[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: GeneratorNaming .. Generators
State_GeneratorNaming (Example H1E5)
State_GeneratorNamingSequence (Example H1E4)
GeneratorNumber(w) : GrpFPElt -> RngIntElt
GeneratorOrder(G) : GrpAtc -> SeqEnum
GeneratorPolynomial(C) : Code -> RngUPolElt
CodeFld_GeneratorPolynomial (Example H152E10)
ActionGenerators(M) : ModGrp -> [ AlgMatElt ]
AddRedundantGenerators(G, Q) : GrpSLP, [ GrpSLPElt ] -> GrpSLP
AlgebraGenerators(A) : AlgMat -> Rec
AlgebraicGenerators(G) : GrpLie ->
Basis(C) : Code -> [ ModTupRngElt ]
Basis(H) : HomModAbVar -> SeqEnum
ClassGroupCyclicFactorGenerators(O) : RngOrd -> ModHomElt
ClassicalStandardGenerators(type, d, q) : MonStgElt, RngIntElt, RngIntElt -> []
CohomologyLeftModuleGenerators(P, CP, Q) : Tup, Tup, Tup -> Tup
CohomologyRightModuleGenerators(P, Q, CQ) : Rec, Rec, Rec -> Rec
CohomologyRingGenerators(P) : Rec -> Rec
DegreesOfCohomologyGenerators(C) : Rec -> SeqEnum
Dimension(C) : Code -> RngIntElt
Eliminate(~P: parameters) : GrpFPTietzeProc ->
ExtGenerators(G, U) : GrpPC, GrpPC -> [<AlgMatElt, RngIntElt>]
ExtractGenerators(P) : GrpFPLixProc -> { GrpFPElt }
FewGenerators(G) : GrpPerm -> [GrpPermElt]
FindFirstGenerators(g) : FldFunRatUElt -> SeqEnum
FindGenerators(G) : GrpFP -> []
Generators(O) : AlgAssVOrd -> [AlgAssVElt]
Generators(I) : AlgAssVOrdIdl[RngOrd] -> [AlgAssVOrdElt]
Generators(B) : AlgBas -> SeqEnum
Generators(R) : AlgMat -> { AlgMatElt }
Generators(C) : Code -> { ModTupFldElt }
Generators(C) : Code -> { ModTupRngElt }
Generators(E) : CrvEll[FldFunRat] -> SeqEnum
Generators(A) : FldAb -> [ ], [ ], [ ]
Generators(K): FldAlg -> [FldAlgElt]
Generators(K, k) : FldAlg, FldAlg -> [FldAlgElt]
Generators(K, k) : FldAlg, FldAlg -> [FldAlgElt]
Generators(K): FldNum -> FldNumElt
Generators(G) : Grp -> { GrpFinElt }
Generators(A) : GrpAb -> { GrpAbElt }
Generators(A) : GrpAbGen -> [ GrpAbGenElt ]
Generators(A) : GrpAutCrv -> SeqEnum
Generators(A) : GrpAuto -> SetEnum
Generators(G) : GrpBB -> { GrpBBElt }
Generators(G) : GrpDrch -> [GrpDrchElt]
Generators(G) : GrpFP -> { GrpFPElt }
Generators(G) : GrpGPC -> {@ GrpGPCElt @}
Generators(H, G) : GrpGPC, GrpGPC -> {@ GrpGPCElt @}
Generators(G) : GrpLie ->
Generators(G) : GrpMat -> { GrpMatElt }
Generators(G) : GrpPC -> SetEnum
Generators(G) : GrpPerm -> { GrpPermElt }
Generators(G) : GrpPSL2 -> SeqEnum
Generators(G) : GrpRWS -> [GrpRWSElt]
Generators(G) : GrpRWS -> [GrpRWSElt]
Generators(G) : GrpSLP -> { GrpSLPElt }
Generators(G) : ModAbVarSubGrp -> SeqEnum
Generators(M) : ModRng -> { ModRngElt }
Generators(V) : ModTupFld -> { ModElt }
Generators(M) : ModTupRng -> { ModTupRngElt }
Generators(M) : MonRWS -> [ MonRWSElt]
Generators(B: parameters) : GrpBrd -> [ GrpBrd ]
Generators(R) : RngDiff -> SeqEnum
Generators(I) : RngFunOrdIdl -> [ RngFunOrdElt ]
Generators(I) : RngOrdIdl -> [ RngOrdElt ]
Generators(H) : SetPtEll -> [ PtEll ]
Generators(H) : SetPtEll -> [ PtEll ]
Generators(S) : SgpFP -> { SgpFPElt }
Generators(FS) : SymFry -> SeqEnum
GeneratorsOverBaseRing(K) : FldNum -> FldNumElt
GeneratorsSequence(K): FldNum -> [FldNumElt]
GeneratorsSequence(G) : GrpPerm -> [ GrpPermElt ]
GeneratorsSequenceOverBaseRing(K) : FldNum -> [FldNumElt]
HomGenerators(G, H) : GrpAb, GrpAb -> GrpAb, Map
HomGenerators(G, U) : GrpPC, GrpPC -> [<AlgMatElt, RngIntElt>]
HomologyGenerators(X) : SmpCpx ->
IdempotentActionGenerators(B, i) : AlgBas, RngIntElt -> SeqEnum
IdempotentGenerators(B) : AlgBas -> SeqEnum
InnerGenerators(A) : GrpAuto -> SeqEnum
IrrelevantGenerators(C) : RngCox -> SeqEnum
IsLinearlyDependent(points) : [PtEll] -> BoolElt, ModTupRngElt
L2Generators(P) : RngMPol -> GrpMat
