[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: F  ..  Factor


F

   WeberF(s) : FldComElt -> FldComElt

f

   f(p) : Pt, FldFunFracSchElt -> RngElt
   Evaluate(f, p) : RngElt,Pt -> RngElt
   p @ f : Pt, FldFunFracSchElt -> RngElt
   p @ f : Pt, FldFunFracSchElt -> RngElt
   Image(f) : MapSch -> Sch
   f(X): GrpAutCrvElt, Pt -> Pt
   f(p) : MapSch,Pt -> Pt
   f(K) : MapSch,Rng -> Map
   fValueProof(L, x, b) : AlgLieExtr, RngIntElt, RngIntElt ->

F-key

   F<char>

f-key

   f<char>

F1

   HypergeometricSeries2F1(A,B,C,z) : FldRatElt, FldRatElt, FldRatElt, FldComElt -> FldComElt
   WeberF1(s) : FldComElt -> FldComElt

f12

   Creation: f=1, 2 or ≥3 (HILBERT SERIES OF POLARISED VARIETIES)

F2

   WeberF2(s) : FldComElt -> FldComElt
   WeberF1(s) : FldComElt -> FldComElt
   WeberF2(g) : RngSerElt -> RngSerElt

F27

   GrpFP_1_F27 (Example H70E29)

F276

   GrpFP_1_F276 (Example H70E69)

F29

   GrpFP_1_F29 (Example H70E71)

Face

   DualFaceInDualFan(P,Q) : TorPol,[RngIntElt] -> TorFan
   Face(e) : GrphEdge -> SeqEnum
   Face(e) : GrphEdge -> SeqEnum
   Face(u, v) : GrphVert, GrphVert -> SeqEnum
   Face(u, v) : GrphVert, GrphVert -> SeqEnum
   Face(F,C) : TorFan,TorCon -> TorCon
   FaceFunction(F) : NwtnPgonFace -> RngElt
   FaceIndices(P,i) : TorPol,RngIntElt -> SeqEnum
   FaceSupportedBy(C,H) : TorCon,TorLatElt -> TorCon
   IsFace(N, F) : NwtnPgon,Tup -> BoolElt

FaceFunction

   FaceFunction(F) : NwtnPgonFace -> RngElt

FaceIndices

   FaceIndices(P,i) : TorPol,RngIntElt -> SeqEnum

Faces

   AllFaces(N) : NwtnPgon -> SeqEnum
   Faces(G) : GrphMultUnd -> SeqEnum[GrphVert]
   Faces(G) : GrphUnd -> SeqEnum[GrphVert]
   Faces(N) : NwtnPgon -> SeqEnum
   Faces(X, d) : SmpCpx, RngIntElt -> SeqEnum[SetEnum]
   Faces(C) : TorCon -> SeqEnum
   FacesContaining(N,p) : NwtnPgon,Tup -> SeqEnum
   InnerFaces(N) : NwtnPgon -> SeqEnum
   LowerFaces(N) : NwtnPgon -> SeqEnum
   NFaces(G) : GrphMultUnd -> RngIntElt
   NFaces(G) : GrphUnd -> RngIntElt
   OuterFaces(N) : NwtnPgon -> SeqEnum

faces

   Facets and Faces (CONVEX POLYTOPES AND POLYHEDRA)
   SmpCpx_faces (Example H140E3)

faces-ex

   Newton_faces-ex (Example H46E2)

FacesContaining

   FacesContaining(N,p) : NwtnPgon,Tup -> SeqEnum

FaceSupportedBy

   FaceSupportedBy(C,H) : TorCon,TorLatElt -> TorCon

Facet

   FacetIndices(P) : TorPol -> SeqEnum

FacetIndices

   FacetIndices(P) : TorPol -> SeqEnum

Facets

   Facets(X) : SmpCpx -> SeqEnum[SetEnum]
   Facets(C) : TorCon -> SeqEnum
   NumberOfFacets(P) : TorPol -> RngIntElt

facets

   Facets and Faces (CONVEX POLYTOPES AND POLYHEDRA)
   SmpCpx_facets (Example H140E4)

facets-faces

   Facets and Faces (CONVEX POLYTOPES AND POLYHEDRA)

Facint

   FactorizationToInteger(f) : RngIntEltFact -> RngIntElt
   Facint(f) : RngIntEltFact -> RngIntElt
   FactorizationToInteger(s) : [ <RngIntElt, RngIntElt> ] -> RngIntElt

Facpol

   Facpol(f) : [Tup] -> BoolElt
   FactorisationToPolynomial(f) : [Tup] -> BoolElt

Fact

   SequenceToFactorization(s) : SeqEnum -> RngIntEltFact
   SeqFact(s) : SeqEnum -> RngIntEltFact

fact

   Factorization (p-ADIC RINGS AND THEIR EXTENSIONS)

Factor

   CFP(u: parameters) : GrpBrdElt -> Tup
   CanonicalFactorRepresentation(u: parameters) : GrpBrdElt -> Tup
   ClassGroupCyclicFactorGenerators(O) : RngOrd -> ModHomElt
   CompositionTreeFactorNumber(G, g) : Grp, GrpElt -> RngIntElt
   EulerFactor(A, p) : ArtRep, RngIntElt -> RngUPolElt
   EulerFactor(H, t, p) : HypGeomData, FldRatElt, RngIntElt -> RngUPolElt
   EulerFactor(J) : JacHyp -> RngUPolElt
   EulerFactor(J, K) : JacHyp, FldFin -> RngUPolElt
   EulerFactor(L, p) : LSer, RngIntElt -> .var Degree : RngIntElt : var Precision: RngIntElt Default: desGiven an L-series and a prime p, this computes thepth Euler factor, either as a polynomial or a power series.The optional parameter Degree will truncate the series to that length,and the optional parameter Precision is of use when the series isdefined over the complex numbers.
   EulerFactorModChar(J) : JacHyp -> RngUPolElt
   Factor(P) : NFSProc -> RngIntElt
   Factor(P,k) : NFSProc, RngIntElt -> RngIntElt
   FactorBasis(K, B) : FldNum, RngIntElt -> [ RngOrdIdl ]
   FactorBasis(O) : RngOrd -> [ RngOrdIdl ], Integer
   FactorBasisCreate(O,B): RngOrd, RngIntElt -> SeqEnum
   FactorBasisVerify(O, L, U): RngOrd, RngIntElt, RngIntElt ->
   ScalingFactor(g) : Tup -> RngElt
   SocleFactor(G) : GrpPerm -> GrpPerm
   StoreFactor(n) : RngIntElt ->

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013