[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: FactoredInverseDefiningPolynomials .. Factorization
FactoredInverseDefiningPolynomials(f) : MapSch -> SeqEnum
FactoredMCPolynomials(A: parameters) : Mtrx -> [<RngUPolElt, RngIntElt>], [<RngUPolElt, RngIntElt>]
FactoredMinimalAndCharacteristicPolynomials(A: parameters) : Mtrx -> [<RngUPolElt, RngIntElt>], [<RngUPolElt, RngIntElt>]
FactoredMCPolynomials(A: parameters) : Mtrx -> [<RngUPolElt, RngIntElt>], [<RngUPolElt, RngIntElt>]
FactoredMinimalAndCharacteristicPolynomials(A: parameters) : Mtrx -> [<RngUPolElt, RngIntElt>], [<RngUPolElt, RngIntElt>]
FactoredMinimalPolynomial(A: parameters) : Mtrx -> [ <RngUPolElt, RngIntElt>]
FactoredModulus(R) : RngIntRes -> RngIntEltFact
FactoredOrder(A) : AlgMatElt -> [ <RngIntElt, RngIntElt> ]
FactoredOrder(a) : AlgMatElt -> [ <RngIntElt, RngIntElt> ]
FactoredOrder(a) : FldFinElt -> RngIntElt
FactoredOrder(G) : GrpAb -> [<RngIntElt, RngIntElt>]
FactoredOrder(A) : GrpAutCrv -> [ <RngIntElt, RngIntElt> ]
FactoredOrder(A) : GrpAuto -> [ <RngIntElt, RngIntElt> ]
FactoredOrder(G) : GrpFin -> [ <RngIntElt, RngIntElt> ]
FactoredOrder(G) : GrpGPC -> [<RngIntElt, RngIntElt>]
FactoredOrder(G) : GrpLie -> RngIntElt
FactoredOrder(G) : GrpMat -> [ <RngIntElt, RngIntElt> ]
FactoredOrder(g) : GrpMatElt -> [ <RngIntElt, RngIntElt> ], BoolElt
FactoredOrder(G) : GrpPC -> [<RngIntElt, RngIntElt>]
FactoredOrder(P) : GrpPCpQuotientProc -> [ <RngIntElt, RngIntElt> ]
FactoredOrder(G) : GrpPerm -> [ <RngIntElt, RngIntElt> ]
FactoredOrder(J) : JacHyp -> [ <RngIntElt, RngIntElt> ]
FactoredOrder(P) : PtEll -> RngIntElt
FactoredOrder(G) : SchGrpEll -> RngIntElt
FactoredOrder(H) : SetPtEll -> RngIntElt
Order(G) : GrpMatUnip -> RngIntElt
Order(G: parameters) : GrpFP -> RngIntElt
FactoredProjectiveOrder(a) : AlgMatElt -> [ <RngIntElt, RngIntElt> ]
FactoredProjectiveOrder(A) : AlgMatElt -> [ <RngIntElt, RngIntElt> ], RngElt
FactoredProjectiveOrder(A) : AlgMatElt -> [ <RngIntElt, RngIntElt> ], RngElt
Factorial(n) : RngIntElt -> RngIntElt
Factorial(n) : RngIntElt -> RngIntElt
GaussianFactorial(n, v) : RngIntElt, RngElt -> RngElt
IsFactorial(n) : RngIntElt -> BoolElt, RngIntElt
CombineIdealFactorisation(~D) : DivSchElt ->
ComputePrimeFactorisation(~D) : DivSchElt ->
ComputeReducedFactorisation(~D) : DivSchElt ->
Factorisation(A) : ModAbVar -> List
Factorisation(L) : RngDiffOpElt -> SeqEnum, SeqEnum
FactorisationToPolynomial(f) : [Tup] -> BoolElt
Factorization(L) : LSer -> SeqEnum[Tup]
Factorization(I) : RngFunOrdIdl -> [ <RngFunOrdIdl, RngIntElt> ]
Factorization(n) : RngIntElt -> RngIntEltFact, RngIntElt, SeqEnum
Factorization(I) : RngOrdFracIdl -> [<RngOrdIdl, RngIntElt>]
