[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: distribution  ..  division


distribution

   Hamming Weight (LINEAR CODES OVER FINITE RINGS)
   The Weight Distribution (ADDITIVE CODES)
   The Weight Distribution (LINEAR CODES OVER FINITE FIELDS)
   Weight Distribution and Minimum Weight (QUANTUM CODES)
   Weight Distributions (LINEAR CODES OVER FINITE RINGS)

distributive

   MULTIVARIATE POLYNOMIAL RINGS

distributive-multivariate-polynomial

   MULTIVARIATE POLYNOMIAL RINGS

Div

   LeftDiv(u, v) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
   LeftDiv(u, ~v) : GrpBrdElt, GrpBrdElt -> GrpBrdElt

div

   Arithmetic of Divisors (SCHEMES)
   Arithmetic with Places and Divisors (NUMBER FIELDS)
   Arithmetic with Places and Divisors (ORDERS AND ALGEBRAIC FIELDS)
   Basic Divisor Predicates (SCHEMES)
   Constructing Invariant Divisors (TORIC VARIETIES)
   Creation Of Divisors (SCHEMES)
   Creation of Elements (NUMBER FIELDS)
   Creation of Elements (ORDERS AND ALGEBRAIC FIELDS)
   Creation of Structures (NUMBER FIELDS)
   Creation of Structures (ORDERS AND ALGEBRAIC FIELDS)
   Divisor Group (TORIC VARIETIES)
   Divisor Groups (SCHEMES)
   Further Divisor Properties (SCHEMES)
   Operations on Structures (NUMBER FIELDS)
   Operations on Structures (ORDERS AND ALGEBRAIC FIELDS)
   Other Functions for Places and Divisors (NUMBER FIELDS)
   Other Functions for Places and Divisors (ORDERS AND ALGEBRAIC FIELDS)
   Properties of Divisors (TORIC VARIETIES)
   Riemann-Roch Spaces (SCHEMES)
   I / J : RngOrdFracIdl, RngOrdFracIdl -> RngOrdFracIdl
   x div y : AlgAssVOrdElt, AlgAssVOrdElt -> AlgAssVOrdElt
   v div d : LatElt, RngIntElt -> LatElt
   f div s : ModMPolElt, RngMPolElt -> ModMPolElt
   s div t : RngDiffElt, RngDiffElt -> RngDiffElt
   n div m : RngIntElt, RngIntElt -> RngIntElt
   f div g : RngMPolElt, RngMPolElt -> RngMPolElt
   w div v : RngOrdElt, RngOrdElt -> RngOrdElt
   I div J : RngOrdIdl, RngOrdIdl -> RngOrdIdl
   x div y : RngPadElt, RngPadElt -> RngPadElt
   f div g : RngUPolElt, RngUPolElt -> RngUPolElt
   v div w : RngValElt, RngValElt -> RngValElt

div-arith

   Arithmetic of Divisors (SCHEMES)
   Arithmetic with Places and Divisors (NUMBER FIELDS)
   Arithmetic with Places and Divisors (ORDERS AND ALGEBRAIC FIELDS)

div-create

   Creation Of Divisors (SCHEMES)

div-create-e

   Creation of Elements (NUMBER FIELDS)
   Creation of Elements (ORDERS AND ALGEBRAIC FIELDS)

div-create-s

   DivisorGroup(K) : FldNum -> DivNum
   Creation of Structures (NUMBER FIELDS)
   Creation of Structures (ORDERS AND ALGEBRAIC FIELDS)

div-op-s

   Operations on Structures (NUMBER FIELDS)
   Operations on Structures (ORDERS AND ALGEBRAIC FIELDS)

div-other

   Other Functions for Places and Divisors (NUMBER FIELDS)
   Other Functions for Places and Divisors (ORDERS AND ALGEBRAIC FIELDS)

div-other-props

   Further Divisor Properties (SCHEMES)

div-rr-space

   Riemann-Roch Spaces (SCHEMES)

div:=

   x div:= y : RngPadElt, RngPadElt -> RngPadElt

div_diff

   FldFunG_div_diff (Example H42E41)

div_maps

   Divisor Maps and Riemann-Roch Spaces (COHERENT SHEAVES)

Divide

   DivideOutIntegers(phi) : MapModAbVar -> MapModAbVar, RngIntElt

DivideOutIntegers

   DivideOutIntegers(phi) : MapModAbVar -> MapModAbVar, RngIntElt

Divisible

   IsDivisible(D) : DivSchElt -> BoolElt, RngIntElt
   IsDivisibleBy(a, b) : FldFunElt, FldFunElt -> BoolElt, FldFunElt
   IsDivisibleBy(P, n) : PtEll, RngIntElt -> BoolElt, PtEll
   IsDivisibleBy(n, d) : RngIntElt, RngIntElt -> BoolElt, RngIntElt
   IsDivisibleBy(a, b) : RngMPolElt, RngMPolElt -> BoolElt, RngMPolElt
   IsDivisibleBy(a, b) : RngUPolElt, RngUPolElt -> BoolElt, RngUPolElt
   IsExactlyDivisible(x, y) : RngPadElt, RngPadElt -> BoolElt, RngPadElt

Division

   DivisionPoints(P, n) : PtEll, RngIntElt -> [ PtEll ]
   DivisionPolynomial(E, n) : CrvEll, RngIntElt -> RngUPolElt, RngUPolElt, RngUPolElt
   EuclideanLeftDivision(D, N) : RngDiffOpElt, RngDiffOpElt -> RngDiffOpElt,RngDiffOpElt
   EuclideanRightDivision(N, D) : RngDiffOpElt, RngDiffOpElt -> RngDiffOpElt,RngDiffOpElt
   IsDivisionRing(R) : Rng -> BoolElt
   TrialDivision(n) : RngIntElt -> RngIntEltFact, [ RngIntElt ]
   TrialDivision(n, B) : RngQuadElt, RngIntElt -> SeqEnum, SeqEnum, Tup
   RngLoc_Division (Example H47E10)

division

   Division Points (ELLIPTIC CURVES)
   Euclidean Right and Left Division (DIFFERENTIAL RINGS)
   Least Common Left Multiples (DIFFERENTIAL RINGS)
   Quotient and Reductum (MULTIVARIATE POLYNOMIAL RINGS)
   Quotient and Remainder (UNIVARIATE POLYNOMIAL RINGS)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013