[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: BDLCLowerBound .. BianchiCuspForms
BDLCLowerBound(F, n, d) : FldFin, RngIntElt, RngIntElt -> RngIntElt
BDLCUpperBound(F, n, d) : FldFin, RngIntElt, RngIntElt -> RngIntElt
BDLCUpperBound(F, n, d) : FldFin, RngIntElt, RngIntElt -> RngIntElt
GetBeep() : -> BoolElt
SetBeep(b) : BoolElt ->
Bell(n) : RngIntElt -> RngIntElt
Bell(n) : RngIntElt -> RngIntElt
ConnectionPolynomial(S) : SeqEnum -> RngUPolElt, RngIntElt
CharacteristicPolynomial(S) : SeqEnum -> RngUPolElt, RngIntElt
BerlekampMassey(S) : SeqEnum -> RngUPolElt, RngIntElt
ConnectionPolynomial(S) : SeqEnum -> RngUPolElt, RngIntElt
CharacteristicPolynomial(S) : SeqEnum -> RngUPolElt, RngIntElt
BerlekampMassey(S) : SeqEnum -> RngUPolElt, RngIntElt
BernoulliApproximation(n) : RngIntElt -> FldPrElt
BernoulliApproximation(n) : RngIntElt -> FldReElt
BernoulliNumber(n) : RngIntElt -> FldRatElt
BernoulliNumber(n) : RngIntElt -> FldRatElt
BernoulliPolynomial(n) : RngIntElt -> RngUPolElt
BernoulliPolynomial(n) : RngIntElt -> RngUPolElt
RngSer_Bernoulli (Example H49E3)
The Bernoulli Polynomial (UNIVARIATE POLYNOMIAL RINGS)
The Bernoulli Polynomial (UNIVARIATE POLYNOMIAL RINGS)
BernoulliApproximation(n) : RngIntElt -> FldPrElt
BernoulliApproximation(n) : RngIntElt -> FldReElt
BernoulliNumber(n) : RngIntElt -> FldRatElt
BernoulliNumber(n) : RngIntElt -> FldRatElt
BernoulliPolynomial(n) : RngIntElt -> RngUPolElt
BernoulliPolynomial(n) : RngIntElt -> RngUPolElt
BesselFunction(n, r) : RngIntElt, FldReElt -> FldReElt
BesselFunctionSecondKind(n, r) : RngIntElt, FldReElt -> FldReElt
KBessel2(n, s) : FldReElt, FldReElt -> FldReElt
Gamma, Bessel and Associated Functions (REAL AND COMPLEX FIELDS)
BesselFunction(n, r) : RngIntElt, FldReElt -> FldReElt
BesselFunctionSecondKind(n, r) : RngIntElt, FldReElt -> FldReElt
BestDimensionLinearCode(K, n, d) : FldFin, RngIntElt, RngIntElt -> Code
BDLC(K, n, d) : FldFin, RngIntElt, RngIntElt -> Code, BoolElt
BKLC(K, n, k) : FldFin, RngIntElt, RngIntElt -> Code, BoolElt
BLLC(K, k, d) : FldFin, RngIntElt, RngIntElt -> Code, BoolElt
BestApproximation(r, n) : FldReElt, RngIntElt -> FldReElt
BestTranslation(F, m, a) : RngMPolElt, RngIntElt, FldReElt, FldReElt -> RngMPolElt, RngIntElt, FldReElt, FldReElt
QECC(F, n, k) : FldFin, RngIntElt, RngIntElt -> CodeQuantum, BoolElt
Best Known Bounds (QUANTUM CODES)
Best Known Bounds for Linear Codes (LINEAR CODES OVER FINITE FIELDS)
Best Known Linear Codes (LINEAR CODES OVER FINITE FIELDS)
Best Known Quantum Codes (QUANTUM CODES)
Best Known Bounds for Linear Codes (LINEAR CODES OVER FINITE FIELDS)
Best Known Linear Codes (LINEAR CODES OVER FINITE FIELDS)
