[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: Files  ..  Finite


Files

   MergeFiles(S, fn) : [MonStgElt], MonStgElt -> RngIntElt, RngIntElt
   RemoveFiles(P) : NFSProc -> .

files

   Data files (RING OF INTEGERS)

FillingLPObject

   LP_FillingLPObject (Example H159E4)

Find

   FindCommonEmbeddings(X) : [ModAbVar] -> BoolElt, List
   FindDependencies(P) : NFSProc -> .
   FindFirstGenerators(g) : FldFunRatUElt -> SeqEnum
   FindGenerators(G) : GrpFP -> []
   FindN(X) : GRCY -> RngIntElt,RngIntElt
   FindN(p1,p2,B) : RngIntElt,RngIntElt,GRBskt -> RngIntElt,RngIntElt
   FindRelations(P) : NFSProc -> RngIntElt
   FindRelationsInCWIFormat(P) : NFSProc -> RngIntElt
   FindWord(G,g) : GrpPSL2, GrpPSL2Elt -> SeqEnum

Find_CM_Curve

   CrvHyp_Find_CM_Curve (Example H125E45)

find_keys

   Finding Legal Keys (DATABASES OF GROUPS)

Find_Rational_Isogeny

   CrvHyp_Find_Rational_Isogeny (Example H125E44)

FindCommonEmbeddings

   FindCommonEmbeddings(X) : [ModAbVar] -> BoolElt, List

FindDependencies

   FindDependencies(P) : NFSProc -> .

Finder

   IsolatedPointsFinder(S,P) : Sch, SeqEnum -> List

FindFirstGenerators

   FindFirstGenerators(g) : FldFunRatUElt -> SeqEnum

FindGenerators

   FindGenerators(G) : GrpFP -> []

finding

   Finding Irreducibles (CHARACTERS OF FINITE GROUPS)
   Finding Points (RATIONAL CURVES AND CONICS)

finding-irreducibles

   Finding Irreducibles (CHARACTERS OF FINITE GROUPS)

FindingPrimes

   GB_FindingPrimes (Example H105E7)

FindN

   FindN(X) : GRCY -> RngIntElt,RngIntElt
   FindN(p1,p2,B) : RngIntElt,RngIntElt,GRBskt -> RngIntElt,RngIntElt

FindRelations

   FindRelations(P) : NFSProc -> RngIntElt

FindRelationsInCWIFormat

   FindRelationsInCWIFormat(P) : NFSProc -> RngIntElt

FindWord

   FindWord(G,g) : GrpPSL2, GrpPSL2Elt -> SeqEnum

Fine

   EquidimensionalDecomposition(I) : RngMPol -> [ RngMPol ]
   FineEquidimensionalDecomposition(I) : RngMPol -> SeqEnum
   EquidimensionalPart(I) : RngMPol -> RngMPol

FineEquidimensionalDecomposition

   EquidimensionalDecomposition(I) : RngMPol -> [ RngMPol ]
   FineEquidimensionalDecomposition(I) : RngMPol -> SeqEnum
   EquidimensionalPart(I) : RngMPol -> RngMPol

finfield

   Comments on the Classification over Finite Fields (LIE ALGEBRAS)

Finite

   EquationOrderFinite(F) : FldFun -> RngFunOrd
   FiniteAffinePlane(D) : Inc -> Plane, PlanePtSet, PlaneLnSet
   FiniteAffinePlane(W) : ModFld -> PlaneAff
   FiniteAffinePlane< v | X : parameters > : RngIntElt, List -> PlaneAff
   FiniteAffinePlane(P, l) : PlaneProj, PlaneLn -> PlaneAff, PlanePtSet, PlaneLnSet, Map
   FiniteField(q) : RngIntElt -> FldFin
   FiniteField(p, n) : RngIntElt, RngIntElt -> FldFin
   FiniteLieAlgebra(L) : AlgKac -> AlgLie
   FiniteProjectivePlane(D) : Inc -> Plane, PlanePtSet, PlaneLnSet
   FiniteProjectivePlane(W) : ModTupFld -> PlaneProj
   FiniteProjectivePlane< v | X : parameters > : RngIntElt, List -> PlaneProj
   FiniteSplit(D) : DivFunElt -> DivFunElt, DivFunElt
   HasFiniteDimension(Q) : RngMPolRes -> BoolElt
   HasFiniteKernel(phi) : MapModAbVar -> BoolElt
   HasFiniteOrder(g) : GrpMatElt -> BoolElt, RngIntElt
   HasFiniteOrder(A) : Mtrx -> BoolElt
   HasFiniteOrder (g : parameters ) : GrpMatElt -> BoolElt, RngIntElt
   IsAbelianByFinite(G : parameters) : GrpMat -> BoolElt
   IsCentralByFinite(G : parameters) : GrpMat -> BoolElt
   IsCoxeterFinite(M) : AlgMatElt -> BoolElt
   IsFinite(G) : GrpAb -> BoolElt
   IsFinite(W) : GrpFPCox -> BoolElt
   IsFinite(G) : GrpGPC -> BoolElt
   IsFinite(G) : GrpLie -> BoolElt
   IsFinite(G) : GrpMat -> Bool, RngIntElt
   IsFinite(G) : GrpRWS -> BoolElt, RngIntElt
   IsFinite(G) : GrpRWS -> BoolElt, RngIntElt
   IsFinite(x) : Infty -> BoolElt
   IsFinite(G) : ModAbVarSubGrp -> RngIntElt
   IsFinite(M) : MonRWS -> BoolElt, RngIntElt
   IsFinite(G : parameters) : GrpMat -> BoolElt, RngIntElt
   IsFinite(P) : PlcFunElt -> BoolElt
   IsFinite(p) : PlcNumElt -> BoolElt
   IsFinite(p) : PlcNumElt -> BoolElt
   IsFinite(R) : Rng -> BoolElt
   IsFinite(R) : RootStr -> BoolElt
   IsFiniteOrder(O) : RngFunOrd -> BoolElt
   IsIrreducibleFiniteNilpotent(G : parameters): GrpMat -> BoolElt, Any
   IsNilpotentByFinite(G : parameters) : GrpMat -> BoolElt
   IsPolycyclicByFinite(G : parameters) : GrpMat -> BoolElt
   IsPrimitiveFiniteNilpotent(G : parameters): GrpMat -> BoolElt, Any
   IsSolubleByFinite(G : parameters) : GrpMat -> BoolElt
   MaximalOrderFinite(F) : FldFun -> RngFunOrd
   MaximalOrderFinite(A) : FldFunAb -> RngFunOrd

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013