[Next][Prev] [Right] [Left] [Up] [Index] [Root]

MATRIX GROUPS OVER Q AND Z

 
Acknowledgements
 
Overview
 
Invariant Forms
 
Endomorphisms
 
New Groups From Others
 
Perfect Forms and Normalizers
 
Conjugacy
 
Conjugacy Tests for Matrices
 
Examples
 
Bibliography







DETAILS

 
Overview

 
Invariant Forms
      PositiveDefiniteForm(G) : GrpMat -> Mtrx
      InvariantForms(G) : GrpMat -> [ AlgMatElt ]
      InvariantForms(G, n) : GrpMat, RngIntElt -> [ AlgMatElt ]
      NumberOfInvariantForms(G) : GrpMat -> RngIntElt, RngIntElt

 
Endomorphisms
      EndomorphismRing(G) : GrpMat -> AlgMat
      CentreOfEndomorphismRing(G) : GrpMat -> AlgMat
      DimensionOfEndomorphismRing(G) : GrpMat -> RngIntElt
      DimensionOfCentreOfEndomorphismRing(G) : GrpMat -> RngIntElt
      Endomorphisms(G, n) : GrpMat, RngIntElt -> [ AlgMatElt ]
      CentralEndomorphisms(G, n) : GrpMat, RngIntElt -> [ AlgMatElt ]

 
New Groups From Others
      BravaisGroup(G) : GrpMat[RngInt] -> GrpMat
      IntegralGroup(G) : GrpMat -> GrpMat, AlgMatElt

 
Perfect Forms and Normalizers
      PerfectForms(G) : GrpMat[RngInt] -> SeqEnum
      NormalizerGLZ(G) : GrpMat[RngInt] -> GrpMat[RngInt]

 
Conjugacy
      ZClasses(G) : GrpMat -> SeqEnum, SeqEnum
      IsGLZConjugate(G, H) : GrpMat[RngInt], GrpMat[RngInt] -> BoolElt, GrpMatElt
      IsBravaisEquivalent(G, H) : GrpMat[RngInt], GrpMat[RngInt] -> BoolElt, GrpMatElt
      IsGLQConjugate(G, H) : GrpMat, GrpMat -> BoolElt, GrpMatElt

 
Conjugacy Tests for Matrices
      IsGLZConjugate(A, B) : AlgMatElt, AlgMatElt -> BoolElt, GrpMatElt
      CentralizerGLZ(A) : AlgMatElt -> GrpMat

 
Examples
      Example GrpMatQZ_ZClasses (H62E1)
      Example GrpMatQZ_conjugacy (H62E2)
      Example GrpMatQZ_conjugacy_matrices (H62E3)

 
Bibliography

[Next][Prev] [Right] [____] [Up] [Index] [Root]
Version: V2.19 of Wed Apr 24 15:09:57 EST 2013