[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: R-key .. Ramification
R
r<char>
CyclicToRadical(K, a, z) : FldNum, FldNumElt, RngElt -> FldNum, [FldNumElt], [FldNumElt]
IsInRadical(f, I) : RngMPolElt, RngMPol -> BoolElt
IsRadical(I) : RngMPol -> BoolElt
IsRadical(I) : RngMPolRes -> BoolElt
IsomorphismTypesOfRadicalLayers(M) : ModAlgBas -> SeqEnum
JacobsonRadical(A) : AlgAssV -> AlgAssV
JacobsonRadical(A) : AlgGen -> AlgGen
JacobsonRadical(M) : ModAlg -> ModAlg
JacobsonRadical(M) : ModRng -> ModRng, Map
JacobsonRadical(e) : SubModLatElt -> SubModLatElt
LMGSolubleRadical(G) : GrpMat -> GrpMat, GrpPC, Map
LMGUnipotentRadical(G) : GrpMat -> GrpMat, GrpPC, Map
ProbableRadicalDecomposition(I) : RngMPol -> [ RngMPol ]
Radical(G) : GrpFin -> GrpFin
Radical(G) : GrpMat -> GrpMat
Radical(G) : GrpPerm -> GrpPerm
Radical(V : parameters) : ModTupFld -> ModTupFld
Radical(I) : RngMPol -> RngMPol
Radical(R) : RootDtm -> RootDtm
RadicalDecomposition(I) : RngMPol -> [ RngMPol ]
RadicalDecomposition(I) : RngMPolRes -> [ RngMPolRes ]
RadicalExtension(F, d, a) : Rng, RngIntElt, RngElt -> FldAlg
RadicalExtension(F, d, a) : Rng, RngIntElt, RngElt -> FldNum
RadicalQuotient(G) : GrpMat -> GrpPerm, Hom(Grp), GrpMat
RadicalQuotient(G) : GrpPerm -> GrpPerm, Hom(GrpPerm), GrpPerm
SequenceOfRadicalGenerators(A) : AlgMat -> SeqEnum
SingularRadical(V) : ModTupFld -> ModTupFld
SolubleRadical(L) : AlgLie -> AlgLie
SolubleRadical(G) : GrpLie -> GrpLie
GrpPerm_Radical (Example H58E33)
Ideal_Radical (Example H106E9)
Radical (POLYNOMIAL RING IDEAL OPERATIONS)
Radical and Decomposition of Ideals (POLYNOMIAL RING IDEAL OPERATIONS)
The Soluble Radical and its Quotient (MATRIX GROUPS OVER GENERAL RINGS)
The Soluble Radical and its Quotient (PERMUTATION GROUPS)
Radical and Decomposition of Ideals (POLYNOMIAL RING IDEAL OPERATIONS)
RadicalDecomposition(I) : RngMPol -> [ RngMPol ]
RadicalDecomposition(I) : RngMPolRes -> [ RngMPolRes ]
RadicalExtension(F, d, a) : Rng, RngIntElt, RngElt -> FldAlg
RadicalExtension(F, d, a) : Rng, RngIntElt, RngElt -> FldNum
AlgBas_RadicalLayers (Example H85E13)
RadicalQuotient(G) : GrpMat -> GrpPerm, Hom(Grp), GrpMat
RadicalQuotient(G) : GrpPerm -> GrpPerm, Hom(GrpPerm), GrpPerm
SolveByRadicals(f) : RngUPolElt -> FldNum, [FldNumElt], [FldNumElt]
Solvability by Radicals (GALOIS THEORY OF NUMBER FIELDS)
CoblesRadicand(p) : RngUPolElt -> FldElt
CoveringRadius(C) : Code -> RngIntElt
CoveringRadius(L) : Lat -> FldRatElt
PackingRadius(L) : Lat -> FldReElt
IsWildlyRamified(R) : RngPad -> BoolElt
Ramification Predicates (p-ADIC RINGS AND THEIR EXTENSIONS)
AbsoluteRamificationIndex(L) : RngPad -> RngIntElt
AbsoluteRamificationDegree(L) : RngPad -> RngIntElt
DecompositionGroup(L) : RngLocA -> GrpPerm
InertiaDegree(L) : RngLocA -> RngIntElt
RamificationDegree(I) : RngOrdIdl -> RngIntElt
RamificationDegree(L) : RngPad -> RngIntElt
RamificationDegree(K, L) : RngPad, RngPad -> RngIntElt
RamificationDivisor(C) : Crv -> DivCrvElt
RamificationDivisor(D) : DivCrvElt -> DivCrvElt
RamificationDivisor(D) : DivFunElt -> DivFunElt
RamificationDivisor(F) : FldFunG -> DivFunElt
RamificationDivisor(m) : MapSch -> DivCrvElt
RamificationField(p) : RngOrdIdl -> FldNum, Map
RamificationField(p, i) : RngOrdIdl, RngIntElt -> FldNum, Map
RamificationGroup(p) : RngOrdIdl -> GrpPerm
RamificationGroup(p, i) : RngOrdIdl, RngIntElt -> GrpPerm
RamificationIndex(P) : PlcFunElt -> RngIntElt
RamificationIndex(P) : PlcNumElt -> RngIntElt
RamificationIndex(P) : PlcNumElt -> RngIntElt
RamificationIndex(I) : RngFunOrdIdl -> RngIntElt
RamificationIndex(I, p) : RngInt, RngIntElt -> RngIntElt
RamificationIndex(I, p) : RngOrdIdl, RngIntElt -> RngIntElt
RamificationIndex(E) : RngSerExt -> RngIntElt
RngOrdGal_Ramification (Example H38E2)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013