[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: cones-polyhedra .. Conjugacy
Cones and Polyhedra (CONVEX POLYTOPES AND POLYHEDRA)
ConesOfCodimension(F,i) : TorFan,RngIntElt -> SeqEnum
ConesOfMaximalDimension(F) : TorFan -> SeqEnum
ConeToPolyhedron(C) : TorCon -> TorPol
ConeWithInequalities(B) : Set -> TorCon
IsConfluent(G) : GrpRWS -> BoolElt
IsConfluent(M) : MonRWS -> BoolElt
CO(n, q) : RngIntElt, RngIntElt -> GrpMat
ConformalOrthogonalGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
ConformalOrthogonalGroupMinus(n, q) : RngIntElt, RngIntElt -> GrpMat
ConformalOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
ConformalSymplecticGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
ConformalUnitaryGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
HamiltonianLieAlgebra(F, m, n) : Fld, RngIntElt, SeqEnum[RngIntElt] -> AlgLie, AlgLie
SpecialLieAlgebra(F, m, n) : Fld, RngIntElt, SeqEnum[RngIntElt] -> AlgLie, AlgLie, Map, Map
ConformalHamiltonianLieAlgebra(F, m, n) : Fld, RngIntElt, SeqEnum[RngIntElt] -> AlgLie, AlgLie, AlgLie
HamiltonianLieAlgebra(F, m, n) : Fld, RngIntElt, SeqEnum[RngIntElt] -> AlgLie, AlgLie
CO(n, q) : RngIntElt, RngIntElt -> GrpMat
ConformalOrthogonalGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
COMinus(n, q) : RngIntElt, RngIntElt -> GrpMat
ConformalOrthogonalGroupMinus(n, q) : RngIntElt, RngIntElt -> GrpMat
COPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
ConformalOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
ConformalSpecialLieAlgebra(F, m, n) : Fld, RngIntElt, SeqEnum[RngIntElt] -> AlgLie, AlgLie, AlgLie, Map, Map
SpecialLieAlgebra(F, m, n) : Fld, RngIntElt, SeqEnum[RngIntElt] -> AlgLie, AlgLie, Map, Map
CSp(n, q) : RngIntElt, RngIntElt -> GrpMat
ConformalSymplecticGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
CU(n, q) : RngIntElt, RngIntElt -> GrpMat
ConformalUnitaryGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
Congruence Subgroups (CONGRUENCE SUBGROUPS OF PSL2(R))
CongruenceGroup(M1, M2, prec) : ModFrm, ModFrm, RngIntElt -> GrpAb
CongruenceGroup(M : parameters) : ModSym -> GrpAb
CongruenceGroupAnemic(M1, M2, prec) : ModFrm, ModFrm, RngIntElt -> GrpAb
CongruenceImage(G : parameters) : GrpMat -> GrpMat,HomGrp, []
CongruenceModulus(A) : ModAbVar -> RngIntElt
CongruenceModulus(M : parameters) : ModSym -> RngIntElt
CongruenceSubgroup(N) : RngIntElt -> GrpPSL2
CongruenceSubgroup(i,N) : RngIntElt, RngIntElt -> GrpPSL2
CongruenceSubgroup([N,M,P]) : SeqEnum -> GrpPSL2
IsCongruence(G) : GrpPSL2 -> BoolElt
Construction of Congruence Homomorphisms (MATRIX GROUPS OVER INFINITE FIELDS)
Structure of Congruence Subgroups (CONGRUENCE SUBGROUPS OF PSL2(R))
