[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: factorization  ..  Fan


factorization

   Factorization (QUADRATIC FIELDS)
   Factorization (UNIVARIATE POLYNOMIAL RINGS)
   Factorization and Irreducibility (MULTIVARIATE POLYNOMIAL RINGS)
   Factorization and Irreducibility (UNIVARIATE POLYNOMIAL RINGS)
   Factorization and Primes (ORDERS AND ALGEBRAIC FIELDS)
   Factorization Related Functions (RING OF INTEGERS)
   Factorization Sequences (RING OF INTEGERS)
   General Factorization (RING OF INTEGERS)
   Specific Factorization Algorithms (RING OF INTEGERS)
   The Factorization stage (RING OF INTEGERS)

factorization-general

   Factorisation(n) : RngIntElt -> RngIntEltFact, RngIntElt, SeqEnum
   General Factorization (RING OF INTEGERS)

factorization-irreducibility

   Factorization and Irreducibility (MULTIVARIATE POLYNOMIAL RINGS)
   Factorization and Irreducibility (UNIVARIATE POLYNOMIAL RINGS)

factorization-related

   Factorization Related Functions (RING OF INTEGERS)

factorization-sequence

   Factorization Sequences (RING OF INTEGERS)

factorization-specific

   Specific Factorization Algorithms (RING OF INTEGERS)

FactorizationOverSplittingField

   FactorisationOverSplittingField(f) : RngUPolElt[FldFin] -> [<RngUPolElt, RngIntElt>], FldFin
   FactorizationOverSplittingField(f) : RngUPolElt[FldFin] -> [<RngUPolElt, RngIntElt>], FldFin

FactorizationToInteger

   FactorizationToInteger(f) : RngIntEltFact -> RngIntElt
   Facint(f) : RngIntEltFact -> RngIntElt
   FactorizationToInteger(s) : [ <RngIntElt, RngIntElt> ] -> RngIntElt

Factors

   ChiefFactors(G) : GrpMat -> [ <RngIntElt, RngIntElt, RngIntElt, RngIntElt> ]
   ChiefFactors(G) : GrpPerm -> [ <RngIntElt, RngIntElt, RngIntElt, RngIntElt> ]
   CompositionFactors(G) : : GrpFin -> [ <RngIntElt, RngIntElt, RngIntElt> ]
   CompositionFactors(G) : : GrpMat -> [ <RngIntElt, RngIntElt, RngIntElt> ]
   CompositionFactors(A) : AlgGen -> [ AlgGen ]
   CompositionFactors(L) : AlgLie -> [ AlgLie ]
   CompositionFactors(G) : GrpPC -> SeqEnum
   CompositionFactors(G) : GrpPerm -> [ <RngIntElt, RngIntElt, RngIntElt> ]
   CompositionFactors(M) : ModRng -> [ ModRng ]
   CyclotomicFactors(R, n) : Rng, RngIntElt -> [RngUPolElt]
   GammaFactors(L) : LSer -> Seqenum
   GetStoredFactors() : -> [ RngIntElt ]
   InvariantFactors(a) : AlgMatElt -> [ AlgPolElt ]
   InvariantFactors(A) : Mtrx -> [ RngUPolElt ]
   JacobianOrdersByDeformation(Q, Y) : RngMPolElt, SeqEnum -> SeqEnum
   LMGChiefFactors(G) : GrpMat[FldFin] -> SeqEnum
   LMGCompositionFactors(G) : GrpMat[FldFin] -> SeqEnum
   LMGSocleStarFactors(G) : GrpMat -> SeqEnum, SeqEnum
   PrimaryInvariantFactors(a) : AlgMatElt -> [ <RngUPolElt, RngIntElt ]
   PrimaryInvariantFactors(A) : Mtrx -> [ <RngUPolElt, RngIntElt> ]
   ReflectionFactors(V, f) : ModTupFld, Mtrx) -> SeqEnum
   RightHandFactors(L) : RngDiffOpElt -> SeqEnum, SeqEnum[[BoolElt]]
   SocleFactors(G) : GrpPerm -> [ GrpPerm ]
   SocleFactors(M) : ModRng -> [ ModRng ]
   TensorFactors(G) : GrpMat -> GrpMat, GrpMat
   RngLoc_Factors (Example H47E21)

