[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: canonical  ..  Cartan


canonical

   Canonical Forms (MATRICES)
   Canonical Forms (MATRIX ALGEBRAS)
   Canonical Forms over Euclidean Domains (MATRICES)
   Canonical Forms over Fields (MATRICES)
   Canonical Forms over General Rings (MATRICES)
   Log Canonical Thresholds (ALGEBRAIC CURVES)
   Mixed Canonical Form and Lattice Operations (BRAID GROUPS)

canonical-euclidean

   Canonical Forms over Euclidean Domains (MATRICES)

canonical-field

   Canonical Forms over Fields (MATRICES)

canonical-form

   Canonical Forms (MATRIX ALGEBRAS)

canonical-map

   Crv_canonical-map (Example H114E35)

canonical-schemes-and-curves

   HypGeomMot_canonical-schemes-and-curves (Example H126E4)

canonical_divisor

   Crv_canonical_divisor (Example H114E32)

CanonicalBasis

   CanonicalBasis(V) : ModAlg -> SeqEnum

CanonicalClass

   CanonicalClass(g) : GrphRes -> SeqEnum
   CanonicalClass(X) : TorVar -> DivTorElt

CanonicalCoordinateIdeal

   CanonicalCoordinateIdeal(S) : Srfc -> RngMPol

CanonicalCurve

   CanonicalCurve(H) : HypGeomData -> Crv

CanonicalDissidentPoints

   CanonicalDissidentPoints(C) : GRCrvS -> SeqEnum

CanonicalDivisor

   CanonicalDivisor(C) : Crv -> DivCrvElt
   CanonicalDivisor(F) : FldFunG -> DivFunElt
   CanonicalDivisor(X) : Sch -> DivSchElt
   CanonicalDivisor(X) : TorVar -> DivTorElt

CanonicalElements

   CanonicalElements(U, w) : AlgQUE, SeqEnum -> SeqEnum

CanonicalFactorRepresentation

   CFP(u: parameters) : GrpBrdElt -> Tup
   CanonicalFactorRepresentation(u: parameters) : GrpBrdElt -> Tup

CanonicalForms

   AlgMat_CanonicalForms (Example H83E8)
   Mat_CanonicalForms (Example H26E9)

CanonicalGraph

   CanonicalGraph(G) : Grph -> Grph

CanonicalHeight

   CanonicalHeight(P: parameters) : JacHypPt -> FldPrElt
   Height(P: parameters) : JacHypPt -> FldPrElt
   Height(P: parameters) : PtEll -> NFldComElt

CanonicalImage

   CanonicalImage(C, phi) : Crv, MapSch -> Crv, BoolElt

CanonicalInvolution

   AtkinLehnerInvolution(X,N) : CrvMod, RngIntElt -> MapSch
   CanonicalInvolution(X) : CrvMod -> MapSch

CanonicalLength

   CanonicalLength(u: parameters) : GrpBrdElt -> RngIntElt

CanonicalLinearSystem

   AdjointLinearSystem(C) : Crv -> LinearSys
   Adjoints(C,d) : Crv, RngIntElt -> LinearSys
   CanonicalLinearSystem(C) : Crv -> LinearSys

CanonicalLinearSystemFromIdeal

   CanonicalLinearSystemFromIdeal(I, d) : RngMPol, RngIntElt -> LinearSys

CanonicalMap

   CanonicalMap(C) : Crv -> MapSch

CanonicalModularPolynomial

   CanonicalModularPolynomial(N) : RngIntElt -> RngMPolElt

CanonicalScheme

   CanonicalScheme(H) : HypGeomData -> Sch

CanonicalSheaf

   CanonicalSheaf(X) : Sch -> ShfCoh

CanonicalWeightedModel

   CanonicalWeightedModel(S) : Srfc -> Map, BoolElt
   MinimalModelGeneralType(S) : Srfc -> Map, BoolElt

CanRedoEnumeration

   CanRedoEnumeration(P) : GrpFPCosetEnumProc -> BoolElt

CanSignNormalize

   CanSignNormalize(F) : RngUPolTwstElt -> BoolElt, RngUPolTwstElt, RngElt

Canteaut

   CanteautChabaudsAttack(C, v, e, p, l) : Code, ModTupFldElt, RngIntElt, RngIntElt,RngIntElt -> ModTupFldElt

CanteautChabaudsAttack

   CanteautChabaudsAttack(C, v, e, p, l) : Code, ModTupFldElt, RngIntElt, RngIntElt,RngIntElt -> ModTupFldElt

Cap

   BuildHomomorphismFromGradedCap(A, B, phi) : AlgBas, AlgBas, ModMatFldElt -> ModMatFldElt
   GradedCapHomomorphism(A) : AlgBas -> ModMatFldElt
   GradedCapHomomorphism(A, B, mu) : AlgBas, AlgBas, ModMatFldElt -> ModMatFldElt

Capacitated

   IsCapacitated(E) : GrphEdgeSet -> BoolElt
   IsEdgeCapacitated(G) : GrphMult -> BoolElt

