[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: code  ..  Coefficient


code

   ADDITIVE CODES
   ALGEBRAIC-GEOMETRIC CODES
   Constructing Nearfields (NEARFIELDS)
   Construction from Groups, Codes and Designs (GRAPHS)
   Graphs Constructed from Designs (GRAPHS)
   Incidence Structures, Graphs and Codes (INCIDENCE STRUCTURES AND DESIGNS)
   Lattices from Linear Codes (LATTICES)
   LINEAR CODES OVER FINITE FIELDS
   LINEAR CODES OVER FINITE RINGS
   LOW DENSITY PARITY CHECK CODES
   Planes, Graphs and Codes (FINITE PLANES)
   QUANTUM CODES
   The Code Space (ADDITIVE CODES)
   The Code Space (LINEAR CODES OVER FINITE FIELDS)

code-design

   Graphs Constructed from Designs (GRAPHS)

code-elts

   CodeRng_code-elts (Example H155E26)

code-subspace

   The Code Space (ADDITIVE CODES)
   The Code Space (LINEAR CODES OVER FINITE FIELDS)

CodeAddFromCode

   CodeAdd_CodeAddFromCode (Example H156E3)

CodeAddFromCodeFail

   CodeAdd_CodeAddFromCodeFail (Example H156E4)

CodeAddFromMatrix

   CodeAdd_CodeAddFromMatrix (Example H156E2)

CodeComplement

   CodeComplement(C, C1) : Code, Code -> Code
   CodeComplement(C, S) : Code, Code -> Code

CodeFromMatrix

   CodeFld_CodeFromMatrix (Example H152E2)
   CodeRng_CodeFromMatrix (Example H155E2)

Codegrees

   BasicCodegrees(W) : GrpFPCox -> RngIntElt
   BasicCodegrees(W) : GrpMat -> RngIntElt

Codes

   ReedMullerCodesLRMZ4(r, m) : RngIntElt, RngIntElt -> SeqEnum
   ReedMullerCodesRMZ4(s, m) : RngIntElt, RngIntElt -> Tup

codes

   Algebraic Geometric Codes (ALGEBRAIC CURVES)
   Best Known Linear Codes (LINEAR CODES OVER FINITE FIELDS)
   Best Known Quantum Codes (QUANTUM CODES)
   Codes over Z4 (LINEAR CODES OVER FINITE RINGS)
   Combining Codes (ADDITIVE CODES)
   Combining Codes (LINEAR CODES OVER FINITE FIELDS)
   CSS Codes (QUANTUM CODES)
   Derived Binary Codes (LINEAR CODES OVER FINITE RINGS)
   Maximum Distance Separable Codes (LINEAR CODES OVER FINITE FIELDS)
   New Codes From Old (QUANTUM CODES)
   Plane_codes (Example H141E18)

CodeToString

   CodeToString(n) : RngIntElt -> MonStgElt

codeword-ops

   CodeRng_codeword-ops (Example H155E27)

Codifferent

   Codifferent(I) : RngFunOrdIdl -> RngFunOrdIdl
   Codifferent(I) : RngOrdFracIdl -> RngOrdFracIdl

Codimension

   ApparentEquationDegrees(X) : GRSch -> RngIntElt
   ApparentSyzygyDegrees(X) : GRSch -> RngIntElt
   BettiNumbers(X) : GRSch -> RngIntElt
   ApparentCodimension(X) : GRSch -> RngIntElt
   ApparentCodimension(f) : RngUPolElt -> RngIntElt
   CheckCodimension(X) : GRSch -> BoolElt
   Codimension(X) : GRSch -> RngIntElt
   Codimension(X) : Sch -> RngIntElt
   ConesOfCodimension(F,i) : TorFan,RngIntElt -> SeqEnum

codingcrypto

   Coding Theory and Cryptography (LINEAR CODES OVER FINITE FIELDS)

