[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: subfield  ..  Subgroup


subfield

   The Subfield Lattice (GALOIS THEORY OF NUMBER FIELDS)

subfield-lattice

   The Subfield Lattice (GALOIS THEORY OF NUMBER FIELDS)

SubfieldCode

   SubfieldCode(C, S) : Code, FldFin -> Code

SubfieldLattice

   SubfieldLattice(K) : FldNum -> SubFldLat
   RngOrdGal_SubfieldLattice (Example H38E8)

SubfieldRepresentationCode

   SubfieldRepresentationCode(C, K) : Code, FldFin -> Code

SubfieldRepresentationParityCode

   SubfieldRepresentationParityCode(C, K) : Code, FldFin -> Code

Subfields

   Subfields(K) : FldNum -> [<FldNum, Map>]
   AutomorphismGroup(K) : FldNum -> GrpPerm, [Map], Map
   GaloisGroup(K) : FldNum -> GrpPerm, [RngElt], GaloisData
   MaximalSubfields(e) : SubFldLatElt -> [ SubFldLatElt ]
   NormalSubfields(A) : FldAb -> []
   Subfields(K) : FldAlg -> [ < FldAlg, Hom > ]
   Subfields(K, n) : FldAlg, RngIntElt -> [ < FldAlg, Hom > ]
   Subfields(F) : FldFun -> SeqEnum[FldFun]
   FldFunG_Subfields (Example H42E15)

subfields

   Subfields (ALGEBRAIC FUNCTION FIELDS)
   Subfields (GALOIS THEORY OF NUMBER FIELDS)
   Subfields and Subfield Towers (GALOIS THEORY OF NUMBER FIELDS)

SubfieldSubcode

   RestrictField(C, S) : Code, FldFin -> Code, Map
   SubfieldSubcode(C, S) : Code, FldFin -> Code, Map

SubfieldSubplane

   SubfieldSubplane(P, F) : Plane, FldFin -> Plane, PlanePtSet, PlaneLnSet

Subgraph

   IsSubgraph(G, H) : Grph, Grph -> BoolElt
   IsSubgraph(G, H) : GrphMultUnd, GrphMultUnd -> BoolElt
   Graph_Subgraph (Example H149E9)

subgraph

   Subgraphs and Quotient Graphs (GRAPHS)
   The Graph of a Map (MAPPINGS)

subgraph-graph

   The Graph of a Map (MAPPINGS)

subgraph-supergraph-quotient

   Subgraphs and Quotient Graphs (GRAPHS)

