[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: one  ..  operation


one

   Group Cohomology (COHOMOLOGY AND EXTENSIONS)
   MODELS OF GENUS ONE CURVES
   One Cocycles (COHOMOLOGY AND EXTENSIONS)
   Weight One Forms (MODULAR FORMS)

one-cocycles

   Group Cohomology (COHOMOLOGY AND EXTENSIONS)
   One Cocycles (COHOMOLOGY AND EXTENSIONS)

one-dim-artin-reps

   ArtRep_one-dim-artin-reps (Example H44E4)

one-more

   FldFunRat_one-more (Example H41E9)

OneCocycle

   OneCocycle(A, imgs) : GGrp, SeqEnum[GrpElt] -> OneCoC
   OneCocycle(CM, s) : ModCoho, SeqEnum -> UserProgram

OneCohomology

   OneCohomology(A) : GGrp -> SetEnum[OneCoC]

OneParameterSubgroupsLattice

   OneParameterSubgroupsLattice(C) : RngCox -> TorLat
   OneParameterSubgroupsLattice(X) : TorVar -> TorLat

Only

   HasOnlyOrdinarySingularities(C) : CrvPln -> BoolElt, RngIntElt, RngMPol
   HasOnlyOrdinarySingularitiesMonteCarlo(C) : CrvPln -> BoolElt, RngIntElt
   HasOnlySimpleSingularities(S) : Srfc -> BoolElt, List
   HasSparseRep(G) : Grph -> BoolElt
   IsOnlyMotivic(A) : ModAbVar -> BoolElt
   OnlyUpToIsogeny(phi) : MapModAbVar -> BoolElt

OnlyUpToIsogeny

   OnlyUpToIsogeny(phi) : MapModAbVar -> BoolElt

Onto

   ProjectionOntoImage(phi : parameters) : MapModAbVar -> MapModAbVar
   ProjectionOnto(A : parameters) : ModAbVar -> MapModAbVar

op

   Application of Operators (DIFFERENTIAL RINGS)
   Arithmetic (DIFFERENTIAL RINGS)
   Category and Parent (DIFFERENTIAL RINGS)
   Category and Parent (DIFFERENTIAL RINGS)
   Changing Related Structures (DIFFERENTIAL RINGS)
   Coefficients and Terms (DIFFERENTIAL RINGS)
   Creation (DIFFERENTIAL RINGS)
   Creation of Differential Operators (DIFFERENTIAL RINGS)
   Derivation and Differential (DIFFERENTIAL RINGS)
   Differential Operator Rings (DIFFERENTIAL RINGS)
   Element Operations on Differential Operators (DIFFERENTIAL RINGS)
   Operations on Coxeter Groups (COXETER GROUPS)
   Operations on Elements (COXETER GROUPS)
   Operations on Structures (NUMBER FIELDS)
   Operations on Structures (ORDERS AND ALGEBRAIC FIELDS)
   Operations on the Lattice of Sublattices (LATTICES WITH GROUP ACTION)
   Order and Degree (DIFFERENTIAL RINGS)
   Precision (DIFFERENTIAL RINGS)
   Predicates and Booleans (DIFFERENTIAL RINGS)
   Related Differential Operators (DIFFERENTIAL RINGS)
   Related Maps (DIFFERENTIAL RINGS)
   Related Structures (DIFFERENTIAL RINGS)
   Structure Operations on Differential Operator Rings (DIFFERENTIAL RINGS)

Open

   Open(S, T) : MonStgElt, MonStgElt -> File
   OpenGraphFile(s, f, p): MonStgElt, RngIntElt, RngIntElt -> File
   SmallGroupDatabase() : -> DB

open

   Opening Files (INPUT AND OUTPUT)

open-file

   Opening Files (INPUT AND OUTPUT)

OpenGraphFile

   OpenGraphFile(s, f, p): MonStgElt, RngIntElt, RngIntElt -> File

OpenSmallGroupDatabase

   OpenSmallGroupDatabase() : -> DB
   SmallGroupDatabase() : -> DB

oper

   Bases (LIE ALGEBRAS)
   Basic Invariants (LIE ALGEBRAS)
   Indexing (LIE ALGEBRAS)
   Operations for Semisimple and Reductive Lie Algebras (LIE ALGEBRAS)
   Operations on Structure Constant Algebras (STRUCTURE CONSTANT ALGEBRAS)

