[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: MaximalCommutativeSubalgebra  ..  Maximum


MaximalCommutativeSubalgebra

   MaximalCommutativeSubalgebra(A,S) : SeqEnum) -> AlgBas, Map

MaximalExtension

   MaximalExtension(M, N, E) : ModGrp, ModGrp, ModTupFld -> ModGrp

MaximalIdeals

   MaximalIdeals(L : parameters) : AlgLie -> [ AlgLie ], BoolElt
   MaximalLeftIdeals(A : parameters) : AlgGen -> [ AlgGen ], BoolElt

MaximalIdempotent

   MaximalIdempotent(A, S) : AlgBas, SeqEnum -> AlgBasElt

MaximalIncreasingSequence

   MaximalIncreasingSequence(w) : MonOrdElt -> RngIntElt

MaximalIncreasingSequences

   MaximalIncreasingSequences(w, k) : SeqEnum,RngIntElt -> RngIntElt

MaximalIntegerSolution

   MaximalIntegerSolution(LHS, relations, RHS, objective) : Mtrx, Mtrx, Mtrx, Mtrx -> Mtrx, RngIntElt

MaximalLeftIdeals

   MaximalRightIdeals(O, p) : AlgQuatOrd, RngElt -> [AlgQuatOrdIdl]
   MaximalLeftIdeals(O, p) : AlgQuatOrd, RngElt -> [AlgQuatOrdIdl]
   MaximalLeftIdeals(A : parameters) : AlgGen -> [ AlgGen ], BoolElt

MaximalNormalSubgroup

   MaximalNormalSubgroup(G) : GrpPerm -> GrpPerm

MaximalNumberOfCosets

   MaximalNumberOfCosets(P) : GrpFPCosetEnumProc -> RngIntElt

MaximalOrder

   MaximalOrder(A) : AlgAssV[FldRat] -> AlgAssVOrd
   MaximalOrder(O) : AlgQuatOrd -> AlgQuat
   MaximalOrder(A) : AlgQuat[FldRat] -> AlgQuatOrd
   MaximalOrder(A) : FldAb -> RngOrd
   MaximalOrder(F) : FldAlg -> RngOrd
   MaximalOrder(F) : FldNum -> RngOrd
   MaximalOrder(F) : FldQuad -> RngQuad
   MaximalOrder(Q) : FldRat -> RngInt
   MaximalOrder(O) : RngFunOrd -> RngFunOrd
   MaximalOrder(O) : RngOrd -> RngOrd
   MaximalOrder(f) : RngUPolElt -> RngOrd

MaximalOrderFinite

   MaximalOrderFinite(F) : FldFun -> RngFunOrd
   MaximalOrderFinite(A) : FldFunAb -> RngFunOrd

MaximalOrderInfinite

   MaximalOrderInfinite(A) : FldFunAb -> RngFunOrd
   MaximalOrderFinite(A) : FldFunAb -> RngFunOrd
   MaximalOrderInfinite(F) : FldFun -> RngFunOrd

MaximalOvergroup

   MaximalOvergroup(G, H) : GrpFP, GrpFP -> GrpFP

MaximalParabolics

   MaximalParabolics(C) : CosetGeom -> SetIndx
   MaxParabolics(C) : CosetGeom -> SetIndx

MaximalPartition

   MaximalPartition(G) : GrpPerm -> GSet

MaximalRightIdeals

   MaximalRightIdeals(O, p) : AlgQuatOrd, RngElt -> [AlgQuatOrdIdl]
   MaximalLeftIdeals(O, p) : AlgQuatOrd, RngElt -> [AlgQuatOrdIdl]
   MaximalLeftIdeals(A : parameters) : AlgGen -> [ AlgGen ], BoolElt

Maximals

   ClassicalMaximals(type, d, q : parameters) : MonStgElt, RngIntElt, RngIntElt -> SeqEnum
   GrpPerm_Maximals (Example H58E18)

maximals

   Conjugacy Classes of Subgroups (MATRIX GROUPS OVER GENERAL RINGS)
   Conjugacy Classes of Subgroups (PERMUTATION GROUPS)
   Maximal Subgroups (PERMUTATION GROUPS)
   Maximal Subgroups of the Classical Groups (ALMOST SIMPLE GROUPS)
   Maximal Subgroups of the Exceptional Groups (ALMOST SIMPLE GROUPS)

