[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: rank2  ..  Rational


rank2

   CrvEllFldFun_rank2 (Example H123E1)

rank2-continued

   CrvEllFldFun_rank2-continued (Example H123E3)

RankBound

   RankBound(f,q) : RngUPolElt, RngIntElt -> RngIntElt
   RankBounds(f,q) : RngUPolElt, RngIntElt -> RngIntElt, RngIntElt
   PhiSelmerGroup(f,q) : RngUPolElt, RngIntElt -> GrpAb, Map
   RankBound(E) : CrvEll -> RngIntElt
   RankBound(J) : JacHyp -> RngIntElt
   RankBounds(E) : CrvEll[FldFunG] -> RngIntElt, RngIntElt

RankBounds

   RankBound(f,q) : RngUPolElt, RngIntElt -> RngIntElt
   RankBounds(f,q) : RngUPolElt, RngIntElt -> RngIntElt, RngIntElt
   PhiSelmerGroup(f,q) : RngUPolElt, RngIntElt -> GrpAb, Map
   RankBound(J) : JacHyp -> RngIntElt
   RankBounds(E) : CrvEll[FldFunG] -> RngIntElt, RngIntElt
   RankBounds(H: parameters) : SetPtEll -> RngIntElt, RngIntElt

RankDimension

   GrpCox_RankDimension (Example H98E9)
   GrpRfl_RankDimension (Example H99E17)

Ranks

   RanksOfPrimitiveIdempotents(A) : AlgMat -> SeqEnum

RanksOfPrimitiveIdempotents

   RanksOfPrimitiveIdempotents(A) : AlgMat -> SeqEnum

RankZ2

   RankZ2(C) : CodeLinRng -> RngIntElt
   DimensionOfSpanZ2(C) : CodeLinRng -> RngIntElt

rat-diff-field-create

   RngDiff_rat-diff-field-create (Example H111E2)

Rate

   InformationRate(C) : Code -> FldPrElt
   InformationRate(C) : Code -> FldPrElt
   InformationRate(C) : Code -> RngPrElt
   LDPCEnsembleRate(v, c) : RngIntElt, RngIntElt -> FldReElt

rate

   Asymptotic Bounds on the Information Rate (LINEAR CODES OVER FINITE FIELDS)

ratgps

   Database of Rational Maximal Finite Matrix Groups (DATABASES OF GROUPS)

ratgps1

   GrpData_ratgps1 (Example H66E15)

Rational

   AbsoluteRationalScroll(k,N) : Rng,SeqEnum -> PrjScrl
   ClassifyRationalSurface(S) : Srfc -> Srfc, List, MonStgElt
   FunctionField(R) : Rng -> FldFunRat
   FunctionField(R, r) : Rng, RngIntElt -> FldFunRat
   HasRationalPoint(C) : CrvCon -> BoolElt, Pt
   HasRationalSolutions(L, g) : RngDiffOpElt, RngElt -> BoolElt, RngElt, SeqEnum
   IsRational(X) : Srfc -> BoolElt
   IsRationalCurve(S) : Sch -> BoolElt, CrvRat
   IsRationalCurve(X) : Sch -> BoolElt,CrvRat
   IsRationalFunctionField(F) : FldFunG -> BoolElt
   MinimalModelRationalSurface(S) : Srfc -> Map
   ModularSymbolToRationalHomology(A, x) : ModAbVar, ModSymElt -> ModTupFldElt
   NumberOfRationalPoints(A) : ModAbVar -> RngIntElt, RngIntElt
   Parametrization(C) : CrvCon -> MapSch
   Points(E) : CrvEll -> @ PtEll @
   Points(C) : CrvHyp -> SetIndx
   Points(C, x) : CrvHyp, RngElt -> SetIndx
   Points(J) : JacHyp -> SetIndx
   Points(J) : JacHyp -> SetIndx
   Points(J, a, d) : JacHyp, RngUPolElt, RngIntElt -> SetIndx
   Points(J, P) : JacHyp, SrfKumPt -> SetIndx
   Points(C : parameters) : CrvCon -> SetIndx
   Points(G) : SchGrpEll -> SetIndx
   PrimaryRationalForm(a) : AlgMatElt -> AlgMatElt, AlgMatElt, [ <RngUPolElt, RngIntElt ]
   PrimaryRationalForm(A) : Mtrx -> AlgMatElt, AlgMatElt, [ <RngUPolElt, RngIntElt ]
   ProjectiveRationalFunction(f) : FldFunFracSchElt -> FldFunRatMElt
   RandomRationalSurface_d10g9(P) : Prj -> Srfc
   RationalCharacterTable(G) : Grp -> SeqEnum, SeqEnum
   RationalCharacterTable(G): GrpFin -> SeqEnum
   RationalCurve(X, f) : Prj, RngMPolElt -> CrvRat
   RationalCuspidalSubgroup(A) : ModAbVar -> ModAbVarSubGrp
   RationalDifferentialField(C) : Fld -> RngDiff
   RationalExtensionRepresentation(F) : FldFunG -> FldFun
   RationalForm(a) : AlgMatElt -> AlgMatElt, AlgMatElt, [ RngUPolElt ]
   RationalForm(A) : Mtrx -> Mtrx, AlgMatElt, [ RngUPolElt ]
   RationalFunction(a) : FldFunGElt -> RngElt
   RationalHomology(A) : ModAbVar -> ModTupFld
   RationalMap(i, t) : Map, Map -> Map
   RationalMapping(M) : ModSym -> Map
   RationalMatrixGroupDatabase() : -> DB
   RationalPoint(C) : CrvCon -> Pt
   RationalPoints(f,q) : RngUPolElt, RngIntElt -> SetIndx
   RationalPoints(Z) : Sch -> SetEnum
   RationalPoints(X) : Sch -> SetIndx
   RationalPoints(K, Q) : SrfKum, [RngElt] -> SetIndx
   RationalPointsByFibration(X) : Sch -> SetIndx
   RationalPuiseux(p) : RngUPolElt -> Tup, SeqEnum, RngIntElt
   RationalReconstruction(e, f) : FldFunElt, RngUPolElt -> BoolElt, FldFunElt
   RationalReconstruction(s) : RngIntResElt -> BoolElt, FldRatElt
   RationalRuledSurface(P,n) : Prj, RngIntElt -> Srfc, MapSch
   RationalSequence(p) : PathLS -> SeqEnum
   RationalSolutions(L) : RngDiffOpElt, -> SeqEnum
   Rationals() : -> FldRat
   SetRationalBasis(M) : ModFrmHil ->

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013