[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: ChiefFactors  ..  Class


ChiefFactors

   ChiefFactors(G) : GrpMat -> [ <RngIntElt, RngIntElt, RngIntElt, RngIntElt> ]
   ChiefFactors(G) : GrpPerm -> [ <RngIntElt, RngIntElt, RngIntElt, RngIntElt> ]

ChiefSeries

   ChiefSeries(G) : GrpMat -> [ GrpMat ], [ <RngIntElt, RngIntElt, RngIntElt, RngIntElt> ]
   ChiefSeries(G) : GrpPC -> [GrpPC]
   ChiefSeries(G) : GrpPerm -> [ GrpPerm ], [ <RngIntElt, RngIntElt, RngIntElt, RngIntElt> ]

Chien

   ChienChoyCode(P, G, n, S) : RngUPolElt, RngUPolElt, RngIntElt, FldFin -> Code

ChienChoyCode

   ChienChoyCode(P, G, n, S) : RngUPolElt, RngUPolElt, RngIntElt, FldFin -> Code

Children

   ProfilePrintChildrenByCount(G, n): GrphDir, GrphVert ->
   ProfilePrintChildrenByTime(G, n): GrphDir, GrphVert ->

Chinese

   ChineseRemainderTheorem(I1, L1, e1, L2) : RngOrdIdl, [RngIntElt], RngOrdElt, [RngIntElt] -> RngOrdElt
   CRT(I1, L1, e1, L2) : RngOrdIdl, [RngIntElt], RngOrdElt, [RngIntElt] -> RngOrdElt
   ChineseRemainderTheorem(I1, I2, e1, e2) : RngFunOrdIdl, RngFunOrdIdl, RngFunOrdElt, RngFunOrdElt -> RngFunOrdElt
   ChineseRemainderTheorem(I, J, a, b) : RngInt, RngInt, RngIntElt, RngIntElt -> RngIntElt
   ChineseRemainderTheorem(I1, I2, e1, e2) : RngOrdIdl, RngOrdIdl, RngOrdElt, RngOrdElt -> RngOrdElt
   ChineseRemainderTheorem(X, N) : [RngIntElt], [RngIntElt] -> RngIntElt
   ChineseRemainderTheorem(X, M) : [RngUPolElt], [RngUPolElt] -> RngUPolElt

ChineseRemainderTheorem

   ChineseRemainderTheorem(I1, L1, e1, L2) : RngOrdIdl, [RngIntElt], RngOrdElt, [RngIntElt] -> RngOrdElt
   CRT(I1, L1, e1, L2) : RngOrdIdl, [RngIntElt], RngOrdElt, [RngIntElt] -> RngOrdElt
   ChineseRemainderTheorem(I1, I2, e1, e2) : RngFunOrdIdl, RngFunOrdIdl, RngFunOrdElt, RngFunOrdElt -> RngFunOrdElt
   ChineseRemainderTheorem(I, J, a, b) : RngInt, RngInt, RngIntElt, RngIntElt -> RngIntElt
   ChineseRemainderTheorem(I1, I2, e1, e2) : RngOrdIdl, RngOrdIdl, RngOrdElt, RngOrdElt -> RngOrdElt
   ChineseRemainderTheorem(X, N) : [RngIntElt], [RngIntElt] -> RngIntElt
   ChineseRemainderTheorem(X, M) : [RngUPolElt], [RngUPolElt] -> RngUPolElt

Cholesky

   Cholesky(L, K) : Lat, FldRe -> AlgMatElt
   Orthonormalize(L, K) : Lat, FldRe -> AlgMatElt
   Orthonormalize(M, K) : MtrxSpcElt, Fld -> AlgMatElt

Choy

   ChienChoyCode(P, G, n, S) : RngUPolElt, RngUPolElt, RngIntElt, FldFin -> Code

Chromatic

   ChromaticIndex(G) : GrphUnd -> RngIntElt
   ChromaticNumber(G) : GrphUnd -> RngIntElt
   ChromaticPolynomial(G) : GrphUnd -> RngUPolElt

ChromaticIndex

   ChromaticIndex(G) : GrphUnd -> RngIntElt

ChromaticNumber

   ChromaticNumber(G) : GrphUnd -> RngIntElt
   Graph_ChromaticNumber (Example H149E15)

ChromaticPolynomial

   ChromaticPolynomial(G) : GrphUnd -> RngUPolElt

cInvariants

   cInvariants(E) : CrvEll -> [ RngElt ]
   cInvariants(model) : ModelG1 -> [ RngElt ]

Circle

   HasAllRootsOnUnitCircle(f) : RngUPolElt -> BoolElt
   IsometricCircle(g) : GrpPSL2Elt -> RngElt, RngElt
   IsometricCircle(g,D) : GrpPSL2Elt, SpcHyd -> RngElt, RngElt

circuit

   Connectedness (GRAPHS)
   Distances, Paths and Circuits in a Graph (GRAPHS)
   Distances, Paths and Circuits in a Non-Weighted Graph (GRAPHS)
   Distances, Paths and Circuits in a Possibly Weighted Graph (GRAPHS)