Congruence Subgroups (CONGRUENCE SUBGROUPS OF PSL2(R))
CongruenceGroup(M1, M2, prec) : ModFrm, ModFrm, RngIntElt -> GrpAb
CongruenceGroup(M : parameters) : ModSym -> GrpAb
CongruenceGroupAnemic(M1, M2, prec) : ModFrm, ModFrm, RngIntElt -> GrpAb
CongruenceImage(G : parameters) : GrpMat -> GrpMat,HomGrp, []
CongruenceModulus(A) : ModAbVar -> RngIntElt
CongruenceModulus(M : parameters) : ModSym -> RngIntElt
ModFrm_Congruences (Example H132E18)
Congruences (MODULAR FORMS)
CongruenceSubgroup(N) : RngIntElt -> GrpPSL2
CongruenceSubgroup(i,N) : RngIntElt, RngIntElt -> GrpPSL2
CongruenceSubgroup([N,M,P]) : SeqEnum -> GrpPSL2
Conic(C) : Crv -> MapSch
Conic(M) : Mtrx -> CrvCon
Conic(P, S) : Plane, { PlanePt } -> SetEnum
Conic(X, f) : Prj, RngMPolElt -> CrvCon
Conic(P,S) : Prj, {Pt} -> Crv
Conic(coeffs) : [RngElt] -> CrvCon
IsConic(S) : Sch -> BoolElt, CrvCon
IsConic(X) : Sch -> BoolElt,CrvCon
RATIONAL CURVES AND CONICS
CrvCon_ConicAccess (Example H119E4)
CrvCon_ConicAutomorphisms (Example H119E13)
CrvCon_ConicCreation (Example H119E1)
CrvCon_ConicCurve (Example H119E3)
CrvCon_ConicMinimalModel (Example H119E5)
ConjecturalRegulator(E) : CrvEll -> FldReElt, RngIntElt
ConjecturalRegulator(E) : CrvEll -> FldReElt, RngIntElt
ConjecturalRegulator(E, v) : CrvEll, FldReElt -> FldReElt
ConjecturalSha(E, Pts) : CrvEll, SeqEnum[PtEll] -> FldReElt
CrvEllQNF_conjectural-regulator (Example H122E27)
ConjecturalRegulator(E) : CrvEll -> FldReElt, RngIntElt
ConjecturalRegulator(E) : CrvEll -> FldReElt, RngIntElt
ConjecturalRegulator(E, v) : CrvEll, FldReElt -> FldReElt
ConjecturalSha(E, Pts) : CrvEll, SeqEnum[PtEll] -> FldReElt
FldForms_conjisom (Example H29E18)
Conjugacy (MATRIX GROUPS OVER Q AND Z)
ConjugacyClasses(S) : AlgAssVOrd -> SeqEnum
ConjugacyClasses(W) : GrpFPCox -> [GrpFPCoxElt]
ConjugacyClasses(G) : GrpPC -> [ <RngIntElt, RngIntElt, GrpPCElt> ]
ConjugacyClasses(G: parameters) : GrpFin -> [ <RngIntElt, RngIntElt, GrpFinElt> ]
ConjugacyClasses(G: parameters) : GrpMat -> [ < RngIntElt, RngIntElt, GrpMatElt > ]
ConjugacyClasses(G: parameters) : GrpPerm -> [ <RngIntElt, RngIntElt, GrpPermElt> ]
GaloisConjugacyRepresentatives(G) : GrpDrch -> [GrpDrchElt]
ReeConjugacyClasses(G) : GrpMat -> SeqEnum
ReeMaximalSubgroupsConjugacy(G, R, S) : GrpMat, GrpMat, GrpMat -> GrpMatElt, GrpSLPElt
ReeSylowConjugacy(G, R, S, p) : GrpMat, GrpMat, GrpMat, RngIntElt -> GrpMatElt, GrpSLPElt
SuzukiMaximalSubgroupsConjugacy(G, R, S) : GrpMat, GrpMat, GrpMat -> GrpMatElt, GrpSLPElt
SuzukiSylowConjugacy(G, R, S, p) : GrpMat, GrpMat, GrpMat, RngIntElt -> GrpMatElt, GrpSLPElt
SzConjugacyClasses(G) : GrpMat -> SeqEnum
GrpGPC_Conjugacy (Example H72E12)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013