[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: transversal  ..  Triangular


transversal

   RightTransversal(G, H) : GrpMat, GrpMat -> {@ GrpMatElt @}, Map
   Coset Tables and Transversals (MATRIX GROUPS OVER GENERAL RINGS)

TransversalElt

   TransversalElt(W, H, x) : GrpPermCox, GrpPermCox, GrpPermElt -> GrpPermElt
   TransversalElt(W, H, x, J) : GrpPermCox, GrpPermCox, GrpPermElt, GrpPermCox -> GrpPermElt
   TransversalElt(W, x, H) : GrpPermCox, GrpPermElt, GrpPermCox -> GrpPermElt

TransversalProcess

   TransversalProcess(G, H) : GrpPerm, GrpPerm -> GrpPermTransProc

TransversalProcessNext

   TransversalProcessNext(P) : GrpPermTransProc -> GrpPermElt

TransversalProcessRemaining

   TransversalProcessRemaining(P) : GrpPermTransProc -> RngIntElt

Transversals

   GrpCox_Transversals (Example H98E25)

transversals

   Coset Tables and Transversals (FINITE SOLUBLE GROUPS)
   Cosets and Transversals (PERMUTATION GROUPS)
   Transversals (PERMUTATION GROUPS)

TransversalWords

   TransversalWords(W, H) : GrpPermCox, GrpPermCox -> @ @

Transverse

   CalculateTransverseIntersections(~g) : GrphRes ->
   IsTransverse(C,D,p) : Sch,Sch,Pt -> BoolElt
   ModifyTransverseIntersection(~v,n) : GrphResVert,RngIntElt ->
   TransverseIndex(C) : GRCrvS -> RngIntElt
   TransverseIntersections(g) : GrphRes -> SeqEnum
   TransverseType(C) : GRCrvS -> GRPtS

TransverseIndex

   TransverseIndex(C) : GRCrvS -> RngIntElt

TransverseIntersections

   TransverseIntersections(g) : GrphRes -> SeqEnum

TransverseType

   TransverseType(C) : GRCrvS -> GRPtS

trap

   Traps for Young Players (MAGMA SEMANTICS)

trap1

   Trap 1 (MAGMA SEMANTICS)

trap2

   Trap 2 (MAGMA SEMANTICS)

Trapezoidal

   TrapezoidalQuadrature(f, a, b, n) : Program, FldReElt, FldReElt, RngIntElt -> FldReElt

TrapezoidalQuadrature

   TrapezoidalQuadrature(f, a, b, n) : Program, FldReElt, FldReElt, RngIntElt -> FldReElt

Trasformation

   HadamardTrasformation(e) : HilbSpcElt -> HilbSpcElt

Tree

   BFSTree(u) : GrphVert -> Grph
   BreadthFirstSearchTree(u) : GrphVert -> Grph, GrphVertSet, GrphEdgeSet
   BreadthFirstSearchTree(u) : GrphVert -> GrphMult, GrphVertSet, GrphEdgeSet
   CleanCompositionTree(G) : Grp ->
   CompositionTree(G : parameters) : GrpMat[FldFin] -> []
   CompositionTreeCBM(G) : GrpMat[FldFin -> GrpMatElt
   CompositionTreeElementToWord(G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt
   CompositionTreeFactorNumber(G, g) : Grp, GrpElt -> RngIntElt
   CompositionTreeFastVerification(G) : Grp -> BoolElt
   CompositionTreeNiceGroup(G) : Grp -> GrpMat[FldFin]
   CompositionTreeNiceToUser(G) : Grp -> Map, []
   CompositionTreeOrder(G) : Grp -> RngIntElt
   CompositionTreeReductionInfo(G, t) : Grp, RngIntElt -> MonStgElt,Grp, Grp
   CompositionTreeSLPGroup(G) : Grp -> GrpSLP, Map
   CompositionTreeSeries(G) : Grp -> SeqEnum, List, List, List, BoolElt, []
   CompositionTreeVerify(G) : Grp -> BoolElt, []
   DepthFirstSearchTree(u) : GrphVert -> Grph, GrphVertSet, GrphEdgeSet, SeqEnum
   DepthFirstSearchTree(u) : GrphVert -> GrphMult, GrphVertSet, GrphEdgeSet, SeqEnum
   DisplayCompTreeNodes(G : parameters) : Grp ->
   HasCompositionTree(G) : Grp -> BoolElt
   IrreducibleSimpleSubalgebraTreeSU(Q, d) : SeqEnum[SeqEnum[Tup]], RngIntElt -> GrphDir
   IsPathTree(B) : AlgBas -> Bool
   IsRootedTree(G) : GrphDir -> BoolElt, GrphVert
   IsTree(G) : Grph -> BoolElt
   MinimumWeightTree(u : parameters) : GrphVert -> SeqEnum
   PathTree(B, i) : AlgBas, RngIntElt -> ModRng
   RandomTree(n : parameters) : RngIntElt -> GrphUnd
   SpanningTree(G) : GrphMultUnd -> GrphMultUnd, GrphVertSet, GrphEdgeSet
   SpanningTree(G) : GrphUnd -> Grph, GrphVertSet, GrphEdgeSet

tree

   Composition Trees for Matrix Groups (MATRIX GROUPS OVER FINITE FIELDS)
   Directed Trees (GRAPHS)
   Spanning Trees (MULTIGRAPHS)
   Spanning Trees of a Graph or Digraph (GRAPHS)

Trees

   PrintTreesSU(Q, F) : SeqEnum[SeqEnum[Tup]], MonStgElt ->

Trial

   TrialDivision(n) : RngIntElt -> RngIntEltFact, [ RngIntElt ]
   TrialDivision(n, B) : RngQuadElt, RngIntElt -> SeqEnum, SeqEnum, Tup

TrialDivision

   TrialDivision(n) : RngIntElt -> RngIntEltFact, [ RngIntElt ]
   TrialDivision(n, B) : RngQuadElt, RngIntElt -> SeqEnum, SeqEnum, Tup

Triangle

   AdmissableTriangleGroups() : -> SeqEnum
   ArithmeticTriangleGroup(p,q,r) : RngIntElt, RngIntElt, RngIntElt -> GrpPSL2, Rng
   IsTriangleGroup(G) : GrpPSL2 -> BoolElt
   PascalTriangle(D) : Dsgn -> SeqEnum
   ReduceToTriangleVertices(G,z) : GrpPSL2, SpcHypElt -> SpcHypElt

triangle

   Triangle Groups (ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES)

triangle-groups

   Triangle Groups (ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES)

Triangle239CMPoints1

   GrpPSL2Shim_Triangle239CMPoints1 (Example H131E9)

Triangle239CMPoints2

   GrpPSL2Shim_Triangle239CMPoints2 (Example H131E10)

Triangular

   IsLowerTriangular(A) : Mtrx -> BoolElt
   IsLowerTriangular(A) : MtrxSprs -> BoolElt
   IsUpperTriangular(A) : Mtrx -> BoolElt
   IsUpperTriangular(A) : MtrxSprs -> BoolElt
   LowerTriangularMatrix(R, Q) : Rng, [ RngElt ] -> Mtrx
   LowerTriangularMatrix(Q) : [ RngElt ] -> Mtrx
   TriangularDecomposition(I) : RngMPol -> [ RngMPol ], BoolElt
   TriangularGraph(n) : RngIntElt -> GrphUnd
   UpperTriangularMatrix(R, Q) : Rng, [ RngElt ] -> Mtrx
   UpperTriangularMatrix(Q) : [ RngElt ] -> Mtrx

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012