[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: IsConnected .. IsDifferentialLaurentSeriesRing
IsConnected(G) : GrphMultUnd -> BoolElt
IsConnected(G) : GrphUnd -> BoolElt
IsConsistent(G) : GrpGPC -> BoolElt
IsConsistent(G) : GrpPC -> BoolElt
IsConsistent(A, w) : ModMatRngElt, ModTupRng -> BoolElt, ModTupRngElt, ModTupRng
IsConsistent(A, W) : ModMatRngElt, [ ModTupRng ] -> BoolElt, [ ModTupRngElt ], ModTupRng
IsConsistent(A, W) : Mtrx, Mtrx -> BoolElt, Mtrx, ModTupRng
IsConsistent(A, Q) : Mtrx, [ ModTupRng ] -> BoolElt, [ ModTupRngElt ], ModTupRng
GrpPC_IsConsistent (Example H63E3)
Possibly Inconsistent Presentations (FINITE SOLUBLE GROUPS)
IsConstant(a) : FldFunGElt -> BoolElt, RngElt
IsZero(I) : Map -> BoolElt
IsConstantCurve(E) : CrvEll[FldFunRat] -> BoolElt, CrvEll
IsConway(F) : FldFin -> BoolElt
IsCorootSpace(v) : ModTupFldElt -> BoolElt
IsInRootSpace(v) : ModTupFldElt -> BoolElt
IsRootSpace(V) : ModTupFld -> BoolElt
IsCoxeterAffine(M) : AlgMatElt -> BoolElt
IsCoxeterCompactHyperbolic(M) : AlgMatElt -> BoolElt
IsCoxeterHyperbolic(M) : AlgMatElt -> BoolElt
IsCoxeterHyperbolic(G) : GrphUnd -> BoolElt
IsCoxeterFinite(M) : AlgMatElt -> BoolElt
IsCoxeterGraph(G) : GrphUnd -> BoolElt
IsCoxeterCompactHyperbolic(M) : AlgMatElt -> BoolElt
IsCoxeterHyperbolic(M) : AlgMatElt -> BoolElt
IsCoxeterHyperbolic(G) : GrphUnd -> BoolElt
IsCoxeterIrreducible(C) : AlgMatElt -> BoolElt
IsCoxeterIrreducible(M) : AlgMatElt -> BoolElt
IsCoxeterIsomorphic(C1, C2) : AlgMatElt, AlgMatElt -> RngIntElt
IsCoxeterIsomorphic(M1, M2) : AlgMatElt, AlgMatElt -> RngIntElt
IsCoxeterIsomorphic(W1, W2) : GrpFPCox, GrpFPCox -> BoolElt
IsCoxeterIsomorphic(W1, W2) : GrpMat, GrpMat -> BoolElt
IsCoxeterIsomorphic(N1, N2) : MonStgElt, MonStgElt -> BoolElt
IsCoxeterMatrix(M) : AlgMatElt -> BoolElt
IsCrystallographic(C) : AlgMatElt -> BoolElt
IsCrystallographic(W) : GrpMat -> BoolElt
IsCrystallographic(W) : GrpPermCox -> BoolElt
IsCrystallographic(R) : RootStr -> BoolElt
IsCrystallographic(R) : RootSys -> BoolElt
IsCurve(X) : Sch -> BoolElt,Crv
IsCurve(X) : Sch -> BoolElt,Crv
IsCusp(p) : Crv,Pt -> BoolElt
IsCusp(z) : SpcHypElt -> BoolElt
IsCuspidal(M) : ModBrdt -> BoolElt
IsCuspidal(M) : ModFrm -> BoolElt
IsCuspidal(M) : ModFrmHil -> BoolElt
IsCuspidal(M) : ModSym -> BoolElt
IsCyclic(C) : Code -> BoolElt
IsCyclic(C) : Code -> BoolElt
IsCyclic(F) : FldAlg -> BoolElt
IsCyclic(F) : FldNum -> BoolElt
IsCyclic(G) : GrpAb -> BoolElt
IsCyclic(G) : GrpFin -> BoolElt
IsCyclic(G) : GrpGPC -> BoolElt
IsCyclic(G) : GrpMat -> BoolElt
IsCyclic(G) : GrpPC -> BoolElt
IsCyclic(G) : GrpPerm -> BoolElt
IsDecomposable(M) : ModRng -> BoolElt, ModRng, ModRng
IsDefault(F) : FldFin -> BoolElt
IsDeficient(C, p) : CrvHyp, RngIntElt -> BoolElt
IsDefined(A, x) : Assoc, Elt -> Bool, Elt
IsDefined(L, i) : List, RngIntElt -> Elt
IsDefined(S, i) : SeqEnum, RngIntElt -> BoolElt
IsIndefinite(A) : AlgQuat -> BoolElt
IsDefinite(A) : AlgQuat -> BoolElt
IsDefinite(M) : ModFrmHil -> BoolElt
IsDegenerate(N) : NwtnPgon -> BoolElt
IsDegenerate(F) : NwtnPgonFace -> BoolElt
IsDelPezzo(Y) : Sch -> BoolElt, SrfDelPezzo, MapSch
IsDenselyRepresented(H) : HilbSpc -> RngIntElt
IsDesarguesian(P) : Plane -> BoolElt
IsDesign(D, t: parameters) : Inc, RngIntElt -> BoolElt, RngIntElt
IsDiagonal(a) : AlgMatElt -> BoolElt
IsDiagonal(A) : Mtrx -> BoolElt
IsDiagonal(A) : MtrxSprs -> BoolElt
IsDifferenceSet(B) : SetEnum -> BoolElt, RngIntElt
IsDifferentialField(R) : Rng -> BoolElt
IsDifferentialIdeal(R, I) : RngDiff, RngMPol -> BoolElt
IsDifferentialLaurentSeriesRing(R) : Rng -> BoolElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013