Codomain

   Codomain(H) : HomModAbVar -> ModAbVar
   Codomain(f) : Map -> Grp
   Codomain(f) : Map -> Grp
   Codomain(f) : Map -> Grp
   Codomain(f) : Map -> Grp
   Codomain(f) : Map -> Str
   Codomain(f) : MapIsoSch -> CrvHyp
   Codomain(phi) : MapModAbVar -> ModAbVar
   Codomain(f) : MapSch -> Sch
   Codomain(f) : ModMatFldElt -> ModAlg
   Codomain(S) : ModMatRng -> ModTupRng
   Codomain(a) : ModMatRngElt -> ModTupRng
   Codomain(a) : ModMatRngElt -> ModTupRng
   Codomain(f) : ModMPolHom -> ModMPol
   Codomain(f) : ShfHom -> ShfCoh
   Domain(A) : GrpLieAuto -> GrpLie
   Domain(P) : PowMap -> Str

coeff

   Coefficients and Terms (DIFFERENTIAL RINGS)

coeff-terms-diff-ring-op-elts

   Coefficients and Terms (DIFFERENTIAL RINGS)

coeff_non_spiral

   RngLaz_coeff_non_spiral (Example H50E8)

Coefficient

   CoefficientField(D) : DB -> FldFin
   BaseField(D) : DB -> FldFin
   BaseField(A) : JacHyp -> Fld
   BaseField(J) : JacHyp -> Fld
   BaseField(M) : ModFrmBianchi ->
   BaseField(M) : ModFrmHil ->
   BaseField(C) : Sch -> Fld
   BaseField(X) : Sch -> Fld
   BaseField(K) : SrfKum -> Fld
   BaseRing(O) : AlgAssVOrd -> Rng
   BaseRing(B) : AlgBas -> Rng
   BaseRing(F) : AlgFr -> Rng
   BaseRing(R) : AlgMat -> Rng
   BaseRing(L) : AlgSym -> Rng
   BaseRing(E) : CrvEll -> Rng
   BaseRing(A) : FldAb -> Rng
   BaseRing(F) : FldFun -> Rng
   BaseRing(FF) : FldFunOrd -> Rng
   BaseRing(F) : FldFunRat -> Rng
   BaseRing(G) : GrpLie -> Rng
   BaseRing(G) : GrpLie -> Rng
   BaseRing(L) : Lat -> Rng
   BaseRing(M) : ModDed -> Rng
   BaseRing(M) : ModFrm -> Rng
   BaseRing(A) : Mtrx -> Rng
   BaseRing(A) : MtrxSprs -> Rng
   BaseRing(C) : RngCox -> Fld
   BaseRing(R) : RngDiffOp -> Rng
   BaseRing(O) : RngFunOrd -> Rng
   BaseRing(L) : RngLocA -> Rng
   BaseRing(P) : RngMPol -> Rng
   BaseRing(O) : RngOrd -> Rng
   BaseRing(L) : RngPad -> RngPad
   BaseRing(R) : RngPowLaz -> Rng
   BaseRing(R) : RngSer -> Rng
   BaseRing(R) : RngSLPol -> Rng
   BaseRing(P) : RngUPol -> Rng
   BaseRing(C) : Sch -> Rng
   BaseRing(X) : Sch -> Rng
   BaseRing(G) : SchGrpEll -> Rng
   Coefficient(a, g) : AlgGrpElt, GrpElt -> RngElt
   Coefficient(s, p) : AlgSymElt, SeqEnum -> RngElt
   Coefficient(f, n) : ModFrmElt, RngIntElt -> RngElt
   Coefficient(L, i) : RngDiffOpElt, RngIntElt -> RngElt
   Coefficient(f, i, k) : RngMPolElt, RngIntElt, RngIntElt -> RngElt
   Coefficient(x, i) : RngPadElt, RngIntElt -> RngPadElt
   Coefficient(s, i) : RngPowLazElt, RngIntElt -> RngElt
   Coefficient(s, T) : RngPowLazElt, SeqEnum -> RngElt
   Coefficient(f, i) : RngSerElt, RngElt -> RngElt
   Coefficient(p, i) : RngUPolElt, RngIntElt -> RngElt
   CoefficientField(x) : AlgChtrElt -> Rng
   CoefficientField(C) : Code -> Rng
   CoefficientField(V) : ModTupFld -> Fld
   CoefficientHeight(E) : FldNumElt -> RngIntElt
   CoefficientHeight(a) : RngFunOrdElt -> RngIntElt
   CoefficientHeight(E) : RngOrdElt -> RngIntElt
