[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: Ceiling  ..  CentralCharacter


Ceiling

   Ceiling(q) : FldRatElt -> RngIntElt
   Ceiling(r) : Infty -> Infty
   Ceiling(n) : RngIntElt -> RngIntElt
   Round(x) : Infty -> Infty

Cell

   Cell(P, h, i): StkPtnOrd, RngIntElt, RngIntElt -> SeqEnum
   CellNumber(P, h, x) : StkPtnOrd, RngIntElt, RngIntElt -> RngIntElt
   CellSize(P, h, i) : StkPtnOrd, RngIntElt, RngIntElt -> RngIntElt
   ParentCell(P, i) : StkPtnOrd, RngIntElt -> RngIntElt
   SplitCell(P, i, x) : StkPtnOrd, RngIntElt, RngIntElt -> BoolElt
   VoronoiCell(L) : Lat -> [ ModTupFldElt ], SetEnum , [ ModTupFldElt ]

CellNumber

   CellNumber(P, h, x) : StkPtnOrd, RngIntElt, RngIntElt -> RngIntElt

Cells

   GetCells(wg) : GrphUnd -> SeqEnum
   NumberOfCells(P, h) : StkPtnOrd, RngIntElt -> RngIntElt
   SplitCellsByValues(P, C, V) : StkPtnOrd, SeqEnum[RngIntElt], SeqEnum[RngIntElt] -> BoolElt, RngIntElt

CellSize

   CellSize(P, h, i) : StkPtnOrd, RngIntElt, RngIntElt -> RngIntElt

cent-coll

   Plane_cent-coll (Example H141E15)

Center

   AlgebraOverCenter(A) : Alg -> AlgAss, Map;
   Center(D) : SpcHyd -> RngElt
   Centre(L) : AlgLie -> AlgLie
   Centre(G) : GrpAb -> GrpAb
   Centre(G) : GrpFin -> GrpFin
   Centre(G) : GrpGPC -> GrpGPC
   Centre(G) : GrpMat -> GrpMat
   Centre(G) : GrpPC -> GrpPC
   Centre(G) : GrpPerm -> GrpPerm
   Centre(R) : Rng -> Rng
   CentreDensity(L) : Lat -> FldReElt
   CentrePolynomials(G) : GrpLie ->

CenterDensity

   CenterDensity(L) : Lat -> FldReElt
   CentreDensity(L) : Lat -> FldReElt

CenterPolynomials

   CenterPolynomials(G) : GrpLie ->
   CentrePolynomials(G) : GrpLie ->

Central

   A`IsCentral : FldAb -> Bool
   CentralCharacter(psi) : GrossenChar -> GrpDrchNFElt
   CentralCharacter(chi) : GrpDrchNFElt -> GrpDrchNFElt
   CentralCharacter(M) : ModFrmHil -> RngIntElt
   CentralCharacter(pi) : RepLoc -> GrpDrchElt
   CentralCollineationGroup(P, l) : Plane, PlaneLn -> GrpPerm, PowMap, Map
   CentralCollineationGroup(P, p) : Plane, PlanePt -> GrpPerm, PowMap, Map
   CentralCollineationGroup(P, p, l) : Plane, PlanePt, PlaneLn -> GrpPerm, PowMap, Map
   CentralEndomorphisms(G, n) : GrpMat, RngIntElt -> [ AlgMatElt ]
   CentralEndomorphisms(L, n) : Lat, RngIntElt -> [ AlgMatElt ]
   CentralExtension(G, U, A) : GrpPC, GrpPC, AlgMatElt -> GrpPC
   CentralExtensionProcess(G, U) : GrpPC, GrpPC -> Proc
   CentralExtensions(G, U, Q) : GrpPC, GrpPC, [AlgMatElt] -> [GrpPC]
   CentralIdempotents(A) : AlgAssV -> SeqEnum, SeqEnum
   CentralOrder(g : parameters) : GrpMatElt -> RngIntElt, BoolElt
   CentralValue(L) : LSer -> FldComElt
   IsCentral(A,x) : AlgBas, AlgBasElt -> BoolElt
   IsCentral(L, M) : AlgLie,AlgLie -> BoolElt
   IsCentral(L, M) : AlgLie,AlgLieElt -> BoolElt
   IsCentral(A) : FldAb -> BoolElt
   IsCentral(G, H) : GrpFin -> BoolElt
   IsCentral(G, H) : GrpGPC, GrpGPC -> BoolElt
   IsCentral(x) : GrpLieElt -> BoolElt
   IsCentral(G, H) : GrpMat -> BoolElt
   IsCentral(G, H) : GrpPC, GrpPC -> BoolElt
   IsCentral(G, H) : GrpPerm -> BoolElt
   IsCentralByFinite(G : parameters) : GrpMat -> BoolElt
   IsCentralCollineation(P, g) : Plane, GrpPermElt -> BoolElt, PlanePt, PlaneLn
   LowerCentralSeries(L) : AlgLie -> [ AlgLie ]
   LowerCentralSeries(G) : GrpFin -> [ GrpFin ]
   LowerCentralSeries(G) : GrpGPC -> [GrpGPC]
   LowerCentralSeries(G) : GrpMat -> [ GrpMat ]
   LowerCentralSeries(G) : GrpPC -> [GrpPC]
   LowerCentralSeries(G) : GrpPerm -> [ GrpPerm ]
   UpperCentralSeries(L) : AlgLie -> [ AlgLie ]
   UpperCentralSeries(G) : GrpFin -> [ GrpFin ]
   UpperCentralSeries(G) : GrpGPC -> [GrpGPC]
   UpperCentralSeries(G) : GrpMat -> [ GrpMat ]
   UpperCentralSeries(G) : GrpPC -> [GrpPC]
   UpperCentralSeries(G) : GrpPerm -> [ GrpPerm ]

central

   Central Collineations (FINITE PLANES)
   Central Extensions (FINITE SOLUBLE GROUPS)

central-chars

   FldNum_central-chars (Example H34E18)

central-extensions

   Central Extensions (FINITE SOLUBLE GROUPS)

CentralCharacter

   CentralCharacter(psi) : GrossenChar -> GrpDrchNFElt
   CentralCharacter(chi) : GrpDrchNFElt -> GrpDrchNFElt
   CentralCharacter(M) : ModFrmHil -> RngIntElt
   CentralCharacter(pi) : RepLoc -> GrpDrchElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013