[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: ambient  ..  And


ambient

   Ambient Spaces (MODULAR FORMS)
   Ambient Spaces (MODULAR SYMBOLS)
   Ambient Spaces (SCHEMES)
   Ambient Spaces (SUPERSINGULAR DIVISORS ON MODULAR CURVES)
   Ambients (SCHEMES)
   Functions and Homogeneity on Ambient Spaces (SCHEMES)
   Functions of the Ambient Space (SCHEMES)
   Prelude to Points (SCHEMES)
   The Ambient Space and Alphabet (ADDITIVE CODES)
   The Ambient Space and Alphabet (LINEAR CODES OVER FINITE FIELDS)

ambient-space

   The Ambient Space and Alphabet (ADDITIVE CODES)
   The Ambient Space and Alphabet (LINEAR CODES OVER FINITE FIELDS)

AmbientMatrix

   Matrix(f) : ModMPolHom -> ModMatRngElt
   AmbientMatrix(f) : ModMPolHom -> ModMatRngElt

AmbientModule

   AmbientModule(M) : ModBrdt -> ModBrdt

ambients

   Ambient Spaces (ALGEBRAIC CURVES)
   Ambients (ALGEBRAIC CURVES)

AmbientSpace

   AmbientSpace(L) : LinearSys -> Prj
   Ambient(L) : LinearSys -> Prj
   AmbientSpace(C) : Code -> ModTupRng
   AmbientSpace(C) : Code -> ModTupRng
   AmbientSpace(C) : Code -> ModTupRng
   AmbientSpace(L) : Lat -> ModTupFld, Map
   AmbientSpace(M) : ModFrm -> ModFrm
   AmbientSpace(C) : Sch -> Sch
   AmbientSpace(X) : Sch -> Sch

AmbientVariety

   AmbientVariety(G) : ModAbVarSubGrp -> ModAbVar

Ambiguous

   AmbiguousForms(Q) : QuadBin -> SeqEnum

AmbiguousForms

   AmbiguousForms(Q) : QuadBin -> SeqEnum

Amicable

   RngInt_Amicable (Example H18E5)

AModule

   AModule(B, Q) : AlgBas, SeqEnum[AlgMatElt] -> ModRng
   AModule(M) : ModGrp -> ModAlg

AModules

   AlgBas_AModules (Example H85E14)

AModules-2

   AlgBas_AModules-2 (Example H85E15)

Ample

   IsAmple(D) : DivTorElt -> BoolElt

an

   Analytically Hypersurface Singularities (SCHEMES)

an-hyp-sing-ex

   Scheme_an-hyp-sing-ex (Example H112E17)

an-hyp-sngs

   Analytically Hypersurface Singularities (SCHEMES)

Analytic

   AlgebraicToAnalytic(F, p) : RngUPolTwstElt, PlcFunElt -> RngUPolTwstElt
   AnalyticDrinfeldModule(F, p) : FldFun, PlcFunElt -> RngUPolTwstElt
   AnalyticHomomorphisms(t1, t2) : Mtrx, Mtrx -> SeqEnum
   AnalyticInformation(E) : CrvEll[FldFunG] -> Tup
   AnalyticJacobian(f) : RngUPolElt -> AnHcJac
   AnalyticModule(x, p) : RngElt, PlcFunElt -> RngElt
   AnalyticRank(E) : CrvEll -> RngIntElt, FldReElt
   AnalyticRank(E) : CrvEll -> RngIntElt, FldReElt
   AnalyticRank(E) : CrvEll[FldFunG] -> RngIntElt
   FromAnalyticJacobian(z, A) : Mtrx, AnHcJac -> SeqEnum
   ToAnalyticJacobian(x, y, A) : FldComElt, FldComElt, AnHcJac -> Mtrx

analytic

   Analytic Information (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
   Analytic Jacobians of Hyperelliptic Curves (HYPERELLIPTIC CURVES)
   Isomorphisms, Isogenies and Endomorphism Rings of Analytic Jacobians (HYPERELLIPTIC CURVES)

analytic-jacobian-isos

   Isomorphisms, Isogenies and Endomorphism Rings of Analytic Jacobians (HYPERELLIPTIC CURVES)

analytic-rank

   CrvEllQNF_analytic-rank (Example H122E26)

Analytic_Jacobian_Addition

   CrvHyp_Analytic_Jacobian_Addition (Example H125E43)

Analytically

   IsAnalyticallyIrreducible(p) : CrvPln,Pt -> BoolElt

AnalyticDrinfeldModule

   AnalyticDrinfeldModule(F, p) : FldFun, PlcFunElt -> RngUPolTwstElt

AnalyticHomomorphisms

   AnalyticHomomorphisms(t1, t2) : Mtrx, Mtrx -> SeqEnum

AnalyticInformation

   AnalyticInformation(E) : CrvEll[FldFunG] -> Tup

AnalyticJacobian

   AnalyticJacobian(f) : RngUPolElt -> AnHcJac

AnalyticModule

   AnalyticModule(x, p) : RngElt, PlcFunElt -> RngElt

AnalyticRank

   AnalyticRank(E) : CrvEll -> RngIntElt, FldReElt
   AnalyticRank(E) : CrvEll -> RngIntElt, FldReElt
   AnalyticRank(E) : CrvEll[FldFunG] -> RngIntElt

And

   And(S, T) : [ BoolElt ], [ BoolElt ] -> [BoolElt]
   CoefficientsAndMonomials(f) : RngMPolElt -> [ RngElt ], [ RngMPolElt ]
   ContentAndPrimitivePart(f) : RngMPolElt -> RngIntElt, RngMPolElt
   ContentAndPrimitivePart(p) : RngUPolElt -> RngIntElt, RngUPolElt
   FactoredMinimalAndCharacteristicPolynomials(A: parameters) : Mtrx -> [<RngUPolElt, RngIntElt>], [<RngUPolElt, RngIntElt>]
   GenusAndCanonicalMap(C) : Crv -> RngIntElt, BoolElt, MapSch
   HasSparseRep(G) : Grph -> BoolElt
   HighestWeightsAndVectors(V) : ModAlg -> SeqEnum, SeqEnum
   HighestWeightsAndVectors(V) : ModAlg -> SeqEnum, SeqEnum
   IsNefAndBig(D) : DivSchElt -> BoolElt
   MinimalAndCharacteristicPolynomials(A: parameters) : Mtrx -> RngUPolElt, RngUPolElt
   RandomProcess(G) : GrpFin -> Process
   RootsAndCoroots(G) : GrpMat -> [RngIntElt], [ModTupRngElt], [ModTupRngElt]
   Weights(D) : LieRepDec -> SeqEnum, SeqEnum
   Weights(ρ) : Map -> [LatElt], [ModTupRngElt]
   Weights(ρ) : Map -> [ModTupRngElt]
   Weights(V) : ModAlg -> SeqEnum, SeqEnum
   WeightsAndVectors(V) : ModAlg -> SeqEnum, SeqEnum

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013