[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: lattice .. Layers
Attributes of Lattices (LATTICES)
Creating the lattice of sublattices (LATTICES WITH GROUP ACTION)
Lattice of Sublattices (LATTICES WITH GROUP ACTION)
Lattice of Submodules (MODULES OVER AN ALGEBRA)
Lattice Operations (BRAID GROUPS)
Lattice Structure and Simple Elements (BRAID GROUPS)
LATTICES
Maps of Toric Lattices (CONVEX POLYTOPES AND POLYHEDRA)
Operations on Lattice Elements (MODULES OVER AN ALGEBRA)
Operations on the Lattice of Sublattices (LATTICES WITH GROUP ACTION)
Operations on Toric Lattices (CONVEX POLYTOPES AND POLYHEDRA)
Points of Toric Lattices (CONVEX POLYTOPES AND POLYHEDRA)
Predicates and Booleans on Lattices (LATTICES)
Properties of Lattice Elements (MODULES OVER AN ALGEBRA)
Properties of Lattices (LATTICES)
The Subfield Lattice (GALOIS THEORY OF NUMBER FIELDS)
Toric Lattices (CONVEX POLYTOPES AND POLYHEDRA)
Attributes of Lattices (LATTICES)
Operations on Lattice Elements (MODULES OVER AN ALGEBRA)
Properties of Lattice Elements (MODULES OVER AN ALGEBRA)
Predicates and Booleans on Lattices (LATTICES)
BaseChange(L, S) : Lat, Rng -> Lat, Map
BaseExtend(L, S) : Lat, Rng -> Lat, Map
Properties of Lattices (LATTICES)
LatticeCoordinates(x) : ModAbVarElt -> ModTupFldElt
Lat_LatticeCreate (Example H30E1)
LatticeData(D, i): DB, RngIntElt -> Rec
LatticeDatabase() : -> DB
LatticeElementToMonomial(D,v) : DivTorElt,TorLatElt -> RngMPolElt
Lat_LatticeFunctions (Example H30E4)
LatticeMap(L,Q) : TorLat,[TorLatElt] -> TorLatMap
hom< L -> K | M > : TorLat,TorLat,Mtrx -> TorLatMap
LatticeName(D, N): DB, MonStgElt -> RecMonStgElt, RngIntElt
LatticeName(D, N, i): DB, MonStgElt, RngIntElt -> RecMonStgElt, RngIntElt
LatticeName(D, i): DB, RngIntElt -> MonStgElt, RngIntElt
LatticeName(D, d, i): DB, RngIntElt, RngIntElt -> RecMonStgElt, RngIntElt
Grp_LatticeOperations (Example H57E21)
ModAlg_LatticeOps (Example H89E10)
NumberOfGroups(D) : DB -> RngIntElt
NumberOfLattices(D) : DB -> RngIntElt
# D : DB -> RngIntElt
# D : DB -> RngIntElt
# D : DB -> RngIntElt
# D : DB -> RngIntElt
# D: DB -> RngIntElt
NumberOfGroups(D, d) : DB, RngIntElt -> RngIntElt
NumberOfGroups(D, d) : DB, RngIntElt -> RngIntElt
NumberOfGroups(D, d) : DB, RngIntElt -> RngIntElt
NumberOfGroups(D, d) : DB, RngIntElt -> RngIntElt
NumberOfLattices(D, N): DB, MonStgElt -> RngIntElt
NumberOfLattices(D, d): DB, RngIntElt -> RngIntElt
WeilToClassGroupsMap(C) : RngCox -> Map
Lattices from Matrix Groups (LATTICES WITH GROUP ACTION)
Maps from Lattice Maps (TORIC VARIETIES)
Operations on Lattices (MODULES OVER AN ALGEBRA)
Special Lattices (LATTICES)
Toric Lattices (CONVEX POLYTOPES AND POLYHEDRA)
LatticeVector(L,Q) : TorLat,[RngIntElt] -> TorLatElt
L ! [a,b,...] : TorLat,[RngIntElt] -> TorLatElt
LatticeWithBasis(G, B) : GrpMat, ModMatRngElt -> Lat
LatticeWithBasis(G, B, M) : GrpMat, ModMatRngElt, AlgMatElt -> Lat
LatticeWithBasis(B) : ModMatRngElt -> Lat
LatticeWithBasis(B, M) : ModMatRngElt, AlgMatElt -> Lat
LatticeWithGram(F) : AlgMatElt -> Lat
LatticeWithGram(G, F) : GrpMat, AlgMatElt -> Lat
POWER, LAURENT AND PUISEUX SERIES
DifferentialLaurentSeriesRing(C) : Fld -> RngDiff
IsDifferentialLaurentSeriesRing(R) : Rng -> BoolElt
LaurentSeriesRing(L) : AlgKac -> RngSerLaur
LaurentSeriesRing(R) : Rng -> RngSerLaur
Factorisation of Operators over Differential Laurent Series Rings (DIFFERENTIAL RINGS)
LaurentSeriesRing(L) : AlgKac -> RngSerLaur
LaurentSeriesRing(R) : Rng -> RngSerLaur
ExponentLaw(~P : parameters) : GrpPCpQuotientProc ->
FormalGroupLaw(E, prec) : CrvEll, RngIntElt -> RngMPolElt
LayerBoundary(G,i,j,k) : GrpPC, RngIntElt, RngIntElt, RngIntElt -> RngIntElt
LayerLength(G,i,j) : GrpPC, RngIntElt, RngIntElt -> RngIntElt
LayerBoundary(G,i,j,k) : GrpPC, RngIntElt, RngIntElt, RngIntElt -> RngIntElt
LayerLength(G,i,j) : GrpPC, RngIntElt, RngIntElt -> RngIntElt
IsomorphismTypesOfRadicalLayers(M) : ModAlgBas -> SeqEnum
IsomorphismTypesOfSocleLayers(M) : ModAlgBas -> SeqEnum
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013