factors

   Composition and Chief Factors (MATRIX GROUPS OVER GENERAL RINGS)
   Right Hand Factors of Operators (DIFFERENTIAL RINGS)

factors-precision

   RngLoc_factors-precision (Example H47E20)

facts

   Ideals and Factorisations (SCHEMES)

Faithful

   IsFaithful(G, Y) : : GrpPerm, GSet -> BoolElt
   IsFaithful(x) : AlgChtrElt -> BoolElt

Fake

   FakeIsogenySelmerSet(C,phi) : Crv, MapSch -> RngIntElt
   FanOfFakeProjectiveSpace(W,Q) : SeqEnum -> TorFan
   IsFakeWeightedProjectiveSpace(X) : TorVar -> BoolElt
   ProjectiveSpace(k,W) : Fld,SeqEnum -> Prj

FakeIsogenySelmerSet

   FakeIsogenySelmerSet(C,phi) : Crv, MapSch -> RngIntElt

FakeProjectiveSpace

   FakeProjectiveSpace(k,W,Q) : Fld,SeqEnum,SeqEnum -> TorVar
   ProjectiveSpace(k,W) : Fld,SeqEnum -> Prj

Falpha

   Falpha(m, i) : AlgQUEElt, RngIntElt -> AlgQUEElt
   Falpha(p, i) : PathLS, RngIntElt -> PathLS

false

   false
   true

Faltings

   FaltingsHeight(E) : CrvEll[FldRat] -> FldReElt

FaltingsHeight

   FaltingsHeight(E) : CrvEll[FldRat] -> FldReElt

families

   Families of Elliptic Curves with Prescribed n-Torsion (MODELS OF GENUS ONE CURVES)
   Families of Linear Codes (ADDITIVE CODES)
   Families of Linear Codes (LINEAR CODES OVER FINITE FIELDS)
   Special Families of Polynomials (UNIVARIATE POLYNOMIAL RINGS)
   Special Surfaces in Projective 4-space (ALGEBRAIC SURFACES)

families-polynomials

   Special Families of Polynomials (UNIVARIATE POLYNOMIAL RINGS)

Family

   GrpFP_1_Family (Example H70E46)

family

   Families of Lie Algebras (LIE ALGEBRAS)

family-construct

   Families of Lie Algebras (LIE ALGEBRAS)

Fan

   DualFaceInDualFan(P,Q) : TorPol,[RngIntElt] -> TorFan
   DualFan(P) : TorPol -> TorFan
   Fan(C) : RngCox -> TorFan
   Fan(C) : TorCon -> TorFan
   Fan(F1,F2) : TorFan,TorFan -> TorFan
   Fan(X) : TorVar -> TorLat
   Fan(Q) : [TorCon] -> TorFan
   Fan(R,S) : [TorLatElt],[[RngIntElt]] -> TorFan
   FanOfAffineSpace(n) : RngIntElt -> TorFac
   FanOfFakeProjectiveSpace(W,Q) : SeqEnum -> TorFan
   [Future release] FanOfProjectiveSpace(n) : RngIntElt -> TorFac
   FanOfWPS(W) : SeqEnum -> TorFan
   ImageFan(D) : DivTorElt -> TorFan
   IsFanMap(F1,F2) : TorFan,TorFan -> BoolElt
   IsFanMap(F1,F2,f) : TorFan,TorFan,Map -> BoolElt
   NormalFan(F,C) : TorFan,TorCon -> TorFan,Map
   ResolveFanMap(F1,F2) : TorFan,TorFan -> TorFan
   SpanningFan(P) : TorPol -> TorFan
   ZeroFan(L) : TorLat -> TorFan

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012