[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: elementary .. elements
Elementary Divisors (Smith Form) (SPARSE MATRICES)
Elementary Functions (MODULES OVER DEDEKIND DOMAINS)
Elementary Functions (MODULES OVER DEDEKIND DOMAINS)
ModDed_elementary (Example H55E3)
Elementary Divisors (Smith Form) (SPARSE MATRICES)
Elementary Functions (MODULES OVER DEDEKIND DOMAINS)
Elementary Invariants (BRANDT MODULES)
Creation Functions for Unbounded Precision Extensions (p-ADIC RINGS AND THEIR EXTENSIONS)
Creation Functions for Totally Ramified Extensions (p-ADIC RINGS AND THEIR EXTENSIONS)
Creation Functions for Unramified Extensions (p-ADIC RINGS AND THEIR EXTENSIONS)
AlgQuat_Elementary_Ideals (Example H86E16)
Elementary Invariants (HYPERELLIPTIC CURVES)
Miscellaneous Creation Functions (p-ADIC RINGS AND THEIR EXTENSIONS)
Creation Functions for the p-adics (p-ADIC RINGS AND THEIR EXTENSIONS)
ElementaryAbelianGroup(GrpGPC, p, n) : Cat, RngIntElt, RngIntElt -> GrpGPC
ElementaryAbelianNormalSubgroup(G) : GrpPerm -> GrpPerm
ElementaryAbelianQuotient(G, p) : GrpAb, RngIntElt -> GrpAb, Map
ElementaryAbelianQuotient(G, p) : GrpFP, RngIntElt -> GrpAb, Map
ElementaryAbelianQuotient(G, p) : GrpGPC, RngIntElt -> GrpAb, Map
ElementaryAbelianQuotient(G, p) : GrpMat, RngIntElt -> GrpAb, Map
ElementaryAbelianQuotient(G, p) : GrpPC, RngIntElt -> GrpAb, Map
ElementaryAbelianQuotient(G, p) : GrpPerm, RngIntElt -> GrpAb, Map
ElementaryAbelianSeries(G) : GrpPC -> [GrpPC]
ElementaryAbelianSeries(G: parameters) : GrpMat -> [ GrpMat ]
ElementaryAbelianSeries(G: parameters) : GrpPerm -> [ GrpPerm ]
ElementaryAbelianSeriesCanonical(G) : GrpMat -> [ GrpMat ]
ElementaryAbelianSeriesCanonical(G) : GrpPC -> [GrpPC]
ElementaryAbelianSeriesCanonical(G) : GrpPerm -> [ GrpPerm ]
CyclicSubgroups(G) : GrpPC -> SeqEnum
ElementaryAbelianSubgroups(G) : GrpPC -> SeqEnum
NilpotentSubgroups(G) : GrpPC -> SeqEnum
AbelianSubgroups(G) : GrpPC -> SeqEnum
ElementaryAbelianSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
ElementaryAbelianSubgroups(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
ElementaryDivisors(a) : AlgMatElt -> [RngElt]
ElementaryDivisors(M, N) : ModDed, ModDed -> SeqEnum
ElementaryDivisors(A) : Mtrx -> [RngElt]
ElementaryDivisors(A) : MtrxSprs -> [RngElt]
AlgMat_ElementaryDivisors (Example H83E7)
ElementaryPhiModule(S,d,h) : RngSerLaur, RngIntElt, RngIntElt -> PhiMod
ElementarySymmetricPolynomial(P, k) : RngMPol, RngIntElt -> RngMPolElt
ElementarySymmetricPolynomial(P, k) : RngMPol, RngIntElt -> RngMPolElt
ElementaryToHomogeneousMatrix(n): RngIntElt -> AlgMatElt
ElementaryToMonomialMatrix(n): RngIntElt -> AlgMatElt
ElementaryToPowerSumMatrix(n): RngIntElt -> AlgMatElt
ElementaryToSchurMatrix(n): RngIntElt -> AlgMatElt
GrpLie_ElementCreate (Example H103E7)
GrpAb_ElementCreationAndRep (Example H69E7)
AlgFP_ElementOperations (Example H82E5)
Ideal_ElementOperations (Example H106E2)
RngMPolLoc_ElementOperations (Example H107E5)
CanonicalElements(U, w) : AlgQUE, SeqEnum -> SeqEnum
Elements(P) : GrpBrdClassProc -> SetIndx
Elements(G) : GrpDrch -> [GrpDrchElt]
Elements(G) : ModAbVarSubGrp -> SeqEnum
Points(D) : IncGeom -> SetIndx
FldFunG_Elements (Example H42E25)
FldNum_Elements (Example H34E5)
ModRng_Elements (Example H54E2)
RngOrd_Elements (Example H37E6)
Accessing Information (BRAID GROUPS)
Arithmetic Operators (ALGEBRAIC FUNCTION FIELDS)
Conjugacy of Elements of the Exceptional Groups (ALMOST SIMPLE GROUPS)
Construction of an Element of a General Algebra (ALGEBRAS)
Construction of Elements of a Structure Constant Algebra (STRUCTURE CONSTANT ALGEBRAS)
Creation (INTEGER RESIDUE CLASS RINGS)
Creation of Elements (ALGEBRAIC FUNCTION FIELDS)
Creation of Elements (MODULAR SYMBOLS)
Creation of Twisted Polynomials (CLASS FIELD THEORY FOR GLOBAL FUNCTION FIELDS)
Element Operations Using the Grading (GRÖBNER BASES)
Elements (ABELIAN GROUPS)
Elements (ALGEBRAIC FUNCTION FIELDS)
Elements (FINITE SOLUBLE GROUPS)
Elements (HILBERT MODULAR FORMS)
Elements (LAZY POWER SERIES RINGS)
Elements (MODULAR FORMS)
Elements (SUPERSINGULAR DIVISORS ON MODULAR CURVES)
Elements and Local Monomial Orders (LOCAL POLYNOMIAL RINGS)
Elements of a Clifford Algebra (CLIFFORD ALGEBRAS)
Elements of Extensions (POWER, LAURENT AND PUISEUX SERIES)
Elements of Modules (MODULES OVER DEDEKIND DOMAINS)
Elements of Orders (ASSOCIATIVE ALGEBRAS)
Elements of Quaternion Algebras (QUATERNION ALGEBRAS)
Elements of Residue Class Rings (INTEGER RESIDUE CLASS RINGS)
Elements of Universal Enveloping Algebras (LIE ALGEBRAS)
Equality and Membership (ALGEBRAIC FUNCTION FIELDS)
Function Fields and their Elements (SCHEMES)
Local Field Elements (GENERAL LOCAL FIELDS)
Operations on Elements (LIE ALGEBRAS)
Operations on Elements of the Free Lie Algebra (LIE ALGEBRAS)
Parent and Category (ALGEBRAIC FUNCTION FIELDS)
Predicates on Elements (ALGEBRAIC FUNCTION FIELDS)
Properties of Elements (INTEGER RESIDUE CLASS RINGS)
Sequence Conversions (ALGEBRAIC FUNCTION FIELDS)
Special Element Operations (QUADRATIC FIELDS)
Working with Elements of a Braid Group (BRAID GROUPS)
FldFunG_elements (Example H42E27)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013