[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: monomial .. Morphism
Coefficients, Monomials and Terms (MULTIVARIATE POLYNOMIAL RINGS)
Coefficients, Monomials, Terms and Degree (FINITELY PRESENTED ALGEBRAS)
Transition Matrices from Monomial Basis (SYMMETRIC FUNCTIONS)
MonomialBasis(Q) : RngMPolRes -> [ RngMPolResElt ]
MonomialCoefficient(f, m) : AlgFrElt, AlgFrElt -> RngElt
MonomialCoefficient(f, m) : RngMPolElt, RngMPolElt -> RngElt
MonomialCoefficient(p, m) : RngUPolElt, RngUPolElt -> RngElt
MonomialGroup(C: parameters) : Code -> GrpPerm, PowMap, Map
AutomorphismGroup(C: parameters) : Code -> GrpPerm, PowMap, Map
MonomialGroupStabilizer(C, k) : Code, RngIntElt -> GrpPerm, PowMap, Map
AutomorphismGroupStabilizer(C, k) : Code, RngIntElt -> GrpPerm, PowMap, Map
MonomialLattice(C) : RngCox -> TorLat
MonomialLattice(X) : TorVar -> TorLat
MonomialOrder(P) : RngMPol -> Tup
MonomialOrder(R) : RngMPolLoc -> Tup
MonomialOrderWeightVectors(P) : RngMPol -> [ [ FldRatElt ] ]
MonomialOrderWeightVectors(R) : RngMPol -> [ [ FldRatElt ] ]
CoefficientsAndMonomials(f) : RngMPolElt -> [ RngElt ], [ RngMPolElt ]
Monomials(f) : AlgFrElt -> [ AlgFrElt ]
Monomials(u) : AlgPBWElt -> SeqEnum
Monomials(u) : AlgQUEElt -> SeqEnum
Monomials(f) : RngMPolElt -> [ RngMPolElt ]
Monomials(p) : RngUPolElt -> SeqEnum
MonomialsOfDegree(P, d) : RngMPolElt, RngIntElt -> {@ RngMPolElt @}
MonomialsOfWeightedDegree(P, d) : RngMPolElt, RngIntElt -> {@ RngMPolElt @}
MonomialsOfWeightedDegree(X, D) : Sch, [RngIntElt] -> SetIndx
Accessing Elements (SYMMETRIC FUNCTIONS)
MonomialsOfDegree(P, d) : RngMPolElt, RngIntElt -> {@ RngMPolElt @}
MonomialsOfWeightedDegree(P, d) : RngMPolElt, RngIntElt -> {@ RngMPolElt @}
MonomialsOfWeightedDegree(X, D) : Sch, [RngIntElt] -> SetIndx
MonomialSubgroup(C) : Code -> GrpPerm, PowMap, Map
AutomorphismSubgroup(C) : Code -> GrpPerm, PowMap, Map
MonomialToElementaryMatrix(n): RngIntElt -> AlgMatElt
MonomialToHomogeneousMatrix(n): RngIntElt -> AlgMatElt
MonomialToPowerSumMatrix(n): RngIntElt -> AlgMatElt
MonomialToSchurMatrix(n): RngIntElt -> AlgMatElt
DerivedGroupMonteCarlo(G : parameters) : GrpMat -> GrpMat
HasOnlyOrdinarySingularitiesMonteCarlo(C) : CrvPln -> BoolElt, RngIntElt
NormalClosureMonteCarlo(G, H ) : GrpMat, GrpMat -> GrpMat
Monte Carlo Algorithms for Subgroups (MATRIX GROUPS OVER FINITE FIELDS)
Monte Carlo Algorithms for Subgroups (MATRIX GROUPS OVER FINITE FIELDS)
KacMoodyClass(C) : AlgMatElt -> MonStgElt, ModMatRngElt
KacMoodyClasses(C) : AlgMatElt -> SeqEnum, SeqEnum, SeqEnum
MooreDeterminant(M) : Mtrx -> Mtrx
MooreDeterminant(M) : Mtrx -> Mtrx
GeometricMordellWeilLattice(E) : CrvEll[FldFunRat] -> Lat, Map
MordellWeilGroup(E : parameters) : CrvEll[FldFunRat] -> GrpAb, Map
MordellWeilGroup(H: parameters) : SetPtEll -> GrpAb, Map
MordellWeilLattice(E) : CrvEll[FldFunRat] -> Lat, Map
