[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: weights .. Weyl
Roots and Coroots (ROOT SYSTEMS)
Roots, Coroots and Weights (GROUPS OF LIE TYPE)
Roots, Coroots and Weights (ROOT DATA)
Weights (COXETER GROUPS)
Weights (GROUPS OF LIE TYPE)
Weights (REFLECTION GROUPS)
Weights (ROOT DATA)
Weights (SPARSE MATRICES)
WeightsAndMultiplicities(D) : LieRepDec -> SeqEnum, SeqEnum
Weights(D) : LieRepDec -> SeqEnum, SeqEnum
WeightsAndVectors(ρ) : Map -> [LatElt], [ModTupRngElt]
Weights(ρ) : Map -> [LatElt], [ModTupRngElt]
Weights(ρ) : Map -> [ModTupRngElt]
Weights(V) : ModAlg -> SeqEnum, SeqEnum
WeightsAndVectors(V) : ModAlg -> SeqEnum, SeqEnum
WeightSequence(p) : PathLS -> SeqEnum
WeightsOfFlip(X,i) : TorVar,RngIntElt -> SeqEnum
WeightToPartition(v) : SeqEnum -> SeqEnum
WeightVectors(ρ) : Map -> [ModTupRngElt]
CheckWeilPolynomial(f, q, h20) : RngUPolElt, RngIntElt, RngIntElt -> BoolElt
FrobeniusTracesToWeilPolynomials(tr, q, i, deg) : SeqEnum, RngIntElt, RngIntElt, RngIntElt -> SeqEnum
GaloisRepresentation(pi) : RepLoc -> GrpPerm, Map, RngPad, ModGrp
GeometricMordellWeilLattice(E) : CrvEll[FldFunRat] -> Lat, Map
IsWeil(D) : DivTorElt -> BoolElt
MordellWeilGroup(E : parameters) : CrvEll[FldFunRat] -> GrpAb, Map
MordellWeilGroup(H: parameters) : SetPtEll -> GrpAb, Map
MordellWeilLattice(E) : CrvEll[FldFunRat] -> Lat, Map
MordellWeilShaInformation(E: parameters) : CrvEll -> [RngIntElt], [PtEll], [Tup]
MordellWeilShaInformation(E: parameters) : CrvEll -> [RngIntElt], [PtEll], [Tup]
NaiveHeight(P) : PtEll -> FldPrElt
Rank(H: parameters) : SetPtEll -> RngIntElt
RankBounds(H: parameters) : SetPtEll -> RngIntElt, RngIntElt
RestrictionOfScalars(S, F) : Sch, Fld -> Sch, MapSch, UserProgram, Map
Weil(D) : DivTorElt -> SeqEnum
WeilDescent(E,k) : FldFun, FldFin -> FldFunG, Map
WeilDescent(E, k, c) : FldFun, FldFin, FldFinElt -> CrvPln, Map
WeilDescentDegree(E,k) : FldFun, FldFin -> RngIntElt
WeilDescentDegree(E, k, c) : FldFun, FldFin, FldFinElt -> RngIntElt
WeilDescentGenus(E,k) : FldFun, FldFin -> RngIntElt
WeilDescentGenus(E, k, c) : FldFun, FldFin, FldFinElt -> RngIntElt
WeilPairing(P, Q, m) : JacHypPt, JacHypPt, RngIntElt -> RngElt
WeilPairing(P, Q, n) : PtEll, PtEll, RngIntElt -> RngElt
WeilPairing(P, Q, n) : PtEll, PtEll, RngIntElt -> RngElt
WeilPolynomialOverFieldExtension(f, deg) : RngUPolElt, RngIntElt -> RngUPolElt
WeilPolynomialToRankBound(f, q) : RngUPolElt, RngIntElt -> RngIntElt
WeilRestriction(E, n) : FldFun, RngIntElt -> FldFun, UserProgram
WeilToClassGroupsMap(C) : RngCox -> Map
Heights and Regulator (HYPERELLIPTIC CURVES)
Mordell--Weil Groups (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
The Mordell--Weil Group (ELLIPTIC CURVES OVER FUNCTION FIELDS)
Lseries_weil (Example H127E35)
Weil Descent (ALGEBRAIC FUNCTION FIELDS)
Weil Pairing (ELLIPTIC CURVES)
WeilDescent(E,k) : FldFun, FldFin -> FldFunG, Map
WeilDescent(E, k, c) : FldFun, FldFin, FldFinElt -> CrvPln, Map
WeilDescentDegree(E,k) : FldFun, FldFin -> RngIntElt
WeilDescentDegree(E, k, c) : FldFun, FldFin, FldFinElt -> RngIntElt
WeilDescentGenus(E,k) : FldFun, FldFin -> RngIntElt
WeilDescentGenus(E, k, c) : FldFun, FldFin, FldFinElt -> RngIntElt
WeilHeight(P) : PtEll -> FldPrElt
NaiveHeight(P) : PtEll -> FldPrElt
WeilPairing(P, Q, m) : JacHypPt, JacHypPt, RngIntElt -> RngElt
WeilPairing(P, Q, n) : PtEll, PtEll, RngIntElt -> RngElt
WeilPairing(P, Q, n) : PtEll, PtEll, RngIntElt -> RngElt
CrvEll_WeilPairing (Example H120E27)
Weil Pairing (HYPERELLIPTIC CURVES)
Weil Polynomials (L-FUNCTIONS)
WeilPolynomialOverFieldExtension(f, deg) : RngUPolElt, RngIntElt -> RngUPolElt
WeilPolynomialToRankBound(f, q) : RngUPolElt, RngIntElt -> RngIntElt
WeilRepresentation(pi) : RepLoc -> GrpPerm, Map, RngPad, ModGrp
GaloisRepresentation(pi) : RepLoc -> GrpPerm, Map, RngPad, ModGrp
WeilRestriction(S, F) : Sch, Fld -> Sch, MapSch, UserProgram, Map
RestrictionOfScalars(S, F) : Sch, Fld -> Sch, MapSch, UserProgram, Map
WeilRestriction(E, n) : FldFun, RngIntElt -> FldFun, UserProgram
WeilToClassLatticesMap(C) : RngCox -> Map
WeilToClassGroupsMap(C) : RngCox -> Map
WeilToClassLatticesMap(C) : RngCox -> Map
WeilToClassGroupsMap(C) : RngCox -> Map
AlternatingWeylSum(R, v) : RootDtm, ModTupRngElt -> LieRepDec
WeylGroup(L) : AlgLie -> GrpPermCox
WeylGroup(GrpFPCox, L) : Cat, AlgLie -> GrpPermCox
WeylGroup(GrpMat, L) : Cat, AlgLie -> GrpPermCox
WeylGroup(GrpFPCox, G) : Cat, GrpLie -> GrpFPCox
WeylGroup(GrpMat, G) : Cat, GrpLie -> GrpMat
WeylGroup(G) : GrpLie -> GrpPermCox
WeylWord(p) : PathLS -> SeqEnum
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013