[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: R-key  ..  Ramification


R-key

   R

r-key

   r<char>

Radical

   CyclicToRadical(K, a, z) : FldNum, FldNumElt, RngElt -> FldNum, [FldNumElt], [FldNumElt]
   IsInRadical(f, I) : RngMPolElt, RngMPol -> BoolElt
   IsRadical(I) : RngMPol -> BoolElt
   IsRadical(I) : RngMPolRes -> BoolElt
   IsomorphismTypesOfRadicalLayers(M) : ModAlgBas -> SeqEnum
   JacobsonRadical(A) : AlgAssV -> AlgAssV
   JacobsonRadical(A) : AlgGen -> AlgGen
   JacobsonRadical(M) : ModAlg -> ModAlg
   JacobsonRadical(M) : ModRng -> ModRng, Map
   JacobsonRadical(e) : SubModLatElt -> SubModLatElt
   LMGSolubleRadical(G) : GrpMat -> GrpMat, GrpPC, Map
   LMGUnipotentRadical(G) : GrpMat -> GrpMat, GrpPC, Map
   ProbableRadicalDecomposition(I) : RngMPol -> [ RngMPol ]
   Radical(G) : GrpFin -> GrpFin
   Radical(G) : GrpMat -> GrpMat
   Radical(G) : GrpPerm -> GrpPerm
   Radical(V : parameters) : ModTupFld -> ModTupFld
   Radical(I) : RngMPol -> RngMPol
   Radical(R) : RootDtm -> RootDtm
   RadicalDecomposition(I) : RngMPol -> [ RngMPol ]
   RadicalDecomposition(I) : RngMPolRes -> [ RngMPolRes ]
   RadicalExtension(F, d, a) : Rng, RngIntElt, RngElt -> FldAlg
   RadicalExtension(F, d, a) : Rng, RngIntElt, RngElt -> FldNum
   RadicalQuotient(G) : GrpMat -> GrpPerm, Hom(Grp), GrpMat
   RadicalQuotient(G) : GrpPerm -> GrpPerm, Hom(GrpPerm), GrpPerm
   SequenceOfRadicalGenerators(A) : AlgMat -> SeqEnum
   SingularRadical(V) : ModTupFld -> ModTupFld
   SolubleRadical(L) : AlgLie -> AlgLie
   SolubleRadical(G) : GrpLie -> GrpLie
   GrpPerm_Radical (Example H58E33)
   Ideal_Radical (Example H106E9)

radical

   Radical (POLYNOMIAL RING IDEAL OPERATIONS)
   Radical and Decomposition of Ideals (POLYNOMIAL RING IDEAL OPERATIONS)
   The Soluble Radical and its Quotient (MATRIX GROUPS OVER GENERAL RINGS)
   The Soluble Radical and its Quotient (PERMUTATION GROUPS)

radical-decomposition

   Radical and Decomposition of Ideals (POLYNOMIAL RING IDEAL OPERATIONS)

RadicalDecomposition

   RadicalDecomposition(I) : RngMPol -> [ RngMPol ]
   RadicalDecomposition(I) : RngMPolRes -> [ RngMPolRes ]

RadicalExtension

   RadicalExtension(F, d, a) : Rng, RngIntElt, RngElt -> FldAlg
   RadicalExtension(F, d, a) : Rng, RngIntElt, RngElt -> FldNum

RadicalLayers

   AlgBas_RadicalLayers (Example H85E13)

RadicalQuotient

   RadicalQuotient(G) : GrpMat -> GrpPerm, Hom(Grp), GrpMat
   RadicalQuotient(G) : GrpPerm -> GrpPerm, Hom(GrpPerm), GrpPerm

Radicals

   SolveByRadicals(f) : RngUPolElt -> FldNum, [FldNumElt], [FldNumElt]

radicals

   Solvability by Radicals (GALOIS THEORY OF NUMBER FIELDS)

Radicand

   CoblesRadicand(p) : RngUPolElt -> FldElt

Radius

   CoveringRadius(C) : Code -> RngIntElt
   CoveringRadius(L) : Lat -> FldRatElt
   PackingRadius(L) : Lat -> FldReElt

ram_pred

   IsWildlyRamified(R) : RngPad -> BoolElt
   Ramification Predicates (p-ADIC RINGS AND THEIR EXTENSIONS)

Ramification

   AbsoluteRamificationIndex(L) : RngPad -> RngIntElt
   AbsoluteRamificationDegree(L) : RngPad -> RngIntElt
   DecompositionGroup(L) : RngLocA -> GrpPerm
   InertiaDegree(L) : RngLocA -> RngIntElt
   RamificationDegree(I) : RngOrdIdl -> RngIntElt
   RamificationDegree(L) : RngPad -> RngIntElt
   RamificationDegree(K, L) : RngPad, RngPad -> RngIntElt
   RamificationDivisor(C) : Crv -> DivCrvElt
   RamificationDivisor(D) : DivCrvElt -> DivCrvElt
   RamificationDivisor(D) : DivFunElt -> DivFunElt
   RamificationDivisor(F) : FldFunG -> DivFunElt
   RamificationDivisor(m) : MapSch -> DivCrvElt
   RamificationField(p) : RngOrdIdl -> FldNum, Map
   RamificationField(p, i) : RngOrdIdl, RngIntElt -> FldNum, Map
   RamificationGroup(p) : RngOrdIdl -> GrpPerm
   RamificationGroup(p, i) : RngOrdIdl, RngIntElt -> GrpPerm
   RamificationIndex(P) : PlcFunElt -> RngIntElt
   RamificationIndex(P) : PlcNumElt -> RngIntElt
   RamificationIndex(P) : PlcNumElt -> RngIntElt
   RamificationIndex(I) : RngFunOrdIdl -> RngIntElt
   RamificationIndex(I, p) : RngInt, RngIntElt -> RngIntElt
   RamificationIndex(I, p) : RngOrdIdl, RngIntElt -> RngIntElt
   RamificationIndex(E) : RngSerExt -> RngIntElt
   RngOrdGal_Ramification (Example H38E2)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013