[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: PrimePolynomials .. Primitive
PrimePolynomials(R, d) : RngUPol, RngIntElt -> SeqEnum[ RngUPolElt ]
PrimePowerRepresentation(x, k, a) : FldFunGElt, RngIntElt, FldFunGElt -> SeqEnum
PrimeField(F) : FldFun -> Rng
PrimeRing(F) : FldFun -> Rng
PrimeRing(R) : Rng -> Rng
PrimeRing(L) : RngPad -> RngPad
BadPrimes(C) : CrvCon -> SeqEnum
BadPrimes(E) : CrvEll -> [ RngIntElt ]
BadPrimes(C) : CrvHyp -> SeqEnum
ExtensionPrimes(D, Q) : DB, MonStgElt -> SetEnum
GModulePrimes(G, A) : GrpFP, GrpFP -> SetMulti
GModulePrimes(G, A, B) : GrpFP, GrpFP, GrpFP -> SetMulti
GModulePrimes(G, A) : GrpGPC, GrpGPC -> SetMulti
GModulePrimes(G, A, B) : GrpGPC, GrpGPC, GrpGPC -> SetMulti
Primes(V) : LatLat -> [ RngIntElt ]
PrimesInInterval(b, e) : RngIntElt, RngIntElt -> [RngIntElt]
PrimesUpTo(B) : RngIntElt -> [RngIntElt]
RamifiedPrimes(A) : AlgQuat -> SeqEnum
Calculating the Relevant Primes (FINITELY PRESENTED GROUPS: ADVANCED)
PrimesInInterval(b, e) : RngIntElt, RngIntElt -> [RngIntElt]
PrimesUpTo(B) : RngIntElt -> [RngIntElt]
Database of Primitive Groups (DATABASES OF GROUPS)
Database of Primitive Groups (DATABASES OF GROUPS)
AssociatedPrimitiveCharacter(chi) : GrpDrchElt -> GrpDrchElt
AssociatedPrimitiveCharacter(chi) : GrpDrchNFElt -> GrpDrchNFElt
Conductor(psi) : GrossenChar -> RngOrdIdl, SeqEnum
ContentAndPrimitivePart(f) : RngMPolElt -> RngIntElt, RngMPolElt
ContentAndPrimitivePart(p) : RngUPolElt -> RngIntElt, RngUPolElt
IsPrimitive(C) : CosetGeom -> BoolElt
IsPrimitive(a) : FldAlgElt -> BoolElt
IsPrimitive(a) : FldFinElt -> BoolElt
IsPrimitive(a) : FldNumElt -> BoolElt
IsPrimitive(chi) : GrpDrchElt -> BoolElt
IsPrimitive(chi) : GrpDrchNFElt -> BoolElt
IsPrimitive(G) : GrphUnd -> BoolElt
IsPrimitive(G) : GrpPerm -> BoolElt
IsPrimitive(G, Y) : GrpPerm, GSet -> BoolElt
IsPrimitive(H) : HypGeomData -> BoolElt, RngIntElt
IsPrimitive(G: parameters) : GrpMat -> BoolElt
IsPrimitive(n, m) : RngIntElt, RngIntElt -> BoolElt
IsPrimitive(n) : RngIntResElt -> BoolElt
IsPrimitive(f) : RngUPolElt -> BoolElt
IsPrimitive(v) : TorLatElt -> BoolElt
IsPrimitiveFiniteNilpotent(G : parameters): GrpMat -> BoolElt, Any
IsResiduallyPrimitive(C) : CosetGeom -> BoolElt
IsResiduallyWealyPrimitive(C) : CosetGeom -> BoolElt
IsWeaklyPrimitive(C) : CosetGeom -> BoolElt
IsolIsPrimitive(n, p, i) : RngIntElt, RngIntElt, RngIntElt -> BoolElt
NonPrimitiveAlternantCode(n, m, r) : RngIntElt,RngIntElt,RngIntElt->Code
NumberOfPrimitiveGroups(d) : RngIntElt -> RngIntElt
PrimitiveData(H) : HypGeomData -> HypGeomData
PrimitiveElement(F) : FldFin -> FldFinElt
PrimitiveElement(K) : FldNum -> FldNumElt
PrimitiveElement(K) : FldNum -> FldNumElt
PrimitiveElement(O) : RngFunOrd -> RngFunOrdElt
PrimitiveElement(R) : RngIntRes -> RngIntResElt
PrimitiveElement(O) : RngOrd -> RngOrdElt
PrimitiveElement(I) : RngOrdIdl -> RngOrdElt
PrimitiveGroup(d) : RngIntElt -> GrpPerm, MonStgElt, MonStgElt
PrimitiveGroup(d, f) : RngIntElt, Program -> GrpPerm, MonStgElt
PrimitiveGroup(d, n) : RngIntElt, RngIntElt -> GrpPerm, MonStgElt, MonStgElt
PrimitiveGroup(S, f) : [RngIntElt], Program -> GrpPerm, MonStgElt
PrimitiveGroupDatabaseLimit() : -> RngIntElt
PrimitiveGroupDescription(d, n) : RngIntElt, RngIntElt -> MonStgElt
PrimitiveGroupIdentification(G) : GrpPerm -> RngIntElt, RngIntElt
PrimitiveGroupProcess(d: parameters) : RngIntElt -> Process
PrimitiveGroupProcess(d, f: parameters) : RngIntElt, Program -> Process
PrimitiveGroups(d: parameters) : RngIntElt -> [GrpPerm]
PrimitiveGroups(d, f: parameters) : RngIntElt, Program -> [GrpPerm]
PrimitiveGroups(S: parameters) : [RngIntElt] -> [GrpPerm]
PrimitiveIdempotentData(A) : AlgMat -> SeqEnum, Map, SeqEnum
PrimitiveIdempotents(A) : AlgMat -> SeqEnum
PrimitiveLatticeVector(v) : TorLatElt -> TorLatElt
PrimitivePart(f) : RngMPolElt -> RngMPolElt
PrimitivePart(p) : RngUPolElt -> RngUPolElt
PrimitivePolynomial(F, m) : FldFin, RngIntElt -> RngUPolElt
PrimitiveQuotient(G) : GrpPerm -> GrpPerm, Hom, GrpPerm
PrimitiveRoot(m) : RngIntElt -> RngIntElt
PrimitiveWreathProduct(G, H) : GrpPerm, GrpPerm -> GrpPerm
PrimitiveWreathProduct(Q) : [ GrpPerm ] -> GrpPerm
RanksOfPrimitiveIdempotents(A) : AlgMat -> SeqEnum
SetPrimitiveElement(F, x) : FldFin, FldFinElt ->
GrpData_Primitive (Example H66E12)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013