[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: Unit_Group  ..  Unity


Unit_Group

   AlgQuat_Unit_Group (Example H86E27)

Unit_Group_NumberRing

   AlgQuat_Unit_Group_NumberRing (Example H86E28)

Unital

   IsUnital(P, U) : Plane, { PlanePt } -> BoolElt
   UnitalFeet(P, U, p) : Plane, { PlanePt }, PlanePt -> { PlanePt }

unital

   Unitals (FINITE PLANES)
   Plane_unital (Example H141E11)

UnitalFeet

   UnitalFeet(P, U, p) : Plane, { PlanePt }, PlanePt -> { PlanePt }

Unitary

   CU(n, q) : RngIntElt, RngIntElt -> GrpMat
   ConformalUnitaryGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
   GeneralUnitaryGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
   IsUnitary(R) : Rng -> BoolElt
   IsUnitaryGroup(G) : GrpMat -> BoolElt
   IsUnitarySpace(W) : ModTupFld -> BoolElt
   ProjectiveGammaUnitaryGroup(arguments)
   ProjectiveGeneralUnitaryGroup(arguments)
   ProjectiveSigmaUnitaryGroup(arguments)
   ProjectiveSpecialUnitaryGroup(arguments)
   SpecialUnitaryGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
   UnitaryForm(G) : GrpMat -> BoolElt, AlgMatElt [,SeqEnum]
   UnitaryReflection(a, zeta) : ModTupRngElt, FldElt -> AlgMatElt
   UnitarySpace(J, sigma) : AlgMatElt, Map -> ModTupFld
   UnitaryTransvection(a, alpha) : ModTupRngElt, FldElt -> AlgMatElt

unitary

   RecognizeSU4(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
   Constructive Recognition of Unitary Groups (ALMOST SIMPLE GROUPS)
   Unitary Groups (ALMOST SIMPLE GROUPS)

unitary-transvection

   GrpRfl_unitary-transvection (Example H99E4)

UnitaryForm

   UnitaryForm(G) : GrpMat -> BoolElt, AlgMatElt [,SeqEnum]

unitaryform

   FldForms_unitaryform (Example H29E11)

UnitaryReflection

   UnitaryReflection(a, zeta) : ModTupRngElt, FldElt -> AlgMatElt

UnitarySpace

   UnitarySpace(J, sigma) : AlgMatElt, Map -> ModTupFld

unitaryspace

   Unitary Spaces (POLAR SPACES)

UnitaryTransvection

   UnitaryTransvection(a, alpha) : ModTupRngElt, FldElt -> AlgMatElt

UnitDisc

   UnitDisc() : -> SpcHyd

UnitDiscAngle

   GrpPSL2Shim_UnitDiscAngle (Example H131E5)

UnitDiscBasics

   GrpPSL2Shim_UnitDiscBasics (Example H131E4)

UnitDiscPractice2

   GrpPSL2Shim_UnitDiscPractice2 (Example H131E6)

uniteq

   RngOrd_uniteq (Example H37E24)

UnitEquation

   UnitEquation(a, b, c) : FldNumElt, FldNumElt, FldNumElt -> [ ModHomElt ]

UnitGenerators

   UnitGenerators(G) : GrpDrch -> [RngIntElt]

UnitGroup

   UnitGroup(S) : AlgQuatOrd[RngInt] -> GrpPerm, Map
   MultiplicativeGroup(S) : AlgQuatOrd[RngInt] -> GrpPerm, Map
   MultiplicativeGroup(F) : FldFin -> GrpAb, Map
   MultiplicativeGroup(Z) : RngInt -> GrpAb, Map
   MultiplicativeGroup(R) : RngIntRes -> GrpAb, Map
   UnitGroup(K) : FldNum -> GrpAb, Map
   UnitGroup(F) : FldPad -> GrpAb, Map
   UnitGroup(Q) : FldRat -> GrpAb, Map
   UnitGroup(N) : Nfd -> GrpMat, Map
   UnitGroup(O) : RngFunOrd -> GrpAb, Map
   UnitGroup(R) : RngIntRes -> GrpAb, Map
   UnitGroup(O) : RngOrd -> GrpAb, Map
   UnitGroup(OQ) : RngOrdRes -> GrpAb, Map
   UnitGroup(R) : RngPad -> GrpAb, Map
   FldNum_UnitGroup (Example H34E14)
   RngOrd_UnitGroup (Example H37E21)

UnitGroupAsSubgroup

   UnitGroupAsSubgroup(O) : RngOrd -> GrpAb

UnitGroupGenerators

   UnitGroupGenerators(F) : FldPad -> SeqEnum
   UnitGroupGenerators(R) : RngPad -> SeqEnum

unitgrp

   FldNear_unitgrp (Example H22E7)

UnitRank

   UnitRank(K) : FldNum -> RngIntElt
   UnitRank(K) : FldNum -> RngIntElt
   UnitRank(O) : RngFunOrd -> RngIntElt
   UnitRank(O) : RngOrd -> RngIntElt
   UnitRank(O) : RngOrd -> RngIntElt

Units

   ExceptionalUnits(O) : RngOrd -> [ RngOrdElt ]
   FundamentalUnits(O) : RngFunOrd -> SeqEnum[RngFunOrdElt]
   IndependentUnits(O) : RngFunOrd -> SeqEnum[RngFunOrdElt]
   IndependentUnits(O) : RngOrd -> GrpAb, Map
   IsTrivialOnUnits(chi) : GrpDrchNFElt -> BoolElt
   MergeUnits(K, a) : FldNum, FldNumElt -> BoolElt
   SetOrderUnitsAreFundamental(O) : RngOrd ->
   Units(S) : AlgQuatOrd -> SeqEnum
   pFundamentalUnits(O, p) : RngOrd, RngIntElt -> GrpAb, Map

units

   The Group of Units (NEARFIELDS)

units-autos

   RngLoc_units-autos (Example H47E22)

UnitTrivialSubgroup

   UnitTrivialSubgroup(G) : GrpDrchNF -> GrpDrchNF

UnitVector

   UnitVector(M, i) : ModMPol, RngIntElt -> ModMPolElt

Unity

   HasRootOfUnity(L, n) : RngPad, RngIntElt -> BoolElt
   OrderOfRootOfUnity(r, n) : RngElt, RngIntElt -> RngIntElt
   RootOfUnity(n) : RngIntElt -> FldCycElt
   RootOfUnity(n, A) : RngIntElt, FldAC -> FldACElt
   RootOfUnity(n, K) : RngIntElt, FldCyc -> FldCycElt
   RootOfUnity(n, K) : RngIntElt, FldFin -> FldFinElt
   RootOfUnity(n, Q) : RngIntElt, FldRat -> FldRatElt
   Unity(R) : RngUPolTwst -> RngUPolTwstElt
   Unity(W) : RngWitt -> RngWittElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013