[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: roots-coroots-weights .. Row
Roots and Coroots (ROOT SYSTEMS)
Roots, Coroots and Weights (GROUPS OF LIE TYPE)
Roots, Coroots and Weights (ROOT DATA)
Functions returning Roots (p-ADIC RINGS AND THEIR EXTENSIONS)
Newton_roots-ex (Example H46E10)
RootsAndCoroots(G) : GrpMat -> [RngIntElt], [ModTupRngElt], [ModTupRngElt]
GrpCox_RootsCoroots (Example H98E17)
GrpLie_RootsCoroots (Example H103E12)
GrpRfl_RootsCoroots (Example H99E24)
RootDtm_RootsCoroots (Example H97E17)
RootSys_RootsCoroots (Example H96E10)
RootSequence(V, f) : ModTupFld, Mtrx -> SeqEnum
RootSide(v) : GrphVert -> GrphVert
RootsInSplittingField(f) : RngUPolElt[FldFin] -> [<RngUPolElt, RngIntElt>], FldFin
RootsNonExact(p) : RngUPolElt[FldRe] -> [ FldComElt ], [ FldComElt ]
FldRe_RootsNonExact (Example H25E6)
CorootSpace(G) : GrpLie -> Lat
RootSpace(G) : GrpLie -> Lat
RootSpace(W) : GrpMat -> Lat
RootSpace(W) : GrpPermCox -> .
RootSpace(R) : RootStr -> ModTupFld
RootSpace(R) : RootSys -> ModTupFld
GrpCox_RootSpace (Example H98E16)
GrpRfl_RootSpace (Example H99E23)
RootSys_RootSpace (Example H96E9)
GrpLie_RootSubdata (Example H103E16)
RootDtm_RootSubdata (Example H97E26)
Definition of a Root System (ROOT SYSTEMS)
RootSys_RootSysSums (Example H96E16)
RootSystem(L) : AlgLie -> [ ModTupRngElt ], [ AlgLieElt ], [ ModTupRngElt ], AlgMatElt
RootSystem(C) : AlgMatElt -> RootSys
RootSystem(M) : AlgMatElt -> RootSys
RootSystem(M) : AlgMatElt -> RootSys
RootSystem(D) : GrphDir -> RootSys
RootSystem(W) : GrpMat -> RootDtm
RootSystem(W) : GrpPermCox -> RootDtm
RootSystem(N) : MonStgElt -> RootSys
RootSystem(A, B) : Mtrx, Mtrx -> RootSys
RootSystem(R) : RootDtm -> RootSys
AlgLie_RootSystem (Example H100E32)
RootVertex(s) : GrphSpl -> GrphSplVert
RosenhainInvariants(t) : Mtrx -> Set
From Period Matrix to Curve (HYPERELLIPTIC CURVES)
RosenhainInvariants(t) : Mtrx -> Set
Rotate(~u, k) : ModTupFldElt, RngIntElt ->
Rotate(u, k) : ModTupFldElt, RngIntElt -> ModTupFldElt
Rotate(~u, k) : ModTupRngElt, RngIntElt ->
Rotate(~u, k) : ModTupRngElt, RngIntElt ->
Rotate(~u, k) : ModTupRngElt, RngIntElt ->
Rotate(~u, k) : ModTupRngElt, RngIntElt ->
Rotate(u, k) : ModTupRngElt, RngIntElt -> ModTupRngElt
Rotate(u, k) : ModTupRngElt, RngIntElt -> ModTupRngElt
Rotate(u, k) : ModTupRngElt, RngIntElt -> ModTupRngElt
Rotate(u, k) : ModTupRngElt, RngIntElt -> ModTupRngElt
Rotate(~S, p) : SeqEnum, RngIntElt ->
RotateWord(u, n) : GrpFPElt, RngIntElt -> GrpFPElt
RotateWord(u, n) : SgpFPElt, RngIntElt -> SgpFPElt
RotateWord(u, n) : GrpFPElt, RngIntElt -> GrpFPElt
RotateWord(u, n) : SgpFPElt, RngIntElt -> SgpFPElt
Round(q) : FldRatElt -> RngIntElt
Round(r) : FldReElt -> FldReElt
Round(x) : Infty -> Infty
Round(n) : RngIntElt -> RngIntElt
Round(p) : RngUPolElt -> RngUPolElt
RoundDownDivisor(D) : DivSchElt -> DivSchElt
RoundUpDivisor(D) : DivSchElt -> DivSchElt
Rounding and Truncating (RATIONAL FIELD)
RngOrd_Round2 (Example H37E5)
RoundDownDivisor(D) : DivSchElt -> DivSchElt
Rounding (REAL AND COMPLEX FIELDS)
RoundUpDivisor(D) : DivSchElt -> DivSchElt
AddRow(~a, u, i, j) : AlgMatElt, RngElt, RngIntElt, RngIntElt ->
AddRow(A, c, i, j) : Mtrx, RngElt, RngIntElt, RngIntElt -> Mtrx
AddRow(A, c, i, j) : MtrxSprs, RngElt, RngIntElt, RngIntElt -> MtrxSprs
FirstIndexOfRow(t, i) : Tbl,RngIntElt -> RngIntElt
GeneralisedRowReduction(ρ) : GrpLie, Map -> Map
GeneralisedRowReduction(ρ) : Map -> Map
HadamardRowDesign(H, i) : AlgMatElt, RngIntElt -> Dsgn
Image(a) : AlgMatElt -> ModTup
InverseRowInsert(~t, i, j) : Tbl, RngIntElt, RngIntElt ->
LastIndexOfRow(t, i) : Tbl,RngIntElt -> RngIntElt
MultiplyRow(~a, u, j) : AlgMatElt, RngElt, RngIntElt ->
MultiplyRow(A, c, i) : Mtrx, RngElt, RngIntElt -> Mtrx
MultiplyRow(A, c, i) : MtrxSprs, RngElt, RngIntElt -> MtrxSprs
NullspaceOfTranspose(X) : AlgMatLieElt -> ModTupRng
RemoveRow(A, i) : Mtrx, RngIntElt -> Mtrx
RemoveRow(A, i) : MtrxSprs, RngIntElt -> MtrxSprs
RemoveRowColumn(A, i, j) : Mtrx, RngIntElt -> Mtrx
RemoveRowColumn(A, i, j) : MtrxSprs, RngIntElt -> MtrxSprs
Row(t, i) : Tbl, RngIntElt -> MonOrdElt
RowInsert(~t, w) : Tbl, MonOrdElt ->
RowInsert(~t, x) : Tbl, RngIntElt ->
RowNullSpace(a) : AlgMatElt -> ModTup
RowSequence(A) : Mtrx -> [ [RngElt] ]
RowSkewLength(t, i) : Tbl,RngIntElt -> RngIntElt
RowSubmatrix(A, i) : Mtrx, RngIntElt -> Mtrx
RowSubmatrix(A, i, k) : Mtrx, RngIntElt, RngIntElt -> Mtrx
RowSubmatrix(A, i) : MtrxSprs, RngIntElt -> MtrxSprs
RowSubmatrix(A, i, k) : MtrxSprs, RngIntElt, RngIntElt -> MtrxSprs
RowSubmatrixRange(A, i, j) : Mtrx, RngIntElt, RngIntElt -> Mtrx
RowSubmatrixRange(A, i, j) : MtrxSprs, RngIntElt, RngIntElt -> MtrxSprs
RowWeight(A, i) : MtrxSprs, RngIntElt -> RngIntElt
RowWeights(A) : MtrxSprs -> [RngIntElt]
Word(t) : Tbl -> MonOrdElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013