[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: orbit  ..  Order


orbit

   Action on Orbits (MATRIX GROUPS OVER GENERAL RINGS)
   Action on Orbits (PERMUTATION GROUPS)
   Images, Orbits and Stabilizers (PERMUTATION GROUPS)
   Orbit and Stabilizer Functions for Large Groups (MATRIX GROUPS OVER GENERAL RINGS)
   Orbits and Stabilizers (MATRIX GROUPS OVER GENERAL RINGS)

orbit-action

   Action on Orbits (MATRIX GROUPS OVER GENERAL RINGS)
   Action on Orbits (PERMUTATION GROUPS)

OrbitAction

   OrbitAction(G, T) : GrpMat, Elt -> Hom(Grp), GrpPerm, GrpMat
   OrbitAction(G, T) : GrpPerm, GSet -> Hom(Grp), GrpPerm, GrpPerm

OrbitActionBounded

   OrbitActionBounded(G, T, b) : GrpMat, Elt, RngIntElt -> BoolElt, Hom(Grp), GrpPerm, GrpMat

OrbitActions

   GrpPerm_OrbitActions (Example H58E26)

Orbital

   OrbitalGraph(P, u, T) : GrpPerm, RngIntElt, { RngIntElt } -> GrphUnd

OrbitalGraph

   OrbitalGraph(P, u, T) : GrpPerm, RngIntElt, { RngIntElt } -> GrphUnd

OrbitBounded

   OrbitBounded(G, y, b) : GrpMat, Elt, RngIntElt -> BoolElt, SetEnum

OrbitClosure

   OrbitClosure(G, M, S) : Grp, Any, Any -> Any
   OrbitClosure(G, S) : GrpMat, { Elt } -> GSet
   OrbitClosure(G, Y, S) : GrpPerm, GSet, { Elt } -> GSet

OrbitImage

   OrbitImage(G, T) : GrpMat, Set -> GrpPerm
   OrbitImage(G, T) : GrpPerm, GSet -> GrpPerm

OrbitImageBounded

   OrbitImageBounded(G, T, b) : GrpMat, Set, RngIntElt -> BoolElt, GrpPerm

OrbitKernel

   OrbitKernel(G, T) : GrpMat, Set -> GrpMat
   OrbitKernel(G, T) : GrpPerm, GSet -> GrpPerm

OrbitKernelBounded

   OrbitKernelBounded(G, T, b) : GrpMat, Set, RngIntElt -> BoolElt, GrpMat

OrbitRepresentatives

   OrbitRepresentatives(G) : GrpPerm -> SeqEnum

Orbits

   BasicOrbits(G) : GrpPerm -> [SetIndx]
   DistinguishedOrbitsOnSimples(R) : RootDtm -> SeqEnum[GSetEnum]
   GammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
   GammaOrbitsRepresentatives(R, delta) : RootDtm, RngIntElt -> SeqEnum
   LineOrbits(G) : GrpMat -> [ SetIndx ]
   NilpotentOrbits( L ) : AlgLie -> SeqEnum
   Orbits(G) : GrpMat -> [ SetIndx ]
   Orbits(A, Y) : GrpPerm, GSet -> [ GSet ]
   Orbits(G, Y) : GrpPerm, GSet -> [ GSet ]
   Orbits(G, Y) : GrpPerm, GSet -> [ GSet ]
   Orbits(G, Y) : GrpPerm, GSet -> [ GSet ]
   OrbitsOfSpaces(G, k) : GrpMat, RngIntElt -> SeqEnum
   OrbitsOnSimples(R) : RootDtm -> SeqEnum[GSetEnum]
   OrbitsPartition(G) : GrphUnd -> [ { GrphVert } ]
   ReducedOrbits(Q) : QuadBin -> [ {@ QuadBinElt @} ]
   GrpMatGen_Orbits (Example H59E17)

orbits

   Nilpotent Orbits in Simple Lie Algebras (LIE ALGEBRAS)

OrbitsOfSpaces

   OrbitsOfSpaces(G, k) : GrpMat, RngIntElt -> SeqEnum
   GrpMatGen_OrbitsOfSpaces (Example H59E18)
   GrpMatGen_OrbitsOfSpaces (Example H59E19)

