[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: ChangeSupport  ..  Character


ChangeSupport

   ChangeSupport(~G, S) : Grph, SetIndx ->
   ChangeSupport(G, S) : Grph, SetIndx -> Grph, GrphVertSet, GrphEdgeSet
   ChangeSupport(~G, S) : GrphMult, SetIndx ->
   ChangeSupport(G, S) : GrphMult, SetIndx -> GrphMult, GrphVertSet, GrphEdgeSet

ChangeUniverse

   ChangeUniverse(~x, R) : ModTupRngElt, Rng -> ModRng, Map
   ChangeUniverse(S, V) : SeqEnum, Str ->
   ChangeUniverse(~S, V) : SetEnum, Str ->

ChangGraphs

   ChangGraphs() : -> [GrpUnd, GrpUnd, GrpUnd]

changing

   Changing Basis (K[G]-MODULES AND GROUP REPRESENTATIONS)
   Changing Basis (MODULES OVER AN ALGEBRA)
   Changing Related Structures (DIFFERENTIAL RINGS)
   Changing Related Structures (DIFFERENTIAL RINGS)
   Changing the Coefficient Ring (K[G]-MODULES AND GROUP REPRESENTATIONS)
   Changing the Coefficient Ring (MODULES OVER AN ALGEBRA)
   Degeneracy Maps (MODULAR SYMBOLS)
   Writing a Module over a Smaller Field (K[G]-MODULES AND GROUP REPRESENTATIONS)

changing-attributes-diff-op-rings

   Changing Related Structures (DIFFERENTIAL RINGS)

changing-attributes-diff-rings

   Changing Related Structures (DIFFERENTIAL RINGS)

changing-basis

   Changing Basis (K[G]-MODULES AND GROUP REPRESENTATIONS)
   Changing Basis (MODULES OVER AN ALGEBRA)

changing-level

   Degeneracy Maps (MODULAR SYMBOLS)

changing-ring

   Changing the Coefficient Ring (K[G]-MODULES AND GROUP REPRESENTATIONS)
   Changing the Coefficient Ring (MODULES OVER AN ALGEBRA)
   Writing a Module over a Smaller Field (K[G]-MODULES AND GROUP REPRESENTATIONS)

chap

   PARTITIONS, WORDS AND YOUNG TABLEAUX

Char

   EulerFactorModChar(J) : JacHyp -> RngUPolElt

char

   Series for p-groups (FINITE SOLUBLE GROUPS)

char-series-pgroups

   Series for p-groups (FINITE SOLUBLE GROUPS)

