[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: CuspidalInducingDatum  ..  Cyclic


CuspidalInducingDatum

   CuspidalInducingDatum(pi) : RepLoc -> ModGrp

CuspidalProjection

   CuspidalProjection(f) : ModFrmElt -> ModFrmElt
   EisensteinProjection(f) : ModFrmElt -> ModFrmElt

CuspidalSubgroup

   CuspidalSubgroup(A) : ModAbVar -> ModAbVarSubGrp
   ModSym_CuspidalSubgroup (Example H133E21)

CuspidalSubgroupTable

   ModSym_CuspidalSubgroupTable (Example H133E22)

CuspidalSubspace

   CuspidalSubspace(M) : ModBrdt -> ModBrdt
   CuspidalSubspace(M) : ModFrm -> ModFrm
   CuspidalSubspace(M) : ModSS -> ModSS
   CuspidalSubspace(M) : ModSym -> ModSym

CuspIsSingular

   CuspIsSingular(N,d) : RngIntElt, RngIntElt -> BoolElt

CuspPlaces

   CuspPlaces(CN,N,d) : Crv, RngIntElt, RngIntElt -> SeqEnum[PlcCrvElt]

Cusps

   Cusps(G) : GrpPSL2 -> SeqEnum
   Cusps(FS) : SymFry -> SeqEnum

cusps

   Cusps and Elliptic Points of Congruence Subgroups (CONGRUENCE SUBGROUPS OF PSL2(R))

cusps-and-elliptic-points

   Cusps and Elliptic Points of Congruence Subgroups (CONGRUENCE SUBGROUPS OF PSL2(R))

cusps_small_mod_crv

   Cusps and Rational Points (SMALL MODULAR CURVES)

CuspWidth

   CuspWidth(G,x) : GrpPSL2, SetCspElt -> RngIntElt

Cut

   CutVertices(G) : Grph -> { GrphVert }
   CutVertices(G) : GrphMultUnd -> { GrphVert }
   MinimumCut(s, t : parameters) : GrphVert, GrphVert -> SeqEnum, RngIntElt
   MinimumCut(Ss, Ts : parameters) : [ GrphVert ], [ GrphVert ] -> SeqEnum, RngIntElt

CutVertices

   CutVertices(G) : Grph -> { GrphVert }
   CutVertices(G) : GrphMultUnd -> { GrphVert }

cwi

   Magma and CWI NFS Interoperability (RING OF INTEGERS)

CWIFormat

   ConvertToCWIFormat(P, pb) : NFSProc, RngIntElt -> .;
   FindRelationsInCWIFormat(P) : NFSProc -> RngIntElt

cy

   Calabi--Yau 3-folds (HILBERT SERIES OF POLARISED VARIETIES)

Cycle

   CreateCycleFile(P) : NFSProc -> .
   Cycle(e, x) : GrpPermElt, Elt -> SetIndx
   Cycle(~u: parameters) : GrpBrdElt ->
   Cycle(u: parameters) : GrpBrdElt -> GrpBrdElt
   CycleCount(fn) : MonStgElt -> RngIntElt
   CycleCount(P) : NFSProc -> RngIntElt
   CycleDecomposition(e) : GrpPermElt -> SeqEnum[SetIndx]
   CycleStructure(g) : GrpPermElt -> [ <RngIntElt, RngIntElt> ]
   GirthCycle(G) : GrphUnd -> [GrphVert]
   HasNegativeWeightCycle(G) : Grph -> BoolElt
   HasNegativeWeightCycle(u : parameters) : GrphVert -> BoolElt

CycleCount

   CycleCount(fn) : MonStgElt -> RngIntElt
   CycleCount(P) : NFSProc -> RngIntElt

CycleDecomposition

   CycleDecomposition(e) : GrpPermElt -> SeqEnum[SetIndx]

Cycles

   ClockCycles() : -> RngIntElt
   IsProductOfParallelDescendingCycles(p) : GrpPermElt -> BoolElt

CycleStructure

   CycleStructure(g) : GrpPermElt -> [ <RngIntElt, RngIntElt> ]

