> k<e9> := GF(3,2); > S<u> := LaurentSeriesRing(k,20); > D1 := ElementaryPhiModule(S,3,2); > D1; Phi-module of dimension 3 over Laurent series field in u over GF(3^2) with fixed relative precision 20 with matrix [ O(u^20) O(u^20) u^2 + O(u^20)] [ 1 + O(u^20) O(u^20) O(u^20) ] [ O(u^20) 1 + O(u^20) O(u^20) ] and Frobenius [1,3] > M := Matrix(S,2,2,[0,k.1*u,1,0]); > D2 := PhiModule(M); > D2; Phi-module of dimension 2 over Laurent series field in u over GF(3^2) with fixed relative precision 20 with matrix [ O(u^20) e9*u^2 + O(u^20)] [ 1 + O(u^20) O(u^20) ] and Frobenius [1,3] > D := DirectSum(D1,D2); > Slopes(D); [ [2, 1], [3, 2] ] > SSGaloisRepresentation(D); Semisimple representation of the absolute Galois group of Laurent series field in u over GF(3^2) with fixed relative precision 20 with coefficients in Finite field of size 3 and components [ [3, 18], [2, 3] ][Next][Prev] [_____] [Left] [Up] [Index] [Root]