[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: U .. underlying-representation
ChebyshevU(n) : RngIntElt -> RngUPolElt
ChebyshevSecond(n) : RngIntElt -> RngUPolElt
HypergeometricU(a, b, s) : FldReElt, FldReElt, FldReElt -> FldReElt
ProjectiveGammaUnitaryGroup(arguments)
ProjectiveSigmaUnitaryGroup(arguments)
u
U
u
U
Access Operations (ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES)
Basic Operations (ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES)
Creation (ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES)
Distance and Angles (ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES)
Structural Operations (ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES)
Access Operations (ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES)
Basic Operations (ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES)
Creation (ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES)
Distance and Angles (ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES)
Structural Operations (ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES)
IntegralUEAlgebra(L) : AlgLie -> AlgIUE
IntegralUniversalEnvelopingAlgebra(L) : AlgLie -> AlgIUE
IntegralUEA(L) : AlgLie -> AlgIUE
QuantizedUEA(R) : RootDtm -> AlgQUE
Background (LIE ALGEBRAS)
Construction of Universal Enveloping Algebras (LIE ALGEBRAS)
Creation of Elements (LIE ALGEBRAS)
Elements of Universal Enveloping Algebras (LIE ALGEBRAS)
Operations on Elements (LIE ALGEBRAS)
Related Structures (LIE ALGEBRAS)
The Integral Form of a Universal Enveloping Algebra (LIE ALGEBRAS)
Universal Enveloping Algebras (LIE ALGEBRAS)
Background (LIE ALGEBRAS)
Universal Enveloping Algebras (LIE ALGEBRAS)
Construction of Universal Enveloping Algebras (LIE ALGEBRAS)
Elements of Universal Enveloping Algebras (LIE ALGEBRAS)
Creation of Elements (LIE ALGEBRAS)
Operations on Elements (LIE ALGEBRAS)
The Integral Form of a Universal Enveloping Algebra (LIE ALGEBRAS)
Related Structures (LIE ALGEBRAS)
AlgLie_UEACon (Example H100E50)
IntegralUEAlgebra(L) : AlgLie -> AlgIUE
IntegralUniversalEnvelopingAlgebra(L) : AlgLie -> AlgIUE
IntegralUEA(L) : AlgLie -> AlgIUE
QuantizedUEA(R) : RootDtm -> AlgQUE
QUAToIntegralUEAMap(U) : AlgQUE -> Map
IsUniqueFactorizationDomain(R) : Rng -> BoolElt
IsUFD(R) : Rng -> BoolElt
z / a : SpcHypElt, RngIntElt -> SpcHypElt
Arithmetic (CONGRUENCE SUBGROUPS OF PSL2(R))
Distances, Angles and Geodesics (CONGRUENCE SUBGROUPS OF PSL2(R))
z / a : SpcHypElt, RngIntElt -> SpcHypElt
Arithmetic (CONGRUENCE SUBGROUPS OF PSL2(R))
Distances, Angles and Geodesics (CONGRUENCE SUBGROUPS OF PSL2(R))
IsUltraSummitRepresentative(u: parameters) : GrpBrdElt -> BoolElt
MinimalElementConjugatingToUltraSummit(x, s: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
UltraSummitProcess(u: parameters) : GrpBrdElt -> GrpBrdClassProc
UltraSummitRepresentative(u: parameters) : GrpBrdElt -> GrpBrdElt, GrpBrdElt
UltraSummitSet(u: parameters) : GrpBrdElt -> SetIndx
UltraSummitProcess(u: parameters) : GrpBrdElt -> GrpBrdClassProc
UltraSummitRepresentative(u: parameters) : GrpBrdElt -> GrpBrdElt, GrpBrdElt
UltraSummitSet(u: parameters) : GrpBrdElt -> SetIndx
Unlabelled, or Uncapacitated, or Unweighted Graphs (MULTIGRAPHS)
UncapacitatedGraph(G) : GrphMult -> GrphMult
UncapacitatedGraph(G) : GrphMult -> GrphMult
Adjacency and Degree Functions for Mul-tigraphs (MULTIGRAPHS)
Construction of a General Multigraph (MULTIGRAPHS)
Undefine(~S, i) : SeqEnum, RngIntElt ->
UnderlyingDigraph(G) : Grph -> GrphDir
UnderlyingDigraph(G) : GrphMult-> GrphDir, GrphVertSet, GrphEdgeSet
UnderlyingElement(u) : GrpBBElt -> GrpElt
UnderlyingField(R) : RngDiff -> Rng
UnderlyingGraph(D) : Grph -> GrphUnd
UnderlyingGraph(G) : GrphMult -> GrphUnd, GrphVertSet, GrphEdgeSet
UnderlyingGraph(g) : GrphRes -> GrphDir
UnderlyingGraph(s) : GrphSpl -> GrphDir
UnderlyingGraph(X) : SmpCpx -> GrphUnd, GrphVertSet, GrphEdgeSet
UnderlyingMultiDigraph(G) : Grph -> GrphMultDir, GrphVertSet, GrphEdgeSet
UnderlyingMultiGraph(G) : Grph -> GrphMultUnd, GrphVertSet, GrphEdgeSet
UnderlyingNetwork(G) : Grph -> GrphNet, GrphVertSet, GrphEdgeSet
UnderlyingRing(F) : FldFunG -> FldFunG
UnderlyingRing(C) : RngCox -> RngMPol
UnderlyingRing(R) : RngDiff -> Rng
UnderlyingVertex(v) : GrphSplVert -> GrphVert
Associated Vector Space (MODULAR SYMBOLS)
Associated Vector Space (MODULAR SYMBOLS)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013