[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: CompanionMatrix  ..  Complete


CompanionMatrix

   CompanionMatrix(L) : RngDiffOpElt -> AlgMatElt
   CompanionMatrix(f) : RngUPolElt -> AlgMatElt
   CompanionMatrix(p) : RngUPolElt -> AlgMatElt

Comparison

   GetEvaluationComparison(R) : RngSLPol -> FldFin, RngIntElt
   SetEvaluationComparison(R, F, n) : RngSLPol, FldFin, RngIntElt ->

comparison

   Comparison (MATRIX ALGEBRAS)
   Comparison (RATIONAL FIELD)
   Comparison (RING OF INTEGERS)
   Comparison of and Membership (REAL AND COMPLEX FIELDS)
   Comparison of Ring Elements (INTRODUCTION TO RINGS [BASIC RINGS])
   Comparison of Ring Elements (RING OF INTEGERS)

comparisons

   Comparisons and Membership (ALGEBRAS)

Compatible

   IsDimensionCompatible(B) : AlgBas -> Bool

CompFactors

   GrpPerm_CompFactors (Example H58E31)

compgrp

   Tamagawa Numbers and Component Groups of Neron Models (MODULAR ABELIAN VARIETIES)
   Tamagawa Numbers and Orders of Component Groups (MODULAR SYMBOLS)

Compgrp-Component_Groups

   ModAbVar_Compgrp-Component_Groups (Example H136E120)

Compgrp-Tamagawa_Numbers

   ModAbVar_Compgrp-Tamagawa_Numbers (Example H136E121)

Complement

   CodeComplement(C, C1) : Code, Code -> Code
   CodeComplement(C, S) : Code, Code -> Code
   CommonComplement(V, U, W) : ModTupFld, ModTupFld, ModTupFld) -> ModTupFld
   Complement(G) : Grph -> Grph
   Complement(D) : Inc -> Inc
   Complement(L,K) : LinearSys,LinearSys -> LinearSys
   Complement(L,X) : LinearSys,Sch -> LinearSys
   Complement(M) : ModSym -> ModSym
   Complement(V, U) : ModTupFld, ModTupFld -> ModTupFld
   Complement(A : parameters) : ModAbVar -> ModAbVar, MapModAbVar
   ComplementBasis(G) : GrpPC -> [GrpPC]
   ComplementOfImage(phi : parameters) : MapModAbVar -> ModAbVar, MapModAbVar
   HasComplement(G, U) : GrpAb, GrpAb -> BoolElt, GrpAb
   HasComplement(G, M) : GrpPerm, GrpPerm -> BoolElt, GrpPerm
   HasComplement(M, S) : ModGrp, ModGrp -> BoolElt, ModGrp
   OrthogonalComplement(M) : ModBrdt -> ModBrdt
   OrthogonalComplement(M) : ModSS -> ModSS
   OrthogonalComplement(V, X : parameters) : ModTupFld, ModTupFld -> ModTupFld
   TotallySingularComplement(V, U, W) : ModTupFld, ModTupFld, ModTupFld) -> ModTupFld

complement

   Constructing Complements, Line Graphs; Contraction, Switching (GRAPHS)

complement-line-graph-contraction-switching

   Constructing Complements, Line Graphs; Contraction, Switching (GRAPHS)

Complementary

   ComplementaryDivisor(D,p) : DivCrvElt,Pt -> DivCrvElt
   ComplementaryDivisor(D) : DivFunElt -> DivFunElt
   ComplementaryErrorFunction(r) : FldReElt -> FldReElt
   SelfComplementaryGraphDatabase(n) : RngIntElt -> DB

ComplementaryDivisor

   ComplementaryDivisor(D,p) : DivCrvElt,Pt -> DivCrvElt
   ComplementaryDivisor(D) : DivFunElt -> DivFunElt

ComplementaryErrorFunction

   Erfc(r) : FldReElt -> FldReElt
   ComplementaryErrorFunction(r) : FldReElt -> FldReElt

ComplementBasis

   ComplementBasis(G) : GrpPC -> [GrpPC]

ComplementOfImage

   ComplementOfImage(phi : parameters) : MapModAbVar -> ModAbVar, MapModAbVar

Complements

   Complements(G, N) : GrpPC, GrpPC -> SeqEnum
   Complements(G, M) : GrpPerm, GrpPerm -> [ GrpPerm ]
   Complements(G, M, N) : GrpPerm, GrpPerm, GrpPerm -> [ GrpPerm ]
   Complements(M, S) : ModGrp, ModGrp -> [ ModGrp ]
   NormalComplements(G, H, N) : GrpPC, GrpPC -> SeqEnum
   NormalComplements(G, N) : GrpPC, GrpPC -> SeqEnum
   GrpPerm_Complements (Example H58E34)

complements

   Complements and Supplements (PERMUTATION GROUPS)
   Decomposability and Complements (MODULES OVER AN ALGEBRA)
   Orthogonal Complements (MODULAR ABELIAN VARIETIES)

Complements-Complements

   ModAbVar_Complements-Complements (Example H136E87)
   ModAbVar_Complements-Complements (Example H136E88)

Complements-Congruence_Computations

   ModAbVar_Complements-Congruence_Computations (Example H136E94)

Complements-Dual_Abelian_Variety

   ModAbVar_Complements-Dual_Abelian_Variety (Example H136E89)

Complements-Intersection_Pairing

   ModAbVar_Complements-Intersection_Pairing (Example H136E90)

Complements-Left_and_Right_Inverses

   ModAbVar_Complements-Left_and_Right_Inverses (Example H136E93)

Complements-Projections

   ModAbVar_Complements-Projections (Example H136E91)

Complements-Projections2

   ModAbVar_Complements-Projections2 (Example H136E92)

Complete

   Complete(~P) : GrpBrdClassProc ->
   Complete(~P) : GrpFPHomsProc ->
   CompleteClassGroup(O) : RngOrd ->
   CompleteDigraph(n) : RngIntElt -> GrphDir
   CompleteGraph(n) : RngIntElt -> GrphUnd
   CompleteKArc(P, k) : Plane, RngIntElt -> SetEnum
   CompleteTheSquare(model) : ModelG1 -> ModelG1
   CompleteUnion(G, H) : GrphDir, GrphDir -> GrphDir
   CompleteWeightEnumerator(C): Code -> RngMPolElt
   CompleteWeightEnumerator(C): Code -> RngMPolElt
   CompleteWeightEnumerator(C, u): Code, ModTupFldElt -> RngMPolElt
   CompleteWeightEnumerator(C, u): Code, ModTupFldElt -> RngMPolElt
   CompleteWeightEnumerator(C): CodeAdd -> RngMPolElt
   HasClosedCosetTable(P) : GrpFPCosetEnumProc -> BoolElt
   IsComplete(V) : GrpFPCos -> BoolElt
   IsComplete(G) : Grph -> BoolElt
   IsComplete(G) : GrphMult -> BoolElt
   IsComplete(D) : Inc -> BoolElt
   IsComplete(L) : LinearSys -> BoolElt
   IsComplete(P, A) : Plane, { PlanePt } -> BoolElt
   IsComplete(S) : SeqEnum -> BoolElt
   IsComplete(F) : TorFan -> BoolElt
   IsComplete(X) : TorVar -> BoolElt
   RandomCompleteIntersection(P,ds) : Prj, SeqEnum[RngIntElt] -> Sch

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013