[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: CuspidalInducingDatum .. Cyclic
CuspidalInducingDatum(pi) : RepLoc -> ModGrp
CuspidalProjection(f) : ModFrmElt -> ModFrmElt
EisensteinProjection(f) : ModFrmElt -> ModFrmElt
CuspidalSubgroup(A) : ModAbVar -> ModAbVarSubGrp
ModSym_CuspidalSubgroup (Example H133E21)
ModSym_CuspidalSubgroupTable (Example H133E22)
CuspidalSubspace(M) : ModBrdt -> ModBrdt
CuspidalSubspace(M) : ModFrm -> ModFrm
CuspidalSubspace(M) : ModSS -> ModSS
CuspidalSubspace(M) : ModSym -> ModSym
CuspIsSingular(N,d) : RngIntElt, RngIntElt -> BoolElt
CuspPlaces(CN,N,d) : Crv, RngIntElt, RngIntElt -> SeqEnum[PlcCrvElt]
Cusps(G) : GrpPSL2 -> SeqEnum
Cusps(FS) : SymFry -> SeqEnum
Cusps and Elliptic Points of Congruence Subgroups (CONGRUENCE SUBGROUPS OF PSL2(R))
Cusps and Elliptic Points of Congruence Subgroups (CONGRUENCE SUBGROUPS OF PSL2(R))
Cusps and Rational Points (SMALL MODULAR CURVES)
CuspWidth(G,x) : GrpPSL2, SetCspElt -> RngIntElt
CutVertices(G) : Grph -> { GrphVert }
CutVertices(G) : GrphMultUnd -> { GrphVert }
MinimumCut(s, t : parameters) : GrphVert, GrphVert -> SeqEnum, RngIntElt
MinimumCut(Ss, Ts : parameters) : [ GrphVert ], [ GrphVert ] -> SeqEnum, RngIntElt
CutVertices(G) : Grph -> { GrphVert }
CutVertices(G) : GrphMultUnd -> { GrphVert }
Magma and CWI NFS Interoperability (RING OF INTEGERS)
ConvertToCWIFormat(P, pb) : NFSProc, RngIntElt -> .;
FindRelationsInCWIFormat(P) : NFSProc -> RngIntElt
Calabi--Yau 3-folds (HILBERT SERIES OF POLARISED VARIETIES)
CreateCycleFile(P) : NFSProc -> .
Cycle(e, x) : GrpPermElt, Elt -> SetIndx
Cycle(~u: parameters) : GrpBrdElt ->
Cycle(u: parameters) : GrpBrdElt -> GrpBrdElt
CycleCount(fn) : MonStgElt -> RngIntElt
CycleCount(P) : NFSProc -> RngIntElt
CycleDecomposition(e) : GrpPermElt -> SeqEnum[SetIndx]
CycleStructure(g) : GrpPermElt -> [ <RngIntElt, RngIntElt> ]
GirthCycle(G) : GrphUnd -> [GrphVert]
HasNegativeWeightCycle(G) : Grph -> BoolElt
HasNegativeWeightCycle(u : parameters) : GrphVert -> BoolElt
CycleCount(fn) : MonStgElt -> RngIntElt
CycleCount(P) : NFSProc -> RngIntElt
CycleDecomposition(e) : GrpPermElt -> SeqEnum[SetIndx]
ClockCycles() : -> RngIntElt
IsProductOfParallelDescendingCycles(p) : GrpPermElt -> BoolElt
CycleStructure(g) : GrpPermElt -> [ <RngIntElt, RngIntElt> ]
CyclicSubgroups(G) : GrpPC -> SeqEnum
ElementaryAbelianSubgroups(G) : GrpPC -> SeqEnum
NilpotentSubgroups(G) : GrpPC -> SeqEnum
AbelianSubgroups(G) : GrpPC -> SeqEnum
