[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: OrderedMonoid-longest  ..  Orthogonal


OrderedMonoid-longest

   Tableau_OrderedMonoid-longest (Example H145E5)

OrderedPartitionStack

   OrderedPartitionStack(n) : RngIntElt -> StkPtnOrd
   GrpPerm_OrderedPartitionStack (Example H58E44)

OrderedPartitionStackZero

   OrderedPartitionStackZero(n, h) : RngIntElt, RngIntElt -> StkPtnOrd

Ordering

   LexicographicalOrdering(~w1, ~w2) : MonOrdElt, MonOrdElt ->
   Ordering(G) : GrpRWS -> String
   Ordering(M) : MonRWS -> String

OrderLattice

   Lat_OrderLattice (Example H30E3)

OrderOfRootOfUnity

   OrderOfRootOfUnity(r, n) : RngElt, RngIntElt -> RngIntElt

orderq

   ElementToSequence(a) : RngOrdResElt -> []
   Elements of Quotients (ORDERS AND ALGEBRAIC FIELDS)
   Operations on Quotient Rings (ORDERS AND ALGEBRAIC FIELDS)

orderq-elts

   ElementToSequence(a) : RngOrdResElt -> []
   Elements of Quotients (ORDERS AND ALGEBRAIC FIELDS)

Orders

   EulerFactorsByDeformation(Q, Y) : RngMPolElt, SeqEnum -> SeqEnum
   ZetaFunctionsByDeformation(Q, Y) : RngMPolElt, SeqEnum -> SeqEnum
   JacobianOrdersByDeformation(Q, Y) : RngMPolElt, SeqEnum -> SeqEnum
   SimpleOrders(W) : GrpMat -> [RngIntElt]
   TwistedToriOrders(G) : GrpLie -> SeqEnum
   WronskianOrders(C) : Crv -> [RngIntElt]
   WronskianOrders(D) : DivCrvElt -> SeqEnum
   WronskianOrders(D) : DivFunElt -> [RngIntElt]
   WronskianOrders(F) : FldFunG -> [RngIntElt]
   GrpLie_Orders (Example H103E6)
   RngOrd_Orders (Example H37E2)

orders

   Minimum(a, O) : FldFunElt, RngFunOrd -> RngElt, RngElt
   Functions related to Orders and Integrality (ALGEBRAIC FUNCTION FIELDS)
   Isomorphisms of Orders (QUATERNION ALGEBRAS)
   Orders (CLASS FIELD THEORY)
   FldFunG_orders (Example H42E23)
   FldFunG_orders (Example H42E5)

orders_ideals

   Orders and Ideals (ALGEBRAIC FUNCTION FIELDS)
   Orders and Ideals (ORDERS AND ALGEBRAIC FIELDS)

Ordinary

   HasOnlyOrdinarySingularities(C) : CrvPln -> BoolElt, RngIntElt, RngMPol
   HasOnlyOrdinarySingularitiesMonteCarlo(C) : CrvPln -> BoolElt, RngIntElt
   IsOrdinary(E) : CrvEll -> BoolElt
   IsOrdinaryProjective(X) : Sch -> BoolElt
   IsOrdinaryProjectiveSpace(X) : Sch -> BoolElt
   IsOrdinarySingularity(p) : Sch,Pt -> BoolElt
   IsOrdinarySingularity(p) : Sch,Pt -> BoolElt
   Parametrization(C) : CrvCon -> MapSch
   RandomOrdinaryPlaneCurve(d, S, P) : RngIntElt, SeqEnum, Prj -> CrvPln, RngMPol

ordinary

   Ordinary Plane Curves (ALGEBRAIC CURVES)

ordinary-curves

   Crv_ordinary-curves (Example H114E5)

ordinary-plane-curves

   Ordinary Plane Curves (ALGEBRAIC CURVES)

ords

   Quaternionic Orders (ASSOCIATIVE ALGEBRAS)

Ore

   OreConditions(R, n, j) : RngPad, RngIntElt, RngIntElt -> BoolElt

OreConditions

   OreConditions(R, n, j) : RngPad, RngIntElt, RngIntElt -> BoolElt

orient

   Orientated Graphs (MULTIGRAPHS)

Orientated

   OrientatedGraph(G) : GrphMultUnd -> GrphMultDir
   OrientatedGraph(G) : GrphUnd -> GrphDir

OrientatedGraph

   OrientatedGraph(G) : GrphMultUnd -> GrphMultDir
   OrientatedGraph(G) : GrphUnd -> GrphDir

Origin

   LogCanonicalThresholdAtOrigin(C) : Sch -> FldRatElt
   Origin(A) : Aff -> Pt
   Origin(A) : Aff -> Pt

Original

   OriginalRing(A) : AlgFP -> Rng
   OriginalRing(Q) : RngMPolRes -> Rng

OriginalRing

   OriginalRing(A) : AlgFP -> Rng
   OriginalRing(Q) : RngMPolRes -> Rng

ortho

   Orthogonalization (LATTICES)

orthog

   Orthogonality (POLAR SPACES)

Orthogonal

   CO(n, q) : RngIntElt, RngIntElt -> GrpMat
   ConformalOrthogonalGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
   ConformalOrthogonalGroupMinus(n, q) : RngIntElt, RngIntElt -> GrpMat
   ConformalOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
   DirectSum(L, M) : Lat, Lat -> Lat
   GeneralOrthogonalGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
   GeneralOrthogonalGroupMinus(n, q) : RngIntElt, RngIntElt -> GrpMat
   GeneralOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
   IsOrthogonalGroup(G) : GrpMat ->BoolElt
   IsSelfOrthogonal(C) : Code -> BoolElt
   IsSelfOrthogonal(C) : Code -> BoolElt
   IsSelfOrthogonal(C) : Code -> BoolElt
   IsSymplecticSelfOrthogonal(C) : CodeAdd -> BoolElt
   OrthogonalComplement(M) : ModBrdt -> ModBrdt
   OrthogonalComplement(M) : ModSS -> ModSS
   OrthogonalComplement(V, X : parameters) : ModTupFld, ModTupFld -> ModTupFld
   OrthogonalComponent(x, p) : AlgChtrElt, [ RngIntElt ] -> AlgChtrElt
   OrthogonalComponents(x, n) : AlgChtrElt, RngIntElt -> SetEnum
   OrthogonalDecomposition(L) : Lat -> [Lat]
   OrthogonalDecomposition(F) : [Mtrx] -> [* Mtrx *], [* [Mtrx] *]
   OrthogonalReflection(a) : ModTupFldElt -> AlgMatElt
   OrthogonalReflection(a) : ModTupFldElt -> AlgMatElt
   OrthogonalSum(V, W) : ModTupFld, ModTupFld) -> ModTupFld
   PGO(arguments)
   PGOMinus(arguments)
   PGOPlus(arguments)
   PSO(arguments)
   PSOMinus(arguments)
   PSOPlus(arguments)
   SemiOrthogonalBasis(V) : ModTupFld) -> SeqEnum
   SpecialOrthogonalGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
   SpecialOrthogonalGroupMinus(n, q) : RngIntElt, RngIntElt -> GrpMat
   SpecialOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
   SymmetricRepresentationOrthogonal(pa, pe) : SeqEnum,GrpPermElt -> AlgMatElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013