[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: RecogniseSp4Even .. RedoEnumeration
RecognizeSp4Even(G, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
RecogniseSp4Even(G, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
RecognizeSpOdd(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
RecogniseSpOdd(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
RecogniseStarAlgebra(A) : AlgMat -> BoolElt
RecognizeSU3(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
RecogniseSU3(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
RecognizeSU4(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
RecogniseSU4(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
RecogniseSymmetric(G, n: parameters) : Grp, RngIntElt -> BoolElt, Map, Map, Map, Map, BoolElt
RecogniseSymmetric(G, n: parameters) : Grp, RngIntElt -> BoolElt, Map, Map, Map, Map, BoolElt
RecogniseSymmetricSquare (G) : GrpMat -> BoolElt, GrpMat
GrpASim_RecogniseSymmetricSquare (Example H65E12)
RecognizeSz(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map
RecogniseSz(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map
ClassicalConstructiveRecognition(G : parameters) : GrpMat[FldFin] -> BoolElt, [], [], GrpMatElt
RecognizeSL(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
Constructive Recognition of Linear Groups (ALMOST SIMPLE GROUPS)
Constructive Recognition of SL(d, q) in Low Degree (ALMOST SIMPLE GROUPS)
Constructive Recognition of Symplectic Groups (ALMOST SIMPLE GROUPS)
Constructive Recognition of Unitary Groups (ALMOST SIMPLE GROUPS)
Group Recognition (ALMOST SIMPLE GROUPS)
Recognition of *-Algebras (ALGEBRAS WITH INVOLUTION)
Recognizing Classical Groups in their Natural Representation (ALMOST SIMPLE GROUPS)
RecognizeLargeRee(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map
RecogniseLargeRee(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map
RecogniseRee(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map
RecogniseSL(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
RecogniseSU3(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
RecogniseSU4(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
RecogniseSp4Even(G, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
RecogniseSpOdd(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
RecogniseSz(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map
RecognizeClassical( G : parameters): GrpMat -> BoolElt
RecognizeSL2(G) : GrpMat -> BoolElt, Map, Map, Map, Map
RecognizeClassical( G : parameters): GrpMat -> BoolElt
GrpASim_RecognizeClassical (Example H65E8)
RecognizeLargeRee(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map
RecogniseLargeRee(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map
RecognizeRee(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map
RecogniseRee(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map
RecognizeSL(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
RecogniseSL(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
RecognizeSL2(G) : GrpMat -> BoolElt, Map, Map, Map, Map
GrpASim_RecognizeSL2-1 (Example H65E9)
RecognizeSp4Even(G, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
RecogniseSp4Even(G, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
RecognizeSpOdd(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
RecogniseSpOdd(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
RecognizeSU3(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
RecogniseSU3(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
RecognizeSU4(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
RecogniseSU4(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
RecognizeSz(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map
RecogniseSz(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map
Reconstruct(x, R) : RngOrdElt, RngOrdRecoEnv -> RngOrdElt
ReconstructLatticeBasis(S, B) : ModMatRngElt, ModMatRngElt -> ModMatRngEltLat
Recovering a Short Basis from Short Lattice Vectors (LATTICES)
PseudoRandom_reconstruct-sequence (Example H158E1)
RationalReconstruction(e, f) : FldFunElt, RngUPolElt -> BoolElt, FldFunElt
RationalReconstruction(s) : RngIntResElt -> BoolElt, FldRatElt
ReconstructionEnvironment(p, k) : RngOrdIdl, RngIntElt -> RngOrdRecoEnv
Rational Reconstruction (RATIONAL FIELD)
Reconstruction (ORDERS AND ALGEBRAIC FIELDS)
ReconstructionEnvironment(p, k) : RngOrdIdl, RngIntElt -> RngOrdRecoEnv
ReconstructLatticeBasis(S, B) : ModMatRngElt, ModMatRngElt -> ModMatRngEltLat
AInfinityRecord(G,n) : Grp, RngIntElt -> Rec
K3SurfaceToRecord(X) : GRK3 -> Rec
Rec_Record (Example H15E2)
Creating a Record (RECORDS)
RECORDS
RECORDS
Rec_RecordAccess (Example H15E3)
Rec_RecordFormat (Example H15E1)
Rectify(~t) : Tbl ->
JeuDeTaquin(~t) : Tbl ->
Func_Recursion (Example H2E1)
Recursion (SEQUENCES)
Recursion and Mutual Recursion (MAGMA SEMANTICS)
Recursion and the Profiler (THE MAGMA PROFILER)
Recursion, Reduction, and Iteration (SEQUENCES)
Recursion and Mutual Recursion (MAGMA SEMANTICS)
Recursion and the Profiler (THE MAGMA PROFILER)
Recursion, Reduction, and Iteration (SEQUENCES)
Operations for Semisimple and Reductive Lie Algebras (LIE ALGEBRAS)
Operations for Semisimple and Reductive Lie Algebras (LIE ALGEBRAS)
Redirecting Output (INPUT AND OUTPUT)
Redirecting Output (INPUT AND OUTPUT)
CanRedoEnumeration(P) : GrpFPCosetEnumProc -> BoolElt
RedoEnumeration(~P: parameters) : GrpFPCosetEnumProc ->
RedoEnumeration(~P: parameters) : GrpFPCosetEnumProc ->
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013