[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: product .. Projective
KSpace(K, n, F) : Fld, RngIntElt, Mtrx -> ModTupFld
Construction of a Vector Space with Inner Product Matrix (VECTOR SPACES)
Inner Products (FREE MODULES)
Tensor Products (MATRIX GROUPS OVER FINITE FIELDS)
The Cartesian Product Constructors (SETS)
TUPLES AND CARTESIAN PRODUCTS
Unions and Products of Graphs (GRAPHS)
SmpCpx_product (Example H140E9)
ProductCode(C, D) : Code, Code -> Code
DirectProduct(C, D) : Code, Code -> Code
ProductProjectiveSpace(k,N) : Rng,SeqEnum -> PrjScrl
ProductRepresentation(D, E) : LieRepDec, LieRepDec -> LieRepDec
D * E : LieRepDec, LieRepDec -> LieRepDec
ProductRepresentation(a) : FldFunGElt -> [FldFunGElt], [RngIntElt]
ProductRepresentation(a) : FldNumElt -> [ FldNumElt ], [ RngIntElt ]
ProductRepresentation(D, E, R) : LieRepDec, LieRepDec, RootDtm -> LieRepDec
ProductRepresentation(a) : RngOrdElt -> [ RngOrdElt ], [ RngIntElt ]
ProductRepresentation(P, E) : [ FldAlgElt ], [ RngIntElt ] -> FldAlgElt
ProductRepresentation(P, E) : [ FldNumElt ], [ RngIntElt ] -> FldNumElt
ProductRepresentation(Q, S) : [FldFunGElt], [RngIntElt] -> FldFunGElt
BasisProducts(A) : AlgGen -> SeqEnum
BasisProducts(L) : AlgLie -> SeqEnum
AlgMat_Products (Example H83E5)
GrpPerm_Products (Example H58E8)
Direct Products and Wreath Products (PERMUTATION GROUPS)
Inner Products and Duals (QUANTUM CODES)
Tensor Products of K[G]-Modules (K[G]-MODULES AND GROUP REPRESENTATIONS)
ProfileGraph(): -> GrphDir
ProfileHTMLOutput(G, prefix): GrphDir, MonStgElt ->
ProfilePrintByTotalCount(G): GrphDir ->
ProfilePrintByTotalTime(G): GrphDir ->
ProfilePrintChildrenByCount(G, n): GrphDir, GrphVert ->
ProfilePrintChildrenByTime(G, n): GrphDir, GrphVert ->
ProfileReset(): ->
SetProfile(b): BoolElt ->
Prof_profile-reports (Example H6E2)
ProfileGraph(): -> GrphDir
ProfileHTMLOutput(G, prefix): GrphDir, MonStgElt ->
ProfilePrintByTotalCount(G): GrphDir ->
ProfilePrintByTotalTime(G): GrphDir ->
ProfilePrintChildrenByCount(G, n): GrphDir, GrphVert ->
ProfilePrintChildrenByTime(G, n): GrphDir, GrphVert ->
THE MAGMA PROFILER
Profiler Basics (THE MAGMA PROFILER)
Recursion and the Profiler (THE MAGMA PROFILER)
Profiler Basics (THE MAGMA PROFILER)
Prof_profiler-recursion (Example H6E3)
ProfileReset(): ->
Seq_Progression (Example H10E1)
Set_Progression (Example H9E5)
The Arithmetic Progression Constructors (SEQUENCES)
The Arithmetic Progression Constructors (SETS)
Proj(D) : DivTorElt -> TorVar, PlcEnum
Proj(R) : RngMPolRes -> Sch,Prj
ProjectiveSpace(R) : RngMPol -> Prj
RelativeProj(D) : DivTorElt -> TorVar
Tangent and Secant Varieties and Isomorphic Projections (SCHEMES)
