[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: K .. Kernel
JacobiThetaNullK(q, k) : FldReElt, RngIntElt -> FldReElt
Elimination (k): elim (GRÖBNER BASES)
k
CreateK3Data(g) : RngIntElt -> SeqEnum
K3Copy(X) : GRK3 -> GRK3
K3Database() : -> DB
K3Surface(D,i) : DB,RngIntElt -> GRK3
K3Surface(D,g,B) : DB,RngIntElt,GRBskt -> GRK3
K3Surface(D,g,i) : DB,RngIntElt,RngIntElt -> GRK3
K3Surface(D,g1,g2,i) : DB,RngIntElt,RngIntElt,RngIntElt -> GRK3
K3Surface(D,W) : DB,SeqEnum -> GRK3
K3Surface(D,Q,i) : DB,SeqEnum,RngIntElt -> GRK3
K3Surface(x) : Rec -> GRK3
K3Surface(g,B) : RngIntElt,GRBskt -> GRK3
K3Surface(x) : Tup -> GRK3
K3SurfaceRaw(D,i) : DB,RngIntElt -> Tup
K3SurfaceToRecord(X) : GRK3 -> Rec
WriteK3Data(Q,F) : SeqEnum,MonStgElt ->
K3 Surfaces (HILBERT SERIES OF POLARISED VARIETIES)
Searching the K3 Database (HILBERT SERIES OF POLARISED VARIETIES)
Searching the K3 Database (HILBERT SERIES OF POLARISED VARIETIES)
K3Copy(X) : GRK3 -> GRK3
K3Database() : -> DB
The K3 Database (HILBERT SERIES OF POLARISED VARIETIES)
GrdRng_k3db-ex1 (Example H117E5)
K3Surface(D,i) : DB,RngIntElt -> GRK3
K3Surface(D,g,B) : DB,RngIntElt,GRBskt -> GRK3
K3Surface(D,g,i) : DB,RngIntElt,RngIntElt -> GRK3
K3Surface(D,g1,g2,i) : DB,RngIntElt,RngIntElt,RngIntElt -> GRK3
K3Surface(D,W) : DB,SeqEnum -> GRK3
K3Surface(D,Q,i) : DB,SeqEnum,RngIntElt -> GRK3
K3Surface(x) : Rec -> GRK3
K3Surface(g,B) : RngIntElt,GRBskt -> GRK3
K3Surface(x) : Tup -> GRK3
K3SurfaceRaw(D,i) : DB,RngIntElt -> Tup
K3SurfaceToRecord(X) : GRK3 -> Rec
Construction of K[G]-Modules (K[G]-MODULES AND GROUP REPRESENTATIONS)
General K[G]-Modules (K[G]-MODULES AND GROUP REPRESENTATIONS)
Natural K[G]-Modules (K[G]-MODULES AND GROUP REPRESENTATIONS)
Construction of K[G]-Modules (K[G]-MODULES AND GROUP REPRESENTATIONS)
KacMoodyClass(C) : AlgMatElt -> MonStgElt, ModMatRngElt
KacMoodyClasses(C) : AlgMatElt -> SeqEnum, SeqEnum, SeqEnum
KacMoodyClass(C) : AlgMatElt -> MonStgElt, ModMatRngElt
KacMoodyClasses(C) : AlgMatElt -> SeqEnum, SeqEnum, SeqEnum
SetKantPrecision(n) : RngIntElt ->
SetKantPrinting(f) : BoolElt -> BoolElt
CompleteKArc(P, k) : Plane, RngIntElt -> SetEnum
kArc(P, k) : Plane, RngIntElt -> SetEnum
Kashiwara Operators (QUANTUM GROUPS)
Kashiwara Operators (QUANTUM GROUPS)
KBessel2(n, s) : FldReElt, FldReElt -> FldReElt
KBessel(n, s) : FldReElt, FldReElt -> FldReElt
KBessel2(n, s) : FldReElt, FldReElt -> FldReElt
KBessel(n, s) : FldReElt, FldReElt -> FldReElt
KBinomial(U, i, s) : AlgQUE, RngIntElt, RngIntElt -> AlgQUEElt
KCubeGraph(n : parameters) : RngIntElt -> GrphUnd
KCubeGraph(n : parameters) : RngIntElt -> GrphUnd
KDegree(m, i) : AlgQUEElt, RngIntElt -> Tup
IsKEdgeConnected(G, k) : Grph, RngIntElt -> BoolElt
IsKEdgeConnected(G, k : parameters) : GrphMult, RngIntElt -> BoolElt
