[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: GroundField .. Group
BaseField(F) : FldAlg -> Fld
CoefficientField(F) : FldAlg -> Fld
CoefficientRing(F) : FldAlg -> Fld
GroundField(F) : FldAlg -> Fld
GroundField(F) : FldFin -> FldFin
GroundField(F) : FldNum -> Fld
Symmetric Group Character (SYMMETRIC FUNCTIONS)
A`DefiningGroup : FldAb -> Rec
AbelianGroup(GrpAb, Q) : Cat, [ RngIntElt ] -> GrpAb
AbelianGroup(C, Q) : Cat, [ RngIntElt ] -> GrpFin
AbelianGroup(GrpFP, [n1,...,nr]): Cat, [ RngIntElt ] -> GrpFP
AbelianGroup(GrpPerm, Q) : Cat, [ RngIntElt ] -> GrpPerm
AbelianGroup(GrpGPC, Q) : Cat, [RngIntElt] -> GrpGPC
AbelianGroup(GrpPC, Q) : Cat, [RngIntElt] -> GrpPC
AbelianGroup(G) : Grp -> GrpAb, Hom
AbelianGroup(G) : GrpDrch -> GrpAb, Map
AbelianGroup(G) : GrpGPC -> GrpAb, Map
AbelianGroup(G) : GrpPC -> GrpAb, Map
AbelianGroup(J) : JacHyp -> GrpAb, Map
AbelianGroup< X | R > : List(Var), List(GrpAbRel) -> GrpAb, Hom(GrpAb)
AbelianGroup(G) : ModAbVarSubGrp -> GrpAb, Map, Map
AbelianGroup(A: parameters) : GrpAbGen -> GrpAb, Map
AbelianGroup(H) : SetPtEll -> GrpAb, Map
AbelianGroup([n1,...,nr]): [ RngIntElt ] -> GrpAb
AbsoluteGaloisGroup(A) : FldAb -> GrpPerm, SeqEnum, GaloisData
ActingGroup(A) : GGrp -> Grp
ActingGroup(G) : GrpLie -> Grp, Map
ActionGroup(M) : ModGrp -> GrpMat
AdditiveGroup(F) : FldFin -> GrpAb, Map
AdditiveGroup(Z) : RngInt -> GrpAb, Map
AdditiveGroup(R) : RngIntRes -> GrpAb, Map
AdditiveGroup(R) : RngPadRes -> GrpAb, Map
AffineGammaLinearGroup(arguments)
AffineGeneralLinearGroup(arguments)
AffineGeneralLinearGroup(GrpMat, n, q) : Cat, RngIntElt, RngIntElt -> GrpMat
AffineGroup(M) : GrpMat[FldFin] -> GrpPerm, { at ModTupFldElt atbrace
AffineGroup(N) : Nfd -> GrpMat
AffineSigmaLinearGroup(arguments)
AffineSpecialLinearGroup(arguments)
AffineSpecialLinearGroup(GrpMat, n, q) : Cat, RngIntElt, RngIntElt -> GrpMat
AlmostSimpleGroupDatabase() : -> DB
AlternatingGroup(C, n) : Cat, RngIntElt -> GrpFin
AlternatingGroup(GrpFP, n) : Cat, RngIntElt -> GrpFP
AlternatingGroup(GrpPerm, n) : Cat, RngIntElt -> GrpPerm
ApproximateByTorsionGroup(G : parameters) : ModAbVarSubGrp -> ModAbVarSubGrp
ArithmeticTriangleGroup(p,q,r) : RngIntElt, RngIntElt, RngIntElt -> GrpPSL2, Rng
AutomaticGroup(F: parameters) : GrpFP -> GrpAtc
AutomaticGroup(F: parameters) : GrpFP -> GrpAtc
AutomorphismGroup(A) : AlgBas -> GrpMat, SeqEnum, SeqEnum, SeqEnum
AutomorphismGroup(C) : CodeAdd -> GrpPerm
AutomorphismGroup(Q) : CodeQuantum -> GrpPerm
AutomorphismGroup(C) : Crv -> GrpAutCrv
AutomorphismGroup(C,auts) : Crv, SeqEnum -> GrpAutCrv
AutomorphismGroup(E) : CrvEll -> Grp, Map
AutomorphismGroup(C) : CrvHyp -> GrpPerm, Map, Map
AutomorphismGroup(A) : FldAb -> GrpFP, [Map], Map
AutomorphismGroup(F) : FldAlg -> GrpPerm, PowMap, Map
AutomorphismGroup(K, F) : FldAlg, FldAlg -> GrpPerm, PowMap, Map
AutomorphismGroup(K, k) : FldFin, FldFin -> GrpPerm, [Map], Map
AutomorphismGroup(K, k) : FldFun, FldFunG -> GrpFP, Map
AutomorphismGroup(K) : FldFunG -> GrpFP, Map
AutomorphismGroup(K,f) : FldFunG, Map -> Grp, Map, SeqEnum
AutomorphismGroup(Q) : FldRat -> GrpPerm, PowMapAut, Map
AutomorphismGroup(G): Grp -> GrpAuto
AutomorphismGroup(G, Q, I): Grp, SeqEnum[GrpElt], SeqEnum[SeqEnum[GrpElt]] -> GrpAuto
AutomorphismGroup(G) : GrpAb -> GrpAuto
AutomorphismGroup(G) : GrpLie -> GrpLieAuto
AutomorphismGroup(G): GrpPC -> GrpAuto
AutomorphismGroup(D) : Inc -> GrpPerm, GSet, GSet, PowMap, Map
AutomorphismGroup(D) : IncGeom -> GrpPerm