Circulant

   BorderedDoublyCirculantQRCode(p, a, b) : RngIntElt, RngElt, RngElt -> Code
   DoublyCirculantQRCode(p) : RngIntElt -> Code
   DoublyCirculantQRCodeGF4(m, a) : RngIntElt, RngElt -> Code

Class

   BrauerClass(M) : ModSym -> SeqEnum
   CalculateCanonicalClass(~g) : GrphRes ->
   CanonicalClass(g) : GrphRes -> SeqEnum
   CanonicalClass(X) : TorVar -> DivTorElt
   Class(G, H) : GrpFin, GrpFin -> { GrpFin }
   Class(H, x) : GrpFin, GrpFinElt -> { GrpFinElt }
   Class(H, x) : GrpMat, GrpMatElt -> { GrpMatElt }
   Class(H, g) : GrpPC, GrpPCElt -> { GrpPCElt }
   Class(H, x) : GrpPerm, GrpPermElt -> { GrpPermElt }
   ClassCentraliser(G, i) : GrpMat, RngIntElt -> GrpMat
   ClassCentraliser(G, i) : GrpPerm, RngIntElt -> GrpPerm
   ClassField(m, G) : Map, GrpAb -> FldAb
   ClassFunctionSpace(G) : Grp -> AlgChtr
   ClassGroup(C) : Crv[FldFin] -> GrpAb, Map, Map
   ClassGroup(K) : FldQuad -> GrpAb, Map
   ClassGroup(Q) : FldRat -> GrpAb, Map
   ClassGroup(K: parameters) : FldAlg -> GrpAb, Map
   ClassGroup(F : parameters) : FldFun -> GrpAb, Map, Map
   ClassGroup(F : parameters) : FldFunG -> GrpAb, Map, Map
   ClassGroup(Q: parameters) : QuadBin -> GrpAb, Map
   ClassGroup(O: parameters) : RngOrd -> GrpAb, Map
   ClassGroup(O) : RngFunOrd -> GrpAb, Map, Map
   ClassGroup(Z) : RngInt -> GrpAb, Map
   ClassGroupAbelianInvariants(C) : Crv[FldFin] -> [RngIntElt]
   ClassGroupAbelianInvariants(F : parameters) : FldFun -> SeqEnum
   ClassGroupAbelianInvariants(F : parameters) : FldFunG -> SeqEnum
   ClassGroupAbelianInvariants(O) : RngFunOrd -> SeqEnum
   ClassGroupCyclicFactorGenerators(O) : RngOrd -> ModHomElt
   ClassGroupExactSequence(F) : FldFunG -> Map, Map, Map
   ClassGroupExactSequence(O) : RngFunOrd -> Map, Map, Map
   ClassGroupGenerationBound(F) : FldFunG -> RngIntElt
   ClassGroupGenerationBound(q, g) : RngIntElt, RngIntElt -> RngIntElt
   ClassGroupGetUseMemory(O) : RngOrd -> BoolElt
   ClassGroupPRank(C) : Crv[FldFin] -> RngIntElt
   ClassGroupPRank(F) : FldFunG -> RngIntElt
   ClassGroupPRank(F) : FldFunG -> RngIntElt
   ClassGroupPrimeRepresentatives(O, I) : RngOrd, RngOrdIdl -> Map
   ClassGroupSetUseMemory(O, f) : RngOrd, BoolElt ->
   ClassGroupStructure(Q: parameters) : QuadBin -> [ RngIntElt ]
   ClassInvariants(G, g) : GrpMat, GrpMatElt -> .
   ClassMap(G) : GrpMat -> Map
   ClassMap(G) : GrpPC -> Map
   ClassMap(G: parameters) : GrpFin -> Map
   ClassMap(G: parameters) : GrpPerm -> Map
   ClassNumber(C) : Crv[FldFin] -> RngIntElt
   ClassNumber(F) : FldFun -> RngIntElt
   ClassNumber(F) : FldFunG -> RngIntElt
   ClassNumber(K) : FldQuad -> RngIntElt
   ClassNumber(K: parameters) : FldAlg -> RngIntElt
   ClassNumber(Q: parameters) : QuadBin -> RngIntElt
   ClassNumber(O: parameters) : RngOrd -> RngIntElt
   ClassNumber(O) : RngFunOrd -> RngIntElt
   ClassNumberApproximation(F, e) : FldFunG, FldReElt -> FldReElt
   ClassNumberApproximationBound(q, g, e) : RngIntElt, RngIntElt, RngIntElt, -> RngIntElt
   ClassPowerCharacter(x, j) : AlgChtrElt, RngIntElt -> AlgChtrElt
   ClassRepresentative(G, x) : GrpFin, GrpFinElt -> GrpFinElt
   ClassRepresentative(G, x) : GrpMat, GrpMatElt -> GrpMatElt
   ClassRepresentative(G, x) : GrpPC, GrpPCElt -> GrpPCElt
   ClassRepresentative(G, x) : GrpPerm, GrpPermElt -> GrpPermElt
   ClassRepresentative(I) : RngInt -> RngInt
