[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: and  ..  Approximant


and

   Absolute Value and Sign (RATIONAL FIELD)
   Cusps and Elliptic Points of Congruence Subgroups (CONGRUENCE SUBGROUPS OF PSL2(R))
   Geometrical Properties of Cones and Polyhedra (TORIC VARIETIES)
   Ordering of Sequences (RATIONAL FUNCTION FIELDS)
   x and y : BoolElt, BoolElt -> BoolElt

and_twelve

   Six and Twelve Descent (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)

Anemic

   CongruenceGroupAnemic(M1, M2, prec) : ModFrm, ModFrm, RngIntElt -> GrpAb

anf

   Lattices from Algebraic Number Fields (LATTICES)
   Mordell--Weil Groups (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
   Two Descent (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)

anf-local-solv

   Scheme_anf-local-solv (Example H112E24)

anf1

   Scheme_anf1 (Example H112E22)

anf2

   Scheme_anf2 (Example H112E23)

anf_lift

   Scheme_anf_lift (Example H112E25)

anfdb-basic1

   FldNum_anfdb-basic1 (Example H34E29)

anfdb-basic2

   FldNum_anfdb-basic2 (Example H34E30)

anfs

   Arithmetic Properties of Schemes and Points (SCHEMES)
   Height (SCHEMES)

anfs-heights

   Height (SCHEMES)

Angle

   Angle(e1,e2) : [SpcHydElt], [SpcHydElt] -> FldReElt
   Angle(e1,e2) : [SpcHypElt], [SpcHypElt] -> FldReElt
   TangentAngle(x,y) : SpcHydElt, SpcHydElt -> FldReElt
   TangentAngle(x,y) : SpcHypElt, SpcHypElt -> FldReElt

Anisotropic

   AnisotropicSubdatum(R) : RootDtm -> RootDtm
   IsAnisotropic(R) : RootDtm -> BoolElt

AnisotropicSubdatum

   AnisotropicSubdatum(R) : RootDtm -> RootDtm

Annihilator

   Annihilator(A,S) : AlgBas, SeqEnum[AlgBasElt] -> SeqEnum[AlgBasElt]
   Annihilator(M) : ModMPol -> RngMPol
   LeftAnnihilator(A, B) : AlgAss, AlgAss -> AlgAss, AlgAss
   LeftAnnihilator(A, S) : AlgBas, SeqEnum[AlgBasElt] -> SeqEnum[AlgBasElt]
   LeftAnnihilator(S) : AlgGrpSub -> AlgGrpSub
   RightAnnihilator(A, B) : AlgAss, AlgAss -> AlgAss, AlgAss
   RightAnnihilator(A, S) : AlgBas, SeqEnum[AlgBasElt] -> SeqEnum[AlgBaselt]
   RightAnnihilator(S) : AlgGrpSub -> AlgGrpSub

another-example

   FldFunRat_another-example (Example H41E8)

Anti

   AntiAutomorphismTau(U) : AlgQUE -> Map

AntiAutomorphismTau

   AntiAutomorphismTau(U) : AlgQUE -> Map

Anticanonical

   IsAnticanonical(D) : DivSchElt -> BoolElt

Antipode

   Antipode(U) : AlgQUE -> Map

Antisymmetric

   AntisymmetricForms(L) : Lat -> [ AlgMatElt ]
   AntisymmetricForms(L, n) : Lat, RngIntElt -> [ AlgMatElt ]
   AntisymmetricMatrix(R, Q) : Rng, [ RngElt ] -> Mtrx
   AntisymmetricMatrix(Q) : [ RngElt ] -> Mtrx
   InvariantForms(G) : GrpMat -> [ AlgMatElt ]
   InvariantForms(G, n) : GrpMat, RngIntElt -> [ AlgMatElt ]
   NumberOfAntisymmetricForms(L) : Lat -> RngIntElt
   NumberOfInvariantForms(G) : GrpMat -> RngIntElt, RngIntElt

AntisymmetricForms

   AntisymmetricForms(L) : Lat -> [ AlgMatElt ]
   AntisymmetricForms(L, n) : Lat, RngIntElt -> [ AlgMatElt ]
   InvariantForms(G) : GrpMat -> [ AlgMatElt ]
   InvariantForms(G, n) : GrpMat, RngIntElt -> [ AlgMatElt ]

AntisymmetricMatrix

   AntisymmetricMatrix(R, Q) : Rng, [ RngElt ] -> Mtrx
   AntisymmetricMatrix(Q) : [ RngElt ] -> Mtrx

Apparent

   ApparentEquationDegrees(X) : GRSch -> RngIntElt
   ApparentSyzygyDegrees(X) : GRSch -> RngIntElt
   BettiNumbers(X) : GRSch -> RngIntElt
   ApparentCodimension(X) : GRSch -> RngIntElt
   ApparentCodimension(f) : RngUPolElt -> RngIntElt

ApparentCodimension

   ApparentEquationDegrees(X) : GRSch -> RngIntElt
   ApparentSyzygyDegrees(X) : GRSch -> RngIntElt
   BettiNumbers(X) : GRSch -> RngIntElt
   ApparentCodimension(X) : GRSch -> RngIntElt
   ApparentCodimension(f) : RngUPolElt -> RngIntElt

ApparentEquationDegrees

   ApparentEquationDegrees(X) : GRSch -> RngIntElt
   ApparentSyzygyDegrees(X) : GRSch -> RngIntElt
   BettiNumbers(X) : GRSch -> RngIntElt
   ApparentCodimension(X) : GRSch -> RngIntElt
   ApparentCodimension(f) : RngUPolElt -> RngIntElt

ApparentSyzygyDegrees

   ApparentEquationDegrees(X) : GRSch -> RngIntElt
   ApparentSyzygyDegrees(X) : GRSch -> RngIntElt
   BettiNumbers(X) : GRSch -> RngIntElt
   ApparentCodimension(X) : GRSch -> RngIntElt
   ApparentCodimension(f) : RngUPolElt -> RngIntElt

Append

   Append(~S, x) : List, Elt ->
   Append(S, x) : List, Elt -> List
   Append(~S, x) : SeqEnum, Elt ->
   Append(~T, x) : Tup, Elt ->
   Append(T, x) : Tup, Elt -> Tup

application

   Function Application (MAGMA SEMANTICS)

Apply

   ApplyTransformation(g, model) : Tup, ModelG1 -> ModelG1
   g * model : Tup, ModelG1 -> ModelG1
   Apply(L, f) : RngDiffOpElt, RngElt -> RngElt
   ApplyContravariant(c, d) : MPolElt, MPolElt -> MPolElt

apply

   Application of Operators (DIFFERENTIAL RINGS)

apply-diff-ring-op-elts

   Application of Operators (DIFFERENTIAL RINGS)

ApplyContravariant

   ApplyContravariant(c, d) : MPolElt, MPolElt -> MPolElt

ApplyTransformation

   ApplyTransformation(g, model) : Tup, ModelG1 -> ModelG1
   g * model : Tup, ModelG1 -> ModelG1

Approximant

   PadeHermiteApproximant(f,m) : SeqEnum, RngIntElt -> ModTupRngElt, SeqEnum
   PadeHermiteApproximant(f,d) : SeqEnum, SeqEnum -> ModTupRngElt, SeqEnum, RngIntElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013