AutomorphismGroup(L) : Lat -> GrpMat
AutomorphismGroup(L, F) : Lat, [ AlgMatElt ] -> GrpMat
AutomorphismGroup(M) : ModRng -> GrpMat
AutomorphismGroup(M) : Mtrx -> GrpPerm
AutomorphismGroup(G) : Mtrx[RngUPol] -> GrpMat, FldFin
AutomorphismGroup(N) : NfdDck -> GrpPerm, Map
AutomorphismGroup(C: parameters) : Code -> GrpPerm, PowMap, Map
AutomorphismGroup(G : parameters) : Grph -> GrpPerm, GSet, GSet, PowMap, Map, Grph
AutomorphismGroup(G: parameters) : GrpMat -> GrpAuto
AutomorphismGroup(G: parameters) : GrpPerm -> GrpAuto
AutomorphismGroup(G: parameters): GrpPC -> GrpAuto
AutomorphismGroup(P) : Prj -> GrpMat,Map
AutomorphismGroup(L) : RngLocA -> Grp, Map
AutomorphismGroup(L) : RngPad -> GrpPerm, Map
AutomorphismGroup(K, k) : RngPad, RngPad -> GrpPerm, Map
AutomorphismGroup(P) : TorPol -> GrpMat
AutomorphismGroup(F) : [ AlgMatElt ] -> GrpMat
AutomorphismGroupMatchingIdempotents(A) : AlgBas -> AlgBas, ModMatFldElt
AutomorphismGroupOverCyclotomicExtension(CN,N,n): Crv, RngIntElt, RngIntElt -> GrpAutCrv
AutomorphismGroupOverExtension(CN,N,n,u): Crv, RngIntElt, RngIntElt, RngElt -> GrpAutCrv
AutomorphismGroupOverQ(CN,N): Crv, RngIntElt -> GrpAutCrv
AutomorphismGroupSolubleGroup(G: parameters): GrpPC -> GrpAuto
AutomorphismGroupStabilizer(C, k) : Code, RngIntElt -> GrpPerm, PowMap, Map
AutomorphismGroupStabilizer(D, k) : Inc, RngIntElt -> GrpPerm, PowMap, Map
BasicAlgebraOfGroupAlgebra(G,F): GrpPerm, FldFin -> AlgBas
BlockGroup(D) : Inc -> GrpPerm
BraidGroup(GrpFP, n) : Cat, RngIntElt -> GrpFP
BraidGroup(W) : GrpFPCox -> GrpFP, Map
BraidGroup(n: parameters) : RngIntElt -> GrpBrd
BravaisGroup(G) : GrpMat[RngInt] -> GrpMat
CanIdentifyGroup(o) : RngIntElt -> BoolElt
CentralCollineationGroup(P, l) : Plane, PlaneLn -> GrpPerm, PowMap, Map
CentralCollineationGroup(P, p) : Plane, PlanePt -> GrpPerm, PowMap, Map
CentralCollineationGroup(P, p, l) : Plane, PlanePt, PlaneLn -> GrpPerm, PowMap, Map
ChevalleyGroup(X, n, K: parameters) : MonStgElt, RngIntElt, FldFin -> GrpMat
ClassGroup(C) : Crv[FldFin] -> GrpAb, Map, Map
ClassGroup(K) : FldQuad -> GrpAb, Map
ClassGroup(Q) : FldRat -> GrpAb, Map
ClassGroup(K: parameters) : FldAlg -> GrpAb, Map
ClassGroup(F : parameters) : FldFun -> GrpAb, Map, Map
ClassGroup(F : parameters) : FldFunG -> GrpAb, Map, Map
ClassGroup(Q: parameters) : QuadBin -> GrpAb, Map
ClassGroup(O: parameters) : RngOrd -> GrpAb, Map
ClassGroup(O) : RngFunOrd -> GrpAb, Map, Map
ClassGroup(Z) : RngInt -> GrpAb, Map
ClassGroupAbelianInvariants(C) : Crv[FldFin] -> [RngIntElt]
ClassGroupAbelianInvariants(F : parameters) : FldFun -> SeqEnum
ClassGroupAbelianInvariants(F : parameters) : FldFunG -> SeqEnum
ClassGroupAbelianInvariants(O) : RngFunOrd -> SeqEnum
ClassGroupCyclicFactorGenerators(O) : RngOrd -> ModHomElt
ClassGroupExactSequence(F) : FldFunG -> Map, Map, Map
ClassGroupExactSequence(O) : RngFunOrd -> Map, Map, Map
ClassGroupGenerationBound(F) : FldFunG -> RngIntElt
ClassGroupGenerationBound(q, g) : RngIntElt, RngIntElt -> RngIntElt
ClassGroupGetUseMemory(O) : RngOrd -> BoolElt
ClassGroupPRank(C) : Crv[FldFin] -> RngIntElt
ClassGroupPRank(F) : FldFunG -> RngIntElt
ClassGroupPRank(F) : FldFunG -> RngIntElt
ClassGroupPrimeRepresentatives(O, I) : RngOrd, RngOrdIdl -> Map
ClassGroupSetUseMemory(O, f) : RngOrd, BoolElt ->
ClassGroupStructure(Q: parameters) : QuadBin -> [ RngIntElt ]
CohomologyGroup(CM, n) : ModCoho, RngIntElt -> ModTupRng
CoisogenyGroup(G) : GrpLie -> GrpAb, Map
