[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: ReducedLegendreModel  ..  Ree


ReducedLegendreModel

   ReducedLegendreModel(C) : CrvCon -> CrvCon, MapIsoSch

ReducedLegendrePolynomial

   ReducedLegendrePolynomial(C) : CrvCon -> RngMPolElt, ModMatRngElt

ReducedMinimalWeierstrassModel

   ReducedMinimalWeierstrassModel(C) : CrvHyp -> CrvHyp, MapIsoSch

ReducedModel

   ReducedModel(C) : CrvHyp -> CrvHyp, MapIsoSch

ReducedOrbits

   ReducedOrbits(Q) : QuadBin -> [ {@ QuadBinElt @} ]

ReducedSubscheme

   ReducedSubscheme(X) : Sch -> Sch, MapSch

ReducedTatePairing

   ReducedTatePairing(P, Q, n) : PtEll, PtEll, RngIntElt -> RngElt

ReduceGeneratingSet

   GrpFP_1_ReduceGeneratingSet (Example H70E70)

ReduceGenerators

   ReduceGenerators(G) : GrpFP -> GrpFP, Map
   ReduceGenerators(~G) : GrpPerm ->

ReduceGroebnerBasis

   ReduceGroebnerBasis(S) : [ RngMPolElt ] -> [ RngMPolElt ]

ReduceHom

   ModRng_ReduceHom (Example H54E9)

ReducePlaneCurve

   ReducePlaneCurve(f) : MPolElt -> RngMPolElt, Mtrx

ReduceQuadrics

   ReduceQuadrics(seq) : [RngMPolElt] -> [RngMPolElt], AlgMatElt, AlgMatElt

ReduceToTriangleVertices

   ReduceToTriangleVertices(G,z) : GrpPSL2, SpcHypElt -> SpcHypElt

ReduceVector

   ReduceVector(W, ~v) : ModTupRng, ModTupRngElt ->
   ReduceVector(W, v) : ModTupRng, ModTupRngElt -> ModTupRngElt

Reducible

   FrobeniusActionOnReducibleFiber(L) : < Tup > -> AlgMatElt
   IsCompletelyReducible(G : parameters) : GrpMat -> BoolElt

reducible

   FldForms_reducible (Example H29E19)

reducing

   Reducing Vectors Relative to a Subspace (VECTOR SPACES)

reducing-vectors

   Reducing Vectors Relative to a Subspace (VECTOR SPACES)

Reduction

   BasisReduction(L) : Lat -> Lat, AlgMatElt
   BasisReduction(X) : ModMatRngElt -> ModMatRngElt, AlgMatElt, RngIntElt
   CompositionTreeReductionInfo(G, t) : Grp, RngIntElt -> MonStgElt,Grp, Grp
   DegreeReduction(G) : GrpPerm -> GrpPerm, Hom
   EllipticCurveSearch(N, Effort) : RngOrdIdl, RngIntElt -> SeqEnum
   GeneralisedRowReduction(ρ) : GrpLie, Map -> Map
   GeneralisedRowReduction(ρ) : Map -> Map
   Reduction(E, p) : CrvEll, RngOrdIdl -> CrvEll, Map
   Reduction(D) : DivCrvElt -> DivCrvElt, RngIntElt, DivCrvElt, FldFunFracSchElt
   Reduction(D) : DivFunElt -> DivFunElt, RngIntElt, DivFunElt, FldFunElt
   Reduction(L) : LinearSys -> LinearSys
   Reduction(p) : Pt -> Pt
   Reduction(f) : QuadBinElt -> QuadBinElt, Mtrx
   Reduction(I) : RngQuadFracIdl -> RngQuadFracIdl
   ReductionOrbit(f) : QuadBinElt -> SeqEnum[QuadBinElt]
   ReductionStep(f) : QuadBinElt -> QuadBinElt
   ReductionType(E, p) : CrvEll, RngIntElt -> MonStgElt
   Set_Reduction (Example H9E14)

reduction

   Aschbacher Reduction (MATRIX GROUPS OVER FINITE FIELDS)
   Recursion, Reduction, and Iteration (SEQUENCES)
   Reduction (SEQUENCES)
   Reduction and Iteration over Sets (SETS)
   Reduction of Matrices and Lattices (LATTICES)
   Reduction of varphi-modules and Galois Representations (MOD P GALOIS REPRESENTATIONS)
   The Normal Form for Words (COXETER GROUPS)

reduction-iteration

   Reduction and Iteration over Sets (SETS)

