[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: curve  ..  Cuspidal


curve

   ALGEBRAIC CURVES
   Creation from Curve Singularities (RESOLUTION GRAPHS AND SPLICE DIAGRAMS)
   Creation of a Modular Curve (MODULAR CURVES)
   Creation of an Elliptic Curve (ELLIPTIC CURVES)
   Creation of Curve Singularities (HILBERT SERIES OF POLARISED VARIETIES)
   Curve Singularities (HILBERT SERIES OF POLARISED VARIETIES)
   Curves (ALGEBRAIC CURVES)
   Elliptic Curve Chabauty (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
   ELLIPTIC CURVES
   ELLIPTIC CURVES OVER FINITE FIELDS
   ELLIPTIC CURVES OVER FUNCTION FIELDS
   ELLIPTIC CURVES OVER Q AND NUMBER FIELDS
   HYPERELLIPTIC CURVES
   Local Geometry (ALGEBRAIC CURVES)

curve-base-change

   Crv_curve-base-change (Example H114E2)

curve-differentials

   Crv_curve-differentials (Example H114E26)

curve-hessian

   Crv_curve-hessian (Example H114E3)

curve-iscusp

   Crv_curve-iscusp (Example H114E6)

curve-sing

   Curve Singularities (HILBERT SERIES OF POLARISED VARIETIES)

curve_desing

   Embedded Formal Desingularization of Curves (ALGEBRAIC SURFACES)

curve_from_invariants

   Creation from Invariants (HYPERELLIPTIC CURVES)

CurveDifferential

   CurvePlace(C, p) : Crv, PlcFunElt -> PlcCrvElt
   FunctionFieldDivisor(d) : DivCrvElt -> DivFunElt
   CurveDivisor(C, d) : Crv, DivFunElt -> DivCrvElt
   FunctionFieldDifferential(d) : DiffCrvElt -> DiffFunElt
   CurveDifferential(C, d) : Crv, DiffFunElt -> DiffCrvElt
   FunctionFieldPlace(p) : PlcCrvElt -> PlcFunElt

CurveDivisor

   CurvePlace(C, p) : Crv, PlcFunElt -> PlcCrvElt
   FunctionFieldDivisor(d) : DivCrvElt -> DivFunElt
   CurveDivisor(C, d) : Crv, DivFunElt -> DivCrvElt
   FunctionFieldDifferential(d) : DiffCrvElt -> DiffFunElt
   CurveDifferential(C, d) : Crv, DiffFunElt -> DiffCrvElt
   FunctionFieldPlace(p) : PlcCrvElt -> PlcFunElt

CurveFromInvts

   CrvHyp_CurveFromInvts (Example H125E7)

curvepl

   Genus and Singularities (ALGEBRAIC CURVES)
   Global Geometry (ALGEBRAIC CURVES)

CurvePlace

   CurvePlace(C, p) : Crv, PlcFunElt -> PlcCrvElt
   FunctionFieldDivisor(d) : DivCrvElt -> DivFunElt
   CurveDivisor(C, d) : Crv, DivFunElt -> DivCrvElt
   FunctionFieldDifferential(d) : DiffCrvElt -> DiffFunElt
   CurveDifferential(C, d) : Crv, DiffFunElt -> DiffCrvElt
   FunctionFieldPlace(p) : PlcCrvElt -> PlcFunElt

CurveQuotient

   CurveQuotient(G): GrpAutCrv -> Crv, MapSch

Curves

   NumberOfCurves(D) : DB -> RngIntElt
   # D : DB -> RngIntElt
   Curves(B) : GRBskt -> SeqEnum
   EffectiveSubcanonicalCurves(g) : RngIntElt -> SeqEnum
   EllipticCurves(D) : DB -> [ CrvEll ]
   EllipticCurves(D, S) : DB, MonStgElt -> [ CrvEll ]
   EllipticCurves(D, N) : DB, RngIntElt -> [ CrvEll ]
   EllipticCurves(D, N, I) : DB, RngIntElt, RngIntElt -> [ CrvEll ]
   IneffectiveSubcanonicalCurves(g) : RngIntElt -> SeqEnum
   IsogenousCurves(E) : CrvEll[FldRat] -> SeqEnum, RngIntElt
   NewModularHyperellipticCurves(N, g) : RngIntElt, RngIntElt -> SeqEnum
   NewModularNonHyperellipticCurvesGenus3(N) : RngIntElt, RngIntElt -> SeqEnum
   NumberOfCurves(D, N) : DB, RngIntElt -> RngIntElt
   NumberOfCurves(D, N, i) : DB, RngIntElt, RngIntElt -> RngIntElt