CoisogenyGroup(W) : GrpMat -> GrpAb, Map
CoisogenyGroup(W) : GrpPermCox -> GrpAb
CoisogenyGroup(R) : RootDtm -> GrpAb, Map
CollineationGroup(P) : Plane -> GrpPerm, GSet, GSet, PowMap, Map
CollineationGroupStabilizer(P, k) : Plane, RngIntElt -> GrpPerm, GSet, GSet, PowMap, Map
CommutatorSubgroup(G) : GrpFP -> GrpFP
CommutatorSubgroup(G) : GrpMat -> GrpMat
CommutatorSubgroup(G) : GrpPC -> GrpPC
CommutatorSubgroup(G) : GrpPerm -> GrpPerm
CompleteClassGroup(O) : RngOrd ->
ComplexReflectionGroup(X, n) : MonStgElt, RngIntElt -> GrpMat, Map
ComplexReflectionGroup(C) : Mtrx -> GrpMat, Map
ComponentGroup(M) : CrvRegModel -> GrpAb
ComponentGroupOfIntersection(A, B) : ModAbVar, ModAbVar -> ModAbVarSubGrp
ComponentGroupOfKernel(phi) : MapModAbVar -> ModAbVarSubGrp
ComponentGroupOrder(A, p) : ModAbVar, RngIntElt -> RngIntElt
ComponentGroupOrder(M, p) : ModSym, RngIntElt -> RngIntElt
CompositionTreeNiceGroup(G) : Grp -> GrpMat[FldFin]
ConditionalClassGroup(K) : FldAlg -> GrpAb, Map
ConditionalClassGroup(O) : RngOrd -> GrpAb, Map
ConditionedGroup(G) : GrpPC -> GrpPC
ConformalOrthogonalGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
ConformalOrthogonalGroupMinus(n, q) : RngIntElt, RngIntElt -> GrpMat
ConformalOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
ConformalSymplecticGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
ConformalUnitaryGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
CongruenceGroup(M1, M2, prec) : ModFrm, ModFrm, RngIntElt -> GrpAb
CongruenceGroup(M : parameters) : ModSym -> GrpAb
CongruenceGroupAnemic(M1, M2, prec) : ModFrm, ModFrm, RngIntElt -> GrpAb
CorrelationGroup(D) : IncGeom -> GrpPerm
CosetTableToPermutationGroup(G, T) : GrpFP, Map -> GrpPerm
CoxeterGroup(GrpFPCox, C) : Cat, AlgMatElt -> GrpFPCox
CoxeterGroup(GrpFPCox, M) : Cat, AlgMatElt -> GrpFPCox
CoxeterGroup(GrpFPCox, M) : Cat, AlgMatElt -> GrpFPCox
CoxeterGroup(GrpPermCox, M) : Cat, AlgMatElt -> GrpPermCox
CoxeterGroup(M) : Cat, AlgMatElt -> GrpPermCox
CoxeterGroup(GrpFP, W) : Cat, GrpFPCox -> GrpFP, Map
CoxeterGroup(GrpFP, W) : Cat, GrpFPCox -> GrpFP, Map
CoxeterGroup(GrpPerm, W) : Cat, GrpFPCox -> GrpPerm, Map
CoxeterGroup(GrpPermCox, W) : Cat, GrpFPCox -> GrpPermCox, Map
CoxeterGroup(GrpFPCox, D) : Cat, GrphDir -> GrpFPCox
CoxeterGroup(GrpFPCox, G) : Cat, GrphUnd -> GrpFPCox
CoxeterGroup(GrpFPCox, W) : Cat, GrpMat -> GrpFPCox
CoxeterGroup(GrpFPCox, W) : Cat, GrpMat -> GrpPermCox
CoxeterGroup(GrpPermCox, W) : Cat, GrpMat -> GrpPermCox
CoxeterGroup(GrpFP, W) : Cat, GrpMat -> GrpPermCox, Map
CoxeterGroup(GrpPerm, W) : Cat, GrpMat -> GrpPermCox, Map
CoxeterGroup(GrpPermCox, W) : Cat, GrpMat -> GrpPermCox, Map
CoxeterGroup(GrpFP, W) : Cat, GrpPermCox -> GrpFP, Map
CoxeterGroup(GrpFP, W) : Cat, GrpPermCox -> GrpFPCox
CoxeterGroup(GrpFPCox, W) : Cat, GrpPermCox -> GrpFPCox, Map
CoxeterGroup(GrpPerm, W) : Cat, GrpPermCox -> GrpPerm, Map
CoxeterGroup(GrpFP, t) : Cat, MonStgElt -> GrpFP
CoxeterGroup(GrpFPCox, N) : Cat, MonStgElt -> GrpFPCox
CoxeterGroup(GrpFPCox, R) : Cat, RootDtm -> GrpFPCox
CoxeterGroup(GrpFPCox, R) : Cat, RootSys -> GrpFPCox
CoxeterGroup(GrpFPCox, R) : Cat, RootSys -> RngIntElt
CoxeterGroup(A, B) : Mtrx, Mtrx -> GrpPermCox
CoxeterGroup(R) : RootDtm -> GrpPermCox
CoxeterGroup(R) : RootSys -> RngIntElt
CoxeterGroupOrder(C) : AlgMatElt -> .
CoxeterGroupOrder(M) : AlgMatElt -> .
CoxeterGroupOrder(D) : GrphDir -> .
CoxeterGroupOrder(G) : GrphUnd -> .
CoxeterGroupOrder(N) : MonStgElt -> .
