[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: local  ..  LocalTwoSelmerMap


local

   Creation of Points on Curves (ALGEBRAIC CURVES)
   GENERAL LOCAL FIELDS
   Local Computations (ELLIPTIC CURVES OVER FUNCTION FIELDS)
   Local Conditions for Conics (RATIONAL CURVES AND CONICS)
   Local Declarations (MAGMA SEMANTICS)
   Local Geometry (ALGEBRAIC CURVES)
   Local Geometry of Schemes (SCHEMES)
   Local Intersection Theory (ALGEBRAIC CURVES)
   Local Invariants (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
   Local Invariants (QUADRATIC FORMS)
   LOCAL POLYNOMIAL RINGS
   Local Solubility (SCHEMES)
   Local-Global Correspondence (RATIONAL CURVES AND CONICS)
   Norm Residue Symbol (RATIONAL CURVES AND CONICS)
   Operations at a Point (ALGEBRAIC CURVES)
   p-adic Fields (p-ADIC RINGS AND THEIR EXTENSIONS)
   p-adic Rings (p-ADIC RINGS AND THEIR EXTENSIONS)
   p-ADIC RINGS AND THEIR EXTENSIONS
   The Local Langlands Correspondence (ADMISSIBLE REPRESENTATIONS OF GL2(Qp))

local-arbitrary

   GENERAL LOCAL FIELDS

local-curve

   Local Geometry (ALGEBRAIC CURVES)

local-declaration

   Local Declarations (MAGMA SEMANTICS)

local-fields

   p-adic Fields (p-ADIC RINGS AND THEIR EXTENSIONS)

local-global

   Local Conditions for Conics (RATIONAL CURVES AND CONICS)
   Local-Global Correspondence (RATIONAL CURVES AND CONICS)
   Norm Residue Symbol (RATIONAL CURVES AND CONICS)

local-intersection

   Local Intersection Theory (ALGEBRAIC CURVES)

local-intersection-example

   Crv_local-intersection-example (Example H114E10)

local-invariants

   HasseMinkowskiInvariants(f) : RngMPolElt -> SeqEnum
   Local Invariants (QUADRATIC FORMS)

local-langlands

   The Local Langlands Correspondence (ADMISSIBLE REPRESENTATIONS OF GL2(Qp))

local-ops

   Operations at a Point (ALGEBRAIC CURVES)

local-points

   Creation of Points on Curves (ALGEBRAIC CURVES)

local-polynomial-rings

   LOCAL POLYNOMIAL RINGS

local-rings

   p-adic Rings (p-ADIC RINGS AND THEIR EXTENSIONS)

local-sol

   Local Solubility (SCHEMES)

local_genus_invariants

   Invariants of p-adic Genera (LATTICES)

LocalComponent

   LocalComponent(M, p) : ModSym, RngIntElt -> RepLoc

LocalCoxeterGroup

   LocalCoxeterGroup(H) : GrpPermCox -> GrpPermCox, Map

LocalDegree

   LocalDegree(P) : PlcNumElt -> RngIntElt
   LocalDegree(P) : PlcNumElt -> RngIntElt

LocalFactorization

   LocalFactorization(f) : RngUPolElt -> [ < RngUPolElt, RngIntElt >]
   Factorization(f) : RngUPolElt -> [ < RngUPolElt, RngIntElt > ]

LocalField

   LocalField(L, f) : FldPad, RngUPolElt -> RngLocA

LocalGenera

   LocalGenera(G) : SymGen -> Lat

LocalGlobal

   CrvCon_LocalGlobal (Example H119E6)

LocalHeight

   LocalHeight(P, Pl : parameters) : PtEll, PlcNumElt -> FldPrElt
   LocalHeight(P, Pl) : PtEll, PlcFunElt -> FldPrElt
   LocalHeight(P, p) : PtEll, RngIntElt -> FldComElt

LocalInformation

   LocalInformation(E) : CrvEll -> [ < Tup > ]
   LocalInformation(E) : CrvEll -> [ Tup ]
   LocalInformation(E, p) : CrvEll, RngIntElt -> <RngIntElt, RngIntElt, RngIntElt, RngIntElt, SymKod, BoolElt>, CrvEll
   LocalInformation(E) : CrvEll, RngIntElt -> [ Tup ]
   LocalInformation(E) : CrvEll, RngOrdIdl -> Tup, CrvEll
   LocalInformation(E, P) : CrvEll, RngOrdIdl -> Tup, CrvEll
   LocalInformation(E, Pl) : CrvEll[FldFun], PlcFunElt -> Tup, CrvEll

Localization

   Localization(M) : ModMPol -> ModMPol
   Localization(R, P) : Rng, Rng -> Rng, Map
   Localization(R) : RngDiffOp -> RngDiffOp, Map
   Localization(R, p) : RngDiffOp, PlcFunElt -> RngDiffOp, Map, PlcFunElt
   Localization(L) : RngDiffOpElt -> RngDiffOpElt, Map
   Localization(L, p) : RngDiffOpElt, PlcFunElt -> RngDiffOpElt, Map, PlcFunElt
   Localization(R) : RngMPol -> RngMPolLoc

localization

   Localization (INTRODUCTION TO RINGS [BASIC RINGS])

Locally

   HasIndexOneEverywhereLocally(C) : CrvHyp -> BoolElt
   HasPointsEverywhereLocally(f,q) : RngUPolElt, RngIntElt -> BoolElt
   IsLocallyFree(S) : ShfCoh -> BoolElt, RngIntElt
   IsLocallySolvable(X, p) : Sch, RngOrdIdl -> BoolElt, Pt
   IsLocallyTwoTransitive(C) : CosetGeom -> BoolElt

LocalPolynomialAlgebra

   LocalPolynomialAlgebra(K, n, order) : Rng, RngIntElt, MonStgElt, ... -> RngMPolLoc
   LocalPolynomialRing(K, n, order) : Rng, RngIntElt, MonStgElt, ... -> RngMPolLoc

LocalPolynomialRing

   LocalPolynomialRing(K, n) : Rng, RngIntElt -> RngMPolLoc
   LocalPolynomialRing(K, n, order) : Rng, RngIntElt, MonStgElt, ... -> RngMPolLoc
   LocalPolynomialRing(K, n, T) : Rng, RngIntElt, Tup -> RngMPolLoc

LocalRing

   LocalRing(P, prec) : RngOrdIdl, RngIntElt -> RngLoc, Map
   LocalRing(P, k) : RngOrdIdl, RngIntElt -> RngPad, Map
   LocalRing(W) : RngWitt -> RngLoc, Map

LocalTwoSelmerMap

   LocalTwoSelmerMap(P) : RngOrdIdl -> Map
   LocalTwoSelmerMap(A, P) : RngUPolRes, RngOrdIdl -> Map, SeqEnum

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013