MordellWeilShaInformation(E: parameters) : CrvEll -> [RngIntElt], [PtEll], [Tup]
MordellWeilShaInformation(E: parameters) : CrvEll -> [RngIntElt], [PtEll], [Tup]
Rank(H: parameters) : SetPtEll -> RngIntElt
RankBounds(H: parameters) : SetPtEll -> RngIntElt, RngIntElt
Heights and Regulator (HYPERELLIPTIC CURVES)
Mordell--Weil Groups (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
The Mordell--Weil Group (ELLIPTIC CURVES OVER FUNCTION FIELDS)
Mordell--Weil Groups (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
The Mordell--Weil Group (ELLIPTIC CURVES OVER FUNCTION FIELDS)
Heights and Regulator (HYPERELLIPTIC CURVES)
CrvEllQNF_MordellWeil (Example H122E5)
MordellWeilGroup(E : parameters) : CrvEll[FldFunRat] -> GrpAb, Map
MordellWeilGroup(H: parameters) : SetPtEll -> GrpAb, Map
MordellWeilLattice(E) : CrvEll[FldFunRat] -> Lat, Map
MordellWeilRank(H: parameters) : SetPtEll -> RngIntElt
Rank(H: parameters) : SetPtEll -> RngIntElt
MordellWeilRankBounds(H: parameters) : SetPtEll -> RngIntElt, RngIntElt
RankBounds(H: parameters) : SetPtEll -> RngIntElt, RngIntElt
DescentInformation(E: parameters) : CrvEll -> [RngIntElt], [PtEll], [Tup]
MordellWeilShaInformation(E: parameters) : CrvEll -> [RngIntElt], [PtEll], [Tup]
MordellWeilShaInformation(E: parameters) : CrvEll -> [RngIntElt], [PtEll], [Tup]
Basic Constructions (COHERENT SHEAVES)
More About Presentations (FINITE SOLUBLE GROUPS)
Basic Constructions (COHERENT SHEAVES)
GrpCoh_more-difficult (Example H68E3)
GrpPSL2_more-graphics (Example H130E10)
More About Presentations (FINITE SOLUBLE GROUPS)
IsMoriFibreSpace(X,i) : TorVar,RngIntElt -> BoolElt
MoriCone(X) : TorVar -> TorCon
MoriCone(X) : TorVar -> TorCon
Morphism(e) : SubModLatElt -> Mtrx
BasisMatrix(e) : SubModLatElt -> Mtrx
DualMorphism(R, S, phiX, phiY) : RootDtm, RootDtm, Map, Map -> Map
DualMorphism(R, S, Q) : RootDtm, RootDtm, [RngIntElt] -> Map
FieldMorphism(f) : Map -> Map
IdentityFieldMorphism(F) : Fld -> Map
IsMorphism(f) : Map -> Bool
IsMorphism(phi) : MapModAbVar -> BoolElt
LeftInverseMorphism(phi : parameters) : MapModAbVar -> MapModAbVar
Morphism(A, B) : AlgGen, AlgGen -> Map
Morphism(L, M) : AlgLie, AlgLie -> Map
Morphism(H, G) : GrpAb, GrpAb -> ModMatRngElt
Morphism(M, N) : ModDed, ModDed -> Map
Morphism(M, N) : ModMPol, ModMPol -> ModMPolHom
Morphism(M, N) : ModRng, ModRng -> ModMatRngElt
Morphism(M, N) : ModRng, ModRng -> ModMatRngElt
Morphism(U, V) : ModTupFld, ModTupFld -> RModMatElt
Morphism(M, N) : ModTupRng, ModTupRng -> ModMatRngElt
Morphism(R, S, phiX, phiY) : RootDtm, RootDtm, Map, Map -> Map
Morphism(R, S, Q) : RootDtm, RootDtm, [RngIntElt] -> Map
Morphism(e) : SubModLatElt -> ModMatRngElt
RightInverseMorphism(phi : parameters) : MapModAbVar -> MapModAbVar
SumOfMorphismImages(X) : List -> ModAbVar, MapModAbVar, List
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013