[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: GeneratorNaming  ..  Generators


GeneratorNaming

   State_GeneratorNaming (Example H1E5)

GeneratorNamingSequence

   State_GeneratorNamingSequence (Example H1E4)

GeneratorNumber

   GeneratorNumber(w) : GrpFPElt -> RngIntElt

GeneratorOrder

   GeneratorOrder(G) : GrpAtc -> SeqEnum

GeneratorPolynomial

   GeneratorPolynomial(C) : Code -> RngUPolElt
   CodeFld_GeneratorPolynomial (Example H152E10)

Generators

   ActionGenerators(M) : ModGrp -> [ AlgMatElt ]
   AddRedundantGenerators(G, Q) : GrpSLP, [ GrpSLPElt ] -> GrpSLP
   AlgebraGenerators(A) : AlgMat -> Rec
   AlgebraicGenerators(G) : GrpLie ->
   Basis(C) : Code -> [ ModTupRngElt ]
   Basis(H) : HomModAbVar -> SeqEnum
   ClassGroupCyclicFactorGenerators(O) : RngOrd -> ModHomElt
   ClassicalStandardGenerators(type, d, q) : MonStgElt, RngIntElt, RngIntElt -> []
   CohomologyLeftModuleGenerators(P, CP, Q) : Tup, Tup, Tup -> Tup
   CohomologyRightModuleGenerators(P, Q, CQ) : Rec, Rec, Rec -> Rec
   CohomologyRingGenerators(P) : Rec -> Rec
   DegreesOfCohomologyGenerators(C) : Rec -> SeqEnum
   Dimension(C) : Code -> RngIntElt
   Eliminate(~P: parameters) : GrpFPTietzeProc ->
   ExtGenerators(G, U) : GrpPC, GrpPC -> [<AlgMatElt, RngIntElt>]
   ExtractGenerators(P) : GrpFPLixProc -> { GrpFPElt }
   FewGenerators(G) : GrpPerm -> [GrpPermElt]
   FindFirstGenerators(g) : FldFunRatUElt -> SeqEnum
   FindGenerators(G) : GrpFP -> []
   Generators(O) : AlgAssVOrd -> [AlgAssVElt]
   Generators(I) : AlgAssVOrdIdl[RngOrd] -> [AlgAssVOrdElt]
   Generators(B) : AlgBas -> SeqEnum
   Generators(R) : AlgMat -> { AlgMatElt }
   Generators(C) : Code -> { ModTupFldElt }
   Generators(C) : Code -> { ModTupRngElt }
   Generators(E) : CrvEll[FldFunRat] -> SeqEnum
   Generators(A) : FldAb -> [ ], [ ], [ ]
   Generators(K): FldAlg -> [FldAlgElt]
   Generators(K, k) : FldAlg, FldAlg -> [FldAlgElt]
   Generators(K, k) : FldAlg, FldAlg -> [FldAlgElt]
   Generators(K): FldNum -> FldNumElt
   Generators(G) : Grp -> { GrpFinElt }
   Generators(A) : GrpAb -> { GrpAbElt }
   Generators(A) : GrpAbGen -> [ GrpAbGenElt ]
   Generators(A) : GrpAutCrv -> SeqEnum
   Generators(A) : GrpAuto -> SetEnum
   Generators(G) : GrpBB -> { GrpBBElt }
   Generators(G) : GrpDrch -> [GrpDrchElt]
   Generators(G) : GrpFP -> { GrpFPElt }
   Generators(G) : GrpGPC -> {@ GrpGPCElt @}
   Generators(H, G) : GrpGPC, GrpGPC -> {@ GrpGPCElt @}
   Generators(G) : GrpLie ->
   Generators(G) : GrpMat -> { GrpMatElt }
   Generators(G) : GrpPC -> SetEnum
   Generators(G) : GrpPerm -> { GrpPermElt }
   Generators(G) : GrpPSL2 -> SeqEnum