CoxeterGroupOrder(R) : RootStr -> RngIntElt
CoxeterGroupOrder(R) : RootSys -> RngIntElt
CyclicGroup(C, n) : Cat, RngIntElt -> GrpFin
CyclicGroup(GrpFP, n) : Cat, RngIntElt -> GrpFP
CyclicGroup(GrpGPC, n) : Cat, RngIntElt -> GrpGPC
CyclicGroup(GrpPC, n) : Cat, RngIntElt -> GrpPC
CyclicGroup(GrpPerm, n) : Cat, RngIntElt -> GrpPerm
CyclotomicAutomorphismGroup(K) : FldCyc -> GrpAb, Map
DecompositionGroup(P) : PlcNumElt -> GrpPerm
DecompositionGroup(P) : PlcNumElt -> GrpPerm
DecompositionGroup(p, A) : PlcNumElt, FldAb -> GrpAb
DecompositionGroup(p) : RngIntElt -> GrpPerm
DecompositionGroup(p, A) : RngIntElt, FldAb -> GrpAb
DecompositionGroup(L) : RngLocA -> GrpPerm
DerivedGroupMonteCarlo(G : parameters) : GrpMat -> GrpMat
DerivedSubgroup(G) : GrpFin -> GrpFin
DerivedSubgroup(G) : GrpGPC -> GrpGPC
DicyclicGroup(n) : RngIntElt -> GrpFP
DihedralGroup(C, n) : Cat, RngIntElt -> GrpFin
DihedralGroup(GrpFP, n) : Cat, RngIntElt -> GrpFP
DihedralGroup(GrpGPC, n) : Cat, RngIntElt -> GrpGPC
DihedralGroup(GrpPC, n) : Cat, RngIntElt -> GrpPC
DihedralGroup(GrpPerm, n) : Cat, RngIntElt -> GrpPerm
DirichletGroup(N) : RngIntElt -> GrpDrch
DirichletGroup(N,R) : RngIntElt, Rng -> GrpDrch
DirichletGroup(N,R,z,r) : RngIntElt, Rng, RngElt, RngIntElt -> GrpDrch
DirichletGroup(I) : RngOrdIdl -> GrpDrchNF
DivisorClassGroup(C) : RngCox -> TorLat
DivisorGroup(C) : Crv -> DivCrv
DivisorGroup(D) : DivCrvElt -> DivCrv
DivisorGroup(F) : FldFun -> DivFun
DivisorGroup(F) : FldFun -> DivFun
DivisorGroup(F) : FldFunG -> DivFun
DivisorGroup(X) : Sch -> DivSch
DivisorGroup(X) : TorVar -> DivTor
EdgeGroup(G) : Grph -> GrpPerm, GSet
ElementaryAbelianGroup(GrpGPC, p, n) : Cat, RngIntElt, RngIntElt -> GrpGPC
EvaluateClassGroup(O) : RngOrd -> BoolElt
ExistsGroupData(D, o1, o2): DB, RngIntElt, RngIntElt -> BoolElt
ExtendedUnitGroup(D) : NfdDck -> GrpMat
ExtensionsOfElementaryAbelianGroup(p, d, G) : RngIntElt, RngIntElt, GrpPerm -> SeqEnum
ExtensionsOfSolubleGroup(H, G) : GrpPerm, GrpPerm -> SeqEnum
ExtraSpecialGroup(G) : GrpMat -> GrpMat
ExtraSpecialGroup(C, p, n : parameters) : Cat, RngIntElt, RngIntElt -> GrpFin
ExtraSpecialGroup(GrpFP, p, n : parameters) : Cat, RngIntElt, RngIntElt -> GrpFP
ExtraSpecialGroup(GrpGPC, p, n : parameters) : Cat, RngIntElt, RngIntElt -> GrpGPC
ExtraSpecialGroup(GrpPC, p, n : parameters) : Cat, RngIntElt, RngIntElt -> GrpPC
ExtraSpecialGroup(GrpPerm, p, n : parameters) : Cat, RngIntElt, RngIntElt -> GrpPerm
ExtractGroup(P) : GrpFPLixProc -> GrpFP
ExtractGroup(P) : GrpPCpQuotientProc -> GrpPC
FactoredChevalleyGroupOrder(type, n, F: parameters) : MonStgElt, RngIntElt, FldFin -> RngIntEltFact
FittingSubgroup(G) : GrpGPC -> GrpGPC
FittingSubgroup(G) : GrpPC -> GrpPC
FixedGroup(K, L) : FldAlg, FldAlg -> GrpPerm
FixedGroup(K, a) : FldAlg, FldAlgElt -> GrpPerm
FixedGroup(K, L) : FldAlg, [FldAlgElt] -> GrpPerm
FormalGroupHomomorphism(phi, prec) : MapSch, RngIntElt -> RngSerPowElt
FormalGroupLaw(E, prec) : CrvEll, RngIntElt -> RngMPolElt
FreeAbelianGroup(GrpGPC, n) : Cat, RngIntElt -> GrpGPC
FreeAbelianGroup(n) : RngIntElt -> GrpAb
FreeGroup(n) : RngIntElt -> GrpFP
FreeNilpotentGroup(r, e) : RngIntElt, RngIntElt -> GrpGPC
FuchsianGroup(A) : AlgQuat -> GrpPSL2
FuchsianGroup(A, N) : AlgQuat, RngOrdIdl -> GrpPSL2
FuchsianGroup(O) : AlgQuatOrd -> GrpPSL2
FullDirichletGroup(N) : RngIntElt -> GrpDrch
FundamentalGroup(C) : AlgMatElt -> GrpAb
FundamentalGroup(D) : GrphDir -> GrpAb
FundamentalGroup(G) : GrpLie -> GrpAb, Map
FundamentalGroup(W) : GrpMat -> GrpAb
FundamentalGroup(W) : GrpPermCox -> GrpAb
FundamentalGroup(N) : MonStgElt -> GrpAb
FundamentalGroup(R) : RootDtm -> GrpAb, Map
GaloisGroup(K, k) : FldFin, FldFin -> GrpPerm, [FldFinElt]
GaloisGroup(F) : FldFun -> GrpPerm, [RngElt], GaloisData
