N,d) : Crv, RngIntElt, RngIntElt -> MapAutSch
CanonicalInvolution(X) : CrvMod -> MapSch
CentraliserOfInvolution(G, g : parameters) : GrpMat,GrpMatElt -> GrpMat
CentraliserOfInvolution(G, g, w : parameters) : GrpMat,GrpMatElt, GrpSLPElt -> GrpMat, []
DualStarInvolution(M) : ModSym -> AlgMatElt
Involution(a) : AlgGrpElt -> AlgGrpElt
InvolutionClassicalGroupEven(G : parameters) : GrpMat[FldFin] ->GrpMatElt[FldFin], GrpSLPElt, RngIntElt
StarInvolution(M) : ModSym -> AlgMatElt
InvolutionClassicalGroupEven(G : parameters) : GrpMat[FldFin] ->GrpMatElt[FldFin], GrpSLPElt, RngIntElt
AreInvolutionsConjugate(G, x, wx, y, wy : parameters) : GrpMat,GrpMatElt, GrpSLPElt, GrpMatElt, GrpSLPElt -> BoolElt, GrpMatElt, GrpSLPElt
FldForms_invquadform (Example H29E21)
Invariants (ALGEBRAIC SURFACES)
INPUT AND OUTPUT
Socket I/O (INPUT AND OUTPUT)
Iroot(a, n) : RngIntElt, RngIntElt -> RngIntElt
Irreducible Characters (REPRESENTATIONS OF SYMMETRIC GROUPS)
GrpData_IrredMat (Example H66E19)
DimensionOfFieldOfGeometricIrreducibility(C): Crv -> RngIntElt
FieldOfGeometricIrreducibility(C) : Crv -> Rng, Map
Factorization and Irreducibility (MULTIVARIATE POLYNOMIAL RINGS)
Factorization and Irreducibility (UNIVARIATE POLYNOMIAL RINGS)
AbsolutelyIrreducibleConstituents(M) : ModGrp -> [ ModGrp ]
AbsolutelyIrreducibleModule(M) : ModRng -> ModRng
AbsolutelyIrreducibleModulesBurnside(G, K : parameters ) : Grp, FldFin -> [ ModGrp ]
AbsolutelyIrreducibleRepresentationProcessDelete(~P) : SolRepProc ->
AbsolutelyIrreducibleRepresentationsInit(G, F : parameters) : GrpPC, Fld -> SolRepProc
AbsolutelyIrreducibleRepresentationsSchur(G, k: parameters) : GrpPC, Rng -> List[Map]
AllIrreduciblePolynomials(F, m) : FldFin, RngIntElt -> { RngUPolElt }
IrreducibleCartanMatrix(X, n) : MonStgElt, RngIntElt -> AlgMatElt
IrreducibleCoxeterGraph(X, n) : MonStgElt, RngIntElt -> GrpUnd
IrreducibleCoxeterGroup(GrpFPCox, X, n) : Cat, MonStgElt, RngIntElt -> GrpFPCox
IrreducibleCoxeterMatrix(X, n) : MonStgElt, RngIntElt -> AlgMatElt
IrreducibleDynkinDigraph(X, n) : MonStgElt, RngIntElt -> GrphDir
IrreducibleLowTermGF2Polynomial(n) : RngIntElt -> RngUPolElt
IrreducibleMatrixGroup(k, p, n) : RngIntElt, RngIntElt, RngIntElt -> GrpMat
IrreducibleModule(B, i) : AlgBas, RngIntElt -> ModAlg
IrreducibleModules(G, K : parameters) : Grp, Fld -> SeqEnum
IrreducibleModules(G, K : parameters) : Grp, Fld -> SeqEnum
IrreducibleModules(G, Q : parameters) : Grp, FldRat -> SeqEnum, SeqEnum
IrreducibleModulesBurnside(G, K : parameters ) : Grp, FldFin -> [ ModGrp ]
IrreducibleModulesSchur(G, K: parameters) : GrpPC, Rng -> List[GModule]
IrreduciblePolynomial(F, n) : FldFin, RngIntElt -> RngUPolElt
IrreducibleReflectionGroup(X, n) : MonStgElt, RngIntElt -> GrpMat
IrreducibleRepresentationsSchur(G, k: parameters) : GrpPC, Rng -> List[Map]
IrreducibleRootDatum(X, n) : MonStgElt, RngIntElt -> RootDtm
IrreducibleRootSystem(X, n) : MonStgElt, RngIntElt -> RootSys
IrreducibleSecondaryInvariants(R) : RngInvar -> [ RngMPolElt ]
IrreducibleSimpleSubalgebraTreeSU(Q, d) : SeqEnum[SeqEnum[Tup]], RngIntElt -> GrphDir
IrreducibleSimpleSubalgebrasOfSU(N) : RngIntElt -> SeqEnum
IrreducibleSolubleSubgroups(n, q) : RngIntElt, RngIntElt -> SeqEnum
IrreducibleSparseGF2Polynomial(n) : RngIntElt -> RngUPolElt
IrreducibleSubgroups(n, q) : RngIntElt, RngIntElt -> SeqEnum
IsAbsolutelyIrreducible(C) : Crv -> BoolElt
IsAbsolutelyIrreducible(G) : GrpMat -> BoolElt
IsAbsolutelyIrreducible(M) : ModRng -> BoolElt, AlgMatElt, RngIntElt
IsAbsolutelyIrreducible(R) : RootStr -> BoolElt
IsAnalyticallyIrreducible(p) : CrvPln,Pt -> BoolElt
IsCoxeterIrreducible(C) : AlgMatElt -> BoolElt
IsCoxeterIrreducible(M) : AlgMatElt -> BoolElt
IsIrreducible(x) : AlgChtrElt -> BoolElt
IsIrreducible(A) : ArtRep -> BoolElt
IsIrreducible(W) : GrpFPCox -> BoolElt
IsIrreducible(G) : GrpMat -> BoolElt, ModGrp
IsIrreducible(M) : ModRng -> BoolElt, ModRng, ModRng
IsIrreducible(M) : ModSym -> BoolElt
IsIrreducible(x) : RngElt -> BoolElt
IsIrreducible(f) : RngMPolElt -> BoolElt
IsIrreducible(f) : RngUPolElt -> BoolElt
IsIrreducible(f) : RngUPolElt -> BoolElt
IsIrreducible(R) : RootStr -> BoolElt
IsIrreducible(R) : RootSys -> BoolElt
IsIrreducible(C) : Sch -> BoolElt
IsIrreducible(X) : Sch -> BoolElt
IsIrreducibleFiniteNilpotent(G : parameters): GrpMat -> BoolElt, Any
IsProjectivelyIrreducible(R) : RootStr -> BoolElt
IsProjectivelyIrreducible(R) : RootSys -> BoolElt
NumberOfIrreducibleMatrixGroups(k, p) : RngIntElt, RngIntElt -> RngIntElt
RandomIrreduciblePolynomial(F, n) : FldFin, RngIntElt -> RngUPolElt
ReeIrreducibleRepresentation(F, twists : parameters) : FldFin, SeqEnum[RngIntElt] -> GrpMat
SparseRootDatum(N) : MonStgElt -> RootDtmSprs
SuzukiIrreducibleRepresentation(F, twists : parameters) : FldFin, SeqEnum[RngIntElt] -> GrpMat
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013