[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: Ladder .. Lattice
ProcessLadder(L, G, U) : [GrpPerm], GrpPerm, GrpPerm -> Rec
StabilizerLadder(G, d) : GrpPerm, RngMPolElt -> [GrpPerm]
YoungSubgroupLadder(L) : [RngIntElt] -> [GrpPerm]
LaguerrePolynomial(n) : RngIntElt -> RngUPolElt
LaguerrePolynomial(n) : RngIntElt -> RngUPolElt
CarmichaelLambda(n) : RngIntElt -> RngIntElt
FactoredCarmichaelLambda(n) : RngIntElt -> RngIntEltFact
Lang(c, q) : GrpLieElt, RngIntElt -> GrpLieElt
The Local Langlands Correspondence (ADMISSIBLE REPRESENTATIONS OF GL2(Qp))
Laplace(f) : RngSerElt -> RngSerElt
IsLargeReeGroup(G) : GrpMat -> BoolElt, RngIntElt
LargeReeElementToWord(G, g) : GrpMat, GrpMatElt -> BoolElt, GrpSLPElt
LargeReeGroup(q) : RngIntElt -> GrpMat
LargeReeSylow(G, p) : GrpMat, RngIntElt -> GrpMat, SeqEnum
RecogniseLargeRee(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map
Orbit and Stabilizer Functions for Large Groups (MATRIX GROUPS OVER GENERAL RINGS)
GrpCoh_large example (Example H68E13)
Constructive Recognition of Large Ree Groups (ALMOST SIMPLE GROUPS)
Large Ree Groups (ALMOST SIMPLE GROUPS)
WriteOverLargerField(G) : GrpMat -> GrpMat, GrpAb, SeqEnum
Introduction (ALMOST SIMPLE GROUPS)
Introduction (ALMOST SIMPLE GROUPS)
LargeReeElementToWord(G, g) : GrpMat, GrpMatElt -> BoolElt, GrpSLPElt
LargeReeGroup(q) : RngIntElt -> GrpMat
LargeReeSylow(G, p) : GrpMat, RngIntElt -> GrpMat, SeqEnum
LargestConductor(D) : DB -> RngIntElt
LargestDimension(D) : DB -> RngIntElt
LargestDimension(D) : DB -> RngIntElt
LargestDimension(D) : DB -> RngIntElt
LargestDimension(D) : DB -> RngIntElt
LargestDimension(D): DB -> RngIntElt
LargestConductor(D) : DB -> RngIntElt
LargestDimension(D) : DB -> RngIntElt
LargestDimension(D) : DB -> RngIntElt
LargestDimension(D) : DB -> RngIntElt
LargestDimension(D) : DB -> RngIntElt
LargestDimension(D): DB -> RngIntElt
ColumnLength(t, j): Tbl,RngIntElt -> RnfIntElt
LastIndexOfColumn(t, j) : Tbl,RngIntElt -> RngIntElt
LastIndexOfRow(t, i) : Tbl,RngIntElt -> RngIntElt
FldFunRat_last-example (Example H41E11)
ColumnLength(t, j): Tbl,RngIntElt -> RnfIntElt
LastIndexOfColumn(t, j) : Tbl,RngIntElt -> RngIntElt
RowLength(t, i) : Tbl,RngIntElt -> RngIntElt
LastIndexOfRow(t, i) : Tbl,RngIntElt -> RngIntElt
Database of Lattices (LATTICES)
Lat_latdb (Example H30E22)
Lat_latdb-names (Example H30E21)
LatticeVector(L,Q) : TorLat,[RngIntElt] -> TorLatElt
L ! [a,b,...] : TorLat,[RngIntElt] -> TorLatElt
AddVectorToLattice(v) : TorLatElt -> TorLat,TorLatMap
CoordinateLattice(L) : Lat -> Lat
CoweightLattice(R) : RootDtm -> Lat
CoxMonomialLattice(C) : RngCox -> TorLat
CoxMonomialLattice(X) : TorVar -> TorLat
DivisorClassLattice(C) : RngCox -> TorLat
DivisorClassLattice(X) : TorVar -> TorLat
DualBasisLattice(L) : Lat -> Lat
ExponentLattice(s) : RngPowAlgElt -> Tup
FrobeniusActionOnTrivialLattice(E) : CrvEll -> AlgMatElt
FullRootLattice(R) : RootDtm -> Lat, Map
GeometricMordellWeilLattice(E) : CrvEll[FldFunRat] -> Lat, Map
HeightPairingLattice(S) : [PtEll[FldFunG]] -> AlgMatElt, Map
IntegralBasisLattice(L) : Lat -> Lat, RngIntElt
IsReverseLatticeWord(w) : MonOrdElt -> BoolElt
Lattice(C, "A") : Code -> Lat
Lattice(C, "B") : Code -> Lat
Lattice(D, i): DB, RngIntElt -> Lat
Lattice(D, i): DB, RngIntElt -> Lat, SeqEnum