GaloisGroup(K) : FldNum -> GrpPerm, SeqEnum, GaloisData
GaloisGroup(K) : FldNum -> GrpPerm, [RngElt], GaloisData
GaloisGroup(f) : RngUPolElt -> GrpPerm, [ RngElt ], GaloisData
GaloisGroup(f) : RngUPolElt[RngInt] -> GrpPerm, SeqEnum, GaloisData
GaloisGroupInvariant(G, H) : GrpPerm, GrpPerm -> RngSLPolElt
GammaGroup(k, G) : Fld, GrpLie -> GGrp
GammaGroup(k, A) : Fld, GrpLieAuto -> GGrp
GammaGroup(Gamma, A, action) : Grp, Grp, Map[Grp, GrpAuto] -> GGrp
GammaGroup(alpha) : OneCoC -> GGrp
GeneralLinearGroup(n, R) : RngIntElt, Rng -> GrpMat
GeneralLinearGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
GeneralOrthogonalGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
GeneralOrthogonalGroupMinus(n, q) : RngIntElt, RngIntElt -> GrpMat
GeneralOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
GeneralUnitaryGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
GenericAbelianGroup(U: parameters) : . -> GrpAbGen
GenericGroup(X) : [] -> GrpFp, Map
GeometricAutomorphismGroup(C) : CrvHyp -> GrpFP
GeometricAutomorphismGroupFromShiodaInvariants(JI) : SeqEnum -> GrpPerm
GeometricAutomorphismGroupGenus2Classification(F) : FldFin -> SeqEnum,SeqEnum
GeometricAutomorphismGroupGenus3Classification(F) : FldFin -> SeqEnum,SeqEnum
GlobalUnitGroup(C) : Crv[FldFin] -> GrpAb, Map
GlobalUnitGroup(F) : FldFun -> GrpAb, Map
GlobalUnitGroup(F) : FldFunG -> GrpAb, Map
GradedAutomorphismGroup(A) : AlgBas -> GrpMat, SeqEnum[ModMatFldElt], SeqEnum[ModMatFldElt], SeqEnum[ModMatFldElt]
GradedAutomorphismGroupMatchingIdempotents(A) : AlgBas -> GrpMat, SeqEnum, SecEnum
Group(A) : AlgBasGrpP -> Grp
Group(R) : AlgChtr -> Grp
Group(S) : AlgGrpSub -> Grp
Group(A) : ArtRep -> GrpPerm
Group(C) : CosetGeom -> GrpPerm
Group(D, i): DB, RngIntElt -> GrpFP, SeqEnum
Group(D, i): DB, RngIntElt -> GrpMat
Group(D, i): DB, RngIntElt -> GrpMat
Group(D, i): DB, RngIntElt -> GrpMat
Group(D, i): DB, RngIntElt -> GrpMat
Group(D, d, i): DB, RngIntElt, RngIntElt -> GrpMat
Group(D, d, i): DB, RngIntElt, RngIntElt -> GrpMat
Group(D, d, i): DB, RngIntElt, RngIntElt -> GrpMat
Group(D, d, i): DB, RngIntElt, RngIntElt -> GrpMat
Group(F) : FldInvar -> Grp
Group(A) : GGrp -> Grp
Group(A) : GrpAuto -> Grp
Group(V) : GrpFPCos -> GrpFP
Group(P) : GrpFPCosetEnumProc -> GrpFP
Group(P) : GrpFPTietzeProc -> GrpFP, Map
Group(G) : GrpPSL2 -> GrpFP, Map, Map
Group(Y) : GSet -> GrpPerm
Group(L) : Lat -> GrpMat
Group< X | R > : List(Identifiers), List(GrpFPRel) -> GrpFP, Hom(Grp)
Group< X | R > : List(Var), List(GrpFPRel) -> GrpFP, Hom(Grp)
Group(CM) : ModCoho -> Grp
Group(M) : ModGrp -> Grp
Group(R) : RngInvar -> Grp
Group(e) : SubGrpLatElt -> GrpFin
Group(FS) : SymFry -> GrpPSL2
GroupAlgebra(S) : AlgGrpSub -> AlgGrp
GroupAlgebra( R, G: parameters ) : Rng, Grp -> AlgGrp
GroupAlgebra(R, G) : Rng, Grp -> AlgGrp
GroupAlgebraAsStarAlgebra(R, G) : Rng, Grp -> AlgGrp
GroupData(D, i): DB, RngIntElt -> Rec
GroupIdeal(F) : FldInvar -> RngMPol
GroupIdeal(R) : RngInvar -> RngMPol
GroupOfLieType(L) : AlgLie -> GrpLie
GroupOfLieType(C, k) : AlgMatElt, Rng -> GrpLie
GroupOfLieType(W, k) : GrpMat, Rng -> GrpLie
GroupOfLieType(W, k) : GrpPermCox, Rng -> GrpLie
GroupOfLieType(W, R) : GrpPermCox, Rng -> GrpLie
GroupOfLieType(W, q) : GrpPermCox, RngIntElt -> GrpLie
GroupOfLieType(N, k) : MonStgElt, Rng -> GrpLie
GroupOfLieType(N, q) : MonStgElt, RngIntElt -> GrpLie
GroupOfLieType(C, k) : Mtrx, Rng -> GrpLie
GroupOfLieType(C, q) : Mtrx, RngIntElt -> GrpLie
GroupOfLieType(R, k) : RootDtm, Rng -> GrpLie
GroupOfLieType(R, k) : RootDtm, Rng -> GrpLie
GroupOfLieType(R, q) : RootDtm, RngIntElt -> GrpLie
GroupOfLieTypeFactoredOrder(R, q) : RootDtm, RngElt -> RngIntElt
GroupOfLieTypeHomomorphism(phi, k) : Map, Rng -> .
