[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: PlotkinAsymptoticBound .. Point
PlotkinAsymptoticBound(K, delta) : FldFin, FldPrElt -> FldPrElt
PlotkinBound(K, n, d) : FldFin, RngIntElt, RngIntElt -> RngIntElt
PlotkinSum(C, D) : Code, Code -> Code
PlotkinSum(C, D) : Code, Code -> Code
PlotkinSum(C1, C2) : Code, Code -> Code
PlotkinSum(C1, C2) : Code, Code -> Code
PlotkinSum(A, B) : Mtrx, Mtrx -> Mtrx
PlotkinSum(C1, C2, C3: parameters) : Code, Code, Code -> Code
PlotkinSum(C1, C2, C3: parameters) : Code,Code,Code -> Code
Plurigenus(S,n) : Srfc -> RngIntElt
PlurigenusOfDesingularization(S,m) : Srfc, RngIntElt -> RngIntElt
PlurigenusOfDesingularization(S,m) : Srfc, RngIntElt -> RngIntElt
COPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
ConformalOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
GeneralOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
OmegaPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
PGOPlus(arguments)
PSOPlus(arguments)
ProjectiveOmegaPlus(arguments)
SpecialOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
SpinPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
pMap(L) : AlgLie -> Map
RestrictionMap(L) : AlgLie -> Map
pmap< A -> B | x : -> e(x) > : Str, Str -> Map
pmap< A -> B | x : -> e(x), y : -> i(y) > : Str, Str -> Map
pmap< A -> B | G > : Str, Str -> Map
Basis of a Pseudo Matrix (MODULES OVER DEDEKIND DOMAINS)
Construction of a Pseudo Matrix (MODULES OVER DEDEKIND DOMAINS)
Elementary Functions (MODULES OVER DEDEKIND DOMAINS)
Operations with Pseudo Matrices (MODULES OVER DEDEKIND DOMAINS)
Predicates (MODULES OVER DEDEKIND DOMAINS)
Pseudo Matrices (MODULES OVER DEDEKIND DOMAINS)
Basis of a Pseudo Matrix (MODULES OVER DEDEKIND DOMAINS)
Construction of a Pseudo Matrix (MODULES OVER DEDEKIND DOMAINS)
Elementary Functions (MODULES OVER DEDEKIND DOMAINS)
Operations with Pseudo Matrices (MODULES OVER DEDEKIND DOMAINS)
Predicates (MODULES OVER DEDEKIND DOMAINS)
pMatrixRing(A, p) : AlgQuat, RngOrdIdl -> AlgMat, Map, Map
pMatrixRing(A, p) : AlgQuat, RngOrdIdl -> AlgMat, Map, Map
pMaximalOrder(O, p) : AlgQuatOrd, RngElt -> AlgQuatOrd, RngIntElt
pMaximalOrder(O, p) : RngFunOrd, RngFunOrdIdl -> RngFunOrd
pMaximalOrder(O, p) : RngFunOrd, RngFunOrdIdl -> RngFunOrd
pMaximalOrder(O, p) : RngOrd, RngIntElt -> RngOrd
pMaximalOrder(O, p) : AlgQuatOrd, RngElt -> AlgQuatOrd, RngIntElt
pMaximalOrder(O, p) : RngFunOrd, RngFunOrdIdl -> RngFunOrd
pMaximalOrder(O, p) : RngFunOrd, RngFunOrdIdl -> RngFunOrd
pMaximalOrder(O, p) : RngOrd, RngIntElt -> RngOrd
pMinimalWeierstrassModel(C, p) : CrvHyp, RngIntElt -> CrvHyp, MapIsoSch
