[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: Similarity  ..  simple


Similarity

   IsSimilarity(f) : Map -> BoolElt
   IsSimilarity(U, V, f) : ModTupFld, ModTupFld, Map -> BoolElt
   IsSimilarity(V, g) : ModTupFld, Mtrx -> BoolElt
   SimilarityGroup(V) : ModTupFld) -> GrpMat
   SimilarityGroup(F : parameters) : AlgMatElt -> GrpMat

similarity

   Similarities (POLAR SPACES)

SimilarityGroup

   SimilarityGroup(V) : ModTupFld) -> GrpMat
   SimilarityGroup(F : parameters) : AlgMatElt -> GrpMat

SimNEQ

   SimNEQ(K, e, f) : FldNum, FldNumElt, FldNumElt -> BoolElt, [FldNumElt]
   SimNEQ(K, e, f) : FldNum, FldNumElt, FldNumElt -> BoolElt, [FldNumElt]

Simple

   AlmostSimpleGroupDatabase() : -> DB
   CompactProjectiveResolutionsOfSimpleModules(A,n) : AlgBas, RngIntElt -> SeqEnum
   HasOnlySimpleSingularities(S) : Srfc -> BoolElt, List
   IdentifyAlmostSimpleGroup(G) : GrpPerm -> Map, GrpPerm
   IrreducibleModule(B, i) : AlgBas, RngIntElt -> ModAlg
   IrreducibleSimpleSubalgebraTreeSU(Q, d) : SeqEnum[SeqEnum[Tup]], RngIntElt -> GrphDir
   IrreducibleSimpleSubalgebrasOfSU(N) : RngIntElt -> SeqEnum
   IsEmptySimpleQuotientProcess(P) : Rec -> BoolElt
   IsSimple(A) : AlgGen -> BoolElt
   IsSimple(L) : AlgLie -> BoolElt
   IsSimple(F) : FldAlg -> BoolElt
   IsSimple(F) : FldNum -> BoolElt
   IsSimple(G) : GrpFin -> BoolElt
   IsSimple(G) : GrpGPC -> BoolElt
   IsSimple(G) : GrphMult -> BoolElt
   IsSimple(G) : GrpLie -> BoolElt
   IsSimple(G) : GrpMat -> BoolElt
   IsSimple(G) : GrpPC -> BoolElt
   IsSimple(G) : GrpPerm -> BoolElt
   IsSimple(D) : Inc -> BoolElt
   IsSimple(A) : ModAbVar -> BoolElt
   IsSimple(u: parameters) : GrpBrdElt -> BoolElt
   IsSimple(P) : TorPol -> BoolElt
   IsSimpleStarAlgebra(A) : AlgMat -> BoolElt
   IsSimpleSurfaceSingularity(p) : Pt -> BoolElt, MonStr, RngIntElt
   NameSimple(G) : GrpPerm -> <RngIntElt, RngIntElt, RngIntElt>
   NextSimpleQuotient(~P) : Rec ->
   NumberOfPrimitiveGroups(d) : RngIntElt -> RngIntElt
   PossibleSimpleCanonicalDissidentPoints(C) : GRCrvS -> SeqEnum
   RelativeRoots(R) : RootDtm -> SetIndx
   SimpleCanonicalDissidentPoints(C) : GRCrvS -> SeqEnum
   SimpleCohomologyDimensions(M) : ModAlg -> SeqEnum
   SimpleEpimorphisms(P) : Rec -> SeqEnum, Tup
   SimpleExtension(F) : FldAlg -> FldAlg
   SimpleExtension(F) : FldNum -> FldNum
   SimpleGroupName(G : parameters): GrpMat -> BoolElt, List
   SimpleGroupOfLieType(X, n, k) : MonStgElt, RngIntElt, Rng -> GrpLie
   SimpleGroupOfLieType(X, n, q) : MonStgElt, RngIntElt, RngIntElt -> GrpLie
   SimpleHomologyDimensions(M) : ModAlg -> SeqEnum
   SimpleOrders(W) : GrpMat -> [RngIntElt]
   SimpleParameters(A) : AlgMat -> SeqEnum
   SimpleQuotientAlgebras(A) : AlgMat -> Rec
   SimpleQuotientProcess(F, deg1, deg2, ord1, ord2: parameters) : GrpFP, RngIntElt, RngIntElt, RngIntElt, RngIntElt -> Rec
   SimpleQuotients(F, deg1, deg2, ord1, ord2: parameters) : GrpFP, RngIntElt, RngIntElt, RngIntElt, RngIntElt -> List
   SimpleReflectionMatrices(W) : GrpMat -> [AlgMatElt]
   SimpleReflectionMatrices(W) : GrpPermCox -> []
   SimpleReflectionMatrices(R) : RootDtm -> []
   SimpleReflectionMatrices(R) : RootSys -> []
   SimpleReflectionPermutations(W) : GrpMat -> []
   SimpleReflectionPermutations(W) : GrpPermCox -> [GrpPermElt]
   SimpleReflectionPermutations(R) : RootDtm -> []
   SimpleReflectionPermutations(R) : RootSys -> []
   SimpleReflections(W) : GrpFPCox -> [GrpFPCoxElt]
   SimpleRoots(G) : GrpLie -> Mtrx
   SimpleRoots(W) : GrpMat -> Mtrx
   SimpleRoots(W) : GrpPermCox -> Mtrx
   SimpleRoots(R) : RootStr -> Mtrx
   SimpleRoots(R) : RootSys -> Mtrx
   SimpleStarAlgebra(name, d, K) : MonStgElt, RngIntElt, FldFin -> AlgMat
   SimpleSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
   SimpleSubgroups(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
   SumOfBettiNumbersOfSimpleModules(A, n) : AlgBas, RngIntElt -> RngIntElt

simple

   ALMOST SIMPLE GROUPS
   Computing Minimal Simple Elements (BRAID GROUPS)
   Construction of Simple Linear Codes (LINEAR CODES OVER FINITE RINGS)
   Other Elementary Functions (RING OF INTEGERS)
   Recognition of Simple *-Algebras (ALGEBRAS WITH INVOLUTION)
   Simple *-Algebras (ALGEBRAS WITH INVOLUTION)
   Simple and Positive Roots (ROOT DATA)
   Simple and Positive Roots (ROOT SYSTEMS)
   Simple Assignment (STATEMENTS AND EXPRESSIONS)
   Simple Element Functions (REAL AND COMPLEX FIELDS)
   Simple Ideal Constructions (POLYNOMIAL RING IDEAL OPERATIONS)
   Some Trivial Additive Codes (ADDITIVE CODES)
   Some Trivial Linear Codes (LINEAR CODES OVER FINITE FIELDS)
   The Coxeter Group (ROOT SYSTEMS)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013