OrbitsOnSimples

   OrbitsOnSimples(R) : RootDtm -> SeqEnum[GSetEnum]

OrbitsPartition

   OrbitsPartition(G) : GrphUnd -> [ { GrphVert } ]

ord

   Operations on Ideals (QUATERNION ALGEBRAS)

ord-ops

   Operations on Ideals (QUATERNION ALGEBRAS)

ord_creat_cyc

   AlgAss_ord_creat_cyc (Example H81E4)
   AlgAss_ord_creat_cyc (Example H81E5)

Order

   Order(J) : JacHyp -> RngIntElt
   # J : JacHyp -> RngIntElt
   # G: SchGrpEll -> RngIntElt
   # H : SetPtEll -> RngIntElt
   AbsoluteOrder(O) : RngFunOrd -> RngFunOrd
   AbsoluteOrder(O) : RngOrd -> RngOrd
   AdditiveOrder(G) : GrpLie -> SeqEnum
   AdditiveOrder(W) : GrpPermCox -> SeqEnum
   AdditiveOrder(R) : RootStr -> SeqEnum
   AdditiveOrder(R) : RootSys -> SeqEnum
   ApproximateOrder(x) : ModAbVarElt -> RngIntElt
   CentralOrder(g : parameters) : GrpMatElt -> RngIntElt, BoolElt
   ChangeOrder(I, order) : RngMPol, ..., -> RngMPol, Map
   ChangeOrder(I, Q) : RngMPol, RngMPol -> RngMPol, Map
   ChangeOrder(I, T) : RngMPol, Tup -> RngMPol
   ChangeOrder(I, order) : RngMPolLoc, ..., -> RngMPolLoc, Map
   ChangeOrder(I, Q) : RngMPolLoc, RngMPolLoc -> RngMPolLoc, Map
   ChevalleyOrderPolynomial(type, n: parameters) : MonStgElt, RngIntElt -> RngUPolElt
   ComponentGroupOrder(A, p) : ModAbVar, RngIntElt -> RngIntElt
   ComponentGroupOrder(M, p) : ModSym, RngIntElt -> RngIntElt
   CompositionTreeOrder(G) : Grp -> RngIntElt
   CoxeterGroupOrder(C) : AlgMatElt -> .
   CoxeterGroupOrder(M) : AlgMatElt -> .
   CoxeterGroupOrder(D) : GrphDir -> .
   CoxeterGroupOrder(G) : GrphUnd -> .
   CoxeterGroupOrder(N) : MonStgElt -> .
   CoxeterGroupOrder(R) : RootStr -> RngIntElt
   CoxeterGroupOrder(R) : RootSys -> RngIntElt
   CyclotomicOrder(K) : FldCyc -> RngIntElt
   ECMOrder(p, s) : RngIntElt, RngIntElt -> RngIntElt
   EquationOrder(A) : FldAb -> RngOrd
   EquationOrder(K) : FldNum -> RngOrd
   EquationOrder(F) : FldQuad -> RngQuad
   EquationOrder(O) : RngFunOrd -> RngFunOrd
   EquationOrder(O) : RngOrd -> RngOrd
   EquationOrder(f) : RngUPolElt -> RngOrd
   EquationOrderFinite(F) : FldFun -> RngFunOrd
   EquationOrderInfinite(F) : FldFun -> RngFunOrd
   FactoredChevalleyGroupOrder(type, n, F: parameters) : MonStgElt, RngIntElt, FldFin -> RngIntEltFact
   FactoredOrder(A) : AlgMatElt -> [ <RngIntElt, RngIntElt> ]
   FactoredOrder(a) : AlgMatElt -> [ <RngIntElt, RngIntElt> ]
   FactoredOrder(a) : FldFinElt -> RngIntElt
   FactoredOrder(G) : GrpAb -> [<RngIntElt, RngIntElt>]
   FactoredOrder(A) : GrpAutCrv -> [ <RngIntElt, RngIntElt> ]
   FactoredOrder(A) : GrpAuto -> [ <RngIntElt, RngIntElt> ]
   FactoredOrder(G) : GrpFin -> [ <RngIntElt, RngIntElt> ]
