[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: Subsets .. Sum
Subsets(S) : SetEnum -> SetEnum
Subsets(S) : SetEnum -> SetEnum
Subsets(S, k) : SetEnum, RngIntElt -> SetEnum
Subsets(S, k) : SetEnum, RngIntElt -> SetEnum
Subsets of a Finite Set (ENUMERATIVE COMBINATORICS)
BrandtModuleDimensionOfNewSubspace(D, N) : RngElt, RngElt -> RngIntElt
BrandtModule(M, N) : AlgQuatOrd, RngElt -> ModBrdt
BrandtModuleDimension(D, N) : RngElt, RngElt -> RngIntElt
ConeQuotientByLinearSubspace(C) : TorCon -> TorCon,Map,Map
CuspidalSubspace(M) : ModBrdt -> ModBrdt
CuspidalSubspace(M) : ModFrm -> ModFrm
CuspidalSubspace(M) : ModSS -> ModSS
CuspidalSubspace(M) : ModSym -> ModSym
DihedralSubspace(M) : ModFrm -> ModFrm
EisensteinSubspace(M) : ModBrdt -> ModBrdt
EisensteinSubspace(M) : ModFrm -> ModFrm
EisensteinSubspace(M) : ModSS -> ModSS
EisensteinSubspace(M) : ModSym -> ModSym
FixedSubspaceToPolyhedron(G) : GrpMat -> TorPol
IsomorphicProjectionToSubspace(X) : Sch -> Sch, MapSch
IsotropicSubspace(f) : RngMPolElt -> ModTupRng
LinearSubspaceGenerators(C) : TorCon -> SeqEnum
MaximalTotallyIsotropicSubspace(V) : ModTupFld -> ModTupFld
MaximalTotallySingularSubspace(V) : ModTupFld -> ModTupFld
NewSubspace(M) : ModFrm -> ModFrm
NewSubspace(M) : ModFrmHil -> ModFrmHil
NewSubspace(M, p) : ModSym, RngIntElt -> ModSym
NewSubspace(M) : ModSym-> ModSym
TraceZeroSubspace(O) : AlgAssVOrd -> SeqEnum
ZeroSubspace(M) : ModFrm -> ModFrm
Construction of Subspaces (VECTOR SPACES)
Operations on Subspaces (VECTOR SPACES)
Subspaces, Quotient Spaces and Homomorphisms (VECTOR SPACES)
The Code Space (ADDITIVE CODES)
The Code Space (LINEAR CODES OVER FINITE FIELDS)
Subspaces, Quotient Spaces and Homomorphisms (VECTOR SPACES)
ModFld_Subspace1 (Example H28E8)
ModFld_Subspace2 (Example H28E9)
ModFrm_Subspaces (Example H132E12)
ModSym_Subspaces (Example H133E11)
Creation of Subspaces (HILBERT MODULAR FORMS)
Subspaces (ALGEBRAIC FUNCTION FIELDS)
Subspaces (MODULAR FORMS)
Subspaces (MODULAR SYMBOLS)
Subspaces (SUPERSINGULAR DIVISORS ON MODULAR CURVES)
Substitute(u, f, n, v) : GrpFPElt, RngIntElt, RngIntElt, GrpFPElt -> GrpFPElt
Substitute(u, f, n, v) : SgpFPElt, RngIntElt, SgpFPElt, RngIntElt -> SgpFPElt
Substring(s, n, k) : MonStgElt, RngIntElt, RngIntElt -> MonStgElt
LieReps_SubSU (Example H104E21)
Subalgebras of su(d) (REPRESENTATIONS OF LIE GROUPS AND ALGEBRAS)
Lat_SubSuperQuo (Example H30E5)
IndivisibleSubsystem(R) : RootSys -> RootSys
SubsystemSubgroup(G, s) : GrpLie, SeqEnum -> RootDtm
SubsystemSubgroup(G, a) : GrpLie, SetEnum -> RootDtm
K subset L : LinearSys,LinearSys -> BoolElt
Scheme_subsystems (Example H112E53)
