[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: Subsets  ..  Sum


Subsets

   Subsets(S) : SetEnum -> SetEnum
   Subsets(S) : SetEnum -> SetEnum
   Subsets(S, k) : SetEnum, RngIntElt -> SetEnum
   Subsets(S, k) : SetEnum, RngIntElt -> SetEnum

subsets

   Subsets of a Finite Set (ENUMERATIVE COMBINATORICS)

Subspace

   BrandtModuleDimensionOfNewSubspace(D, N) : RngElt, RngElt -> RngIntElt
   BrandtModule(M, N) : AlgQuatOrd, RngElt -> ModBrdt
   BrandtModuleDimension(D, N) : RngElt, RngElt -> RngIntElt
   ConeQuotientByLinearSubspace(C) : TorCon -> TorCon,Map,Map
   CuspidalSubspace(M) : ModBrdt -> ModBrdt
   CuspidalSubspace(M) : ModFrm -> ModFrm
   CuspidalSubspace(M) : ModSS -> ModSS
   CuspidalSubspace(M) : ModSym -> ModSym
   DihedralSubspace(M) : ModFrm -> ModFrm
   EisensteinSubspace(M) : ModBrdt -> ModBrdt
   EisensteinSubspace(M) : ModFrm -> ModFrm
   EisensteinSubspace(M) : ModSS -> ModSS
   EisensteinSubspace(M) : ModSym -> ModSym
   FixedSubspaceToPolyhedron(G) : GrpMat -> TorPol
   IsomorphicProjectionToSubspace(X) : Sch -> Sch, MapSch
   IsotropicSubspace(f) : RngMPolElt -> ModTupRng
   LinearSubspaceGenerators(C) : TorCon -> SeqEnum
   MaximalTotallyIsotropicSubspace(V) : ModTupFld -> ModTupFld
   MaximalTotallySingularSubspace(V) : ModTupFld -> ModTupFld
   NewSubspace(M) : ModFrm -> ModFrm
   NewSubspace(M) : ModFrmHil -> ModFrmHil
   NewSubspace(M, p) : ModSym, RngIntElt -> ModSym
   NewSubspace(M) : ModSym-> ModSym
   TraceZeroSubspace(O) : AlgAssVOrd -> SeqEnum
   ZeroSubspace(M) : ModFrm -> ModFrm

subspace

   Construction of Subspaces (VECTOR SPACES)
   Operations on Subspaces (VECTOR SPACES)
   Subspaces, Quotient Spaces and Homomorphisms (VECTOR SPACES)
   The Code Space (ADDITIVE CODES)
   The Code Space (LINEAR CODES OVER FINITE FIELDS)

subspace-quotient-homomorphism

   Subspaces, Quotient Spaces and Homomorphisms (VECTOR SPACES)

Subspace1

   ModFld_Subspace1 (Example H28E8)

Subspace2

   ModFld_Subspace2 (Example H28E9)

Subspaces

   ModFrm_Subspaces (Example H132E12)
   ModSym_Subspaces (Example H133E11)

subspaces

   Creation of Subspaces (HILBERT MODULAR FORMS)
   Subspaces (ALGEBRAIC FUNCTION FIELDS)
   Subspaces (MODULAR FORMS)
   Subspaces (MODULAR SYMBOLS)
   Subspaces (SUPERSINGULAR DIVISORS ON MODULAR CURVES)

Substitute

   Substitute(u, f, n, v) : GrpFPElt, RngIntElt, RngIntElt, GrpFPElt -> GrpFPElt
   Substitute(u, f, n, v) : SgpFPElt, RngIntElt, SgpFPElt, RngIntElt -> SgpFPElt

Substring

   Substring(s, n, k) : MonStgElt, RngIntElt, RngIntElt -> MonStgElt

SubSU

   LieReps_SubSU (Example H104E21)

subsu

   Subalgebras of su(d) (REPRESENTATIONS OF LIE GROUPS AND ALGEBRAS)

SubSuperQuo

   Lat_SubSuperQuo (Example H30E5)

Subsystem

   IndivisibleSubsystem(R) : RootSys -> RootSys
   SubsystemSubgroup(G, s) : GrpLie, SeqEnum -> RootDtm
   SubsystemSubgroup(G, a) : GrpLie, SetEnum -> RootDtm
   K subset L : LinearSys,LinearSys -> BoolElt

subsystems

   Scheme_subsystems (Example H112E54)