GroupOfLieTypeHomomorphism(phi, k) : Map, Rng -> GrpLie
GroupOfLieTypeOrder(R, q) : RootDtm, RngElt -> RngIntElt
HadamardAutomorphismGroup(H : parameters) : AlgMatElt -> AlgMatElt
HeckeCharacterGroup(I) : RngOrdIdl -> GrpHecke
HermitianAutomorphismGroup(M) : Mtrx -> GrpMat
HomologyGroup(X, q) : SmpCpx, RngIntElt -> ModRng
IdentifyAlmostSimpleGroup(G) : GrpPerm -> Map, GrpPerm
IdentifyGroup(G): Grp -> Tup
IdentifyGroup(G): GrpFP -> Tup
ImproveAutomorphismGroup(F, E) : FldAb, SeqEnum -> GrpFP, SeqEnum
InducedGammaGroup(A, B) : GGrp, Grp -> GGrp
InertiaGroup(p) : RngOrdIdl -> GrpPerm
InnerAutomorphismGroup(L) : AlgLie -> GrpLie, Map
IntegralGroup(G) : GrpMat -> GrpMat, AlgMatElt
IntegralMatrixGroupDatabase() : -> DB
IntersectionGroup(M1, M2) : ModSym, ModSym -> GrpAb
IntersectionGroup(S) : SeqEnum -> GrpAb
InvolutionClassicalGroupEven(G : parameters) : GrpMat[FldFin] ->GrpMatElt[FldFin], GrpSLPElt, RngIntElt
IrreducibleCoxeterGroup(GrpFPCox, X, n) : Cat, MonStgElt, RngIntElt -> GrpFPCox
IrreducibleMatrixGroup(k, p, n) : RngIntElt, RngIntElt, RngIntElt -> GrpMat
IrreducibleReflectionGroup(X, n) : MonStgElt, RngIntElt -> GrpMat
IsInSmallGroupDatabase(o) : RngIntElt -> BoolElt
IsIsomorphicSolubleGroup(G, H: parameters) : GrpPC, GrpPC -> BoolElt, Map
IsLargeReeGroup(G) : GrpMat -> BoolElt, RngIntElt
IsLinearGroup(G) : GrpMat -> BoolElt
IsOrthogonalGroup(G) : GrpMat ->BoolElt
IsRealReflectionGroup(G) : GrpMat -> BoolElt, [], []
IsReeGroup(G) : GrpMat -> BoolElt, RngIntElt
IsReflectionGroup(G) : GrpMat -> BoolElt
IsReflectionGroup(G) : GrpMat -> BoolElt
IsSoluble(D, o, n) : DB, RngIntElt, RngIntElt -> Grp
IsSolubleAutomorphismGroupPGroup(A) : GrpAuto -> BoolElt
IsSuzukiGroup(G) : GrpMat -> BoolElt, RngIntElt
IsSymplecticGroup(G) : GrpMat -> BoolElt
IsTriangleGroup(G) : GrpPSL2 -> BoolElt
IsUnitaryGroup(G) : GrpMat -> BoolElt
IsogenyGroup(G) : GrpLie -> GrpAb, Map
IsogenyGroup(W) : GrpMat -> GrpAb, Map
IsogenyGroup(W) : GrpPermCox -> GrpAb
IsogenyGroup(R) : RootDtm -> GrpAb, Map
IsolGroup(n, p, i) : RngIntElt, RngIntElt, RngIntElt -> GrpMat
IsolGroupDatabase() : -> DB
IsolGroupOfDegreeFieldSatisfying(d, p, f) : RngIntElt, RngIntElt, Any -> GrpMat
IsolGroupOfDegreeSatisfying(d, f) : RngIntElt, Any -> GrpMat
IsolGroupSatisfying(f) : Any -> GrpMat
IsometryGroup(V) : ModTupFld) -> GrpMat
IsometryGroup(F : parameters) : AlgMatElt -> GrpMat
IsometryGroup(S : parameters) : SeqEnum -> GrpMat
IspGroup(G) : GrpAb -> BoolElt
LMGDerivedGroup(G) : GrpMat -> GrpMat
LargeReeGroup(q) : RngIntElt -> GrpMat
LineGroup(P) : Plane -> GrpPerm, PowMap, Map
LocalCoxeterGroup(H) : GrpPermCox -> GrpPermCox, Map
MatrixGroup(K) : DBAtlasKeyMatRep -> GrpMat
MatrixGroup(M) : ModGrp -> GrpMat
MatrixGroup< n, R | L > : RngIntElt, Rng, List -> GrpMat
MordellWeilGroup(E : parameters) : CrvEll[FldFunRat] -> GrpAb, Map
MordellWeilGroup(H: parameters) : SetPtEll -> GrpAb, Map
MultiplicativeGroup(S) : AlgQuatOrd[RngInt] -> GrpPerm, Map
MultiplicativeGroup(F) : FldFin -> GrpAb, Map
MultiplicativeGroup(Z) : RngInt -> GrpAb, Map
MultiplicativeGroup(R) : RngIntRes -> GrpAb, Map
NaturalBlackBoxGroup(H) : Grp -> GrpBB
NaturalGroup(L) : Lat -> GrpMat
NormGroup(A) : AlgMat -> GrpMat
NormGroup(A) : FldAb -> Map, RngOrdIdl, [RngIntElt]
NormGroup(F) : FldFun -> DivFunElt, GrpAb
NormGroup(R, m) : FldPad, Map -> GrpAb, Map
NormGroupDiscriminant(m, G) : Map, GrpAb -> RngIntElt
NormOneGroup(S) : AlgAssVOrd -> GrpPerm, Map
OrderAutomorphismGroupAbelianPGroup (A) : SeqEnum -> RngIntElt
PCGroupAutomorphismGroupPGroup(A) : GrpAuto -> BoolElt, Map, GrpPC
PGO(arguments)
PGOMinus(arguments)
PGOPlus(arguments)
PSO(arguments)
PSOMinus(arguments)
PSOPlus(arguments)
PerfectGroupDatabase() : -> DB
PermutationGroup(C) : Code -> GrpPerm, PowMap, Map
PermutationGroup(C) : CodeAdd -> GrpPerm
PermutationGroup(Q) : CodeQuantum -> GrpPerm
PermutationGroup(K) : DBAtlasKeyPermRep -> GrpPerm
PermutationGroup(A) : GrpAb -> GrpPerm, Hom(Grp)
PermutationGroup(A) : GrpAutCrv -> GrpPerm
PermutationGroup(A) : GrpAuto -> GrpPerm
PermutationGroup(G) : GrpFP -> GrpPerm, GrpHom
