The level of the module M, where the auxiliary level of SupersingularModule(N,p) is, by definition, N.
The base ring of the module M. (Currently this is always Z.)
The sum of the coefficients of the module element P, where P is written with respect the basis of the ambient space of the parent of M.
The dimension of the module M.
A sequence of integers that defines the module element P.
The level of the module M, where the level of SupersingularModule(N,p) is, by definition, Np.
The equation of X0(N) that we use when using the Mestre method to compute with the module M of supersingular points.
The prime of the module M, where the prime of SupersingularModule(N,p) is, by definition, p.
> M := SupersingularModule(3,11); > AuxiliaryLevel(M); 11 > BaseRing(M); Integer Ring > Degree(M.1+7*M.2); 8 > Dimension(M); 2 > Eltseq(M.1+7*M.2); [ 1, 7 ] > Level(M); 33 > Prime(M); 3 > M := SupersingularModule(11,3); M; Supersingular module associated to X_0(3)/GF(11) of dimension 4 > ModularEquation(M); x*y + 8