AdditiveCyclicCode(v) : ModTupFldElt -> CodeAdd
AdditiveCyclicCode(v4, v2) : ModTupFldElt, ModTupFldElt -> CodeAdd
AdditiveCyclicCode(n, f) : RngIntElt, RngUPolElt -> CodeAdd
AdditiveCyclicCode(n, f4, f2) : RngIntElt, RngUPolElt, RngUPolElt -> CodeAdd
AdditiveQuasiCyclicCode(n, Q) : RngIntElt, SeqEnum[RngUPolElt] -> CodeAdd
AdditiveQuasiCyclicCode(n, Q, h) : RngIntElt, SeqEnum[RngUPolElt], RngIntElt -> CodeAdd
AdditiveQuasiCyclicCode(Q) : SeqEnum[ModTupFldElt] -> CodeAdd
AdditiveQuasiCyclicCode(Q, h) : SeqEnum[ModTupFldElt], RngIntElt -> CodeAdd
ClassGroupCyclicFactorGenerators(O) : RngOrd -> ModHomElt
ConstaCyclicCode(n, f, alpha) : RngUPolElt, RngIntElt, FldFinElt -> Code
CyclicCode(u) : ModTupRngElt -> Code
CyclicCode(u) : ModTupRngElt -> Code
CyclicCode(n, g) : RngIntElt, RngUPolElt -> Code
CyclicCode(n, g) : RngIntElt, RngUPolElt -> Code
CyclicCode(n, T, K) : RngIntElt, [ FldFinElt ], FldFin -> Code
CyclicGroup(C, n) : Cat, RngIntElt -> GrpFin
CyclicGroup(GrpFP, n) : Cat, RngIntElt -> GrpFP
CyclicGroup(GrpGPC, n) : Cat, RngIntElt -> GrpGPC
CyclicGroup(GrpPC, n) : Cat, RngIntElt -> GrpPC
CyclicGroup(GrpPerm, n) : Cat, RngIntElt -> GrpPerm
CyclicPolytope(L,n) : TorLat,RngIntElt -> TorPol
CyclicSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
CyclicSubgroups(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
CyclicToRadical(K, a, z) : FldNum, FldNumElt, RngElt -> FldNum, [FldNumElt], [FldNumElt]
IsCyclic(C) : Code -> BoolElt
IsCyclic(C) : Code -> BoolElt
IsCyclic(F) : FldAlg -> BoolElt
IsCyclic(F) : FldNum -> BoolElt
IsCyclic(G) : GrpAb -> BoolElt
IsCyclic(G) : GrpFin -> BoolElt
IsCyclic(G) : GrpGPC -> BoolElt
IsCyclic(G) : GrpMat -> BoolElt
IsCyclic(G) : GrpPC -> BoolElt
IsCyclic(G) : GrpPerm -> BoolElt
QuantumCyclicCode(v) : ModTupFldElt -> CodeAdd
QuantumCyclicCode(v4, v2) : ModTupFldElt, ModTupFldElt -> CodeAdd
QuantumCyclicCode(n, f) : RngIntElt, RngUPolElt -> CodeAdd
QuantumQuasiCyclicCode(n, Q) : RngIntElt, SeqEnum[RngUPolElt] -> CodeAdd
QuantumQuasiCyclicCode(Q) : SeqEnum[ModTupFldElt] -> CodeAdd
QuasiCyclicCode(n, Gen) : RngIntElt, [ RngUPolElt ] -> Code
QuasiCyclicCode(n, Gen, h) : RngIntElt, [ RngUPolElt ], RngIntElt -> Code
QuasiCyclicCode(Gen) : [ ModTupRngElt ] -> Code
QuasiCyclicCode(Gen, h) : [ModTupRngElt] , RngIntElt -> Code
QuasiTwistedCyclicCode(n, Gen, alpha) : RngIntElt, [RngUPolElt], FldFinElt -> Code
QuasiTwistedCyclicCode(Gen, alpha) : [ModTupRngElt], FldFinElt -> Code
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013