PermutationGroup(D, i: parameters): DB, RngIntElt -> GrpPerm
PermutationGroup< n | L > : RngIntElt, List -> GrpPerm
PermutationGroup< X | L > : Set, List -> GrpPerm
PermutationGroup< X | L > : Set, List -> GrpPerm, Hom
PhiSelmerGroup(f,q) : RngUPolElt, RngIntElt -> GrpAb, Map
PicardGroup(O) : RngQuad -> GrpAb, Map
Places(K) : FldNum -> PlcNum
Places(K) : FldNum -> PlcNum
PointGroup(D) : Inc -> GrpPerm, GSet
PolycyclicGroup< x1, ..., xn | R : parameters > : List(Identifiers), List(GrpFPRel) -> GrpGPC, Map
PolycyclicGroup< x1, ..., xn | R : parameters > : List(Identifiers), List(GrpFPRel) -> GrpPC, Map
PowerGroup(G) : GrpPC -> PowerGroup
PrimitiveGroup(d) : RngIntElt -> GrpPerm, MonStgElt, MonStgElt
PrimitiveGroup(d, f) : RngIntElt, Program -> GrpPerm, MonStgElt
PrimitiveGroup(d, n) : RngIntElt, RngIntElt -> GrpPerm, MonStgElt, MonStgElt
PrimitiveGroup(S, f) : [RngIntElt], Program -> GrpPerm, MonStgElt
PrimitiveGroupDatabaseLimit() : -> RngIntElt
PrimitiveGroupDescription(d, n) : RngIntElt, RngIntElt -> MonStgElt
PrimitiveGroupIdentification(G) : GrpPerm -> RngIntElt, RngIntElt
PrimitiveGroupProcess(d: parameters) : RngIntElt -> Process
PrimitiveGroupProcess(d, f: parameters) : RngIntElt, Program -> Process
PrincipalUnitGroup(R) : RngPad -> GrpAb, Map
PrincipalUnitGroupGenerators(R) : RngPad -> SeqEnum
ProbableAutomorphismGroup(A) : FldAb -> GrpFP, SeqEnum
ProjectiveGammaLinearGroup(arguments)
ProjectiveGammaUnitaryGroup(arguments)
ProjectiveGeneralLinearGroup(arguments)
ProjectiveGeneralUnitaryGroup(arguments)
ProjectiveSigmaLinearGroup(arguments)
ProjectiveSigmaSymplecticGroup(arguments)
ProjectiveSigmaUnitaryGroup(arguments)
ProjectiveSpecialLinearGroup(arguments)
ProjectiveSpecialUnitaryGroup(arguments)
ProjectiveSuzukiGroup(arguments)
ProjectiveSymplecticGroup(arguments)
PseudoReflectionGroup(A, B) : Mtrx, Mtrx -> GrpMat, Map
PureBraidGroup(W) : GrpFPCox -> GrpFP, Map
QuadraticClassGroupTwoPart(K) : FldQuad -> GrpAb, Map
QuantumBinaryErrorGroup(n) : RngIntElt -> GrpPC
QuantumErrorGroup(Q) : CodeQuantum -> GrpPC
QuantumErrorGroup(p, n) : RngIntElt, RngIntElt -> GrpPC
QuasisimpleMatrixGroup(N, d, p : parameters) : MonStgElt, RngIntElt, RngIntElt ->GrpMat
QuaternionicMatrixGroupDatabase() : -> DB
RamificationGroup(p) : RngOrdIdl -> GrpPerm
RamificationGroup(p, i) : RngOrdIdl, RngIntElt -> GrpPerm
RationalMatrixGroupDatabase() : -> DB
RayClassGroup(D) : DivFunElt -> GrpAb, Map
RayClassGroup(D) : DivNumElt -> GrpAb, Map
RayClassGroup(I) : RngOrdIdl -> GrpAb, Map
RayClassGroupDiscLog(y, D) : DivFunElt, DivFunElt -> GrpAbElt
ReeGroup(q) : RngIntElt -> GrpMat
ReflectionGroup(M) : AlgMatElt -> GrpMat
ReflectionGroup(M) : AlgMatElt -> GrpMat
ReflectionGroup(W) : Cat, GrpPermCox -> GrpMat, Map
ReflectionGroup(W) : GrpFPCox -> GrpMat, Map
ReflectionGroup(W) : GrpFPCox -> GrpMat, Map
ReflectionGroup(W) : GrpPermCox -> GrpMat
ReflectionGroup(W) : GrpPermCox -> GrpMat, Map
ReflectionGroup(W) : GrpPermCox -> GrpMat, Map
ReflectionGroup(N) : MonStgElt -> GrpMat
ReflectionGroup(R) : RootDtm -> GrpMat
ReflectionGroup(R) : RootSys -> GrpMat
ReflectionGroup(R) : RootSys -> GrpMat
RingClassGroup(O) : RngOrd -> GrpAb, Map
SClassGroup(S) : SetEnum[PlcFunElt] -> GrpAb, Map, Map
SClassGroupAbelianInvariants(S) : SetEnum[PlcFunElt] -> SeqEnum
SClassGroupExactSequence(S) : SetEnum[PlcFunElt] -> Map, Map, Map
SUnitGroup(I) : RngOrdFracIdl -> GrpAb, Map
SUnitGroup(S) : SetEnum[PlcFunElt] -> GrpAb, Map
SchurIndexGroup(n: parameters) : RngIntElt -> GrpPC
SelmerGroup(phi) : Map -> GrpAb, Map, Map, SeqEnum, SetEnum
SemiLinearGroup(G, S) : GrpMat, FldFin -> GrpMat
SetClassGroupBoundMaps(f1, f2) : Map, Map ->
SetClassGroupBounds(n) : Any ->
ShephardTodd(m, p, n) : RngIntElt, RngIntElt, RngIntElt -> GrpMat, Fld
SimilarityGroup(V) : ModTupFld) -> GrpMat
SimilarityGroup(F : parameters) : AlgMatElt -> GrpMat
SimpleGroupName(G : parameters): GrpMat -> BoolElt, List
SimpleGroupOfLieType(X, n, k) : MonStgElt, RngIntElt, Rng -> GrpLie
SimpleGroupOfLieType(X, n, q) : MonStgElt, RngIntElt, RngIntElt -> GrpLie
SmallGroup(o: parameters) : RngIntElt -> Grp