CrvHyp_kedlaya (Example H125E20)
CrvHyp_kedlaya2 (Example H125E21)
KerdockCode(m): RngIntElt, RngUPolElt -> Code
CodeRng_Kerdock (Example H155E8)
KerdockCode(m): RngIntElt, RngUPolElt -> Code
ActionKernel(A, Y) : GrpPerm, GSet -> GrpPerm
ActionKernel(G, Y) : GrpPerm, GSet -> GrpPerm
ActionKernel(G, Y) : GrpPerm, GSet -> GrpPerm
ActionKernel(G, Y) : GrpPerm, GSet -> GrpPerm
AffineAlgebraMapKernel(phi) : Map -> MPol
AffineKernel(G) : GrpPerm -> GrpPerm
BlocksKernel(G, P) : GrpPerm, Any -> GrpPerm
ComponentGroupOfKernel(phi) : MapModAbVar -> ModAbVarSubGrp
ConnectedKernel(phi) : MapModAbVar -> ModAbVar, MapModAbVar
CosetKernel(G, H) : Grp, Grp -> Grp
CosetKernel(G, H) : Grp, Grp -> Grp
CosetKernel(G, H) : Grp, Grp -> Grp
CosetKernel(G, H) : Grp, Grp -> Grp
CosetKernel(G, H) : GrpFP, GrpFP -> GrpFP
CosetKernel(V) : GrpFPCos -> GrpFP
CosetKernel(P) : GrpFPCosetEnumProc -> GrpFP
CosetKernel(G, H) : GrpGPC, GrpGPC -> GrpGPC
CosetKernel(G, H) : GrpMat, GrpMat -> GrpMat
DimensionOfKernelZ2(C) : CodeLinRng -> RngIntElt
HasFiniteKernel(phi) : MapModAbVar -> BoolElt
IsogenyFromKernel(E, psi) : CrvEll, RngUPolElt -> CrvEll, Map
IsogenyFromKernel(G) : SchGrpEll -> CrvEll, Map
IsogenyFromKernelFactored(E, psi) : SchGrpEll -> CrvEll, Map
IsogenyFromKernelFactored(G) : SchGrpEll -> CrvEll, Map
Kernel(x) : AlgChtrElt -> Grp
Kernel(a) : AlgMatElt -> ModTup
Kernel(X) : AlgMatLieElt -> ModTupRng
Kernel(A) : ArtRep -> FldNum
Kernel(C) : CosetGeom -> GrpPerm
Kernel(f) : Map -> Grp
Kernel(f) : Map -> Grp
Kernel(f) : Map -> Grp
Kernel(f) : Map -> GrpPC
Kernel(phi) : Map -> ModTupFld
Kernel(I) : Map -> SchGrpEll
Kernel(f) : Map -> Str
Kernel(f) : MapChn -> ModCpx, MapChn
Kernel(phi) : MapModAbVar -> ModAbVarSubGrp, ModAbVar, MapModAbVar
Kernel(f) : ModMatFldElt -> ModAlg,ModMatFldElt
Kernel(a) : ModMatRngElt -> ModTupFld, Map
Kernel(a) : ModMatRngElt -> ModTupRng
Kernel(f) : ModMPolHom -> ModMPol
Kernel(N) : Nfd -> FldFin
Kernel(f) : ShfHom -> ShfCoh, ShfHom
Kernel(I, M) : [Tup], ModSS -> ModSS
Kernel(I, M) : [Tup], ModSym -> ModSym
KernelBasis(f) : TorLatMap -> SeqEnum
KernelEmbedding(f) : TorLatMap -> Map
KernelZ2CodeZ4(C) : CodeLinRng -> CodeLinRng
LMGSocleStarActionKernel(G) : GrpMat -> GrpMat, GrpPC, Map
ModularKernel(M) : ModSym -> GrpAb
NormKernel(m1, m2) : Map, Map -> GrpAb
Nullspace(A) : Mtrx -> ModTupRng
Nullspace(A) : MtrxSprs -> ModTupRng
NullspaceMatrix(A) : Mtrx -> ModTupRng
NullspaceMatrix(A) : MtrxSprs -> Mtrx
OrbitKernel(G, T) : GrpMat, Set -> GrpMat
OrbitKernel(G, T) : GrpPerm, GSet -> GrpPerm
OrbitKernelBounded(G, T, b) : GrpMat, Set, RngIntElt -> BoolElt, GrpMat
PolyMapKernel(f) : Map -> RngMPol
SocleKernel(G) : GrpPerm -> GrpPerm
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013