[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: degree  ..  del-pezzo-ex-8


degree

   Adjacency and Degree (GRAPHS)
   Coefficients and Degree (POWER, LAURENT AND PUISEUX SERIES)
   Coefficients, Monomials, Terms and Degree (FINITELY PRESENTED ALGEBRAS)
   Degree (UNIVARIATE POLYNOMIAL RINGS)
   Degree-d Gröbner Bases (GRÖBNER BASES)
   Degrees (MULTIVARIATE POLYNOMIAL RINGS)
   Numerator, Denominator and Degree (RATIONAL FUNCTION FIELDS)

Degree-d

   GB_Degree-d (Example H105E11)

degree-of-sequence

   FldFunRat_degree-of-sequence (Example H41E4)

Degree1

   NewformsOfDegree1(M) : ModFrmHil -> List

Degree3

   ParametrizeSingularDegree4DelPezzo(X,P2) : Sch, Prj -> BoolElt, MapIsoSch
   ParametrizeSingularDegree3DelPezzo(X,P2) : Sch, Prj -> BoolElt, MapIsoSch

Degree4

   ParametrizeSingularDegree4DelPezzo(X,P2) : Sch, Prj -> BoolElt, MapIsoSch
   ParametrizeSingularDegree3DelPezzo(X,P2) : Sch, Prj -> BoolElt, MapIsoSch

Degree5

   ParametrizeDegree5DelPezzo(X) : Sch -> MapIsoSch

Degree6

   Degree6DelPezzoType3(K,pt) : FldNum, Pt -> Sch
   Degree6DelPezzoType4(K,K1,pt) : FldNum, Fld, Pt -> Sch
   Degree6DelPezzoType6(K,pt) : FldNum, Pt -> Sch
   Degree6DelPezzoType2_1(K,pt) : FldNum, Pt -> Sch
   ParametrizeDegree6DelPezzo(X) : Sch -> BoolElt, MapIsoSch

Degree6DelPezzoType2

   Degree6DelPezzoType3(K,pt) : FldNum, Pt -> Sch
   Degree6DelPezzoType4(K,K1,pt) : FldNum, Fld, Pt -> Sch
   Degree6DelPezzoType6(K,pt) : FldNum, Pt -> Sch
   Degree6DelPezzoType2_1(K,pt) : FldNum, Pt -> Sch

Degree6DelPezzoType3

   Degree6DelPezzoType3(K,pt) : FldNum, Pt -> Sch
   Degree6DelPezzoType4(K,K1,pt) : FldNum, Fld, Pt -> Sch
   Degree6DelPezzoType6(K,pt) : FldNum, Pt -> Sch
   Degree6DelPezzoType2_1(K,pt) : FldNum, Pt -> Sch

Degree6DelPezzoType4

   Degree6DelPezzoType3(K,pt) : FldNum, Pt -> Sch
   Degree6DelPezzoType4(K,K1,pt) : FldNum, Fld, Pt -> Sch
   Degree6DelPezzoType6(K,pt) : FldNum, Pt -> Sch
   Degree6DelPezzoType2_1(K,pt) : FldNum, Pt -> Sch

Degree6DelPezzoType6

   Degree6DelPezzoType3(K,pt) : FldNum, Pt -> Sch
   Degree6DelPezzoType4(K,K1,pt) : FldNum, Fld, Pt -> Sch
   Degree6DelPezzoType6(K,pt) : FldNum, Pt -> Sch
   Degree6DelPezzoType2_1(K,pt) : FldNum, Pt -> Sch

Degree7

   ParametrizeDegree7DelPezzo(X) : Sch -> MapIsoSch

Degree8

   ParametrizeDegree8DelPezzo(X) : Sch -> BoolElt, MapSch

Degree9

   ParametrizeDegree9DelPezzo(X) : Sch -> BoolElt, MapIsoSch

DegreeMap

   DegreeMap(M : parameters) : ModSym -> [ Tup ], Fld

DegreeOfExactConstantField

   DegreeOfExactConstantField(m) : DivFunElt -> RngIntElt
   DegreeOfExactConstantField(m, U) : DivFunElt, GrpAb -> RngIntElt
   DegreeOfExactConstantField(A) : FldFunAb -> RngIntElt
   DimensionOfExactConstantField(F) : FldFunG -> RngIntElt

DegreeOfFieldExtension

   DegreeOfFieldExtension(G) : GrpMat -> RngIntElt

DegreeOnePrimeIdeals

   DegreeOnePrimeIdeals(O, B) : RngOrd, RngIntElt -> [ RngOrdIdl ]

