[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: domain  ..  Dual


domain

   (Co)Domain and (Co)Kernel (MAPPINGS)
   Canonical Forms for Matrices over Euclidean Domains (MATRIX ALGEBRAS)

domain-kernel

   (Co)Domain and (Co)Kernel (MAPPINGS)

domains

   Fundamental Domain (ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES)
   Fundamental Domains (ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES)

Domian

   To2DUpperHalfSpaceFundamentalDomian(z) : Mtrx -> Mtrx, Mtrx

Dominant

   AlternatingDominant(D) : LieRepDec, GrpPermElt -> LieRepDec
   AlternatingDominant(D, w) : LieRepDec, GrpPermElt -> LieRepDec
   DominantCharacter(D) : LieRepDec -> LieRepDec
   DominantDiagonalForm(X) : Mtrx[RngUPol] -> Mtrx, Mtrx, GrpMat, FldFin
   DominantLSPath(R, hw) : RootDtm, SeqEnum -> PathLS
   DominantWeight(G, v) : GrpLie, . -> ModTupFldElt, GrpFPCoxElt
   DominantWeight(W, v) : GrpMat, . -> ModTupFldElt, GrpFPCoxElt
   DominantWeight(W, v) : GrpPermCox, . -> ModTupFldElt, GrpFPCoxElt
   DominantWeight(R, v) : RootDtm, . -> ModTupFldElt, GrpFPCoxElt
   IsDominant(f) : MapSch -> BoolElt
   IsDominant(R, v) : RootDtm, . -> ModTupFldElt, GrpFPCoxElt
   IsDominant(R, v) : RootDtm, . -> ModTupFldElt, GrpFPCoxElt
   IsDominant(R, v) : RootDtm, . -> ModTupFldElt, GrpFPCoxElt

DominantCharacter

   DominantCharacter(D) : LieRepDec -> LieRepDec

DominantDiagonalForm

   DominantDiagonalForm(X) : Mtrx[RngUPol] -> Mtrx, Mtrx, GrpMat, FldFin

DominantLSPath

   DominantLSPath(R, hw) : RootDtm, SeqEnum -> PathLS

DominantWeight

   DominantWeight(G, v) : GrpLie, . -> ModTupFldElt, GrpFPCoxElt
   DominantWeight(W, v) : GrpMat, . -> ModTupFldElt, GrpFPCoxElt
   DominantWeight(W, v) : GrpPermCox, . -> ModTupFldElt, GrpFPCoxElt
   DominantWeight(R, v) : RootDtm, . -> ModTupFldElt, GrpFPCoxElt

DominantWeights

   GrpCox_DominantWeights (Example H98E21)
   GrpRfl_DominantWeights (Example H99E27)
   RootDtm_DominantWeights (Example H97E25)

Dominating

   MinimumDominatingSet(G) : GrphUnd -> SetEnum

Dot

   DotProduct(u, v) : ModTupFldElt, ModTupFldElt -> FldElt
   DotProductMatrix(W) : SeqEnum[ModTupFldElt] -> AlgMatElt

DotProduct

   DotProduct(u, v) : ModTupFldElt, ModTupFldElt -> FldElt

DotProductMatrix

   DotProductMatrix(W) : SeqEnum[ModTupFldElt] -> AlgMatElt

Double

   Double(P) : SrfKumPt -> SrfKumPt
   DoubleCoset(G, H, g, K ) : GrpFP, GrpFP, GrpFPElt, GrpFP -> GrpFPDcosElt
   DoubleCoset(G, H, g, K) : GrpPerm, GrpPerm, GrpPermElt, GrpPerm -> GrpPermDcosElt
   DoubleCosetRepresentatives(G, H, K) : GrpPerm, GrpPerm, GrpPerm -> SeqEnum, SeqEnum
   DoubleCosets(G, H, K) : GrpFP, GrpFP, GrpFP -> { GrpFPDcosElt }
   DoubleGenusOneModel(model) : ModelG1 -> ModelG1
   DoublePlotkinSum(E, F, G, H) : Code, Code, Code, Code -> Code
   DoublePlotkinSum(A, B, C, D) : Mtrx, Mtrx, Mtrx, Mtrx -> Mtrx
   InverseRSKCorrespondenceDoubleWord(t1, t2) : Tbl, Tbl -> MonOrdElt, MonOrdElt
   IsDoublePoint(p) : Pt -> BoolElt

double

   Double Coset Spaces: Construction (FINITELY PRESENTED GROUPS)

double-cosets

   Double Coset Spaces: Construction (FINITELY PRESENTED GROUPS)

DoubleCoset

   DoubleCoset(G, H, g, K ) : GrpFP, GrpFP, GrpFPElt, GrpFP -> GrpFPDcosElt
   DoubleCoset(G, H, g, K) : GrpPerm, GrpPerm, GrpPermElt, GrpPerm -> GrpPermDcosElt

DoubleCosetRepresentatives

   DoubleCosetRepresentatives(G, H, K) : GrpPerm, GrpPerm, GrpPerm -> SeqEnum, SeqEnum

DoubleCosets

   DoubleCosets(G, H, K) : GrpFP, GrpFP, GrpFP -> { GrpFPDcosElt }
   GrpFP_1_DoubleCosets (Example H70E64)

DoubleGenusOneModel

   DoubleGenusOneModel(model) : ModelG1 -> ModelG1

DoublePlotkinSum

   DoublePlotkinSum(E, F, G, H) : Code, Code, Code, Code -> Code
   DoublePlotkinSum(A, B, C, D) : Mtrx, Mtrx, Mtrx, Mtrx -> Mtrx

