[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: makenewdb  ..  Map


makenewdb

   Making New Databases (HILBERT SERIES OF POLARISED VARIETIES)

MakePCMap

   MakePCMap(A, P, S) : Aff, Prj, SeqEnum ->
   MakeProjectiveClosureMap(A, P, S) : Aff,Prj,SeqEnum ->

MakeProjectiveClosureMap

   MakePCMap(A, P, S) : Aff, Prj, SeqEnum ->
   MakeProjectiveClosureMap(A, P, S) : Aff,Prj,SeqEnum ->

MakeResolutionGraph

   MakeResolutionGraph(g,s,t) : GrphDir,SeqEnum,SeqEnum -> GrphRes
   MakeResolutionGraph(N) : NwtnPgon -> GrphRes

MakeSpliceDiagram

   MakeSpliceDiagram(g,e,a) : GrphDir,SeqEnum,SeqEnum -> GrphSpl
   MakeSpliceDiagram(e,l,a) : SeqEnum,SeqEnum,SeqEnum -> GrphSpl

MakeType

   MakeType(S) : MonStgElt -> Cat

Manifold

   Manifold(D, i) : DB, RngIntElt -> Rec
   ManifoldDatabase() : -> DB

ManifoldDatabase

   ManifoldDatabase() : -> DB

manifolds

   Basic Functions (DATABASES OF GROUPS)
   Fundamental Groups of 3-Manifolds (DATABASES OF GROUPS)
   GrpData_manifolds (Example H66E24)

Manin

   ConvertFromManinSymbol(M, x) : ModSym, Tup -> ModSymElt
   ManinConstant(E) : CrvEll[FldRat] -> RngIntElt
   ManinSymbol(x) : ModSymElt -> SeqEnum

ManinConstant

   ManinConstant(E) : CrvEll[FldRat] -> RngIntElt

ManinSymbol

   ManinSymbol(x) : ModSymElt -> SeqEnum

manipulation

   Manipulation of Quantum States (QUANTUM CODES)

