[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: Segre  ..  Semigroup


Segre

   SegreEmbedding(X) : Sch -> Sch, MapIsoSch
   SegreProduct(Xs) : SeqEnum[Sch] -> Sch, SeqEnum

SegreEmbedding

   SegreEmbedding(X) : Sch -> Sch, MapIsoSch

SegreProduct

   SegreProduct(Xs) : SeqEnum[Sch] -> Sch, SeqEnum

selection

   Attribute Selection (RING OF INTEGERS)

Self

   IsSelfDual(C) : Code -> BoolElt
   IsSelfDual(C) : Code -> BoolElt
   IsSelfDual(C) : Code -> BoolElt
   IsSelfDual(D) : Inc -> BoolElt
   IsSelfDual(A) : ModAbVar -> BoolElt
   IsSelfDual(P) : PlaneProj -> BoolElt
   IsSelfNormalising(G, H) : GrpGPC, GrpGPC -> BoolElt
   IsSelfNormalizing(G, H) : GrpFin, GrpFin -> BoolElt
   IsSelfNormalizing(G, H) : GrpFP, GrpFP -> BoolElt
   IsSelfNormalizing(G, H) : GrpPC, GrpPC -> BoolElt
   IsSelfNormalizing(G, H) : GrpPerm, GrpPerm -> BoolElt
   IsSelfOrthogonal(C) : Code -> BoolElt
   IsSelfOrthogonal(C) : Code -> BoolElt
   IsSelfOrthogonal(C) : Code -> BoolElt
   IsSymplecticSelfDual(C) : CodeAdd -> BoolElt
   IsSymplecticSelfOrthogonal(C) : CodeAdd -> BoolElt
   Self(n) : RngIntElt -> Elt
   SelfComplementaryGraphDatabase(n) : RngIntElt -> DB
   SelfIntersection(D) : DivSchElt -> FldRatElt
   SelfIntersections(g) : GrphRes -> SeqEnum
   Seq_Self (Example H10E5)

SelfComplementaryGraphDatabase

   SelfComplementaryGraphDatabase(n) : RngIntElt -> DB

SelfDual

   CodeFld_SelfDual (Example H152E17)

SelfDualZ4

   CodeRng_SelfDualZ4 (Example H155E28)

SelfIntersection

   SelfIntersection(D) : DivSchElt -> FldRatElt

Selfintersection

   ModifySelfintersection(~v,n) : GrphResVert,RngIntElt ->

SelfIntersections

   SelfIntersections(g) : GrphRes -> SeqEnum

SelfOrthogonal

   CodeFld_SelfOrthogonal (Example H152E18)

Selmer

   FakeIsogenySelmerSet(C,phi) : Crv, MapSch -> RngIntElt
   LocalTwoSelmerMap(P) : RngOrdIdl -> Map
   LocalTwoSelmerMap(A, P) : RngUPolRes, RngOrdIdl -> Map, SeqEnum
   NineSelmerSet(C) : Crv -> RngIntElt
   PhiSelmerGroup(f,q) : RngUPolElt, RngIntElt -> GrpAb, Map
   SelmerGroup(phi) : Map -> GrpAb, Map, Map, SeqEnum, SetEnum
   ThreeIsogenySelmerGroups(E : parameters) : CrvEll -> GrpAb, Map, GrpAb, Map, MapSch
   ThreeSelmerElement(E, C) : CrvEll, RngMPolElt -> Tup
   ThreeSelmerGroup(E : parameters) : CrvEll -> GrpAb, Map
   TwoIsogenySelmerGroups(E) : CrvEll[FldFunG] -> GrpAb, GrpAb, MapSch, MapSch
   TwoSelmerGroup(E) : CrvEll -> GrpAb, Map, SetEnum, Map, SeqEnum
   TwoSelmerGroup(E) : CrvEll[FldFunG] -> GrpAb, MapSch
   TwoSelmerGroup(J) : JacHyp -> GrpAb, Map, Any, Any

selmer

   Auxiliary Functions for Etale Algebras (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
   Selmer groups (CLASS FIELD THEORY)
   Selmer Groups (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
   The 2-Selmer Group (HYPERELLIPTIC CURVES)
   Two-Selmer Set of a Curve (HYPERELLIPTIC CURVES)
   CrvEllQNF_selmer (Example H122E35)

selmer-etale

   CrvEllQNF_selmer-etale (Example H122E40)

selmer-famous-example

   CrvEllQNF_selmer-famous-example (Example H122E15)

Selmer-group

   FldAb_Selmer-group (Example H39E3)

selmer-group

   Selmer groups (CLASS FIELD THEORY)

selmer2

   CrvEllQNF_selmer2 (Example H122E36)

selmer3

   CrvEllQNF_selmer3 (Example H122E37)

selmer4

   CrvEllQNF_selmer4 (Example H122E38)

SelmerGroup

   SelmerGroup(phi) : Map -> GrpAb, Map, Map, SeqEnum, SetEnum

semantics

   MAGMA SEMANTICS

Semi

   IsNegativeSemiDefinite(F) : ModMatRngElt -> BoolElt
   IsPositiveSemiDefinite(F) : ModMatRngElt -> BoolElt
   IsSemiLinear(G) : GrpMat -> BoolElt
   SemiInvariantBilinearForms(G) : GrpMat -> SeqEnum
   SemiInvariantQuadraticForms(G) : GrpMat -> SeqEnum
   SemiInvariantSesquilinearForms(G) : GrpMat -> SeqEnum
   SemiLinearGroup(G, S) : GrpMat, FldFin -> GrpMat
   SemiOrthogonalBasis(V) : ModTupFld) -> SeqEnum

semi-orthog

   RepSym_semi-orthog (Example H92E2)

Semidir

   Semidir(G, Q) : GrpMat, SeqEnum -> GrpPerm

Semidirect

   SemidirectProduct(K, H, f: parameters) : Grp, Grp, Map -> Grp, Map, Map

SemidirectProduct

   SemidirectProduct(K, H, f: parameters) : Grp, Grp, Map -> Grp, Map, Map

Semigroup

   FreeSemigroup(n) : RngIntElt -> SgpFP
   Semigroup< generators | relations > : SgpFPElt, ..., SgpFPElt, Rel, ...Rel -> SgpFP

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013