[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: Resolution .. Restricted
CompactInjectiveResolution(M, n) : ModAlg, RngIntElt -> Rec
CompactProjectiveResolution(M, n) : ModAlg, RngIntElt -> Rec
CompactProjectiveResolutionPGroup(M, n) : ModAlgBas, RngIntElt -> Rec
FreeResolution(M) : ModMPol -> ModCpx, ModMPolHom
FreeResolution(R) : RngInvar -> [ ModMPol ]
HasResolution(D) : Inc -> BoolElt, { SetEnum }, RngIntElt
HasResolution(D, λ) : Inc, RngIntElt -> BoolElt, { SetEnum }
InjectiveResolution(M, n) : ModAlg, RngIntElt -> ModCpx, ModMatFldElt
IsResolution(D, P) : Inc, SetEnum[SetEnum] -> BoolElt, RngIntElt
MakeResolutionGraph(g,s,t) : GrphDir,SeqEnum,SeqEnum -> GrphRes
MakeResolutionGraph(N) : NwtnPgon -> GrphRes
MinimalFreeResolution(R) : RngInvar -> [ ModMPol ]
ProjectiveResolution(M, n) : ModAlg, RngIntElt -> ModCpx, ModMatFldElt
ProjectiveResolution(M, n) : ModAlgBas, RngIntElt -> ModCpx, ModMatFldElt
ProjectiveResolution(PR) : Rec -> ModCpx, ModMatFldElt
ProjectiveResolutionPGroup(PR) : Rec -> ModCpx
Resolution(X) : TorVar -> TorVar,TorMap
ResolutionData(A) : AlgBasGrpP -> Rec
ResolutionGraph(v) : GrphResVert -> GrphRes
ResolutionGraph(P) : LinearSys -> GrphRes
ResolutionGraph(P,a,b) : LinearSys,RngElt,RngElt -> GrphRes
ResolutionGraph(C, p) : Sch, Pt -> GrphRes
ResolutionGraphVertex(g,i) : GrphRes,RngIntElt -> GrphResVert
RestrictResolution(PR, RD) : Rec, Rec -> ModCpx
Constructing Free Resolutions (MODULES OVER MULTIVARIATE RINGS)
Free Resolutions (MODULES OVER MULTIVARIATE RINGS)
Resolution Graphs (RESOLUTION GRAPHS AND SPLICE DIAGRAMS)
Splice Diagrams from Resolution Graphs (RESOLUTION GRAPHS AND SPLICE DIAGRAMS)
Resolution Graphs (RESOLUTION GRAPHS AND SPLICE DIAGRAMS)
Splice Diagrams from Resolution Graphs (RESOLUTION GRAPHS AND SPLICE DIAGRAMS)
ResolutionData(A) : AlgBasGrpP -> Rec
ResolutionGraph(v) : GrphResVert -> GrphRes
ResolutionGraph(P) : LinearSys -> GrphRes
ResolutionGraph(P,a,b) : LinearSys,RngElt,RngElt -> GrphRes
ResolutionGraph(C, p) : Sch, Pt -> GrphRes
g ! i : GrphRes,RngIntElt -> GrphResVert
ResolutionGraphVertex(g,i) : GrphRes,RngIntElt -> GrphResVert
AllResolutions(D) : Inc -> SeqEnum
AllResolutions(D, λ) : Inc, RngIntElt -> SeqEnum
CompactProjectiveResolutionsOfSimpleModules(A,n) : AlgBas, RngIntElt -> SeqEnum
Projective Resolutions (BASIC ALGEBRAS)
Resolutions, Parallelisms and Parallel Classes (INCIDENCE STRUCTURES AND DESIGNS)
ResolveAffineCurve(p) : RngMPolElt -> List, List, List, RngIntElt
ResolveAffineMonicSurface(s) : RngUPolElt -> List, RngIntElt
ResolveFanMap(F1,F2) : TorFan,TorFan -> TorFan
ResolveLinearSystem(D) : DivTorElt -> TorVar
ResolveProjectiveCurve(p) : RngMPolElt -> List, List, List, RngIntElt
ResolveProjectiveSurface(S) : Srfc -> List, RngIntElt
ResolveAffineCurve(p) : RngMPolElt -> List, List, List, RngIntElt
ResolveAffineMonicSurface(s) : RngUPolElt -> List, RngIntElt
ResolveFanMap(F1,F2) : TorFan,TorFan -> TorFan
ResolveLinearSystem(D) : DivTorElt -> TorVar
ResolveProjectiveCurve(p) : RngMPolElt -> List, List, List, RngIntElt
ResolveProjectiveSurface(S) : Srfc -> List, RngIntElt
restore "filename";
Restrict(psi, I) : GrossenChar, RngOrdIdl -> GrossenChar
Extend(psi, I) : GrossenChar, RngOrdIdl -> GrossenChar
Restrict(chi, D) : GrpDrchNFElt, GrpDrchNF -> GrpDrchNFElt
RestrictDegree(a, n): AlgSymElt, RngIntElt -> AlgSymElt
RestrictEndomorphism(phi, i) : MapModAbVar, MapModAbVar -> MapModAbVar
RestrictEndomorphism(phi, B) : MapModAbVar, ModAbVar -> MapModAbVar
RestrictField(G, S) : GrpMat, FldFin -> GrpMat, Map
RestrictField(V, L) : ModTupFld, Fld -> ModTupFld, MapHom
RestrictPartitionLength(a, n): AlgSymElt, RngIntElt -> AlgSymElt
RestrictParts(a, n): AlgSymElt, RngIntElt -> AlgSymElt
RestrictResolution(PR, RD) : Rec, Rec -> ModCpx
SubfieldSubcode(C, S) : Code, FldFin -> Code, Map
IsRestricted(L) : AlgLie -> BoolElt, Map
IspLieAlgebra(L) : AlgLie -> BoolElt, Map
IsRestrictable(L) : AlgLie -> BoolElt, Map
Restrictable Lie Algebras (LIE ALGEBRAS)
RestrictDegree(a, n): AlgSymElt, RngIntElt -> AlgSymElt
IsRestricted(L) : AlgLie -> BoolElt, Map
IspLieAlgebra(L) : AlgLie -> BoolElt, Map
IsRestrictable(L) : AlgLie -> BoolElt, Map
IsRestrictedSubalgebra(L, M) : AlgLie, AlgLie -> AlgLie
RestrictedPartitions(n, k, M) : RngIntElt, SetEnum -> [ [ RngIntElt ] ]
RestrictedPartitions(n, k, M) : RngIntElt, SetEnum -> [ [ RngIntElt ] ]
RestrictedPartitions(n, M) : RngIntElt, SetEnum -> [ [ RngIntElt ] ]
RestrictedPartitions(n, Q) : RngIntElt, SetEnum -> [ [ RngIntElt ] ]
RestrictedSubalgebra(Q) : SetEnum[AlgLieElt] -> AlgLie
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013