[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: GaloisGroupInvariant .. GammaRootSpace
GaloisGroupInvariant(G, H) : GrpPerm, GrpPerm -> RngSLPolElt
FldFunG_GaloisGroups (Example H42E13)
RngOrdGal_GaloisGroups (Example H38E4)
FldFunG_GaloisGroups2 (Example H42E14)
GaloisImage(x, i) : RngPadElt, RngIntElt -> RngPadElt
GaloisOrbit(x) : AlgChtrElt -> { AlgChtrElt }
GaloisProof(f, S) : RngUPolElt, GaloisData -> BoolElt
GaloisQuotient(K, Q) : FldNum, GrpPerm -> SeqEnum[FldNum]
WeilRepresentation(pi) : RepLoc -> GrpPerm, Map, RngPad, ModGrp
GaloisRepresentation(pi) : RepLoc -> GrpPerm, Map, RngPad, ModGrp
GR(q, d) : RngIntElt, RngIntElt -> RngGal
GaloisRing(q, d) : RngIntElt, RngIntElt -> RngGal
GaloisRing(p, a, d) : RngIntElt, RngIntElt, RngIntElt -> RngGal
GaloisRing(p, a, D) : RngIntElt, RngIntElt, RngUPol -> RngGal
GaloisRing(q, D) : RngIntElt, RngUPol -> RngGal
GaloisRoot(i, S) : RngIntElt, GaloisData -> RngElt
GaloisRoot(f, i, S) : RngUPolElt, RngIntElt, GaloisData -> RngElt
GaloisSplittingField(f) : RngUPolElt -> FldNum, [FldNumElt], GrpPerm, [[FldNumElt]]
GaloisSubfieldTower(S, L) : GaloisData, [GrpPerm] -> FldNum, [Tup<RngSLPolElt, RngUPolElt, [GrpPermElt]>], UserProgram, UserProgram
GaloisSubgroup(K, U) : FldNum, GrpPerm -> FldNum, UserProgram
AGammaL(arguments)
AffineGammaLinearGroup(arguments)
EulerGamma(R) : FldRe -> FldReElt
Gamma(r) : FldReElt -> FldReElt
Gamma(r, s) : FldReElt, FldReElt -> FldReElt
Gamma(f) : RngSerElt -> RngSerElt
GammaAction(A) : GGrp -> Map[Grp, GrpAuto]
GammaAction(R) : RootDtm -> Rec
GammaActionOnSimples(R) : RootDtm -> HomGrp
GammaArray(H) : HypGeomData -> SeqEnum
GammaD(s) : FldReElt -> FldReElt
GammaFactors(L) : LSer -> Seqenum
GammaGroup(k, G) : Fld, GrpLie -> GGrp
GammaGroup(k, A) : Fld, GrpLieAuto -> GGrp
GammaGroup(Gamma, A, action) : Grp, Grp, Map[Grp, GrpAuto] -> GGrp
GammaGroup(alpha) : OneCoC -> GGrp
GammaList(H) : HypGeomData -> List
GammaOrbitOnRoots(R,r) : RootDtm, RngIntElt -> GSetEnum
GammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
GammaOrbitsRepresentatives(R, delta) : RootDtm, RngIntElt -> SeqEnum
GammaRootSpace(R) : RootDtm, RngIntElt -> GSetEnum
GammaUpper0(N) : RngIntElt -> GrpPSL2
GammaUpper1(N) : RngIntElt -> GrpPSL2
InducedGammaGroup(A, B) : GGrp, Grp -> GGrp
LogGamma(r) : FldReElt -> FldReElt
LogGamma(f) : RngSerElt -> RngSerElt
ProjectiveGammaLinearGroup(arguments)
ProjectiveGammaUnitaryGroup(arguments)
Creation of Gamma-groups (COHOMOLOGY AND EXTENSIONS)
Gamma, Bessel and Associated Functions (REAL AND COMPLEX FIELDS)
KBessel2(n, s) : FldReElt, FldReElt -> FldReElt
Gamma, Bessel and Associated Functions (REAL AND COMPLEX FIELDS)
Creation of Gamma-groups (COHOMOLOGY AND EXTENSIONS)
DimensionCuspFormsGamma0(N, k) : RngIntElt, RngIntElt -> RngIntElt
DimensionNewCuspFormsGamma0(N, k) : RngIntElt, RngIntElt -> RngIntElt
Gamma0(N) : RngIntElt -> GrpPSL2
IsGamma0(G) : GrpPSL2 -> BoolElt
IsGamma0(M) : ModFrm -> BoolElt
DimensionCuspFormsGamma1(N, k) : RngIntElt, RngIntElt -> RngIntElt
DimensionNewCuspFormsGamma1(N, k) : RngIntElt, RngIntElt -> RngIntElt
Gamma1(N) : RngIntElt -> GrpPSL2
IsGamma1(G) : GrpPSL2 -> BoolElt
IsGamma1(M) : ModFrm -> BoolElt
GammaAction(A) : GGrp -> Map[Grp, GrpAuto]
GammaAction(R) : RootDtm -> Rec
GammaActionOnSimples(R) : RootDtm -> HomGrp
GammaArray(H) : HypGeomData -> SeqEnum
GammaCorootSpace(R) : RootDtm, RngIntElt -> GSetEnum
GammaRootSpace(R) : RootDtm, RngIntElt -> GSetEnum
GammaD(s) : FldReElt -> FldReElt
GammaFactors(L) : LSer -> Seqenum
GammaGroup(k, G) : Fld, GrpLie -> GGrp
GammaGroup(k, A) : Fld, GrpLieAuto -> GGrp
GammaGroup(Gamma, A, action) : Grp, Grp, Map[Grp, GrpAuto] -> GGrp
GammaGroup(alpha) : OneCoC -> GGrp
GammaList(H) : HypGeomData -> List
GammaOrbitOnRoots(R,r) : RootDtm, RngIntElt -> GSetEnum
PositiveGammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
NegativeGammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
ZeroGammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
GammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
GammaOrbitsRepresentatives(R, delta) : RootDtm, RngIntElt -> SeqEnum
GammaCorootSpace(R) : RootDtm, RngIntElt -> GSetEnum
GammaRootSpace(R) : RootDtm, RngIntElt -> GSetEnum
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013