[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: connection  ..  ConstantField


connection

   Connection with Galois Representations (MOD P GALOIS REPRESENTATIONS)
   Connection with Modular Forms (ADMISSIBLE REPRESENTATIONS OF GL2(Qp))

connection-galois-representation

   Connection with Galois Representations (MOD P GALOIS REPRESENTATIONS)

ConnectionNumber

   ConnectionNumber(D, p, B) : Inc, IncPt, IncBlk -> RngIntElt

ConnectionPolynomial

   ConnectionPolynomial(S) : SeqEnum -> RngUPolElt, RngIntElt
   CharacteristicPolynomial(S) : SeqEnum -> RngUPolElt, RngIntElt
   BerlekampMassey(S) : SeqEnum -> RngUPolElt, RngIntElt

Connectivity

   EdgeConnectivity(G) : Grph -> RngIntElt, [ GrphEdge ]
   EdgeConnectivity(G : parameters) : GrphMult -> RngIntElt, [ GrphEdge ]
   VertexConnectivity(G) : Grph -> RngIntElt, [ GrphVert ]
   VertexConnectivity(G : parameters) : GrphMult -> RngIntElt, [ GrphVert ]
   Graph_Connectivity (Example H149E14)

connectivity

   General Vertex and Edge Connectivity in Graphs and Digraphs (GRAPHS)
   General Vertex and Edge Connectivity in Multigraphs and Multidigraphs (MULTIGRAPHS)

cons

   Basic Constructions (COHERENT SHEAVES)
   Constructors (ALGEBRAIC POWER SERIES RINGS)

cons_exs

   Sheaf_cons_exs (Example H113E3)

consconv

   Element Constructions and Conversions (p-ADIC RINGS AND THEIR EXTENSIONS)

consconv-element

   Element Constructions and Conversions (p-ADIC RINGS AND THEIR EXTENSIONS)

Consecutive

   RandomConsecutiveBits(n, a, b) : RngIntElt, RngIntElt -> RngIntElt

Consistency

   Consistency(~P: parameters) : GrpPCpQuotientProc ->

Consistent

   IsConsistent(G) : GrpGPC -> BoolElt
   IsConsistent(G) : GrpPC -> BoolElt
   IsConsistent(A, w) : ModMatRngElt, ModTupRng -> BoolElt, ModTupRngElt, ModTupRng
   IsConsistent(A, W) : ModMatRngElt, [ ModTupRng ] -> BoolElt, [ ModTupRngElt ], ModTupRng
   IsConsistent(A, W) : Mtrx, Mtrx -> BoolElt, Mtrx, ModTupRng
   IsConsistent(A, Q) : Mtrx, [ ModTupRng ] -> BoolElt, [ ModTupRngElt ], ModTupRng

Consta

   ConstaCyclicCode(n, f, alpha) : RngUPolElt, RngIntElt, FldFinElt -> Code

ConstaCyclicCode

   ConstaCyclicCode(n, f, alpha) : RngUPolElt, RngIntElt, FldFinElt -> Code

Constant

   ConstantCoefficient(p) : RngUPolElt -> RngElt
   ConstantCoefficient(F) : RngUPolTwstElt -> RngElt
   ConstantField(F) : FldFunG -> Rng
   ConstantField(R) : RngDiff -> Rng
   ConstantFieldExtension(F, E) : FldFun, Rng -> FldFun, Map
   ConstantFieldExtension(F, C) : RngDiff, Fld -> RngDiff, Map
   ConstantFieldExtension(R, C) : RngDiffOp,Fld -> RngDiffOp, Map
   ConstantMap(X,Y,p) : Sch,Sch,Pt -> MapSch
   ConstantRing(R) : RngDiff -> Rng
   ConstantRing(R) : RngDiffOp -> Rng
   ConstantWords(C, i) : Code, RngIntElt -> { ModTupFldElt }
   DegreeOfExactConstantField(m) : DivFunElt -> RngIntElt
   DegreeOfExactConstantField(m, U) : DivFunElt, GrpAb -> RngIntElt
   DegreeOfExactConstantField(A) : FldFunAb -> RngIntElt
   DimensionOfExactConstantField(F) : FldFunG -> RngIntElt
   ExactConstantField(F) : FldFunG -> Rng, Map
   ExactConstantField(F) : RngDiff -> RngDiff, Map
   HeightConstant(J: parameters) : JacHyp -> FldPrElt, FldPrElt
   HermiteConstant(n) : RngIntElt -> RngElt
   IsConstant(a) : FldFunGElt -> BoolElt, RngElt
   IsConstantCurve(E) : CrvEll[FldFunRat] -> BoolElt, CrvEll
   IsZero(I) : Map -> BoolElt
   LieConstant_epsilon(R, r, s) : RootDtm, RngIntElt, RngIntElt -> RngIntElt
   LieConstant_eta(R, r, s) : RootDtm, RngIntElt, RngIntElt -> RngIntElt
   LieConstant_N(R, r, s) : RootDtm, RngIntElt, RngIntElt -> RngIntElt
   LieConstant_p(R, r, s) : RootDtm, RngIntElt, RngIntElt -> RngIntElt
   LieConstant_q(R, r, s) : RootDtm, RngIntElt, RngIntElt -> RngIntElt
   LieConstant_M(R, r, s, i) : RootDtm, RngIntElt, RngIntElt, RngIntElt -> RngIntElt
   LieConstant_C(R, i, j, r, s) : RootDtm, RngIntElt, RngIntElt, RngIntElt, RngIntElt -> RngIntElt
   ManinConstant(E) : CrvEll[FldRat] -> RngIntElt
   NumberOfConstantWords(C, i) : Code, RngIntElt -> RngIntElt
   NumberOfPlacesOfDegreeOneECFBound(C) : Crv -> RngIntElt
   NumberOfPlacesOfDegreeOneECFBound(F) : FldFunG -> RngIntElt
   NumberOfPlacesOfDegreeOneOverExactConstantField(C) : Crv[FldFin] -> RngIntElt
   NumberOfPlacesOfDegreeOneOverExactConstantField(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
   NumberOfPlacesOfDegreeOneOverExactConstantField(F, m) : FldFun, RngIntElt -> RngIntElt
   NumberOfPlacesOfDegreeOneOverExactConstantField(F) : FldFunG -> RngIntElt
   NumberOfPlacesOfDegreeOneOverExactConstantField(F, m) : FldFunG, RngIntElt -> RngIntElt
   NumberOfPlacesOfDegreeOneOverExactConstantFieldBound(F, m) : FldFun, RngIntElt -> RngIntElt
   NumberOfPlacesOfDegreeOverExactConstantField(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
   NumberOfPlacesOfDegreeOverExactConstantField(F, m) : FldFun, RngIntElt -> RngIntElt
   NumberOfPlacesOfDegreeOverExactConstantField(F, m) : FldFunG, RngIntElt -> RngIntElt
   StructureConstant(G, i, j, k) : Grp, RngIntElt, RngIntElt, RngIntElt -> RngIntElt

constant

   Constants (REAL AND COMPLEX FIELDS)

ConstantCoefficient

   ConstantCoefficient(p) : RngUPolElt -> RngElt
   ConstantCoefficient(F) : RngUPolTwstElt -> RngElt

ConstantField

   DefiningConstantField(F) : FldFunG -> Rng
   ConstantField(F) : FldFunG -> Rng
   ConstantField(R) : RngDiff -> Rng

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013