   CoefficientHeight(I) : RngOrdIdl -> RngIntElt
   CoefficientIdeals(P): PMat -> SeqEnum
   CoefficientIdeals(O) : RngFunOrd -> [RngFunOrdIdl]
   CoefficientIdeals(O) : RngOrd -> [RngOrdFracIdl]
   CoefficientIdeals(I) : RngOrdFracIdl -> [RngOrdFracIdl]
   CoefficientIdeals(I) : RngOrdFracIdl -> [RngOrdFracIdl]
   CoefficientLength(E) : FldNumElt -> RngIntElt
   CoefficientLength(a) : RngFunOrdElt -> RngIntElt
   CoefficientLength(E) : RngOrdElt -> RngIntElt
   CoefficientLength(I) : RngOrdIdl -> RngIntElt
   CoefficientMap(L) : LinearSys -> ModTupFldElt
   CoefficientRing(A) : AlgFP -> Rng
   CoefficientRing(L) : AlgFPLie -> Rng
   CoefficientRing(A) : AlgGen -> Rng
   CoefficientRing(A) : AlgGrp -> Rng
   CoefficientRing(A) : AlgGrpSub -> Rng
   CoefficientRing(L) : AlgKac -> Rng
   CoefficientRing(L) : AlgLie -> Rng
   CoefficientRing(L) : AlgLieExtr -> Rng
   CoefficientRing(U) : AlgPBW -> Rng
   CoefficientRing(U) : AlgQUE -> Fld
   CoefficientRing(A) : FldAb -> Fld
   CoefficientRing(G) : GrpMat -> Rng
   CoefficientRing(M): ModAlg -> Fld
   CoefficientRing(M) : ModMPol -> ModMPol
   CoefficientRing(M) : ModRng -> Rng
   CoefficientRing(M) : ModTupRng -> Rng
   CoefficientRing(D) : PhiMod -> RngSerLaur
   CoefficientRing(R) : RngInvar -> Grp
   CoefficientRing(Q) : RngMPolRes -> Rng
   CoefficientRing(E) : RngSerExt -> Rng
   CoefficientRing(V) : SSGalRep -> FldFin
   CoefficientSpace(L) : LinearSys -> ModTupFld
   ConstantCoefficient(p) : RngUPolElt -> RngElt
   ConstantCoefficient(F) : RngUPolTwstElt -> RngElt
   EhrhartCoefficient(P,k) : TorPol,RngIntElt -> RngIntElt
   GroundField(F) : FldAlg -> Fld
   GroundField(F) : FldNum -> Fld
   HilbertCoefficient(D,i) : DivTor,RngIntElt -> RngIntElt
   LSeriesLeadingCoefficient(M, j, prec) : ModSym, RngIntElt, RngIntElt -> FldPrElt, RngIntElt
   LeadingCoefficient(f) : AlgFrElt -> RngElt
   LeadingCoefficient(L, s, prec) : ModAbVarLSer, RngIntElt, RngIntElt -> FldReElt, RngIntElt
   LeadingCoefficient(L) : RngDiffOpElt -> RngElt
   LeadingCoefficient(f) : RngMPolElt -> RngElt
   LeadingCoefficient(f, i) : RngMPolElt, RngIntElt -> RngElt
   LeadingCoefficient(s) : RngPowLazElt -> RngElt
   LeadingCoefficient(f) : RngSerElt -> RngElt
   LeadingCoefficient(p) : RngUPolElt -> RngElt
   LeadingCoefficient(F) : RngUPolTwstElt -> RngElt
   MonomialCoefficient(f, m) : AlgFrElt, AlgFrElt -> RngElt
   MonomialCoefficient(f, m) : RngMPolElt, RngMPolElt -> RngElt
   MonomialCoefficient(p, m) : RngUPolElt, RngUPolElt -> RngElt
   NormalisationCoefficient(e) : HilbSpc -> FldComElt
   PolynomialCoefficient(s, i) : RngPowLazElt, RngIntElt -> RngPowLazElt
   TrailingCoefficient(f) : AlgFrElt -> RngElt
   TrailingCoefficient(f) : RngMPolElt -> RngElt
   TrailingCoefficient(f, i) : RngMPolElt, RngIntElt -> RngElt
   TrailingCoefficient(p) : RngUPolElt -> RngElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013