Mantissa

   MantissaExponent(r) : FldReElt -> FldReElt, RngIntElt

MantissaExponent

   MantissaExponent(r) : FldReElt -> FldReElt, RngIntElt

Map

   AffineAlgebraMapKernel(phi) : Map -> MPol
   AlgebraMap(f) : MapSch -> Map
   ArtinMap(A) : FldAb -> Map
   ArtinSchreierMap(W) : RngWitt -> Map
   AugmentationMap(A) : AlgGrp -> Map
   BoundaryMap(C, n) : ModCpx, RngIntElt -> ModMatRngElt
   BoundaryMap(M) : ModSym -> ModMatFldElt
   CanonicalMap(C) : Crv -> MapSch
   ChainMap(Q, C, D, n) : SeqEnum, ModCpx, ModCpx, RngIntElt -> MapChn
   ClassMap(G) : GrpMat -> Map
   ClassMap(G) : GrpPC -> Map
   ClassMap(G: parameters) : GrpFin -> Map
   ClassMap(G: parameters) : GrpPerm -> Map
   CoboundaryMapImage(M, i, c) : ModCoho, RngIntElt, UserProgram -> UserProgram
   CocycleMap(alpha) : OneCoC -> Map
   CoefficientMap(L) : LinearSys -> ModTupFldElt
   CohomologyElementToChainMap(P, d, n) : ModCpx ,RngIntElt, RngIntElt -> MapChn
   CohomologyElementToCompactChainMap(PR, d, n): Rec, RngIntElt, RngIntElt -> ModMatFldElt
   CohomologyGeneratorToChainMap(P,Q,C,n) : ModCpx, ModCpx, Rec, RngIntElt -> MapChn
   CohomologyGeneratorToChainMap(P, C, n) : ModCpx, Tup, RngIntElt -> MapChn
   ConstantMap(X,Y,p) : Sch,Sch,Pt -> MapSch
   CorestrictionMapImage(G, C, c, i) : Grp, ModCoho, UserProgram, RngIntElt -> UserProgram
   DefiningMap(L) : RngPad -> Map
   DegeneracyMap(M1, M2, d) : ModSym, ModSym, RngIntElt -> Map
   DegreeMap(M : parameters) : ModSym -> [ Tup ], Fld
   DescentMaps(phi) : Map -> Map, Map
   DivisorMap(D) : DivCrvElt -> MapSch
   DivisorMap(S) : ShfCoh -> Map,Sch
   EmbeddingMap(F, L): FldAlg, FldAlg -> Map
   EmbeddingMap(F, L): FldNum, FldNum -> Map
   EmbeddingMap(e) : SubFldLatElt -> Map
   FrobeniusMap(E) : CrvEll -> Map
   FrobeniusMap(E, i) : CrvEll, RngIntElt -> Map
   FrobeniusMap(G,q) : GrpLie, RngIntElt -> GrpLieAutoElt
   FrobeniusMap(W) : RngWitt -> Map
   Genus2GonalMap(C) : Crv -> MapSch
   Genus3GonalMap(C) : Crv -> RngIntElt, MapSch
   Genus4GonalMap(C) : Crv -> RngIntElt, MapSch
   Genus5GonalMap(C) : Crv -> RngIntElt, MapSch, Crv, UserProgram
   Genus6GonalMap(C) : Crv -> RngIntElt, RngIntElt, MapSch, MapSch
   GenusAndCanonicalMap(C) : Crv -> RngIntElt, BoolElt, MapSch
   GrayMap(C) : Code -> Map
   GrayMapImage(C) : Code -> [ ModTupRngElt ]
   HasDefinedModuleMap(C,n) : ModCpx, RngIntElt -> BoolElt
   HasDefiningMap(L) : RngPad -> BoolElt, Map
   HasLinearGrayMapImage(C) : Code -> BoolElt, Code
   HighMap(Aoo,terms) : Rec, SeqEnum[RngElt] -> MapChn
   IdentityAutomorphism(X) : Sch -> MapAutSch
   IdentityMap(E) : CrvEll -> Map
   IdentityMap(A) : ModAbVar -> MapModAbVar
   IdentityMap(R) : RootDtm -> Map
   IdentityMap(X) : Sch -> MapSch
   IdentityMap(L) : TorLat -> TorLatMap
   IdentityMap(X) : TorVar -> TorMap
   InclusionMap(G, H) : GrpGPC, GrpGPC -> Map
   InclusionMap(G, H) : GrpPC, GrpPC -> Map
   InducedMap(m1, m2, h, c) : Map, Map, Map, RngIntElt -> Map
   InducedMapOnHomology(f, n) : MapChn, RngIntElt -> ModTupFldElt
   InflationMap(PR2, PR1, AC2, AC1, REL1, theta) : Rec, Rec, Rec, Rec, Rec -> SeqEnum
   InflationMapImage(M, c) : Map, UserProgram -> UserProgram