Character

   Symmetric Group Character (SYMMETRIC FUNCTIONS)
   AlternatingCharacter(pa) : SeqEnum -> AlgChtrElt
   AlternatingCharacter(pa, i) : SeqEnum, RngIntElt -> AlgChtrElt
   AlternatingCharacterTable(d) : RngIntElt -> SeqEnum
   AlternatingCharacterValue(pa, pe) : SeqEnum, GrpPermElt -> RngElt
   AlternatingCharacterValue(pa, i, pe) : SeqEnum, RngIntElt, GrpPermElt -> RngElt
   AssociatedPrimitiveCharacter(chi) : GrpDrchElt -> GrpDrchElt
   AssociatedPrimitiveCharacter(chi) : GrpDrchNFElt -> GrpDrchNFElt
   BrauerCharacter(x, p) : AlgChtrElt, RngIntElt -> AlgChtrElt
   CentralCharacter(psi) : GrossenChar -> GrpDrchNFElt
   CentralCharacter(chi) : GrpDrchNFElt -> GrpDrchNFElt
   CentralCharacter(M) : ModFrmHil -> RngIntElt
   CentralCharacter(pi) : RepLoc -> GrpDrchElt
   Character(A) : ArtRep -> AlgChtrElt
   CharacterDegrees(G) : GrpFin -> [ Tup ]
   CharacterDegrees(G) : GrpPC -> [ Tup ]
   CharacterDegrees(G) : GrpPC -> [ Tup ]
   CharacterDegrees(G, z, p): GrpPC, GrpPCElt, RngIntElt -> SeqEnum
   CharacterDegrees(G): GrpPerm -> SeqEnum
   CharacterDegreesPGroup(G) : GrpFin -> [ RngIntElt ]
   CharacterDegreesPGroup(G): GrpPC -> SeqEnum
   CharacterMultiset(V) : ModAlg -> LieRepDec
   CharacterMultiset(V) : ModAlg -> LieRepDec
   CharacterTable(G) : GrpAb -> TabChtr
   CharacterTable(G) : GrpFin -> TabChtr
   CharacterTable(G :parameters) : Grp -> SeqEnum
   CharacterTable(G: parameters) : GrpMat -> TabChtr
   CharacterTable(G: parameters) : GrpPC -> TabChtr
   CharacterTable(G: parameters) : GrpPerm -> TabChtr
   CharacterTableConlon(G) : Grp -> SeqEnum
   CharacterTableConlon(G) : GrpPC -> [ AlgChtrElt ]
   CharacterTableDS(G :parameters) : Grp -> SeqEnum, SeqEnum
   CharacterWithSchurIndex(n: parameters) : RngIntElt -> AlgChtrElt. GrpPC
   ClassFunctionSpace(G) : Grp -> AlgChtr
   ClassPowerCharacter(x, j) : AlgChtrElt, RngIntElt -> AlgChtrElt
   CreateCharacterFile(P) : NFSProc -> .
   CreateCharacterFile(P, cc) : NFSProc, RngIntElt -> .
   DecomposeCharacter(C) : LieRepDec -> LieRepDec
   DirichletCharacter(A) : ArtRep -> GrpDrchElt
   DirichletCharacter(A) : ModAbVar -> GrpDrchElt
   DirichletCharacter(f) : ModFrmElt -> GrpDrchElt
   DirichletCharacter(M) : ModFrmHil -> GrpDrchNFElt
   DirichletCharacter(I, B) : RngOrdIdl, Tup -> GrpDrchNFElt, GrpDrchNF
   DirichletCharacterOverNF(chi) : GrpDrchElt -> GrpDrchNFElt
   DominantCharacter(D) : LieRepDec -> LieRepDec
   HeckeCharacterGroup(I) : RngOrdIdl -> GrpHecke
   Id(R) : AlgChtr -> AlgChtrElt
   IsCharacter(x) : AlgChtrElt -> BoolElt
   IsGeneralizedCharacter(x) : AlgChtrElt -> BoolElt
   KroneckerCharacter(D) : RngIntElt -> GrpDrchElt
   LiftCharacter(c, f, G) : AlgChtrElt, Map, Grp -> AlgChtrElt
   MinimalBaseRingCharacter(chi) : GrpDrchElt -> GrpDrchElt
   PermutationCharacter(K) : FldNum -> ArtRep
   PermutationCharacter(G, H) : Grp, Grp -> AlgChtrElt
   PermutationCharacter(G, H) : GrpFin, GrpFin -> AlgChtrElt
   PermutationCharacter(G, H) : GrpMat, GrpMat -> AlgChtrElt
   PermutationCharacter(G) : GrpPerm -> AlgChtrElt
   PermutationCharacter(G) : GrpPerm -> AlgChtrElt
   PermutationCharacter(G) : GrpPerm -> AlgChtrElt
   PermutationCharacter(G, H) : GrpPerm, GrpPerm -> AlgChtrElt
   RationalCharacterTable(G) : Grp -> SeqEnum, SeqEnum
   RationalCharacterTable(G): GrpFin -> SeqEnum
   SymmetricCharacter(sf): AlgSymElt -> AlgChtrElt
   SymmetricCharacter(pa) : SeqEnum -> AlgChtrElt
   SymmetricCharacterTable(d) : RngIntElt -> SeqEnum
   SymmetricCharacterValue(pa, pe) : SeqEnum, GrpPermElt -> RngElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013