Cyclic

   CyclicSubgroups(G) : GrpPC -> SeqEnum
   ElementaryAbelianSubgroups(G) : GrpPC -> SeqEnum
   NilpotentSubgroups(G) : GrpPC -> SeqEnum
   AbelianSubgroups(G) : GrpPC -> SeqEnum
   AdditiveCyclicCode(v) : ModTupFldElt -> CodeAdd
   AdditiveCyclicCode(v4, v2) : ModTupFldElt, ModTupFldElt -> CodeAdd
   AdditiveCyclicCode(n, f) : RngIntElt, RngUPolElt -> CodeAdd
   AdditiveCyclicCode(n, f4, f2) : RngIntElt, RngUPolElt, RngUPolElt -> CodeAdd
   AdditiveQuasiCyclicCode(n, Q) : RngIntElt, SeqEnum[RngUPolElt] -> CodeAdd
   AdditiveQuasiCyclicCode(n, Q, h) : RngIntElt, SeqEnum[RngUPolElt], RngIntElt -> CodeAdd
   AdditiveQuasiCyclicCode(Q) : SeqEnum[ModTupFldElt] -> CodeAdd
   AdditiveQuasiCyclicCode(Q, h) : SeqEnum[ModTupFldElt], RngIntElt -> CodeAdd
   ClassGroupCyclicFactorGenerators(O) : RngOrd -> ModHomElt
   ConstaCyclicCode(n, f, alpha) : RngUPolElt, RngIntElt, FldFinElt -> Code
   CyclicCode(u) : ModTupRngElt -> Code
   CyclicCode(u) : ModTupRngElt -> Code
   CyclicCode(n, g) : RngIntElt, RngUPolElt -> Code
   CyclicCode(n, g) : RngIntElt, RngUPolElt -> Code
   CyclicCode(n, T, K) : RngIntElt, [ FldFinElt ], FldFin -> Code
   CyclicGroup(C, n) : Cat, RngIntElt -> GrpFin
   CyclicGroup(GrpFP, n) : Cat, RngIntElt -> GrpFP
   CyclicGroup(GrpGPC, n) : Cat, RngIntElt -> GrpGPC
   CyclicGroup(GrpPC, n) : Cat, RngIntElt -> GrpPC
   CyclicGroup(GrpPerm, n) : Cat, RngIntElt -> GrpPerm
   CyclicPolytope(L,n) : TorLat,RngIntElt -> TorPol
   CyclicSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
   CyclicSubgroups(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
   CyclicToRadical(K, a, z) : FldNum, FldNumElt, RngElt -> FldNum, [FldNumElt], [FldNumElt]
   IsCyclic(C) : Code -> BoolElt
   IsCyclic(C) : Code -> BoolElt
   IsCyclic(F) : FldAlg -> BoolElt
   IsCyclic(F) : FldNum -> BoolElt
   IsCyclic(G) : GrpAb -> BoolElt
   IsCyclic(G) : GrpFin -> BoolElt
   IsCyclic(G) : GrpGPC -> BoolElt
   IsCyclic(G) : GrpMat -> BoolElt
   IsCyclic(G) : GrpPC -> BoolElt
   IsCyclic(G) : GrpPerm -> BoolElt
   QuantumCyclicCode(v) : ModTupFldElt -> CodeAdd
   QuantumCyclicCode(v4, v2) : ModTupFldElt, ModTupFldElt -> CodeAdd
   QuantumCyclicCode(n, f) : RngIntElt, RngUPolElt -> CodeAdd
   QuantumQuasiCyclicCode(n, Q) : RngIntElt, SeqEnum[RngUPolElt] -> CodeAdd
   QuantumQuasiCyclicCode(Q) : SeqEnum[ModTupFldElt] -> CodeAdd
   QuasiCyclicCode(n, Gen) : RngIntElt, [ RngUPolElt ] -> Code
   QuasiCyclicCode(n, Gen, h) : RngIntElt, [ RngUPolElt ], RngIntElt -> Code
   QuasiCyclicCode(Gen) : [ ModTupRngElt ] -> Code
   QuasiCyclicCode(Gen, h) : [ModTupRngElt] , RngIntElt -> Code
   QuasiTwistedCyclicCode(n, Gen, alpha) : RngIntElt, [RngUPolElt], FldFinElt -> Code
   QuasiTwistedCyclicCode(Gen, alpha) : [ModTupRngElt], FldFinElt -> Code

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013