[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: ModBrdt:Constructors  ..  models


ModBrdt:Constructors

   ModBrdt_ModBrdt:Constructors (Example H134E1)

ModBrdt:Decomposition

   ModBrdt_ModBrdt:Decomposition (Example H134E4)

ModBrdt:Dimension

   ModBrdt_ModBrdt:Dimension (Example H134E6)

ModBrdt:dimension

   Dimensions of Spaces (BRANDT MODULES)

ModBrdt:dimension-formulas

   Dimensions of Spaces (BRANDT MODULES)

ModBrdt:EisensteinSubspace

   ModBrdt_ModBrdt:EisensteinSubspace (Example H134E5)

ModBrdt:fldfunrat

   Brandt Modules Over Fq[t] (BRANDT MODULES)

ModBrdt:introduction

   Introduction (BRANDT MODULES)

ModBrdt:Module-Creation

   ModBrdt_ModBrdt:Module-Creation (Example H134E2)

ModBrdt:Subspaces

   Boolean Tests on Subspaces (BRANDT MODULES)
   Subspaces and Decomposition (BRANDT MODULES)

ModBrdt:Subspaces-Tests

   Boolean Tests on Subspaces (BRANDT MODULES)

ModBrdt:Verbose-Output

   ModBrdt_ModBrdt:Verbose-Output (Example H134E3)

ModByPowerOf2

   ModByPowerOf2(n, b) : RngIntElt, RngIntElt -> RngIntElt

Mode

   GetViMode() : -> BoolElt
   SetViMode(b) : BoolElt ->

Model

   ChangeModel(F, p) : FldFun, PlcFunElt -> FldFun
   DiagonalModel(n, seq) : RngIntElt, [ RngElt ] -> ModelG1
   DoubleGenusOneModel(model) : ModelG1 -> ModelG1
   Eltseq(model) : ModelG1 -> [ RngElt ]
   GenericModel(n) : RngIntElt -> ModelG1
   Genus5PlaneCurveModel(C) : Crv -> BoolElt, MapSch
   Genus6PlaneCurveModel(C) : Crv -> BoolElt, MapSch
   GenusOneModel(C) : Crv -> ModelG1
   GenusOneModel(mat) : Mtrx -> ModelG1
   GenusOneModel(n, E) : RngIntElt, CrvEll -> ModelG1, Crv, MapSch, MapSch
   GenusOneModel(n, seq) : RngIntElt, [ RngElt ] -> ModelG1
   GenusOneModel(f) : RngMPolElt -> ModelG1
   GenusOneModel(mats) : [ AlgMatElt ] -> ModelG1
   HasOddDegreeModel(C) : CrvHyp -> BoolElt, CrvHyp, MapIsoSch
   HesseModel(n, seq) : RngIntElt, [ RngElt ] -> ModelG1
   IntegralModel(E) : CrvEll -> CrvEll, Map, Map
   IntegralModel(C) : CrvHyp -> CrvHyp, MapIsoSch
   IsGenusOneModel(f) : RngMPolElt -> BoolElt, ModelG1
   IsIntegralModel(E) : CrvEll -> BoolElt
   IsIntegralModel(E, P) : CrvEll, RngOrdIdl -> BoolElt
   IsMinimalModel(E) : CrvEll -> BoolElt
   IsSimplifiedModel(E) : CrvEll -> BoolElt
   IsSimplifiedModel(C) : CrvHyp -> BoolElt
   IsWeierstrassModel(E) : CrvEll -> BoolElt
   LegendreModel(C) : CrvCon -> CrvCon, MapIsoSch
   MinimalDegreeModel(E) : CrvEll[FldFunRat] -> CrvEll, Map, Map
   MinimalModel(C) : CrvCon -> CrvCon, Map
   MinimalModel(E) : CrvEll -> CrvEll, Map, Map
   MinimalModel(E, p) : CrvEll, RngIntElt -> CrvEll, Map, Map
   MinimalModel(E) : CrvEll[FldFunG] -> CrvEll, MapIsoSch
   MinimalModelGeneralType(S) : Srfc -> Map, BoolElt
   MinimalModelKodairaDimensionOne(S) : Srfc -> Map, Map
   MinimalModelKodairaDimensionZero(S) : Srfc -> Map
   MinimalModelRationalSurface(S) : Srfc -> Map
   MinimalModelRuledSurface(S) : Srfc -> Map
   MinimalWeierstrassModel(C) : CrvHyp -> CrvHyp, MapIsoSch
   ModelType(X) : CrvMod -> MonStgElt
   PointOnRegularModel(M, x) : CrvRegModel, Pt -> SeqEnum, SeqEnum, Tup
   PointsCubicModel(C, B : parameters) : Crv, RngIntElt -> SeqEnum
   RandomGenusOneModel(n) : RngIntElt -> ModelG1
   ReducedLegendreModel(C) : CrvCon -> CrvCon, MapIsoSch
   ReducedMinimalWeierstrassModel(C) : CrvHyp -> CrvHyp, MapIsoSch
   ReducedModel(C) : CrvHyp -> CrvHyp, MapIsoSch
   RegularModel(C, P) : Crv, Any -> CrvRegModel
   SimplifiedModel(E): CrvEll -> CrvEll, Map, Map
   SimplifiedModel(C) : CrvHyp -> CrvHyp, MapIsoSch
   WeierstrassModel(E) : CrvEll -> CrvEll, Map, Map
   pIntegralModel(C, p) : CrvHyp, RngIntElt -> CrvHyp, MapIsoSch
   pMinimalWeierstrassModel(C, p) : CrvHyp, RngIntElt -> CrvHyp, MapIsoSch
   pNormalModel(C, p) : CrvHyp, RngIntElt -> CrvHyp, MapIsoSch

model

   Predicates on Curve Models (ELLIPTIC CURVES)
   Predicates on Models (HYPERELLIPTIC CURVES)
   The Path Model (QUANTUM GROUPS)

Models

   CrvEll_Models (Example H120E6)

models

   Alternative Models (ELLIPTIC CURVES)
   Alternative Models (RATIONAL CURVES AND CONICS)
   Creation of Regular Models (ALGEBRAIC CURVES)
   MODELS OF GENUS ONE CURVES
   Regular Models of Arithmetic Surfaces (ALGEBRAIC CURVES)
   Small Genus Plane Models (ALGEBRAIC CURVES)
   Using Regular Models (ALGEBRAIC CURVES)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013