Crv_proj-cl-commutes (Example H114E13)
Isomorphic Projection to Subspaces (SCHEMES)
Isomorphic Projection to Subspaces (SCHEMES)
CuspidalProjection(f) : ModFrmElt -> ModFrmElt
EisensteinProjection(f) : ModFrmElt -> ModFrmElt
IsomorphicProjectionToSubspace(X) : Sch -> Sch, MapSch
Projection(X,Y) : Prj,Prj -> MapSch
Projection(X, Q) : Sch, Prj -> Sch, MapSch
ProjectionFromNonsingularPoint(X,p) : Sch,Pt -> Sch,MapSch,Sch
ProjectionMap(CN,N,CM,M) : Crv, RngIntElt, Crv, RngIntElt -> MapSch
ProjectionMap(CN,N,CM,M,r) : Crv, RngIntElt, Crv, RngIntElt, RngIntElt -> MapSch
ProjectionOnto(A : parameters) : ModAbVar -> MapModAbVar
ProjectionFromNonsingularPoint(X,p) : Sch,Pt -> Sch,MapSch,Sch
ProjectionMap(CN,N,CM,M) : Crv, RngIntElt, Crv, RngIntElt -> MapSch
ProjectionMap(CN,N,CM,M,r) : Crv, RngIntElt, Crv, RngIntElt, RngIntElt -> MapSch
ProjectionOntoImage(phi : parameters) : MapModAbVar -> MapModAbVar
ProjectionOnto(A : parameters) : ModAbVar -> MapModAbVar
ProjectionOntoImage(phi : parameters) : MapModAbVar -> MapModAbVar
ProjectionOnto(A : parameters) : ModAbVar -> MapModAbVar
CompactProjectiveResolution(M, n) : ModAlg, RngIntElt -> Rec
CompactProjectiveResolutionPGroup(M, n) : ModAlgBas, RngIntElt -> Rec
CompactProjectiveResolutionsOfSimpleModules(A,n) : AlgBas, RngIntElt -> SeqEnum
DimensionsOfProjectiveModules(B) : AlgBas -> SeqEnum
FactoredProjectiveOrder(a) : AlgMatElt -> [ <RngIntElt, RngIntElt> ]
FactoredProjectiveOrder(A) : AlgMatElt -> [ <RngIntElt, RngIntElt> ], RngElt
FactoredProjectiveOrder(A) : AlgMatElt -> [ <RngIntElt, RngIntElt> ], RngElt
FanOfFakeProjectiveSpace(W,Q) : SeqEnum -> TorFan
[Future release] FanOfProjectiveSpace(n) : RngIntElt -> TorFac
FiniteProjectivePlane(D) : Inc -> Plane, PlanePtSet, PlaneLnSet
FiniteProjectivePlane(W) : ModTupFld -> PlaneProj
FiniteProjectivePlane< v | X : parameters > : RngIntElt, List -> PlaneProj
HasProjectiveDerivation(F) : RngDiff -> BoolElt
HasProjectiveDerivation(R) : RngDiffOp -> BoolElt
IsAdditiveProjective(C) : CodeAdd -> BoolElt
IsFakeWeightedProjectiveSpace(X) : TorVar -> BoolElt
IsOrdinaryProjective(X) : Sch -> BoolElt
IsOrdinaryProjectiveSpace(X) : Sch -> BoolElt
IsProjective(C) : Code -> BoolElt
IsProjective(C) : Code -> BoolElt
IsProjective(C) : Code -> BoolElt
IsProjective(M) : ModAlg -> BoolElt, SeqEnum
IsProjective(X) : Sch -> BoolElt
IsProjective(X) : Sch -> BoolElt
IsProjective(X) : TorVar -> BoolElt
IsWeightedProjectiveSpace(X) : TorVar -> BoolElt
MakeProjectiveClosureMap(A, P, S) : Aff,Prj,SeqEnum ->
PGO(arguments)
PGOMinus(arguments)
PGOPlus(arguments)
PSO(arguments)
PSOMinus(arguments)
PSOPlus(arguments)
