[Next][Prev] [Right] [Left] [Up] [Index] [Root]
Given an R-module M and a positive integer i, return the i-th
generator of M.
The integer i must lie in the range [1, r], where r is the number of
generators for M.
BaseRing(M) : ModTupRng -> Rng
CoefficientRing(M) : ModRng -> Rng
BaseRing(M) : ModRng -> Rng
CoefficientField(M) : ModFld -> Fld
BaseField(M) : ModFld -> Fld
Given an R-module M which is defined as a submodule of S(n),
return the ring S.
The generators for the R-module M, returned as a set.
Given an R-module M which is an embedded submodule of the module
S(n), return n.
Given an element u of an embedded submodule of the module S(n),
return n.
The column moduli of the module M over a euclidean domain.
Given an element u belonging to the R-module M, return M.
Given an R-module M which is a submodule of the module R(n),
return the module R(n) as an R-module.
[Next][Prev] [Right] [Left] [Up] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013