   InverseWordMap(G) : GrpMat -> Map
   InverseWordMap(G) : GrpPerm -> Map
   IsChainMap(L, C, D, n) : List, ModCpx, ModCpx, RngIntElt -> BoolElt
   IsChainMap(f) : MapChn -> BoolElt
   IsFanMap(F1,F2) : TorFan,TorFan -> BoolElt
   IsFanMap(F1,F2,f) : TorFan,TorFan,Map -> BoolElt
   IsProperChainMap(f) : MapChn -> BoolElt
   IsZeroMap(C, n) : ModCpx, RngIntElt -> BoolElt
   IsogenyMapOmega(I) : Map -> RngMPolElt
   IsogenyMapPhi(I) : Map -> RngUPolElt
   IsogenyMapPhiMulti(I) : Map -> RngUPolElt
   IsogenyMapPsi(I) : Map -> RngUPolElt
   IsogenyMapPsiMulti(I) : Map -> RngUPolElt
   IsogenyMapPsiSquared(I) : Map -> RngUPolElt
   LatticeMap(L,Q) : TorLat,[TorLatElt] -> TorLatMap
   LiftMap(m, R) : Map, RngDiffOp -> Map
   LocalTwoSelmerMap(P) : RngOrdIdl -> Map
   LocalTwoSelmerMap(A, P) : RngUPolRes, RngOrdIdl -> Map, SeqEnum
   MakeProjectiveClosureMap(A, P, S) : Aff,Prj,SeqEnum ->
   ModuleMap(f, n) : MapChn, RngIntElt -> ModMatRngElt
   NaturalMap(A, B) : ModAbVar, ModAbVar -> MapModAbVar
   NaturalMap(A, B, d) : ModAbVar, ModAbVar, RngIntElt -> MapModAbVar
   NegationMap(E) : CrvEll -> Map
   NumberingMap(G) : GrpAb -> Map
   NumberingMap(G) : GrpFin -> Map
   NumberingMap(G) : GrpMat -> Map
   NumberingMap(G) : GrpPC -> Map
   NumberingMap(G) : GrpPerm -> Map
   PolyMapKernel(f) : Map -> RngMPol
   PolynomialMap(L) : LinearSys -> RngMPolElt
   PowerMap(G) : GrpFin -> Map
   PowerMap(G) : GrpMat -> Map
   PowerMap(G) : GrpPC -> Map
   PowerMap(G) : GrpPerm -> Map
   PrincipalDivisorMap(F) : FldFunG -> Map
   PrincipalIdealMap(O) : RngFunOrd -> Map
   ProjectionMap(CN,N,CM,M) : Crv, RngIntElt, Crv, RngIntElt -> MapSch
   ProjectionMap(CN,N,CM,M,r) : Crv, RngIntElt, Crv, RngIntElt, RngIntElt -> MapSch
   ProjectiveClosureMap(A) : Aff -> MapSch
   ProjectiveMap(f, Y) : FldFunFracSchElt, Sch -> MapSch
   ProjectiveMap(L, Y) : [FldFunFracSchElt], Sch -> MapSch
   QuotientMap(Q1, Q2) : QuadBin, QuadBin -> Map
   RationalMap(i, t) : Map, Map -> Map
   RayLatticeMap(C) : RngCox -> Map
   ResolveFanMap(F1,F2) : TorFan,TorFan -> TorFan
   RestrictionChainMap(P1,P2) : Rec, Rec -> MapChn
   RestrictionMap(L) : AlgLie -> Map
   RingMap(P) : SetPt -> Map
   SPrincipalDivisorMap(S) : SetEnum[PlcFunElt] -> Map
   SchemeGraphMap(X, Y, I) : Sch, Sch, RngMPol -> MapSchGrph
   SchemeGraphMapToSchemeMap(f) : MapSchGrph -> MapSch
   SchemeMap(f) : GrpAutCrvElt -> MapAutSch
   SzClassMap(G) : GrpMat -> Map
   ToricVarietyMap(X,Y,f) : TorVar,TorVar,Map -> TorMap
   TranslationMap(E, P) : CrvEll, PtEll -> Map
   TranslationMap(R, e) : RngDiffOp, RngElt -> Map
   UniversalMap(C, S, [ n1, ..., nm ]) : Cop, Str, [ Map ] -> Map
   VerschiebungMap(W) : RngWitt -> Map
   WeilToClassGroupsMap(C) : RngCox -> Map
   WordMap(G) : GrpMatUnip -> Map
   ZeroChainMap(C, D) : ModCpx, ModCpx -> MapChn
   ZeroMap(A) : ModAbVar -> MapModAbVar
   ZeroMap(M, N) : ModAlg, ModAlg -> ModMatFld
   ZeroMap(L,K) : TorLat,TorLat -> TorLatMap
   hom< L -> K | M > : TorLat,TorLat,Mtrx -> TorLatMap
   CrvEll_Map (Example H120E19)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012