[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: indecomposable  ..  Index


indecomposable

   Indecomposable Projective Modules (BASIC ALGEBRAS)
   The Construction of Projective Indecomposable Modules (K[G]-MODULES AND GROUP REPRESENTATIONS)

indecomposable-projective-modules

   Indecomposable Projective Modules (BASIC ALGEBRAS)

IndecomposableSummands

   IndecomposableSummands(A) : AlgAssV -> [ AlgAssV ], [ AlgAssVElt ]
   DirectSumDecomposition(A) : AlgAssV -> [ AlgAssV ], [ AlgAssVElt ]
   DirectSumDecomposition(ρ) : Map[AlgLie, AlgMatLie] -> SeqEnum
   DirectSumDecomposition(ρ) : Map[GrpLie, GrpMat] -> SeqEnum
   DirectSumDecomposition(V) : ModAlg -> SeqEnum
   DirectSumDecomposition(M) : ModRng -> [ ModRng ]
   DirectSumDecomposition(R) : RootDtm -> [], RootDtm, Map
   DirectSumDecomposition(R) : RootSys -> []
   IndecomposableSummands(L) : AlgLie -> [ AlgLie ]

Indefinite

   IsIndefinite(A) : AlgQuat -> BoolElt
   IsDefinite(A) : AlgQuat -> BoolElt

indefinite

   Algorithm II (Using Indefinite Quaternion Orders) (HILBERT MODULAR FORMS)

InDegree

   InDegree(u) : GrphVert -> RngIntElt
   InDegree(u) : GrphVert -> RngIntElt

Indent

   IndentPop() : ->
   IndentPush() : ->
   SetIndent(n) : RngIntElt ->

indent

   Indentation (INPUT AND OUTPUT)

IndentPop

   IndentPop() : ->

IndentPush

   IndentPush() : ->

Independence

   IndependenceNumber(G: parameters) : GrphUnd -> RngIntElt

IndependenceNumber

   IndependenceNumber(G: parameters) : GrphUnd -> RngIntElt

Independent

   IndependentUnits(O) : RngFunOrd -> SeqEnum[RngFunOrdElt]
   IndependentUnits(O) : RngOrd -> GrpAb, Map
   IsIndependent(Q) : [ AlgGen ] -> BoolElt
   IsIndependent(Q) : [ AlgLieElt ] -> BoolElt
   IsIndependent(Q) : [ ModTupFldElt ] -> BoolElt
   IsIndependent(S) : { ModTupFldElt } -> BoolElt
   IsLinearlyDependent(points) : [PtEll] -> BoolElt, ModTupRngElt
   IsLinearlyIndependent(P, Q) : PtEll, PtEll -> BoolElt, ModTupElt
   IsLinearlyIndependent(P, Q, n) : PtEll, PtEll, RngIntElt -> BoolElt
   IsLinearlyIndependent(S) : [ PtEll ] -> BoolElt, ModTupElt
   IsLinearlyIndependent(S, n) : [ PtEll ], RngIntElt -> BoolElt
   MaximumIndependentSet(G: parameters) : GrphUnd -> { GrphVert }

independent

   Cliques, Independent Sets (GRAPHS)

IndependentGenerators

   IsLinearlyIndependent(points) : [PtEll] -> BoolElt, ModTupRngElt
   IndependentGenerators(points) : [PtEll] -> [PtEll]
   IsLinearlyDependent(points) : [PtEll] -> BoolElt, ModTupRngElt

IndependentUnits

   IndependentUnits(O) : RngFunOrd -> SeqEnum[RngFunOrdElt]
   IndependentUnits(O) : RngOrd -> GrpAb, Map

Indeterminacy

   IndeterminacyLocus(f) : TorMap -> [Sch]

IndeterminacyLocus

   IndeterminacyLocus(f) : TorMap -> [Sch]

