[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: autogp-elts  ..  Automorphism


autogp-elts

   GrpAuto_autogp-elts (Example H67E5)

autogp-full

   GrpAuto_autogp-full (Example H67E1)

autogp-order

   GrpAuto_autogp-order (Example H67E2)

autogp-rep1

   GrpAuto_autogp-rep1 (Example H67E3)

autogp-rep2

   GrpAuto_autogp-rep2 (Example H67E4)

AutoL19

   GLat_AutoL19 (Example H31E3)

Automatic

   IsAutomaticGroup(F: parameters) : GrpFP -> BoolElt, GrpAtc
   AutomaticGroup(F: parameters) : GrpFP -> GrpAtc
   AutomaticGroup(F: parameters) : GrpFP -> GrpAtc

automatic

   Automatic Coercion (INTRODUCTION TO RINGS [BASIC RINGS])
   AUTOMATIC GROUPS

AutomaticGroup

   IsAutomaticGroup(F: parameters) : GrpFP -> BoolElt, GrpAtc
   AutomaticGroup(F: parameters) : GrpFP -> GrpAtc
   AutomaticGroup(F: parameters) : GrpFP -> GrpAtc
   GrpAtc_AutomaticGroup (Example H75E1)

AutomaticGroup-3

   GrpAtc_AutomaticGroup-3 (Example H75E2)

AutomaticGroup-4

   GrpAtc_AutomaticGroup-4 (Example H75E3)

Automaton

   WordDifferenceAutomaton(G) : GrpAtc -> Rec

automorphic

   ADMISSIBLE REPRESENTATIONS OF GL2(Qp)

automorphic-representations

   ADMISSIBLE REPRESENTATIONS OF GL2(Qp)

