[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: isometry  ..  Isomorphism


isometry

   Intersections of Classical Groups (ALGEBRAS WITH INVOLUTION)
   Isometries (POLAR SPACES)

IsometryGroup

   IsometryGroup(V) : ModTupFld) -> GrpMat
   IsometryGroup(F : parameters) : AlgMatElt -> GrpMat
   IsometryGroup(S : parameters) : SeqEnum -> GrpMat
   AlgInv_IsometryGroup (Example H87E9)

isometrygroup

   FldForms_isometrygroup (Example H29E17)

isomor

   Automorphism Group and Isomorphism Testing (HYPERELLIPTIC CURVES)

isomor-check

   Automorphism Group and Isomorphism Testing (HYPERELLIPTIC CURVES)

Isomorphic

   IsAlgebraicallyIsomorphic(G, H) : GrpLie, GrpLie -> BoolElt, Map
   IsCoxeterIsomorphic(C1, C2) : AlgMatElt, AlgMatElt -> RngIntElt
   IsCoxeterIsomorphic(M1, M2) : AlgMatElt, AlgMatElt -> RngIntElt
   IsCoxeterIsomorphic(W1, W2) : GrpFPCox, GrpFPCox -> BoolElt
   IsCoxeterIsomorphic(W1, W2) : GrpMat, GrpMat -> BoolElt
   IsCoxeterIsomorphic(N1, N2) : MonStgElt, MonStgElt -> BoolElt
   IsGradedIsomorphic(A, B) : AlgBas, AlgBas -> Bool, ModMatFldElt
   IsIsometric(L, M) : Lat, Lat -> BoolElt, AlgMatElt
   IsIsometric(L, F1, M, F()2) : Lat, [ AlgMatElt ], Lat, [ AlgMatElt ] -> BoolElt, AlgMatElt
   IsIsometric(F1, F()2) : [ AlgMatElt ], [ AlgMatElt ] -> BoolElt, AlgMatElt
   IsIsomorphic(I, J) : AlgAssVOrdIdl, AlgAssVOrdIdl -> BoolElt, AlgAssVElt
   IsIsomorphic(A, B) : AlgBas, AlgBas -> Bool, Map
   IsIsomorphic(L, M) : AlgLie, AlgLie -> BoolElt, .
   IsIsomorphic(A, B) : AlgQuat, AlgQuat -> BoolElt, Map
   IsIsomorphic(S, T) : AlgQuatOrd, AlgQuatOrd -> BoolElt, Map, AlgQuatElt
   IsIsomorphic(A1, A2) : AnHcJac, AnHcJac -> Bool, Mtrx, Mtrx
   IsIsomorphic(C, D) : Crv, Crv -> BoolElt,MapSch
   IsIsomorphic(E, F) : CrvEll, CrvEll -> BoolElt, Map
   IsIsomorphic(C1, C2) : CrvHyp, CrvHyp -> BoolElt, MapIsoSch
   IsIsomorphic(F, L) : FldAlg, FldAlg -> BoolElt, Map
   IsIsomorphic(K, E) : FldFunG, FldFunG -> BoolElt, Map
   IsIsomorphic(F, L) : FldNum, FldNum -> BoolElt, Map
   IsIsomorphic(G, H) : GrpPC, GrpPC -> BoolElt, Map
   IsIsomorphic(W1, W2) : GrpPermCox, GrpPermCox -> BoolElt
   IsIsomorphic(A, B) : ModAbVar, ModAbVar -> BoolElt, MapModAbVar
   IsIsomorphic(M, N) : ModRng, ModRng -> BoolElt, AlgMatElt
   IsIsomorphic(M, N) : Mtrx, Mtrx -> BoolElt, GrpPermElt
   IsIsomorphic(N1, N2) : NfdDck, NfdDck -> BoolElt, Map
   IsIsomorphic(G, H : parameters ) : GrphDir, GrphDir -> BoolElt, Map
   IsIsomorphic(C, D: parameters) : Code, Code -> BoolElt, Map
   IsIsomorphic(G, H: parameters) : GrpMat, GrpMat -> BoolElt, Hom(Grp)
   IsIsomorphic(G, H: parameters) : GrpPerm, GrpPerm -> BoolElt, Hom(Grp)
   IsIsomorphic(D, E: parameters) : Inc, Inc -> BoolElt, Map
   IsIsomorphic(P, Q: parameters) : Plane, Plane -> BoolElt, Map
   IsIsomorphic(E, K) : RngPad, RngPad -> BooElt
   IsIsomorphic(f, g) : RngUPolElt, RngUPolElt -> BoolElt
   IsIsomorphic(R1, R2) : RootDtm, RootDtm -> BoolElt, [RngIntElt], Map
   IsIsomorphic(R1, R2) : RootSys, RootSys -> BoolElt
   IsIsomorphic(S, T) : ShfCoh, ShfCoh -> BoolElt, ShfHom
   IsIsomorphicBigPeriodMatrices(P1, P2) : Mtrx, Mtrx -> Bool, Mtrx, Mtrx
   IsIsomorphicCubicSurface(f,g) : MPolElt, MPolElt -> BoolElt, List
   IsIsomorphicOverQt(K, L) : FldFun, FldFun -> BoolElt, Map
   IsIsomorphicSmallPeriodMatrices(t1,t2) : Mtrx, Mtrx -> Bool, Mtrx
   IsIsomorphicSolubleGroup(G, H: parameters) : GrpPC, GrpPC -> BoolElt, Map
   IsKnownIsomorphic(L, M) : AlgLie, AlgLie -> BoolElt, BoolElt, .
   IsLeftIsomorphic(I, J) : AlgAssVOrdIdl[RngOrd], AlgAssVOrdIdl[RngOrd] -> BoolElt, AlgQuatElt
   IsLeftIsomorphic(I, J) : AlgQuatOrdIdl, AlgQuatOrdIdl -> BoolElt, Map, AlgQuatElt
   IsomorphicCopy(G : parameters) : GrpMat -> BoolElt, GrpMat, HomGrp
   IsomorphicProjectionToSubspace(X) : Sch -> Sch, MapSch
   AlgLie_Isomorphic (Example H100E27)

