[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: ChangeSupport .. Character
ChangeSupport(~G, S) : Grph, SetIndx ->
ChangeSupport(G, S) : Grph, SetIndx -> Grph, GrphVertSet, GrphEdgeSet
ChangeSupport(~G, S) : GrphMult, SetIndx ->
ChangeSupport(G, S) : GrphMult, SetIndx -> GrphMult, GrphVertSet, GrphEdgeSet
ChangeUniverse(~x, R) : ModTupRngElt, Rng -> ModRng, Map
ChangeUniverse(S, V) : SeqEnum, Str ->
ChangeUniverse(~S, V) : SetEnum, Str ->
ChangGraphs() : -> [GrpUnd, GrpUnd, GrpUnd]
Changing Basis (K[G]-MODULES AND GROUP REPRESENTATIONS)
Changing Basis (MODULES OVER AN ALGEBRA)
Changing Related Structures (DIFFERENTIAL RINGS)
Changing Related Structures (DIFFERENTIAL RINGS)
Changing the Coefficient Ring (K[G]-MODULES AND GROUP REPRESENTATIONS)
Changing the Coefficient Ring (MODULES OVER AN ALGEBRA)
Degeneracy Maps (MODULAR SYMBOLS)
Writing a Module over a Smaller Field (K[G]-MODULES AND GROUP REPRESENTATIONS)
Changing Related Structures (DIFFERENTIAL RINGS)
Changing Related Structures (DIFFERENTIAL RINGS)
Changing Basis (K[G]-MODULES AND GROUP REPRESENTATIONS)
Changing Basis (MODULES OVER AN ALGEBRA)
Degeneracy Maps (MODULAR SYMBOLS)
Changing the Coefficient Ring (K[G]-MODULES AND GROUP REPRESENTATIONS)
Changing the Coefficient Ring (MODULES OVER AN ALGEBRA)
Writing a Module over a Smaller Field (K[G]-MODULES AND GROUP REPRESENTATIONS)
PARTITIONS, WORDS AND YOUNG TABLEAUX
EulerFactorModChar(J) : JacHyp -> RngUPolElt
Series for p-groups (FINITE SOLUBLE GROUPS)
Series for p-groups (FINITE SOLUBLE GROUPS)
Symmetric Group Character (SYMMETRIC FUNCTIONS)
AlternatingCharacter(pa) : SeqEnum -> AlgChtrElt
AlternatingCharacter(pa, i) : SeqEnum, RngIntElt -> AlgChtrElt
AlternatingCharacterTable(d) : RngIntElt -> SeqEnum
AlternatingCharacterValue(pa, pe) : SeqEnum, GrpPermElt -> RngElt
AlternatingCharacterValue(pa, i, pe) : SeqEnum, RngIntElt, GrpPermElt -> RngElt
AssociatedPrimitiveCharacter(chi) : GrpDrchElt -> GrpDrchElt
AssociatedPrimitiveCharacter(chi) : GrpDrchNFElt -> GrpDrchNFElt
BrauerCharacter(x, p) : AlgChtrElt, RngIntElt -> AlgChtrElt
CentralCharacter(psi) : GrossenChar -> GrpDrchNFElt
CentralCharacter(chi) : GrpDrchNFElt -> GrpDrchNFElt
CentralCharacter(M) : ModFrmHil -> RngIntElt
CentralCharacter(pi) : RepLoc -> GrpDrchElt
Character(A) : ArtRep -> AlgChtrElt
CharacterDegrees(G) : GrpFin -> [ Tup ]
CharacterDegrees(G) : GrpPC -> [ Tup ]
CharacterDegrees(G) : GrpPC -> [ Tup ]
CharacterDegrees(G, z, p): GrpPC, GrpPCElt, RngIntElt -> SeqEnum
CharacterDegrees(G): GrpPerm -> SeqEnum
CharacterDegreesPGroup(G) : GrpFin -> [ RngIntElt ]
CharacterDegreesPGroup(G): GrpPC -> SeqEnum
CharacterMultiset(V) : ModAlg -> LieRepDec
CharacterMultiset(V) : ModAlg -> LieRepDec
CharacterTable(G) : GrpAb -> TabChtr
CharacterTable(G) : GrpFin -> TabChtr
CharacterTable(G :parameters) : Grp -> SeqEnum
CharacterTable(G: parameters) : GrpMat -> TabChtr
CharacterTable(G: parameters) : GrpPC -> TabChtr
CharacterTable(G: parameters) : GrpPerm -> TabChtr
CharacterTableConlon(G) : Grp -> SeqEnum
CharacterTableConlon(G) : GrpPC -> [ AlgChtrElt ]
CharacterTableDS(G :parameters) : Grp -> SeqEnum, SeqEnum
CharacterWithSchurIndex(n: parameters) : RngIntElt -> AlgChtrElt. GrpPC
ClassFunctionSpace(G) : Grp -> AlgChtr
ClassPowerCharacter(x, j) : AlgChtrElt, RngIntElt -> AlgChtrElt
CreateCharacterFile(P) : NFSProc -> .
CreateCharacterFile(P, cc) : NFSProc, RngIntElt -> .
DecomposeCharacter(C) : LieRepDec -> LieRepDec
DirichletCharacter(A) : ArtRep -> GrpDrchElt
DirichletCharacter(A) : ModAbVar -> GrpDrchElt
DirichletCharacter(f) : ModFrmElt -> GrpDrchElt
DirichletCharacter(M) : ModFrmHil -> GrpDrchNFElt
DirichletCharacter(I, B) : RngOrdIdl, Tup -> GrpDrchNFElt, GrpDrchNF
DirichletCharacterOverNF(chi) : GrpDrchElt -> GrpDrchNFElt
DominantCharacter(D) : LieRepDec -> LieRepDec
HeckeCharacterGroup(I) : RngOrdIdl -> GrpHecke
Id(R) : AlgChtr -> AlgChtrElt
IsCharacter(x) : AlgChtrElt -> BoolElt
IsGeneralizedCharacter(x) : AlgChtrElt -> BoolElt
KroneckerCharacter(D) : RngIntElt -> GrpDrchElt
LiftCharacter(c, f, G) : AlgChtrElt, Map, Grp -> AlgChtrElt
MinimalBaseRingCharacter(chi) : GrpDrchElt -> GrpDrchElt
PermutationCharacter(K) : FldNum -> ArtRep
PermutationCharacter(G, H) : Grp, Grp -> AlgChtrElt
PermutationCharacter(G, H) : GrpFin, GrpFin -> AlgChtrElt
PermutationCharacter(G, H) : GrpMat, GrpMat -> AlgChtrElt
PermutationCharacter(G) : GrpPerm -> AlgChtrElt
PermutationCharacter(G) : GrpPerm -> AlgChtrElt
PermutationCharacter(G) : GrpPerm -> AlgChtrElt
PermutationCharacter(G, H) : GrpPerm, GrpPerm -> AlgChtrElt
RationalCharacterTable(G) : Grp -> SeqEnum, SeqEnum
RationalCharacterTable(G): GrpFin -> SeqEnum
SymmetricCharacter(sf): AlgSymElt -> AlgChtrElt
SymmetricCharacter(pa) : SeqEnum -> AlgChtrElt
SymmetricCharacterTable(d) : RngIntElt -> SeqEnum
SymmetricCharacterValue(pa, pe) : SeqEnum, GrpPermElt -> RngElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013