[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: dimension .. Direct
Dimension Formulas (MODULAR SYMBOLS)
Dimension of Ideals (LOCAL POLYNOMIAL RINGS)
Dimension of Ideals (POLYNOMIAL RING IDEAL OPERATIONS)
Finite Dimensional Affine Algebras (AFFINE ALGEBRAS)
Finite Dimensional FP- Algebras (FINITELY PRESENTED ALGEBRAS)
SmpCpx_dimension (Example H140E2)
Dimension Formulas (MODULAR SYMBOLS)
IsZeroDimensional(I) : RngMPol -> BoolElt
IsZeroDimensional(I) : RngMPolLoc -> BoolElt
DimensionByFormula(M) : ModFrm -> RngIntElt
DimensionByFormula(N, k) : RngIntElt, FldRatElt -> RngIntElt
DimensionCuspForms(eps, k) : GrpDrchElt, RngIntElt -> RngIntElt
DimensionCuspFormsGamma0(N, k) : RngIntElt, RngIntElt -> RngIntElt
DimensionCuspFormsGamma1(N, k) : RngIntElt, RngIntElt -> RngIntElt
ModSym_DimensionFormulas (Example H133E28)
DimensionNewCuspFormsGamma0(N, k) : RngIntElt, RngIntElt -> RngIntElt
DimensionNewCuspFormsGamma1(N, k) : RngIntElt, RngIntElt -> RngIntElt
DimensionOfCentreOfEndomorphismRing(G) : GrpMat -> RngIntElt
DimensionOfCentreOfEndomorphismRing(L) : Lat -> RngIntElt
DimensionOfEndomorphismRing(G) : GrpMat -> RngIntElt
DimensionOfEndomorphismRing(L) : Lat -> RngIntElt
DegreeOfExactConstantField(F) : FldFunG -> RngIntElt
DimensionOfExactConstantField(F) : FldFunG -> RngIntElt
DimensionOfFieldOfGeometricIrreducibility(C): Crv -> RngIntElt
DimensionOfGlobalSections(S) : ShfCoh -> RngIntElt
DimensionOfHomology(C, n) : ModCpx, RngIntElt -> RngIntElt
DimensionOfKernelZ2(C) : CodeLinRng -> RngIntElt
RankZ2(C) : CodeLinRng -> RngIntElt
DimensionOfSpanZ2(C) : CodeLinRng -> RngIntElt
CohomologicalDimensions(M, n) : ModGrp, n -> RngIntElt
CohomologicalDimensions(M, n) : ModGrp, n -> RngIntElt
DimensionsEstimate(L, g) : AlgLieExtr, UserProgram -> SeqEnum, SetMulti
DimensionsOfHomology(C) : ModCpx -> SeqEnum
DimensionsOfInjectiveModules(B) : AlgBas -> SeqEnum
DimensionsOfProjectiveModules(B) : AlgBas -> SeqEnum
DimensionsOfTerms(C) : ModCpx -> SeqEnum
InstancesForDimensions(L, g, D) : AlgLieExtr, UserProgram, SetEnum[RngIntElt] -> Assoc
ProjectiveIndecomposableDimensions(G, K) : Grp, FldFin -> SeqEnum
SimpleCohomologyDimensions(M) : ModAlg -> SeqEnum
SimpleHomologyDimensions(M) : ModAlg -> SeqEnum
DimensionsEstimate(L, g) : AlgLieExtr, UserProgram -> SeqEnum, SetMulti
DimensionsOfHomology(C) : ModCpx -> SeqEnum
DimensionsOfInjectiveModules(B) : AlgBas -> SeqEnum
DimensionsOfProjectiveModules(B) : AlgBas -> SeqEnum
DimensionsOfTerms(C) : ModCpx -> SeqEnum
MAGMA_HELP_DIR
MAGMA_TEMP_DIR
GetTempDir() : -> MonStgElt
Adjacency and Degree Functions for Multidigraphs (MULTIGRAPHS)
Construction of a General Multidigraph (MULTIGRAPHS)
DirectSum(R1, R2) : RootDtm, RootDtm -> RootDtm
R1 + R2 : RootDtm, RootDtm -> RootDtm
R1 + R2 : RootSys, RootSys -> RootSys
L + M : TorLat,TorLat -> TorLat,TorLatMap,TorLatMap,TorLatMap,TorLatMap
DirectProduct(C, D) : Code, Code -> Code
