[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: RemoveColumn .. RepetitionCode
RemoveColumn(A, j) : Mtrx, RngIntElt -> Mtrx
RemoveColumn(A, j) : MtrxSprs, RngIntElt -> MtrxSprs
RemoveConstraint(L, n) : LP, RngIntElt ->
RemoveEdge(~G, e) : Grph, GrphEdge ->
RemoveEdges(~G, S) : Grph, { GrphEdge } ->
G -:= e : Grph, GrphEdge ->
G -:= e : GrphMult, GrphEdge ->
RemoveEdge(~G, e) : Grph, GrphEdge ->
RemoveEdges(~G, S) : Grph, { GrphEdge } ->
G -:= e : Grph, GrphEdge ->
G -:= e : GrphMult, GrphEdge ->
RemoveFiles(P) : NFSProc -> .
RemoveIrreducibles(I, C) : [ AlgChtrElt ], [ AlgChtrElt ] -> [ AlgChtrElt ], [ AlgChtrElt ]
RemoveLinearRelations(X) : Sch -> Sch, MapIsoSch
RemoveRow(A, i) : Mtrx, RngIntElt -> Mtrx
RemoveRow(A, i) : MtrxSprs, RngIntElt -> MtrxSprs
RemoveRowColumn(A, i, j) : Mtrx, RngIntElt -> Mtrx
RemoveRowColumn(A, i, j) : MtrxSprs, RngIntElt -> MtrxSprs
RemoveVertex(~G, v) : Grph, GrphVert ->
RemoveVertices(~G, U) : Grph, { GrphVert } ->
G -:= v : Grph, GrphVert ->
G -:= v : GrphMult, GrphVert ->
RemoveVertex(~G, v) : Grph, GrphVert ->
RemoveVertices(~G, U) : Grph, { GrphVert } ->
G -:= v : Grph, GrphVert ->
G -:= v : GrphMult, GrphVert ->
RemoveWeight(X,w) : GRK3,RngIntElt -> GRK3
RemoveWeight(~X,w) : GRSch,RngIntElt ->
RemoveZeroRows(A) : Mtrx -> Mtrx
RemoveZeroRows(A) : MtrxSprs -> MtrxSprs
ExtractRep(~R, ~r) : SetEnum, Elt ->
GetRep(p, R) : GrpPermElt, Rec -> GrpPermElt
HasSparseRep(G) : Grph -> BoolElt
MatRep(K) : DBAtlasKeyMatRep -> SeqEnum[GrpMatElt]
MatRepCharacteristics(A) : GrpAtlas -> SetEnum[RngIntElt]
MatRepDegrees(A) : GrpAtlas -> SetEnum[RngIntElt]
MatRepFieldSizes(A) : GrpAtlas -> SetEnum[RngIntElt]
MatRepKeys(A) : GrpAtlas -> SeqEnum[DBAtlasKeyMatRep]
PermRep(K) : DBAtlasKeyPermRep -> SeqEnum[GrpPermElt]
PermRepDegrees(A) : GrpAtlas -> SetEnum[RngIntElt]
PermRepKeys(A) : GrpAtlas -> SeqEnum[DBAtlasKeyPermRep]
Rep(G) : GrpAb -> GrpAbElt
Rep(G) : GrpBB -> GrpBBElt
Rep(G) : GrpSLP -> GrpSLPElt
Rep(C) : SetCart -> Elt
Representative(G) : GrpAtc -> GrpAtcElt
Representative(B) : GrpBrd -> GrpBrdElt
Representative(P) : GrpBrdClassProc -> GrpBrdElt
Representative(G) : GrpFin -> GrpFinElt
Representative(G) : GrpGPC -> GrpGPCElt
Representative(S) : GrphVertSet -> GrphVert
Representative(G) : GrpPC -> GrpPCElt
Representative(G) : GrpPerm -> GrpPermElt
Representative(G) : GrpRWS -> GrpRWSElt
Representative(b) : IncBlk -> IncPt
Representative(B) : IncBlkSet -> IncBlk
Representative(P) : IncPtSet -> IncPt
Representative(M) : MonRWS -> MonRWSElt
Representative(l) : PlaneLn -> PlanePt
Representative(L) : PlaneLnSet -> PlaneLn
Representative(V) : PlanePtSet -> PlanePt
Representative(R) : Rng -> RngElt
Representative(R) : SeqEnum -> Elt
Representative(R) : SetIndx -> Elt
Representative(P, i) : StkPtnOrd, RngIntElt -> RngIntElt
SimplifyRep(s) : RngPowAlgElt -> RngPowAlgElt
TestHeckeRep(W,r) : GrpFPCox, SeqEnum -> .
WG2GroupRep(wg) : GrphUnd -> SeqEnum
WG2HeckeRep(W,wg) : GrpFPCox, GrphUnd -> SeqEnum
Writing Representations over Subfields (MATRIX GROUPS OVER FINITE FIELDS)
rep{ e(x) : x in E | P(x) }
rep{ e(x1, ..., xk) : x1 in E1, ...,xk in Ek | P(x1, ..., xk) }
REPRESENTATIONS OF SYMMETRIC GROUPS
Representations of the Alternating Group (REPRESENTATIONS OF SYMMETRIC GROUPS)
Indefinite Iteration (STATEMENTS AND EXPRESSIONS)
repeat statements until boolexpr : ->
State_repeat (Example H1E15)
Indefinite Iteration (STATEMENTS AND EXPRESSIONS)
AdditiveRepetitionCode(F, K, n) : FldFin, FldFin, RngIntElt -> Code
RepetitionCode(R, n) : FldFin, RngIntElt -> Code
RepetitionCode(R, n) : Rng, RngIntElt -> Code
RepetitionCode(R, n) : FldFin, RngIntElt -> Code
RepetitionCode(R, n) : Rng, RngIntElt -> Code
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013