[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: power .. PRank
ALGEBRAIC POWER SERIES RINGS
Parents of Sets and Sequences (INTRODUCTION TO AGGREGATES [SETS, SEQUENCES, AND MAPPINGS])
Power Groups (POLYCYCLIC GROUPS)
Power Sequences (SEQUENCES)
Power Sets (SETS)
POWER, LAURENT AND PUISEUX SERIES
PowerGroup (FINITE SOLUBLE GROUPS)
Symmetric Powers (DIFFERENTIAL RINGS)
Transition Matrices from Power Sum Basis (SYMMETRIC FUNCTIONS)
Power Groups (POLYCYCLIC GROUPS)
PowerGroup (FINITE SOLUBLE GROUPS)
Power Sequences (SEQUENCES)
Power Sets (SETS)
Parents of Sets and Sequences (INTRODUCTION TO AGGREGATES [SETS, SEQUENCES, AND MAPPINGS])
PowerFormalSet(R) : Str -> PowSetIndx
PowerGroup(G) : GrpPC -> PowerGroup
GrpPC_PowerGroupTwo (Example H63E37)
PowerIdeal(R) : Rng -> PowIdl
PowerIndexedSet(R) : Str -> PowSetIndx
AlgGrp_powering (Example H84E5)
PowerMap(G) : GrpFin -> Map
PowerMap(G) : GrpMat -> Map
PowerMap(G) : GrpPC -> Map
PowerMap(G) : GrpPerm -> Map
PowerMultiset(R) : Str -> PowSetMulti
PowerPolynomial(f,n) : RngUPolElt, RngIntElt -> RngUPolElt
PowerProduct(B, E) : [RngOrdFracIdl], [RngIntElt] -> RngOrdFracIdl
ProductRepresentation(P, E) : [ FldAlgElt ], [ RngIntElt ] -> FldAlgElt
ProductRepresentation(P, E) : [ FldNumElt ], [ RngIntElt ] -> FldNumElt
ProductRepresentation(Q, S) : [FldFunGElt], [RngIntElt] -> FldFunGElt
PowerRelation(r, k: parameters) : FldReElt, RngIntElt -> RngUPolElt
PowerResidueCode(K, n, p) : FldFin, RngIntElt, RngIntElt -> Code
PowerSequence(R) : Str -> PowSeqEnum
Seq_PowerSequence (Example H10E2)
qEigenform(M, prec) : ModSym, RngIntElt -> RngSerPowElt
PowerSeries(M, prec) : ModSym, RngIntElt -> RngSerPowElt
Eigenform(M, prec) : ModSym, RngIntElt -> RngSerPowElt
qExpansion(f) : ModFrmElt -> RngSerPowElt
PowerSeriesRing(R) : Rng -> RngSerPow
PowerSet(R) : Str -> PowSetEnum
Set_PowerSet (Example H9E6)
PowerSumToElementaryMatrix(n): RngIntElt -> AlgMatElt
PowerSumToElementarySymmetric(I) : [] -> []
PowerSumToHomogeneousMatrix(n): RngIntElt -> AlgMatElt
PowerSumToMonomialMatrix(n): RngIntElt -> AlgMatElt
PowerSumToSchurMatrix(n): RngIntElt -> AlgMatElt
pPlus1(n, B1) : RngIntElt, RngIntElt -> RngIntElt
pPowerTorsion(E, p) : CrvEll, RngIntElt -> GrpAb, Map
pPowerTorsion(E, p) : CrvEll, RngIntElt -> GrpAb, Map
pPrimaryComponent(A, p) : GrpAb, RngIntElt -> GrpAb
pPrimaryInvariants(A, p) : GrpAb, RngIntElt -> [ RngIntElt ]
pPrimaryComponent(A, p) : GrpAb, RngIntElt -> GrpAb
pPrimaryInvariants(A, p) : GrpAb, RngIntElt -> [ RngIntElt ]
pQuotient(L, M) : AlgLie, AlgLie -> AlgLie
pQuotient(G, p, c) : GrpMat, RngIntElt, RngIntElt -> GrpPC, Map, SeqEnum, BoolElt
pQuotient(G, p, c) : GrpPerm, RngIntElt, RngIntElt -> GrpPC, Map, SeqEnum, BoolElt
pQuotient( F, p, c : parameters ) : GrpFP, RngIntElt, RngIntElt -> GrpPC, Map
pQuotient(G, p, c : parameters ) : GrpPC, RngIntElt, RngIntElt -> GrpPC, Map
pQuotient(F, p, c: parameters) : GrpFP, RngIntElt, RngIntElt -> GrpPC, Map
pQuotient(F, p, c: parameters) : GrpFP, RngIntElt, RngIntElt -> GrpPC, Map, SeqEnum , BoolElt
pQuotientProcess(F, p, c: parameters) : GrpFP, RngIntElt, RngIntElt -> Process
GrpFP_1_pQuotient1 (Example H70E31)
GrpFP_1_pQuotient2 (Example H70E32)
GrpFP_1_pQuotient3 (Example H70E33)
GrpFP_1_pQuotient4 (Example H70E34)
GrpFP_2_pQuotient5 (Example H71E9)
GrpFP_2_pQuotient6 (Example H71E10)
GrpFP_2_pQuotient7 (Example H71E11)
GrpFP_2_pQuotient8 (Example H71E12)
pQuotientProcess(F, p, c: parameters) : GrpFP, RngIntElt, RngIntElt -> Process
HasAllPQuotientsMetacyclic (G): GrpFP -> BoolElt, SeqEnum
pRadical(O, p) : RngFunOrd, RngFunOrdIdl -> RngFunOrdIdl
pRadical(O, p) : RngFunOrd, RngFunOrdIdl -> RngFunOrdIdl
pRadical(O, p) : RngOrd, RngIntElt -> RngOrdIdl
ClassGroupPRank(C) : Crv[FldFin] -> RngIntElt
ClassGroupPRank(F) : FldFunG -> RngIntElt
ClassGroupPRank(F) : FldFunG -> RngIntElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013