DirectProduct(C, D) : Code, Code -> Code
DirectProduct(C, D) : Code, Code -> Code
DirectProduct(G, H) : Grp, Grp -> Grp
DirectProduct(G, H) : GrpFP, GrpFP -> GrpFP
DirectProduct(G, H) : GrpGPC, GrpGPC -> GrpGPC, [Map], [Map]
DirectProduct(G1, G2) : GrpLie, GrpLie -> GrpLie
DirectProduct(G, H) : GrpMat, GrpMat -> GrpMat
DirectProduct(G, H) : GrpPC, GrpPC -> GrpPC, [Map], [Map]
DirectProduct(G, H) : GrpPerm, GrpPerm -> GrpPerm, [ Hom(Grp) ], [ Hom(Grp) ]
DirectProduct(W1, W2) : GrpPermCox, GrpPermCox -> GrpPermCox
DirectProduct(A,B) : Prj,Prj -> PrjProd,SeqEnum
DirectProduct(A,B) : Sch,Sch -> Sch,SeqEnum
DirectProduct(R, S) : SgpFP, SgpFP -> SgpFP
DirectProduct(Q) : [ Grp ] -> Grp
DirectProduct(Q) : [ GrpFP ] -> GrpFP
DirectProduct(Q) : [ GrpMat ] -> GrpMat
DirectProduct(Q) : [ GrpPerm ] -> GrpPerm, [ Hom(Grp) ], [ Hom(Grp) ]
DirectProduct(Q) : [GrpPC] -> GrpPC, [ Map ], [ Map ]
DirectSum(A, B) : AlgGen, AlgGen -> AlgGen
DirectSum(L, M) : AlgLie, AlgLie -> AlgLie
DirectSum(R, T) : AlgMat, AlgMat -> AlgMat
DirectSum(a, b) : AlgMatElt, AlgMatElt -> AlgMatElt
DirectSum(C, D) : Code, Code -> Code
DirectSum(C, D) : Code, Code -> Code
DirectSum(C, D) : Code, Code -> Code
DirectSum(Q1, Q2) : CodeQuantum, CodeQuantum -> CodeQuantum
DirectSum(A, B) : GrpAb, GrpAb -> GrpAb
DirectSum(L, M) : Lat, Lat -> Lat
DirectSum(A, B) : ModAbVar, ModAbVar -> ModAbVar, List, List
DirectSum(U, V) : ModAlg, ModAlg -> SeqEnum
DirectSum(ρ, τ) : ModAlg, ModAlg -> SeqEnum
DirectSum(ρ, τ) : ModAlg, ModAlg -> SeqEnum
DirectSum(C, D) : ModCpx, ModCpx -> ModCpx
DirectSum(M, N) : ModGrp, ModGrp -> ModGrp, Map, Map, Map, Map
DirectSum(M, N) : ModMPol, ModMPol -> ModMPol, [ModMPolHom], [ModMPolHom]
DirectSum(M, N) : ModRng, ModRng -> ModRng, Map, Map, Map, Map
DirectSum(M, N) : ModRng, ModRng -> ModRng, Map, Map, Map, Map
DirectSum(D1, D2) : PhiMod, PhiMod -> PhiMod
DirectSum(Q): SeqEnum -> ModAlg, SeqEnum, SeqEnum
DirectSum(S, T) : ShfCoh, ShfCoh -> ShfCoh
DirectSum(Q) : [ ModGrp ] -> [ ModGrp ], [ Map ], [ Map ]
DirectSum(Q) : [ ModRng ] -> ModRng, [ Map ], [ Map ]
DirectSum(Q) : [ ModRng ] -> [ ModRng ], [ Map ], [ Map ]
DirectSum(Q) : [Code] -> Code
DirectSum(Q) : [Code] -> Code
DirectSum(X) : [ModAbVar] -> ModAbVar, List, List
DirectSum(S) : [ModMPol] -> ModMPol, [ModMPolHom], [ModMPolHom]
DirectSumDecomposition(A) : AlgAssV -> [ AlgAssV ], [ AlgAssVElt ]
DirectSumDecomposition(ρ) : Map[AlgLie, AlgMatLie] -> SeqEnum
DirectSumDecomposition(ρ) : Map[GrpLie, GrpMat] -> SeqEnum
DirectSumDecomposition(V) : ModAlg -> SeqEnum
DirectSumDecomposition(M) : ModRng -> [ ModRng ]
DirectSumDecomposition(R) : RootDtm -> [], RootDtm, Map
DirectSumDecomposition(R) : RootSys -> []
FrobeniusTraceDirect(E, p) : CrvEll, RngIntElt -> RngIntElt
HasComplement(M, S) : ModGrp, ModGrp -> BoolElt, ModGrp
IndecomposableSummands(L) : AlgLie -> [ AlgLie ]
IsDirectSum(L) : TorLat -> BoolElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013