   Generators(G) : GrpRWS -> [GrpRWSElt]
   Generators(G) : GrpRWS -> [GrpRWSElt]
   Generators(G) : GrpSLP -> { GrpSLPElt }
   Generators(G) : ModAbVarSubGrp -> SeqEnum
   Generators(M) : ModRng -> { ModRngElt }
   Generators(V) : ModTupFld -> { ModElt }
   Generators(M) : ModTupRng -> { ModTupRngElt }
   Generators(M) : MonRWS -> [ MonRWSElt]
   Generators(B: parameters) : GrpBrd -> [ GrpBrd ]
   Generators(R) : RngDiff -> SeqEnum
   Generators(I) : RngFunOrdIdl -> [ RngFunOrdElt ]
   Generators(I) : RngOrdIdl -> [ RngOrdElt ]
   Generators(H) : SetPtEll -> [ PtEll ]
   Generators(H) : SetPtEll -> [ PtEll ]
   Generators(S) : SgpFP -> { SgpFPElt }
   Generators(FS) : SymFry -> SeqEnum
   GeneratorsOverBaseRing(K) : FldNum -> FldNumElt
   GeneratorsSequence(K): FldNum -> [FldNumElt]
   GeneratorsSequence(G) : GrpPerm -> [ GrpPermElt ]
   GeneratorsSequenceOverBaseRing(K) : FldNum -> [FldNumElt]
   HomGenerators(G, H) : GrpAb, GrpAb -> GrpAb, Map
   HomGenerators(G, U) : GrpPC, GrpPC -> [<AlgMatElt, RngIntElt>]
   HomologyGenerators(X) : SmpCpx ->
   IdempotentActionGenerators(B, i) : AlgBas, RngIntElt -> SeqEnum
   IdempotentGenerators(B) : AlgBas -> SeqEnum
   InnerGenerators(A) : GrpAuto -> SeqEnum
   IrrelevantGenerators(C) : RngCox -> SeqEnum
   IsLinearlyDependent(points) : [PtEll] -> BoolElt, ModTupRngElt
   L2Generators(P) : RngMPol -> GrpMat
   LinearSpanGenerators(C) : TorCon -> SeqEnum
   LinearSubspaceGenerators(C) : TorCon -> SeqEnum
   MinimalAlgebraGenerators(L) : [ RngMPol ] -> [ RngMPol ]
   MinimalAlgebraGenerators(L) : [ RngMPol ] -> [ RngMPol ]
   MinimizeGenerators(L) : [FldFunRatElt] -> [FldFunRatElt]
   Ngens(M) : ModDed -> RngIntElt
   NonIdempotentActionGenerators(B, i) : AlgBas, RngIntElt -> SeqEnum
   NonIdempotentGenerators(B) : AlgBas -> SeqEnum
   NumberOfActionGenerators(L) : Lat -> RngIntElt
   NumberOfActionGenerators(M) : ModGrp -> RngIntElt
   NumberOfActionGenerators(M) : ModRng -> RngIntElt
   NumberOfAlgebraicGenerators(G) : GrpLie -> RngIntElt
   NumberOfGenerators(B) : AlgBas -> RngIntElt
   NumberOfGenerators(L) : AlgLieExtr -> RngIntElt
   NumberOfGenerators(R) : AlgMat -> { AlgMatElt }
   NumberOfGenerators(C) : Code -> RngIntElt
   NumberOfGenerators(G) : Grp -> RngIntElt
   NumberOfGenerators(A) : GrpAb -> RngIntElt
   NumberOfGenerators(A) : GrpAbGen -> RngIntElt
   NumberOfGenerators(A) : GrpAutCrv -> RngIntElt
   NumberOfGenerators(A) : GrpAuto -> RngIntElt
   NumberOfGenerators(G) : GrpBB -> RngIntElt
   NumberOfGenerators(B) : GrpBrd -> RngIntElt
   NumberOfGenerators(G) : GrpDrch -> RngIntElt
   NumberOfGenerators(G) : GrpFP -> RngIntElt
