[Next][Prev] [_____] [Left] [Up] [Index] [Root]

Bibliography

AMPS10
S. Ambrose, S.simH. Murray, C.simE. Praeger, and C. Schneider.
Constructive membership testing in black-box classical groups.
In Proceedings of The Third International Congress on Mathematical Software, number 6327 in Lecture Notes in Computer Science, pages 54--57, Basel, 2010. Springer.

Asc84
M. Aschbacher.
On the maximal subgroups of the finite classical groups.
Invent. Math, 76:469--514, 1984.

BHLGO11
H. Baccent127aaccent127arnhielm, Derek Holt, C.R. Leedham-Green, and E.A. O'Brien.
A practical model for computation with matrix groups.
preprint, 2011.

Bra00
J.N. Bray.
An improved method of finding the centralizer of an involution.
Arch. Math. (Basel), 74(1):241--245, 2000.

Cos09
E. Costi.
Constructive membership testing in classical groups.
PhD thesis, Queen Mary, University of London, 2009.

DLLGO13
Heiko Dietrich, Frank Lübeck, C.R. Leedham-Green, and E.A. O'Brien.
Constructive recognition of classical groups in even characteristic.
J. Algebra, 2013.

GH97
S.P. Glasby and R.B. Howlett.
Writing representations over minimal fields.
Comm. Algebra, 25(6):1703--1711, 1997.

GLGO05
S.P. Glasby, C.R. Leedham-Green, and E.A. O'Brien.
Writing projective representations over subfields.
J. Algebra, 295:51--61, 2005.

HLGOR96a
Derek F. Holt, C.R. Leedham-Green, E.A. O'Brien, and Sarah Rees.
Computing decompositions for modules with respect to a normal subgroup.
J. Algebra, 184:818--838, 1996.

HLGOR96b
Derek F. Holt, C.R. Leedham-Green, E.A. O'Brien, and Sarah Rees.
Testing matrix groups for primitivity.
J. Algebra, 184:795--817, 1996.

LG01
Charles R. Leedham-Green.
The computational matrix group project.
In Groups and computation, III (Columbus, OH, 1999), volume 8 of Ohio State Univ. Math. Res. Inst. Publ., pages 229--247. de Gruyter, Berlin, 2001.

LGO
C.R. Leedham-Green and E.A. O'Brien.
Short presentations for classical groups.
preprint.

LGO97a
C.R. Leedham-Green and E.A. O'Brien.
Recognising tensor products of matrix groups.
Internat. J. Algebra Comput., 7:541--559, 1997.

LGO97b
C.R. Leedham-Green and E.A. O'Brien.
Tensor Products are Projective Geometries.
J. Algebra, 189:514--528, 1997.

LGO02
C.R. Leedham-Green and E.A. O'Brien.
Recognising tensor-induced matrix groups.
J. Algebra, 253:14--30, 2002.

LGO09
C.R. Leedham-Green and E.A. O'Brien.
Constructive recognition of classical groups in odd characteristic.
J. Algebra, 322:833--881, 2009.

Nie05
Alice C. Niemeyer.
Constructive recognition of normalisers of small extra-special matrix groups.
Internat. J. Algebra Comput., 15:367--394, 2005.

NS06
Max Neunhöffer and Ákos Seress.
A data structure for a uniform approach to computations with finite groups.
In ISSAC 2006, pages 254--261. ACM, New York, 2006.

O'B06
E.A. O'Brien.
Towards effective algorithms for linear groups.
In Finite Geometries, Groups and Computation, pages 163--190. De Gruyer, 2006.

O'B11
E.A. O'Brien.
Algorithms for matrix groups.
In Groups St Andrews (Bath), volume 388 of LMS Lecture Notes, pages 297--323. Cambridge University Press, 2011.

 [Next][Prev] [_____] [Left] [Up] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013