MaximalSolution

   MaximalSolution(LHS, relations, RHS, objective) : Mtrx, Mtrx, Mtrx, Mtrx -> Mtrx, RngIntElt

MaximalSubfields

   MaximalSubfields(e) : SubFldLatElt -> [ SubFldLatElt ]

MaximalSubgroups

   MaximalSubgroups(G) : GrpAb -> [GrpAb]
   MaximalSubgroups(G) : GrpPC -> [GrpPC]
   MaximalSubgroups(G) : MonStgElt -> SeqEnum[MonStgElt]
   MaximalSubgroups(G, str : parameters) : Grp, MonStgElt -> BoolElt, SeqEnum, SeqEnum
   MaximalSubgroups(G: parameters) : GrpMat -> [ rec< GrpMat, RngIntElt, RngIntElt, GrpFP> ]
   MaximalSubgroups(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
   MaximalSubgroups(e) : SubGrpLatElt -> { SubGrpLatElt }

MaximalSubgroupsData

   MaximalSubgroupsData (str : parameters) : MonStgElt -> SeqEnum

MaximalSublattices

   MaximalSublattices(e) : LatLatElt -> [ LatLatElt ], [ RngIntElt ]

MaximalSubmodules

   MaximalSubmodules(M) : ModRng -> [ ModRng ], BoolElt
   MaximalSubmodules(e) : SubModLatElt -> { SubModLatElt }

MaximalTotallyIsotropicSubspace

   MaximalTotallyIsotropicSubspace(V) : ModTupFld -> ModTupFld

MaximalTotallySingularSubspace

   MaximalTotallySingularSubspace(V) : ModTupFld -> ModTupFld

MaximalZeroOneSolution

   MaximalZeroOneSolution(LHS, relations, RHS, objective) : Mtrx, Mtrx, Mtrx, Mtrx -> Mtrx, RngIntElt

Maximise

   SetMaximiseFunction(L, m) : LP, BoolElt ->

Maximising

   IsMaximisingFunction(L) : LP -> BoolElt

Maximum

   GetMaximumMemoryUsage() : -> RngIntElt
   IsMaximumDistanceSeparable(C) : Code -> BoolElt
   Maximum(a, b) : RngElt, RngElt -> RngElt
   Maximum(S) : SeqEnum -> Elt, RngIntElt
   Maximum(S) : SetIndx -> Elt, RngIntElt
   Maximum(Q) : [RngIntElt] -> RngElt
   MaximumBettiDegree(M, i) : ModMPol -> RngIntElt
   MaximumClique(G : parameters) : GrphUnd -> { GrphVert }
   MaximumDegree(G) : GrphDir -> RngIntElt, GrphVert
   MaximumDegree(G) : GrphMultDir -> RngIntElt, GrphVert
   MaximumDegree(G) : GrphMultUnd -> RngIntElt, GrphVert
   MaximumDegree(G) : GrphUnd -> RngIntElt, GrphVert
   MaximumDegree(f) : SeqEnum -> RngIntElt
   MaximumFlow(s, t : parameters) : GrphVert, GrphVert -> RngIntElt, SeqEnum
   MaximumFlow(Ss, Ts : parameters) : [ GrphVert ], [ GrphVert ] -> RngIntElt, SeqEnum
   MaximumInDegree(G) : GrphDir -> RngIntElt, GrphVert
   MaximumInDegree(G) : GrphMultDir -> RngIntElt, GrphVert
   MaximumIndependentSet(G: parameters) : GrphUnd -> { GrphVert }
   MaximumMatching(G) : GrphUnd -> [ { GrphEdge } ]
   MaximumMatching(G : parameters) : GrphMultUnd -> [ { GrphEdge rbrace ]
   MaximumOutDegree(G) : GrphDir -> RngIntElt, GrphVert
   MaximumOutDegree(G) : GrphMultDir -> RngIntElt, GrphVert
   ResetMaximumMemoryUsage() : ->

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013