Subgroup

   TorsionSubgroup(H) : SetPtEll -> GrpAb, Map
   AbelianGroup(H) : SetPtEll -> GrpAb, Map
   AbelianNormalSubgroup(G) : GrpPerm -> GrpPerm
   AddSubgroupGenerator(~P, w) : GrpFPCosetEnumProc, GrpFPElt ->
   AutomorphismSubgroup(C) : Code -> GrpPerm, PowMap, Map
   AutomorphismSubgroup(D) : Inc -> GrpPerm, PowMap, Map
   Borel(C) : CosetGeom -> GrpPerm
   CentralizerOfNormalSubgroup(G, H) : GrpPerm, GrpPerm -> GrpPerm
   CollineationSubgroup(P) : Plane -> GrpPerm, GSet, GSet, PowMap, Map
   CommutatorSubgroup(G) : GrpAb -> GrpAb
   CommutatorSubgroup(H, K) : GrpAb, GrpAb -> GrpAb
   CommutatorSubgroup(G, H, K) : GrpFin, GrpFin, GrpFin -> GrpFin
   CommutatorSubgroup(G) : GrpFP -> GrpFP
   CommutatorSubgroup(G, H, K) : GrpGPC, GrpGPC, GrpGPC -> GrpGPC
   CommutatorSubgroup(G) : GrpMat -> GrpMat
   CommutatorSubgroup(G, H, K) : GrpMat, GrpMat, GrpMat -> GrpMat
   CommutatorSubgroup(G) : GrpPC -> GrpPC
   CommutatorSubgroup(G, H, K) : GrpPC, GrpPC, GrpPC -> GrpPC
   CommutatorSubgroup(G) : GrpPerm -> GrpPerm
   CommutatorSubgroup(G, H, K) : GrpPerm, GrpPerm, GrpPerm -> GrpPerm
   CongruenceSubgroup(N) : RngIntElt -> GrpPSL2
   CongruenceSubgroup(i,N) : RngIntElt, RngIntElt -> GrpPSL2
   CongruenceSubgroup([N,M,P]) : SeqEnum -> GrpPSL2
   CuspidalSubgroup(A) : ModAbVar -> ModAbVarSubGrp
   DerivedSubgroup(G) : GrpFin -> GrpFin
   DerivedSubgroup(G) : GrpGPC -> GrpGPC
   ElementaryAbelianNormalSubgroup(G) : GrpPerm -> GrpPerm
   FittingSubgroup(G) : GrpFin -> GrpFin
   FittingSubgroup(G) : GrpGPC -> GrpGPC
   [Future release] FittingSubgroup(G) : GrpMat -> GrpMat
   FittingSubgroup(G) : GrpPC -> GrpPC
   FittingSubgroup(G) : GrpPerm -> GrpPerm
   FrattiniSubgroup(G) : GrpAb -> GrpAb
   FrattiniSubgroup(G) : GrpFin -> GrpFin
   FrattiniSubgroup(G) : GrpMat -> GrpMat
   FrattiniSubgroup(G) : GrpPC -> GrpPC
   FrattiniSubgroup(G) : GrpPerm -> GrpPerm
   GaloisSubgroup(K, U) : FldNum, GrpPerm -> FldNum, UserProgram
   HallSubgroup(G, S) : GrpPC, { RngIntElt } -> GrpPC
   IntersectionWithNormalSubgroup(G, N: parameters) : GrpPerm, GrpPerm -> GrpPerm
   IsParabolicSubgroup(W, H) : GrpPermCox, GrpPermCox -> BoolElt
   IsReflectionSubgroup(W, H) : GrpPermCox, GrpPermCox -> BoolElt
   IsStandardParabolicSubgroup(W, H) : GrpPermCox, GrpPermCox -> BoolElt
   KnownAutomorphismSubgroup(C) : Code -> GrpPerm
   LMGCommutatorSubgroup(G, H) : GrpMat, GrpMat -> GrpMat
   LMGFittingSubgroup(G) : GrpMat -> GrpMat, GrpPC, Map
   LMGIsSubgroup(G, H) : GrpMat, GrpMat -> BoolElt
   MaximalNormalSubgroup(G) : GrpPerm -> GrpPerm
   MinimalNormalSubgroup(G) : GrpPC -> GrpPC
   MinimalNormalSubgroup(G, N) : GrpPC -> GrpPC
   NextSubgroup(~P) : GrpFPLixProc ->
   PrintSylowSubgroupStructure(G) : GrpLie ->
   RationalCuspidalSubgroup(A) : ModAbVar -> ModAbVarSubGrp
   ReflectionSubgroup(W, a) : GrpPermCox, () -> GrpPermCox
   ReflectionSubgroup(W, s) : GrpPermCox, [] -> GrpPermCox
   StandardParabolicSubgroup(W, J) : GrpPermCox, () -> GrpPermCox
   Subgroup(V) : GrpFPCos -> GrpFP
   Subgroup(P) : GrpFPCosetEnumProc -> GrpFP
   Subgroup(X, oQ : parameters) : [MapModAbVar], BoolElt -> HomModAbVar
   Subgroup(X) : [MapModAbVar] -> HomModAbVar
   Subgroup(X) : [ModAbVarElt] -> ModAbVarSubGrp
   SubgroupClasses(G) : GrpPC -> SeqEnum
   SubgroupClasses(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
   SubgroupClasses(G: parameters) : GrpMat -> [ rec< GrpMat, RngIntElt, RngIntElt, GrpFP> ]
   SubgroupClasses(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
   SubgroupLattice(G) : GrpFin -> SubGrpLat
   SubgroupLattice(G) : GrpPC -> SubGrpLat
   SubgroupOfTorus(M, x) : ModSym, ModSymElt -> RngIntElt
   SubgroupOfTorus(M, s) : ModSym, SeqEnum -> GrpAb
   SubgroupScheme(E,P) : CrvEll, Pt -> CrvEllSubgroup
   SubgroupScheme(p,N) : Pt, RngIntElt -> SchGrpEll, CrvEll
   SubgroupScheme(G, f) : SchGrpEll, RngUPolElt -> SchGrpEll
   SubsystemSubgroup(G, s) : GrpLie, SeqEnum -> RootDtm
   SubsystemSubgroup(G, a) : GrpLie, SetEnum -> RootDtm
   SylowSubgroup(G, p) : GrpFin, RngIntElt -> GrpFin
   SylowSubgroup(G, p) : GrpLie, RngIntElt -> List
   SylowSubgroup(G, p) : GrpMat, RngIntElt -> GrpMat
   SylowSubgroup(G, p) : GrpPC, RngIntElt -> GrpPC
   SylowSubgroup(G, p) : GrpPerm, RngIntElt -> GrpPerm
   SylowSubgroup(G, p : parameters) : GrpAb, RngIntElt -> GrpAb
   TorsionFreeSubgroup(A) : GrpAb -> GrpAb
   TorsionSubgroup(E) : CrvEll -> GrpAb, Map
   TorsionSubgroup(E) : CrvEll[FldFunG] -> GrpAb, Map
   TorsionSubgroup(A) : GrpAb -> GrpAb
   TorsionSubgroup(J) : JacHyp -> GrpAb, Map
   TorsionSubgroup(A) : ModAbVar -> BoolElt, ModAbVarSubGrp
   TorsionSubgroup(H) : SetPtEll -> GrpAb, Map
   TorsionSubgroupScheme(G, n) : SchGrpEll, RngIntElt -> SchGrpEll
   TwoTorsionSubgroup(J) : JacHyp -> GrpAb, Map
   TwoTorsionSubgroup(Q) : QuadBin -> GrpAb, Map
   UnitGroupAsSubgroup(O) : RngOrd -> GrpAb
   UnitTrivialSubgroup(G) : GrpDrchNF -> GrpDrchNF
   YoungSubgroup(L) : [RngIntElt] -> GrpPerm
   YoungSubgroupLadder(L) : [RngIntElt] -> [GrpPerm]
   ZeroSubgroup(A) : ModAbVar -> ModAbVarSubGrp
   nTorsionSubgroup(A, n) : ModAbVar, RngIntElt -> ModAbVarSubGrp
   nTorsionSubgroup(G, n) : ModAbVarSubGrp, RngIntElt -> ModAbVarSubGrp
   pElementaryAbelianNormalSubgroup(G, p) : GrpPerm, RngIntElt -> GrpPerm
   GrpGPC_Subgroup (Example H72E3)
   Grp_Subgroup (Example H57E6)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012