[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: Homology-Invariants  ..  homomorphism


Homology-Invariants

   ModAbVar_Homology-Invariants (Example H136E45)

Homology-Modular_Structure

   ModAbVar_Homology-Modular_Structure (Example H136E49)

homology1

   ModAbVar_homology1 (Example H136E50)
   ModAbVar_homology1 (Example H136E86)

HomologyBasis

   HomologyBasis(A) : AnHcJac -> SeqEnum, SeqEnum, Mtrx

HomologyGenerators

   HomologyGenerators(X) : SmpCpx ->

homologygenerators

   SmpCpx_homologygenerators (Example H140E15)

HomologyGroup

   HomologyGroup(X, q) : SmpCpx, RngIntElt -> ModRng

homologymaps

   Maps on Homology (CHAIN COMPLEXES)

HomologyOfChainComplex

   HomologyOfChainComplex(C) : ModCpx -> SeqEnum
   Homology(C) : ModCpx -> SeqEnum

Homomorphism

   BuildHomomorphismFromGradedCap(A, B, phi) : AlgBas, AlgBas, ModMatFldElt -> ModMatFldElt
   ConnectingHomomorphism(f, g, n) : MapChn, MapChn, RngIntElt -> ModMatRngElt
   DefinesHomomorphism(P) : GrpFPHomsProc -> BoolElt
   FormalGroupHomomorphism(phi, prec) : MapSch, RngIntElt -> RngSerPowElt
   GeneralisedRowReduction(ρ) : Map -> Map
   GradedCapHomomorphism(A) : AlgBas -> ModMatFldElt
   GradedCapHomomorphism(A, B, mu) : AlgBas, AlgBas, ModMatFldElt -> ModMatFldElt
   GroupOfLieTypeHomomorphism(phi, k) : Map, Rng -> .
   GroupOfLieTypeHomomorphism(phi, k) : Map, Rng -> GrpLie
   Homomorphism(A, B, X, Y) : Grp, Grp, [ GrpElt ], [ GrpElt ] -> Map
   Homomorphism(P) : GrpFPHomsProc -> HomGrp
   Homomorphism(M, N, A): ModMPol, ModMPol, Mtrx -> ModMPolHom
   IdentityHomomorphism(G) : Grp -> Map
   IdentityHomomorphism(G) : GrpPC -> Map
   IsAlgebraHomomorphism(A, B, psi) : AlgBas, AlgBas, Map -> Bool
   IsAlgebraHomomorphism(A, B, psi) : AlgBas, Mtrx -> Bool
   IsAlgebraHomomorphism(psi): Map -> Bool
   IsHomomorphism(G, H, Q) : GrpMat, GrpMat, SeqEnum[GrpMatElt] -> Bool, Map
   IsHomomorphism(G, H, L) : GrpPC, GrpPC, SeqEnum -> BoolElt, Map
   IsHomomorphism(G, H, Q) : GrpPerm, GrpPerm, SeqEnum[GrpPermElt] -> Bool, Map
   IsModuleHomomorphism(f) : ModMatFldElt -> BoolElt
   IsModuleHomomorphism(X) : ModMatFldElt -> BoolElt
   IsRingHomomorphism(m) : Map -> BoolElt
   IsRingHomomorphism(m) : Map -> BoolElt
   LiftHomomorphism(x, n) : ModAlgElt, RngIntElt -> ModMatFldElt
   LiftHomomorphism(X, N) : SeqEnum[ModAlgElt], SeqEnum[RngIntElt] -> ModMatFldElt
   ModuleHomomorphism(f) : ShfHom -> ModMPolHom
   SheafHomomorphism(S, T, h) : ShfCoh, ShfCoh, ModMPolHom -> ShfHom
   AlgFP_Homomorphism (Example H82E1)
   FldFunRat_Homomorphism (Example H41E2)
   GrpFP_1_Homomorphism (Example H70E17)
   GrpGPC_Homomorphism (Example H72E4)
   GrpMatGen_Homomorphism (Example H59E5)
   GrpPerm_Homomorphism (Example H58E6)
   RngMPol_Homomorphism (Example H24E3)
   RngPol_Homomorphism (Example H23E4)

homomorphism

   Action on a G-Space (PERMUTATION GROUPS)
   Algebraic Homomorphisms (GROUPS OF LIE TYPE)
   Coset Spaces: Induced Homomorphism (FINITELY PRESENTED GROUPS)
   Creating Homomorphisms (MODULES OVER AN ALGEBRA)
   Creation of Homomorphisms (MAPPINGS)
   Creation of Homomorphisms (NUMBER FIELDS)
   Creation of Homomorphisms (ORDERS AND ALGEBRAIC FIELDS)
   Elements of Mn as Homomorphisms (MATRIX ALGEBRAS)
   Hom(M, N) (MODULES OVER AN ALGEBRA)
   Homomorphisms (AUTOMATIC GROUPS)
   Homomorphisms (BRAID GROUPS)
   Homomorphisms (FINITE FIELDS)
   Homomorphisms (FINITELY PRESENTED ALGEBRAS)
   Homomorphisms (FINITELY PRESENTED GROUPS)
   Homomorphisms (GROUPS DEFINED BY REWRITE SYSTEMS)
   Homomorphisms (GROUPS)
   Homomorphisms (INTEGER RESIDUE CLASS RINGS)
   Homomorphisms (MAPPINGS)
   Homomorphisms (MATRIX GROUPS OVER GENERAL RINGS)
   Homomorphisms (MODULES OVER AN ALGEBRA)
   Homomorphisms (MONOIDS GIVEN BY REWRITE SYSTEMS)
   Homomorphisms (MULTIVARIATE POLYNOMIAL RINGS)
   Homomorphisms (PERMUTATION GROUPS)
   Homomorphisms (POLYCYCLIC GROUPS)
   Homomorphisms (RATIONAL FIELD)
   Homomorphisms (RATIONAL FUNCTION FIELDS)
   Homomorphisms (REAL AND COMPLEX FIELDS)
   Homomorphisms (RING OF INTEGERS)
   Homomorphisms (UNIVARIATE POLYNOMIAL RINGS)
   Subgroups, Quotient Groups, Homomorphisms and Extensions (POLYCYCLIC GROUPS)
   Subspaces, Quotient Spaces and Homomorphisms (VECTOR SPACES)
   FldRat_homomorphism (Example H20E2)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013