DegreeRange

   DegreeRange(D) : DB -> RngIntElt, RngIntElt

DegreeReduction

   DegreeReduction(G) : GrpPerm -> GrpPerm, Hom

Degrees

   ApparentEquationDegrees(X) : GRSch -> RngIntElt
   ApparentSyzygyDegrees(X) : GRSch -> RngIntElt
   BettiNumbers(X) : GRSch -> RngIntElt
   ApparentCodimension(X) : GRSch -> RngIntElt
   ApparentCodimension(f) : RngUPolElt -> RngIntElt
   BasicDegrees(W) : GrpFPCox -> RngIntElt
   BasicDegrees(W) : GrpMat -> RngIntElt
   BlockDegrees(D) : Inc -> [ RngIntElt ]
   CharacterDegrees(G) : GrpFin -> [ Tup ]
   CharacterDegrees(G) : GrpPC -> [ Tup ]
   CharacterDegrees(G) : GrpPC -> [ Tup ]
   CharacterDegrees(G, z, p): GrpPC, GrpPCElt, RngIntElt -> SeqEnum
   CharacterDegrees(G): GrpPerm -> SeqEnum
   CharacterDegreesPGroup(G) : GrpFin -> [ RngIntElt ]
   CharacterDegreesPGroup(G): GrpPC -> SeqEnum
   Degrees(D) : DB -> [ RngIntElt ]
   Degrees(C) : ModCpx -> RngIntElt
   DegreesOfCohomologyGenerators(C) : Rec -> SeqEnum
   EqualizeDegrees(C, D) : ModCpx, ModCpx -> ModCpx, ModCpx
   EqualizeDegrees(C, D, n) : ModCpx, ModCpx, RngIntElt -> ModCpx, ModCpx
   MatRepDegrees(A) : GrpAtlas -> SetEnum[RngIntElt]
   PermRepDegrees(A) : GrpAtlas -> SetEnum[RngIntElt]
   PointDegrees(D) : Inc -> [ RngIntElt ]

degrees

   Ordering of Sequences (RATIONAL FUNCTION FIELDS)

DegreeSequence

   DegreeSequence(G) : Grph -> [ { GrphVert } ]
   DegreeSequence(G) : Grph -> [ { GrphVert } ]
   DegreeSequence(G) : GrphMultDir -> [ GrphVert ]
   DegreeSequence(G) : GrphMultUnd -> [ { GrphVert } ]

DegreesOfCohomologyGenerators

   DegreesOfCohomologyGenerators(C) : Rec -> SeqEnum

Del

   Degree6DelPezzoType3(K,pt) : FldNum, Pt -> Sch
   Degree6DelPezzoType4(K,K1,pt) : FldNum, Fld, Pt -> Sch
   Degree6DelPezzoType6(K,pt) : FldNum, Pt -> Sch
   Degree6DelPezzoType2_1(K,pt) : FldNum, Pt -> Sch
   DelPezzoSurface(P,L) : Prj,List -> SrfDelPezzo
   DelPezzoSurface(f) : RngMPolElt -> SrfDelPezzo
   IsDelPezzo(Y) : Sch -> BoolElt, SrfDelPezzo, MapSch
   ParametrizeDegree5DelPezzo(X) : Sch -> MapIsoSch
   ParametrizeDegree6DelPezzo(X) : Sch -> BoolElt, MapIsoSch
   ParametrizeDegree7DelPezzo(X) : Sch -> MapIsoSch
   ParametrizeDegree8DelPezzo(X) : Sch -> BoolElt, MapSch
   ParametrizeDegree9DelPezzo(X) : Sch -> BoolElt, MapIsoSch
   ParametrizeDelPezzo(X, P2) : Sch, Prj -> BoolElt, MapSch
   ParametrizeDelPezzoDeg6(X) : Sch -> BoolElt, MapIsoSch
   ParametrizeSingularDegree3DelPezzo(X,P2) : Sch, Prj -> BoolElt, MapIsoSch

del

   DeleteCapacities(~G) : GrphMult ->
   DeleteWeights(~G) : GrphMult ->
   Deleting Edge Decorations (MULTIGRAPHS)
   Parametrization of Del Pezzo Surfaces (ALGEBRAIC SURFACES)

del-pezzo

   Parametrization of Del Pezzo Surfaces (ALGEBRAIC SURFACES)

del-pezzo-ex-3-sing

   AlgSrf_del-pezzo-ex-3-sing (Example H116E22)

del-pezzo-ex-6

   AlgSrf_del-pezzo-ex-6 (Example H116E21)

del-pezzo-ex-8

   AlgSrf_del-pezzo-ex-8 (Example H116E20)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013