[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: Ceiling .. CentralCharacter
Ceiling(q) : FldRatElt -> RngIntElt
Ceiling(r) : Infty -> Infty
Ceiling(n) : RngIntElt -> RngIntElt
Round(x) : Infty -> Infty
Cell(P, h, i): StkPtnOrd, RngIntElt, RngIntElt -> SeqEnum
CellNumber(P, h, x) : StkPtnOrd, RngIntElt, RngIntElt -> RngIntElt
CellSize(P, h, i) : StkPtnOrd, RngIntElt, RngIntElt -> RngIntElt
ParentCell(P, i) : StkPtnOrd, RngIntElt -> RngIntElt
SplitCell(P, i, x) : StkPtnOrd, RngIntElt, RngIntElt -> BoolElt
VoronoiCell(L) : Lat -> [ ModTupFldElt ], SetEnum , [ ModTupFldElt ]
CellNumber(P, h, x) : StkPtnOrd, RngIntElt, RngIntElt -> RngIntElt
GetCells(wg) : GrphUnd -> SeqEnum
NumberOfCells(P, h) : StkPtnOrd, RngIntElt -> RngIntElt
SplitCellsByValues(P, C, V) : StkPtnOrd, SeqEnum[RngIntElt], SeqEnum[RngIntElt] -> BoolElt, RngIntElt
CellSize(P, h, i) : StkPtnOrd, RngIntElt, RngIntElt -> RngIntElt
Plane_cent-coll (Example H141E15)
AlgebraOverCenter(A) : Alg -> AlgAss, Map;
Center(D) : SpcHyd -> RngElt
Centre(L) : AlgLie -> AlgLie
Centre(G) : GrpAb -> GrpAb
Centre(G) : GrpFin -> GrpFin
Centre(G) : GrpGPC -> GrpGPC
Centre(G) : GrpMat -> GrpMat
Centre(G) : GrpPC -> GrpPC
Centre(G) : GrpPerm -> GrpPerm
Centre(R) : Rng -> Rng
CentreDensity(L) : Lat -> FldReElt
CentrePolynomials(G) : GrpLie ->
CenterDensity(L) : Lat -> FldReElt
CentreDensity(L) : Lat -> FldReElt
CenterPolynomials(G) : GrpLie ->
CentrePolynomials(G) : GrpLie ->
A`IsCentral : FldAb -> Bool
CentralCharacter(psi) : GrossenChar -> GrpDrchNFElt
CentralCharacter(chi) : GrpDrchNFElt -> GrpDrchNFElt
CentralCharacter(M) : ModFrmHil -> RngIntElt
CentralCharacter(pi) : RepLoc -> GrpDrchElt
CentralCollineationGroup(P, l) : Plane, PlaneLn -> GrpPerm, PowMap, Map
CentralCollineationGroup(P, p) : Plane, PlanePt -> GrpPerm, PowMap, Map
CentralCollineationGroup(P, p, l) : Plane, PlanePt, PlaneLn -> GrpPerm, PowMap, Map
CentralEndomorphisms(G, n) : GrpMat, RngIntElt -> [ AlgMatElt ]
CentralEndomorphisms(L, n) : Lat, RngIntElt -> [ AlgMatElt ]
CentralExtension(G, U, A) : GrpPC, GrpPC, AlgMatElt -> GrpPC
CentralExtensionProcess(G, U) : GrpPC, GrpPC -> Proc
CentralExtensions(G, U, Q) : GrpPC, GrpPC, [AlgMatElt] -> [GrpPC]
CentralIdempotents(A) : AlgAssV -> SeqEnum, SeqEnum
CentralOrder(g : parameters) : GrpMatElt -> RngIntElt, BoolElt
CentralValue(L) : LSer -> FldComElt
IsCentral(A,x) : AlgBas, AlgBasElt -> BoolElt
IsCentral(L, M) : AlgLie,AlgLie -> BoolElt
IsCentral(L, M) : AlgLie,AlgLieElt -> BoolElt
IsCentral(A) : FldAb -> BoolElt
IsCentral(G, H) : GrpFin -> BoolElt
IsCentral(G, H) : GrpGPC, GrpGPC -> BoolElt
IsCentral(x) : GrpLieElt -> BoolElt
IsCentral(G, H) : GrpMat -> BoolElt
IsCentral(G, H) : GrpPC, GrpPC -> BoolElt
IsCentral(G, H) : GrpPerm -> BoolElt
IsCentralByFinite(G : parameters) : GrpMat -> BoolElt
IsCentralCollineation(P, g) : Plane, GrpPermElt -> BoolElt, PlanePt, PlaneLn
LowerCentralSeries(L) : AlgLie -> [ AlgLie ]
LowerCentralSeries(G) : GrpFin -> [ GrpFin ]
LowerCentralSeries(G) : GrpGPC -> [GrpGPC]
LowerCentralSeries(G) : GrpMat -> [ GrpMat ]
LowerCentralSeries(G) : GrpPC -> [GrpPC]
LowerCentralSeries(G) : GrpPerm -> [ GrpPerm ]
UpperCentralSeries(L) : AlgLie -> [ AlgLie ]
UpperCentralSeries(G) : GrpFin -> [ GrpFin ]
UpperCentralSeries(G) : GrpGPC -> [GrpGPC]
UpperCentralSeries(G) : GrpMat -> [ GrpMat ]
UpperCentralSeries(G) : GrpPC -> [GrpPC]
UpperCentralSeries(G) : GrpPerm -> [ GrpPerm ]
Central Collineations (FINITE PLANES)
Central Extensions (FINITE SOLUBLE GROUPS)
FldNum_central-chars (Example H34E18)
Central Extensions (FINITE SOLUBLE GROUPS)
CentralCharacter(psi) : GrossenChar -> GrpDrchNFElt
CentralCharacter(chi) : GrpDrchNFElt -> GrpDrchNFElt
CentralCharacter(M) : ModFrmHil -> RngIntElt
CentralCharacter(pi) : RepLoc -> GrpDrchElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013