[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: autogp-elts .. Automorphism
GrpAuto_autogp-elts (Example H67E5)
GrpAuto_autogp-full (Example H67E1)
GrpAuto_autogp-order (Example H67E2)
GrpAuto_autogp-rep1 (Example H67E3)
GrpAuto_autogp-rep2 (Example H67E4)
GLat_AutoL19 (Example H31E3)
IsAutomaticGroup(F: parameters) : GrpFP -> BoolElt, GrpAtc
AutomaticGroup(F: parameters) : GrpFP -> GrpAtc
AutomaticGroup(F: parameters) : GrpFP -> GrpAtc
Automatic Coercion (INTRODUCTION TO RINGS [BASIC RINGS])
AUTOMATIC GROUPS
IsAutomaticGroup(F: parameters) : GrpFP -> BoolElt, GrpAtc
AutomaticGroup(F: parameters) : GrpFP -> GrpAtc
AutomaticGroup(F: parameters) : GrpFP -> GrpAtc
GrpAtc_AutomaticGroup (Example H75E1)
GrpAtc_AutomaticGroup-3 (Example H75E2)
GrpAtc_AutomaticGroup-4 (Example H75E3)
WordDifferenceAutomaton(G) : GrpAtc -> Rec
ADMISSIBLE REPRESENTATIONS OF GL2(Qp)
ADMISSIBLE REPRESENTATIONS OF GL2(Qp)
Frobenius Homomorphism (SYMMETRIC FUNCTIONS)
AntiAutomorphismTau(U) : AlgQUE -> Map
Automorphism(C, a) : CrvCon, AlgQuatElt -> MapIsoSch
Automorphism(E, [r, s, t, u]) : CrvEll, SeqEnum -> Map
Automorphism(C, S, T) : CrvRat, SetIndx, SetIndx -> MapIsoSch
Automorphism(m) : Map -> GrpLieAutoElt
Automorphism(P,F) : Prj, SeqEnum -> MapSch
Automorphism(A,p) : Sch, RngMPolElt -> IsoSch
Automorphism(A,M) : Sch,Mtrx -> MapIsoSch
Automorphism(P,M) : Sch,Mtrx -> MapSch
Automorphism(X,F) : Sch,SeqEnum -> MapAutSch
Automorphism(A,F) : Sch,SeqEnum -> MapSch
AutomorphismGroup(A) : AlgBas -> GrpMat, SeqEnum, SeqEnum, SeqEnum
AutomorphismGroup(C) : CodeAdd -> GrpPerm
AutomorphismGroup(Q) : CodeQuantum -> GrpPerm
AutomorphismGroup(C) : Crv -> GrpAutCrv
AutomorphismGroup(C,auts) : Crv, SeqEnum -> GrpAutCrv
AutomorphismGroup(E) : CrvEll -> Grp, Map
AutomorphismGroup(C) : CrvHyp -> GrpPerm, Map, Map
AutomorphismGroup(A) : FldAb -> GrpFP, [Map], Map
AutomorphismGroup(F) : FldAlg -> GrpPerm, PowMap, Map
AutomorphismGroup(K, F) : FldAlg, FldAlg -> GrpPerm, PowMap, Map
AutomorphismGroup(K, k) : FldFin, FldFin -> GrpPerm, [Map], Map
AutomorphismGroup(K, k) : FldFun, FldFunG -> GrpFP, Map
AutomorphismGroup(K) : FldFunG -> GrpFP, Map
AutomorphismGroup(K,f) : FldFunG, Map -> Grp, Map, SeqEnum
AutomorphismGroup(Q) : FldRat -> GrpPerm, PowMapAut, Map
AutomorphismGroup(G): Grp -> GrpAuto
AutomorphismGroup(G, Q, I): Grp, SeqEnum[GrpElt], SeqEnum[SeqEnum[GrpElt]] -> GrpAuto
AutomorphismGroup(G) : GrpAb -> GrpAuto
AutomorphismGroup(G) : GrpLie -> GrpLieAuto
AutomorphismGroup(G): GrpPC -> GrpAuto
AutomorphismGroup(D) : Inc -> GrpPerm, GSet, GSet, PowMap, Map
AutomorphismGroup(D) : IncGeom -> GrpPerm
AutomorphismGroup(L) : Lat -> GrpMat
AutomorphismGroup(L, F) : Lat, [ AlgMatElt ] -> GrpMat
AutomorphismGroup(M) : ModRng -> GrpMat
AutomorphismGroup(M) : Mtrx -> GrpPerm
AutomorphismGroup(G) : Mtrx[RngUPol] -> GrpMat, FldFin
AutomorphismGroup(N) : NfdDck -> GrpPerm, Map
AutomorphismGroup(C: parameters) : Code -> GrpPerm, PowMap, Map
AutomorphismGroup(G : parameters) : Grph -> GrpPerm, GSet, GSet, PowMap, Map, Grph
AutomorphismGroup(G: parameters) : GrpMat -> GrpAuto
AutomorphismGroup(G: parameters) : GrpPerm -> GrpAuto
AutomorphismGroup(G: parameters): GrpPC -> GrpAuto
AutomorphismGroup(P) : Prj -> GrpMat,Map
AutomorphismGroup(L) : RngLocA -> Grp, Map
AutomorphismGroup(L) : RngPad -> GrpPerm, Map
AutomorphismGroup(K, k) : RngPad, RngPad -> GrpPerm, Map
