[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: value  ..  variety


value

   Call by Value Evaluation (MAGMA SEMANTICS)
   Function Values Assigned to Identifiers (MAGMA SEMANTICS)

ValueList

   ValueList(chi) : GrpDrchElt -> [RngElt]

Values

   AbsoluteValues(a) : FldAlgElt -> [FldPrElt]
   AbsoluteValues(a) : FldNumElt -> [FldComElt]
   FreefValues(L) : AlgLieExtr -> SeqEnum, SeqEnum
   RandomProcess(G) : GrpFin -> Process
   ShowValues() : ->
   SplitAllByValues(P, V) : StkPtnOrd, SeqEnum[RngIntElt] -> BoolElt, RngIntElt
   SplitCellsByValues(P, C, V) : StkPtnOrd, SeqEnum[RngIntElt], SeqEnum[RngIntElt] -> BoolElt, RngIntElt
   ValuesOnUnitGenerators(chi) : GrpDrchElt -> [RngElt]

values

   Single Values (REPRESENTATIONS OF SYMMETRIC GROUPS)

ValuesOnUnitGenerators

   ValuesOnUnitGenerators(chi) : GrpDrchElt -> [RngElt]

Van

   VanLintBound(K, n, d) : FldFin, RngIntElt, RngIntElt -> RngIntElt

Vandermonde

   RngMPol_Vandermonde (Example H24E9)

VanLintBound

   VanLintBound(K, n, d) : FldFin, RngIntElt, RngIntElt -> RngIntElt

var

   Generic Polarised Varieties (HILBERT SERIES OF POLARISED VARIETIES)

Variable

   VariableWeights(P) : RngMPol -> [ RngIntElt ]
   Grading(P) : RngMPol -> [ RngIntElt ]
   VariableExtension(I, k, b) : RngMPol, RngIntElt, BoolElt -> RngMPol, Map

variable

   Environment Variables (ENVIRONMENT AND OPTIONS)
   Variable Extension of Ideals (POLYNOMIAL RING IDEAL OPERATIONS)
   Variables (ALGEBRAICALLY CLOSED FIELDS)

variable-extension

   Variable Extension of Ideals (POLYNOMIAL RING IDEAL OPERATIONS)

VariableExtension

   VariableExtension(I, k, b) : RngMPol, RngIntElt, BoolElt -> RngMPol, Map

Variables

   IntegerSolutionVariables(L) : LP -> SeqEnum
   NumberOfVariables(L) : LP -> RngIntElt
   SetIntegerSolutionVariables(L, I, m) : LP, SeqEnum[RngIntElt], BoolElt ->

VariableWeights

   VariableWeights(P) : RngMPol -> [ RngIntElt ]
   Grading(P) : RngMPol -> [ RngIntElt ]

Variadic

   Func_Variadic (Example H2E4)

Variant

   VariantRepresentatives(q, v) : RngIntElt, RngIntElt -> SeqEnum

variant

   Variants of Automorphism Group (GRAPHS)

VariantRepresentatives

   VariantRepresentatives(q, v) : RngIntElt, RngIntElt -> SeqEnum

Variants

   NumberOfVariants(N) : NfdDck -> RngIntElt
   NumberOfVariants(q, v) : RngIntElt, RngIntElt -> RngIntElt

variants

   FldNear_variants (Example H22E2)

varieties

   Elliptic Curves (MODULAR FORMS)
   Toric Varieties (TORIC VARIETIES)

Variety

   AmbientVariety(G) : ModAbVarSubGrp -> ModAbVar
   IsAbelianVariety(A) : ModAbVar -> BoolElt
   IsInSecantVariety(X,P) : Sch,Pt -> BoolElt
   IsInTangentVariety(X,P) : Sch,Pt -> BoolElt
   ModularAbelianVariety(E) : CrvEll -> ModAbVar
   ModularAbelianVariety(L) : ModAbVarLSer -> ModAbVar
   ModularAbelianVariety(f) : ModFrmElt -> ModAbVar
   ModularAbelianVariety(M) : ModSym -> ModAbVar
   ModularAbelianVariety(eps : parameters) : GrpDrchElt -> ModAbVar
   ModularAbelianVariety(M : parameters) : ModFrm -> ModAbVar
   ModularAbelianVariety(s : parameters) : MonStgElt -> ModAbVar
   ModularAbelianVariety(X : parameters) : [ModFrm] -> ModAbVar
   ModularAbelianVariety(X) : [ModSym] -> ModAbVar
   PolarisedVariety(d,W,n) : RngIntElt,SeqEnum,RngUPolElt-> GRSch
   SecantVariety(X) : Sch -> Sch
   TangentVariety(X) : Sch -> Sch
   ToricVariety(G) : DivTor -> TorVar
   ToricVariety(k) : Fld -> TorVar
   ToricVariety(k,n) : Fld,RngIntElt -> TorVar
   ToricVariety(k,F) : Fld,TorFan -> TorVar
   ToricVariety(k,Z) : Fld,[RngIntElt] -> TorVar
   ToricVariety(k,Z,Q) : Fld,[RngIntElt],[FldRatElt] -> TorVar
   ToricVariety(k,M,v) : Fld,[[RngIntElt]],[RngIntElt] -> TorVar
   ToricVariety(C) : RngCox -> TorVar
   ToricVarietyMap(X,Y,f) : TorVar,TorVar,Map -> TorMap
   Variety(G) : DivSch -> Sch
   Variety(D) : DivTorElt -> TorVar
   Variety(I) : RngMPol -> [ ModTupFldElt ]
   VarietySequence(I) : RngMPol -> [ [ RngElt ] ]
   VarietySizeOverAlgebraicClosure(I) : RngMPol -> RngIntElt
   ZeroModularAbelianVariety() : -> ModAbVar
   ZeroModularAbelianVariety(k) : RngIntElt -> ModAbVar
   Ideal_Variety (Example H106E3)
   Ideal_Variety (Example H106E4)

variety

   Computation of Varieties (POLYNOMIAL RING IDEAL OPERATIONS)
   Resolution of a Nonprojective Toric Variety (TORIC VARIETIES)
   Secant Varieties (SCHEMES)
   Studying the Parameter Space (LIE ALGEBRAS)
   Tangent Varieties (SCHEMES)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013