Capacities

   AssignCapacities(~G, D) : GrphMult, [RngIntElt] ->
   AssignWeights(~G, D) : GrphMult, [RngElt] ->
   AssignEdgeLabels(~G, D) : GrphMult, SeqEnum ->
   AssignLabels(~G, S, D) : GrphMult, [GrphEdge], SeqEnum ->
   DeleteEdgeLabels(~G) : GrphMult ->
   DeleteLabels(~G, S) : GrphMult, [GrphEdge] ->
   EdgeLabels(G) : GrphMult -> SeqEnum
   Labels(E) : GrphEdgeSet -> SeqEnum
   Labels(S) : [GrphEdge] -> SeqEnum

Capacity

   AssignCapacity(~G, e, c) : GrphMult, GrphEdge, RngIntElt ->
   AssignWeight(~G, e, w) : GrphMult, GrphEdge, RngElt ->
   AssignLabel(~G, e, l) : GrphMult, GrphEdge, . ->
   Capacity(e) : GrphEdge -> RngIntElt
   DeleteLabel(~G, e) : GrphMult, GrphEdge ->

car

   car< R1, ..., Rk > : Str, ..., Str -> SetCart

Card-Best-Comparison

   CodeFld_Card-Best-Comparison (Example H152E37)

Cardinality

   Cardinality(N) : Nfd -> RngIntElt

cardinality

   Bounds on the Cardinality of a Largest Code (LINEAR CODES OVER FINITE FIELDS)

Carlitz

   CarlitzModule(R, x) : RngUPolTwst, RngUPolElt -> RngUPolTwstElt

carlitz-module

   FldFunAb_carlitz-module (Example H43E4)

CarlitzModule

   CarlitzModule(R, x) : RngUPolTwst, RngUPolElt -> RngUPolTwstElt

Carlo

   DerivedGroupMonteCarlo(G : parameters) : GrpMat -> GrpMat
   HasOnlyOrdinarySingularitiesMonteCarlo(C) : CrvPln -> BoolElt, RngIntElt
   NormalClosureMonteCarlo(G, H ) : GrpMat, GrpMat -> GrpMat

carlo

   Monte Carlo Algorithms for Subgroups (MATRIX GROUPS OVER FINITE FIELDS)

Carmichael

   CarmichaelLambda(n) : RngIntElt -> RngIntElt
   FactoredCarmichaelLambda(n) : RngIntElt -> RngIntEltFact

CarmichaelLambda

   CarmichaelLambda(n) : RngIntElt -> RngIntElt

Cartan

   AbsoluteCartanMatrix(G, K) : Grp, FldFin -> AlgMatElt
   CartanInteger(R, r, s) : RootDtm, RngIntElt, RngIntElt -> RngIntElt
   CartanMatrix(L) : AlgKac -> AlgMatElt
   CartanMatrix(A) : AlgMat -> ModMatRngElt
   CartanMatrix(M) : AlgMatElt -> AlgMatElt
   CartanMatrix(G, K) : Grp, FldFin -> AlgMatElt
   CartanMatrix(D) : GrphDir -> AlgMatElt
   CartanMatrix(g) : GrphRes -> Mtrx
   CartanMatrix(G) : GrpLie -> GrphUnd
   CartanMatrix(W) : GrpMat -> AlgMatElt
   CartanMatrix(W) : GrpPermCox -> AlgMatElt
   CartanMatrix(N) : MonStgElt -> AlgMatElt
   CartanMatrix(R) : RootStr -> AlgMatElt
   CartanMatrix(R) : RootSys -> AlgMatElt
   CartanName(L) : AlgKac -> MonStgElt
   CartanName(M) : AlgMatElt -> MonStgElt
   CartanName(W) : GrpFPCox -> List
   CartanName(G) : GrpLie -> Mtrx
   CartanName(W) : GrpMat -> List
   CartanName(R) : RootStr -> MonStgElt
   CartanName(R) : RootSys -> List
   CartanSubalgebra(L) : AlgLie -> AlgLie
   ComplexCartanMatrix(k) : RngIntElt -> AlgMatElt
   IrreducibleCartanMatrix(X, n) : MonStgElt, RngIntElt -> AlgMatElt
   IsCartanEquivalent(C1, C2) : AlgMatElt, AlgMatElt -> BoolElt
   IsCartanEquivalent(G, H) : GrpLie, GrpLie -> BoolElt
   IsCartanEquivalent(W1, W2) : GrpMat, GrpMat -> BoolElt
   IsCartanEquivalent(W1, W2) : GrpPermCox, GrpPermCox -> BoolElt
   IsCartanEquivalent(N1, N2) : MonStgElt, MonStgElt -> BoolElt
   IsCartanEquivalent(R1, R2) : RootDtm, RootDtm -> BoolElt
   IsCartanEquivalent(R1, R2) : RootSys, RootSys -> BoolElt
   IsCartanMatrix(C) : AlgMatElt -> BoolElt
   IsCartanSubalgebra(L, H) : AlgLie, AlgLie -> BoolElt
   IsGeneralizedCartanMatrix(C) : AlgMatElt -> BoolElt
   IsSplittingCartanSubalgebra(L, H) : AlgLie, AlgLie -> BoolElt
   SemisimpleType(L) : AlgLie -> MonStgElt
   SplittingCartanSubalgebra(L) : AlgLie -> AlgLie
   TwistedCartanName(R) : RootDtm -> MonStgElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013