[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: with  ..  word-access


with

   Construction of a Module with Specified Basis (FREE MODULES)
   Modules HomR(M, N) with Given Basis (FREE MODULES)

Withj

   EllipticCurveWithjInvariant(j) : RngElt -> CrvEll
   EllipticCurveFromjInvariant(j) : RngElt -> CrvEll

Witt

   HasseWittInvariant(C) : Crv[FldFin] -> RngIntElt
   HasseWittInvariant(F) : FldFunG -> RngIntElt
   HasseWittInvariant(F) : FldFunG -> RngIntElt
   WittDecomposition(V) : ModTupFld -> SeqEnum[ModTupFld]
   WittDesign(n) : RngIntElt -> Dsgn
   WittIndex(V) : ModTupFld -> RngIntElt
   WittInvariant(f, p) : RngMPolElt, RngIntElt -> RngIntElt
   WittInvariants(f) : RngMPolElt -> SeqEnum
   WittLieAlgebra(F, m, n) : Fld, RngIntElt, SeqEnum[RngIntElt] -> AlgLie, Map
   WittRing(F, n) : Fld, RngIntElt -> RngWitt

witt

   The Ring of Witt Vectors of Finite Length (CLASS FIELD THEORY FOR GLOBAL FUNCTION FIELDS)
   The Witt Designs (INCIDENCE STRUCTURES AND DESIGNS)

witt-alg-ex

   AlgLie_witt-alg-ex (Example H100E20)

witt-rings

   The Ring of Witt Vectors of Finite Length (CLASS FIELD THEORY FOR GLOBAL FUNCTION FIELDS)

WittDecomposition

   WittDecomposition(V) : ModTupFld -> SeqEnum[ModTupFld]

WittDesign

   WittDesign(n) : RngIntElt -> Dsgn

wittex

   Design_wittex (Example H147E4)

WittIndex

   WittIndex(V) : ModTupFld -> RngIntElt

WittInvariant

   HasseMinkowskiInvariant(f, p) : RngMPolElt, RngIntElt -> RngIntElt
   WittInvariant(f, p) : RngMPolElt, RngIntElt -> RngIntElt

WittInvariants

   HasseMinkowskiInvariants(f) : RngMPolElt -> SeqEnum
   WittInvariants(f) : RngMPolElt -> SeqEnum

WittLieAlgebra

   WittLieAlgebra(F, m, n) : Fld, RngIntElt, SeqEnum[RngIntElt] -> AlgLie, Map

WittRing

   WittRing(F, n) : Fld, RngIntElt -> RngWitt

Word

   ActingWord(G, x, y) : GrpPerm, Elt, Elt -> GrpFPElt
   AlternatingElementToWord (G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt
   AlternatingElementToWord (G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt
   BaseImageWordStrip(H, x) : GrpPerm, GrpPermElt -> BoolElt, GrpFPElt, RngIntElt
   ColumnWord(t) : Tbl -> SeqEnum
   CompositionTreeElementToWord(G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt
   EcheloniseWord(~P, ~r) : GrpPCpQuotientProc -> RngIntElt
   FindWord(G,g) : GrpPSL2, GrpPSL2Elt -> SeqEnum
   InverseRSKCorrespondenceDoubleWord(t1, t2) : Tbl, Tbl -> MonOrdElt, MonOrdElt
   InverseRSKCorrespondenceSingleWord(t1, t2) : Tbl, Tbl -> MonOrdElt
   InverseWordMap(G) : GrpMat -> Map
   InverseWordMap(G) : GrpPerm -> Map
   IsEmptyWord(u: parameters) : GrpBrdElt -> BoolElt
   IsReverseLatticeWord(w) : MonOrdElt -> BoolElt
   LargeReeElementToWord(G, g) : GrpMat, GrpMatElt -> BoolElt, GrpSLPElt
   MinimumWord(C) : Code -> ModTupFldElt
   Random(B, m, n: parameters) : GrpBrd, RngIntElt, RngIntElt -> GrpBrdElt
   ReeElementToWord(G, g) : GrpMat, GrpMatElt -> BoolElt, GrpSLPElt
   ReflectionWord(W, r) : GrpMat, RngIntElt -> []
   ReflectionWord(W, r) : GrpPermCox, RngIntElt -> []
   ReflectionWord(R, r) : RootDtm, RngIntElt -> []
   ReflectionWord(R, r) : RootSys, RngIntElt -> []
   RotateWord(u, n) : GrpFPElt, RngIntElt -> GrpFPElt
   RotateWord(u, n) : SgpFPElt, RngIntElt -> SgpFPElt
   SL2ElementToWord(G, g) : GrpMat, GrpMatElt -> BoolElt, GrpSLPElt
   SL3ElementToWord (G, g) : GrpMat, GrpMatElt -> BoolElt, GrpSLPElt
   SymmetricElementToWord (G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt
   SymmetricElementToWord (G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt
   SzElementToWord(G, g) : GrpMat, GrpMatElt -> BoolElt, GrpSLPElt
   WeylWord(p) : PathLS -> SeqEnum
   Word(t) : Tbl -> MonOrdElt
   WordAcceptor(G) : GrpAtc -> Rec
   WordAcceptorSize(G) : GrpAtc -> RngIntElt, RngIntElt
   WordDifferenceAutomaton(G) : GrpAtc -> Rec
   WordDifferenceSize(G) : GrpAtc -> RngIntElt, RngIntElt
   WordDifferences(G) : GrpAtc -> SeqEnum
   WordGroup(G) : GrpMat -> GrpSLP, Map
   WordGroup(G) : GrpPerm -> GrpBB, Map
   WordInStrongGenerators(H, x) : GrpPerm, GrpPermElt -> GrpFPElt
   WordMap(G) : GrpMatUnip -> Map
   WordProblem(A, x) : AlgMat -> BoolElt, AlgFrElt
   WordProblemData(A) : AlgMat -> List
   WordStrip(H, x) : GrpPerm, GrpPermElt -> BoolElt, GrpFPElt, RngIntElt
   WordToSequence(u: parameters) : GrpBrdElt -> SeqEnum
   WordToTableau(w) : MonOrdElt -> Tbl

word

   Access Functions for Words (FINITELY PRESENTED GROUPS)
   Arithmetic Operators for Words (FINITELY PRESENTED GROUPS)
   Construction of Words (FINITELY PRESENTED GROUPS)
   Permutations as Words (PERMUTATION GROUPS)

word-access

   Access Functions for Words (FINITELY PRESENTED GROUPS)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013