[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: QuoAlgFPLie  ..  Quotient


QuoAlgFPLie

   AlgLie_QuoAlgFPLie (Example H100E8)

quos

   Construction of Subalgebras, Ideals and Quotient Algebras (ALGEBRAS)
   Quotient Algebras (ALGEBRAS)

Quotient

   p-Quotient (FINITELY PRESENTED GROUPS)
   p-Quotients (Process Version) (FINITELY PRESENTED GROUPS: ADVANCED)
   AbelianNormalQuotient(G, H) : GrpPerm -> GrpPerm, Hom(GrpPerm), GrpPerm
   AbelianQuotient(G) : Grp -> GrpAb, Hom
   AbelianQuotient(G) : GrpFP -> GrpAb, Map
   AbelianQuotient(G) : GrpGPC -> GrpAb, Map
   AbelianQuotient(G) : GrpMat -> GrpAb, Map
   AbelianQuotient(G) : GrpPC -> GrpAb, Map
   AbelianQuotient(G) : GrpPerm -> GrpAb, Map
   AbelianQuotientInvariants(G) : GrpFP -> [ RngIntElt ]
   AbelianQuotientInvariants(H) : GrpFP -> [ RngIntElt ]
   AbelianQuotientInvariants(G, n) : GrpFP, RngIntElt -> [ RngIntElt ]
   AbelianQuotientInvariants(H, n) : GrpFP, RngIntElt -> [ RngIntElt ]
   AbelianQuotientInvariants(G) : GrpGPC -> [ RngIntElt ]
   AbelianQuotientInvariants(G) : GrpPC -> SeqEnum
   AbsoluteAffineAlgebra(A) : FldAC -> RngUPolRes
   AffineAlgebra(A) : FldAC -> RngMPolRes
   CohomologyRingQuotient(CR) : Rec -> Rng,Map
   ColonIdeal(I, J) : RngMPol, RngMPol -> RngMPol
   ColonIdeal(I, f) : RngMPol, RngMPolElt -> RngMPol, RngIntElt
   ColonIdeal(I, J) : RngOrdIdl, RngOrdIdl -> RngOrdIdl
   ConeQuotientByLinearSubspace(C) : TorCon -> TorCon,Map,Map
   CurveQuotient(G): GrpAutCrv -> Crv, MapSch
   DualQuotient(L) : Lat -> GrpAb, Lat, Map
   ElementaryAbelianQuotient(G, p) : GrpAb, RngIntElt -> GrpAb, Map
   ElementaryAbelianQuotient(G, p) : GrpFP, RngIntElt -> GrpAb, Map
   ElementaryAbelianQuotient(G, p) : GrpGPC, RngIntElt -> GrpAb, Map
   ElementaryAbelianQuotient(G, p) : GrpMat, RngIntElt -> GrpAb, Map
   ElementaryAbelianQuotient(G, p) : GrpPC, RngIntElt -> GrpAb, Map
   ElementaryAbelianQuotient(G, p) : GrpPerm, RngIntElt -> GrpAb, Map
   ExactQuotient(n, d) : RngIntElt, RngIntElt -> RngIntElt
   ExactQuotient(f, g) : RngUPolElt, RngUPolElt -> RngUPolElt
   FreeAbelianQuotient(G) : GrpAb -> GrpAb, Map
   FreeAbelianQuotient(G) : GrpGPC -> GrpAb, Map
   FundamentalQuotient(Q) : QuadBin -> Map
   GaloisQuotient(K, Q) : FldNum, GrpPerm -> SeqEnum[FldNum]
   HasComputableAbelianQuotient(G) : GrpFP -> BoolElt, GrpAb, Map
   HasInfiniteComputableAbelianQuotient(G) : GrpFP -> BoolElt, GrpAb, Map
   HasInfinitePSL2Quotient(G) :: GrpFP -> BoolElt, SeqEnum
   IdealQuotient(I, J) : RngFunOrdIdl, RngFunOrdIdl -> RngFunOrdIdl
   IsEmptySimpleQuotientProcess(P) : Rec -> BoolElt
   IsQuotient(L) : TorLat -> BoolElt
   LMGRadicalQuotient(G) : GrpMat -> GrpPerm, Map, GrpMat
   LMGSocleStarQuotient(G) : GrpMat -> GrpPerm, Map, GrpMat
   ModularCurveQuotient(N,A) : RngIntElt, [RngIntElt] -> Crv
   NewQuotient(A) : ModAbVar -> ModAbVar, MapModAbVar
   NewQuotient(A, r) : ModAbVar, RngIntElt -> ModAbVar, MapModAbVar
   NextSimpleQuotient(~P) : Rec ->
   NilpotentQuotient(G, c) : GrpMat, RngIntElt -> GrpGPC, Map