Operation

   SteenrodOperation(f, i) : RngMPolElt, RngIntElt -> RngMPolElt

operation

   Accessing and Modifying a Matrix (MATRIX ALGEBRAS)
   Action of the Algebra on the Module (MODULES OVER AN ALGEBRA)
   Arithmetic Operations on Codewords (ADDITIVE CODES)
   Arithmetic Operations on Codewords (LINEAR CODES OVER FINITE FIELDS)
   Arithmetic with Elements (ABELIAN GROUPS)
   Arithmetic with Elements (BLACK-BOX GROUPS)
   Arithmetic with Elements (GROUPS OF STRAIGHT-LINE PROGRAMS)
   Arithmetic with Module Elements (MODULES OVER AN ALGEBRA)
   Basic Element Operations (POWER, LAURENT AND PUISEUX SERIES)
   Basic Operations (GROUPS)
   Basic Operations (MONOIDS GIVEN BY REWRITE SYSTEMS)
   Basic Operations (VECTOR SPACES)
   Basic Operations on Ideals (FINITELY PRESENTED ALGEBRAS)
   Boolean Operators (STATEMENTS AND EXPRESSIONS)
   Constructing New Codes from Old (LINEAR CODES OVER FINITE RINGS)
   Coset Spaces: Elementary Operations (FINITELY PRESENTED GROUPS)
   Discrete Logarithm (ABELIAN GROUPS)
   Element Operations (ALGEBRAIC FUNCTION FIELDS)
   Element Operations (ALGEBRAIC FUNCTION FIELDS)
   Element Operations (ALGEBRAICALLY CLOSED FIELDS)
   Element Operations (FINITE FIELDS)
   Element Operations (FINITE SOLUBLE GROUPS)
   Element Operations (FINITELY PRESENTED ALGEBRAS)
   Element Operations (FREE MODULES)
   Element Operations (GALOIS RINGS)
   Element Operations (MULTIVARIATE POLYNOMIAL RINGS)
   Element Operations (NUMBER FIELDS)
   Element Operations (ORDERS AND ALGEBRAIC FIELDS)
   Element Operations (REAL AND COMPLEX FIELDS)
   Element Operations (RING OF INTEGERS)
   Element Operations (SYMMETRIC FUNCTIONS)
   Element Operations (UNIVARIATE POLYNOMIAL RINGS)
   Element Operations with Ideals (POLYNOMIAL RING IDEAL OPERATIONS)
   Elementary Operators for Words (FINITELY PRESENTED SEMIGROUPS)
   Elementary Properties of a Group (PERMUTATION GROUPS)
   First Operations on Ideals (POLYNOMIAL RING IDEAL OPERATIONS)
   General Design Constructions (INCIDENCE STRUCTURES AND DESIGNS)
   General Subgroup Constructions (POLYCYCLIC GROUPS)
   New Codes from Existing (LINEAR CODES OVER FINITE FIELDS)
   New Codes from Old (ADDITIVE CODES)
   Operations on Codewords and Vectors (LINEAR CODES OVER FINITE RINGS)
   Operations on Edges and Vertices (GRAPHS)
   Operations on Elements (ABELIAN GROUPS)
   Operations on Elements (BLACK-BOX GROUPS)
   Operations on Elements (GROUPS OF STRAIGHT-LINE PROGRAMS)
   Operations on Elements (p-ADIC RINGS AND THEIR EXTENSIONS)
   Operations on Elements of Ideals (FINITELY PRESENTED ALGEBRAS)
   Operations on Elements of Ideals (LOCAL POLYNOMIAL RINGS)
   Operations on G-Lattices (LATTICES WITH GROUP ACTION)
   Operations on Ideals (LOCAL POLYNOMIAL RINGS)
   Operations on Lattice Elements (LATTICES)
   Operations on Lie Algebras (LIE ALGEBRAS)
   Operations on Mappings (MAPPINGS)
   Operations on Matrices (MATRIX GROUPS OVER GENERAL RINGS)
   Operations on Matrix Algebras (MATRIX ALGEBRAS)
   Operations on Module Elements (FREE MODULES)
   Operations on Points and Blocks (INCIDENCE STRUCTURES AND DESIGNS)
   Operations on Points and Lines (FINITE PLANES)
   Operations on Sets (SETS)
   Operations on Subgroup Class Posets (GROUPS)
   Operations on Submodules (FREE MODULES)
   Operations on Submodules (MODULES OVER AN ALGEBRA)
   Operations on Subspaces (VECTOR SPACES)
   Operations on Vertex-Sets and Edge-Sets (GRAPHS)
   Operators for Elements (POLYCYCLIC GROUPS)
   Operators on Sequences (SEQUENCES)
   Predicates and Boolean Operations (LATTICES)
   Related Structures (ALGEBRAIC FUNCTION FIELDS)
   Related Structures (ALGEBRAIC FUNCTION FIELDS)
   Set Operations (ABELIAN GROUPS)
   Set Operations (BLACK-BOX GROUPS)
   Set Operations (GROUPS OF STRAIGHT-LINE PROGRAMS)
   Set Operations (POLYCYCLIC GROUPS)
   Soluble Group Functions (MATRIX GROUPS OVER GENERAL RINGS)
   Standard Constructions (FREE MODULES)
   Standard Constructions (K[G]-MODULES AND GROUP REPRESENTATIONS)
   Standard Constructions (MODULES OVER AN ALGEBRA)
   Standard Constructions for Graphs (GRAPHS)
   Standard Subgroup Constructions (GROUPS)
   String Operations on Words (FINITELY PRESENTED SEMIGROUPS)
   Structure Operations (FINITE FIELDS)
   Structure Operations (FINITE SOLUBLE GROUPS)
   Structure Operations (FINITELY PRESENTED ALGEBRAS)
   Structure Operations (GALOIS RINGS)
   Structure Operations (INTEGER RESIDUE CLASS RINGS)
   Structure Operations (MULTIVARIATE POLYNOMIAL RINGS)
   Structure Operations (NUMBER FIELDS)
   Structure Operations (ORDERS AND ALGEBRAIC FIELDS)
   Structure Operations (POWER, LAURENT AND PUISEUX SERIES)
   Structure Operations (RATIONAL FIELD)
   Structure Operations (RATIONAL FUNCTION FIELDS)
   Structure Operations (REAL AND COMPLEX FIELDS)
   Structure Operations (RING OF INTEGERS)
   Structure Operations (SYMMETRIC FUNCTIONS)
   Structure Operations (UNIVARIATE POLYNOMIAL RINGS)
   Subgroup Constructions (FINITELY PRESENTED GROUPS)
   Subgroup Constructions Requiring a Nil-po-tent Covering Group (POLYCYCLIC GROUPS)
   Working with a Base and Strong Generating Set (PERMUTATION GROUPS)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013