[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: cones-polyhedra  ..  Conjugacy


cones-polyhedra

   Cones and Polyhedra (CONVEX POLYTOPES AND POLYHEDRA)

ConesOfCodimension

   ConesOfCodimension(F,i) : TorFan,RngIntElt -> SeqEnum

ConesOfMaximalDimension

   ConesOfMaximalDimension(F) : TorFan -> SeqEnum

ConeToPolyhedron

   ConeToPolyhedron(C) : TorCon -> TorPol

ConeWithInequalities

   ConeWithInequalities(B) : Set -> TorCon

Confluent

   IsConfluent(G) : GrpRWS -> BoolElt
   IsConfluent(M) : MonRWS -> BoolElt

Conformal

   CO(n, q) : RngIntElt, RngIntElt -> GrpMat
   ConformalOrthogonalGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
   ConformalOrthogonalGroupMinus(n, q) : RngIntElt, RngIntElt -> GrpMat
   ConformalOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
   ConformalSymplecticGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
   ConformalUnitaryGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
   HamiltonianLieAlgebra(F, m, n) : Fld, RngIntElt, SeqEnum[RngIntElt] -> AlgLie, AlgLie
   SpecialLieAlgebra(F, m, n) : Fld, RngIntElt, SeqEnum[RngIntElt] -> AlgLie, AlgLie, Map, Map

ConformalHamiltonianLieAlgebra

   ConformalHamiltonianLieAlgebra(F, m, n) : Fld, RngIntElt, SeqEnum[RngIntElt] -> AlgLie, AlgLie, AlgLie
   HamiltonianLieAlgebra(F, m, n) : Fld, RngIntElt, SeqEnum[RngIntElt] -> AlgLie, AlgLie

ConformalOrthogonalGroup

   CO(n, q) : RngIntElt, RngIntElt -> GrpMat
   ConformalOrthogonalGroup(n, q) : RngIntElt, RngIntElt -> GrpMat

ConformalOrthogonalGroupMinus

   COMinus(n, q) : RngIntElt, RngIntElt -> GrpMat
   ConformalOrthogonalGroupMinus(n, q) : RngIntElt, RngIntElt -> GrpMat

ConformalOrthogonalGroupPlus

   COPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
   ConformalOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpMat

ConformalSpecialLieAlgebra

   ConformalSpecialLieAlgebra(F, m, n) : Fld, RngIntElt, SeqEnum[RngIntElt] -> AlgLie, AlgLie, AlgLie, Map, Map
   SpecialLieAlgebra(F, m, n) : Fld, RngIntElt, SeqEnum[RngIntElt] -> AlgLie, AlgLie, Map, Map

ConformalSymplecticGroup

   CSp(n, q) : RngIntElt, RngIntElt -> GrpMat
   ConformalSymplecticGroup(n, q) : RngIntElt, RngIntElt -> GrpMat

ConformalUnitaryGroup

   CU(n, q) : RngIntElt, RngIntElt -> GrpMat
   ConformalUnitaryGroup(n, q) : RngIntElt, RngIntElt -> GrpMat

Congruence

   Congruence Subgroups (CONGRUENCE SUBGROUPS OF PSL2(R))
   CongruenceGroup(M1, M2, prec) : ModFrm, ModFrm, RngIntElt -> GrpAb
   CongruenceGroup(M : parameters) : ModSym -> GrpAb
   CongruenceGroupAnemic(M1, M2, prec) : ModFrm, ModFrm, RngIntElt -> GrpAb
   CongruenceImage(G : parameters) : GrpMat -> GrpMat,HomGrp, []
   CongruenceModulus(A) : ModAbVar -> RngIntElt
   CongruenceModulus(M : parameters) : ModSym -> RngIntElt
   CongruenceSubgroup(N) : RngIntElt -> GrpPSL2
   CongruenceSubgroup(i,N) : RngIntElt, RngIntElt -> GrpPSL2
   CongruenceSubgroup([N,M,P]) : SeqEnum -> GrpPSL2
   IsCongruence(G) : GrpPSL2 -> BoolElt

congruence

   Construction of Congruence Homomorphisms (MATRIX GROUPS OVER INFINITE FIELDS)
   Structure of Congruence Subgroups (CONGRUENCE SUBGROUPS OF PSL2(R))

Congruence-subgroups

   Congruence Subgroups (CONGRUENCE SUBGROUPS OF PSL2(R))

CongruenceGroup

   CongruenceGroup(M1, M2, prec) : ModFrm, ModFrm, RngIntElt -> GrpAb
   CongruenceGroup(M : parameters) : ModSym -> GrpAb