AutomorphismGroup(P) : TorPol -> GrpMat
AutomorphismGroup(F) : [ AlgMatElt ] -> GrpMat
AutomorphismGroupMatchingIdempotents(A) : AlgBas -> AlgBas, ModMatFldElt
AutomorphismGroupOverCyclotomicExtension(CN,N,n): Crv, RngIntElt, RngIntElt -> GrpAutCrv
AutomorphismGroupOverExtension(CN,N,n,u): Crv, RngIntElt, RngIntElt, RngElt -> GrpAutCrv
AutomorphismGroupOverQ(CN,N): Crv, RngIntElt -> GrpAutCrv
AutomorphismGroupSolubleGroup(G: parameters): GrpPC -> GrpAuto
AutomorphismGroupStabilizer(C, k) : Code, RngIntElt -> GrpPerm, PowMap, Map
AutomorphismGroupStabilizer(D, k) : Inc, RngIntElt -> GrpPerm, PowMap, Map
AutomorphismOmega(U) : AlgQUE -> Map
AutomorphismSubgroup(C) : Code -> GrpPerm, PowMap, Map
AutomorphismSubgroup(D) : Inc -> GrpPerm, PowMap, Map
AutomorphismTalpha(U, k) : AlgQUE, RngIntElt -> Map
BarAutomorphism(U) : AlgQUE -> Map
CollineationGroup(P) : Plane -> GrpPerm, GSet, GSet, PowMap, Map
CyclotomicAutomorphismGroup(K) : FldCyc -> GrpAb, Map
DecomposeAutomorphism(h) : GrpLieAutoElt -> GrpLieAutoElt, GrpLieAutoElt,GrpLieAutoElt, Rec
DiagonalAutomorphism(L, v) : AlgLie, ModTupRngElt -> Map
DiagonalAutomorphism(G, v) : GrpLie, ModTupRngElt -> Map
DiagramAutomorphism(U, p) : AlgQUE, GrpPermElt -> Map
DualityAutomorphism(G) : GrpLie -> GrpLieAutoElt
ExtraAutomorphism(CN,N,u): Crv, RngIntElt, RngElt -> MapAutSch
FieldAutomorphism(G, sigma) : GrpLie, Map -> Map
FrobeniusAutomorphism(A, p) : FldAb, RngOrdIdl -> Map
FrobeniusAutomorphism(L) : RngLocA -> Map
GaloisGroup(K) : FldNum -> GrpPerm, [RngElt], GaloisData
GeometricAutomorphismGroup(C) : CrvHyp -> GrpFP
GeometricAutomorphismGroupFromShiodaInvariants(JI) : SeqEnum -> GrpPerm
GeometricAutomorphismGroupGenus2Classification(F) : FldFin -> SeqEnum,SeqEnum
GeometricAutomorphismGroupGenus3Classification(F) : FldFin -> SeqEnum,SeqEnum
GradedAutomorphismGroup(A) : AlgBas -> GrpMat, SeqEnum[ModMatFldElt], SeqEnum[ModMatFldElt], SeqEnum[ModMatFldElt]
GradedAutomorphismGroupMatchingIdempotents(A) : AlgBas -> GrpMat, SeqEnum, SecEnum
GraphAutomorphism(L, p) : AlgLie, GrpPermElt -> Map
GraphAutomorphism(G, p) : GrpLie, GrpPermElt -> Map
HadamardAutomorphismGroup(H : parameters) : AlgMatElt -> AlgMatElt
HermitianAutomorphismGroup(M) : Mtrx -> GrpMat
IdentityAutomorphism(L) : AlgLie -> Map
IdentityAutomorphism(G) : GrpLie -> GrpLieAutoElt
IdentityAutomorphism(A) : Sch -> AutSch
IdentityAutomorphism(X) : Sch -> MapAutSch
IdentityMap(R) : RootDtm -> Map
ImproveAutomorphismGroup(F, E) : FldAb, SeqEnum -> GrpFP, SeqEnum
IncludeAutomorphism(~C, p) : Code, GrpPermElt ->
InducedAutomorphism(r, h, c) : Map, Map, RngIntElt -> Map
InnerAutomorphism(L, x) : AlgLie, GrpLieElt -> Map
InnerAutomorphism(G, x) : GrpLie, GrpLieElt -> Map
InnerAutomorphismGroup(L) : AlgLie -> GrpLie, Map
IsAutomorphism(f) : MapSch -> BoolElt,AutSch
IsSolubleAutomorphismGroupPGroup(A) : GrpAuto -> BoolElt
KnownAutomorphismSubgroup(C) : Code -> GrpPerm
NagataAutomorphism(A) : Aff -> MapSch
OrderAutomorphismGroupAbelianPGroup (A) : SeqEnum -> RngIntElt
PCGroupAutomorphismGroupPGroup(A) : GrpAuto -> BoolElt, Map, GrpPC
PermutationAutomorphism(A, g) : Sch,GrpPermElt -> MapIsoSch
ProbableAutomorphismGroup(A) : FldAb -> GrpFP, SeqEnum
RandomAutomorphism(G) : GrpLie -> GrpLieAutoElt
SrAutomorphism(CN,N,r,u): Crv, RngIntElt, RngIntElt, RngElt -> MapAutSch
GrpLie_Automorphism (Example H103E18)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013