SmallGroup(o, f: parameters) : RngIntElt, Program -> Grp
SmallGroup(o, f: parameters) : RngIntElt, Program -> Grp
SmallGroup(o, n) : RngIntElt, RngIntElt -> Grp
SmallGroupDatabase() : -> DB
SmallGroupDatabaseLimit() : -> RngIntElt
SmallGroupDecoding(c, o) : RngIntElt, RngIntElt -> GrpPC
SmallGroupEncoding(G) : GrpPC -> RngIntElt, RngIntElt
SmallGroupIsInsoluble(o, n) : RngIntElt, RngIntElt -> Grp
SmallGroupProcess(o: parameters) : RngIntElt -> Process
SmallGroupProcess(o, f: parameters) : RngIntElt, Program -> Process
SmallGroupProcess(S: parameters) : [RngIntElt] -> Process
SmallGroupProcess(S, f: parameters) : [RngIntElt], Program -> Process
SpecialLinearGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
SpecialOrthogonalGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
SpecialOrthogonalGroupMinus(n, q) : RngIntElt, RngIntElt -> GrpMat
SpecialOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
SpecialUnitaryGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
StabilizerGroup(Q) : CodeQuantum -> GrpPC
StabilizerGroup(Q, G) : CodeQuantum, GrpPC -> GrpPC
StandardActionGroup(W) : GrpFPCox -> GrpPerm, Map
StandardActionGroup(W) : GrpMat -> GrpPerm, Map
StandardGroup(G) : GrpPerm -> GrpPerm, Map
StarOnGroupAlgebra(A) : AlgGrp -> Map
SuzukiGroup(q) : RngIntElt -> GrpMat
Sym(GrpPerm, n) : Cat, RngIntElt -> GrpPerm
Sym(n) : RngIntElt -> GrpPerm
Sym(X) : Set -> GrpPerm
SymmetricGroup(C, n) : Cat, RngIntElt -> GrpFin
SymmetricGroup(GrpFP, n) : Cat, RngIntElt -> GrpFP
SymplecticGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
SymplecticMatrixGroupDatabase() : -> DB
ThreeSelmerGroup(E : parameters) : CrvEll -> GrpAb, Map
TorsionUnitGroup(K) : FldNum -> GrpAb, Map
TorsionUnitGroup(O) : RngOrd -> GrpAb, Map
TransitiveGroup(d) : RngIntElt -> GrpPerm, MonStgElt
TransitiveGroup(d, f) : RngIntElt, Program -> GrpPerm, MonStgElt
TransitiveGroup(d, n) : RngIntElt, RngIntElt -> GrpPerm, MonStgElt
TransitiveGroup(S, f) : [RngIntElt], Program -> GrpPerm, MonStgElt
TransitiveGroupDatabaseLimit() : -> RngIntElt
TransitiveGroupDescription(G) : GrpPerm -> MonStgElt
TransitiveGroupDescription(d, n) : RngIntElt, RngIntElt -> MonStgElt
TransitiveGroupIdentification(G) : GrpPerm -> RngIntElt, RngIntElt
TransitiveGroupProcess(d) : RngIntElt -> Process
TransitiveGroupProcess(d, f) : RngIntElt, Program -> Process
TransitiveGroupProcess(S) : [RngIntElt] -> Process
TransitiveGroupProcess(S, f) : [RngIntElt], Program -> Process
TwistedGroup(A, alpha) : GGrp, OneCoC -> GGrp
TwistedGroupOfLieType(c) : OneCoC -> GrpLie
TwistedGroupOfLieType(R, k, K) : RootDtm, Rng, Rng-> GrpLie
TwoSelmerGroup(E) : CrvEll -> GrpAb, Map, SetEnum, Map, SeqEnum
TwoSelmerGroup(E) : CrvEll[FldFunG] -> GrpAb, MapSch
TwoSelmerGroup(J) : JacHyp -> GrpAb, Map, Any, Any
TwoSidedIdealClassGroup(S : Support) : AlgAssVOrd -> GrpAb, Map
TwoTransitiveGroupIdentification(G) : GrpPerm -> Tup
UnipotentMatrixGroup(G) : GrpMat -> GrpMatUnip
UnitGroup(K) : FldNum -> GrpAb, Map
UnitGroup(F) : FldPad -> GrpAb, Map
UnitGroup(Q) : FldRat -> GrpAb, Map
UnitGroup(N) : Nfd -> GrpMat, Map
UnitGroup(O) : RngFunOrd -> GrpAb, Map
UnitGroup(R) : RngIntRes -> GrpAb, Map
UnitGroup(O) : RngOrd -> GrpAb, Map
UnitGroup(OQ) : RngOrdRes -> GrpAb, Map
UnitGroup(R) : RngPad -> GrpAb, Map
UnitGroupAsSubgroup(O) : RngOrd -> GrpAb
UnitGroupGenerators(F) : FldPad -> SeqEnum
UnitGroupGenerators(R) : RngPad -> SeqEnum
WG2GroupRep(wg) : GrphUnd -> SeqEnum
WeylGroup(L) : AlgLie -> GrpPermCox
WeylGroup(GrpFPCox, L) : Cat, AlgLie -> GrpPermCox
WeylGroup(GrpMat, L) : Cat, AlgLie -> GrpPermCox
WeylGroup(GrpFPCox, G) : Cat, GrpLie -> GrpFPCox
WeylGroup(GrpMat, G) : Cat, GrpLie -> GrpMat
WeylGroup(G) : GrpLie -> GrpPermCox
WordGroup(G) : GrpMat -> GrpSLP, Map
WordGroup(G) : GrpPerm -> GrpBB, Map
pCoveringGroup(~P) : GrpPCpQuotientProc ->
pSelmerGroup(p,F) : RngIntElt, FldPad -> GrpAb, Map
pSelmerGroup(p, S) : RngIntElt, { RngOrdIdl } -> GrpAb, Map
pSelmerGroup(A, p, S) : RngUPolRes, RngIntElt, SetEnum[RngOrdIdl] -> GrpAb, Map
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013