Lattice(D, i): DB, RngIntElt -> Lat, SeqEnum
Lattice(D, i): DB, RngIntElt -> Lat, SeqEnum
Lattice(D, d, i): DB, RngIntElt, RngIntElt -> Lat
Lattice(D, d, i): DB, RngIntElt, RngIntElt -> Lat, SeqEnum
Lattice(D, d, i): DB, RngIntElt, RngIntElt -> Lat, SeqEnum
Lattice(D, d, i): DB, RngIntElt, RngIntElt -> Lat, SeqEnum
Lattice(G) : GrpMat -> Lat
Lattice(H) : HomModAbVar -> Lat
Lattice(H) : ModAbVarHomol -> Lat
Lattice(G) : ModAbVarSubGrp -> Lat
Lattice(X) : ModMatRngElt -> Lat
Lattice(X, M) : ModMatRngElt, AlgMatElt -> Lat
Lattice(M) : ModSym -> Lat
Lattice(X, n) : MonStgElt, RngIntElt -> Lat
Lattice(D, i: parameters): DB, RngIntElt -> Lattice
Lattice(f) : QuadBinElt -> Lat
Lattice(O) : RngOrd -> Lat, Map
Lattice(I) : RngOrdIdl -> Lat, Map
Lattice(e) : SubModLatElt -> Lat
LatticeCoordinates(x) : ModAbVarElt -> ModTupFldElt
LatticeData(D, i): DB, RngIntElt -> Rec
LatticeDatabase() : -> DB
LatticeElementToMonomial(D,v) : DivTorElt,TorLatElt -> RngMPolElt
LatticeMap(L,Q) : TorLat,[TorLatElt] -> TorLatMap
LatticeName(D, N): DB, MonStgElt -> RecMonStgElt, RngIntElt
LatticeName(D, N, i): DB, MonStgElt, RngIntElt -> RecMonStgElt, RngIntElt
LatticeName(D, i): DB, RngIntElt -> MonStgElt, RngIntElt
LatticeName(D, d, i): DB, RngIntElt, RngIntElt -> RecMonStgElt, RngIntElt
LatticeWithBasis(G, B) : GrpMat, ModMatRngElt -> Lat
LatticeWithBasis(G, B, M) : GrpMat, ModMatRngElt, AlgMatElt -> Lat
LatticeWithBasis(B) : ModMatRngElt -> Lat
LatticeWithBasis(B, M) : ModMatRngElt, AlgMatElt -> Lat
LatticeWithGram(F) : AlgMatElt -> Lat
LatticeWithGram(G, F) : GrpMat, AlgMatElt -> Lat
MinkowskiLattice(O) : RngOrd -> Lat, Map
MinkowskiLattice(I) : RngOrdIdl -> Lat, Map
MonomialLattice(C) : RngCox -> TorLat
MonomialLattice(X) : TorVar -> TorLat
MordellWeilLattice(E) : CrvEll[FldFunRat] -> Lat, Map
NormalLattice(G) : GrpFin -> NormalLattice
NormalLattice(G) : GrpPC -> SubGrpLat
NormalLattice(G) : GrpPerm -> SubGrpLat
OneParameterSubgroupsLattice(C) : RngCox -> TorLat
OneParameterSubgroupsLattice(X) : TorVar -> TorLat
PrimitiveLatticeVector(v) : TorLatElt -> TorLatElt
PureLattice(L) : Lat -> Lat
RayLattice(C) : RngCox -> TorLat
RayLatticeMap(C) : RngCox -> Map
ReconstructLatticeBasis(S, B) : ModMatRngElt, ModMatRngElt -> ModMatRngEltLat
RootLattice(R) : RootDtm -> Lat, Map
ScalarLattice() : -> TorLat
ScaledLattice(L,n) : Lat, RngIntElt -> Lat
SquareLatticeGraph(n) : RngIntElt -> GrphUnd
StandardLattice(n) : RngIntElt -> Lat
SubfieldLattice(K) : FldNum -> SubFldLat
SubgroupLattice(G) : GrpFin -> SubGrpLat
SubgroupLattice(G) : GrpPC -> SubGrpLat
SublatticeLattice(G) : GrpMat, RngIntElt -> LatLat, BoolElt
SublatticeLattice(G, p) : GrpMat, RngIntElt -> LatLat, BoolElt
SublatticeLattice(G, Q) : GrpMat, [ RngIntElt ] -> LatLat, BoolElt
SubmoduleLattice(M) : ModRng -> SubModLat, BoolElt
SubmoduleLatticeAbort(M, n) : ModRng, RngIntElt -> BoolElt, SubModLat
ToricLattice(n) : RngIntElt -> TorLat
ToricLattice(Q) : [[RngIntElt]] -> TorLat,TorLatMap
WeightLattice(G) : GrpLie -> Lat
WeightLattice(W) : GrpMat -> Lat
WeightLattice(W) : GrpPermCox -> Lat
WeightLattice(R) : RootDtm -> Lat
WindingLattice(M, j : parameters) : ModSym, RngIntElt -> Lat
ZeroRootLattice(R) : RootDtm -> Lat
hom< L -> K | M > : TorLat,TorLat,Mtrx -> TorLatMap
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013