The dimension of the space Sk(Γ0(N)) of weight k cusp forms for Γ0(N).
The dimension of the new subspace of the space Sk(Γ0(N)) of weight k cusp forms for Γ0(N).
The dimension of the space Sk(Γ1(N)) of weight k cusp forms for Γ1(N).
The dimension of the new subspace of the space Sk(Γ1(N)) of weight k cusp forms for Γ1(N).
The dimension of the space Sk(Γ1(N))(varepsilon) of cusp forms of weight k and Dirichlet character eps. The level N is the modulus of eps. The dimension is computed using the formula of Cohen and Oesterlè (see [CO77]).
> DimensionCuspFormsGamma0(11,2); 1 > DimensionCuspFormsGamma0(1,12); 1 > DimensionCuspFormsGamma0(5077,2); 422 > DimensionCuspFormsGamma1(5077,2); 1071460 > G := DirichletGroup(5*7); > eps := G.1*G.2; > IsOdd(eps); true > DimensionCuspForms(eps,2); 0 > DimensionCuspForms(eps,3); 6The dimension of the space of cuspidal modular symbols is twice the dimension of the space of cusp forms.
> Dimension(CuspidalSubspace(ModularSymbols(eps,3))); 12[Next][Prev] [Right] [Left] [Up] [Index] [Root]