LinearSpanGenerators(C) : TorCon -> SeqEnum
LinearSubspaceGenerators(C) : TorCon -> SeqEnum
MinimalAlgebraGenerators(L) : [ RngMPol ] -> [ RngMPol ]
MinimalAlgebraGenerators(L) : [ RngMPol ] -> [ RngMPol ]
MinimizeGenerators(L) : [FldFunRatElt] -> [FldFunRatElt]
Ngens(M) : ModDed -> RngIntElt
NonIdempotentActionGenerators(B, i) : AlgBas, RngIntElt -> SeqEnum
NonIdempotentGenerators(B) : AlgBas -> SeqEnum
NumberOfActionGenerators(L) : Lat -> RngIntElt
NumberOfActionGenerators(M) : ModGrp -> RngIntElt
NumberOfActionGenerators(M) : ModRng -> RngIntElt
NumberOfAlgebraicGenerators(G) : GrpLie -> RngIntElt
NumberOfGenerators(B) : AlgBas -> RngIntElt
NumberOfGenerators(L) : AlgLieExtr -> RngIntElt
NumberOfGenerators(R) : AlgMat -> { AlgMatElt }
NumberOfGenerators(C) : Code -> RngIntElt
NumberOfGenerators(G) : Grp -> RngIntElt
NumberOfGenerators(A) : GrpAb -> RngIntElt
NumberOfGenerators(A) : GrpAbGen -> RngIntElt
NumberOfGenerators(A) : GrpAutCrv -> RngIntElt
NumberOfGenerators(A) : GrpAuto -> RngIntElt
NumberOfGenerators(G) : GrpBB -> RngIntElt
NumberOfGenerators(B) : GrpBrd -> RngIntElt
NumberOfGenerators(G) : GrpDrch -> RngIntElt
NumberOfGenerators(G) : GrpFP -> RngIntElt
NumberOfGenerators(P) : GrpFPTietzeProc -> RngIntElt
NumberOfGenerators(G) : GrpGPC -> RngIntElt
NumberOfGenerators(G) : GrpLie -> RngIntElt
NumberOfGenerators(G) : GrpMat -> RngIntElt
NumberOfGenerators(G) : GrpPC -> RngIntElt
NumberOfGenerators(G) : GrpPerm -> RngIntElt
NumberOfGenerators(G) : GrpRWS -> RngIntElt
NumberOfGenerators(G) : GrpRWS -> RngIntElt
NumberOfGenerators(G) : GrpSLP -> RngIntElt
NumberOfGenerators(M) : ModTupFld -> RngIntElt
NumberOfGenerators(M) : MonRWS -> RngIntElt
NumberOfGenerators(H) : SetPtEll -> RngIntElt
NumberOfGenerators(H) : SetPtEll -> RngIntElt
NumberOfGenerators(S) : SgpFP -> RngIntElt
NumberOfStrongGenerators(G) : GrpMat -> RngIntElt
NumberOfStrongGenerators(G) : GrpPerm -> RngIntElt
NumberOfStrongGenerators(G, i) : GrpPerm, RngIntElt -> RngIntElt
PSeudoGenerators(M): ModDed -> SeqEnum
PolycyclicGenerators(G) : GrpMat -> [ GrpPCElt ]
PrincipalUnitGroupGenerators(R) : RngPad -> SeqEnum
PseudoDimension(C) : Code -> RngIntElt
Rank(W) : GrpFPCox -> RngIntElt
Rank(W) : GrpMat -> RngIntElt
ReduceGenerators(G) : GrpFP -> GrpFP, Map
ReduceGenerators(~G) : GrpPerm ->
RestrictionOfGenerators(PR1, PR2, AC1, AC2, REL2) : Rec, Rec, Rec, Rec, Rec -> SeqEnum
ScaleGenerators(s,ls) : RngPowAlgElt, SeqEnum -> RngPowAlgElt
SchreierGenerators(G, H : parameters) : GrpFP, GrpFP -> { GrpFPElt }
SequenceOfRadicalGenerators(A) : AlgMat -> SeqEnum
SpinorGenerators(G) : SymGen -> [ RngIntElt ]
StandardGenerators(L) : AlgKac -> SeqEnum[AlgKacElt], SeqEnum[AlgKacElt], SeqEnum[AlgKacElt]
StandardGenerators(G, str : parameters) : Grp, MonStgElt -> BoolElt, SeqEnum, SeqEnum
StrongGenerators(G) : GrpMat -> SetIndx(GrpMat)
StrongGenerators(G) : GrpPerm -> SetIndx(GrpPermElt)
StrongGenerators(G, i) : GrpPerm, RngIntElt -> SetIndx(GrpPermElt)
TwoGenerators(P) : PlcCrvElt -> FldFunFracSchElt, FldFunFracSchElt
TwoGenerators(P) : PlcFunElt -> FldFunGElt, FldFunGElt
UnitGenerators(G) : GrpDrch -> [RngIntElt]
UnitGroupGenerators(F) : FldPad -> SeqEnum
UnitGroupGenerators(R) : RngPad -> SeqEnum
UnivariateEliminationIdealGenerators(I) : RngMPol -> [ RngMPolElt ]
UserGenerators(A) : GrpAbGen -> [ GrpAbGenElt ]
ValuesOnUnitGenerators(chi) : GrpDrchElt -> [RngElt]
WordInStrongGenerators(H, x) : GrpPerm, GrpPermElt -> GrpFPElt
qExpansionsOfGenerators(N,R,r) : RngIntElt, RngSerLaur, RngIntElt -> SeqEnum
GrpLie_Generators (Example H103E5)
Grp_Generators (Example H57E13)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013