[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: Patches  ..  PCMap


Patches

   NumberOfAffinePatches(X) : Sch -> BoolElt

patches

   Affine Patches on Toric Varieties (TORIC VARIETIES)

PATH

   MAGMA_PATH

Path

   BranchVertexPath(u,v) : GrphVert,GrphVert -> SeqEnum
   DiameterPath(G) : Grph -> [GrphVert]
   IsPath(G) : Grph -> BoolElt
   IsPathTree(B) : AlgBas -> Bool
   Path(u, v : parameters) : GrphVert, GrphVert -> Eseq
   PathExists(u, v : parameters) : GrphVert, GrphVert -> BoolElt, Eseq
   PathGraph(n : parameters) : RngIntElt -> GrphUnd
   PathTree(B, i) : AlgBas, RngIntElt -> ModRng
   SetPath(s) : MonStgElt ->
   VertexPath(u,v) : GrphSplVert,GrphSplVert -> SeqEnum,SeqEnum
   VertexPath(u,v) : GrphVert,GrphVert -> SeqEnum

path

   Connectedness (GRAPHS)
   Distances, Paths and Circuits in a Graph (GRAPHS)
   Distances, Paths and Circuits in a Non-Weighted Graph (GRAPHS)
   Distances, Paths and Circuits in a Possibly Weighted Graph (GRAPHS)
   The Path Model (QUANTUM GROUPS)

path-circuit-graph

   Distances, Paths and Circuits in a Graph (GRAPHS)
   Distances, Paths and Circuits in a Non-Weighted Graph (GRAPHS)
   Distances, Paths and Circuits in a Possibly Weighted Graph (GRAPHS)

path-model

   The Path Model (QUANTUM GROUPS)

PathExists

   PathExists(u, v : parameters) : GrphVert, GrphVert -> BoolElt, Eseq

PathGraph

   PathGraph(n : parameters) : RngIntElt -> GrphUnd

pathmodel

   The Path Model (QUANTUM GROUPS)

Paths

   AllPairsShortestPaths(G : parameters) : Grph -> SeqEnum, SeqEnum
   Paths(u : parameters) : GrphVert -> Eseq

paths

   Distances, Shortest Paths and Minimum Weight Trees (MULTIGRAPHS)

PathTree

   PathTree(B, i) : AlgBas, RngIntElt -> ModRng

pAutomorphismGroup

   GrpPC_pAutomorphismGroup (Example H63E24)

pbwbases

   PBW-type Bases (QUANTUM GROUPS)

PC

   ClassicalSylowToPC(G,P) : GrpMat, GrpMat -> GrpPC, UserProgram, Map

pc

   Power-Conjugate Presentations (FINITE SOLUBLE GROUPS)
   Transfer from GrpPC (FINITE SOLUBLE GROUPS)
   Transfer to GrpPC (FINITE SOLUBLE GROUPS)

pc-presentations

   Power-Conjugate Presentations (FINITE SOLUBLE GROUPS)

pc-to-perm

   GrpPC_pc-to-perm (Example H63E34)

pc_hom

   GrpPC_pc_hom (Example H63E5)

pc_quotient

   GrpPC_pc_quotient (Example H63E19)

PCClass

   WeightClass(x) : GrpPCElt -> RngIntElt
   PCClass(x) : GrpPCElt -> RngIntElt

pCentral

   pCentralSeries(G, p) : GrpFin, RngIntElt -> [ GrpFin ]
   pCentralSeries(G, p) : GrpMat, RngIntElt -> [ GrpMat ]
   pCentralSeries(G, p) : GrpPC, RngIntElt -> [GrpPC]
   pCentralSeries(G, p) : GrpPerm, RngIntElt -> [ GrpPerm ]

pCentralSeries

   pCentralSeries(G, p) : GrpFin, RngIntElt -> [ GrpFin ]
   pCentralSeries(G, p) : GrpMat, RngIntElt -> [ GrpMat ]
   pCentralSeries(G, p) : GrpPC, RngIntElt -> [GrpPC]
   pCentralSeries(G, p) : GrpPerm, RngIntElt -> [ GrpPerm ]

PCExponents

   PCExponents(G) : GrpGPC -> [RngIntElt]

PCGenerators

   PCGenerators(G) : GrpGPC -> {@ GrpGPCElt @}
   Generators(G) : GrpGPC -> {@ GrpGPCElt @}
   Generators(H, G) : GrpGPC, GrpGPC -> {@ GrpGPCElt @}
   NumberOfGenerators(G) : GrpGPC -> RngIntElt
   NumberOfPCGenerators(A) : GrpAuto -> RngIntElt
   NumberOfPCGenerators(G) : GrpPC -> RngIntElt
   NumberOfPCGenerators(P) : GrpPCpQuotientProc -> RngIntElt
   PCGenerators(A) : GrpAuto -> SetIndx
   PCGenerators(G) : GrpPC -> SetIndx

PCGroup

   PCGroup(A) : AlgBasGrpP -> Grp
   PCGroup(G) : Grp -> GrpPC, Hom(Grp)
   PCGroup(A) : GrpAb -> GrpPC, Hom(Grp)
   PCGroup(G) : GrpFP -> GrpPC, GrpHom
   PCGroup(G) : GrpGPC -> GrpPC, Map
   PCGroup(G) : GrpMat -> GrpPC, Map
   PCGroup(G): GrpMat -> GrpPC, Map
   PCGroup(G) : GrpPerm -> GrpPC, Map
   PCGroup(Q : parameters ) : [RngIntElt] -> GrpPC
   PCGroupAutomorphismGroupPGroup(A) : GrpAuto -> BoolElt, Map, GrpPC

pcgroup

   GrpPC_pcgroup (Example H63E33)

PCGroupAutomorphismGroupPGroup

   PCGroupAutomorphismGroupPGroup(A) : GrpAuto -> BoolElt, Map, GrpPC

pClass

   pClass(G) : GrpPC -> RngIntElt
   pClass(P) : GrpPCpQuotientProc -> RngIntElt

pClosure

   pClosure(L, M) : AlgLie, AlgLie -> AlgLie

PCMap

   MakePCMap(A, P, S) : Aff, Prj, SeqEnum ->
   MakeProjectiveClosureMap(A, P, S) : Aff,Prj,SeqEnum ->
   PCMap(A) : AlgBasGrpP -> Map
   ProjectiveClosureMap(A) : Aff -> MapSch

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013