   FactoredOrder(G) : GrpGPC -> [<RngIntElt, RngIntElt>]
   FactoredOrder(G) : GrpLie -> RngIntElt
   FactoredOrder(G) : GrpMat -> [ <RngIntElt, RngIntElt> ]
   FactoredOrder(g) : GrpMatElt -> [ <RngIntElt, RngIntElt> ], BoolElt
   FactoredOrder(G) : GrpPC -> [<RngIntElt, RngIntElt>]
   FactoredOrder(P) : GrpPCpQuotientProc -> [ <RngIntElt, RngIntElt> ]
   FactoredOrder(G) : GrpPerm -> [ <RngIntElt, RngIntElt> ]
   FactoredOrder(J) : JacHyp -> [ <RngIntElt, RngIntElt> ]
   FactoredOrder(P) : PtEll -> RngIntElt
   FactoredOrder(G) : SchGrpEll -> RngIntElt
   FactoredOrder(H) : SetPtEll -> RngIntElt
   FactoredProjectiveOrder(a) : AlgMatElt -> [ <RngIntElt, RngIntElt> ]
   FactoredProjectiveOrder(A) : AlgMatElt -> [ <RngIntElt, RngIntElt> ], RngElt
   FactoredProjectiveOrder(A) : AlgMatElt -> [ <RngIntElt, RngIntElt> ], RngElt
   GeneratorOrder(G) : GrpAtc -> SeqEnum
   GroupOfLieTypeFactoredOrder(R, q) : RootDtm, RngElt -> RngIntElt
   GroupOfLieTypeOrder(R, q) : RootDtm, RngElt -> RngIntElt
   HasFiniteOrder(g) : GrpMatElt -> BoolElt, RngIntElt
   HasFiniteOrder(A) : Mtrx -> BoolElt
   HasFiniteOrder (g : parameters ) : GrpMatElt -> BoolElt, RngIntElt
   HasGrevlexOrder(I) : RngMPol -> BoolElt
   HasOrder(P, n) : JacHypPt, RngIntElt -> BoolElt
   IsAbsoluteOrder(O) : RngFunOrd -> BoolElt
   IsAbsoluteOrder(O) : RngOrd -> BoolElt
   IsAdditiveOrder(R, Q) : RootStr, [RngIntElt] -> BoolElt
   IsAdditiveOrder(R, Q) : RootSys, [RngIntElt] -> BoolElt
   IsEquationOrder(O) : RngFunOrd -> BoolElt
   IsEquationOrder(O) : RngOrd -> BoolElt
   IsFiniteOrder(O) : RngFunOrd -> BoolElt
   IsOrder(P, m) : PtEll, RngIntElt -> BoolElt
   IsOrderTerm(s) : RngDiffElt -> BoolElt
   IsolOrder(n, p, i) : RngIntElt, RngIntElt, RngIntElt -> RngIntElt
   LMGFactoredOrder(G) : GrpMat[FldFin] -> SeqEnum
   LeftOrder(I) : AlgAssVOrdIdl[RngOrd] -> AlgAssVOrd
   LeftOrder(I) : AlgQuatOrdIdl -> AlgQuatOrd
   MaximalOrder(A) : AlgAssV[FldRat] -> AlgAssVOrd
   MaximalOrder(O) : AlgQuatOrd -> AlgQuat
   MaximalOrder(A) : AlgQuat[FldRat] -> AlgQuatOrd
   MaximalOrder(A) : FldAb -> RngOrd
   MaximalOrder(F) : FldAlg -> RngOrd
   MaximalOrder(F) : FldNum -> RngOrd
   MaximalOrder(F) : FldQuad -> RngQuad
   MaximalOrder(Q) : FldRat -> RngInt
   MaximalOrder(O) : RngFunOrd -> RngFunOrd
   MaximalOrder(O) : RngOrd -> RngOrd
   MaximalOrder(f) : RngUPolElt -> RngOrd
   MaximalOrderFinite(F) : FldFun -> RngFunOrd
   MaximalOrderFinite(A) : FldFunAb -> RngFunOrd
   MaximalOrderInfinite(F) : FldFun -> RngFunOrd
   MonomialOrder(P) : RngMPol -> Tup
   MonomialOrder(R) : RngMPolLoc -> Tup
   MonomialOrderWeightVectors(P) : RngMPol -> [ [ FldRatElt ] ]