   NumberOfGenerators(P) : GrpFPTietzeProc -> RngIntElt
   NumberOfGenerators(G) : GrpGPC -> RngIntElt
   NumberOfGenerators(G) : GrpLie -> RngIntElt
   NumberOfGenerators(G) : GrpMat -> RngIntElt
   NumberOfGenerators(G) : GrpPC -> RngIntElt
   NumberOfGenerators(G) : GrpPerm -> RngIntElt
   NumberOfGenerators(G) : GrpRWS -> RngIntElt
   NumberOfGenerators(G) : GrpRWS -> RngIntElt
   NumberOfGenerators(G) : GrpSLP -> RngIntElt
   NumberOfGenerators(M) : ModTupFld -> RngIntElt
   NumberOfGenerators(M) : MonRWS -> RngIntElt
   NumberOfGenerators(H) : SetPtEll -> RngIntElt
   NumberOfGenerators(H) : SetPtEll -> RngIntElt
   NumberOfGenerators(S) : SgpFP -> RngIntElt
   NumberOfStrongGenerators(G) : GrpMat -> RngIntElt
   NumberOfStrongGenerators(G) : GrpPerm -> RngIntElt
   NumberOfStrongGenerators(G, i) : GrpPerm, RngIntElt -> RngIntElt
   PSeudoGenerators(M): ModDed -> SeqEnum
   PolycyclicGenerators(G) : GrpMat -> [ GrpPCElt ]
   PrincipalUnitGroupGenerators(R) : RngPad -> SeqEnum
   PseudoDimension(C) : Code -> RngIntElt
   Rank(W) : GrpFPCox -> RngIntElt
   Rank(W) : GrpMat -> RngIntElt
   ReduceGenerators(G) : GrpFP -> GrpFP, Map
   ReduceGenerators(~G) : GrpPerm ->
   RestrictionOfGenerators(PR1, PR2, AC1, AC2, REL2) : Rec, Rec, Rec, Rec, Rec -> SeqEnum
   ScaleGenerators(s,ls) : RngPowAlgElt, SeqEnum -> RngPowAlgElt
   SchreierGenerators(G, H : parameters) : GrpFP, GrpFP -> { GrpFPElt }
   SequenceOfRadicalGenerators(A) : AlgMat -> SeqEnum
   SpinorGenerators(G) : SymGen -> [ RngIntElt ]
   StandardGenerators(L) : AlgKac -> SeqEnum[AlgKacElt], SeqEnum[AlgKacElt], SeqEnum[AlgKacElt]
   StandardGenerators(G, str : parameters) : Grp, MonStgElt -> BoolElt, SeqEnum, SeqEnum
   StrongGenerators(G) : GrpMat -> SetIndx(GrpMat)
   StrongGenerators(G) : GrpPerm -> SetIndx(GrpPermElt)
   StrongGenerators(G, i) : GrpPerm, RngIntElt -> SetIndx(GrpPermElt)
   TwoGenerators(P) : PlcCrvElt -> FldFunFracSchElt, FldFunFracSchElt
   TwoGenerators(P) : PlcFunElt -> FldFunGElt, FldFunGElt
   UnitGenerators(G) : GrpDrch -> [RngIntElt]
   UnitGroupGenerators(F) : FldPad -> SeqEnum
   UnitGroupGenerators(R) : RngPad -> SeqEnum
   UnivariateEliminationIdealGenerators(I) : RngMPol -> [ RngMPolElt ]
   UserGenerators(A) : GrpAbGen -> [ GrpAbGenElt ]
   ValuesOnUnitGenerators(chi) : GrpDrchElt -> [RngElt]
   WordInStrongGenerators(H, x) : GrpPerm, GrpPermElt -> GrpFPElt
   qExpansionsOfGenerators(N,R,r) : RngIntElt, RngSerLaur, RngIntElt -> SeqEnum
   GrpLie_Generators (Example H103E5)
   Grp_Generators (Example H57E13)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013