[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: diagram  ..  diff


diagram

   Diagram of an Incidence Geometry (INCIDENCE GEOMETRY)
   IncidenceGeometry_diagram (Example H142E10)
   IncidenceGeometry_diagram (Example H142E11)
   IncidenceGeometry_diagram (Example H142E12)
   IncidenceGeometry_diagram (Example H142E9)

DiagramAutomorphism

   GraphAutomorphism(U, p) : AlgQUE, GrpPermElt -> Map
   DiagramAutomorphism(U, p) : AlgQUE, GrpPermElt -> Map
   GraphAutomorphism(L, p) : AlgLie, GrpPermElt -> Map
   GraphAutomorphism(G, p) : GrpLie, GrpPermElt -> Map

Diagrams

   RootDtm_Diagrams (Example H97E9)
   RootSys_Diagrams (Example H96E6)

diagrams

   Splice Diagrams (RESOLUTION GRAPHS AND SPLICE DIAGRAMS)

Diameter

   Diameter(C) : Code -> RngIntElt
   Diameter(G) : Grph -> RngIntElt
   Diameter(L) : [FldReElt] -> FldReElt
   DiameterPath(G) : Grph -> [GrphVert]

DiameterPath

   DiameterPath(G) : Grph -> [GrphVert]

Dickman

   DickmanRho(u) : FldReElt -> FldReElt

DickmanRho

   DickmanRho(u) : FldReElt -> FldReElt

Dickson

   DicksonFirst(n, a) : RngIntElt, RngElt -> RngUPolElt
   DicksonFirst(n, a) : RngIntElt, RngElt -> RngUPolElt
   DicksonInvariant(V, f) : ModTupFld, Mtrx -> RngIntElt
   DicksonNearfield(q, v : parameters) : RngIntElt, RngIntElt -> NfdDck
   DicksonPairs(p, h1, v1) : RngIntElt, RngIntElt, RngIntElt) -> SeqEnum
   DicksonPairs(p, hlo, hhi, vlo, vhi ) : RngIntElt, RngIntElt, RngIntElt, RngIntElt, RngIntElt) -> SeqEnum
   DicksonSecond(n, a) : RngIntElt, RngElt -> RngUPolElt
   DicksonSecond(n, a) : RngIntElt, RngElt -> RngUPolElt
   DicksonTriples(p, hb, vb) : RngIntElt, RngIntElt, RngIntElt) -> SeqEnum
   FldFin_Dickson (Example H21E6)

dickson

   Dickson Nearfields (NEARFIELDS)
   FldNear_dickson (Example H22E3)

DicksonFirst

   DicksonFirst(n, a) : RngIntElt, RngElt -> RngUPolElt
   DicksonFirst(n, a) : RngIntElt, RngElt -> RngUPolElt

DicksonInvariant

   DicksonInvariant(V, f) : ModTupFld, Mtrx -> RngIntElt

DicksonNearfield

   DicksonNearfield(q, v : parameters) : RngIntElt, RngIntElt -> NfdDck

DicksonPairs

   DicksonPairs(p, h1, v1) : RngIntElt, RngIntElt, RngIntElt) -> SeqEnum
   DicksonPairs(p, hlo, hhi, vlo, vhi ) : RngIntElt, RngIntElt, RngIntElt, RngIntElt, RngIntElt) -> SeqEnum

dicksonpairs

   FldNear_dicksonpairs (Example H22E1)

DicksonSecond

   DicksonSecond(n, a) : RngIntElt, RngElt -> RngUPolElt
   DicksonSecond(n, a) : RngIntElt, RngElt -> RngUPolElt

DicksonTriples

   DicksonTriples(p, hb, vb) : RngIntElt, RngIntElt, RngIntElt) -> SeqEnum

Dicyclic

   DicyclicGroup(n) : RngIntElt -> GrpFP

DicyclicGroup

   DicyclicGroup(n) : RngIntElt -> GrpFP

diff

   Application of Operators (DIFFERENTIAL RINGS)
   Arithmetic (DIFFERENTIAL RINGS)
   Arithmetic (DIFFERENTIAL RINGS)
   Category and Parent (DIFFERENTIAL RINGS)
   Category and Parent (DIFFERENTIAL RINGS)
   Category and Parent (DIFFERENTIAL RINGS)
   Category and Parent (DIFFERENTIAL RINGS)
   Changing Related Structures (DIFFERENTIAL RINGS)
   Changing Related Structures (DIFFERENTIAL RINGS)
   Coefficients and Terms (DIFFERENTIAL RINGS)
   Coefficients and Terms (DIFFERENTIAL RINGS)
   Conjugates, Norm and Trace (DIFFERENTIAL RINGS)
   Creation (DIFFERENTIAL RINGS)
   Creation (DIFFERENTIAL RINGS)
   Creation of Differential Operators (DIFFERENTIAL RINGS)
   Creation of Differential Ring Elements (DIFFERENTIAL RINGS)
   Creation of Differentials (ALGEBRAIC CURVES)
   Derivation and Differential (DIFFERENTIAL RINGS)
   Derivatives and Differentials (DIFFERENTIAL RINGS)
   Differential Operator Rings (DIFFERENTIAL RINGS)
   Differential Rings and Fields (DIFFERENTIAL RINGS)
   Differentials (ALGEBRAIC CURVES)
   Element Operations on Differential Operators (DIFFERENTIAL RINGS)
   Numerical Invariants (DIFFERENTIAL RINGS)
   Operations on Differentials (ALGEBRAIC CURVES)
   Order and Degree (DIFFERENTIAL RINGS)
   Precision (DIFFERENTIAL RINGS)
   Precision (DIFFERENTIAL RINGS)
   Predicates and Booleans (DIFFERENTIAL RINGS)
   Predicates and Booleans (DIFFERENTIAL RINGS)
   Predicates and Booleans (DIFFERENTIAL RINGS)
   Predicates and Booleans (DIFFERENTIAL RINGS)
   Related Differential Operators (DIFFERENTIAL RINGS)
   Related Maps (DIFFERENTIAL RINGS)
   Related Structures (DIFFERENTIAL RINGS)
   Related Structures (DIFFERENTIAL RINGS)
   Ring and Field Extensions (DIFFERENTIAL RINGS)
   Structure Operations on Differential Operator Rings (DIFFERENTIAL RINGS)
   Structure Operations on Differential Rings (DIFFERENTIAL RINGS)
   R diff S : SetEnum, SetEnum -> SetEnum

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013