[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: AlgGroup1  ..  Alpha


AlgGroup1

   RngInvar_AlgGroup1 (Example H110E20)

AlgGroup2

   RngInvar_AlgGroup2 (Example H110E21)

alglieextr

   Constructing Lie Algebras Generated by Extremal Elements (LIE ALGEBRAS)
   Instances of Lie Algebras Generated by Extremal Elements (LIE ALGEBRAS)
   Lie Algebras Generated by Extremal Elements (LIE ALGEBRAS)
   Properties of Lie Algebras Generated by Extremal Elements (LIE ALGEBRAS)
   Studying the Parameter Space (LIE ALGEBRAS)

alglieextr-construct

   Constructing Lie Algebras Generated by Extremal Elements (LIE ALGEBRAS)

alglieextr-instances

   Instances of Lie Algebras Generated by Extremal Elements (LIE ALGEBRAS)

alglieextr-properties

   Properties of Lie Algebras Generated by Extremal Elements (LIE ALGEBRAS)

alglieextr-variety

   Studying the Parameter Space (LIE ALGEBRAS)

AlgLieExtrBasis

   AlgLie_AlgLieExtrBasis (Example H100E12)

AlgLieExtrConstr

   AlgLie_AlgLieExtrConstr (Example H100E11)

AlgLieExtrfVal

   AlgLie_AlgLieExtrfVal (Example H100E15)

AlgLieExtrMultInstance

   AlgLie_AlgLieExtrMultInstance (Example H100E14)

AlgLieExtrMultTable

   AlgLie_AlgLieExtrMultTable (Example H100E13)

AlgLieExtrVarietyDims

   AlgLie_AlgLieExtrVarietyDims (Example H100E16)

algmod

   Construction of Algebra Modules (MODULES OVER AN ALGEBRA)

algmod-construction

   Construction of Algebra Modules (MODULES OVER AN ALGEBRA)

AlgModCreate

   ModAlg_AlgModCreate (Example H89E14)

Algorithm

   HasAdditionAlgorithm(J) : JacHyp -> Bool

algorithm

   Computing the Class Invariants (BRAID GROUPS)
   Magma's Evaluation Process (MAGMA SEMANTICS)
   Overview of Facilities (FINITELY PRESENTED GROUPS)
   Sketch of the Algorithm (FINITELY PRESENTED ALGEBRAS)

Algorithmic

   AlgorithmicFunctionField(F) : FldFunFracSch -> FldFun, Map

AlgorithmicFunctionField

   AlgorithmicFunctionField(F) : FldFunFracSch -> FldFun, Map

algorithms

   Algorithms (MODULAR FORMS OVER IMAGINARY QUADRATIC FIELDS)
   Algorithms and the Jacquet-Lang-lands Correspondence (HILBERT MODULAR FORMS)
   Euclidean Algorithms, GCDs and LCMs (DIFFERENTIAL RINGS)

AlgQEATP

   AlgQEA_AlgQEATP (Example H102E7)

AlgReln1

   FldFunG_AlgReln1 (Example H42E37)

AlgReln2

   FldFunG_AlgReln2 (Example H42E38)

AllCliques

   AllCliques(G : parameters) : GrphUnd -> SeqEnum
   AllCliques(G, k : parameters) : GrphUnd, RngIntElt -> SeqEnum
   AllCliques(G, k, m : parameters) : GrphUnd, RngIntElt, BoolElt -> SeqEnum

AllCompactChainMaps

   AllCompactChainMaps(PR) : Rec -> Rec

AllCones

   AllCones(F) : TorFan -> SeqEnum

AllDefiningPolynomials

   AllDefiningPolynomials(f) : MapSch -> SeqEnum

Alldeg

   Alldeg(G, n) : GrphDir, RngIntElt -> { GrphVert }
   Alldeg(G, n) : GrphMultDir, RngIntElt -> { GrphVert }
   Alldeg(G, n) : GrphMultUnd, RngIntElt -> { GrphVert }
   Alldeg(G, n) : GrphUnd, RngIntElt -> { GrphVert }

