[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: Resume  ..  RiemannRochPolytope


Resume

   ResumeEnumeration(~P: parameters) : GrpFPCosetEnumProc ->

ResumeEnumeration

   ResumeEnumeration(~P: parameters) : GrpFPCosetEnumProc ->

Retrieve

   Retrieve(x) : CopElt -> Elt

retrieve

   Retrieve (COPRODUCTS)

return-key

   <Return>

Reverse

   IsReverseLatticeWord(w) : MonOrdElt -> BoolElt
   Reverse(L) : List -> List
   Reverse(~S) : SeqEnum ->
   ReverseColumns(A) : Mtrx -> Mtrx
   ReverseColumns(A) : MtrxSprs -> MtrxSprs
   ReverseRows(A) : Mtrx -> Mtrx
   ReverseRows(A) : MtrxSprs -> MtrxSprs
   Reversion(f) : RngSerElt -> RngSerElt

ReverseColumns

   ReverseColumns(A) : Mtrx -> Mtrx
   ReverseColumns(A) : MtrxSprs -> MtrxSprs

ReverseRows

   ReverseRows(A) : Mtrx -> Mtrx
   ReverseRows(A) : MtrxSprs -> MtrxSprs

Reversion

   Reverse(f) : RngSerElt -> RngSerElt
   Reversion(f) : RngSerElt -> RngSerElt

reversion

   Composition and Reversion (POWER, LAURENT AND PUISEUX SERIES)

Revert

   RevertClass(~P) : GrpPCpQuotientProc ->

RevertClass

   RevertClass(~P) : GrpPCpQuotientProc ->

revisedminus

   FldForms_revisedminus (Example H29E9)

Rewind

   Rewind(F) : File ->

Rewrite

   ClassicalRewrite(G, gens, type, dim, q, g : parameters): Grp, SeqEnum, MonStgElt, RngIntElt, RngIntElt, GrpElt -> BoolElt, GrpElt
   ClassicalRewriteNatural(type, CB, g): MonStgElt, GrpMatElt, GrpMatElt-> BoolElt, GrpElt
   Rewrite(G, ~H : parameters) : GrpFP, GrpFP ->
   Rewrite(G, H : parameters) : GrpFP, GrpFP -> GrpFP, Map
   GrpFP_1_Rewrite (Example H70E48)

rewrite

   GROUPS DEFINED BY REWRITE SYSTEMS
   MONOIDS GIVEN BY REWRITE SYSTEMS

rewrite-system

   GROUPS DEFINED BY REWRITE SYSTEMS
   MONOIDS GIVEN BY REWRITE SYSTEMS

Rewrite2

   GrpFP_1_Rewrite2 (Example H70E49)

rewriting

   Rewriting (FINITELY PRESENTED GROUPS)

Reynolds

   ReynoldsOperator(f, G) : RngMPolElt, GrpMat -> RngMPolElt

ReynoldsOperator

   ReynoldsOperator(f, G) : RngMPolElt, GrpMat -> RngMPolElt

RGenerators

   MinimalRGenerators(C) : TorCon -> SeqEnum
   RGenerators(C) : TorCon -> SeqEnum

Rho

   DickmanRho(u) : FldReElt -> FldReElt
   PollardRho(n) : RngIntElt -> RngIntEltFact, [ RngIntElt ]

RHS

   RHS(r) : Rel -> GrpAbElt
   r[2] : GrpAbRel, RngIntElt -> GrpAbElt
   r[2] : RelElt, RngIntElt -> GrpFPElt
   RHS(r) : Rel -> SgpFPElt

Richardson

   IsLittlewoodRichardson(t) : Tbl -> BoolElt
   LittlewoodRichardsonTensor(p, q) : ModTupRngElt, ModTupRngElt -> SeqEnum, SeqEnum[RngIntElt]

Richelot

   RichelotIsogenousSurface(J, kernel) : JacHyp, RngUPolElt[RngUPolRes] -> .
   RichelotIsogenousSurfaces(J) : JacHyp -> List, List

richelot

   Richelot Isogenies (HYPERELLIPTIC CURVES)

richelot_isogeny

   CrvHyp_richelot_isogeny (Example H125E14)

RichelotIsogenousSurface

   RichelotIsogenousSurface(J, kernel) : JacHyp, RngUPolElt[RngUPolRes] -> .

RichelotIsogenousSurfaces

   RichelotIsogenousSurfaces(J) : JacHyp -> List, List

rideal

   lideal<S | X> : AlgQuatOrd, [AlgQuatElt] -> AlgQuatOrdIdl
   RightIdeal(S, X) : AlgQuatOrd, [AlgQuatElt] -> AlgQuatOrdIdl
   rideal<S | X> : AlgQuatOrd, [AlgQuatElt] -> AlgQuatOrd
   ideal<S | X> : AlgQuatOrd, [AlgQuatElt] -> AlgQuatOrdIdl
   LeftIdeal(S, X) : AlgQuatOrd, [AlgQuatElt] -> AlgQuatOrdIdl
   ideal<A | L> : AlgFr, List -> AlgFr
   lideal<O | M> : AlgAssVOrd, PMat -> AlgAssVOrdIdl
   lideal<O | E> : AlgAssVOrd, [AlgAssVOrdElt] -> AlgAssVOrdIdl
   rideal< cat : A | L> : Cat, AlgGrp, List -> AlgGrp, Map
   rideal< A | L > : AlgGen, List -> AlgGen, Map
   rideal<R | L> : AlgMat, List -> AlgMat
   rideal<G | L1, ..., Lr> : SgpFP, SgpFPElt, ..., SgpFPElt -> SgpFPIdl

Riemann

   RiemannRochBasis(X, I) : Sch, RngMPol -> SeqEnum, RngMPolElt, ShfCoh
   DivisorToSheaf(X, I) : Sch, RngMPol -> ShfCoh
   RiemannRochBasis(D) : DivSchElt -> SeqEnum
   RiemannRochBasis(D) : DivTorElt -> [RngElt]
   RiemannRochCoordinates(f,D) : Any, DivSchElt -> BoolElt, SeqEnum
   RiemannRochDimension(D) : DivTorElt -> RngIntElt
   RiemannRochPolytope(D) : DivTorElt -> TorPol
   RiemannRochSpace(D) : DivCrvElt -> ModFld,Map
   RiemannRochSpace(D) : DivFunElt -> ModFld, Map
   RiemannZeta() : -> LSer

riemann

   Riemann--Roch Spaces (ALGEBRAIC CURVES)

riemann-roch

   Riemann--Roch Spaces (ALGEBRAIC CURVES)

RiemannRochBasis

   RiemannRochBasis(X, I) : Sch, RngMPol -> SeqEnum, RngMPolElt, ShfCoh
   DivisorToSheaf(X, I) : Sch, RngMPol -> ShfCoh
   RiemannRochBasis(D) : DivSchElt -> SeqEnum
   RiemannRochBasis(D) : DivTorElt -> [RngElt]

RiemannRochCoordinates

   RiemannRochCoordinates(f,D) : Any, DivSchElt -> BoolElt, SeqEnum

RiemannRochDimension

   RiemannRochDimension(D) : DivTorElt -> RngIntElt

RiemannRochPolytope

   RiemannRochPolytope(D) : DivTorElt -> TorPol

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013