Automorphism

   Frobenius Homomorphism (SYMMETRIC FUNCTIONS)
   AntiAutomorphismTau(U) : AlgQUE -> Map
   Automorphism(C, a) : CrvCon, AlgQuatElt -> MapIsoSch
   Automorphism(E, [r, s, t, u]) : CrvEll, SeqEnum -> Map
   Automorphism(C, S, T) : CrvRat, SetIndx, SetIndx -> MapIsoSch
   Automorphism(m) : Map -> GrpLieAutoElt
   Automorphism(P,F) : Prj, SeqEnum -> MapSch
   Automorphism(A,p) : Sch, RngMPolElt -> IsoSch
   Automorphism(A,M) : Sch,Mtrx -> MapIsoSch
   Automorphism(P,M) : Sch,Mtrx -> MapSch
   Automorphism(X,F) : Sch,SeqEnum -> MapAutSch
   Automorphism(A,F) : Sch,SeqEnum -> MapSch
   AutomorphismGroup(A) : AlgBas -> GrpMat, SeqEnum, SeqEnum, SeqEnum
   AutomorphismGroup(C) : CodeAdd -> GrpPerm
   AutomorphismGroup(Q) : CodeQuantum -> GrpPerm
   AutomorphismGroup(C) : Crv -> GrpAutCrv
   AutomorphismGroup(C,auts) : Crv, SeqEnum -> GrpAutCrv
   AutomorphismGroup(E) : CrvEll -> Grp, Map
   AutomorphismGroup(C) : CrvHyp -> GrpPerm, Map, Map
   AutomorphismGroup(A) : FldAb -> GrpFP, [Map], Map
   AutomorphismGroup(F) : FldAlg -> GrpPerm, PowMap, Map
   AutomorphismGroup(K, F) : FldAlg, FldAlg -> GrpPerm, PowMap, Map
   AutomorphismGroup(K, k) : FldFin, FldFin -> GrpPerm, [Map], Map
   AutomorphismGroup(K, k) : FldFun, FldFunG -> GrpFP, Map
   AutomorphismGroup(K) : FldFunG -> GrpFP, Map
   AutomorphismGroup(K,f) : FldFunG, Map -> Grp, Map, SeqEnum
   AutomorphismGroup(Q) : FldRat -> GrpPerm, PowMapAut, Map
   AutomorphismGroup(G): Grp -> GrpAuto
   AutomorphismGroup(G, Q, I): Grp, SeqEnum[GrpElt], SeqEnum[SeqEnum[GrpElt]] -> GrpAuto
   AutomorphismGroup(G) : GrpAb -> GrpAuto
   AutomorphismGroup(G) : GrpLie -> GrpLieAuto
   AutomorphismGroup(G): GrpPC -> GrpAuto
   AutomorphismGroup(D) : Inc -> GrpPerm, GSet, GSet, PowMap, Map
   AutomorphismGroup(D) : IncGeom -> GrpPerm
   AutomorphismGroup(L) : Lat -> GrpMat
   AutomorphismGroup(L, F) : Lat, [ AlgMatElt ] -> GrpMat
   AutomorphismGroup(M) : ModRng -> GrpMat
   AutomorphismGroup(M) : Mtrx -> GrpPerm
   AutomorphismGroup(G) : Mtrx[RngUPol] -> GrpMat, FldFin
   AutomorphismGroup(N) : NfdDck -> GrpPerm, Map
   AutomorphismGroup(C: parameters) : Code -> GrpPerm, PowMap, Map
   AutomorphismGroup(G : parameters) : Grph -> GrpPerm, GSet, GSet, PowMap, Map, Grph
   AutomorphismGroup(G: parameters) : GrpMat -> GrpAuto
   AutomorphismGroup(G: parameters) : GrpPerm -> GrpAuto
   AutomorphismGroup(G: parameters): GrpPC -> GrpAuto
   AutomorphismGroup(P) : Prj -> GrpMat,Map
   AutomorphismGroup(L) : RngLocA -> Grp, Map
   AutomorphismGroup(L) : RngPad -> GrpPerm, Map
   AutomorphismGroup(K, k) : RngPad, RngPad -> GrpPerm, Map
   AutomorphismGroup(P) : TorPol -> GrpMat
   AutomorphismGroup(F) : [ AlgMatElt ] -> GrpMat
   AutomorphismGroupMatchingIdempotents(A) : AlgBas -> AlgBas, ModMatFldElt
   AutomorphismGroupOverCyclotomicExtension(CN,N,n): Crv, RngIntElt, RngIntElt -> GrpAutCrv
   AutomorphismGroupOverExtension(CN,N,n,u): Crv, RngIntElt, RngIntElt, RngElt -> GrpAutCrv
   AutomorphismGroupOverQ(CN,N): Crv, RngIntElt -> GrpAutCrv
   AutomorphismGroupSolubleGroup(G: parameters): GrpPC -> GrpAuto
   AutomorphismGroupStabilizer(C, k) : Code, RngIntElt -> GrpPerm, PowMap, Map
   AutomorphismGroupStabilizer(D, k) : Inc, RngIntElt -> GrpPerm, PowMap, Map
   AutomorphismOmega(U) : AlgQUE -> Map
   AutomorphismSubgroup(C) : Code -> GrpPerm, PowMap, Map
   AutomorphismSubgroup(D) : Inc -> GrpPerm, PowMap, Map
   AutomorphismTalpha(U, k) : AlgQUE, RngIntElt -> Map
   BarAutomorphism(U) : AlgQUE -> Map
   CollineationGroup(P) : Plane -> GrpPerm, GSet, GSet, PowMap, Map
   CyclotomicAutomorphismGroup(K) : FldCyc -> GrpAb, Map
   DecomposeAutomorphism(h) : GrpLieAutoElt -> GrpLieAutoElt, GrpLieAutoElt,GrpLieAutoElt, Rec
   DiagonalAutomorphism(L, v) : AlgLie, ModTupRngElt -> Map
   DiagonalAutomorphism(G, v) : GrpLie, ModTupRngElt -> Map
   DiagramAutomorphism(U, p) : AlgQUE, GrpPermElt -> Map
   DualityAutomorphism(G) : GrpLie -> GrpLieAutoElt
   ExtraAutomorphism(CN,N,u): Crv, RngIntElt, RngElt -> MapAutSch
   FieldAutomorphism(G, sigma) : GrpLie, Map -> Map
   FrobeniusAutomorphism(A, p) : FldAb, RngOrdIdl -> Map
   FrobeniusAutomorphism(L) : RngLocA -> Map
   GaloisGroup(K) : FldNum -> GrpPerm, [RngElt], GaloisData
   GeometricAutomorphismGroup(C) : CrvHyp -> GrpFP
   GeometricAutomorphismGroupFromShiodaInvariants(JI) : SeqEnum -> GrpPerm
   GeometricAutomorphismGroupGenus2Classification(F) : FldFin -> SeqEnum,SeqEnum
   GeometricAutomorphismGroupGenus3Classification(F) : FldFin -> SeqEnum,SeqEnum
   GradedAutomorphismGroup(A) : AlgBas -> GrpMat, SeqEnum[ModMatFldElt], SeqEnum[ModMatFldElt], SeqEnum[ModMatFldElt]
   GradedAutomorphismGroupMatchingIdempotents(A) : AlgBas -> GrpMat, SeqEnum, SecEnum
   GraphAutomorphism(L, p) : AlgLie, GrpPermElt -> Map
   GraphAutomorphism(G, p) : GrpLie, GrpPermElt -> Map
   HadamardAutomorphismGroup(H : parameters) : AlgMatElt -> AlgMatElt
   HermitianAutomorphismGroup(M) : Mtrx -> GrpMat
   IdentityAutomorphism(L) : AlgLie -> Map
   IdentityAutomorphism(G) : GrpLie -> GrpLieAutoElt
   IdentityAutomorphism(A) : Sch -> AutSch
   IdentityAutomorphism(X) : Sch -> MapAutSch
   IdentityMap(R) : RootDtm -> Map
   ImproveAutomorphismGroup(F, E) : FldAb, SeqEnum -> GrpFP, SeqEnum
   IncludeAutomorphism(~C, p) : Code, GrpPermElt ->
   InducedAutomorphism(r, h, c) : Map, Map, RngIntElt -> Map
   InnerAutomorphism(L, x) : AlgLie, GrpLieElt -> Map
   InnerAutomorphism(G, x) : GrpLie, GrpLieElt -> Map
   InnerAutomorphismGroup(L) : AlgLie -> GrpLie, Map
   IsAutomorphism(f) : MapSch -> BoolElt,AutSch
   IsSolubleAutomorphismGroupPGroup(A) : GrpAuto -> BoolElt
   KnownAutomorphismSubgroup(C) : Code -> GrpPerm
   NagataAutomorphism(A) : Aff -> MapSch
   OrderAutomorphismGroupAbelianPGroup (A) : SeqEnum -> RngIntElt
   PCGroupAutomorphismGroupPGroup(A) : GrpAuto -> BoolElt, Map, GrpPC
   PermutationAutomorphism(A, g) : Sch,GrpPermElt -> MapIsoSch
   ProbableAutomorphismGroup(A) : FldAb -> GrpFP, SeqEnum
   RandomAutomorphism(G) : GrpLie -> GrpLieAutoElt
   SrAutomorphism(CN,N,r,u): Crv, RngIntElt, RngIntElt, RngElt -> MapAutSch
   GrpLie_Automorphism (Example H103E18)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012