Reductionmodp

   CrvEllFldFun_Reductionmodp (Example H123E5)

ReductionOrbit

   ReductionOrbit(f) : QuadBinElt -> SeqEnum[QuadBinElt]

Reductions

   Reductions(f, p) : ModFrmElt, RngIntElt -> List

reductions

   Reduced Permutation Actions (PERMUTATION GROUPS)
   Reductions and Embeddings (MODULAR FORMS)

reductions-embeddings

   Reductions and Embeddings (MODULAR FORMS)

ReductionsAndEmbeddings

   ModFrm_ReductionsAndEmbeddings (Example H132E17)

ReductionStep

   ReductionStep(f) : QuadBinElt -> QuadBinElt

ReductionType

   ReductionType(E, p) : CrvEll, RngIntElt -> MonStgElt

Reductive

   IsReductive(L) : AlgLie -> BoolElt
   Rank(G) : GrpLie -> RngIntElt
   ReductiveType(L) : AlgLie -> RootDtm, MonStgElt, SeqEnum, SeqEnum

reductive

   Almost Reductive Lie Algebras (LIE ALGEBRAS)

reductive-construct

   Almost Reductive Lie Algebras (LIE ALGEBRAS)

ReductiveLieAlgebra

   AlgLie_ReductiveLieAlgebra (Example H100E17)

ReductiveRank

   ReductiveRank(G) : GrpLie -> RngIntElt
   Rank(G) : GrpLie -> RngIntElt

ReductiveType

   ReductiveType(L) : AlgLie -> RootDtm, MonStgElt, SeqEnum, SeqEnum
   AlgLie_ReductiveType (Example H100E31)

Reductum

   Reductum(f) : RngMPolElt -> RngMPolElt
   Reductum(f, i) : RngMPolElt, RngIntElt -> RngMPolElt
   Reductum(f) : RngUPolElt -> RngUPolElt

Redundancy

   EliminateRedundancy(~P) : GrpPCpQuotientProc ->

Redundant

   AddRedundantGenerators(G, Q) : GrpSLP, [ GrpSLPElt ] -> GrpSLP

Ree

   IsLargeReeGroup(G) : GrpMat -> BoolElt, RngIntElt
   IsReeGroup(G) : GrpMat -> BoolElt, RngIntElt
   LargeReeElementToWord(G, g) : GrpMat, GrpMatElt -> BoolElt, GrpSLPElt
   LargeReeGroup(q) : RngIntElt -> GrpMat
   LargeReeSylow(G, p) : GrpMat, RngIntElt -> GrpMat, SeqEnum
   RecogniseLargeRee(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map
   RecogniseRee(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map
   ReeConjugacyClasses(G) : GrpMat -> SeqEnum
   ReeElementToWord(G, g) : GrpMat, GrpMatElt -> BoolElt, GrpSLPElt
   ReeGroup(q) : RngIntElt -> GrpMat
   ReeIrreducibleRepresentation(F, twists : parameters) : FldFin, SeqEnum[RngIntElt] -> GrpMat
   ReeMaximalSubgroups(G) : GrpMat -> SeqEnum, SeqEnum
   ReeMaximalSubgroupsConjugacy(G, R, S) : GrpMat, GrpMat, GrpMat -> GrpMatElt, GrpSLPElt
   ReeSylow(G, p) : GrpMat, RngIntElt -> GrpMat, SeqEnum
   ReeSylowConjugacy(G, R, S, p) : GrpMat, GrpMat, GrpMat, RngIntElt -> GrpMatElt, GrpSLPElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013