CongruenceGroupAnemic

   CongruenceGroupAnemic(M1, M2, prec) : ModFrm, ModFrm, RngIntElt -> GrpAb

CongruenceImage

   CongruenceImage(G : parameters) : GrpMat -> GrpMat,HomGrp, []

CongruenceModulus

   CongruenceModulus(A) : ModAbVar -> RngIntElt
   CongruenceModulus(M : parameters) : ModSym -> RngIntElt

Congruences

   ModFrm_Congruences (Example H132E18)

congruences

   Congruences (MODULAR FORMS)

CongruenceSubgroup

   CongruenceSubgroup(N) : RngIntElt -> GrpPSL2
   CongruenceSubgroup(i,N) : RngIntElt, RngIntElt -> GrpPSL2
   CongruenceSubgroup([N,M,P]) : SeqEnum -> GrpPSL2

Conic

   Conic(C) : Crv -> MapSch
   Conic(M) : Mtrx -> CrvCon
   Conic(P, S) : Plane, { PlanePt } -> SetEnum
   Conic(X, f) : Prj, RngMPolElt -> CrvCon
   Conic(P,S) : Prj, {Pt} -> Crv
   Conic(coeffs) : [RngElt] -> CrvCon
   IsConic(S) : Sch -> BoolElt, CrvCon
   IsConic(X) : Sch -> BoolElt,CrvCon

conic

   RATIONAL CURVES AND CONICS

ConicAccess

   CrvCon_ConicAccess (Example H119E4)

ConicAutomorphisms

   CrvCon_ConicAutomorphisms (Example H119E13)

ConicCreation

   CrvCon_ConicCreation (Example H119E1)

ConicCurve

   CrvCon_ConicCurve (Example H119E3)

ConicMinimalModel

   CrvCon_ConicMinimalModel (Example H119E5)

Conjectural

   ConjecturalRegulator(E) : CrvEll -> FldReElt, RngIntElt
   ConjecturalRegulator(E) : CrvEll -> FldReElt, RngIntElt
   ConjecturalRegulator(E, v) : CrvEll, FldReElt -> FldReElt
   ConjecturalSha(E, Pts) : CrvEll, SeqEnum[PtEll] -> FldReElt

conjectural-regulator

   CrvEllQNF_conjectural-regulator (Example H122E27)

ConjecturalRegulator

   ConjecturalRegulator(E) : CrvEll -> FldReElt, RngIntElt
   ConjecturalRegulator(E) : CrvEll -> FldReElt, RngIntElt
   ConjecturalRegulator(E, v) : CrvEll, FldReElt -> FldReElt

ConjecturalSha

   ConjecturalSha(E, Pts) : CrvEll, SeqEnum[PtEll] -> FldReElt

conjisom

   FldForms_conjisom (Example H29E18)

Conjugacy

   Conjugacy (MATRIX GROUPS OVER Q AND Z)
   ConjugacyClasses(S) : AlgAssVOrd -> SeqEnum
   ConjugacyClasses(W) : GrpFPCox -> [GrpFPCoxElt]
   ConjugacyClasses(G) : GrpPC -> [ <RngIntElt, RngIntElt, GrpPCElt> ]
   ConjugacyClasses(G: parameters) : GrpFin -> [ <RngIntElt, RngIntElt, GrpFinElt> ]
   ConjugacyClasses(G: parameters) : GrpMat -> [ < RngIntElt, RngIntElt, GrpMatElt > ]
   ConjugacyClasses(G: parameters) : GrpPerm -> [ <RngIntElt, RngIntElt, GrpPermElt> ]
   GaloisConjugacyRepresentatives(G) : GrpDrch -> [GrpDrchElt]
   ReeConjugacyClasses(G) : GrpMat -> SeqEnum
   ReeMaximalSubgroupsConjugacy(G, R, S) : GrpMat, GrpMat, GrpMat -> GrpMatElt, GrpSLPElt
   ReeSylowConjugacy(G, R, S, p) : GrpMat, GrpMat, GrpMat, RngIntElt -> GrpMatElt, GrpSLPElt
   SuzukiMaximalSubgroupsConjugacy(G, R, S) : GrpMat, GrpMat, GrpMat -> GrpMatElt, GrpSLPElt
   SuzukiSylowConjugacy(G, R, S, p) : GrpMat, GrpMat, GrpMat, RngIntElt -> GrpMatElt, GrpSLPElt
   SzConjugacyClasses(G) : GrpMat -> SeqEnum
   GrpGPC_Conjugacy (Example H72E12)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013