   MonomialOrderWeightVectors(R) : RngMPol -> [ [ FldRatElt ] ]
   MultiplicativeOrder(gamma) : AlgAssVOrdElt -> SeqEnum
   Order(O, N) : AlgAssVOrd, RngOrdIdl -> AlgAssVOrd
   Order(I) : AlgAssVOrdIdl -> AlgAssVOrd
   Order(A, m, I) : AlgAssV[FldOrd], AlgMatElt[FldOrd], SeqEnum[RngOrdFracIdl] -> AlgAssVOrd
   Order(A, pm) : AlgAssV[FldOrd], PMat -> AlgAssVOrd
   Order(x) : AlgChtrElt -> RngIntElt
   Order(A) : AlgMatElt -> RngIntElt
   Order(a) : AlgMatElt -> RngIntElt
   Order(O, N) : AlgQuatOrd, RngElt -> AlgQuatOrd
   Order(D) : Dsgn -> RngIntElt
   Order(a) : FldFinElt -> RngIntElt
   Order(FF) : FldFunOrd -> RngFunOrd
   Order(F) : FldOrd -> RngOrd
   Order(G) : GrpAb -> RngIntElt
   Order(x) : GrpAbElt -> RngIntElt
   Order(A) : GrpAtlas -> RngIntElt
   Order(A) : GrpAutCrv -> RngIntElt
   Order(f) : GrpAutCrvElt -> RngIntElt
   Order(A) : GrpAuto -> RngIntElt
   Order(f) : GrpAutoElt -> RngIntElt
   Order(u) : GrpBBElt -> RngIntElt
   Order(G) : GrpDrch -> RngIntElt
   Order(chi) : GrpDrchElt -> RngIntElt
   Order(chi) : GrpDrchNFElt -> RngIntElt
   Order(g) : GrpElt -> RngIntElt
   Order(G) : GrpFin -> RngIntElt
   Order(G) : GrpGPC -> RngIntElt
   Order(x) : GrpGPCElt -> RngIntElt
   Order(G) : Grph -> RngIntElt
   Order(G) : GrphMult -> RngIntElt
   Order(G) : GrpLie -> RngIntElt
   Order(G) : GrpMat -> RngIntElt
   Order(g) : GrpMatElt -> RngIntElt, BoolElt
   Order(G) : GrpMatUnip -> RngIntElt
   Order(G) : GrpPC -> RngIntElt
   Order(x) : GrpPCElt -> RngIntElt
   Order(P) : GrpPCpQuotientProc -> RngIntElt
   Order(G) : GrpPerm -> RngIntElt
   Order(g) : GrpPermElt -> RngIntElt
   Order(G) : GrpRWS -> RngIntElt
   Order(G) : GrpRWS -> RngIntElt
   Order(P) : JacHypPt -> RngIntElt
   Order(P, l, u, n, m) : JacHypPt, RngIntElt, RngIntElt ,RngIntElt, RngIntElt -> RngIntElt
   Order(P, l, u) : JacHypPt, RngIntElt, RngIntElt -> RngIntElt
   Order(x) : ModAbVarElt -> RngIntElt
   Order(G) : ModAbVarSubGrp -> RngIntElt
   Order(M) : MonRWS -> RngIntElt
   Order(x) : NfdElt -> RngIntElt
   Order(g: parameters) : GrpAbGenElt -> RngIntElt
   Order(g, l, u, n, m: parameters) : GrpAbGenElt, RngIntElt, RngIntElt ,RngIntElt, RngIntElt -> RngIntElt
   Order(g, l, u: parameters) : GrpAbGenElt, RngIntElt, RngIntElt -> RngIntElt
   Order(G: parameters) : GrpFP -> RngIntElt
   Order(G : parameters) : GrpMat -> RngIntElt
   Order(P) : Plane -> RngIntElt
   Order(pm) : PMat -> Rng
   Order(P) : PtEll -> RngIntElt
   Order(f) : QuadBinElt -> RngIntElt
   Order(R, S) : Rng, SeqEnum[AlgAssVElt] -> AlgAssVOrd
   Order(L) : RngDiffOpElt -> RngIntElt
