[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: free-modules .. FrobeniusActionOnPoints
Free Modules (FREE MODULES)
Constructing Free Resolutions (MODULES OVER MULTIVARIATE RINGS)
Free Resolutions (MODULES OVER MULTIVARIATE RINGS)
FreeAbelianGroup(GrpGPC, n) : Cat, RngIntElt -> GrpGPC
FreeAbelianGroup(n) : RngIntElt -> GrpAb
GrpAb_FreeAbelianGroup (Example H69E1)
FreeAbelianQuotient(G) : GrpAb -> GrpAb, Map
FreeAbelianQuotient(G) : GrpGPC -> GrpAb, Map
FreeAlgebra(K, n) : Fld, RngIntElt -> AlgFr
FreeAlgebra(R, M) : Rng, MonFP -> AlgFPOld
FreefValues(L) : AlgLieExtr -> SeqEnum, SeqEnum
FreefValues(L) : AlgLieExtr -> SeqEnum, SeqEnum
FreeGroup(n) : RngIntElt -> GrpFP
AlgLie_FreeLie (Example H100E3)
FreeLieAlgebra(F, n) : Rng, RngIntElt -> AlgFPLie
AlgLie_FreeLieAlgebra (Example H100E4)
FreeMonoid(n) : RngIntElt -> MonFP
FreeNilpotentGroup(r, e) : RngIntElt, RngIntElt -> GrpGPC
FreeProduct(G, H) : GrpFP, GrpFP -> GrpFP
FreeProduct(R, S) : SgpFP, SgpFP -> SgpFP
FreeProduct(Q) : [ GrpFP ] -> GrpFP
FreeResolution(M) : ModMPol -> ModCpx, ModMPolHom
FreeResolution(R) : RngInvar -> [ ModMPol ]
PMod_FreeResolution (Example H109E7)
PMod_FreeResolution1 (Example H109E8)
PMod_FreeResolutionLocal (Example H109E11)
FreeSemigroup(n) : RngIntElt -> SgpFP
SgpFP_FreeSemigroup (Example H77E1)
freeze;
DecompositionTypeFrequency(A, a, b) : FldAb, RngIntElt, RngIntElt -> Mset
DecompositionTypeFrequency(A, l) : FldAb, [ ] -> Mset
Frobenius Homomorphism (SYMMETRIC FUNCTIONS)
Frobenius(s) : AlgSymElt -> AlgSymElt
Frobenius(a) : FldFinElt -> FldFinElt
Frobenius(a, E) : FldFinElt, FldFin -> FldFinElt
Frobenius(a, E, r) : FldFinElt, FldFin, RngIntElt -> FldFinElt
Frobenius(a, r) : FldFinElt, RngIntElt -> FldFinElt
Frobenius(P, k) : JacHypPt, FldFin -> JacHypPt
Frobenius(P, q) : PtEll[FldFunRat], RngIntElt -> PtEll
Frobenius(P, F) : PtHyp, FldFin -> PtHyp
FrobeniusActionOnPoints(S, q : parameters) : [ PtEll ], RngIntElt -> AlgMatElt
FrobeniusActionOnReducibleFiber(L) : < Tup > -> AlgMatElt
FrobeniusActionOnTrivialLattice(E) : CrvEll -> AlgMatElt
FrobeniusAutomorphism(A, p) : FldAb, RngOrdIdl -> Map
FrobeniusAutomorphism(L) : RngLocA -> Map
FrobeniusAutomorphisms(G) : GrpMat -> SeqEnum
FrobeniusElement(K, p) : FldNum, RngIntElt -> GrpPermElt
FrobeniusFormAlternating(A) : AlgMatElt -> SeqEnum
FrobeniusImage(A, e) : Mtrx, RngIntElt -> Mtrx
FrobeniusImage(e) : RngWittElt -> RngWittElt
FrobeniusMap(E) : CrvEll -> Map
FrobeniusMap(E, i) : CrvEll, RngIntElt -> Map
FrobeniusMap(G,q) : GrpLie, RngIntElt -> GrpLieAutoElt
FrobeniusMap(W) : RngWitt -> Map
FrobeniusMatrix(D) : PhiMod -> AlgMatElt
FrobeniusPolynomial(A, P) : ModAbVar, RngOrdIdl -> RngUPolElt
FrobeniusPolynomial(A : parameters) : ModAbVar -> RngUPolElt
FrobeniusPolynomial(A, p : parameters) : ModAbVar, RngIntElt -> RngUPolElt
FrobeniusTraceDirect(E, p) : CrvEll, RngIntElt -> RngIntElt
FrobeniusTracesToWeilPolynomials(tr, q, i, deg) : SeqEnum, RngIntElt, RngIntElt, RngIntElt -> SeqEnum
IsFrobenius(G) : GrpPerm -> BoolElt
MultiplyFrobenius(b,f,F) : RngElt, RngUPolElt, Map -> RngElt
Trace(H): SetPtEll -> RngIntElt
Trace(H, r): SetPtEll, RngIntElt -> RngIntElt
TraceOfFrobenius(E, p) : CrvEll[FldFunRat], RngElt -> BoolElt, CrvEll
TracesOfFrobenius(E, B) : CrvEll, RngIntElt -> SeqEnum
CrvEll_Frobenius (Example H120E21)
Action of Frobenius (ELLIPTIC CURVES OVER FUNCTION FIELDS)
Frobenius (HYPERELLIPTIC CURVES)
Frobenius (HYPERELLIPTIC CURVES)
AlgSym_Frobenius automorphism (Example H146E14)
Action of Frobenius (ELLIPTIC CURVES OVER FUNCTION FIELDS)
Frobenius Homomorphism (SYMMETRIC FUNCTIONS)
CrvEllQNF_frobenius-traces (Example H122E1)
FrobeniusActionOnPoints(S, q : parameters) : [ PtEll ], RngIntElt -> AlgMatElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013