SubsystemSubgroup

   SubsystemSubgroup(G, s) : GrpLie, SeqEnum -> RootDtm
   SubsystemSubgroup(G, a) : GrpLie, SetEnum -> RootDtm

Subvariety

   DefinesAbelianSubvariety(A, V) : ModAbVar, ModTupFld -> BoolElt, ModAbVar
   NewSubvariety(A) : ModAbVar -> ModAbVar, MapModAbVar
   NewSubvariety(A, r) : ModAbVar, RngIntElt -> ModAbVar, MapModAbVar
   OldSubvariety(A) : ModAbVar -> ModAbVar, MapModAbVar
   OldSubvariety(A, r) : ModAbVar, RngIntElt -> ModAbVar, MapModAbVar
   ZeroSubvariety(A) : ModAbVar -> ModAbVar

SubWeights

   SubWeights(D, Q, S) : LieRepDec, SeqEnum, RootDtm -> LieRepDec

Subword

   Subword(u, f, n) : GrpFPElt, RngIntElt, RngIntElt -> GrpFPElt
   Subword(u, f, n) : SgpFPElt, RngIntElt, RngIntElt -> SgpFPElt

Successive

   SuccessiveMinima(L) : Lat -> [ RngIntElt ], [ LatElt ]

SuccessiveMinima

   SuccessiveMinima(L) : Lat -> [ RngIntElt ], [ LatElt ]

Suggested

   SuggestedPrecision(f) : RngUPolElt -> RngIntElt
   SuggestedPrecision(f) : RngUPolElt[RngLocA] -> RngIntElt

SuggestedPrecision

   SuggestedPrecision(f) : RngUPolElt -> RngIntElt
   SuggestedPrecision(f) : RngUPolElt[RngLocA] -> RngIntElt