ParametrizeProjectiveHypersurface(X, P2) : Srfc, Prj -> BoolElt, MapSch
ParametrizeProjectiveSurface(X, P2) : Srfc, Prj -> BoolElt, MapSch
ProductProjectiveSpace(k,N) : Rng,SeqEnum -> PrjScrl
ProjectiveClosure(f) : MapSch -> MapSch
ProjectiveClosure(A): Sch -> Sch
ProjectiveClosure(C) : Sch -> Sch
ProjectiveClosure(X) : Sch -> Sch
ProjectiveClosureMap(A) : Aff -> MapSch
ProjectiveCover(M) : ModAlg -> ModAlg, ModMatFldElt, SeqEnum[ModMatFldElt], SeqEnum[ModMatFldElt], SeqEnum[RngIntElt]
ProjectiveCover(M) : ModGrp -> ModGrp, ModMatGrpElt
ProjectiveEmbedding(P) : PlaneAff -> PlaneProj, PlanePtSet, PlaneLnSet, Map
ProjectiveFunction(f) : FldFunFracSchElt -> FldFracElt
ProjectiveFunction(f) : FldFunFracSchElt -> RngFunFracElt
ProjectiveGammaLinearGroup(arguments)
ProjectiveGammaUnitaryGroup(arguments)
ProjectiveGeneralLinearGroup(arguments)
ProjectiveGeneralUnitaryGroup(arguments)
ProjectiveIndecomposableDimensions(G, K) : Grp, FldFin -> SeqEnum
ProjectiveIndecomposableModule(I: parameters) : ModGrp -> ModGrp
ProjectiveIndecomposableModules(G, K: parameters) : Grp, FldFin -> SeqEnum
ProjectiveMap(f, Y) : FldFunFracSchElt, Sch -> MapSch
ProjectiveMap(L, Y) : [FldFunFracSchElt], Sch -> MapSch
ProjectiveModule(B, i) : AlgBas, RngIntElt -> ModRng
ProjectiveModule(B, S) : AlgBas, SeqEnum[RngIntElt] -> ModAlg, SeqEnum, SeqEnum
ProjectiveOmega(arguments)
ProjectiveOmegaMinus(arguments)
ProjectiveOmegaPlus(arguments)
ProjectiveOrder(a) : AlgMatElt -> RngIntElt
ProjectiveOrder(A) : AlgMatElt -> RngIntElt, RngElt
ProjectiveOrder(g) : GrpMatElt -> RngIntElt, RngElt
ProjectivePlane( N : parameters) : Nfd -> PlaneProj, PlanePtSet, PlaneLnSet
ProjectiveRationalFunction(f) : FldFunFracSchElt -> FldFunRatMElt
ProjectiveResolution(M, n) : ModAlg, RngIntElt -> ModCpx, ModMatFldElt
ProjectiveResolution(M, n) : ModAlgBas, RngIntElt -> ModCpx, ModMatFldElt
ProjectiveResolution(PR) : Rec -> ModCpx, ModMatFldElt
ProjectiveResolutionPGroup(PR) : Rec -> ModCpx
ProjectiveSigmaLinearGroup(arguments)
ProjectiveSigmaSymplecticGroup(arguments)
ProjectiveSigmaUnitaryGroup(arguments)
ProjectiveSpace(k,n) : Fld,RngIntElt -> Prj
ProjectiveSpace(k,W) : Fld,SeqEnum -> Prj
ProjectiveSpace(k,n) : Rng,RngIntElt -> Prj
ProjectiveSpace(k,n) : Rng,RngIntElt -> Prj
ProjectiveSpace(R) : RngMPol -> Prj
ProjectiveSpecialLinearGroup(arguments)
ProjectiveSpecialUnitaryGroup(arguments)
ProjectiveSuzukiGroup(arguments)
ProjectiveSymplecticGroup(arguments)
ResolveProjectiveCurve(p) : RngMPolElt -> List, List, List, RngIntElt
ResolveProjectiveSurface(S) : Srfc -> List, RngIntElt
SimplicialProjectivePlane() : -> SmpCpx
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013