IsomorphicCopy

   IsomorphicCopy(G : parameters) : GrpMat -> BoolElt, GrpMat, HomGrp

IsomorphicG2

   AlgLie_IsomorphicG2 (Example H100E28)

IsomorphicProjectionToSubspace

   IsomorphicProjectionToSubspace(X) : Sch -> Sch, MapSch

Isomorphism

   Examples (QUATERNION ALGEBRAS)
   CanDetermineIsomorphism(A, B) : ModAbVar, ModAbVar -> BoolElt, BoolElt, MapModAbVar
   IsIsomorphism(I) : Map -> BoolElt, Map
   IsIsomorphism(f) : MapChn -> BoolElt
   IsIsomorphism(phi) : MapModAbVar -> BoolElt
   IsIsomorphism(f) : MapSch -> BoolElt, IsoSch
   IsIsomorphism(m) : Map[AlgLie, AlgLie] -> BoolElt
   Isomorphism(S, T) : AlgQuatOrd, AlgQuatOrd -> Map
   Isomorphism(E, F) : CrvEll, CrvEll -> Map
   Isomorphism(E, F, [r, s, t, u]) : CrvEll, CrvEll, SeqEnum -> Map
   Isomorphism(A, B, X, Y) : Grp, Grp, [ GrpElt ], [ GrpElt ] -> Map
   IsomorphismData(I) : Map -> [ RngElt ]
   IsomorphismToIsogeny(I) : Map -> Map
   IsomorphismToStandardCopy(G, str : parameters) : Grp, MonStgElt -> BoolElt, Map
   IsomorphismTypesOfBasicAlgebraSequence(S) : SeqEnum -> SeqEnum
   IsomorphismTypesOfRadicalLayers(M) : ModAlgBas -> SeqEnum
   IsomorphismTypesOfSocleLayers(M) : ModAlgBas -> SeqEnum
   LeftIsomorphism(I, J) : AlgQuatOrdIdl, AlgQuatOrdIdl -> Map, AlgQuatElt
   MatrixOfIsomorphism(f) : Map -> AlgMatElt
   RightIsomorphism(I, J) : AlgQuatOrdIdl, AlgQuatOrdIdl -> Map, AlgQuatElt
   SearchForIsomorphism(F, G, m : parameters) : GrpFP, GrpFP, RngIntElt -> BoolElt, HomGrp, HomGrp
   CrvEll_Isomorphism (Example H120E18)
   GrpMatGen_Isomorphism (Example H59E27)
   GrpRfl_Isomorphism (Example H99E15)
   RootSys_Isomorphism (Example H96E5)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012