[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: sub-cartan-toral .. Subfield
Cartan and Toral Subalgebras (LIE ALGEBRAS)
Construction of Subalgebras, Ideals and Quotients (LIE ALGEBRAS)
GrpPC_sub-predicates (Example H63E16)
Subalgebras and Quotient Algebras (BASIC ALGEBRAS)
Subcomplexes and Quotient Complexes (CHAIN COMPLEXES)
Submodules and Quotient Modules (MODULES OVER MULTIVARIATE RINGS)
ModDed_sub-quo (Example H55E2)
Standard Series (LIE ALGEBRAS)
Semisimple Subalgebras of Simple Lie Algebras (LIE ALGEBRAS)
Standard Ideals and Subalgebras (LIE ALGEBRAS)
Subalgebras of su(d) (REPRESENTATIONS OF LIE GROUPS AND ALGEBRAS)
Sub- and Superlattices and Quotients (LATTICES)
GrpPC_sub_creation (Example H63E13)
AlgMat_SubAlgebra (Example H83E4)
CartanSubalgebra(L) : AlgLie -> AlgLie
HasLeviSubalgebra(L) : AlgLie -> BoolElt
IrreducibleSimpleSubalgebraTreeSU(Q, d) : SeqEnum[SeqEnum[Tup]], RngIntElt -> GrphDir
IsCartanSubalgebra(L, H) : AlgLie, AlgLie -> BoolElt
IsRestrictedSubalgebra(L, M) : AlgLie, AlgLie -> AlgLie
IsSplitToralSubalgebra(L, H) : AlgLie, AlgLie -> BoolElt
IsSplittingCartanSubalgebra(L, H) : AlgLie, AlgLie -> BoolElt
MaximalCommutativeSubalgebra(A,S) : SeqEnum) -> AlgBas, Map
RestrictedSubalgebra(Q) : SetEnum[AlgLieElt] -> AlgLie
SplitToralSubalgebra(L) : AlgLie -> AlgLie
SplittingCartanSubalgebra(L) : AlgLie -> AlgLie
SubalgebraFromBasis(A, V) : AlgBas, SeqEnum -> AlgBas, Map
SubalgebraModule(B, M): Alg, ModAlg -> ModAlg
Elementary Operations on Subalgebras and Ideals (MATRIX ALGEBRAS)
Operations on Subalgebras of Group Algebras (GROUP ALGEBRAS)
Elementary Operations on Subalgebras and Ideals (MATRIX ALGEBRAS)
SubalgebraFromBasis(A, V) : AlgBas, SeqEnum -> AlgBas, Map
SubalgebraModule(B, M): Alg, ModAlg -> ModAlg
IrreducibleSimpleSubalgebrasOfSU(N) : RngIntElt -> SeqEnum
SubalgebrasInclusionGraph( t ) : MonStgElt -> GrphDir
Subalgebras and their Constructions (BASIC ALGEBRAS)
SubalgebrasInclusionGraph( t ) : MonStgElt -> GrphDir
Creation of Subcanonical Curves (HILBERT SERIES OF POLARISED VARIETIES)
Subcanonical Curves (HILBERT SERIES OF POLARISED VARIETIES)
Creation of Subcanonical Curves (HILBERT SERIES OF POLARISED VARIETIES)
EffectiveSubcanonicalCurves(g) : RngIntElt -> SeqEnum
IneffectiveSubcanonicalCurves(g) : RngIntElt -> SeqEnum
IsSubcanonicalCurve(g,d,Q) : RngIntElt,RngIntElt,SeqEnum -> BoolElt,GRCrvK
SubcanonicalCurve(g,d,Q) : RngIntElt,RngIntElt,SeqEnum -> GRCrvK
SubcanonicalCurve(g,d,Q) : RngIntElt,RngIntElt,SeqEnum -> GRCrvK
EvenWeightSubcode(C) : Code -> Code
Subcode(C, k) : Code, RngIntElt -> Code
Subcode(C, S) : Code, RngIntElt -> Code
Subcode(C, S) : Code, { RngIntElt } -> Code
Subcode(C, t) : Code,RngIntElt -> Code
Subcode(C, k) : CodeAdd, RngIntElt -> CodeAdd
Subcode(C, S) : CodeAdd, { RngIntElt } -> Code
Subcode(Q, k) : CodeQuantum, RngIntElt -> CodeQuantum
SubcodeBetweenCode(C1, C2, k) : Code, Code, RngIntElt -> Code
SubcodeBetweenCode(C1, C2, k) : CodeAdd, CodeAdd, RngIntElt -> CodeAdd
SubcodeWordsOfWeight(C, S) : Code, { RngIntElt } -> Code
SubcodeWordsOfWeight(C, w) : CodeAdd, RngIntElt -> CodeAdd
SubcodeWordsOfWeight(C, S) : CodeAdd, { RngIntElt } -> CodeAdd
SubfieldSubcode(C, S) : Code, FldFin -> Code, Map
Construction of Subcodes of Linear Codes (LINEAR CODES OVER FINITE RINGS)
Subcodes (ADDITIVE CODES)
Subcodes (LINEAR CODES OVER FINITE FIELDS)
CodeRng_subcode-galois-rings (Example H155E17)
SubcodeBetweenCode(C1, C2, k) : Code, Code, RngIntElt -> Code
SubcodeBetweenCode(C1, C2, k) : CodeAdd, CodeAdd, RngIntElt -> CodeAdd
CodeAdd_SubcodeBetweenCode (Example H156E7)
CodeFld_SubcodeBetweenCode (Example H152E14)
SubcodeWordsOfWeight(C, S) : Code, { RngIntElt } -> Code
SubcodeWordsOfWeight(C, w) : CodeAdd, RngIntElt -> CodeAdd
SubcodeWordsOfWeight(C, S) : CodeAdd, { RngIntElt } -> CodeAdd
RandomSubcomplex(C, Q) : ModCpx, SeqEnum -> ModCpx, MapChn
AnisotropicSubdatum(R) : RootDtm -> RootDtm
IndivisibleSubdatum(R) : RootDtm -> RootDtm
BarycentricSubdivision(X) : SmpCpx -> SmpCpx
SimplicialSubdivision(F) : TorFan -> TorFan
FixedField(A, U) : FldAb, GrpAb -> FldAb
AbelianSubfield(A, U) : FldAb, GrpAb -> FldAb
GaloisSubfieldTower(S, L) : GaloisData, [GrpPerm] -> FldNum, [Tup<RngSLPolElt, RngUPolElt, [GrpPermElt]>], UserProgram, UserProgram
IsRealisableOverSubfield(M, F) : ModGrp, FldFin -> BoolElt, ModGrp
IsSubfield(F, L) : FldAlg, FldAlg -> BoolElt, Map
IsSubfield(K, L) : FldFun, FldFun -> BoolElt, Map
IsSubfield(F, L) : FldNum, FldNum -> BoolElt, Map
MaximalAbelianSubfield(K) : FldFunG -> FldFunAb
MaximalAbelianSubfield(M) : RngOrd -> FldAb
SubfieldCode(C, S) : Code, FldFin -> Code
SubfieldLattice(K) : FldNum -> SubFldLat
SubfieldRepresentationCode(C, K) : Code, FldFin -> Code
SubfieldRepresentationParityCode(C, K) : Code, FldFin -> Code
SubfieldSubcode(C, S) : Code, FldFin -> Code, Map
SubfieldSubplane(P, F) : Plane, FldFin -> Plane, PlanePtSet, PlaneLnSet
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013