[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: Supremum .. SuzukiMaximalSubgroups
SuperSummitSupremum(u: parameters) : GrpBrdElt -> RngIntElt
Supremum(u: parameters) : GrpBrdElt -> RngIntElt
ClassicalCovariantsOfCubicSurface(f) : RngMPolElt -> SeqEnum
ClassifyRationalSurface(S) : Srfc -> Srfc, List, MonStgElt
ContravariantsOfCubicSurface(f) : RngMPolElt -> SeqEnum
CubicSurfaceByHexahedralCoefficients(p) : RngUPolElt -> RngMPolElt
CubicSurfaceFromClebschSalmon(inv) : SeqEnum -> RngMPolElt
DelPezzoSurface(P,L) : Prj,List -> SrfDelPezzo
DelPezzoSurface(f) : RngMPolElt -> SrfDelPezzo
IsGorensteinSurface(B) : GRBskt -> BoolElt
IsGorensteinSurface(p) : GRPtS -> BoolElt
IsIsomorphicCubicSurface(f,g) : MPolElt, MPolElt -> BoolElt, List
IsSimpleSurfaceSingularity(p) : Pt -> BoolElt, MonStr, RngIntElt
K3Surface(D,i) : DB,RngIntElt -> GRK3
K3Surface(D,g,B) : DB,RngIntElt,GRBskt -> GRK3
K3Surface(D,g,i) : DB,RngIntElt,RngIntElt -> GRK3
K3Surface(D,g1,g2,i) : DB,RngIntElt,RngIntElt,RngIntElt -> GRK3
K3Surface(D,W) : DB,SeqEnum -> GRK3
K3Surface(D,Q,i) : DB,SeqEnum,RngIntElt -> GRK3
K3Surface(x) : Rec -> GRK3
K3Surface(g,B) : RngIntElt,GRBskt -> GRK3
K3Surface(x) : Tup -> GRK3
K3SurfaceRaw(D,i) : DB,RngIntElt -> Tup
K3SurfaceToRecord(X) : GRK3 -> Rec
KummerSurface(J) : JacHyp -> SrfKum
KummerSurfaceScheme(C) : CrvHyp -> Srfc
MinimalModelRationalSurface(S) : Srfc -> Map
MinimalModelRuledSurface(S) : Srfc -> Map
MinimizeCubicSurface(f, p) : RngMPolElt, RngIntElt -> RngMPolElt, Mtrx
MinimizeReduceCubicSurface(f) : MPolElt -> RngMPolElt, Mtrx
NumberOfPointsOnCubicSurface(f) : RngMPolElt -> RngIntElt, RngIntElt
NumberOfPointsOnSurface(E, e) : CrvEll, RngIntElt -> RngIntElt
NumbersOfPointsOnSurface(E, e) : CrvEll, RngIntElt -> [ RngIntElt ], [ RngIntElt ]
ParametrizeProjectiveSurface(X, P2) : Srfc, Prj -> BoolElt, MapSch
RandomAbelianSurface_d10g6(P) : Prj -> Srfc
RandomEnriquesSurface_d9g6(P) : Prj -> Srfc
RandomRationalSurface_d10g9(P) : Prj -> Srfc
RationalRuledSurface(P,n) : Prj, RngIntElt -> Srfc, MapSch
ReduceCubicSurface(f) : RngMPolElt -> RngMPolElt, Mtrx
ResolveAffineMonicSurface(s) : RngUPolElt -> List, RngIntElt
ResolveProjectiveSurface(S) : Srfc -> List, RngIntElt
RichelotIsogenousSurface(J, kernel) : JacHyp, RngUPolElt[RngUPolRes] -> .
RuledSurface(k,n) : Rng,RngIntElt -> PrjScrl
RuledSurface(k,n) : Rng,RngIntElt -> PrjScrl
RuledSurface(k,a,b) : Rng,RngIntElt,RngIntElt -> PrjScrl
Surface(A,I) : Sch, ModMPol -> Srfc
RichelotIsogenousSurfaces(J) : JacHyp -> List, List
ALGEBRAIC SURFACES
Kummer Surfaces (HYPERELLIPTIC CURVES)
IsSurjective(f) : Map -> [ BoolElt ]
IsSurjective(f) : MapChn -> BoolElt
IsSurjective(phi) : MapModAbVar -> BoolElt
IsSurjective(a) : ModMatRngElt -> BoolElt
IsSurjective(f) : ModMPolHom -> BoolElt
SurjectivePart(phi) : MapModAbVar -> MapModAbVar
SurjectivePart(phi) : MapModAbVar -> MapModAbVar
Suspension(X) : SmpCpx -> SmpCpx
IsSuzukiGroup(G) : GrpMat -> BoolElt, RngIntElt
ProjectiveSuzukiGroup(arguments)
SuzukiGroup(q) : RngIntElt -> GrpMat
SuzukiIrreducibleRepresentation(F, twists : parameters) : FldFin, SeqEnum[RngIntElt] -> GrpMat
SuzukiMaximalSubgroups(G) : GrpMat -> SeqEnum, SeqEnum
SuzukiMaximalSubgroupsConjugacy(G, R, S) : GrpMat, GrpMat, GrpMat -> GrpMatElt, GrpSLPElt
SuzukiSylow(G, p) : GrpMat, RngIntElt -> GrpMat, SeqEnum
SuzukiSylowConjugacy(G, R, S, p) : GrpMat, GrpMat, GrpMat, RngIntElt -> GrpMatElt, GrpSLPElt
GrpASim_Suzuki (Example H65E2)
Constructive Recognition of Suzuki Groups (ALMOST SIMPLE GROUPS)
Introduction (ALMOST SIMPLE GROUPS)
Recognition Functions (ALMOST SIMPLE GROUPS)
Suzuki Groups (ALMOST SIMPLE GROUPS)
Introduction (ALMOST SIMPLE GROUPS)
Recognition Functions (ALMOST SIMPLE GROUPS)
SuzukiGroup(q) : RngIntElt -> GrpMat
SuzukiIrreducibleRepresentation(F, twists : parameters) : FldFin, SeqEnum[RngIntElt] -> GrpMat
SuzukiMaximalSubgroups(G) : GrpMat -> SeqEnum, SeqEnum
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013