[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: group-action .. Groups
Action of PSL2(R) on the Upper Half Plane (CONGRUENCE SUBGROUPS OF PSL2(R))
Automorphism Groups (LINEAR CODES OVER FINITE FIELDS)
Group Actions on Polynomials (INVARIANT THEORY)
Group Actions (LINEAR CODES OVER FINITE FIELDS)
Group Algebras (ALGEBRAS WITH INVOLUTION)
General Group Properties (ABELIAN GROUPS)
General Group Properties (POLYCYCLIC GROUPS)
Braid Groups (COXETER GROUPS)
Construction from Groups, Codes and Designs (GRAPHS)
Finite Group Cohomology (COHOMOLOGY AND EXTENSIONS)
Operations on Elements (COXETER GROUPS)
Small Group Identification (FINITELY PRESENTED GROUPS)
Operations on Coxeter Groups (COXETER GROUPS)
Group Order (MATRIX GROUPS OVER GENERAL RINGS)
Group Order (PERMUTATION GROUPS)
GROUPS
Properties of Coxeter Groups (COXETER GROUPS)
Basic Group Properties (FINITE SOLUBLE GROUPS)
GrpPC_group-props (Example H63E4)
Group Recognition (ALMOST SIMPLE GROUPS)
ALMOST SIMPLE GROUPS
Group Theoretic Functions (CLASS FIELD THEORY)
W-graphs (COXETER GROUPS)
The Order of the Group of Points (ELLIPTIC CURVES OVER FINITE FIELDS)
RngInvar_GroupActions (Example H110E1)
GroupAlgebra(S) : AlgGrpSub -> AlgGrp
GroupAlgebra( R, G: parameters ) : Rng, Grp -> AlgGrp
GroupAlgebra(R, G) : Rng, Grp -> AlgGrp
AlgBas_GroupAlgebra (Example H85E1)
GroupAlgebraAsStarAlgebra(R, G) : Rng, Grp -> AlgGrp
AlgInv_GroupAlgebraAsStarAlgebra (Example H87E3)
GrpAb_GroupComputation (Example H69E6)
Grp_GroupConstructors (Example H57E4)
GroupData(D, i): DB, RngIntElt -> Rec
GroupIdeal(F) : FldInvar -> RngMPol
GroupIdeal(R) : RngInvar -> RngMPol
GroupOfLieType(L) : AlgLie -> GrpLie
GroupOfLieType(C, k) : AlgMatElt, Rng -> GrpLie
GroupOfLieType(W, k) : GrpMat, Rng -> GrpLie
GroupOfLieType(W, k) : GrpPermCox, Rng -> GrpLie
GroupOfLieType(W, R) : GrpPermCox, Rng -> GrpLie
GroupOfLieType(W, q) : GrpPermCox, RngIntElt -> GrpLie
GroupOfLieType(N, k) : MonStgElt, Rng -> GrpLie
GroupOfLieType(N, q) : MonStgElt, RngIntElt -> GrpLie
GroupOfLieType(C, k) : Mtrx, Rng -> GrpLie
GroupOfLieType(C, q) : Mtrx, RngIntElt -> GrpLie
GroupOfLieType(R, k) : RootDtm, Rng -> GrpLie
GroupOfLieType(R, k) : RootDtm, Rng -> GrpLie
GroupOfLieType(R, q) : RootDtm, RngIntElt -> GrpLie
GroupOfLieTypeFactoredOrder(R, q) : RootDtm, RngElt -> RngIntElt
GroupOfLieTypeHomomorphism(phi, k) : Map, Rng -> .
GroupOfLieTypeHomomorphism(phi, k) : Map, Rng -> GrpLie
GroupOfLieTypeOrder(R, q) : RootDtm, RngElt -> RngIntElt
RootDtm_GroupOfLieTypeOrder (Example H97E12)
Cartan_GroupOrders (Example H95E15)
NumberOfGroups(D) : DB -> RngIntElt
# D : DB -> RngIntElt
# D : DB -> RngIntElt
# D : DB -> RngIntElt
# D : DB -> RngIntElt
# D : DB -> RngIntElt
AdmissableTriangleGroups() : -> SeqEnum
GeneratepGroups (p, d, c : parameters) : RngIntElt, RngIntElt,RngIntElt -> [GrpPC], RngIntElt
IsolGroupsOfDegreeFieldSatisfying(d, p, f) : RngIntElt, RngIntElt, Any -> SeqEnum
IsolGroupsOfDegreeSatisfying(d, f) : RngIntElt, Any -> SeqEnum
IsolGroupsSatisfying(f) : Any -> SeqEnum
NumberOfGroups(D, d) : DB, RngIntElt -> RngIntElt
NumberOfGroups(D, d) : DB, RngIntElt -> RngIntElt
NumberOfGroups(D, d) : DB, RngIntElt -> RngIntElt
NumberOfGroups(D, d) : DB, RngIntElt -> RngIntElt
NumberOfGroups(D, o) : DB, RngIntElt -> RngIntElt
NumberOfGroups(D, o1, o2): DB, RngIntElt, RngIntElt -> RngIntElt, RngIntElt
NumberOfIrreducibleMatrixGroups(k, p) : RngIntElt, RngIntElt -> RngIntElt
NumberOfPrimitiveGroups(d) : RngIntElt -> RngIntElt
NumberOfSmallGroups(o) : RngIntElt -> RngIntElt
NumberOfTransitiveGroups(d) : RngIntElt -> RngIntElt
PrimitiveGroups(d: parameters) : RngIntElt -> [GrpPerm]
PrimitiveGroups(d, f: parameters) : RngIntElt, Program -> [GrpPerm]
PrimitiveGroups(S: parameters) : [RngIntElt] -> [GrpPerm]
QuasisimpleMatrixGroups(): -> SeqEnum
SmallGroups(o: parameters) : RngIntElt -> [* Grp *]
SmallGroups(o, f: parameters) : RngIntElt, Program -> [* Grp *]
SmallGroups(S: parameters) : [RngIntElt] -> [* Grp *]
SmallGroups(S, f: parameters) : [RngIntElt], Program -> [* Grp *]
ThreeIsogenySelmerGroups(E : parameters) : CrvEll -> GrpAb, Map, GrpAb, Map, MapSch
TransitiveGroups(d: parameters) : RngIntElt -> [GrpPerm]
TransitiveGroups(S: parameters) : [RngIntElt] -> [GrpPerm]
TransitiveGroups(d, f) : RngIntElt, Program -> [GrpPerm]
TransitiveGroups(S, f) : [RngIntElt], Program -> [GrpPerm]
TwoIsogenySelmerGroups(E) : CrvEll[FldFunG] -> GrpAb, GrpAb, MapSch, MapSch
WeilToClassGroupsMap(C) : RngCox -> Map
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013