[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: Patches .. PCMap
NumberOfAffinePatches(X) : Sch -> BoolElt
Affine Patches on Toric Varieties (TORIC VARIETIES)
MAGMA_PATH
BranchVertexPath(u,v) : GrphVert,GrphVert -> SeqEnum
DiameterPath(G) : Grph -> [GrphVert]
IsPath(G) : Grph -> BoolElt
IsPathTree(B) : AlgBas -> Bool
Path(u, v : parameters) : GrphVert, GrphVert -> Eseq
PathExists(u, v : parameters) : GrphVert, GrphVert -> BoolElt, Eseq
PathGraph(n : parameters) : RngIntElt -> GrphUnd
PathTree(B, i) : AlgBas, RngIntElt -> ModRng
SetPath(s) : MonStgElt ->
VertexPath(u,v) : GrphSplVert,GrphSplVert -> SeqEnum,SeqEnum
VertexPath(u,v) : GrphVert,GrphVert -> SeqEnum
Connectedness (GRAPHS)
Distances, Paths and Circuits in a Graph (GRAPHS)
Distances, Paths and Circuits in a Non-Weighted Graph (GRAPHS)
Distances, Paths and Circuits in a Possibly Weighted Graph (GRAPHS)
The Path Model (QUANTUM GROUPS)
Distances, Paths and Circuits in a Graph (GRAPHS)
Distances, Paths and Circuits in a Non-Weighted Graph (GRAPHS)
Distances, Paths and Circuits in a Possibly Weighted Graph (GRAPHS)
The Path Model (QUANTUM GROUPS)
PathExists(u, v : parameters) : GrphVert, GrphVert -> BoolElt, Eseq
PathGraph(n : parameters) : RngIntElt -> GrphUnd
The Path Model (QUANTUM GROUPS)
AllPairsShortestPaths(G : parameters) : Grph -> SeqEnum, SeqEnum
Paths(u : parameters) : GrphVert -> Eseq
Distances, Shortest Paths and Minimum Weight Trees (MULTIGRAPHS)
PathTree(B, i) : AlgBas, RngIntElt -> ModRng
GrpPC_pAutomorphismGroup (Example H63E24)
PBW-type Bases (QUANTUM GROUPS)
ClassicalSylowToPC(G,P) : GrpMat, GrpMat -> GrpPC, UserProgram, Map
Power-Conjugate Presentations (FINITE SOLUBLE GROUPS)
Transfer from GrpPC (FINITE SOLUBLE GROUPS)
Transfer to GrpPC (FINITE SOLUBLE GROUPS)
Power-Conjugate Presentations (FINITE SOLUBLE GROUPS)
GrpPC_pc-to-perm (Example H63E34)
GrpPC_pc_hom (Example H63E5)
GrpPC_pc_quotient (Example H63E19)
WeightClass(x) : GrpPCElt -> RngIntElt
PCClass(x) : GrpPCElt -> RngIntElt
pCentralSeries(G, p) : GrpFin, RngIntElt -> [ GrpFin ]
pCentralSeries(G, p) : GrpMat, RngIntElt -> [ GrpMat ]
pCentralSeries(G, p) : GrpPC, RngIntElt -> [GrpPC]
pCentralSeries(G, p) : GrpPerm, RngIntElt -> [ GrpPerm ]
pCentralSeries(G, p) : GrpFin, RngIntElt -> [ GrpFin ]
pCentralSeries(G, p) : GrpMat, RngIntElt -> [ GrpMat ]
pCentralSeries(G, p) : GrpPC, RngIntElt -> [GrpPC]
pCentralSeries(G, p) : GrpPerm, RngIntElt -> [ GrpPerm ]
PCExponents(G) : GrpGPC -> [RngIntElt]
PCGenerators(G) : GrpGPC -> {@ GrpGPCElt @}
Generators(G) : GrpGPC -> {@ GrpGPCElt @}
Generators(H, G) : GrpGPC, GrpGPC -> {@ GrpGPCElt @}
NumberOfGenerators(G) : GrpGPC -> RngIntElt
NumberOfPCGenerators(A) : GrpAuto -> RngIntElt
NumberOfPCGenerators(G) : GrpPC -> RngIntElt
NumberOfPCGenerators(P) : GrpPCpQuotientProc -> RngIntElt
PCGenerators(A) : GrpAuto -> SetIndx
PCGenerators(G) : GrpPC -> SetIndx
PCGroup(A) : AlgBasGrpP -> Grp
PCGroup(G) : Grp -> GrpPC, Hom(Grp)
PCGroup(A) : GrpAb -> GrpPC, Hom(Grp)
PCGroup(G) : GrpFP -> GrpPC, GrpHom
PCGroup(G) : GrpGPC -> GrpPC, Map
PCGroup(G) : GrpMat -> GrpPC, Map
PCGroup(G): GrpMat -> GrpPC, Map
PCGroup(G) : GrpPerm -> GrpPC, Map
PCGroup(Q : parameters ) : [RngIntElt] -> GrpPC
PCGroupAutomorphismGroupPGroup(A) : GrpAuto -> BoolElt, Map, GrpPC
GrpPC_pcgroup (Example H63E33)
PCGroupAutomorphismGroupPGroup(A) : GrpAuto -> BoolElt, Map, GrpPC
pClass(G) : GrpPC -> RngIntElt
pClass(P) : GrpPCpQuotientProc -> RngIntElt
pClosure(L, M) : AlgLie, AlgLie -> AlgLie
MakePCMap(A, P, S) : Aff, Prj, SeqEnum ->
MakeProjectiveClosureMap(A, P, S) : Aff,Prj,SeqEnum ->
PCMap(A) : AlgBasGrpP -> Map
ProjectiveClosureMap(A) : Aff -> MapSch
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013