[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: Segre .. Semigroup
SegreEmbedding(X) : Sch -> Sch, MapIsoSch
SegreProduct(Xs) : SeqEnum[Sch] -> Sch, SeqEnum
SegreEmbedding(X) : Sch -> Sch, MapIsoSch
SegreProduct(Xs) : SeqEnum[Sch] -> Sch, SeqEnum
Attribute Selection (RING OF INTEGERS)
IsSelfDual(C) : Code -> BoolElt
IsSelfDual(C) : Code -> BoolElt
IsSelfDual(C) : Code -> BoolElt
IsSelfDual(D) : Inc -> BoolElt
IsSelfDual(A) : ModAbVar -> BoolElt
IsSelfDual(P) : PlaneProj -> BoolElt
IsSelfNormalising(G, H) : GrpGPC, GrpGPC -> BoolElt
IsSelfNormalizing(G, H) : GrpFin, GrpFin -> BoolElt
IsSelfNormalizing(G, H) : GrpFP, GrpFP -> BoolElt
IsSelfNormalizing(G, H) : GrpPC, GrpPC -> BoolElt
IsSelfNormalizing(G, H) : GrpPerm, GrpPerm -> BoolElt
IsSelfOrthogonal(C) : Code -> BoolElt
IsSelfOrthogonal(C) : Code -> BoolElt
IsSelfOrthogonal(C) : Code -> BoolElt
IsSymplecticSelfDual(C) : CodeAdd -> BoolElt
IsSymplecticSelfOrthogonal(C) : CodeAdd -> BoolElt
Self(n) : RngIntElt -> Elt
SelfComplementaryGraphDatabase(n) : RngIntElt -> DB
SelfIntersection(D) : DivSchElt -> FldRatElt
SelfIntersections(g) : GrphRes -> SeqEnum
Seq_Self (Example H10E5)
SelfComplementaryGraphDatabase(n) : RngIntElt -> DB
CodeFld_SelfDual (Example H152E17)
CodeRng_SelfDualZ4 (Example H155E28)
SelfIntersection(D) : DivSchElt -> FldRatElt
ModifySelfintersection(~v,n) : GrphResVert,RngIntElt ->
SelfIntersections(g) : GrphRes -> SeqEnum
CodeFld_SelfOrthogonal (Example H152E18)
FakeIsogenySelmerSet(C,phi) : Crv, MapSch -> RngIntElt
LocalTwoSelmerMap(P) : RngOrdIdl -> Map
LocalTwoSelmerMap(A, P) : RngUPolRes, RngOrdIdl -> Map, SeqEnum
NineSelmerSet(C) : Crv -> RngIntElt
PhiSelmerGroup(f,q) : RngUPolElt, RngIntElt -> GrpAb, Map
SelmerGroup(phi) : Map -> GrpAb, Map, Map, SeqEnum, SetEnum
ThreeIsogenySelmerGroups(E : parameters) : CrvEll -> GrpAb, Map, GrpAb, Map, MapSch
ThreeSelmerElement(E, C) : CrvEll, RngMPolElt -> Tup
ThreeSelmerGroup(E : parameters) : CrvEll -> GrpAb, Map
TwoIsogenySelmerGroups(E) : CrvEll[FldFunG] -> GrpAb, GrpAb, MapSch, MapSch
TwoSelmerGroup(E) : CrvEll -> GrpAb, Map, SetEnum, Map, SeqEnum
TwoSelmerGroup(E) : CrvEll[FldFunG] -> GrpAb, MapSch
TwoSelmerGroup(J) : JacHyp -> GrpAb, Map, Any, Any
Auxiliary Functions for Etale Algebras (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
Selmer groups (CLASS FIELD THEORY)
Selmer Groups (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
The 2-Selmer Group (HYPERELLIPTIC CURVES)
Two-Selmer Set of a Curve (HYPERELLIPTIC CURVES)
CrvEllQNF_selmer (Example H122E35)
CrvEllQNF_selmer-etale (Example H122E40)
CrvEllQNF_selmer-famous-example (Example H122E15)
FldAb_Selmer-group (Example H39E3)
Selmer groups (CLASS FIELD THEORY)
CrvEllQNF_selmer2 (Example H122E36)
CrvEllQNF_selmer3 (Example H122E37)
CrvEllQNF_selmer4 (Example H122E38)
SelmerGroup(phi) : Map -> GrpAb, Map, Map, SeqEnum, SetEnum
MAGMA SEMANTICS
IsNegativeSemiDefinite(F) : ModMatRngElt -> BoolElt
IsPositiveSemiDefinite(F) : ModMatRngElt -> BoolElt
IsSemiLinear(G) : GrpMat -> BoolElt
SemiInvariantBilinearForms(G) : GrpMat -> SeqEnum
SemiInvariantQuadraticForms(G) : GrpMat -> SeqEnum
SemiInvariantSesquilinearForms(G) : GrpMat -> SeqEnum
SemiLinearGroup(G, S) : GrpMat, FldFin -> GrpMat
SemiOrthogonalBasis(V) : ModTupFld) -> SeqEnum
RepSym_semi-orthog (Example H92E2)
Semidir(G, Q) : GrpMat, SeqEnum -> GrpPerm
SemidirectProduct(K, H, f: parameters) : Grp, Grp, Map -> Grp, Map, Map
SemidirectProduct(K, H, f: parameters) : Grp, Grp, Map -> Grp, Map, Map
FreeSemigroup(n) : RngIntElt -> SgpFP
Semigroup< generators | relations > : SgpFPElt, ..., SgpFPElt, Rel, ...Rel -> SgpFP
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013