SubsystemSubgroup(G, s) : GrpLie, SeqEnum -> RootDtm
SubsystemSubgroup(G, a) : GrpLie, SetEnum -> RootDtm
DefinesAbelianSubvariety(A, V) : ModAbVar, ModTupFld -> BoolElt, ModAbVar
NewSubvariety(A) : ModAbVar -> ModAbVar, MapModAbVar
NewSubvariety(A, r) : ModAbVar, RngIntElt -> ModAbVar, MapModAbVar
OldSubvariety(A) : ModAbVar -> ModAbVar, MapModAbVar
OldSubvariety(A, r) : ModAbVar, RngIntElt -> ModAbVar, MapModAbVar
ZeroSubvariety(A) : ModAbVar -> ModAbVar
SubWeights(D, Q, S) : LieRepDec, SeqEnum, RootDtm -> LieRepDec
Subword(u, f, n) : GrpFPElt, RngIntElt, RngIntElt -> GrpFPElt
Subword(u, f, n) : SgpFPElt, RngIntElt, RngIntElt -> SgpFPElt
SuccessiveMinima(L) : Lat -> [ RngIntElt ], [ LatElt ]
SuccessiveMinima(L) : Lat -> [ RngIntElt ], [ LatElt ]
SuggestedPrecision(f) : RngUPolElt -> RngIntElt
SuggestedPrecision(f) : RngUPolElt[RngLocA] -> RngIntElt
SuggestedPrecision(f) : RngUPolElt -> RngIntElt
SuggestedPrecision(f) : RngUPolElt[RngLocA] -> RngIntElt
DirectSum(R1, R2) : RootDtm, RootDtm -> RootDtm
R1 + R2 : RootDtm, RootDtm -> RootDtm
R1 + R2 : RootSys, RootSys -> RootSys
L + M : TorLat,TorLat -> TorLat,TorLatMap,TorLatMap,TorLatMap,TorLatMap
AdditiveZeroSumCode(F, K, n) : FldFin, FldFin, RngIntElt -> Code
AlternatingSum(m, i) : Map, RngIntElt -> FldReElt
AlternatingWeylSum(R, v) : RootDtm, ModTupRngElt -> LieRepDec
BQPlotkinSum(D, E, F) : Code, Code, Code -> Code
BQPlotkinSum(A, B, C) : Mtrx, Mtrx, Mtrx -> Mtrx
DiagonalSum(t1, t2) : Tbl,Tbl -> Tbl
DirectSum(A, B) : AlgGen, AlgGen -> AlgGen
DirectSum(L, M) : AlgLie, AlgLie -> AlgLie
DirectSum(R, T) : AlgMat, AlgMat -> AlgMat
DirectSum(a, b) : AlgMatElt, AlgMatElt -> AlgMatElt
DirectSum(C, D) : Code, Code -> Code
DirectSum(C, D) : Code, Code -> Code
DirectSum(C, D) : Code, Code -> Code
DirectSum(Q1, Q2) : CodeQuantum, CodeQuantum -> CodeQuantum
DirectSum(A, B) : GrpAb, GrpAb -> GrpAb
DirectSum(L, M) : Lat, Lat -> Lat
DirectSum(A, B) : ModAbVar, ModAbVar -> ModAbVar, List, List
DirectSum(U, V) : ModAlg, ModAlg -> SeqEnum
DirectSum(ρ, τ) : ModAlg, ModAlg -> SeqEnum
DirectSum(ρ, τ) : ModAlg, ModAlg -> SeqEnum
DirectSum(C, D) : ModCpx, ModCpx -> ModCpx
DirectSum(M, N) : ModGrp, ModGrp -> ModGrp, Map, Map, Map, Map
DirectSum(M, N) : ModMPol, ModMPol -> ModMPol, [ModMPolHom], [ModMPolHom]
DirectSum(M, N) : ModRng, ModRng -> ModRng, Map, Map, Map, Map
DirectSum(M, N) : ModRng, ModRng -> ModRng, Map, Map, Map, Map
DirectSum(D1, D2) : PhiMod, PhiMod -> PhiMod
DirectSum(Q): SeqEnum -> ModAlg, SeqEnum, SeqEnum
DirectSum(S, T) : ShfCoh, ShfCoh -> ShfCoh
DirectSum(Q) : [ ModGrp ] -> [ ModGrp ], [ Map ], [ Map ]
DirectSum(Q) : [ ModRng ] -> ModRng, [ Map ], [ Map ]
