[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: RecogniseSp4Even  ..  RedoEnumeration


RecogniseSp4Even

   RecognizeSp4Even(G, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
   RecogniseSp4Even(G, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map

RecogniseSpOdd

   RecognizeSpOdd(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
   RecogniseSpOdd(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map

RecogniseStarAlgebra

   RecogniseStarAlgebra(A) : AlgMat -> BoolElt

RecogniseSU3

   RecognizeSU3(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
   RecogniseSU3(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map

RecogniseSU4

   RecognizeSU4(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
   RecogniseSU4(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map

RecogniseSymmetric

   RecogniseSymmetric(G, n: parameters) : Grp, RngIntElt -> BoolElt, Map, Map, Map, Map, BoolElt
   RecogniseSymmetric(G, n: parameters) : Grp, RngIntElt -> BoolElt, Map, Map, Map, Map, BoolElt

RecogniseSymmetricSquare

   RecogniseSymmetricSquare (G) : GrpMat -> BoolElt, GrpMat
   GrpASim_RecogniseSymmetricSquare (Example H65E12)

RecogniseSz

   RecognizeSz(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map
   RecogniseSz(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map

Recognition

   ClassicalConstructiveRecognition(G : parameters) : GrpMat[FldFin] -> BoolElt, [], [], GrpMatElt

recognition

   RecognizeSL(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
   Constructive Recognition of Linear Groups (ALMOST SIMPLE GROUPS)
   Constructive Recognition of SL(d, q) in Low Degree (ALMOST SIMPLE GROUPS)
   Constructive Recognition of Symplectic Groups (ALMOST SIMPLE GROUPS)
   Constructive Recognition of Unitary Groups (ALMOST SIMPLE GROUPS)
   Group Recognition (ALMOST SIMPLE GROUPS)
   Recognition of *-Algebras (ALGEBRAS WITH INVOLUTION)
   Recognizing Classical Groups in their Natural Representation (ALMOST SIMPLE GROUPS)

Recognize

   RecognizeLargeRee(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map
   RecogniseLargeRee(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map
   RecogniseRee(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map
   RecogniseSL(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
   RecogniseSU3(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
   RecogniseSU4(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
   RecogniseSp4Even(G, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
   RecogniseSpOdd(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
   RecogniseSz(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map
   RecognizeClassical( G : parameters): GrpMat -> BoolElt
   RecognizeSL2(G) : GrpMat -> BoolElt, Map, Map, Map, Map

RecognizeClassical

   RecognizeClassical( G : parameters): GrpMat -> BoolElt
   GrpASim_RecognizeClassical (Example H65E8)

RecognizeLargeRee

   RecognizeLargeRee(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map
   RecogniseLargeRee(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map

RecognizeRee

   RecognizeRee(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map
   RecogniseRee(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map

RecognizeSL

   RecognizeSL(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
   RecogniseSL(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map

RecognizeSL2

   RecognizeSL2(G) : GrpMat -> BoolElt, Map, Map, Map, Map

RecognizeSL2-1

   GrpASim_RecognizeSL2-1 (Example H65E9)

RecognizeSp4Even

   RecognizeSp4Even(G, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
   RecogniseSp4Even(G, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map

RecognizeSpOdd

   RecognizeSpOdd(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
   RecogniseSpOdd(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map

RecognizeSU3

   RecognizeSU3(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
   RecogniseSU3(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map

RecognizeSU4

   RecognizeSU4(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
   RecogniseSU4(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map

RecognizeSz

   RecognizeSz(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map
   RecogniseSz(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map

Reconstruct

   Reconstruct(x, R) : RngOrdElt, RngOrdRecoEnv -> RngOrdElt
   ReconstructLatticeBasis(S, B) : ModMatRngElt, ModMatRngElt -> ModMatRngEltLat

reconstruct

   Recovering a Short Basis from Short Lattice Vectors (LATTICES)

reconstruct-sequence

   PseudoRandom_reconstruct-sequence (Example H158E1)

Reconstruction

   RationalReconstruction(e, f) : FldFunElt, RngUPolElt -> BoolElt, FldFunElt
   RationalReconstruction(s) : RngIntResElt -> BoolElt, FldRatElt
   ReconstructionEnvironment(p, k) : RngOrdIdl, RngIntElt -> RngOrdRecoEnv

reconstruction

   Rational Reconstruction (RATIONAL FIELD)
   Reconstruction (ORDERS AND ALGEBRAIC FIELDS)

ReconstructionEnvironment

   ReconstructionEnvironment(p, k) : RngOrdIdl, RngIntElt -> RngOrdRecoEnv

ReconstructLatticeBasis

   ReconstructLatticeBasis(S, B) : ModMatRngElt, ModMatRngElt -> ModMatRngEltLat

Record

   AInfinityRecord(G,n) : Grp, RngIntElt -> Rec
   K3SurfaceToRecord(X) : GRK3 -> Rec
   Rec_Record (Example H15E2)

record

   Creating a Record (RECORDS)
   RECORDS

record-format

   RECORDS

RecordAccess

   Rec_RecordAccess (Example H15E3)

RecordFormat

   Rec_RecordFormat (Example H15E1)

Rectify

   Rectify(~t) : Tbl ->
   JeuDeTaquin(~t) : Tbl ->

Recursion

   Func_Recursion (Example H2E1)

recursion

   Recursion (SEQUENCES)
   Recursion and Mutual Recursion (MAGMA SEMANTICS)
   Recursion and the Profiler (THE MAGMA PROFILER)
   Recursion, Reduction, and Iteration (SEQUENCES)

recursion-mutual

   Recursion and Mutual Recursion (MAGMA SEMANTICS)

recursion-profiler

   Recursion and the Profiler (THE MAGMA PROFILER)

recursion-reduction-iteration

   Recursion, Reduction, and Iteration (SEQUENCES)

red

   Operations for Semisimple and Reductive Lie Algebras (LIE ALGEBRAS)

red-oper

   Operations for Semisimple and Reductive Lie Algebras (LIE ALGEBRAS)

redirecting

   Redirecting Output (INPUT AND OUTPUT)

redirecting-output

   Redirecting Output (INPUT AND OUTPUT)

Redo

   CanRedoEnumeration(P) : GrpFPCosetEnumProc -> BoolElt
   RedoEnumeration(~P: parameters) : GrpFPCosetEnumProc ->

RedoEnumeration

   RedoEnumeration(~P: parameters) : GrpFPCosetEnumProc ->

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013