   Order(O, T, d) : RngFunOrd, AlgMatElt, RngElt -> RngFunOrd
   Order(O, M) : RngFunOrd, ModDed -> RngFunOrd
   Order(O, S) : RngFunOrd, [FldFunElt] -> RngFunOrd
   Order(I) : RngFunOrdIdl -> RngFunOrd
   Order(a) : RngIntResElt -> RngIntElt
   Order(O, T, d) : RngOrd, AlgMatElt, RngIntElt -> RngOrd
   Order(O, M) : RngOrd, ModDed -> RngOrd
   Order(I) : RngOrdFracIdl -> RngOrd
   Order(s) : RngPowAlgElt -> RngIntElt
   Order(S) : SeqEnum[AlgAssVElt[FldAlg]] -> AlgAssVOrd
   Order(S, I) : SeqEnum[AlgAssVElt[FldAlg]], SeqEnum[RngOrdFracIdl] -> AlgAssVOrd
   Order(H, r) : SetPtEll, RngIntElt -> RngIntElt
   Order(e) : SubGrpLatElt -> RngIntElt
   Order( [ e1, ... en ] ): [FldAlgElt] -> RngOrd
   OrderAutomorphismGroupAbelianPGroup (A) : SeqEnum -> RngIntElt
   OrderOfRootOfUnity(r, n) : RngElt, RngIntElt -> RngIntElt
   OuterOrder(A) : GrpAuto -> RngIntElt
   ProjectiveOrder(a) : AlgMatElt -> RngIntElt
   ProjectiveOrder(A) : AlgMatElt -> RngIntElt, RngElt
   ProjectiveOrder(g) : GrpMatElt -> RngIntElt, RngElt
   QuadraticOrder(Q) : QuadBin -> RngQuad
   QuaternionOrder(A, M) : AlgQuat[FldRat], RngIntElt -> AlgQuatOrd
   QuaternionOrder(G) : GrpPSL2 -> AlgQuatOrd
   QuaternionOrder(M) : ModBrdt -> AlgQuatOrd
   QuaternionOrder(M) : ModFrmHil -> AlgAssVOrd
   QuaternionOrder(R, S) : Rng, [AlgQuatElt] -> AlgQuatOrd
   QuaternionOrder(N) : RngIntElt -> AlgQuatOrd
   QuaternionOrder(D1, D2, T) : RngIntElt, RngIntElt, RngIntElt -> AlgQuat
   QuaternionOrder(S) : [AlgQuatElt] -> AlgQuatOrd
   RandomElementOfOrder(G, n : parameters) : GrpMat, RngIntElt-> BoolElt, GrpMatElt, GrpSLPElt, BoolElt
   RightOrder(I) : AlgQuatOrdIdl -> AlgQuatOrd
   SetOrderMaximal(O, b) : RngFunOrd, BoolElt ->
   SetOrderMaximal(O, b) : RngOrd, BoolElt ->
   SetOrderTorsionUnit(O, e, r) : RngOrd, RngOrdElt, RngIntElt ->
   SetOrderUnitsAreFundamental(O) : RngOrd ->
   SubOrder(O) : RngFunOrd -> RngFunOrd
   SubOrder(O) : RngOrd -> RngOrd
   TameOrder(A) : AlgQuat[FldAlg] -> AlgAssVOrd
   TwistedTorusOrder(R, w) : RootDtm, GrpPermElt -> SeqEnum
   WeakOrder(L) : RngDiffOpElt -> RngIntElt
   pMaximalOrder(O, p) : AlgQuatOrd, RngElt -> AlgQuatOrd, RngIntElt
   pMaximalOrder(O, p) : RngFunOrd, RngFunOrdIdl -> RngFunOrd
   pMaximalOrder(O, p) : RngFunOrd, RngFunOrdIdl -> RngFunOrd
   pMaximalOrder(O, p) : RngOrd, RngIntElt -> RngOrd
   CrvEllFldFin_Order (Example H121E2)
   GB_Order (Example H105E1)
   GrpAtc_Order (Example H75E5)
   GrpMatGen_Order (Example H59E11)
   GrpMatGen_Order (Example H59E9)
   GrpRWS_Order (Example H74E6)
   Grp_Order (Example H57E14)
   RngMPolLoc_Order (Example H107E1)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012