   NilpotentQuotient(G, c) : GrpPerm, RngIntElt -> GrpGPC, Map
   NilpotentQuotient(G, c: parameters) : GrpFP, RngIntElt -> GrpGPC, Map
   NilpotentQuotient(R, d) : [ AlgFPLieElt ], RngIntElt -> AlgLie, SeqEnum, SeqEnum, UserProgram
   NumberOfQuotientGradings(C) : RngCox -> RngIntElt
   NumberOfQuotientGradings(X) : TorVar -> SeqEnum
   OldQuotient(A) : ModAbVar -> ModAbVar, MapModAbVar
   OldQuotient(A, r) : ModAbVar, RngIntElt -> ModAbVar, MapModAbVar
   PrimitiveQuotient(G) : GrpPerm -> GrpPerm, Hom, GrpPerm
   Quotient(C, K) : CosetGeom, GrpPerm -> CosetGeom
   Quotient(H2, H1) : HomModAbVar, HomModAbVar -> GrpAb, Map, Map
   Quotient(A, G) : ModAbVar, ModAbVarSubGrp -> ModAbVar, MapModAbVar
   Quotient(G) : ModAbVarSubGrp -> ModAbVar, MapModAbVar, MapModAbVar
   Quotient(C) : TorCon -> TorLat,TorLatMap
   QuotientDimension(I) : RngMPol -> RngIntElt
   QuotientDimension(I) : RngMPol -> RngIntElt
   QuotientGradings(C) : RngCox -> RngIntElt
   QuotientGradings(X) : TorVar -> SeqEnum
   QuotientMap(Q1, Q2) : QuadBin, QuadBin -> Map
   QuotientModule(A, S) : AlgFP, AlgFP -> AlgFP
   QuotientModule(A, S) : AlgFP, AlgFP -> AlgFP
   QuotientModule(A, S) : AlgFP, AlgFP -> AlgFP
   QuotientModule(A, S) : AlgFP, AlgFP -> AlgFP
   QuotientModule(A, S) : AlgFPOld, AlgFPOld -> [AlgMatElt], [ModTupFldElt], [AlgFPEltOld]
   QuotientModule(I) : RngMPol -> ModMPol
   QuotientModuleAction(G, S) : GrpMat -> Map, GrpMat
   QuotientModuleImage(G, S) : GrpMat -> GrpMat
   QuotientRepresentation(L) : RngLocA -> RngUPolRes
   QuotientRing(R, I) : RngDiff, RngMPol -> RngDiff, Map
   QuotientWithPullback(L, I) : AlgLie, AlgLie -> AlgLie, Map, UserProgram, UserProgram
   RadicalQuotient(G) : GrpMat -> GrpPerm, Hom(Grp), GrpMat
   RadicalQuotient(G) : GrpPerm -> GrpPerm, Hom(GrpPerm), GrpPerm
   SimpleQuotientAlgebras(A) : AlgMat -> Rec
   SimpleQuotientProcess(F, deg1, deg2, ord1, ord2: parameters) : GrpFP, RngIntElt, RngIntElt, RngIntElt, RngIntElt -> Rec
   SocleQuotient(G) : GrpPerm -> GrpPerm, Hom, GrpPerm
   SolubleNormalQuotient(G, H) : GrpPerm -> GrpPerm, Hom(GrpPerm), GrpPerm
   SolubleQuotient(G) : Grp -> GrpPC, Map
   SolubleQuotient(F, n : parameters): GrpFP, RngIntElt -> GrpPC, Map, SeqEnum, MonStgElt
   SolvableQuotient(G): GrpMat -> GrpPC, Map
   SolvableQuotient(G): GrpPerm, RngIntElt -> GrpPC, Map, SeqEnum, MonStgElt
   SolvableQuotient(G : parameters): GrpFP, RngIntElt -> GrpPC, Map, SeqEnum, MonStgElt
   SolvableQuotient(F, n : parameters): GrpFP, RngIntElt -> GrpPC, Map, SeqEnum, MonStgElt
   TransitiveQuotient(G) : GrpPerm -> GrpPerm, Hom, GrpPerm
   UnramifiedQuotientRing(K, k) : FldFin, RngIntElt -> Rng
   f div g : RngMPolElt, RngMPolElt -> RngMPolElt
   pAdicQuotientRing(p, k) : RngIntElt, RngIntElt -> RngPadRes
   pCoreQuotient(G, p) : GrpPerm, RngIntElt -> GrpPerm, Map, GrpPerm
   AlgFP_Quotient (Example H82E10)
   Graph_Quotient (Example H149E10)
   GrpMatGen_Quotient (Example H59E15)
   GrpPerm_Quotient (Example H58E21)
   Grp_Quotient (Example H57E7)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013