[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: symbol  ..  Symmetric


symbol

   MODULAR SYMBOLS

Symbols

   Farey Symbols and Fundamental Domains (CONGRUENCE SUBGROUPS OF PSL2(R))
   DefiningModularSymbolsSpace(pi) : RepLoc -> ModSym
   IsAttachedToModularSymbols(A) : ModAbVar -> BoolElt
   IsAttachedToModularSymbols(H) : ModAbVarHomol -> BoolElt
   KodairaSymbols(E) : CrvEll -> [ <SymKod, RngIntElt> ]
   KodairaSymbols(E) : CrvEll -> [ SymKod ]
   ModularSymbols(E) : CrvEll -> ModSym
   ModularSymbols(eps, k) : GrpDrchElt, RngIntElt -> ModSym
   ModularSymbols(eps, k, sign) : GrpDrchElt, RngIntElt, RngIntElt -> ModSym
   ModularSymbols(A) : ModAbVar -> SeqEnum
   ModularSymbols(H) : ModAbVarHomol -> SeqEnum
   ModularSymbols(M) : ModFrm -> SeqEnum
   ModularSymbols(M, sign) : ModFrm, RngIntElt -> ModSym
   ModularSymbols(M, N') : ModSym, RngIntElt -> ModSym
   ModularSymbols(s, sign) : MonStgElt, RngIntElt -> ModSym
   ModularSymbols(M : parameters) : ModSS -> ModSym
   ModularSymbols(M, sign : parameters) : ModSS, RngIntElt -> ModSym
   ModularSymbols(N) : RngIntElt -> ModSym
   ModularSymbols(N, k) : RngIntElt, RngIntElt -> ModSym
   ModularSymbols(N, k, F) : RngIntElt, RngIntElt, Fld -> ModSym
   ModularSymbols(N, k, F, sign) : RngIntElt, RngIntElt, Fld, RngIntElt -> ModSym
   ModularSymbols(N, k, sign) : RngIntElt, RngIntElt, RngIntElt -> ModSym

symbols

   Hilbert Symbols and Embeddings (QUATERNION ALGEBRAS)
   Modular Symbols (MODULAR FORMS)
   Modular Symbols (MODULAR SYMBOLS)