Index

   AbsoluteInertiaIndex(L) : RngPad -> RngIntElt
   AbsoluteInertiaDegree(L) : RngPad -> RngIntElt
   AbsoluteRamificationDegree(L) : RngPad -> RngIntElt
   CharacterWithSchurIndex(n: parameters) : RngIntElt -> AlgChtrElt. GrpPC
   ChromaticIndex(G) : GrphUnd -> RngIntElt
   CliffordIndexOne(C) : Crv -> MapSch
   FactoredIndex(G, H) : GrpAb, GrpAb -> [<RngIntElt, RngIntElt>]
   FactoredIndex(G, H) : GrpFin, GrpFin -> [ <RngIntElt, RngIntElt> ]
   FactoredIndex(G, H) : GrpGPC, GrpGPC -> [<RngIntElt, RngIntElt>]
   FactoredIndex(G, H) : GrpMat, GrpMat -> [ <RngIntElt, RngIntElt> ]
   FactoredIndex(G, H) : GrpPC, GrpPC -> [<RngIntElt, RngIntElt>]
   FactoredIndex(G, H) : GrpPerm, GrpPerm -> [ <RngIntElt, RngIntElt> ]
   FanoIndex(X) : GRFano -> RngIntElt
   FirstIndexOfColumn(t, j) : Tbl,RngIntElt -> RngIntElt
   FirstIndexOfRow(t, i) : Tbl,RngIntElt -> RngIntElt
   GorensteinIndex(C) : TorCon -> RngIntElt,TorLatElt
   GorensteinIndex(P) : TorPol -> RngIntElt
   HasIndexOne(C,p) : CrvHyp, RngIntElt -> BoolElt
   HasIndexOneEverywhereLocally(C) : CrvHyp -> BoolElt
   HasValidIndex(P) : GrpFPCosetEnumProc -> BoolElt
   Index(x) : CopElt -> RngIntElt
   Index(D,X) : DB,GRK3 -> RngIntElt,GRK3
   Index(C) : GRCrvS -> RngIntElt
   Index(G, H) : GrpAb, GrpAb -> RngIntElt
   Index(G, H) : GrpFin, GrpFin -> RngIntElt
   Index(P) : GrpFPCosetEnumProc -> RngIntElt
   Index(G, H) : GrpGPC, GrpGPC -> RngIntElt
   Index(e) : GrphEdge -> RngIntElt
   Index(v) : GrphResVert -> RngIntElt
   Index(v) : GrphSplVert -> RngIntElt
   Index(v) : GrphVert -> RngIntElt
   Index(G, H) : GrpMat, GrpMat -> RngIntElt
   Index(G, H) : GrpPC, GrpPC -> RngIntElt
   Index(G, H) : GrpPerm, GrpPerm -> RngIntElt
   Index(G) : GrpPSL2 -> RngIntElt
   Index(G,H) : GrpPSL2, GrpPSL2 -> RngIntElt
   Index(p) : GRPtS -> RngIntElt
   Index(H2, H1) : HomModAbVar, HomModAbVar -> RngIntElt
   Index(L, S): Lat, Lat -> RngInt
   Index(s, t) : MonStgElt, MonStgElt -> RngIntElt
   Index(G, H: parameters) : GrpFP, GrpFP -> RngIntElt
   Index(P, l) : PlaneLn -> RngIntElt
   Index(P, p) : PlanePt -> RngIntElt
   Index(O, S) : RngFunOrd, RngFunOrd -> Any
   Index(O, S) : RngOrd, RngOrd -> RngIntElt
   Index(O, I) : RngOrd, RngOrdIdl -> RngIntElt
   Index(a) : RngOrdElt -> RngIntElt
   Index(s, i, n) : RngPowLazElt, [RngIntElt], [RngIntElt] -> RngIntElt
   Index(S, x) : SeqEnum, Elt -> RngIntElt
   Index(S, x) : SetIndx, Elt -> RngIntElt
   Index(FS) : SymFry -> RngIntElt
   Index(C) : TorCon -> RngIntElt
   IndexCalculus(D1, D2, D0, np) : DivCrvElt, DivCrvElt, DivCrvElt, RngIntElt -> RngIntElt
   IndexCalculusMatrix(D1, D2, D0, n, rr) : DivCrvElt, DivCrvElt, DivCrvElt, RngIntElt, RngIntElt -> MtrxSprs, SeqEnum, SeqEnum, DivCrvElt, DivCrvElt, RngIntElt, RngIntElt
   IndexFormEquation(O, k) : RngOrd, RngIntElt -> [ RngOrdElt ]
   IndexOfPartition(P) : SeqEnum -> RngIntElt
   IndexOfSpeciality(D) : DivCrvElt -> RngIntElt
   IndexOfSpeciality(D) : DivFunElt -> RngIntElt
   InertiaDegree(L) : RngLocA -> RngIntElt
   LastIndexOfColumn(t, j) : Tbl,RngIntElt -> RngIntElt
   LastIndexOfRow(t, i) : Tbl,RngIntElt -> RngIntElt
   LowIndexNormalSubgroups(G, n: parameters) : GrpFP, RngIntElt -> [ Rec ]
   LowIndexProcess(G, R : parameters) : GrpFP, RngIntElt -> Process(Lix)
   LowIndexSubgroups(G, R : parameters) : GrpFP, RngIntElt -> [ GrpFP ]
   LowIndexSubgroups(G, R : parameters) : GrpMat, RngIntElt -> [ GrpMat ]
   LowIndexSubgroups(G, n: parameters) : GrpPerm, RngIntElt -> SeqEnum
   RamificationDegree(I) : RngOrdIdl -> RngIntElt
   RamificationDegree(L) : RngPad -> RngIntElt
   RamificationDegree(K, L) : RngPad, RngPad -> RngIntElt
   RamificationIndex(P) : PlcFunElt -> RngIntElt
   RamificationIndex(P) : PlcNumElt -> RngIntElt
   RamificationIndex(P) : PlcNumElt -> RngIntElt
   RamificationIndex(I) : RngFunOrdIdl -> RngIntElt
   RamificationIndex(I, p) : RngInt, RngIntElt -> RngIntElt
   RamificationIndex(I, p) : RngOrdIdl, RngIntElt -> RngIntElt
   RamificationIndex(E) : RngSerExt -> RngIntElt
   SchurIndex(x) : AlgChtrElt -> RngIntElt
   SchurIndexGroup(n: parameters) : RngIntElt -> GrpPC
   TerminalIndex(p) : GRPtS -> RngIntElt
   TransverseIndex(C) : GRCrvS -> RngIntElt
   WittIndex(V) : ModTupFld -> RngIntElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013