[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: G .. GaloisGroup
G-Sets (PERMUTATION GROUPS)
Lattices from Matrix Groups (LATTICES WITH GROUP ACTION)
Lattices from Matrix Groups (LATTICES WITH GROUP ACTION)
G-Sets (PERMUTATION GROUPS)
Minimisation and Reduction (MODELS OF GENUS ONE CURVES)
G2Invariants(C) : CrvHyp -> SeqEnum
G2ToIgusaInvariants(GI) : SeqEnum -> SeqEnum
HyperellipticCurveFromG2Invariants(S) : SeqEnum[FldFin] -> CrvHyp, GrpFP
IgusaToG2Invariants(JI) : SeqEnum -> SeqEnum
GrpFP_1_G23 (Example H70E67)
G2Invariants(C) : CrvHyp -> SeqEnum
RootDtm_G2RootSystem (Example H97E3)
RootSys_G2RootSystem (Example H96E3)
G2ToIgusaInvariants(GI) : SeqEnum -> SeqEnum
QuarticG4Covariant(q) : RngUPolElt -> RngUPolElt
QuarticHSeminvariant(q) : RngUPolElt -> RngIntElt
QuarticPSeminvariant(q) : RngUPolElt -> RngIntElt
QuarticQSeminvariant(q) : RngUPolElt -> RngIntElt
QuarticRSeminvariant(q) : RngUPolElt -> RngIntElt
QuarticIInvariant(q) : RngUPolElt -> RngIntElt
GabidulinCode(A, W, Z, t) : [ FldFinElt ], [ FldFinElt ], [ FldFinElt ], RngIntElt -> Code
GabidulinCode(A, W, Z, t) : [ FldFinElt ], [ FldFinElt ], [ FldFinElt ], RngIntElt -> Code
RngLoc_gal-desc (Example H47E9)
GrpLie_GalCohom (Example H103E2)
GallagerCode(n, a, b) : RngIntElt, RngIntElt, RngIntElt -> Code
GallagerCode(n, a, b) : RngIntElt, RngIntElt, RngIntElt -> Code
FINITE FIELDS
varphi-modules and Galois Representations in Magma (MOD P GALOIS REPRESENTATIONS)
AbsoluteGaloisGroup(A) : FldAb -> GrpPerm, SeqEnum, GaloisData
ExtendGaloisCocycle(c) : OneCoC -> OneCoC
FiniteField(q) : RngIntElt -> FldFin
FiniteField(p, n) : RngIntElt, RngIntElt -> FldFin
GaloisCohomology(A) : GGrp -> SeqEnum
GaloisConjugacyRepresentatives(G) : GrpDrch -> [GrpDrchElt]
GaloisConjugate(x, j) : AlgChtrElt, RngIntElt -> AlgChtrElt
GaloisGroup(K, k) : FldFin, FldFin -> GrpPerm, [FldFinElt]
GaloisGroup(F) : FldFun -> GrpPerm, [RngElt], GaloisData
GaloisGroup(K) : FldNum -> GrpPerm, SeqEnum, GaloisData
GaloisGroup(K) : FldNum -> GrpPerm, [RngElt], GaloisData
GaloisGroup(f) : RngUPolElt -> GrpPerm, [ RngElt ], GaloisData
GaloisGroup(f) : RngUPolElt[RngInt] -> GrpPerm, SeqEnum, GaloisData
GaloisGroupInvariant(G, H) : GrpPerm, GrpPerm -> RngSLPolElt
GaloisImage(x, i) : RngPadElt, RngIntElt -> RngPadElt
GaloisOrbit(x) : AlgChtrElt -> { AlgChtrElt }
GaloisProof(f, S) : RngUPolElt, GaloisData -> BoolElt
GaloisQuotient(K, Q) : FldNum, GrpPerm -> SeqEnum[FldNum]
GaloisRepresentation(pi) : RepLoc -> GrpPerm, Map, RngPad, ModGrp
GaloisRing(q, d) : RngIntElt, RngIntElt -> RngGal
GaloisRing(p, a, d) : RngIntElt, RngIntElt, RngIntElt -> RngGal
GaloisRing(p, a, D) : RngIntElt, RngIntElt, RngUPol -> RngGal
GaloisRing(q, D) : RngIntElt, RngUPol -> RngGal
GaloisRoot(i, S) : RngIntElt, GaloisData -> RngElt
GaloisRoot(f, i, S) : RngUPolElt, RngIntElt, GaloisData -> RngElt
GaloisSplittingField(f) : RngUPolElt -> FldNum, [FldNumElt], GrpPerm, [[FldNumElt]]
GaloisSubfieldTower(S, L) : GaloisData, [GrpPerm] -> FldNum, [Tup<RngSLPolElt, RngUPolElt, [GrpPermElt]>], UserProgram, UserProgram
GaloisSubgroup(K, U) : FldNum, GrpPerm -> FldNum, UserProgram
Automorphisms and Galois Theory (GENERAL LOCAL FIELDS)
Connection with Galois Representations (MOD P GALOIS REPRESENTATIONS)
Galois Cohomology (GROUPS OF LIE TYPE)
Galois Groups (ALGEBRAIC FUNCTION FIELDS)
Galois Groups (GALOIS THEORY OF NUMBER FIELDS)
Galois Module Structure (CLASS FIELD THEORY)
GALOIS RINGS
Galois Theory (NUMBER FIELDS)
GALOIS THEORY OF NUMBER FIELDS
Local Galois Representations (ADMISSIBLE REPRESENTATIONS OF GL2(Qp))
Galois Cohomology (GROUPS OF LIE TYPE)
Galois Module Structure (CLASS FIELD THEORY)
GALOIS RINGS
RngOrdGal_galois-subfield (Example H38E5)
Subfields(K) : FldNum -> [<FldNum, Map>]
AutomorphismGroup(K) : FldNum -> GrpPerm, [Map], Map
Galois Theory (NUMBER FIELDS)
GALOIS THEORY OF NUMBER FIELDS
GaloisCohomology(A) : GGrp -> SeqEnum
GaloisConjugacyRepresentatives(G) : GrpDrch -> [GrpDrchElt]
GaloisConjugate(x, j) : AlgChtrElt, RngIntElt -> AlgChtrElt
GaloisField(q) : RngIntElt -> FldFin
GF(q) : RngIntElt -> FldFin
FiniteField(q) : RngIntElt -> FldFin
FiniteField(p, n) : RngIntElt, RngIntElt -> FldFin
GaloisGroup(K, k) : FldFin, FldFin -> GrpPerm, [FldFinElt]
GaloisGroup(F) : FldFun -> GrpPerm, [RngElt], GaloisData
GaloisGroup(K) : FldNum -> GrpPerm, SeqEnum, GaloisData
GaloisGroup(K) : FldNum -> GrpPerm, [RngElt], GaloisData
GaloisGroup(f) : RngUPolElt -> GrpPerm, [ RngElt ], GaloisData
GaloisGroup(f) : RngUPolElt[RngInt] -> GrpPerm, SeqEnum, GaloisData
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013