Symmetric

   Symmetric Group Character (SYMMETRIC FUNCTIONS)
   DensityEvolutionBinarySymmetric(v, c, p) : RngIntElt, RngIntElt, FldReElt -> BoolElt
   ElementarySymmetricPolynomial(P, k) : RngMPol, RngIntElt -> RngMPolElt
   ElementarySymmetricPolynomial(P, k) : RngMPol, RngIntElt -> RngMPolElt
   InvariantForms(G) : GrpMat -> [ AlgMatElt ]
   InvariantForms(G, n) : GrpMat, RngIntElt -> [ AlgMatElt ]
   IsSymmetric(a) : AlgMatElt -> BoolElt
   IsSymmetric(D) : Dsgn -> BoolElt
   IsSymmetric(G) : GrphUnd -> BoolElt
   IsSymmetric(G) : GrpPerm -> BoolElt
   IsSymmetric(A) : Mtrx -> BoolElt
   IsSymmetric(A) : MtrxSprs -> BoolElt
   IsSymmetric(f) : RngMPolElt -> BoolElt, RngMPolElt
   IsSymmetric(f) : RngMPolElt -> BoolElt, RngMPolElt
   LDPCBinarySymmetricThreshold(v, c) : RngIntElt, RngIntElt -> FldReElt
   NumberOfInvariantForms(G) : GrpMat -> RngIntElt, RngIntElt
   NumberOfSymmetricForms(L) : Lat -> RngIntElt
   PowerSumToElementarySymmetric(I) : [] -> []
   RecogniseAlternatingOrSymmetric(G, n) : Grp, RngIntElt -> BoolElt, BoolElt, UserProgram, UserProgram
   RecogniseAlternatingOrSymmetric(G, n) : Grp, RngIntElt -> BoolElt, BoolElt, UserProgram, UserProgram
   RecogniseSymmetric(G, n: parameters) : Grp, RngIntElt -> BoolElt, Map, Map, Map, Map, BoolElt
   RecogniseSymmetric(G, n: parameters) : Grp, RngIntElt -> BoolElt, Map, Map, Map, Map, BoolElt
   RecogniseSymmetricSquare (G) : GrpMat -> BoolElt, GrpMat
   StandardSymmetricForm(n, K) : RngIntElt, Fld -> AlgMatElt
   Sym(GrpPerm, n) : Cat, RngIntElt -> GrpPerm
   Sym(n) : RngIntElt -> GrpPerm
   Sym(X) : Set -> GrpPerm
   SymmetricBilinearForm(G: parameters) : GrpMat -> BoolElt, AlgMatElt, MonStgElt [,SeqEnum]
   SymmetricBilinearForm(f) : RngMPolElt -> ModMatRngElt
   SymmetricCharacter(sf): AlgSymElt -> AlgChtrElt
   SymmetricCharacter(pa) : SeqEnum -> AlgChtrElt
   SymmetricCharacterTable(d) : RngIntElt -> SeqEnum
   SymmetricCharacterValue(pa, pe) : SeqEnum, GrpPermElt -> RngElt
   SymmetricComponents(x, n) : AlgChtrElt, RngIntElt -> SetEnum
   SymmetricElementToWord (G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt
   SymmetricElementToWord (G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt
   SymmetricForms(L) : Lat -> [ AlgMatElt ]
   SymmetricForms(L, n) : Lat, RngIntElt -> [ AlgMatElt ]
   SymmetricFunctionAlgebra(R) : Rng -> AlgSym
   SymmetricFunctionAlgebraElementary(R) : Rng -> AlgSym
   SymmetricFunctionAlgebraHomogeneous(R) : Rng -> AlgSym
   SymmetricFunctionAlgebraMonomial(R) : Rng -> AlgSym
   SymmetricFunctionAlgebraPower(R) : Rng -> AlgSym
   SymmetricFunctionAlgebraSchur(R) : Rng -> AlgSym
   SymmetricGroup(C, n) : Cat, RngIntElt -> GrpFin
   SymmetricGroup(GrpFP, n) : Cat, RngIntElt -> GrpFP
   SymmetricMatrix(R, Q) : Rng, [ RngElt ] -> Mtrx
   SymmetricMatrix(f) : RngMPolElt -> Mtrx
   SymmetricMatrix(Q) : [ RngElt ] -> Mtrx
   SymmetricNormalizer(G) : GrpPerm -> GrpPerm
   SymmetricPower(a,r) : AlgMatElt, RngIntElt -> AlgMatElt
   SymmetricPower(L, m) : LSer, RngIntElt -> LSer
   SymmetricPower(V, n) : ModAlg, RngIntElt -> ModAlg, Map
   SymmetricPower(V, n) : ModAlg, RngIntElt -> ModAlg, Map
   SymmetricPower(L, m) : RngDiffOpElt, RngIntElt -> RngDiffOpElt
   SymmetricPower(R, n, v) : RootDtm, RngIntElt, ModTupRngElt -> LieRepDec
   SymmetricRepresentation(B) : GrpBrd -> Map
   SymmetricRepresentation(pa, pe) : SeqEnum, GrpPermElt -> AlgMatElt
   SymmetricRepresentationOrthogonal(pa, pe) : SeqEnum,GrpPermElt -> AlgMatElt
   SymmetricRepresentationSeminormal(pa, pe) : SeqEnum,GrpPermElt -> AlgMatElt
   SymmetricSquare(a) : AlgMatElt -> AlgMatElt
   SymmetricSquare(L) : Lat -> Lat
   SymmetricSquare(M) : ModGrp -> ModGrp
   SymmetricSquarePreimage (G, g) : GrpMat, GrpMatElt -> GrpMatElt
   SymmetricToQuadraticForm(J) : AlgMatElt -> AlgMatElt
   SymmetricWeightEnumerator(C): Code -> RngMPolElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013