AllExtensions

   AllExtensions(R, n) : RngPad, RngIntElt -> [RngPad]

AllFaces

   AllFaces(N) : NwtnPgon -> SeqEnum

AllHomomorphisms

   Homomorphisms(G, H) : GrpAb, GrpAb -> [Map]
   AllHomomorphisms(G, H) : GrpAb, GrpAb -> [Map]

AllInformationSets

   AllInformationSets(C) : Code -> [ [ RngIntElt ] ]

AllInverseDefiningPolynomials

   AllInverseDefiningPolynomials(f) : MapSch -> SeqEnum

AllIrreduciblePolynomials

   AllIrreduciblePolynomials(F, m) : FldFin, RngIntElt -> { RngUPolElt }

AllLinearRelations

   AllLinearRelations(q,p): SeqEnum, RngIntElt -> Lat

AllNilpotentLieAlgebras

   AllNilpotentLieAlgebras(F, d) : Fld, RngIntElt -> SeqEnum

AllPairsShortestPaths

   AllPairsShortestPaths(G : parameters) : Grph -> SeqEnum, SeqEnum

AllParallelClasses

   AllParallelClasses(D) : Inc -> SeqEnum

AllParallelisms

   AllParallelisms(D) : Inc -> SeqEnum

AllPartitions

   AllPartitions(G) : GrpPerm -> SetEnum

AllPassants

   AllPassants(P, A) : Plane, { PlanePt } -> { PlaneLn }
   ExternalLines(P, A) : Plane, { PlanePt } -> { PlaneLn }

AllRays

   AllRays(F) : TorFan -> SeqEnum

AllResolutions

   AllResolutions(D) : Inc -> SeqEnum
   AllResolutions(D, λ) : Inc, RngIntElt -> SeqEnum

AllRoots

   AllRoots(a, n) : FldFinElt, RngIntElt -> SeqEnum

AllSecants

   AllSecants(P, A) : Plane, { PlanePt } -> { PlaneLn }

AllSlopes

   LowerSlopes(N) : NwtnPgon -> SeqEnum
   AllSlopes(N) : NwtnPgon -> SeqEnum
   InnerSlopes(N) : NwtnPgon -> SeqEnum

AllSolvableLieAlgebras

   AllSolvableLieAlgebras(F, d) : Fld, RngIntElt -> SeqEnum

AllSqrts

   AllSqrts(a) : RngIntResElt -> [ RngIntResElt ]
   AllSquareRoots(a) : RngIntResElt -> [ RngIntResElt ]

AllSquareRoots

   AllSqrts(a) : RngIntResElt -> [ RngIntResElt ]
   AllSquareRoots(a) : RngIntResElt -> [ RngIntResElt ]

AllTangents

   AllTangents(P, A) : Plane, { PlanePt } -> { PlaneLn }
   AllTangents(P, U) : Plane, { PlanePt } -> { PlaneLn }

AllVertices

   AllVertices(N) : NwtnPgon -> SeqEnum

Almost

   AlmostSimpleGroupDatabase() : -> DB
   IdentifyAlmostSimpleGroup(G) : GrpPerm -> Map, GrpPerm
   NumberOfPrimitiveGroups(d) : RngIntElt -> RngIntElt

AlmostFermat

   Set_AlmostFermat (Example H9E2)

AlmostFermatIndexed

   Set_AlmostFermatIndexed (Example H9E3)

AlmostSimpleGroupDatabase

   AlmostSimpleGroupDatabase() : -> DB

Alpha

   AlphaBetaData(H) : HypGeomData -> SeqEnum, SeqEnum
   MurphyAlphaApproximation(F, b) : RngMPolElt, RngIntElt -> FldReElt
   SimplexAlphaCodeZ4(k) : RngIntElt -> Code

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013