[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: abelian  ..  Abs


abelian

   Abelian Extensions (CLASS FIELD THEORY)
   Abelian Extensions (CLASS FIELD THEORY)
   Abelian Group Functions (MATRIX GROUPS OVER GENERAL RINGS)
   ABELIAN GROUPS
   Abelian Quotient (FINITELY PRESENTED GROUPS)
   CLASS FIELD THEORY
   Construction of a Generic Abelian Group (ABELIAN GROUPS)
   Elliptic Curves (MODULAR FORMS)
   The Abelian Quotient Structure of a Group (POLYCYCLIC GROUPS)

abelian-extension

   CLASS FIELD THEORY

abelian-extension-attributes

   FldAb_abelian-extension-attributes (Example H39E10)

abelian-extensions

   Abelian Extensions (CLASS FIELD THEORY)

abelian-extensions-basics

   Abelian Extensions (CLASS FIELD THEORY)

abelian-group

   Invariants(G) : GrpMat -> [ RngIntElt ]
   Abelian Group Functions (MATRIX GROUPS OVER GENERAL RINGS)

abelian-structure

   The Abelian Quotient Structure of a Group (POLYCYCLIC GROUPS)

abelian-varieties

   Elliptic Curves (MODULAR FORMS)

abelian_group

   Abelian Group Structure (ELLIPTIC CURVES OVER FINITE FIELDS)

abelian_group_jacobian

   Abelian Group Structure (HYPERELLIPTIC CURVES)

AbelianBasis

   AbelianBasis(G) : GrpFin -> [ GrpFinElt ], [ RngIntElt ]
   AbelianBasis(G) : GrpPC -> [ GrpPCElt ], [ RngIntElt ]

AbelianExtension

   AbelianExtension(D, U) : DivFunElt, GrpAb -> FldFunAb
   AbelianExtension(K) : FldAlg -> FldAb
   AbelianExtension(I) : RngOrdIdl -> FldAb
   AbelianExtension(I, P) : RngOrdIdl, [RngIntElt] -> FldAb
   RayClassField(m) : Map -> FldAb

AbelianGroup

   AbelianGroup(GrpAb, Q) : Cat, [ RngIntElt ] -> GrpAb
   AbelianGroup(C, Q) : Cat, [ RngIntElt ] -> GrpFin
   AbelianGroup(GrpFP, [n1,...,nr]): Cat, [ RngIntElt ] -> GrpFP
   AbelianGroup(GrpPerm, Q) : Cat, [ RngIntElt ] -> GrpPerm
   AbelianGroup(GrpGPC, Q) : Cat, [RngIntElt] -> GrpGPC
   AbelianGroup(GrpPC, Q) : Cat, [RngIntElt] -> GrpPC
   AbelianGroup(G) : Grp -> GrpAb, Hom
   AbelianGroup(G) : GrpDrch -> GrpAb, Map
   AbelianGroup(G) : GrpGPC -> GrpAb, Map
   AbelianGroup(G) : GrpPC -> GrpAb, Map
   AbelianGroup(J) : JacHyp -> GrpAb, Map
   AbelianGroup< X | R > : List(Var), List(GrpAbRel) -> GrpAb, Hom(GrpAb)
   AbelianGroup(G) : ModAbVarSubGrp -> GrpAb, Map, Map
   AbelianGroup(A: parameters) : GrpAbGen -> GrpAb, Map
   AbelianGroup(H) : SetPtEll -> GrpAb, Map
   AbelianGroup([n1,...,nr]): [ RngIntElt ] -> GrpAb
   Group< X | R > : List(Identifiers), List(GrpFPRel) -> GrpFP, Hom(Grp)
   MordellWeilGroup(H: parameters) : SetPtEll -> GrpAb, Map
   CrvEllFldFin_AbelianGroup (Example H121E6)
   GrpAb_AbelianGroup (Example H69E3)

AbelianGroup2

   GrpAb_AbelianGroup2 (Example H69E4)

AbelianInvariants

   Invariants(G) : GrpFin -> [ RngIntElt ]
   AbelianInvariants(G) : GrpFin -> [ RngIntElt ]
   AbelianInvariants(G) : GrpMat -> [ RngIntElt ]
   AbelianInvariants(G) : GrpPC -> [RngIntElt]

AbelianLieAlgebra

   AbelianLieAlgebra(R, n) : Rng, RngIntElt -> AlgLie

AbelianNormalQuotient

   AbelianNormalQuotient(G, H) : GrpPerm -> GrpPerm, Hom(GrpPerm), GrpPerm

AbelianNormalSubgroup

   AbelianNormalSubgroup(G) : GrpPerm -> GrpPerm

Abelianp

   AbelianpExtension(m, p) : Map, RngIntElt -> FldAb

AbelianpExtension

   AbelianpExtension(m, p) : Map, RngIntElt -> FldAb

AbelianQuotient

   AbelianQuotient(G) : Grp -> GrpAb, Hom
   AbelianQuotient(G) : GrpFP -> GrpAb, Map
   AbelianQuotient(G) : GrpGPC -> GrpAb, Map
   AbelianQuotient(G) : GrpMat -> GrpAb, Map
   AbelianQuotient(G) : GrpPC -> GrpAb, Map
   AbelianQuotient(G) : GrpPerm -> GrpAb, Map

AbelianQuotientInvariants

   AQInvariants(G) : GrpFP -> [ RngIntElt ]
   AbelianQuotientInvariants(G) : GrpFP -> [ RngIntElt ]
   AbelianQuotientInvariants(H) : GrpFP -> [ RngIntElt ]
   AbelianQuotientInvariants(G, n) : GrpFP, RngIntElt -> [ RngIntElt ]
   AbelianQuotientInvariants(H, n) : GrpFP, RngIntElt -> [ RngIntElt ]
   AbelianQuotientInvariants(G) : GrpGPC -> [ RngIntElt ]
   AbelianQuotientInvariants(G) : GrpPC -> SeqEnum

AbelianSubfield

   FixedField(A, U) : FldAb, GrpAb -> FldAb
   AbelianSubfield(A, U) : FldAb, GrpAb -> FldAb

AbelianSubgroups

   CyclicSubgroups(G) : GrpPC -> SeqEnum
   ElementaryAbelianSubgroups(G) : GrpPC -> SeqEnum
   NilpotentSubgroups(G) : GrpPC -> SeqEnum
   AbelianSubgroups(G) : GrpPC -> SeqEnum
   AbelianSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
   AbelianSubgroups(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]

Abort

   SubmoduleLatticeAbort(M, n) : ModRng, RngIntElt -> BoolElt, SubModLat

Abs

   AbsoluteValue(x) : Infty -> Infty
   Abs(x) : Infty -> Infty
   Abs(z) : SpcHydElt -> FldReElt
   AbsoluteNorm(a) : FldAlgElt -> FldRatElt
   AbsoluteNorm(a) : FldFinElt -> FldFinElt
   AbsoluteNorm(a) : FldNumElt -> FldRatElt
   AbsoluteNorm(I) : RngOrdIdl -> RngIntElt
   AbsoluteTrace(a) : FldAlgElt -> FldRatElt
   AbsoluteTrace(a) : FldFinElt -> FldFinElt
   AbsoluteTrace(a) : FldNumElt -> FldRatElt
   AbsoluteValue(q) : FldRatElt -> FldRatElt
   AbsoluteValue(r) : FldReElt-> FldReElt
   AbsoluteValue(n) : RngIntElt -> RngIntElt
   AbsoluteValue(f) : RngMPolElt -> RngMPolElt
   AbsoluteValue(p) : RngUPolElt -> RngUPolElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013