[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: WeylGroup  ..  With


WeylGroup

   WeylGroup(L) : AlgLie -> GrpPermCox
   WeylGroup(GrpFPCox, L) : Cat, AlgLie -> GrpPermCox
   WeylGroup(GrpMat, L) : Cat, AlgLie -> GrpPermCox
   WeylGroup(GrpFPCox, G) : Cat, GrpLie -> GrpFPCox
   WeylGroup(GrpMat, G) : Cat, GrpLie -> GrpMat
   WeylGroup(G) : GrpLie -> GrpPermCox

WeylWord

   WeylWord(p) : PathLS -> SeqEnum

WG

   InduceWG(W,wg,seq) : GrpFPCox, GrphUnd, SeqEnum -> GrphUnd
   TestWG(W,wg) : GrpFPCox, GrphUnd -> .
   WGtable2WG(table) : SeqEnum -> GrphUnd
   WriteWG(file,uwg) : MonStgElt, GrphUnd -> .

WG2

   WG2GroupRep(wg) : GrphUnd -> SeqEnum
   WG2HeckeRep(W,wg) : GrpFPCox, GrphUnd -> SeqEnum

WG2GroupRep

   WG2GroupRep(wg) : GrphUnd -> SeqEnum

WG2HeckeRep

   WG2HeckeRep(W,wg) : GrpFPCox, GrphUnd -> SeqEnum

WGelement2

   WGelement2WGtable(g,K) : GrpFPCoxElt, SetEnum -> SeqEnum, SeqEnum

WGelement2WGtable

   WGelement2WGtable(g,K) : GrpFPCoxElt, SetEnum -> SeqEnum, SeqEnum

WGidealgens2

   WGidealgens2WGtable(dgens,K) : SeqEnum, SetEnum -> SeqEnum[SeqEnum[RngIntElt]], SetIndx

WGidealgens2WGtable

   WGidealgens2WGtable(dgens,K) : SeqEnum, SetEnum -> SeqEnum[SeqEnum[RngIntElt]], SetIndx

WgraphIdeal

   GrpCox_WgraphIdeal (Example H98E35)

wgraphs

   W-graphs (COXETER GROUPS)

WGsymmetric

   IsWGsymmetric(dwg) : GrphDir -> BoolElt, GrphDir

WGtable

   InduceWGtable(J, table, W) : SeqEnum, SeqEnum, GrpFPCox -> SeqEnum[SeqEnum[RngIntElt]]
   Partition2WGtable(pi) : SeqEnum -> SeqEnum, GrpFPCox
   WGelement2WGtable(g,K) : GrpFPCoxElt, SetEnum -> SeqEnum, SeqEnum
   WGidealgens2WGtable(dgens,K) : SeqEnum, SetEnum -> SeqEnum[SeqEnum[RngIntElt]], SetIndx

WGtable2

   WGtable2WG(table) : SeqEnum -> GrphUnd

WGtable2WG

   WGtable2WG(table) : SeqEnum -> GrphUnd

where

   The where ... is Construction (STATEMENTS AND EXPRESSIONS)
   State_where (Example H1E9)

where-:=

   expression1 where identifier := expression2
   expression1 where identifier is expression2

where-is

   The where ... is Construction (STATEMENTS AND EXPRESSIONS)
   expression1 where identifier is expression2

while

   while boolexpr do statements end while : ->
   State_while (Example H1E13)
   State_while (Example H1E14)

Width

   CuspWidth(G,x) : GrpPSL2, SetCspElt -> RngIntElt

Widths

   Widths(FS) : SymFry -> SeqEnum

Wildly

   IsWildlyRamified(L) : RngLocA -> BoolElt
   IsTamelyRamified(L) : RngLocA -> BoolElt
   IsTamelyRamified(R) : RngPad -> BoolElt
   IsWildlyRamified(A, p) : ArtRep, RngIntElt -> BoolElt
   IsWildlyRamified(K) : FldAlg -> BoolElt
   IsWildlyRamified(O) : RngFunOrd -> BoolElt
   IsWildlyRamified(P) : RngFunOrdIdl -> BoolElt
   IsWildlyRamified(P, O) : RngFunOrdIdl, RngFunOrd -> BoolElt
   IsWildlyRamified(O) : RngOrd -> BoolElt
   IsWildlyRamified(P) : RngOrdIdl -> BoolElt
   IsWildlyRamified(P, O) : RngOrdIdl, RngOrd -> BoolElt

