[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: IsSquarefree .. IsTorsionUnit
IsSquarefree(n) : RngIntElt -> BoolElt
IsStandard(t) : Tbl -> BoolElt
IsStandardAffinePatch(A) : Aff -> BoolElt, RngIntElt
IsStandardParabolicSubgroup(W, H) : GrpPermCox, GrpPermCox -> BoolElt
IsStarAlgebra(A) : AlgMat -> BoolElt
IsSteiner(D, t) : Dsgn -> BoolElt
IsStrictlyConvex(C) : TorCon -> BoolElt
IsStronglyAG(C) : Code -> BoolElt
IsStronglyConnected(G) : GrphDir -> BoolElt
IsStronglyConnected(G) : GrphMultDir -> BoolElt
IsSubcanonicalCurve(g,d,Q) : RngIntElt,RngIntElt,SeqEnum -> BoolElt,GRCrvK
IsSubfield(F, L) : FldAlg, FldAlg -> BoolElt, Map
IsSubfield(K, L) : FldFun, FldFun -> BoolElt, Map
IsSubfield(F, L) : FldNum, FldNum -> BoolElt, Map
FldFunG_IsSubfield (Example H42E17)
IsSubgraph(G, H) : Grph, Grph -> BoolElt
IsSubgraph(G, H) : GrphMultUnd, GrphMultUnd -> BoolElt
IsSublattice(L) : TorLat -> BoolElt
IsSubmodule(M, N) : ModDed, ModDed -> BoolElt, Map
IsSubnormal(G, H) : GrpFin, GrpFin -> BoolElt
IsSubnormal(G, H) : GrpMat, GrpMat -> BoolElt
IsSubnormal(G, H) : GrpPC, GrpPC -> BoolElt
IsSubnormal(G, H) : GrpPerm, GrpPerm -> BoolElt
IsSubscheme(C,D) : Sch,Sch -> BoolElt
IsSubscheme(X, Y) : Sch,Sch -> BoolElt
IsSubsequence(S, T) : SeqEnum, SeqEnum -> BoolElt
IsSubsystem(L,K) : LinearSys,LinearSys -> BoolElt
K subset L : LinearSys,LinearSys -> BoolElt
IsSUnit(a, S) : FldFunElt, SetEnum[PlcFunElt] -> BoolElt
IsSUnitWithPreimage(a, S) : FldFunElt, SetEnum[PlcFunElt] -> BoolElt, GrpAbElt
IsSupercuspidal(pi) : RepLoc -> BoolElt
IsSuperlattice(L) : TorLat -> BoolElt
IsSupersingular(E : parameters) : CrvEll -> BoolElt
IsSuperSummitRepresentative(u: parameters) : GrpBrdElt -> BoolElt
IsSupportingHyperplane(v,h,P) : TorLatElt,FldRatElt,TorPol -> BoolElt,RngIntElt
IsSurjective(f) : Map -> [ BoolElt ]
IsSurjective(f) : MapChn -> BoolElt
IsSurjective(phi) : MapModAbVar -> BoolElt
IsSurjective(a) : ModMatRngElt -> BoolElt
IsSurjective(f) : ModMPolHom -> BoolElt
IsSuzukiGroup(G) : GrpMat -> BoolElt, RngIntElt
IsSymmetric(a) : AlgMatElt -> BoolElt
IsSymmetric(D) : Dsgn -> BoolElt
IsSymmetric(G) : GrphUnd -> BoolElt
IsSymmetric(G) : GrpPerm -> BoolElt
IsSymmetric(A) : Mtrx -> BoolElt
IsSymmetric(A) : MtrxSprs -> BoolElt
IsSymmetric(f) : RngMPolElt -> BoolElt, RngMPolElt
IsSymmetric(f) : RngMPolElt -> BoolElt, RngMPolElt
Ideal_IsSymmetric (Example H106E18)
RngInvar_IsSymmetric (Example H110E24)
IsSymplecticGroup(G) : GrpMat -> BoolElt
IsSymplecticMatrix(A) : Mtrx -> BoolElt
IsSymplecticSelfDual(C) : CodeAdd -> BoolElt
IsSymplecticSelfOrthogonal(C) : CodeAdd -> BoolElt
IsSymplecticSpace(W) : ModTupFld -> BoolElt
IsTamelyRamified(K) : FldAlg -> BoolElt
IsTamelyRamified(O) : RngFunOrd -> BoolElt
IsTamelyRamified(P) : RngFunOrdIdl -> BoolElt
IsTamelyRamified(P, O) : RngFunOrdIdl, RngFunOrd -> BoolElt
IsTamelyRamified(L) : RngLocA -> BoolElt
IsTamelyRamified(O) : RngOrd -> BoolElt
IsTamelyRamified(P) : RngOrdIdl -> BoolElt
IsTamelyRamified(P, O) : RngOrdIdl, RngOrd -> BoolElt
IsTamelyRamified(R) : RngPad -> BoolElt
IsTangent(C,D,p) : Sch,Sch,Pt -> BoolElt
IsTensor(G: parameters) : GrpMat -> BoolElt
IsTensorInduced(G : parameters) : GrpMat -> BoolElt
IsTerminal(C) : TorCon -> BoolElt
IsTerminal(F) : TorFan -> BoolElt
IsTerminal(X) : TorVar -> BoolElt
IsTerminalThreefold(B) : GRBskt -> BoolElt
IsTerminalThreefold(p) : GRPtS -> BoolElt
IsThick(X) : CosetGeom -> BoolElt
IsThin(X) : CosetGeom -> BoolElt
IsTorsionUnit(w) : RngOrdElt -> BoolElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013