[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: conditional-expression .. cones
The Simple Conditional Expression (STATEMENTS AND EXPRESSIONS)
The Simple Conditional Statement (STATEMENTS AND EXPRESSIONS)
ConditionalClassGroup(K) : FldAlg -> GrpAb, Map
ConditionalClassGroup(O) : RngOrd -> GrpAb, Map
ConditionedGroup(G) : GrpPC -> GrpPC
IsConditioned(G) : GrpPC -> BoolElt
WeightClass(x) : GrpPCElt -> RngIntElt
Conditioned Presentations (FINITE SOLUBLE GROUPS)
WeightClass(x) : GrpPCElt -> RngIntElt
Conditioned Presentations (FINITE SOLUBLE GROUPS)
ConditionedGroup(G) : GrpPC -> GrpPC
OreConditions(R, n, j) : RngPad, RngIntElt, RngIntElt -> BoolElt
Point Conditions (SCHEMES)
Level(S) : AlgQuatOrd -> RngElt
Conductor(S) : AlgQuatOrd -> RngElt
Conductor(A) : ArtRep -> RngIntElt
Conductor(E) : CrvEll -> DivFunElt
Conductor(E) : CrvEll -> FldPadElt
Conductor(E) : CrvEll -> RngIntElt
Conductor(E) : CrvEll -> RngOrdIdl
Conductor(m) : DivFunElt -> DivFunElt
Conductor(m, U) : DivFunElt, GrpAb -> DivFunElt
Conductor(A) : FldAb -> RngOrdIdl, [RngIntElt]
Conductor(K) : FldCyc -> RngIntElt, [RngIntElt]
Conductor(A) : FldFunAb -> DivFunElt
Conductor(K) : FldQuad -> RngIntElt, [RngIntElt]
Conductor(Q) : FldRat -> RngIntElt
Conductor(psi) : GrossenChar -> RngOrdIdl, SeqEnum
Conductor(chi) : GrpDrchElt -> RngIntElt
Conductor(chi) : GrpDrchNFElt -> RngOrdIdl, SeqEnum
Conductor(A) : ModAbVar -> RngIntElt
Conductor(M) : ModBrdt -> RngIntElt
Conductor(Q) : QuadBin -> RngIntElt
Conductor(pi) : RepLoc -> RngIntElt
Conductor(O) : RngOrd -> RngOrdIdl
Conductor(O) : RngQuad -> RngIntElt
ConductorRange(D) : DB -> RngIntElt, RngIntElt
EulerFactor(L, p) : LSer, RngIntElt -> .var Degree : RngIntElt : var Precision: RngIntElt Default: desGiven an L-series and a prime p, this computes thepth Euler factor, either as a polynomial or a power series.The optional parameter Degree will truncate the series to that length,and the optional parameter Precision is of use when the series isdefined over the complex numbers.
LargestConductor(D) : DB -> RngIntElt
QuaternionOrder(M) : ModBrdt -> AlgQuatOrd
ConductorRange(D) : DB -> RngIntElt, RngIntElt
Cone(A) : Seq -> TorCon
Cone(X) : SmpCpx -> SmpCpx
Cone(F,i) : TorFan,RngIntElt -> TorCon
Cone(F,S) : TorFan,[RngIntElt] -> TorCon
Cone(v) : TorLatElt -> TorCon
ConeInSublattice(C) : TorCon -> TorCon,Map
ConeIndices(F) : TorFan -> SeqEnum
ConeIndices(F,C) : TorFan -> SeqEnum
ConeIntersection(F,C1,C2) : TorFan,TorCon,TorCon -> TorCon
ConeQuotientByLinearSubspace(C) : TorCon -> TorCon,Map,Map
ConeToPolyhedron(C) : TorCon -> TorPol
ConeWithInequalities(B) : Set -> TorCon
FullCone(L): TorLat -> TorCon
GradedCone(D) : DivTorElt -> TorCon
MoriCone(X) : TorVar -> TorCon
NefCone(X) : TorVar -> TorCon
NormalisedCone(P) : TorPol -> TorCon
SupportingCone(P,v) : TorPol,TorLatElt -> TorCon
TangentCone(p) : Pt -> Sch
TangentCone(p) : Sch,Pt -> Sch
ZeroCone(L): TorLat -> TorCon
SmpCpx_cone-suspension (Example H140E12)
ConeIndices(F) : TorFan -> SeqEnum
ConeIndices(F,C) : TorFan -> SeqEnum
ConeInSublattice(C) : TorCon -> TorCon,Map
ConeIntersection(F,C1,C2) : TorFan,TorCon,TorCon -> TorCon
ConeQuotientByLinearSubspace(C) : TorCon -> TorCon,Map,Map
AllCones(F) : TorFan -> SeqEnum
Cones(F) : TorFan -> SeqEnum
Cones(F,i) : TorFan,RngIntElt -> SeqEnum
ConesOfCodimension(F,i) : TorFan,RngIntElt -> SeqEnum
ConesOfMaximalDimension(F) : TorFan -> SeqEnum
SingularCones(F) : TorFan -> SeqEnum,SeqEnum
Cones (CONVEX POLYTOPES AND POLYHEDRA)
Cones and Polyhedra (CONVEX POLYTOPES AND POLYHEDRA)
Geometrical Properties of Cones and Polyhedra (TORIC VARIETIES)
Polytopes, Cones and Polyhedra (CONVEX POLYTOPES AND POLYHEDRA)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013