[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: FPGroup1  ..  free


FPGroup1

   GrpFP_1_FPGroup1 (Example H70E11)

FPGroup2

   GrpFP_1_FPGroup2 (Example H70E13)

FPGroupStrong

   FPGroupStrong(G) : GrpMat :-> GrpFP, Hom(Grp)
   FPGroupStrong(G) : GrpPerm -> GrpFP, Hom(Grp)
   FPGroupStrong(G, N) : GrpPerm, GrpPerm -> GrpFP, Hom(Grp)
   FPGroupStrong(G: parameters) : GrpPerm :-> GrpFP, Hom(Grp)

FPQuotient

   FPQuotient(G, N) : GrpPerm, GrpPerm :-> GrpFP, Hom(Grp)

fprintf

   fprintf file, format, expression, ..., expression;

fqt

   Automorphism Group and Isometry Testing over Fq[t] (LATTICES WITH GROUP ACTION)

Fraction

   ContinuedFraction(r) : FldRatElt -> [ RngIntElt ]
   PartialFractionDecomposition(f) : FldFunRatUElt -> [ <RngUPolElt, RngIntElt, RngUPolElt> ]
   SquarefreePartialFractionDecomposition(f) : FldFunRatUElt -> [ <RngUPolElt, RngIntElt, RngUPolElt> ]

fraction

   Continued Fractions (REAL AND COMPLEX FIELDS)
   Partial Fraction Decomposition (RATIONAL FUNCTION FIELDS)

Fractional

   FractionalPart(D) : DivSchElt -> DivSchElt

FractionalPart

   FractionalPart(D) : DivSchElt -> DivSchElt

Fractions

   FieldOfFractions(Q) : FldRat -> FldRat
   FieldOfFractions(R) : RngDiff -> RngDiff, Map
   FieldOfFractions(O) : RngFunOrd -> FldFunOrd
   FieldOfFractions(Z) : RngInt -> FldRat
   FieldOfFractions(O) : RngOrd -> FldOrd
   FieldOfFractions(R) : RngPad -> FldPad
   FieldOfFractions(R) : RngSer -> RngSerLaur
   FieldOfFractions(E) : RngSerExt -> RngSerExt
   FieldOfFractions(P) : RngUPol -> FldFunRat
   FieldOfFractions(V) : RngVal -> Rng
   RingOfFractions(R) : RngDiff -> RngDiff, Map
   RingOfFractions(Q) : RngMPolRes -> RngFunFrac

fractions

   RngOrd_fractions (Example H37E3)

Frattini

   FrattiniSubgroup(G) : GrpAb -> GrpAb
   FrattiniSubgroup(G) : GrpFin -> GrpFin
   FrattiniSubgroup(G) : GrpMat -> GrpMat
   FrattiniSubgroup(G) : GrpPC -> GrpPC
   FrattiniSubgroup(G) : GrpPerm -> GrpPerm

FrattiniSubgroup

   FrattiniSubgroup(G) : GrpAb -> GrpAb
   FrattiniSubgroup(G) : GrpFin -> GrpFin
   FrattiniSubgroup(G) : GrpMat -> GrpMat
   FrattiniSubgroup(G) : GrpPC -> GrpPC
   FrattiniSubgroup(G) : GrpPerm -> GrpPerm

Free

   IsBasePointFree(D) : DivSchElt -> BoolElt
   IsMobile(D) : DivSchElt -> BoolElt
   BaseLocus(D) : DivSchElt -> Sch
   FreeAbelianGroup(GrpGPC, n) : Cat, RngIntElt -> GrpGPC
   FreeAbelianGroup(n) : RngIntElt -> GrpAb
   FreeAbelianQuotient(G) : GrpAb -> GrpAb, Map
   FreeAbelianQuotient(G) : GrpGPC -> GrpAb, Map
   FreeAlgebra(K, n) : Fld, RngIntElt -> AlgFr
   FreeAlgebra(R, M) : Rng, MonFP -> AlgFPOld
   FreeGroup(n) : RngIntElt -> GrpFP
   FreeLieAlgebra(F, n) : Rng, RngIntElt -> AlgFPLie
   FreeMonoid(n) : RngIntElt -> MonFP
   FreeNilpotentGroup(r, e) : RngIntElt, RngIntElt -> GrpGPC
   FreeProduct(G, H) : GrpFP, GrpFP -> GrpFP
   FreeProduct(R, S) : SgpFP, SgpFP -> SgpFP
   FreeProduct(Q) : [ GrpFP ] -> GrpFP
   FreeResolution(M) : ModMPol -> ModCpx, ModMPolHom
   FreeResolution(R) : RngInvar -> [ ModMPol ]
   FreeSemigroup(n) : RngIntElt -> SgpFP
   IsBasePointFree(L) : LinearSys -> BoolElt
   IsCokernelTorsionFree(f) : TorLatMap -> BoolElt
   IsFree(G) : GrpAb -> BoolElt
   IsFree(M) : ModMPol -> BoolElt
   IsLocallyFree(S) : ShfCoh -> BoolElt, RngIntElt
   MinimalFreeResolution(R) : RngInvar -> [ ModMPol ]
   NaturalFreeAlgebraCover(A) : AlgMat -> Map
   NaturalFreeAlgebraCover(A) : AlgMat -> Map
   SquareFreeFactorization(f) : RngUPolElt -> [ < RngUPolElt, RngIntElt > ]
   TorsionFreeRank(A) : GrpAb -> RngIntElt
   TorsionFreeRank(G) : GrpFP -> RngIntElt
   TorsionFreeSubgroup(A) : GrpAb -> GrpAb
   GrpFP_1_Free (Example H70E1)

free

   Constructing Free Resolutions (MODULES OVER MULTIVARIATE RINGS)
   Construction of a Free Group (FINITELY PRESENTED GROUPS)
   Creation of Free Algebras (FINITELY PRESENTED ALGEBRAS)
   Free Modules (FREE MODULES)
   Free Resolutions (MODULES OVER MULTIVARIATE RINGS)
   Structure Constructors (BLACK-BOX GROUPS)
   Structure Constructors (FINITELY PRESENTED SEMIGROUPS)
   Structure Constructors (GROUPS OF STRAIGHT-LINE PROGRAMS)
   The Free Abelian Group (ABELIAN GROUPS)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013