[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: TwoElementNormal .. Type
TwoElementNormal(I) : RngInt -> RngIntElt, RngIntElt
TwoElementNormal(I) : RngOrdIdl -> RngOrdElt, RngOrdElt, RngIntElt
TwoGenerators(P) : PlcCrvElt -> FldFunFracSchElt, FldFunFracSchElt
TwoGenerators(P) : PlcFunElt -> FldFunGElt, FldFunGElt
TwoGenus(X) : GRK3 -> RngIntElt
TwoIsogeny(P) : PtEll -> Map
TwoIsogenyDescent(E : parameters) : CrvEll -> SeqEnum[CrvHyp], List, SeqEnum[CrvHyp], List, MapSch, MapSch
TwoIsogenySelmerGroups(E) : CrvEll[FldFunG] -> GrpAb, GrpAb, MapSch, MapSch
TwoSelmerGroup(E) : CrvEll -> GrpAb, Map, SetEnum, Map, SeqEnum
TwoSelmerGroup(E) : CrvEll[FldFunG] -> GrpAb, MapSch
TwoSelmerGroup(J) : JacHyp -> GrpAb, Map, Any, Any
TwoSidedIdealClasses(S) : AlgQuatOrd -> [AlgQuatOrdIdl]
TwoSidedIdealClassGroup(S : Support) : AlgAssVOrd -> GrpAb, Map
TwoTorsionPolynomial(E) : CrvEll -> RngMPolElt
TwoTorsionSubgroup(J) : JacHyp -> GrpAb, Map
TwoTorsionSubgroup(Q) : QuadBin -> GrpAb, Map
Sharply Doubly Transitive Groups (NEARFIELDS)
TwoTransitiveGroupIdentification(G) : GrpPerm -> Tup
RootDtm_TwoTwistedEsixes (Example H97E19)
Type(S) : Any -> Cat
Category(S) : Any -> Cat
Category(E) : CrvEll -> Cat
Category(L) : Lat -> Cat
Category(P) : PtEll -> Cat
Category(R) : Rng -> Cat
Category(R) : RngDiff -> RngDiff
Category(s) : RngDiffElt -> RngDiffElt
Category(R) : RngDiffOp -> RngDiffOp
Category(L) : RngDiffOpElt -> RngDiffOpElt
Category(r) : RngElt -> Cat
Category(G) : SchGrpEll -> Cat
Category(H) : SetPtEll -> Cat
ChangeRepresentationType(A, Rep) : AlgGrp, MonStgElt -> AlgGrp, Map
ClassicalType(G) : GrpMat -> MonStgElt
DecompositionType(m, U, p) : DivFunElt, GrpAb, PlcFunElt -> [<f,e>]
DecompositionType(A, p) : FldAb, PlcNumElt -> [Tpl]
DecompositionType(A, p) : FldAb, RngIntElt -> [Tpl]
DecompositionType(A, p) : FldAb, RngOrdIdl -> [Tpl]
DecompositionType(F, P) : FldFun, PlcFunElt -> [ <RngIntElt, RngIntElt> ]
DecompositionType(A, p) : FldFunAb, PlcFunElt -> [<f,e>]
DecompositionType(O) : RngFunOrd -> [ <RngIntElt, RngIntElt> ]
DecompositionType(O, p) : RngFunOrd, RngElt -> [ <RngIntElt, RngIntElt> ]
DecompositionType(O, p) : RngOrd, RngIntElt -> [<RngIntElt, RngIntElt>]
DecompositionTypeFrequency(A, a, b) : FldAb, RngIntElt, RngIntElt -> Mset
DecompositionTypeFrequency(A, l) : FldAb, [ ] -> Mset
ElementType(S) : Str -> Cat
ExtendedType(x) : Elt -> ECat
FormType(G) : GrpMat -> MonStgElt
GroupOfLieType(L) : AlgLie -> GrpLie
GroupOfLieType(C, k) : AlgMatElt, Rng -> GrpLie
GroupOfLieType(W, k) : GrpMat, Rng -> GrpLie
GroupOfLieType(W, k) : GrpPermCox, Rng -> GrpLie
GroupOfLieType(W, R) : GrpPermCox, Rng -> GrpLie
GroupOfLieType(W, q) : GrpPermCox, RngIntElt -> GrpLie
GroupOfLieType(N, k) : MonStgElt, Rng -> GrpLie
GroupOfLieType(N, q) : MonStgElt, RngIntElt -> GrpLie
GroupOfLieType(C, k) : Mtrx, Rng -> GrpLie
GroupOfLieType(C, q) : Mtrx, RngIntElt -> GrpLie
GroupOfLieType(R, k) : RootDtm, Rng -> GrpLie
GroupOfLieType(R, k) : RootDtm, Rng -> GrpLie
GroupOfLieType(R, q) : RootDtm, RngIntElt -> GrpLie
GroupOfLieTypeFactoredOrder(R, q) : RootDtm, RngElt -> RngIntElt
GroupOfLieTypeHomomorphism(phi, k) : Map, Rng -> .
GroupOfLieTypeHomomorphism(phi, k) : Map, Rng -> GrpLie
GroupOfLieTypeOrder(R, q) : RootDtm, RngElt -> RngIntElt
IsClassicalType(L) : AlgLie -> BoolElt
KodairaEnriquesType(S) : Srfc -> RngIntElt, RngIntElt, MonStr
L2Type(P) : RngMPol-> MonStgElt
LieType(G, p : parameters) : GrpMat, RngIntElt -> BoolElt, Tup
MakeType(S) : MonStgElt -> Cat
MinimalModelGeneralType(S) : Srfc -> Map, BoolElt
ModelType(X) : CrvMod -> MonStgElt
PolarSpaceType(V) : ModTupFld -> MonStgElt
ReductionType(E, p) : CrvEll, RngIntElt -> MonStgElt
ReductiveType(L) : AlgLie -> RootDtm, MonStgElt, SeqEnum, SeqEnum
RepresentationType(A) : AlgGrp -> MonStgElt
SemisimpleType(L) : AlgLie -> MonStgElt
SimpleGroupOfLieType(X, n, k) : MonStgElt, RngIntElt, Rng -> GrpLie
SimpleGroupOfLieType(X, n, q) : MonStgElt, RngIntElt, RngIntElt -> GrpLie
ThreeTorsionType(E) : CrvEll -> MonStgElt
TransverseType(C) : GRCrvS -> GRPtS
TwistedGroupOfLieType(c) : OneCoC -> GrpLie
TwistedGroupOfLieType(R, k, K) : RootDtm, Rng, Rng-> GrpLie
Type(x) : Elt -> Cat
TypeOfContraction(X,i) : TorVar,RngIntElt -> MonStgElt
TypeOfSequence(f) : SeqEnum -> RngIntElt, RngIntElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013