Sum

   DirectSum(R1, R2) : RootDtm, RootDtm -> RootDtm
   R1 + R2 : RootDtm, RootDtm -> RootDtm
   R1 + R2 : RootSys, RootSys -> RootSys
   L + M : TorLat,TorLat -> TorLat,TorLatMap,TorLatMap,TorLatMap,TorLatMap
   AdditiveZeroSumCode(F, K, n) : FldFin, FldFin, RngIntElt -> Code
   AlternatingSum(m, i) : Map, RngIntElt -> FldReElt
   AlternatingWeylSum(R, v) : RootDtm, ModTupRngElt -> LieRepDec
   BQPlotkinSum(D, E, F) : Code, Code, Code -> Code
   BQPlotkinSum(A, B, C) : Mtrx, Mtrx, Mtrx -> Mtrx
   DiagonalSum(t1, t2) : Tbl,Tbl -> Tbl
   DirectSum(A, B) : AlgGen, AlgGen -> AlgGen
   DirectSum(L, M) : AlgLie, AlgLie -> AlgLie
   DirectSum(R, T) : AlgMat, AlgMat -> AlgMat
   DirectSum(a, b) : AlgMatElt, AlgMatElt -> AlgMatElt
   DirectSum(C, D) : Code, Code -> Code
   DirectSum(C, D) : Code, Code -> Code
   DirectSum(C, D) : Code, Code -> Code
   DirectSum(Q1, Q2) : CodeQuantum, CodeQuantum -> CodeQuantum
   DirectSum(A, B) : GrpAb, GrpAb -> GrpAb
   DirectSum(L, M) : Lat, Lat -> Lat
   DirectSum(A, B) : ModAbVar, ModAbVar -> ModAbVar, List, List
   DirectSum(U, V) : ModAlg, ModAlg -> SeqEnum
   DirectSum(ρ, τ) : ModAlg, ModAlg -> SeqEnum
   DirectSum(ρ, τ) : ModAlg, ModAlg -> SeqEnum
   DirectSum(C, D) : ModCpx, ModCpx -> ModCpx
   DirectSum(M, N) : ModGrp, ModGrp -> ModGrp, Map, Map, Map, Map
   DirectSum(M, N) : ModMPol, ModMPol -> ModMPol, [ModMPolHom], [ModMPolHom]
   DirectSum(M, N) : ModRng, ModRng -> ModRng, Map, Map, Map, Map
   DirectSum(M, N) : ModRng, ModRng -> ModRng, Map, Map, Map, Map
   DirectSum(D1, D2) : PhiMod, PhiMod -> PhiMod
   DirectSum(Q): SeqEnum -> ModAlg, SeqEnum, SeqEnum
   DirectSum(S, T) : ShfCoh, ShfCoh -> ShfCoh
   DirectSum(Q) : [ ModGrp ] -> [ ModGrp ], [ Map ], [ Map ]
   DirectSum(Q) : [ ModRng ] -> ModRng, [ Map ], [ Map ]
   DirectSum(Q) : [ ModRng ] -> [ ModRng ], [ Map ], [ Map ]
   DirectSum(Q) : [Code] -> Code
   DirectSum(Q) : [Code] -> Code
   DirectSum(X) : [ModAbVar] -> ModAbVar, List, List
   DirectSum(S) : [ModMPol] -> ModMPol, [ModMPolHom], [ModMPolHom]
   DirectSumDecomposition(A) : AlgAssV -> [ AlgAssV ], [ AlgAssVElt ]
   DirectSumDecomposition(ρ) : Map[AlgLie, AlgMatLie] -> SeqEnum
   DirectSumDecomposition(ρ) : Map[GrpLie, GrpMat] -> SeqEnum
   DirectSumDecomposition(V) : ModAlg -> SeqEnum
   DirectSumDecomposition(M) : ModRng -> [ ModRng ]
   DirectSumDecomposition(R) : RootDtm -> [], RootDtm, Map
   DirectSumDecomposition(R) : RootSys -> []
   DoublePlotkinSum(E, F, G, H) : Code, Code, Code, Code -> Code
   DoublePlotkinSum(A, B, C, D) : Mtrx, Mtrx, Mtrx, Mtrx -> Mtrx
   ElementaryToPowerSumMatrix(n): RngIntElt -> AlgMatElt
   ExponentSum(w, x) : GrpFPElt, GrpFPElt -> RngIntElt
   HasHomogeneousBasis(A): AlgSym -> BoolElt
   HomogeneousToPowerSumMatrix(n): RngIntElt -> AlgMatElt
   IndecomposableSummands(L) : AlgLie -> [ AlgLie ]
   InfiniteSum(m, i) : Map, RngIntElt -> FldReElt
   IsDirectSum(L) : TorLat -> BoolElt
   MonomialToPowerSumMatrix(n): RngIntElt -> AlgMatElt
   OrthogonalSum(V, W) : ModTupFld, ModTupFld) -> ModTupFld
   PlotkinSum(C, D) : Code, Code -> Code
   PlotkinSum(C, D) : Code, Code -> Code
   PlotkinSum(C1, C2) : Code, Code -> Code
   PlotkinSum(C1, C2) : Code, Code -> Code
   PlotkinSum(A, B) : Mtrx, Mtrx -> Mtrx
   PlotkinSum(C1, C2, C3: parameters) : Code, Code, Code -> Code
   PlotkinSum(C1, C2, C3: parameters) : Code,Code,Code -> Code
   PositiveSum(m, i) : Map, RngIntElt -> FldReElt
   PowerSumToElementaryMatrix(n): RngIntElt -> AlgMatElt
   PowerSumToElementarySymmetric(I) : [] -> []
   PowerSumToHomogeneousMatrix(n): RngIntElt -> AlgMatElt
   PowerSumToMonomialMatrix(n): RngIntElt -> AlgMatElt
   PowerSumToSchurMatrix(n): RngIntElt -> AlgMatElt
   QuaternaryPlotkinSum(C, D) : Code, Code -> Code
   QuaternaryPlotkinSum(A, B) : Mtrx, Mtrx -> Mtrx
   SchurToPowerSumMatrix(n): RngIntElt -> AlgMatElt
   Sum(W, r, s) : GrpPermCox, RngIntElt, RngIntElt -> RngIntElt
   Sum(R, r, s) : RootDtm, RngIntElt, RngIntElt -> RngIntElt
   Sum(R, r, s) : RootSys, RngIntElt, RngIntElt -> RngIntElt
   Sum(Q) : [ Inc ] -> Inc
   SumNorm(f) : RngMPolElt -> RngIntElt
   SumNorm(p) : RngUPolElt -> RngIntElt
   SumOf(X) : [ModAbVar] -> ModAbVar
   SumOfBettiNumbersOfSimpleModules(A, n) : AlgBas, RngIntElt -> RngIntElt
   SumOfDivisors(n) : RngIntElt -> RngIntElt
   SumOfImages(phi, psi) : MapModAbVar, MapModAbVar -> ModAbVar, MapModAbVar, List
   SumOfMorphismImages(X) : List -> ModAbVar, MapModAbVar, List
   ZeroSumCode(R, n) : FldFin, RngIntElt -> Code
   ZeroSumCode(R, n) : Rng, RngIntElt -> Code

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013