Best Known Bounds (QUANTUM CODES)
Best Known Quantum Codes (QUANTUM CODES)
BestApproximation(r, n) : FldReElt, RngIntElt -> FldReElt
BestDimensionLinearCode(K, n, d) : FldFin, RngIntElt, RngIntElt -> Code
BDLC(K, n, d) : FldFin, RngIntElt, RngIntElt -> Code, BoolElt
BestKnownLinearCode(K, n, k) : FldFin, RngIntElt, RngIntElt -> Code, BoolElt
BKLC(K, n, k) : FldFin, RngIntElt, RngIntElt -> Code, BoolElt
BKQC(F, n, k) : FldFin, RngIntElt, RngIntElt -> CodeQuantum, BoolElt
BestKnownQuantumCode(F, n, k) : FldFin, RngIntElt, RngIntElt -> CodeQuantum, BoolElt
QECC(F, n, k) : FldFin, RngIntElt, RngIntElt -> CodeQuantum, BoolElt
CodeFld_BestLength-GF2 (Example H152E40)
BestLengthLinearCode(K, k, d) : FldFin, RngIntElt, RngIntElt -> Code, BoolElt
BLLC(K, k, d) : FldFin, RngIntElt, RngIntElt -> Code, BoolElt
BestTranslation(F, m, a) : RngMPolElt, RngIntElt, FldReElt, FldReElt -> RngMPolElt, RngIntElt, FldReElt, FldReElt
AlphaBetaData(H) : HypGeomData -> SeqEnum, SeqEnum
SimplexBetaCodeZ4(k) : RngIntElt -> Code
CrvHyp_BetterRankBounds (Example H125E32)
ApparentEquationDegrees(X) : GRSch -> RngIntElt
ApparentSyzygyDegrees(X) : GRSch -> RngIntElt
BettiNumbers(X) : GRSch -> RngIntElt
ApparentCodimension(X) : GRSch -> RngIntElt
BettiNumber(E, i) : CrvEll, RngIntElt -> RngIntElt
BettiNumber(M, i, j) : ModMPol, RngIntElt -> RngIntElt
BettiNumber(X,q) : SmpCpx, RngIntElt -> RngIntElt
BettiNumbers(M) : ModMPol -> [ RngIntElt ]
BettiTable(M) : ModMPol -> [[ RngIntElt ]], RngIntElt
MaximumBettiDegree(M, i) : ModMPol -> RngIntElt
SumOfBettiNumbersOfSimpleModules(A, n) : AlgBas, RngIntElt -> RngIntElt
Betti Numbers and Related Invariants (MODULES OVER MULTIVARIATE RINGS)
BettiNumber(E, i) : CrvEll, RngIntElt -> RngIntElt
BettiNumber(M, i, j) : ModMPol, RngIntElt -> RngIntElt
BettiNumber(X,q) : SmpCpx, RngIntElt -> RngIntElt
ApparentEquationDegrees(X) : GRSch -> RngIntElt
ApparentSyzygyDegrees(X) : GRSch -> RngIntElt
BettiNumbers(X) : GRSch -> RngIntElt
ApparentCodimension(X) : GRSch -> RngIntElt
BettiNumbers(M) : ModMPol -> [ RngIntElt ]
BettiTable(M) : ModMPol -> [[ RngIntElt ]], RngIntElt
SubcodeBetweenCode(C1, C2, k) : Code, Code, RngIntElt -> Code
SubcodeBetweenCode(C1, C2, k) : CodeAdd, CodeAdd, RngIntElt -> CodeAdd
BFSTree(u) : GrphVert -> Grph
BreadthFirstSearchTree(u) : GrphVert -> Grph, GrphVertSet, GrphEdgeSet
BreadthFirstSearchTree(u) : GrphVert -> GrphMult, GrphVertSet, GrphEdgeSet
BianchiCuspForms(F, N) : FldNum, RngOrdIdl -> ModFrmBianchi
MODULAR FORMS OVER IMAGINARY QUADRATIC FIELDS
MODULAR FORMS OVER IMAGINARY QUADRATIC FIELDS
BianchiCuspForms(F, N) : FldNum, RngOrdIdl -> ModFrmBianchi
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012