[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: tensor-induction .. Terms
Tensor-induced Groups (MATRIX GROUPS OVER FINITE FIELDS)
Tensor Products (MATRIX GROUPS OVER FINITE FIELDS)
Tensor Products of K[G]-Modules (K[G]-MODULES AND GROUP REPRESENTATIONS)
TensorBasis(G) : GrpMat -> GrpMatElt
TensorFactors(G) : GrpMat -> GrpMat, GrpMat
GrpMatFF_TensorInduced (Example H60E5)
TensorInducedAction(G, g) : GrpMat, GrpMatElt -> GrpPermElt
TensorInducedBasis(G) : GrpMat -> GrpMatElt
TensorInducedPermutations(G) : GrpMat -> SeqEnum
TensorPower(M, n) : ModGrp, RngIntElt -> ModGrp
TensorPower(R, n, v) : RootDtm, RngIntElt, ModTupRngElt -> LieRepDec
TensorProduct(S, T) : ShfCoh, ShfCoh -> ShfCoh
LieReps_TensorPower (Example H104E9)
TensorProduct(A, B) : AlgBas, AlgBas-> AlgBas
TensorProduct(A, B) : AlgMat, AlgMat -> AlgMat
TensorProduct(a, b) : AlgMatElt, AlgMatElt -> AlgMatElt
TensorProduct(G, H) : GrphDir, GrphDir -> GrphDir
TensorProduct(L, M) : Lat, Lat -> Lat
TensorProduct(D, E) : LieRepDec, LieRepDec -> .
TensorProduct(L1, L2, ExcFactors) : LSer, LSer, [<>] -> LSer
TensorProduct(C, N) : ModCpx, ModMPol -> ModMPol
TensorProduct(M, N) : ModGrp, ModGrp -> ModGrp
TensorProduct(M, N) : ModMPol, ModMPol -> ModMPol, Map
TensorProduct(U, V) : ModTupFld, ModTupFld -> FldElt
TensorProduct(u, v) : ModTupFldElt, ModTupFldElt -> FldElt
TensorProduct(R, v, w) : RootDtm, ModTupRngElt, ModTupRngElt -> .
TensorProduct(Q) : SeqEnum -> ModAlg, Map
TensorProduct(Q) : SeqEnum -> ModAlg, Map
TensorProduct(Q) : SeqEnum -> ModAlg, Map
TensorProduct(S, T) : ShfCoh, ShfCoh -> ShfCoh
TensorProduct(Q) : [LieRepDec] -> LieRepDec
TensorWreathProduct(G, H) : GrpMat, GrpPerm -> GrpMat
Other Tensor Products (L-FUNCTIONS)
Lseries_tensprod-overK (Example H127E29)
IrreducibleLowTermGF2Polynomial(n) : RngIntElt -> RngUPolElt
IsOrderTerm(s) : RngDiffElt -> BoolElt
IsZeroTerm(C, n) : ModCpx, RngIntElt -> BoolElt
LeadingTerm(f) : AlgFrElt -> AlgFrElt
LeadingTerm(x) : GrpGPCElt -> GrpGPCElt
LeadingTerm(x) : GrpPCElt -> GrpPCElt
LeadingTerm(L) : RngDiffOpElt -> RngDiffOpElt
LeadingTerm(f) : RngMPolElt -> RngMPolElt
LeadingTerm(f, i) : RngMPolElt, RngIntElt -> RngMPolElt
LeadingTerm(s) : RngPowLazElt -> RngPowLazElt
LeadingTerm(f) : RngSerElt -> RngElt
LeadingTerm(p) : RngUPolElt -> RngUPolElt
Term(C, n) : ModCpx, RngIntElt -> ModAlg
Term(f, i, k) : RngMPolElt, RngIntElt, RngIntElt -> RngMPolElt
TorusTerm(G, r, t) : GrpLie, RngIntElt, RngElt -> GrpLieElt
TrailingTerm(f) : AlgFrElt -> RngElt
TrailingTerm(f) : RngMPolElt -> RngElt
TrailingTerm(f, i) : RngMPolElt, RngIntElt -> RngElt
TrailingTerm(p) : RngUPolElt -> RngUPolElt
Coefficients and Terms (UNIVARIATE POLYNOMIAL RINGS)
Coefficients, Monomials and Terms (MULTIVARIATE POLYNOMIAL RINGS)
Coefficients, Monomials, Terms and Degree (FINITELY PRESENTED ALGEBRAS)
IsTerminal(C) : TorCon -> BoolElt
IsTerminal(F) : TorFan -> BoolElt
IsTerminal(X) : TorVar -> BoolElt
IsTerminalThreefold(B) : GRBskt -> BoolElt
IsTerminalThreefold(p) : GRPtS -> BoolElt
TerminalIndex(p) : GRPtS -> RngIntElt
TerminalPolarisation(p) : GRPtS -> SeqEnum
TerminalVertex(e) : GrphEdge -> GrphVert
TerminalVertex(e) : GrphEdge -> GrphVert
TerminalIndex(p) : GRPtS -> RngIntElt
TerminalPolarisation(p) : GRPtS -> SeqEnum
TerminalVertex(e) : GrphEdge -> GrphVert
TerminalVertex(e) : GrphEdge -> GrphVert
Terminology (AUTOMATIC GROUPS)
Terminology (GROUPS DEFINED BY REWRITE SYSTEMS)
Terminology (L-FUNCTIONS)
Terminology (MONOIDS GIVEN BY REWRITE SYSTEMS)
DimensionsOfTerms(C) : ModCpx -> SeqEnum
PrintTermsOfDegree(s, l, n) : RngPowLazElt, RngIntElt, RngIntElt ->
Terms(f) : AlgFrElt -> [ AlgFrElt ]
Terms(C) : ModCpx -> SeqEnum
Terms(L) : RngDiffOpElt -> SeqEnum
Terms(f) : RngMPolElt -> [ RngMPolElt ]
Terms(f, i) : RngMPolElt, RngIntElt -> [ RngMPolElt ]
Terms(p) : RngUPolElt -> [ RngUPolElt ]
AlgFP_Terms (Example H82E2)
AlgFP_Terms (Example H82E3)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013