[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: common  ..  Companion


common

   Contpp(p) : RngUPolElt -> RngIntElt, RngUPolElt
   Common Divisors and Common Multiples (UNIVARIATE POLYNOMIAL RINGS)
   Greatest Common Divisors (MULTIVARIATE POLYNOMIAL RINGS)
   Greatest Common Divisors (QUADRATIC FIELDS)

CommonComplement

   CommonComplement(V, U, W) : ModTupFld, ModTupFld, ModTupFld) -> ModTupFld

CommonEigenspaces

   CommonEigenspaces(A) : AlgMat -> [**], [[FldElt]]
   CommonEigenspaces(Q) : [AlgMatElt] -> [**], [[FldElt]]

CommonModularStructure

   CommonModularStructure(X) : [ModAbVar] -> List, List

CommonOverfield

   CommonOverfield(K, L) : FldFin, FldFin -> FldFin

CommonZeros

   CommonZeros(F, L) : FldFunG, SeqEnum[ FldFunGElt ] -> SeqEnum[ PlcFunElt ]
   CommonZeros(L) : [FldFunFracSchElt[Crv]] -> [PlcCrvElt]
   CommonZeros(L) : [FldFunGElt] -> [PlcFunElt]

Commutative

   IsCommutative(A) : AlgBas -> Bool
   IsCommutative(A) : AlgFP -> BoolElt
   IsCommutative(A) : AlgGen -> BoolElt
   IsCommutative(H) : HomModAbVar -> BoolElt
   IsCommutative(R) : Rng -> BoolElt
   MaximalCommutativeSubalgebra(A,S) : SeqEnum) -> AlgBas, Map

Commutator

   Commutator(g, h) : GrpLieElt, GrpLieElt -> GrpLieElt
   (g, h) : GrpLieElt, GrpLieElt -> GrpLieElt
   CommutatorGraph(L) : AlgLieExtr -> GrphUnd
   CommutatorIdeal(A, B) : AlgAss, AlgAss -> AlgAss
   CommutatorIdeal(S) : AlgQuatOrd -> AlgQuatOrdIdl
   CommutatorModule(A, B) : AlgAss, AlgAss -> ModTupRng
   CommutatorSubgroup(G) : GrpAb -> GrpAb
   CommutatorSubgroup(H, K) : GrpAb, GrpAb -> GrpAb
   CommutatorSubgroup(G, H, K) : GrpFin, GrpFin, GrpFin -> GrpFin
   CommutatorSubgroup(G) : GrpFP -> GrpFP
   CommutatorSubgroup(G, H, K) : GrpGPC, GrpGPC, GrpGPC -> GrpGPC
   CommutatorSubgroup(G) : GrpMat -> GrpMat
   CommutatorSubgroup(G, H, K) : GrpMat, GrpMat, GrpMat -> GrpMat
   CommutatorSubgroup(G) : GrpPC -> GrpPC
   CommutatorSubgroup(G, H, K) : GrpPC, GrpPC, GrpPC -> GrpPC
   CommutatorSubgroup(G) : GrpPerm -> GrpPerm
   CommutatorSubgroup(G, H, K) : GrpPerm, GrpPerm, GrpPerm -> GrpPerm

CommutatorGraph

   CommutatorGraph(L) : AlgLieExtr -> GrphUnd

CommutatorIdeal

   CommutatorIdeal(A, B) : AlgAss, AlgAss -> AlgAss
   CommutatorIdeal(S) : AlgQuatOrd -> AlgQuatOrdIdl

CommutatorModule

   CommutatorModule(A, B) : AlgAss, AlgAss -> ModTupRng

CommutatorSubgroup

   DerivedSubgroup(G) : GrpAb -> GrpAb
   CommutatorSubgroup(G) : GrpAb -> GrpAb
   CommutatorSubgroup(H, K) : GrpAb, GrpAb -> GrpAb
   CommutatorSubgroup(G, H, K) : GrpFin, GrpFin, GrpFin -> GrpFin
   CommutatorSubgroup(G) : GrpFP -> GrpFP
   CommutatorSubgroup(G, H, K) : GrpGPC, GrpGPC, GrpGPC -> GrpGPC
   CommutatorSubgroup(G) : GrpMat -> GrpMat
   CommutatorSubgroup(G, H, K) : GrpMat, GrpMat, GrpMat -> GrpMat
   CommutatorSubgroup(G) : GrpPC -> GrpPC
   CommutatorSubgroup(G, H, K) : GrpPC, GrpPC, GrpPC -> GrpPC
   CommutatorSubgroup(G) : GrpPerm -> GrpPerm
   CommutatorSubgroup(G, H, K) : GrpPerm, GrpPerm, GrpPerm -> GrpPerm

Comp

   DisplayCompTreeNodes(G : parameters) : Grp ->

comp

   comp<K|P> : FldAlg, RngOrdIdl -> FldLoc, Map
   Completion(K, P) : FldAlg, RngOrdIdl -> FldLoc, Map
   Completion(K, P) : FldNum, RngOrdIdl -> FldLoc, Map
   comp< R | a1, ..., ar > : Rng, RngElt, ..., RngElt -> Rng, Map

Compact

   AllCompactChainMaps(PR) : Rec -> Rec
   CohomologyElementToCompactChainMap(PR, d, n): Rec, RngIntElt, RngIntElt -> ModMatFldElt
   CompactInjectiveResolution(M, n) : ModAlg, RngIntElt -> Rec
   CompactPart(P) : TorPol -> TorPol
   CompactPresentation(G) : GrpPC -> [RngIntElt]
   CompactProjectiveResolution(M, n) : ModAlg, RngIntElt -> Rec
   CompactProjectiveResolutionPGroup(M, n) : ModAlgBas, RngIntElt -> Rec
   CompactProjectiveResolutionsOfSimpleModules(A,n) : AlgBas, RngIntElt -> SeqEnum
   IsCompactHyperbolic(W) : GrpFPCox -> BoolElt
   IsCoxeterHyperbolic(M) : AlgMatElt -> BoolElt
   IsCoxeterHyperbolic(G) : GrphUnd -> BoolElt
   SetAutoCompact(b) : BoolElt ->

compact

   CompactPresentation (FINITE SOLUBLE GROUPS)

compact-presentation

   CompactPresentation (FINITE SOLUBLE GROUPS)

CompactInjectiveResolution

   CompactInjectiveResolution(M, n) : ModAlg, RngIntElt -> Rec

CompactPart

   CompactPart(P) : TorPol -> TorPol

CompactPresentation

   CompactPresentation(G) : GrpPC -> [RngIntElt]
   GrpPC_CompactPresentation (Example H63E36)

CompactProjectiveResolution

   CompactProjectiveResolution(M, n) : ModAlg, RngIntElt -> Rec
   CompactProjectiveResolutionPGroup(M, n) : ModAlgBas, RngIntElt -> Rec

CompactProjectiveResolutionPGroup

   CompactProjectiveResolution(M, n) : ModAlgBas, RngIntElt -> Rec
   CompactProjectiveResolutionPGroup(M, n) : ModAlgBas, RngIntElt -> Rec

CompactProjectiveResolutionsOfSimpleModules

   CompactProjectiveResolutionsOfSimpleModules(A,n) : AlgBas, RngIntElt -> SeqEnum

Companion

   CompanionMatrix(L) : RngDiffOpElt -> AlgMatElt
   CompanionMatrix(f) : RngUPolElt -> AlgMatElt
   CompanionMatrix(p) : RngUPolElt -> AlgMatElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012