Doubly

   BorderedDoublyCirculantQRCode(p, a, b) : RngIntElt, RngElt, RngElt -> Code
   DoublyCirculantQRCode(p) : RngIntElt -> Code
   DoublyCirculantQRCodeGF4(m, a) : RngIntElt, RngElt -> Code
   IsDoublyEven(C) : Code -> BoolElt

DoublyCirculantQRCode

   DoublyCirculantQRCode(p) : RngIntElt -> Code

DoublyCirculantQRCodeGF4

   DoublyCirculantQRCodeGF4(m, a) : RngIntElt, RngElt -> Code

Down

   RoundDownDivisor(D) : DivSchElt -> DivSchElt

DP

   Introduction (ALGEBRAIC SURFACES)

dp

   Creation of General Del Pezzos (ALGEBRAIC SURFACES)
   Del Pezzo Surfaces (ALGEBRAIC SURFACES)

dp-creation

   Creation of General Del Pezzos (ALGEBRAIC SURFACES)

dp-srfcs

   Del Pezzo Surfaces (ALGEBRAIC SURFACES)

dp34

   AlgSrf_dp34 (Example H116E23)

dpoly_ideal_create

   Creation of Polynomial Rings and their Ideals (POLYNOMIAL RING IDEAL OPERATIONS)

Drinfeld

   AnalyticDrinfeldModule(F, p) : FldFun, PlcFunElt -> RngUPolTwstElt

drinfeld

   Analytic Theory (CLASS FIELD THEORY FOR GLOBAL FUNCTION FIELDS)
   FldFunAb_drinfeld (Example H43E5)

DS

   CharacterTableDS(G :parameters) : Grp -> SeqEnum, SeqEnum

dtm

   Operations on Root Data (ROOT DATA)

Dual

   AGDualCode(S, D) : [PlcCrvElt], DivCrvElt -> Code
   AlgebraicGeometricDualCode(S, D) : [PlcCrvElt], DivCrvElt -> Code
   CoxeterForm(W) : GrpPermCox -> AlgMatElt
   CoxeterForm(R) : RootDtm -> AlgMatElt
   CoxeterForm(R) : RootSys -> AlgMatElt
   Dual(C) : Code -> Code
   Dual(C) : Code -> Code
   Dual(C) : Code -> Code
   Dual(C) : Code -> Code
   Dual(C) : CodeAdd -> CodeAdd
   Dual(G) : GrpAb -> GrpAb, Map
   Dual(G) : GrpLie -> GrpLie
   Dual(G) : GrpMat -> BoolElt
   Dual(W) : GrpPermCox -> GrpPermCox
   Dual(D) : Inc -> Inc
   Dual(L) : Lat -> Lat
   Dual(A) : ModAbVar -> ModAbVar
   Dual(M) : ModAlg -> ModAlg
   Dual(C) : ModCpx -> ModCpx
   Dual(M) : ModDed -> ModDed
   Dual(M) : ModGrp -> ModGrp
   Dual(P) : Plane -> Plane, PlanePtSet, PlaneLnSet
   Dual(R) : RootDtm -> RootDtm, Map
   Dual(R) : RootSys -> RootSys
   Dual(S) : ShfCoh -> ShfCoh
   Dual(C): TorCon -> TorCon
   Dual(L) : TorLat -> TorLat
   DualAtkinLehner(M, q) : ModSym, RngIntElt -> AlgMatElt
   DualBasisLattice(L) : Lat -> Lat
   DualEuclideanWeightDistribution(C) : Code -> SeqEnum
   DualFaceInDualFan(P,Q) : TorPol,[RngIntElt] -> TorFan
   DualFan(P) : TorPol -> TorFan
   DualHeckeOperator(M, n) : ModSym, RngIntElt -> AlgMatElt
   DualIsogeny(phi) : Map -> Map
   DualKroneckerZ4(C) : CodeLinRng -> CodeLinRng
   DualLeeWeightDistribution(C) : Code -> SeqEnum
   DualMorphism(R, S, phiX, phiY) : RootDtm, RootDtm, Map, Map -> Map
   DualMorphism(R, S, Q) : RootDtm, RootDtm, [RngIntElt] -> Map
   DualQuotient(L) : Lat -> GrpAb, Lat, Map
   DualStarInvolution(M) : ModSym -> AlgMatElt
   DualVectorSpace(M) : ModSym -> ModTupFld
   DualWeightDistribution(C) : Code -> [ <RngIntElt, RngIntElt> ]
   DualWeightDistribution(C) : Code -> [ <RngIntElt, RngIntElt> ]
   DualWeightDistribution(C) : CodeAdd -> [ <RngIntElt, RngIntElt> ]
   IsDualComputable(A) : ModAbVar -> BoolElt, ModAbVar
   IsSelfDual(C) : Code -> BoolElt
   IsSelfDual(C) : Code -> BoolElt
   IsSelfDual(C) : Code -> BoolElt
   IsSelfDual(D) : Inc -> BoolElt
   IsSelfDual(A) : ModAbVar -> BoolElt
   IsSelfDual(P) : PlaneProj -> BoolElt
   IsSymplecticSelfDual(C) : CodeAdd -> BoolElt
   PartialDual(L, n) : Lat, RngIntElt -> Lat
   PlanarDual(G) : GrphUnd -> GrphUnd
   SemilinearDual(M, mu) : ModGrp,Map -> ModGrp
   SymplecticDual(C) : CodeAdd -> CodeAdd
   TwistedDual(M, lambda) : ModGrp, Map -> ModGrp
   TwistedSemilinearDual(M, lambda, mu) : ModGrp, Map, Map -> ModGrp
   ModGrp_Dual (Example H90E9)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013