[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: complex-tori  ..  Composition


complex-tori

   The Associated Complex Torus (MODULAR SYMBOLS)

ComplexCartanMatrix

   ComplexCartanMatrix(k) : RngIntElt -> AlgMatElt

ComplexConjugate

   ComplexConjugate(x) : FldAlgElt -> FldAlgElt
   ComplexConjugate(a) : FldCycElt -> FldCycElt
   ComplexConjugate(x) : FldNumElt -> FldNumElt
   ComplexConjugate(a) : FldQuadElt -> FldQuadElt
   ComplexConjugate(q) : FldRatElt -> FldRatElt
   ComplexConjugate(r) : FldReElt -> FldReElt
   ComplexConjugate(n) : RngIntElt -> RngIntElt

ComplexEmbeddings

   ComplexEmbeddings(f) : ModFrmElt -> List

Complexes

   ModCpx_Complexes (Example H56E1)

complexes

   CHAIN COMPLEXES
   Complexes of Modules (CHAIN COMPLEXES)
   Simplicial Complexes (SIMPLICIAL HOMOLOGY)

ComplexField

   ComplexField() : -> FldCom
   ComplexField(R) : FldRe -> FldCom
   ComplexField(p) : RngIntElt -> FldCom

ComplexReflectionGroup

   ComplexReflectionGroup(X, n) : MonStgElt, RngIntElt -> GrpMat, Map
   ComplexReflectionGroup(C) : Mtrx -> GrpMat, Map

ComplexReflectionGroupByMatrix

   GrpRfl_ComplexReflectionGroupByMatrix (Example H99E12)

ComplexReflectionGroups

   GrpRfl_ComplexReflectionGroups (Example H99E9)

ComplexRootDatum

   ComplexRootDatum(k) : RngIntElt -> SeqEnum, SeqEnum, Map, GrpMat, AlgMatElt

ComplexRootMatrices

   ComplexRootMatrices(k) : RngIntElt -> AlgMatElt, AlgMatElt, AlgMatElt, RngElt, RngIntElt

ComplexToPolar

   ComplexToPolar(c) : FldComElt -> FldReElt, FldReElt

ComplexValue

   ComplexValue(z) : SpcHydElt -> FldComElt
   ComplexValue(x) : SpcHypElt -> FldComElt

Component

   BaseComponent(L) : LinearSys -> SchProj
   Component(v) : GrphResVert -> GrphRes
   Component(u) : GrphVert -> Grph
   Component(u) : GrphVert -> Grph
   Component(u) : GrphVert -> GrphMult
   Component(u) : GrphVert -> GrphMult
   Component(C, i) : SetCart, RngIntElt -> Str
   ComponentGroup(M) : CrvRegModel -> GrpAb
   ComponentGroupOfIntersection(A, B) : ModAbVar, ModAbVar -> ModAbVarSubGrp
   ComponentGroupOfKernel(phi) : MapModAbVar -> ModAbVarSubGrp
   ComponentGroupOrder(A, p) : ModAbVar, RngIntElt -> RngIntElt
   ComponentGroupOrder(M, p) : ModSym, RngIntElt -> RngIntElt
   HomogeneousComponent(f, d) : RngMPolElt, RngIntElt -> RngMPolElt
   LocalComponent(M, p) : ModSym, RngIntElt -> RepLoc
   OrthogonalComponent(x, p) : AlgChtrElt, [ RngIntElt ] -> AlgChtrElt
   SymplecticComponent(x, p) : AlgChtrElt, [ RngIntElt ] -> AlgChtrElt
   pPrimaryComponent(A, p) : GrpAb, RngIntElt -> GrpAb

ComponentGroup

   ComponentGroup(M) : CrvRegModel -> GrpAb

ComponentGroupOfIntersection

   ComponentGroupOfIntersection(A, B) : ModAbVar, ModAbVar -> ModAbVarSubGrp

ComponentGroupOfKernel

   ComponentGroupOfKernel(phi) : MapModAbVar -> ModAbVarSubGrp

ComponentGroupOrder

   ComponentGroupOrder(A, p) : ModAbVar, RngIntElt -> RngIntElt
   ComponentGroupOrder(M, p) : ModSym, RngIntElt -> RngIntElt