   ClassRepresentative(I) : RngOrdFracIdl -> RngOrdFracIdl
   ClassRepresentativeFromInvariants(G, p, h, t) : GrpMat, SeqEnum, SeqEnum, FldFinElt -> GrpMatElt
   ClassTwo(p, d : parameters) : RngIntElt, RngIntElt -> SeqEnum
   CohomologyClass(alpha) : OneCoC -> SetIndx[OneCoC]
   CompleteClassGroup(O) : RngOrd ->
   ConditionalClassGroup(K) : FldAlg -> GrpAb, Map
   ConditionalClassGroup(O) : RngOrd -> GrpAb, Map
   ConjugationClassLength(l) : SeqEnum -> RngIntElt
   Degree(I) : RngFunOrdIdl -> RngIntElt
   DivisorClassGroup(C) : RngCox -> TorLat
   DivisorClassLattice(C) : RngCox -> TorLat
   DivisorClassLattice(X) : TorVar -> TorLat
   EvaluateClassGroup(O) : RngOrd -> BoolElt
   ExtendedCohomologyClass(alpha) : OneCoC -> SetEnum[OneCoC]
   HasParallelClass(D) : Inc -> BoolElt, { IncBlk }
   HilbertClassField(K) : FldAlg -> FldAb
   HilbertClassField(K, p) : FldFun, PlcFunElt -> FldFunAb
   HilbertClassPolynomial(D) : RngIntElt -> RngUPolElt
   HilbertClassPolynomial(D) : RngIntElt -> RngUPolElt
   InertiaDegree(P) : PlcFunElt -> RngIntElt
   IsParallelClass(D, B, C) : Inc, IncBlk, IncBlk -> BoolElt, { IncBlk }
   KacMoodyClass(C) : AlgMatElt -> MonStgElt, ModMatRngElt
   NextClass(~P : parameters) : GrpPCpQuotientProc ->
   NilpotencyClass(G) : GrpFin -> RngIntElt
   NilpotencyClass(G) : GrpGPC -> RngIntElt
   NilpotencyClass(G) : GrpMat -> RngIntElt
   NilpotencyClass(G) : GrpPC -> RngIntElt
   NilpotencyClass(G) : GrpPerm -> RngIntElt
   PCClass(x) : GrpPCElt -> RngIntElt
   ParallelClass(P, l) : Plane, PlaneLn -> { PlaneLn }
   PicardClass(D) : DivTorElt -> TorLatElt
   QuadraticClassGroupTwoPart(K) : FldQuad -> GrpAb, Map
   RayClassField(D) : DivNumElt -> FldAb
   RayClassField(m) : Map -> FldAb
   RayClassGroup(D) : DivFunElt -> GrpAb, Map
   RayClassGroup(D) : DivNumElt -> GrpAb, Map
   RayClassGroup(I) : RngOrdIdl -> GrpAb, Map
   RayClassGroupDiscLog(y, D) : DivFunElt, DivFunElt -> GrpAbElt
   ResidueClassField(P) : PlcCrvElt -> Rng
   ResidueClassField(P) : PlcFunElt -> Rng, Map
   ResidueClassField(P) : PlcNumElt -> Fld
   ResidueClassField(P) : PlcNumElt -> Fld
   ResidueClassField(I) : Rng -> Fld, Map
   ResidueClassField(I) : RngFunOrdIdl -> Rng, Map
   ResidueClassField(L) : RngLocA -> Rng, Map
   ResidueClassField(O, I) : RngOrd, RngOrdIdl -> FldFin, Map
   ResidueClassField(L) : RngPad -> FldFin, Map
   ResidueClassField(R) : RngSer -> Rng, Map
   ResidueClassField(E) : RngSerExt -> FldFin
   ResidueClassRing(m) : RngIntElt -> RngIntRes
   ResidueClassRing(Q) : RngIntEltFact -> RngIntRes
   RevertClass(~P) : GrpPCpQuotientProc ->
   RingClassGroup(O) : RngOrd -> GrpAb, Map
   SetClassGroupBoundMaps(f1, f2) : Map, Map ->
   SetClassGroupBounds(n) : Any ->
   StartNewClass(~P: parameters) : GrpPCpQuotientProc ->
   SteinitzClass(M) : ModDed -> RngOrdIdl
   SzClassMap(G) : GrpMat -> Map
   SzClassRepresentative(G, g) : GrpMat, GrpMatElt -> GrpMatElt, GrpMatElt
   TwoSidedIdealClassGroup(S : Support) : AlgAssVOrd -> GrpAb, Map
   WeberClassPolynomial(D) : RngIntElt -> RngUPolElt
   WeberClassPolynomial(D) : RngIntElt -> RngUPolElt, FldFunRatUElt
   WeberToHilbertClassPolynomial(f,D) : RngUPolElt, RngIntElt -> RngUPolElt
   WeilToClassGroupsMap(C) : RngCox -> Map

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Wed Apr 24 15:09:57 EST 2013