curves

   Algebraic Curves (ALGEBRAIC CURVES)
   Base Change (ALGEBRAIC CURVES)
   Basic Attributes (ALGEBRAIC CURVES)
   Basic Invariants (ALGEBRAIC CURVES)
   Creation (ALGEBRAIC CURVES)
   Elliptic Curves (MODULAR SYMBOLS)
   MODULAR CURVES
   Ordinary Plane Curves (ALGEBRAIC CURVES)
   Random Curves (ALGEBRAIC CURVES)
   SMALL MODULAR CURVES
   SUPERSINGULAR DIVISORS ON MODULAR CURVES

curves-attributes

   Basic Attributes (ALGEBRAIC CURVES)

curves-base-change

   Base Change (ALGEBRAIC CURVES)

curves-creation

   Creation (ALGEBRAIC CURVES)

curves-in-space

   Scheme_curves-in-space (Example H112E63)

curves-invariants

   Basic Invariants (ALGEBRAIC CURVES)

Cusp

   BianchiCuspForms(F, N) : FldNum, RngOrdIdl -> ModFrmBianchi
   Cusp(CN,N,d) : Crv, RngIntElt, RngIntElt -> Any
   CuspForms(x) : Any -> ModFrm
   CuspIsSingular(N,d) : RngIntElt, RngIntElt -> BoolElt
   CuspPlaces(CN,N,d) : Crv, RngIntElt, RngIntElt -> SeqEnum[PlcCrvElt]
   CuspWidth(G,x) : GrpPSL2, SetCspElt -> RngIntElt
   DimensionCuspForms(eps, k) : GrpDrchElt, RngIntElt -> RngIntElt
   DimensionCuspFormsGamma0(N, k) : RngIntElt, RngIntElt -> RngIntElt
   DimensionCuspFormsGamma1(N, k) : RngIntElt, RngIntElt -> RngIntElt
   DimensionNewCuspFormsGamma0(N, k) : RngIntElt, RngIntElt -> RngIntElt
   DimensionNewCuspFormsGamma1(N, k) : RngIntElt, RngIntElt -> RngIntElt
   HilbertCuspForms(F, N, k) : FldNum, RngOrdIdl, SeqEnum -> ModFrmHil
   IsCusp(p) : Crv,Pt -> BoolElt
   IsCusp(z) : SpcHypElt -> BoolElt

cusp-example

   GrpPSL2_cusp-example (Example H130E5)

CuspForms

   CuspForms(x) : Any -> ModFrm

Cuspidal

   CuspidalInducingDatum(pi) : RepLoc -> ModGrp
   CuspidalSubgroup(A) : ModAbVar -> ModAbVarSubGrp
   CuspidalSubspace(M) : ModBrdt -> ModBrdt
   CuspidalSubspace(M) : ModFrm -> ModFrm
   CuspidalSubspace(M) : ModSS -> ModSS
   CuspidalSubspace(M) : ModSym -> ModSym
   EisensteinProjection(f) : ModFrmElt -> ModFrmElt
   IsCuspidal(M) : ModBrdt -> BoolElt
   IsCuspidal(M) : ModFrm -> BoolElt
   IsCuspidal(M) : ModFrmHil -> BoolElt
   IsCuspidal(M) : ModSym -> BoolElt
   NonCuspidalQRationalPoints(CN,N) : Crv, RngIntElt -> SeqEnum
   RationalCuspidalSubgroup(A) : ModAbVar -> ModAbVarSubGrp

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013