[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: Cohomological Dimension .. Coisogeny
ModGrp_Cohomological Dimension (Example H90E20)
CohomologicalDimension(G, M, i) : GrpFin, ModRng, RngIntElt -> RngIntElt
CohomologicalDimension(G, M, i) : GrpPerm, ModRng, RngIntElt -> RngIntElt
CohomologicalDimension(G, M, n) : GrpPerm, ModRng, RngIntElt -> RngIntElt
CohomologicalDimension(CM, n) : ModCoho, RngIntElt -> RngIntElt
CohomologicalDimension(M, n) : ModGrp, n -> RngIntElt
CohomologicalDimension(M, n) : ModGrp, n -> RngIntElt
CohomologicalDimensions(M, n) : ModGrp, n -> RngIntElt
CohomologicalDimensions(M, n) : ModGrp, n -> RngIntElt
AreCohomologous(alpha, beta) : OneCoC, OneCoC -> BoolElt, GrpElt
ChainmapToCohomology(f,CR) : MapChn, Rec -> RngElt
Cohomology(A, n) : GGrp, RngIntElt -> SetEnum[OneCoC]
CohomologyClass(alpha) : OneCoC -> SetIndx[OneCoC]
CohomologyDimension(M,r,n) : ModMPolGrd, RngIntElt, RngIntElt -> RngIntElt
CohomologyDimension(S, r, n) : ShfCoh, RngIntElt, RngIntElt -> RngIntElt
CohomologyElementToChainMap(P, d, n) : ModCpx ,RngIntElt, RngIntElt -> MapChn
CohomologyElementToCompactChainMap(PR, d, n): Rec, RngIntElt, RngIntElt -> ModMatFldElt
CohomologyGeneratorToChainMap(P,Q,C,n) : ModCpx, ModCpx, Rec, RngIntElt -> MapChn
CohomologyGeneratorToChainMap(P, C, n) : ModCpx, Tup, RngIntElt -> MapChn
CohomologyGroup(CM, n) : ModCoho, RngIntElt -> ModTupRng
CohomologyLeftModuleGenerators(P, CP, Q) : Tup, Tup, Tup -> Tup
CohomologyModule(A) : FldAb -> ModGrp, Map, Map, Map
CohomologyModule(G, A, M) : GrpPerm, GrpAb, Any -> ModCoho
CohomologyModule(G, M) : GrpPerm, ModGrp -> ModCoho
CohomologyModule(G, Q, T) : GrpPerm, SeqEnum, SeqEnum -> ModCoho
CohomologyRightModuleGenerators(P, Q, CQ) : Rec, Rec, Rec -> Rec
CohomologyRing(k, n) : ModAlgBas, RngIntElt -> Rec
CohomologyRingGenerators(P) : Rec -> Rec
CohomologyRingQuotient(CR) : Rec -> Rng,Map
CohomologyToChainmap(xi,CR,P) : RngElt, Rec, ModCpx -> MapChn
DegreesOfCohomologyGenerators(C) : Rec -> SeqEnum
ExtendedCohomologyClass(alpha) : OneCoC -> SetEnum[OneCoC]
GaloisCohomology(A) : GGrp -> SeqEnum
OneCohomology(A) : GGrp -> SetEnum[OneCoC]
SUnitCohomologyProcess(S, U) : {RngOrdIdl}, GrpPerm -> {1}
SimpleCohomologyDimensions(M) : ModAlg -> SeqEnum
GrpPerm_Cohomology (Example H58E36)
Calculating Cohomology (COHOMOLOGY AND EXTENSIONS)
Cohomology (ABELIAN GROUPS)
Cohomology (BASIC ALGEBRAS)
Cohomology (GROUPS)
Cohomology (PERMUTATION GROUPS)
COHOMOLOGY AND EXTENSIONS
Cohomology Generators (BASIC ALGEBRAS)
Cohomology Of Coherent Sheaves (MODULES OVER MULTIVARIATE RINGS)
Cohomology Rings (BASIC ALGEBRAS)
Finite Group Cohomology (COHOMOLOGY AND EXTENSIONS)
Galois Cohomology (GALOIS THEORY OF NUMBER FIELDS)
Galois Cohomology (GROUPS OF LIE TYPE)
AlgBas_Cohomology-2 (Example H85E19)
GrpPerm_Cohomology-2 (Example H58E37)
Cohomology Generators (BASIC ALGEBRAS)
Calculating Cohomology (COHOMOLOGY AND EXTENSIONS)
Cohomology Rings (BASIC ALGEBRAS)
CohomologyClass(alpha) : OneCoC -> SetIndx[OneCoC]
CohomologyDimension(M,r,n) : ModMPolGrd, RngIntElt, RngIntElt -> RngIntElt
CohomologyDimension(S, r, n) : ShfCoh, RngIntElt, RngIntElt -> RngIntElt
CohomologyElementToChainMap(P, d, n) : ModCpx ,RngIntElt, RngIntElt -> MapChn
CohomologyElementToCompactChainMap(PR, d, n): Rec, RngIntElt, RngIntElt -> ModMatFldElt
CohomologyGeneratorToChainMap(P,Q,C,n) : ModCpx, ModCpx, Rec, RngIntElt -> MapChn
CohomologyGeneratorToChainMap(P, C, n) : ModCpx, Tup, RngIntElt -> MapChn
CohomologyGroup(CM, n) : ModCoho, RngIntElt -> ModTupRng
CohomologyLeftModuleGenerators(P, CP, Q) : Tup, Tup, Tup -> Tup
CohomologyModule(A) : FldAb -> ModGrp, Map, Map, Map
CohomologyModule(G, A, M) : GrpPerm, GrpAb, Any -> ModCoho
CohomologyModule(G, M) : GrpPerm, ModGrp -> ModCoho
CohomologyModule(G, Q, T) : GrpPerm, SeqEnum, SeqEnum -> ModCoho
CohomologyRightModuleGenerators(P, Q, CQ) : Rec, Rec, Rec -> Rec
CohomologyRing(k, n) : ModAlgBas, RngIntElt -> Rec
AlgBas_CohomologyRing (Example H85E21)
CohomologyRingGenerators(P) : Rec -> Rec
CohomologyRingQuotient(CR) : Rec -> Rng,Map
CohomologyToChainmap(xi,CR,P) : RngElt, Rec, ModCpx -> MapChn
CoisogenyGroup(G) : GrpLie -> GrpAb, Map
CoisogenyGroup(W) : GrpMat -> GrpAb, Map
CoisogenyGroup(W) : GrpPermCox -> GrpAb
CoisogenyGroup(R) : RootDtm -> GrpAb, Map
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013