[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: polytopes .. PositiveCoroots
Polytopes (CONVEX POLYTOPES AND POLYHEDRA)
Polytopes, Cones and Polyhedra (CONVEX POLYTOPES AND POLYHEDRA)
Polytopes, Cones and Polyhedra (CONVEX POLYTOPES AND POLYHEDRA)
PolyToSeries(s) : RngMPolElt -> RngPowAlgElt
POmega(arguments)
ProjectiveOmega(arguments)
ProjectiveOmegaMinus(arguments)
ProjectiveOmegaPlus(arguments)
POmegaMinus(arguments)
ProjectiveOmegaMinus(arguments)
POmegaPlus(arguments)
ProjectiveOmegaPlus(arguments)
IndentPop() : ->
Pop(P) : StkPtnOrd ->
POpen(C, T) : MonStgElt, MonStgElt -> File
NumPosRoots(C) : AlgMatElt -> RngIntElt
NumberOfPositiveRoots(C) : AlgMatElt -> RngIntElt
NumberOfPositiveRoots(W) : GrpFPCox -> RngIntElt
NumberOfPositiveRoots(G) : GrpLie -> RngIntElt
NumberOfPositiveRoots(W) : GrpMat -> RngIntElt
NumberOfPositiveRoots(W) : GrpPermCox -> RngIntElt
NumberOfPositiveRoots(N) : MonStgElt -> .
NumberOfPositiveRoots(R) : RootStr -> RngIntElt
NumberOfPositiveRoots(R) : RootSys -> RngIntElt
Operations on Poset Elements (GROUPS)
Operations on Subgroup Class Posets (GROUPS)
The Poset of Subgroup Classes (GROUPS)
Operations on Poset Elements (GROUPS)
Operations on Subgroup Class Posets (GROUPS)
Position(s, t) : MonStgElt, MonStgElt -> RngIntElt
Index(s, t) : MonStgElt, MonStgElt -> RngIntElt
Index(S, x) : SeqEnum, Elt -> RngIntElt
Index(S, x) : SetIndx, Elt -> RngIntElt
PlaceEnumPosition(R) : PlcEnum -> [RngIntElt]
RootPosition(G, v) : GrpLie, . -> (@@)
RootPosition(W, v) : GrpMat, . -> (@@)
RootPosition(W, v) : GrpPermCox, . -> (@@)
RootPosition(R, v) : RootStr, . -> (@@)
RootPosition(R, v) : RootSys, . -> (@@)
IdempotentPositions(B) : AlgBas -> SeqEnum
PositiveGammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
NegativeGammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
ZeroGammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
GammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
IsEffective(D) : DivCrvElt -> BoolElt
IsPositive(W, r) : GrpPermCox, RngIntElt -> BoolElt
IsPositive(R, r) : RootStr, RngIntElt -> BoolElt
IsPositive(R, r) : RootSys, RngIntElt -> BoolElt
IsPositiveDefinite(F) : ModMatRngElt -> BoolElt
IsPositiveSemiDefinite(F) : ModMatRngElt -> BoolElt
IsTotallyPositive(a) : FldNumElt -> BoolElt
IsTotallyPositive(a) : RngOrdElt -> BoolElt
MinimalElementConjugatingToPositive(x, s: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
NumberOfPositiveRoots(C) : AlgMatElt -> RngIntElt
NumberOfPositiveRoots(W) : GrpFPCox -> RngIntElt
NumberOfPositiveRoots(G) : GrpLie -> RngIntElt
NumberOfPositiveRoots(W) : GrpMat -> RngIntElt
NumberOfPositiveRoots(W) : GrpPermCox -> RngIntElt
NumberOfPositiveRoots(N) : MonStgElt -> .
NumberOfPositiveRoots(R) : RootStr -> RngIntElt
NumberOfPositiveRoots(R) : RootSys -> RngIntElt
PositiveConjugates(u: parameters) : GrpBrdElt -> SetIndx
PositiveConjugatesProcess(u: parameters) : GrpBrdElt -> GrpBrdClassProc
PositiveDefiniteForm(G) : GrpMat -> Mtrx
PositiveDefiniteForm(L) : Lat -> AlgMatElt
PositiveQuadrant(L) : TorLat -> TorCon
PositiveRoots(G) : GrpLie -> (@@)
PositiveRoots(W) : GrpMat -> (@@)
PositiveRoots(W) : GrpPermCox -> (@@)
PositiveRoots(R) : RootStr -> (@@)
PositiveRoots(R) : RootSys -> (@@)
PositiveRootsPerm(U) : AlgQUE -> SeqEnum
PositiveSum(m, i) : Map, RngIntElt -> FldReElt
RelativeRoots(R) : RootDtm -> SetIndx
Simple and Positive Roots (ROOT DATA)
Simple and Positive Roots (ROOT SYSTEMS)
The Coxeter Group (ROOT SYSTEMS)
Simple and Positive Roots (ROOT DATA)
Simple and Positive Roots (ROOT SYSTEMS)
The Coxeter Group (ROOT SYSTEMS)
PositiveConjugates(u: parameters) : GrpBrdElt -> SetIndx
PositiveConjugatesProcess(u: parameters) : GrpBrdElt -> GrpBrdClassProc
PositiveCoroots(G) : GrpLie -> (@@)
PositiveRoots(G) : GrpLie -> (@@)
PositiveRoots(W) : GrpMat -> (@@)
PositiveRoots(W) : GrpPermCox -> (@@)
PositiveRoots(R) : RootStr -> (@@)
PositiveRoots(R) : RootSys -> (@@)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013