Williams

   MacWilliamsTransform(n, k, K, W) : RngIntElt, RngIntElt, FldFin, RngMPol -> RngMPol
   MacWilliamsTransform(n, k, q, W) : RngIntElt, RngIntElt, RngIntElt, [ <RngIntElt, RngIntElt> ] -> [ <RngIntElt, RngIntElt> ]
   MacWilliamsTransform(n, k, q, W) : RngIntElt, RngIntElt, RngIntElt, [ <RngIntElt, RngIntElt> ] -> [ <RngIntElt, RngIntElt> ]

Winding

   TwistedWindingElement(M, i, eps) : ModSym, RngIntElt, GrpDrchElt -> ModSymElt
   TwistedWindingSubmodule(M, j, eps) : ModSym, RngIntElt, GrpDrchElt -> ModTupFld
   WindingElement(M) : ModSym -> ModSymElt
   WindingElement(M, i) : ModSym, RngIntElt -> ModSymElt
   WindingLattice(M, j : parameters) : ModSym, RngIntElt -> Lat
   WindingSubmodule(M, j : parameters) : ModSym, RngIntElt -> ModTupFld

winding

   Winding Elements (MODULAR SYMBOLS)

WindingElement

   WindingElement(M) : ModSym -> ModSymElt
   WindingElement(M, i) : ModSym, RngIntElt -> ModSymElt

WindingLattice

   WindingLattice(M, j : parameters) : ModSym, RngIntElt -> Lat

WindingSubmodule

   WindingSubmodule(M, j : parameters) : ModSym, RngIntElt -> ModTupFld

With

   CharacterWithSchurIndex(n: parameters) : RngIntElt -> AlgChtrElt. GrpPC
   ConeWithInequalities(B) : Set -> TorCon
   ConstituentsWithMultiplicities(M) : ModRng -> [ <ModRng, RngIntElt> ], [ RngIntElt ]
   EllipticCurveSearch(N, Effort) : RngOrdIdl, RngIntElt -> SeqEnum
   IdealWithFixedBasis(B) : [ RngMPolElt ] -> RngMPol
   ImageWithBasis(X, M) : ModMatRngElt, ModRng -> ModRng
   IntersectionWithNormalSubgroup(G, N: parameters) : GrpPerm, GrpPerm -> GrpPerm
   IsCanonicalWithTwist(D) : DivSchElt -> BoolElt, RngIntElt
   IsGlobalUnitWithPreimage(a) : FldFunElt -> BoolElt, GrpAbElt
   IsGlobalUnitWithPreimage(a) : FldFunElt -> BoolElt, GrpAbElt
   IsIsomorphic(S, T) : ShfCoh, ShfCoh -> BoolElt, ShfHom
   IsSUnitWithPreimage(a, S) : FldFunElt, SetEnum[PlcFunElt] -> BoolElt, GrpAbElt
   IsUnitWithPreimage(a) : RngFunOrdElt -> BoolElt, GrpAbElt
   KMatrixSpaceWithBasis(Q) : [ ModMatRngElt ] -> ModMatRng
   LatticeWithBasis(G, B) : GrpMat, ModMatRngElt -> Lat
   LatticeWithBasis(G, B, M) : GrpMat, ModMatRngElt, AlgMatElt -> Lat
   LatticeWithBasis(B) : ModMatRngElt -> Lat
   LatticeWithBasis(B, M) : ModMatRngElt, AlgMatElt -> Lat
   LatticeWithGram(F) : AlgMatElt -> Lat
   LatticeWithGram(G, F) : GrpMat, AlgMatElt -> Lat
   ModuleWithBasis(Q): SeqEnum -> ModAlg
   QuotientWithPullback(L, I) : AlgLie, AlgLie -> AlgLie, Map, UserProgram, UserProgram
   RMatrixSpaceWithBasis(Q) : [ ModMatRngElt ] -> ModMatRng
   RMatrixSpaceWithBasis(Q) : [ModTupRngElt] -> ModMatRng
   RModuleWithAction(H) : HomModAbVar -> ModED
   RModuleWithAction(H, p) : HomModAbVar, RngIntElt -> ModED
   RModuleWithBasis(Q) : [ModFldElt] -> ModFld
   RandomProcess(G) : GrpFin -> Process
   TableauxOnShapeWithContent(S, C) : SeqEnum[RngIntElt], SeqEnum[RngIntElt] -> SetEnum
   TableauxWithContent(C) : SeqEnum[RngIntElt] -> SetEnum
   VectorSpaceWithBasis(Q) : [ModTupFldElt] -> ModTupFld

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013