[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: InitialiseProspector  ..  InnerProduct


InitialiseProspector

   InitialiseProspector(G:parameters): GrpMat ->

InitialVertex

   InitialVertex(e) : GrphEdge -> GrphVert
   InitialVertex(e) : GrphEdge -> GrphVert

Injection

   Injection(B, i, v) : AlgBas, RngIntElt, ModRngElt -> AlgBasElt
   RealInjection(R) : RootSys -> .

Injections

   Injections(C) : Cop -> [ Map ]

Injective

   CompactInjectiveResolution(M, n) : ModAlg, RngIntElt -> Rec
   DimensionsOfInjectiveModules(B) : AlgBas -> SeqEnum
   InjectiveHull(M) : ModAlg -> ModAlg, ModMatFldElt, SeqEnum[ModMatFldElt], SeqEnum[ModMatFldElt], SeqEnum[RngIntElt]
   InjectiveModule(B, i) : AlgBas, RngIntElt -> ModAlg
   InjectiveResolution(M, n) : ModAlg, RngIntElt -> ModCpx, ModMatFldElt
   InjectiveSyzygyModule(M, n) : ModAlg, RngIntElt -> ModAlg
   IsInjective(f) : MapChn -> BoolElt
   IsInjective(phi) : MapModAbVar -> BoolElt
   IsInjective(M) : ModAlg -> BoolElt, SeqEnum
   IsInjective(a) : ModMatRngElt -> BoolElt
   IsInjective(f) : ModMPolHom -> BoolElt

injective

   Injective Modules (BASIC ALGEBRAS)

injective-modules

   Injective Modules (BASIC ALGEBRAS)

InjectiveHull

   InjectiveHull(M) : ModAlg -> ModAlg, ModMatFldElt, SeqEnum[ModMatFldElt], SeqEnum[ModMatFldElt], SeqEnum[RngIntElt]

InjectiveModule

   InjectiveModule(B, i) : AlgBas, RngIntElt -> ModAlg

InjectiveResolution

   InjectiveResolution(M, n) : ModAlg, RngIntElt -> ModCpx, ModMatFldElt

injectives

   Duals and Injectives (BASIC ALGEBRAS)

InjectiveSyzygyModule

   InjectiveSyzygyModule(M, n) : ModAlg, RngIntElt -> ModAlg

InLineConditional

   State_InLineConditional (Example H1E11)

InNeighbors

   InNeighbors(u) : GrphVert -> { GrphVert }
   InNeighbours(u) : GrphVert -> { GrphVert }
   InNeighbours(u) : GrphVert -> { GrphVert }

InNeighbours

   InNeighbors(u) : GrphVert -> { GrphVert }
   InNeighbours(u) : GrphVert -> { GrphVert }
   InNeighbours(u) : GrphVert -> { GrphVert }

Inner

   InnerProduct(u, v) : ModTupFldElt, ModTupFldElt -> FldElt
   (u, v) : ModTupFldElt, ModTupFldElt -> FldElt
   (u, v) : ModTupRngElt, ModTupRngElt -> RngElt
   (u, v) : ModTupRngElt, ModTupRngElt -> RngElt
   (u, v) : ModTupRngElt, ModTupRngElt -> RngElt
   (u, v) : ModTupRngElt, ModTupRngElt -> RngElt
   InnerAutomorphism(L, x) : AlgLie, GrpLieElt -> Map
   InnerAutomorphism(G, x) : GrpLie, GrpLieElt -> Map
   InnerAutomorphismGroup(L) : AlgLie -> GrpLie, Map
   InnerFaces(N) : NwtnPgon -> SeqEnum
   InnerGenerators(A) : GrpAuto -> SeqEnum
   InnerProduct(x, y) : AlgChtrElt, AlgChtrElt -> FldCycElt
   InnerProduct(a, b) : AlgGenElt, AlgGenElt -> RngElt
   InnerProduct(a, b) : AlgLieElt, AlgLieElt -> RngElt
   InnerProduct(a,b): AlgSymElt, AlgSymElt -> RngElt
   InnerProduct(e1, e2) : HilbSpcElt, HilbSpcElt -> HilbSpcElt
   InnerProduct(v, w) : LatElt, LatElt -> RngElt
   InnerProduct(x, y) : ModBrdtElt, ModBrdtElt -> RngElt
   InnerProductMatrix(L) : Lat -> AlgMatElt
   InnerProductMatrix(M) : ModBrdt -> AlgMatElt
   InnerProductMatrix(V) : ModTupRng -> AlgMatElt
   InnerSlopes(N) : NwtnPgon -> SeqEnum
   InnerTwists(A : parameters) : ModAbVar -> SeqEnum
   InnerTwists(A : parameters) : ModAbVar -> [ GrpDrchElt ]
   InnerVertices(N) : NwtnPgon -> SeqEnum
   IsInner(f) : GrpAutoElt -> BoolElt, GrpElt
   IsInner(R) : RootDtm -> BoolElt
   QuaternionOrder(M) : ModBrdt -> AlgQuatOrd
   SkewShape(t) : Tbl -> SeqEnum[RngIntElt]
   SymplecticInnerProduct(v1, v2) : ModTupFldElt, ModTupFldElt -> FldFinElt
   TraceInnerProduct(K, u, v) : FldFin, ModTupFldElt, ModTupFldElt -> FldFinElt

inner

   KSpace(K, n, F) : Fld, RngIntElt, Mtrx -> ModTupFld
   Construction of a Vector Space with Inner Product Matrix (VECTOR SPACES)
   Inner Products (FREE MODULES)
   Inner Products and Duals (QUANTUM CODES)

Inner-Product

   AlgSym_Inner-Product (Example H146E15)

inner-product

   Inner Products (FREE MODULES)

inner-products

   Inner Products and Duals (QUANTUM CODES)

InnerAutomorphism

   InnerAutomorphism(L, x) : AlgLie, GrpLieElt -> Map
   InnerAutomorphism(G, x) : GrpLie, GrpLieElt -> Map

InnerAutomorphismGroup

   InnerAutomorphismGroup(L) : AlgLie -> GrpLie, Map

InnerFaces

   InnerFaces(N) : NwtnPgon -> SeqEnum

InnerGenerators

   InnerGenerators(A) : GrpAuto -> SeqEnum

innerprod

   Inner Products (POLAR SPACES)
   FldForms_innerprod (Example H29E3)

InnerProduct

   InnerProduct(u, v) : ModTupFldElt, ModTupFldElt -> FldElt
   (u, v) : ModTupFldElt, ModTupFldElt -> FldElt
   (u, v) : ModTupRngElt, ModTupRngElt -> RngElt
   (u, v) : ModTupRngElt, ModTupRngElt -> RngElt
   (u, v) : ModTupRngElt, ModTupRngElt -> RngElt
   (u, v) : ModTupRngElt, ModTupRngElt -> RngElt
   InnerProduct(x, y) : AlgChtrElt, AlgChtrElt -> FldCycElt
   InnerProduct(a, b) : AlgGenElt, AlgGenElt -> RngElt
   InnerProduct(a, b) : AlgLieElt, AlgLieElt -> RngElt
   InnerProduct(a,b): AlgSymElt, AlgSymElt -> RngElt
   InnerProduct(e1, e2) : HilbSpcElt, HilbSpcElt -> HilbSpcElt
   InnerProduct(v, w) : LatElt, LatElt -> RngElt
   InnerProduct(x, y) : ModBrdtElt, ModBrdtElt -> RngElt
   ModFld_InnerProduct (Example H28E6)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013