[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: IsEof .. IsFiniteMatrixGroup
IsEof(S) : MonStgElt -> BoolElt
IsEquationOrder(O) : RngFunOrd -> BoolElt
IsEquationOrder(O) : RngOrd -> BoolElt
IsEquidistant(C) : Code -> BoolElt
IsEquitable(G, P) : GrphUnd, { { GrphVert } } -> BoolElt
IsEquivalent(G,a,b) : GrpPSL2, SpcHypElt, SpcHypElt -> BoolElt, GrpPSL2Elt
IsEquivalent(g,h,G) : GrpPSL2Elt, GrpPSL2Elt, GrpPSL2 -> BoolElt
IsEquivalent(model1, model2) : ModelG1, ModelG1 -> BoolElt, Tup
IsEquivalent(f, g) : QuadBinElt, QuadBinElt -> BoolElt, AlgMatElt
IsEquivalent(f,g) : RngUPolElt, RngUPolElt -> BoolElt
IsIsomorphic(C, D: parameters) : Code, Code -> BoolElt, Map
IsEtale(D) : PhiMod -> BoolElt
Isetseq(S) : SetIndx -> SeqEnum
IndexedSetToSequence(S) : SetIndx -> SeqEnum
Isetset(S) : SetIndx -> SetEnum
IndexedSetToSet(S) : SetIndx -> SetEnum
IsEuclideanDomain(F) : FldAlg -> BoolElt
IsEuclideanDomain(F) : FldNum -> BoolElt
IsEuclideanDomain(R) : Rng -> BoolElt
IsEuclideanRing(R) : Rng -> BoolElt
IsEulerian(G) : Grph -> BoolElt
IsEven(J) : JacHyp -> BoolElt
HasSquareSha(J) : JacHyp -> BoolElt
IsEven(C) : Code -> BoolElt
IsEven(chi) : GrpDrchElt -> BoolElt
IsEven(chi) : GrpDrchNFElt -> BoolElt
IsEven(G): GrpPerm -> BoolElt
IsEven(g) : GrpPermElt -> BoolElt
IsEven(L) : Lat -> BoolElt
IsEven(n) : RngIntElt -> BoolElt
IsExact(a) : DiffCrvElt -> BoolElt
IsExact(d) : DiffFunElt -> BoolElt, FldFunGElt
IsExact(L) : Lat -> BoolElt
IsExact(x) : ModAbVarElt -> BoolElt
IsExact(C) : ModComplex -> BoolElt
IsExact(C, n) : ModCpx, RngIntElt -> BoolElt
IsExact(z) : SpcHydElt -> BoolElt, .
IsExact(z) : SpcHypElt -> BoolElt
IsExactlyDivisible(x, y) : RngPadElt, RngPadElt -> BoolElt, RngPadElt
IsExceptionalUnit(u) : RngOrdElt -> BoolElt
IsExtension(G, H, f) : GrpPC, GrpPC, [Map] -> BoolElt, GrpPC
IsExtensionOf(G) : GrpPerm -> [],
IsExtensionOf(L) : [GrpPerm] -> [], []
IsExtraSpecial(G) : GrpFin -> BoolElt
IsExtraSpecial(G) : GrpMat -> BoolElt
IsExtraSpecial(G) : GrpPC -> BoolElt
IsExtraSpecial(G) : GrpPerm -> BoolElt
IsExtraSpecialNormaliser(G) : GrpMat -> BoolElt
IsFace(N, F) : NwtnPgon,Tup -> BoolElt
IsFactorial(n) : RngIntElt -> BoolElt, RngIntElt
IsFactorisationPrime(D) : DivSchElt -> BoolElt
IsFaithful(G, Y) : : GrpPerm, GSet -> BoolElt
IsFaithful(x) : AlgChtrElt -> BoolElt
IsFakeWeightedProjectiveSpace(X) : TorVar -> BoolElt
IsFanMap(F1,F2) : TorFan,TorFan -> BoolElt
IsFanMap(F1,F2,f) : TorFan,TorFan,Map -> BoolElt
IsFano(P) : TorPol -> BoolElt
IsFano(X) : TorVar -> BoolElt
IsField(H) : HomModAbVar -> BoolElt, Fld, Map, Map
IsField(R) : Rng -> BoolElt
IsField(R) : RngDiff -> BoolElt
IsFinite(G) : GrpAb -> BoolElt
IsFinite(W) : GrpFPCox -> BoolElt
IsFinite(G) : GrpGPC -> BoolElt
IsFinite(G) : GrpLie -> BoolElt
IsFinite(G) : GrpMat -> Bool, RngIntElt
IsFinite(G) : GrpRWS -> BoolElt, RngIntElt
IsFinite(G) : GrpRWS -> BoolElt, RngIntElt
IsFinite(x) : Infty -> BoolElt
IsFinite(G) : ModAbVarSubGrp -> RngIntElt
IsFinite(M) : MonRWS -> BoolElt, RngIntElt
IsFinite(G : parameters) : GrpMat -> BoolElt, RngIntElt
IsFinite(P) : PlcFunElt -> BoolElt
IsFinite(p) : PlcNumElt -> BoolElt
IsFinite(p) : PlcNumElt -> BoolElt
IsFinite(R) : Rng -> BoolElt
IsFinite(R) : RootStr -> BoolElt
GrpMatInf_IsFiniteMatrixGroup (Example H61E6)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013