[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: SubgroupConstructions  ..  subgroups


SubgroupConstructions

   GrpFP_1_SubgroupConstructions (Example H70E55)
   GrpPerm_SubgroupConstructions (Example H58E17)

SubgroupCreation

   GrpAb_SubgroupCreation (Example H69E8)

SubgroupDB

   LieReps_SubgroupDB (Example H104E20)

SubgroupLattice

   SubgroupLattice(G) : GrpFin -> SubGrpLat
   SubgroupLattice(G) : GrpPC -> SubGrpLat

SubgroupOfTorus

   SubgroupOfTorus(M, x) : ModSym, ModSymElt -> RngIntElt
   SubgroupOfTorus(M, s) : ModSym, SeqEnum -> GrpAb

SubgroupOps

   GrpFP_1_SubgroupOps (Example H70E57)

Subgroups

   CyclicSubgroups(G) : GrpPC -> SeqEnum
   ElementaryAbelianSubgroups(G) : GrpPC -> SeqEnum
   NilpotentSubgroups(G) : GrpPC -> SeqEnum
   AbelianSubgroups(G) : GrpPC -> SeqEnum
   AbelianSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
   AbelianSubgroups(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
   CyclicSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
   CyclicSubgroups(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
   ElementaryAbelianSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
   ElementaryAbelianSubgroups(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
   IrreducibleSolubleSubgroups(n, q) : RngIntElt, RngIntElt -> SeqEnum
   IrreducibleSubgroups(n, q) : RngIntElt, RngIntElt -> SeqEnum
   LMGMaximalSubgroups(G) : GrpMat -> SeqEnum
   LiEMaximalSubgroups() : -> SeqEnum
   LowIndexNormalSubgroups(G, n: parameters) : GrpFP, RngIntElt -> [ Rec ]
   LowIndexSubgroups(G, R : parameters) : GrpFP, RngIntElt -> [ GrpFP ]
   LowIndexSubgroups(G, R : parameters) : GrpMat, RngIntElt -> [ GrpMat ]
   LowIndexSubgroups(G, n: parameters) : GrpPerm, RngIntElt -> SeqEnum
   MaximalSubgroups(G) : GrpAb -> [GrpAb]
   MaximalSubgroups(G) : GrpPC -> [GrpPC]
   MaximalSubgroups(G) : MonStgElt -> SeqEnum[MonStgElt]
   MaximalSubgroups(G, str : parameters) : Grp, MonStgElt -> BoolElt, SeqEnum, SeqEnum
   MaximalSubgroups(G: parameters) : GrpMat -> [ rec< GrpMat, RngIntElt, RngIntElt, GrpFP> ]
   MaximalSubgroups(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
   MaximalSubgroups(e) : SubGrpLatElt -> { SubGrpLatElt }
   MaximalSubgroupsData (str : parameters) : MonStgElt -> SeqEnum
   MinimalNormalSubgroups(G) : GrpPC -> [GrpPC]
   MinimalNormalSubgroups(G) : GrpPerm -> [ GrpPerm ]
   NilpotentSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
   NilpotentSubgroups(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
   NonsolvableSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
   NonsolvableSubgroups(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
   NormalSubgroups(G) : GrpFin -> [ Rec ]
   NormalSubgroups(G) : GrpPC -> SeqEnum
   NormalSubgroups(G) : GrpPerm -> [ Rec ]
   NormalSubgroups(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
   NumberOfSubgroupsAbelianPGroup (A) : SeqEnum -> SeqEnum
   OneParameterSubgroupsLattice(C) : RngCox -> TorLat
   OneParameterSubgroupsLattice(X) : TorVar -> TorLat
   PerfectSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
   PerfectSubgroups(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
   ReeMaximalSubgroups(G) : GrpMat -> SeqEnum, SeqEnum
   ReeMaximalSubgroupsConjugacy(G, R, S) : GrpMat, GrpMat, GrpMat -> GrpMatElt, GrpSLPElt
   RegularSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
   SimpleSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
   SimpleSubgroups(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
   SolubleSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
   SolvableSubgroups(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
   SubgroupClasses(G) : GrpPC -> SeqEnum
   SubgroupClasses(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
   SubgroupClasses(G: parameters) : GrpMat -> [ rec< GrpMat, RngIntElt, RngIntElt, GrpFP> ]
   SubgroupClasses(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
   Subgroups(G, str : parameters) : Grp, MonStgElt -> BoolElt, SeqEnum
   Subgroups(G:parameters) : GrpAb -> [Rec]
   SubgroupsData(str) : MonStgElt -> SeqEnum
   SubgroupsLift(G, A, B, Q: parameters) : GrpMat, GrpMat, GrpMat, SeqEnum -> SeqEnum
   SubgroupsLift(G, A, B, Q: parameters) : GrpPerm, GrpPerm, GrpPerm, SeqEnum -> SeqEnum
   SuzukiMaximalSubgroups(G) : GrpMat -> SeqEnum, SeqEnum
   SuzukiMaximalSubgroupsConjugacy(G, R, S) : GrpMat, GrpMat, GrpMat -> GrpMatElt, GrpSLPElt
   GrpAb_Subgroups (Example H69E13)
   GrpMatGen_Subgroups (Example H59E13)
   GrpPerm_Subgroups (Example H58E19)
   Grp_Subgroups (Example H57E19)

subgroups

   Abelian Normal Subgroups (PERMUTATION GROUPS)
   Characteristic Subgroups (FINITE SOLUBLE GROUPS)
   Classes of Subgroups Satisfying a Condition (PERMUTATION GROUPS)
   Congruence Subgroups (CONGRUENCE SUBGROUPS OF PSL2(R))
   Conjugacy of Subgroups of the Classical Groups (ALMOST SIMPLE GROUPS)
   Irreducible Subgroups of the General Linear Group (ALMOST SIMPLE GROUPS)
   Lattice of Normal Subgroups (PERMUTATION GROUPS)
   Maximal and Minimal Normal Subgroups (PERMUTATION GROUPS)
   Reflection Subgroups (COXETER GROUPS)
   Subgroups (FINITE SOLUBLE GROUPS)
   Subgroups (MATRIX GROUPS OVER GENERAL RINGS)
   Sylow Subgroups (GROUPS OF LIE TYPE)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012