pMinimalWeierstrassModel(C, p) : CrvHyp, RngIntElt -> CrvHyp, MapIsoSch
pMinimise(f, p) : RngMPolElt, RngIntElt -> RngMPolElt, AlgMatElt
pMinus1(n, B1) : RngIntElt, RngIntElt -> RngIntElt
pMultiplicator(G, p) : GrpFin, RngIntElt -> [ RngIntElt ]
pMultiplicator(G, p) : GrpPerm, RngIntElt -> [ RngIntElt ]
pMultiplicator(G, p) : GrpPerm, RngIntElt -> [ RngIntElt ]
pMultiplicatorRank(G) : GrpPC -> RngIntElt
pMultiplicatorRank(G) : GrpPC -> RngIntElt
pNormalModel(C, p) : CrvHyp, RngIntElt -> CrvHyp, MapIsoSch
pNormalModel(C, p) : CrvHyp, RngIntElt -> CrvHyp, MapIsoSch
PointSet(E, m) : CrvEll, Map -> SetPtEll
E(m) : CrvEll, Map -> SetPtEll
E(L) : CrvEll, Rng -> SetPtEll
ApproximateByTorsionPoint(x : parameters) : ModAbVarElt -> ModAbVarElt
BaseLocus(D) : DivSchElt -> Sch
BasePoint(G, i) : GrpMat, RngIntElt -> Elt
BasePoint(G, i) : GrpPerm, RngIntElt -> Elt
CollineationGroup(P) : Plane -> GrpPerm, GSet, GSet, PowMap, Map
CubicFromPoint(E, P) : CrvEll, PtEll -> RngMPolElt, MapSch, Pt
EquivalentPoint(x) : SpcHypElt -> SpcHypElt, GrpPSL2Elt
FormalPoint(P) : Pt -> Pt
GenericPoint(X) : Sch -> Pt
HasNonsingularPoint(X) : Sch -> BoolElt,Pt
HasPoint(f,q,v) : RngUPolElt, RngIntElt, RngIntElt -> BoolElt, SeqEnum
HasRationalPoint(C) : CrvCon -> BoolElt, Pt
HeegnerPoint(E : parameters) : CrvEll -> BoolElt, PtEll
HeegnerPoint(C : parameters) : CrvHyp -> BoolElt, PtHyp
IsBasePointFree(L) : LinearSys -> BoolElt
IsDoublePoint(p) : Pt -> BoolElt
IsInflectionPoint(p) : Sch,Pt -> BoolElt,RngIntElt
IsPoint(C, S) : CrvHyp, SeqEnum -> BoolElt, PtHyp
IsPoint(N,p) : NwtnPgon,Tup -> BoolElt
IsPoint(H, x) : SetPtEll, RngElt -> BoolElt, PtEll
IsPoint(H, S) : SetPtEll, [ RngElt ] -> BoolElt, PtEll
IsPoint(K, S) : SrfKum, [RngElt] -> BoolElt, SrfKumPt
IsPointRegular(D) : IncNsp -> BoolElt, RngIntElt
IsPointTransitive(D) : Inc -> BoolElt
IsPointTransitive(P) : Plane -> BoolElt
LiftPoint(P, n) : Pt, RngIntElt -> Pt
Point(D, i) : Inc, RngIntElt -> IncPt
Point(r,n,Q) : RngIntElt, RngIntElt, SeqEnum -> GRPtS
PointDegree(D, p) : Inc, IncPt -> RngIntElt
PointDegrees(D) : Inc -> [ RngIntElt ]
PointGraph(D) : Inc -> Grph
PointGraph(D) : Inc -> GrphUnd
PointGraph(P) : Plane -> GrphUnd;
PointGroup(D) : Inc -> GrpPerm, GSet
PointOnRegularModel(M, x) : CrvRegModel, Pt -> SeqEnum, SeqEnum, Tup
PointSearch(S,H : parameters) : Sch[FldRat], RngIntElt -> SeqEnum
PointSet(D) : Inc -> IncPtSet
PointSet(P) : Plane -> PlanePtSet
ProjectionFromNonsingularPoint(X,p) : Sch,Pt -> Sch,MapSch,Sch
RationalPoint(C) : CrvCon -> Pt
RepresentativePoint(P) : PlcCrv -> Pt
X(L) : Sch,Rng -> SetPt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013