[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: Submodule  ..  subsec_additional_examples


Submodule

   GlobalSectionSubmodule(S) : ShfCoh -> ModMPol
   IsSubmodule(M, N) : ModDed, ModDed -> BoolElt, Map
   MinimalSubmodule(M) : ModRng -> ModRng
   Submodule(I) : RngMPol -> ModMPol
   SubmoduleAction(G, S) : GrpMat -> Map, GrpMat
   SubmoduleImage(G, S) : GrpMat -> GrpMat
   SubmoduleLattice(M) : ModRng -> SubModLat, BoolElt
   SubmoduleLatticeAbort(M, n) : ModRng, RngIntElt -> BoolElt, SubModLat
   TwistedWindingSubmodule(M, j, eps) : ModSym, RngIntElt, GrpDrchElt -> ModTupFld
   WindingSubmodule(M, j : parameters) : ModSym, RngIntElt -> ModTupFld
   ModAlg_Submodule (Example H89E3)
   ModRng_Submodule (Example H54E4)

submodule

   Construction (MODULES OVER AN ALGEBRA)
   Construction of Submodules (FREE MODULES)
   Lattice of Submodules (MODULES OVER AN ALGEBRA)
   Operations on Submodules (FREE MODULES)
   Socle Series (MODULES OVER AN ALGEBRA)
   Submodules (FREE MODULES)

submodule-construction

   Construction (MODULES OVER AN ALGEBRA)

submodule-lattice

   Lattice of Submodules (MODULES OVER AN ALGEBRA)

SubmoduleAction

   SubmoduleAction(G, S) : GrpMat -> Map, GrpMat

SubmoduleImage

   SubmoduleImage(G, S) : GrpMat -> GrpMat

SubmoduleLattice

   SubmoduleLattice(M) : ModRng -> SubModLat, BoolElt

SubmoduleLatticeAbort

   SubmoduleLatticeAbort(M, n) : ModRng, RngIntElt -> BoolElt, SubModLat

Submodules

   MaximalSubmodules(M) : ModRng -> [ ModRng ], BoolElt
   MaximalSubmodules(e) : SubModLatElt -> { SubModLatElt }
   MinimalSubmodules(M) : ModRng -> [ ModRng ], BoolElt
   MinimalSubmodules(M, F) : ModRng, ModRng -> [ ModRng ], BoolElt
   Submodules(M) : ModRng -> [ModRng]

submodules

   Submodules (MODULES OVER AN ALGEBRA)

Subnormal

   IsSubnormal(G, H) : GrpFin, GrpFin -> BoolElt
   IsSubnormal(G, H) : GrpMat, GrpMat -> BoolElt
   IsSubnormal(G, H) : GrpPC, GrpPC -> BoolElt
   IsSubnormal(G, H) : GrpPerm, GrpPerm -> BoolElt
   SubnormalSeries(G, H) : GrpFin, GrpFin -> [ GrpFin ]
   SubnormalSeries(G, H) : GrpMat, GrpMat -> [ GrpMat ]
   SubnormalSeries(G, H) : GrpPC, GrpPC -> [GrpPC]
   SubnormalSeries(G, H) : GrpPerm, GrpPerm -> [ GrpPerm ]

SubnormalSeries

   SubnormalSeries(G, H) : GrpFin, GrpFin -> [ GrpFin ]
   SubnormalSeries(G, H) : GrpMat, GrpMat -> [ GrpMat ]
   SubnormalSeries(G, H) : GrpPC, GrpPC -> [GrpPC]
   SubnormalSeries(G, H) : GrpPerm, GrpPerm -> [ GrpPerm ]

SubOrder

   SubOrder(O) : RngFunOrd -> RngFunOrd
   SubOrder(O) : RngOrd -> RngOrd

Subplane

   BaerSubplane(P) : PlaneProj -> PlaneProj, PlanePtSet, PlaneLnSet
   SubfieldSubplane(P, F) : Plane, FldFin -> Plane, PlanePtSet, PlaneLnSet

subplane

   Subplanes (FINITE PLANES)

SubQuoEmbedded

   PMod_SubQuoEmbedded (Example H109E3)

SubQuoReduced

   PMod_SubQuoReduced (Example H109E4)

Subring

   Subring(phi) : MapModAbVar -> HomModAbVar
   Subring(X) : [MapModAbVar] -> HomModAbVar

subring

   Construction of Subalgebras, Ideals and Quotient Algebras (GROUP ALGEBRAS)
   Construction of Subalgebras, Ideals and Quotient Rings (MATRIX ALGEBRAS)

subring-ideal-quotient

   Construction of Subalgebras, Ideals and Quotient Algebras (GROUP ALGEBRAS)
   Construction of Subalgebras, Ideals and Quotient Rings (MATRIX ALGEBRAS)

subs

   Construction of Subalgebras, Ideals and Quotient Algebras (ALGEBRAS)
   Subalgebras and Ideals (ALGEBRAS)

subs-quos

   Construction of Subalgebras, Ideals and Quotient Algebras (ALGEBRAS)

Subscheme

   DefiningSubschemePolynomial(G) : SchGrpEll -> RngUPolElt
   EmptyScheme(X) : Sch -> Sch
   IsSubscheme(C,D) : Sch,Sch -> BoolElt
   IsSubscheme(X, Y) : Sch,Sch -> BoolElt
   ReducedSubscheme(X) : Sch -> Sch, MapSch
   SingularSubscheme(X) : Sch -> Sch
   ZeroSubscheme(S, s) : ShfCoh, ModMPolElt -> Sch

subschemes

   Schemes in Toric Varieties (TORIC VARIETIES)

subsec:access

   Access Functions (RATIONAL CURVES AND CONICS)

subsec:autom

   Automorphisms of Conics (RATIONAL CURVES AND CONICS)
   Automorphisms of Rational Curves (RATIONAL CURVES AND CONICS)

subsec:creation

   Rational Curve and Conic Creation (RATIONAL CURVES AND CONICS)

subsec:isoms

   Isomorphisms with Standard Models (RATIONAL CURVES AND CONICS)

subsec_abelian_varieties_attached_to_modular_forms

   Abelian Varieties Attached to Modular Forms (MODULAR ABELIAN VARIETIES)

subsec_abelian_varieties_attached_to_modular_symbols

   Abelian Varieties Attached to Modular Symbols (MODULAR ABELIAN VARIETIES)

subsec_additional_examples

   Additional Examples (MODULAR ABELIAN VARIETIES)
   Additional Examples (MODULAR ABELIAN VARIETIES)
   Additional Examples (MODULAR ABELIAN VARIETIES)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013