[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: torsion  ..  Totally


torsion

   Rational Torsion Subgroups (MODULAR ABELIAN VARIETIES)
   Families of Elliptic Curves with Prescribed n-Torsion (MODELS OF GENUS ONE CURVES)
   The Torsion Subgroup (ELLIPTIC CURVES OVER FUNCTION FIELDS)
   Torsion (HYPERELLIPTIC CURVES)

Torsion-Cuspidal_Subgroup

   ModAbVar_Torsion-Cuspidal_Subgroup (Example H136E109)

Torsion-Torsion_Subgroup

   ModAbVar_Torsion-Torsion_Subgroup (Example H136E111)

Torsion-Upper_and_Lower_Bounds

   ModAbVar_Torsion-Upper_and_Lower_Bounds (Example H136E110)

TorsionBound

   TorsionBound(E, n) : CrvEll, RngIntElt -> RngIntElt
   TorsionBound(E, n) : CrvEll[FldFunG], RngIntElt -> RngIntElt
   TorsionBound(J, n) : JacHyp, RngIntElt -> RngIntElt
   TorsionBound(M, maxp) : ModSym, RngIntElt -> RngIntElt

TorsionCoefficients

   TorsionCoefficients(X, q) : SmpCpx, RngIntElt -> SeqEnum[RngElt]

TorsionFreeRank

   TorsionFreeRank(A) : GrpAb -> RngIntElt
   TorsionFreeRank(G) : GrpFP -> RngIntElt

TorsionFreeSubgroup

   TorsionFreeSubgroup(A) : GrpAb -> GrpAb

TorsionGroups

   CrvHyp_TorsionGroups (Example H125E26)

TorsionInvariants

   TorsionInvariants(A) : GrpAb -> [ RngIntElt ]

TorsionLowerBound

   TorsionLowerBound(A) : ModAbVar -> RngIntElt

TorsionMultiple

   TorsionMultiple(A) : ModAbVar -> RngIntElt

TorsionSubgroup

   TorsionSubgroup(H) : SetPtEll -> GrpAb, Map
   AbelianGroup(H) : SetPtEll -> GrpAb, Map
   TorsionSubgroup(E) : CrvEll -> GrpAb, Map
   TorsionSubgroup(E) : CrvEll[FldFunG] -> GrpAb, Map
   TorsionSubgroup(A) : GrpAb -> GrpAb
   TorsionSubgroup(J) : JacHyp -> GrpAb, Map
   TorsionSubgroup(A) : ModAbVar -> BoolElt, ModAbVarSubGrp
   TorsionSubgroup(H) : SetPtEll -> GrpAb, Map

TorsionSubgroupScheme

   TorsionSubgroupScheme(G, n) : SchGrpEll, RngIntElt -> SchGrpEll

TorsionUnitGroup

   TorsionUnitGroup(K) : FldNum -> GrpAb, Map
   TorsionUnitGroup(O) : RngOrd -> GrpAb, Map

Torus

   ConjugateIntoTorus(g) : GrpLieElt -> GrpLieElt, GrpLieElt
   StandardMaximalTorus(G) : GrpLie -> GrpLie
   SubgroupOfTorus(M, x) : ModSym, ModSymElt -> RngIntElt
   SubgroupOfTorus(M, s) : ModSym, SeqEnum -> GrpAb
   Torus() : -> SmpCpx
   TorusTerm(G, r, t) : GrpLie, RngIntElt, RngElt -> GrpLieElt
   TwistedTorus(G, w) : GrpLie, GrpPermElt -> List
   TwistedTorusOrder(R, w) : RootDtm, GrpPermElt -> SeqEnum

TorusTerm

   TorusTerm(G, r, t) : GrpLie, RngIntElt, RngElt -> GrpLieElt

torvar

   FakeProjectiveSpace(k,W,Q) : Fld,SeqEnum,SeqEnum -> TorVar
   Constructors for Toric Varieties (TORIC VARIETIES)
   Toric Varieties and Their Fans (TORIC VARIETIES)

Total

   LeadingTotalDegree(f) : AlgFrElt -> RngIntElt
   LeadingTotalDegree(f) : RngMPolElt -> RngIntElt
   ProfilePrintByTotalCount(G): GrphDir ->
   ProfilePrintByTotalTime(G): GrphDir ->
   TotalDegree(f) : AlgFrElt -> RngIntElt
   TotalDegree(f) : FldFunRatElt -> RngIntElt
   TotalDegree(f) : RngMPolElt -> RngIntElt
   TotalLinking(v) : GrphSplVert -> RngIntElt
   TotalNumberOfCosets(P) : GrpFPCosetEnumProc -> RngIntElt

TotalDegree

   TotalDegree(f) : AlgFrElt -> RngIntElt
   TotalDegree(f) : FldFunRatElt -> RngIntElt
   TotalDegree(f) : RngMPolElt -> RngIntElt

TotalLinking

   TotalLinking(v) : GrphSplVert -> RngIntElt

Totally

   AbsoluteTotallyRamifiedExtension(R) : RngPad -> RngPad, Map
   IsRamified(R) : RngPad -> BoolElt
   IsTotallyEven(chi) : GrpDrchElt -> BoolElt
   IsTotallyEven(chi) : GrpDrchNFElt -> BoolElt
   IsTotallyIsotropic(V) : ModTupFld) -> BoolElt
   IsTotallyPositive(a) : FldNumElt -> BoolElt
   IsTotallyPositive(a) : RngOrdElt -> BoolElt
   IsTotallyRamified(K) : FldAlg -> BoolElt
   IsTotallyRamified(O) : RngFunOrd -> BoolElt
   IsTotallyRamified(P) : RngFunOrdIdl -> BoolElt
   IsTotallyRamified(P, O) : RngFunOrdIdl, RngFunOrd -> BoolElt
   IsTotallyRamified(L) : RngLocA -> BoolElt
   IsTotallyRamified(O) : RngOrd -> BoolElt
   IsTotallyRamified(P) : RngOrdIdl -> BoolElt
   IsTotallyRamified(P, O) : RngOrdIdl, RngOrd -> BoolElt
   IsTotallyReal(K) : FldAlg -> BoolElt
   IsTotallySingular(V) : ModTupFld) -> BoolElt
   IsTotallySplit(P) : RngFunOrdIdl -> BoolElt
   IsTotallySplit(P, O) : RngFunOrdIdl, RngFunOrd -> BoolElt
   IsTotallySplit(P) : RngOrdIdl -> BoolElt
   IsTotallySplit(P, O) : RngOrdIdl, RngOrd -> BoolElt
   MaximalTotallyIsotropicSubspace(V) : ModTupFld -> ModTupFld
   MaximalTotallySingularSubspace(V) : ModTupFld -> ModTupFld
   TotallyRamifiedExtension(L, f) : RngPad, RngUPolElt -> RngPad
   TotallyRamifiedExtension(R, f) : RngSerPow[FldFin], RngUPolElt -> RngSerExt
   TotallySingularComplement(V, U, W) : ModTupFld, ModTupFld, ModTupFld) -> ModTupFld
   TotallyUnitTrivialSubgroup(G) : GrpDrchNF -> GrpDrchNF

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013