[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: pezzo .. pipes-creation
Parametrization of Del Pezzo Surfaces (ALGEBRAIC SURFACES)
Pfaffians(M, r) : Mtrx, RngIntElt -> SeqEnum
Pfaffian(M) : Mtrx -> RngElt
Pfaffians(M, r) : Mtrx, RngIntElt -> SeqEnum
Pfaffian(M) : Mtrx -> RngElt
Database of Perfect Groups (DATABASES OF GROUPS)
pFundamentalUnits(O, p) : RngOrd, RngIntElt -> GrpAb, Map
pFundamentalUnits(O, p) : RngOrd, RngIntElt -> GrpAb, Map
PGammaL(arguments)
ProjectiveGammaLinearGroup(arguments)
ProjectiveGammaUnitaryGroup(arguments)
PGammaL(arguments)
ProjectiveGammaLinearGroup(arguments)
PGammaU(arguments)
ProjectiveGammaUnitaryGroup(arguments)
PGL(arguments)
ProjectiveGeneralLinearGroup(arguments)
ProjectiveGeneralOrthogonalGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
PGO(arguments)
ProjectiveGeneralOrthogonalGroupMinus(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
PGOMinus(arguments)
ProjectiveGeneralOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpPerm, { at ModTupFldElt atbrace
PGOPlus(arguments)
CharacterDegreesPGroup(G) : GrpFin -> [ RngIntElt ]
CharacterDegreesPGroup(G): GrpPC -> SeqEnum
CompactProjectiveResolutionPGroup(M, n) : ModAlgBas, RngIntElt -> Rec
FPGroupStrong(G) : GrpPerm -> GrpFP, Hom(Grp)
InvariantsMetacyclicPGroup (P) : Grp -> Tup
IsMetacyclicPGroup (P) : Grp -> BoolElt
IsSolubleAutomorphismGroupPGroup(A) : GrpAuto -> BoolElt
NumberOfSubgroupsAbelianPGroup (A) : SeqEnum -> SeqEnum
OrderAutomorphismGroupAbelianPGroup (A) : SeqEnum -> RngIntElt
PCGroupAutomorphismGroupPGroup(A) : GrpAuto -> BoolElt, Map, GrpPC
PGroupToForms(G) : GrpPC -> SeqEnum
ProjectiveResolutionPGroup(PR) : Rec -> ModCpx
StandardMetacyclicPGroup (P): Grp -> GrpPC
CountPGroups(p, n: parameters) : RngIntElt, RngIntElt -> SeqEnum
MetacyclicPGroups(p, n: parameters) : RngIntElt, RngIntElt -> SeqEnum
NumberOfMetacyclicPGroups (p, n): RngIntElt, RngIntElt -> SeqEnum
SearchPGroups(p, n: parameters) : RngIntElt, RngIntElt -> SeqEnum
Series for p-groups (FINITE SOLUBLE GROUPS)
PGroupStrong(G) : GrpMat -> GrpFP, Hom(Grp)
FPGroupStrong(G) : GrpPerm -> GrpFP, Hom(Grp)
PGroupToForms(G) : GrpPC -> SeqEnum
AlgInv_PGroupToForms (Example H87E1)
PGU(arguments)
ProjectiveGeneralUnitaryGroup(arguments)
PhaseFlip(e, B) : HilbSpcElt, RngIntElt -> HilbSpcElt
PhaseFlip(e, k) : HilbSpcElt,RngIntElt -> HilbSpcElt
PhaseFlip(e, B) : HilbSpcElt, RngIntElt -> HilbSpcElt
PhaseFlip(e, k) : HilbSpcElt,RngIntElt -> HilbSpcElt
ElementaryPhiModule(S,d,h) : RngSerLaur, RngIntElt, RngIntElt -> PhiMod
EulerPhi(n) : RngIntElt -> RngIntElt
EulerPhiInverse(m) : RngIntElt -> RngIntElt
FactoredEulerPhi(n) : RngIntElt -> RngIntEltFact
FactoredEulerPhiInverse(n) : RngIntElt -> RngIntEltFact
IsogenyMapPhi(I) : Map -> RngUPolElt
IsogenyMapPhiMulti(I) : Map -> RngUPolElt
Phi(D, x) : PhiMod, PhiModElt -> PhiModElt
PhiModule(M) : AlgMatElt -> PhiMod
PhiModuleElement(x,D) : AlgMatElt, PhiMod -> PhiModElt
PhiSelmerGroup(f,q) : RngUPolElt, RngIntElt -> GrpAb, Map
phi(A) : ModAbVar, MapModAbVar -> ModAbVar
A @ phi : ModAbVar, MapModAbVar -> ModAbVar
x @ phi : ModAbVarElt, MapModAbVar -> ModAbVarElt
G @ phi : ModAbVarSubGrp, MapModAbVar -> ModAbVarSubGrp
PhiModule(M) : AlgMatElt -> PhiMod
PhiModuleElement(x,D) : AlgMatElt, PhiMod -> PhiModElt
RankBound(f,q) : RngUPolElt, RngIntElt -> RngIntElt
RankBounds(f,q) : RngUPolElt, RngIntElt -> RngIntElt, RngIntElt
PhiSelmerGroup(f,q) : RngUPolElt, RngIntElt -> GrpAb, Map
PHom(M,N) : ModAlg, ModAlg -> ModMatFld
Pi(R) : FldRe -> FldReElt
Hall π-Subgroups and Sylow Systems (FINITE SOLUBLE GROUPS)
PicardClass(D) : DivTorElt -> TorLatElt
PicardGroup(O) : RngQuad -> GrpAb, Map
RingClassGroup(O) : RngOrd -> GrpAb, Map
PicardClass(D) : DivTorElt -> TorLatElt
PicardNumber(O) : RngQuad -> RngIntElt
PicardGroup(O) : RngQuad -> GrpAb, Map
RingClassGroup(O) : RngOrd -> GrpAb, Map
PicardNumber(O) : RngQuad -> RngIntElt
PicardGroup(O) : RngQuad -> GrpAb, Map
IsPrincipalIdealDomain(R) : Rng -> BoolElt
IsPID(R) : Rng -> BoolElt
pIntegralModel(C, p) : CrvHyp, RngIntElt -> CrvHyp, MapIsoSch
pIntegralModel(C, p) : CrvHyp, RngIntElt -> CrvHyp, MapIsoSch
Pipe(C, S) : MonStgElt, MonStgElt -> MonStgElt
Operations on Pipes (INPUT AND OUTPUT)
Pipe Creation (INPUT AND OUTPUT)
Pipes (INPUT AND OUTPUT)
Pipe Creation (INPUT AND OUTPUT)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Wed Apr 24 15:09:57 EST 2013