Factorization(n) : RngQuadElt -> SeqEnum, Tup
Factorization(f) : RngUPolElt -> [ < RngUPolElt, RngIntElt >], RngElt
FactorizationOverSplittingField(f) : RngUPolElt[FldFin] -> [<RngUPolElt, RngIntElt>], FldFin
FactorizationToInteger(s) : [ <RngIntElt, RngIntElt> ] -> RngIntElt
IdealFactorisation(D) : DivSchElt -> SeqEnum
IsFactorisationPrime(D) : DivSchElt -> BoolElt
Coprime Index 1 and LCLM Factorisation (DIFFERENTIAL RINGS)
Factorisation of Operators over Differential Laurent Series Rings (DIFFERENTIAL RINGS)
FactorisationOverSplittingField(f) : RngUPolElt[FldFin] -> [<RngUPolElt, RngIntElt>], FldFin
FactorizationOverSplittingField(f) : RngUPolElt[FldFin] -> [<RngUPolElt, RngIntElt>], FldFin
FactorisationToInteger(s) : [ <RngIntElt, RngIntElt> ] -> RngIntElt
Facint(s) : [ <RngIntElt, RngIntElt> ] -> RngIntElt
FactorizationToInteger(s) : [ <RngIntElt, RngIntElt> ] -> RngIntElt
Facpol(f) : [Tup] -> BoolElt
FactorisationToPolynomial(f) : [Tup] -> BoolElt
DistinctDegreeFactorization(f) : RngUPolElt -> [ <RngIntElt, RngUPolElt> ]
EqualDegreeFactorization(f, d, g) : RngUPolElt, RngIntElt, RngUPolElt -> [ RngUPolElt ]
Facint(f) : RngIntEltFact -> RngIntElt
Factorisation(A) : ModAbVar -> List
Factorisation(L) : RngDiffOpElt -> SeqEnum, SeqEnum
Factorization(I) : AlgQuatOrdIdl -> SeqEnum
Factorization(L) : LSer -> SeqEnum[Tup]
Factorization(I) : RngFunOrdIdl -> [ <RngFunOrdIdl, RngIntElt> ]
Factorization(n) : RngIntElt -> RngIntEltFact, RngIntElt, SeqEnum
Factorization(f) : RngMPolElt -> [ < RngMPolElt, RngIntElt >], RngElt
Factorization(I) : RngOrdFracIdl -> [<RngOrdIdl, RngIntElt>]
Factorization(n) : RngQuadElt -> SeqEnum, Tup
Factorization(f) : RngUPolElt -> [ < RngUPolElt, RngIntElt > ]
Factorization(f) : RngUPolElt -> [ < RngUPolElt, RngIntElt >], RngElt
Factorization(f) : RngUPolElt[RngLocA] -> SeqEnum, RngElt, Any
Factorization(f) : RngUPolElt[RngSerPow[FldFin]] -> [ < RngUPolElt[RngSerPow], RngIntElt > ], RngSerPowElt
FactorizationOverSplittingField(f) : RngUPolElt[FldFin] -> [<RngUPolElt, RngIntElt>], FldFin
FactorizationToInteger(s) : [ <RngIntElt, RngIntElt> ] -> RngIntElt
HasPolynomialFactorization(R) : Rng -> BoolElt
IsUFD(R) : Rng -> BoolElt
PartialFactorization(S) : [ RngIntElt ] -> [ RngIntEltFact ]
SeqFact(s) : SeqEnum -> RngIntEltFact
SquareFreeFactorization(f) : RngUPolElt -> [ < RngUPolElt, RngIntElt > ]
SquarefreeFactorization(n) : RngIntElt -> RngIntElt, RngIntElt
SquarefreeFactorization(f) : RngMPolElt -> [ <RngMPolElt, RngIntElt> ]
SquarefreeFactorization(f) : RngUPolElt -> [ <RngUPolElt, RngIntElt> ]
AlgAff_Factorization (Example H108E5)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013