DirectSum(Q) : [ ModRng ] -> [ ModRng ], [ Map ], [ Map ]
DirectSum(Q) : [Code] -> Code
DirectSum(Q) : [Code] -> Code
DirectSum(X) : [ModAbVar] -> ModAbVar, List, List
DirectSum(S) : [ModMPol] -> ModMPol, [ModMPolHom], [ModMPolHom]
DirectSumDecomposition(A) : AlgAssV -> [ AlgAssV ], [ AlgAssVElt ]
DirectSumDecomposition(ρ) : Map[AlgLie, AlgMatLie] -> SeqEnum
DirectSumDecomposition(ρ) : Map[GrpLie, GrpMat] -> SeqEnum
DirectSumDecomposition(V) : ModAlg -> SeqEnum
DirectSumDecomposition(M) : ModRng -> [ ModRng ]
DirectSumDecomposition(R) : RootDtm -> [], RootDtm, Map
DirectSumDecomposition(R) : RootSys -> []
DoublePlotkinSum(E, F, G, H) : Code, Code, Code, Code -> Code
DoublePlotkinSum(A, B, C, D) : Mtrx, Mtrx, Mtrx, Mtrx -> Mtrx
ElementaryToPowerSumMatrix(n): RngIntElt -> AlgMatElt
ExponentSum(w, x) : GrpFPElt, GrpFPElt -> RngIntElt
HasHomogeneousBasis(A): AlgSym -> BoolElt
HomogeneousToPowerSumMatrix(n): RngIntElt -> AlgMatElt
IndecomposableSummands(L) : AlgLie -> [ AlgLie ]
InfiniteSum(m, i) : Map, RngIntElt -> FldReElt
IsDirectSum(L) : TorLat -> BoolElt
MonomialToPowerSumMatrix(n): RngIntElt -> AlgMatElt
OrthogonalSum(V, W) : ModTupFld, ModTupFld) -> ModTupFld
PlotkinSum(C, D) : Code, Code -> Code
PlotkinSum(C, D) : Code, Code -> Code
PlotkinSum(C1, C2) : Code, Code -> Code
PlotkinSum(C1, C2) : Code, Code -> Code
PlotkinSum(A, B) : Mtrx, Mtrx -> Mtrx
PlotkinSum(C1, C2, C3: parameters) : Code, Code, Code -> Code
PlotkinSum(C1, C2, C3: parameters) : Code,Code,Code -> Code
PositiveSum(m, i) : Map, RngIntElt -> FldReElt
PowerSumToElementaryMatrix(n): RngIntElt -> AlgMatElt
PowerSumToElementarySymmetric(I) : [] -> []
PowerSumToHomogeneousMatrix(n): RngIntElt -> AlgMatElt
PowerSumToMonomialMatrix(n): RngIntElt -> AlgMatElt
PowerSumToSchurMatrix(n): RngIntElt -> AlgMatElt
QuaternaryPlotkinSum(C, D) : Code, Code -> Code
QuaternaryPlotkinSum(A, B) : Mtrx, Mtrx -> Mtrx
SchurToPowerSumMatrix(n): RngIntElt -> AlgMatElt
Sum(W, r, s) : GrpPermCox, RngIntElt, RngIntElt -> RngIntElt
Sum(R, r, s) : RootDtm, RngIntElt, RngIntElt -> RngIntElt
Sum(R, r, s) : RootSys, RngIntElt, RngIntElt -> RngIntElt
Sum(Q) : [ Inc ] -> Inc
SumNorm(f) : RngMPolElt -> RngIntElt
SumNorm(p) : RngUPolElt -> RngIntElt
SumOf(X) : [ModAbVar] -> ModAbVar
SumOfBettiNumbersOfSimpleModules(A, n) : AlgBas, RngIntElt -> RngIntElt
SumOfDivisors(n) : RngIntElt -> RngIntElt
SumOfImages(phi, psi) : MapModAbVar, MapModAbVar -> ModAbVar, MapModAbVar, List
SumOfMorphismImages(X) : List -> ModAbVar, MapModAbVar, List
ZeroSumCode(R, n) : FldFin, RngIntElt -> Code
ZeroSumCode(R, n) : Rng, RngIntElt -> Code
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012