Components

   A`Components : FldAb -> [Rec]
   Components(A) : FldAb -> [RngOrd]
   Components(G) : GrphMultUnd -> [ { GrphVert } ]
   Components(G) : GrphUnd -> [ { GrphVert } ]
   Components(f) : Map -> [ Map ]
   Components(f) : Map -> [Map]
   HomogeneousComponents(f) : RngMPolElt -> [ RngMPolElt ]
   IrrelevantComponents(C) : RngCox -> SeqEnum
   NumberOfComponents(C) : SetCart -> RngIntElt
   NumberOfComponents(K) : SymKod -> RngIntElt
   OrthogonalComponents(x, n) : AlgChtrElt, RngIntElt -> SetEnum
   PrimaryComponents(X) : Sch -> SeqEnum
   PrimeComponents(X) : Sch -> SeqEnum
   StronglyConnectedComponents(G) : GrphDir -> [ { GrphVert } ]
   StronglyConnectedComponents(G) : GrphMultDir -> [ { GrphVert } ]
   SymmetricComponents(x, n) : AlgChtrElt, RngIntElt -> SetEnum
   SymplecticComponents(x, n) : AlgChtrElt, RngIntElt -> SetEnum

components

   Components of Fans (TORIC VARIETIES)

Compose

   ComposeTransformations(g1, g2) : Tup, Tup -> Tup
   g1 * g2 : Tup, Tup -> Tup

ComposeTransformations

   ComposeTransformations(g1, g2) : Tup, Tup -> Tup
   g1 * g2 : Tup, Tup -> Tup

Composite

   Composite(R, S) : RngPad, RngPad -> RngPad
   MergeFields(F, L) : FldAlg, FldAlg -> SeqEnum
   MergeFields(F, L) : FldNum, FldNum -> SeqEnum

CompositeFields

   CompositeFields(F, L) : FldAlg, FldAlg -> SeqEnum
   MergeFields(F, L) : FldAlg, FldAlg -> SeqEnum
   MergeFields(F, L) : FldNum, FldNum -> SeqEnum
   FldNum_CompositeFields (Example H34E3)

Composition

   Composition(f, g) : QuadBinElt, QuadBinElt -> QuadBinElt
   f * g : QuadBinElt, QuadBinElt -> QuadBinElt
   CleanCompositionTree(G) : Grp ->
   Composition(f, g) : Map, Map -> Map
   Composition(f, g) : RngSerElt, RngSerElt -> RngSerElt
   Composition(T, q) : [ AlgChtrElt ], [RngElt] -> AlgChtrElt
   CompositionFactors(G) : : GrpFin -> [ <RngIntElt, RngIntElt, RngIntElt> ]
   CompositionFactors(G) : : GrpMat -> [ <RngIntElt, RngIntElt, RngIntElt> ]
   CompositionFactors(A) : AlgGen -> [ AlgGen ]
   CompositionFactors(L) : AlgLie -> [ AlgLie ]
   CompositionFactors(G) : GrpPC -> SeqEnum
   CompositionFactors(G) : GrpPerm -> [ <RngIntElt, RngIntElt, RngIntElt> ]
   CompositionFactors(M) : ModRng -> [ ModRng ]
   CompositionSeries(A) : AlgGen -> [ AlgGen ], [ AlgGen ], AlgMatElt
   CompositionSeries(L) : AlgLie -> [ Alg ], [ AlgLie ], AlgMatElt
   CompositionSeries(G) : GrpAb -> [GrpAb]
   CompositionSeries(G) : GrpPC -> [GrpPC]
   CompositionSeries(G, i) : GrpPC, RngIntElt -> [GrpPC]
   CompositionSeries(G) : GrpPerm -> [ GrpPerm ]
   CompositionSeries(M) : ModRng -> [ ModRng ], [ ModRng ], AlgMatElt
   CompositionTree(G : parameters) : GrpMat[FldFin] -> []
   CompositionTreeCBM(G) : GrpMat[FldFin -> GrpMatElt
   CompositionTreeElementToWord(G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt
   CompositionTreeFactorNumber(G, g) : Grp, GrpElt -> RngIntElt
   CompositionTreeFastVerification(G) : Grp -> BoolElt
   CompositionTreeNiceGroup(G) : Grp -> GrpMat[FldFin]
   CompositionTreeNiceToUser(G) : Grp -> Map, []
   CompositionTreeOrder(G) : Grp -> RngIntElt
   CompositionTreeReductionInfo(G, t) : Grp, RngIntElt -> MonStgElt,Grp, Grp
   CompositionTreeSLPGroup(G) : Grp -> GrpSLP, Map
   CompositionTreeSeries(G) : Grp -> SeqEnum, List, List, List, BoolElt, []
   CompositionTreeVerify(G) : Grp -> BoolElt, []
   HasCompositionTree(G) : Grp -> BoolElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013