[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: power  ..  PRank


power

   ALGEBRAIC POWER SERIES RINGS
   Parents of Sets and Sequences (INTRODUCTION TO AGGREGATES [SETS, SEQUENCES, AND MAPPINGS])
   Power Groups (POLYCYCLIC GROUPS)
   Power Sequences (SEQUENCES)
   Power Sets (SETS)
   POWER, LAURENT AND PUISEUX SERIES
   PowerGroup (FINITE SOLUBLE GROUPS)
   Symmetric Powers (DIFFERENTIAL RINGS)
   Transition Matrices from Power Sum Basis (SYMMETRIC FUNCTIONS)

power-group

   Power Groups (POLYCYCLIC GROUPS)
   PowerGroup (FINITE SOLUBLE GROUPS)

power-sequence

   Power Sequences (SEQUENCES)

power-set

   Power Sets (SETS)

power-set-sequence

   Parents of Sets and Sequences (INTRODUCTION TO AGGREGATES [SETS, SEQUENCES, AND MAPPINGS])

PowerFormalSet

   PowerFormalSet(R) : Str -> PowSetIndx

PowerGroup

   PowerGroup(G) : GrpPC -> PowerGroup

PowerGroupTwo

   GrpPC_PowerGroupTwo (Example H63E37)

PowerIdeal

   PowerIdeal(R) : Rng -> PowIdl

PowerIndexedSet

   PowerIndexedSet(R) : Str -> PowSetIndx

powering

   AlgGrp_powering (Example H84E5)

PowerMap

   PowerMap(G) : GrpFin -> Map
   PowerMap(G) : GrpMat -> Map
   PowerMap(G) : GrpPC -> Map
   PowerMap(G) : GrpPerm -> Map

PowerMultiset

   PowerMultiset(R) : Str -> PowSetMulti

PowerPolynomial

   PowerPolynomial(f,n) : RngUPolElt, RngIntElt -> RngUPolElt

PowerProduct

   PowerProduct(B, E) : [RngOrdFracIdl], [RngIntElt] -> RngOrdFracIdl
   ProductRepresentation(P, E) : [ FldAlgElt ], [ RngIntElt ] -> FldAlgElt
   ProductRepresentation(P, E) : [ FldNumElt ], [ RngIntElt ] -> FldNumElt
   ProductRepresentation(Q, S) : [FldFunGElt], [RngIntElt] -> FldFunGElt

PowerRelation

   PowerRelation(r, k: parameters) : FldReElt, RngIntElt -> RngUPolElt

PowerResidueCode

   PowerResidueCode(K, n, p) : FldFin, RngIntElt, RngIntElt -> Code

PowerSequence

   PowerSequence(R) : Str -> PowSeqEnum
   Seq_PowerSequence (Example H10E2)

PowerSeries

   qEigenform(M, prec) : ModSym, RngIntElt -> RngSerPowElt
   PowerSeries(M, prec) : ModSym, RngIntElt -> RngSerPowElt
   Eigenform(M, prec) : ModSym, RngIntElt -> RngSerPowElt
   qExpansion(f) : ModFrmElt -> RngSerPowElt

PowerSeriesRing

   PowerSeriesRing(R) : Rng -> RngSerPow

PowerSet

   PowerSet(R) : Str -> PowSetEnum
   Set_PowerSet (Example H9E6)

PowerSumToElementaryMatrix

   PowerSumToElementaryMatrix(n): RngIntElt -> AlgMatElt

PowerSumToElementarySymmetric

   PowerSumToElementarySymmetric(I) : [] -> []

PowerSumToHomogeneousMatrix

   PowerSumToHomogeneousMatrix(n): RngIntElt -> AlgMatElt

PowerSumToMonomialMatrix

   PowerSumToMonomialMatrix(n): RngIntElt -> AlgMatElt

PowerSumToSchurMatrix

   PowerSumToSchurMatrix(n): RngIntElt -> AlgMatElt

pPlus1

   pPlus1(n, B1) : RngIntElt, RngIntElt -> RngIntElt

pPower

   pPowerTorsion(E, p) : CrvEll, RngIntElt -> GrpAb, Map

pPowerTorsion

   pPowerTorsion(E, p) : CrvEll, RngIntElt -> GrpAb, Map

pPrimary

   pPrimaryComponent(A, p) : GrpAb, RngIntElt -> GrpAb
   pPrimaryInvariants(A, p) : GrpAb, RngIntElt -> [ RngIntElt ]

pPrimaryComponent

   pPrimaryComponent(A, p) : GrpAb, RngIntElt -> GrpAb

pPrimaryInvariants

   pPrimaryInvariants(A, p) : GrpAb, RngIntElt -> [ RngIntElt ]

pQuotient

   pQuotient(L, M) : AlgLie, AlgLie -> AlgLie
   pQuotient(G, p, c) : GrpMat, RngIntElt, RngIntElt -> GrpPC, Map, SeqEnum, BoolElt
   pQuotient(G, p, c) : GrpPerm, RngIntElt, RngIntElt -> GrpPC, Map, SeqEnum, BoolElt
   pQuotient( F, p, c : parameters ) : GrpFP, RngIntElt, RngIntElt -> GrpPC, Map
   pQuotient(G, p, c : parameters ) : GrpPC, RngIntElt, RngIntElt -> GrpPC, Map
   pQuotient(F, p, c: parameters) : GrpFP, RngIntElt, RngIntElt -> GrpPC, Map
   pQuotient(F, p, c: parameters) : GrpFP, RngIntElt, RngIntElt -> GrpPC, Map, SeqEnum , BoolElt
   pQuotientProcess(F, p, c: parameters) : GrpFP, RngIntElt, RngIntElt -> Process

pQuotient1

   GrpFP_1_pQuotient1 (Example H70E31)

pQuotient2

   GrpFP_1_pQuotient2 (Example H70E32)

pQuotient3

   GrpFP_1_pQuotient3 (Example H70E33)

pQuotient4

   GrpFP_1_pQuotient4 (Example H70E34)

pQuotient5

   GrpFP_2_pQuotient5 (Example H71E9)

pQuotient6

   GrpFP_2_pQuotient6 (Example H71E10)

pQuotient7

   GrpFP_2_pQuotient7 (Example H71E11)

pQuotient8

   GrpFP_2_pQuotient8 (Example H71E12)

pQuotientProcess

   pQuotientProcess(F, p, c: parameters) : GrpFP, RngIntElt, RngIntElt -> Process

PQuotients

   HasAllPQuotientsMetacyclic (G): GrpFP -> BoolElt, SeqEnum

pRadical

   pRadical(O, p) : RngFunOrd, RngFunOrdIdl -> RngFunOrdIdl
   pRadical(O, p) : RngFunOrd, RngFunOrdIdl -> RngFunOrdIdl
   pRadical(O, p) : RngOrd, RngIntElt -> RngOrdIdl

PRank

   ClassGroupPRank(C) : Crv[FldFin] -> RngIntElt
   ClassGroupPRank(F) : FldFunG -> RngIntElt
   ClassGroupPRank(F) : FldFunG -> RngIntElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013