[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: conversions .. CoprimeBasisInsert
Constructions and Conversions (QUADRATIC FORMS)
ConvertFromManinSymbol(M, x) : ModSym, Tup -> ModSymElt
ConvertToCWIFormat(P, pb) : NFSProc, RngIntElt -> .;
ConvertFromManinSymbol(M, x) : ModSym, Tup -> ModSymElt
ConvertToCWIFormat(P, pb) : NFSProc, RngIntElt -> .;
IsStrictlyConvex(C) : TorCon -> BoolElt
Convolution(f, g) : RngSerElt, RngSerElt -> RngSerElt
ConwayPolynomial(p, n) : RngIntElt, RngIntElt -> RngUPolElt
ExistsConwayPolynomial(p, n) : RngIntElt, RngIntElt -> BoolElt, RngUPolElt
IsConway(F) : FldFin -> BoolElt
Conway Polynomials (FINITE FIELDS)
ConwayPolynomial(p, n) : RngIntElt, RngIntElt -> RngUPolElt
Coordelt(L, C) : Lat, [ RngIntElt ] -> LatElt
CoordinatesToElement(L, C) : Lat, [ RngIntElt ] -> LatElt
CanonicalCoordinateIdeal(S) : Srfc -> RngMPol
CoordinateLattice(L) : Lat -> Lat
CoordinateMatrix(I) : RngMPol -> Matrix
CoordinateRing(L) : Lat -> RngInt
CoordinateRing(A) : Sch -> Rng
CoordinateRing(C) : Sch -> Rng
CoordinateRing(A) : Sch -> RngMPol
CoordinateRing(X) : Sch -> RngMPol
CoordinateSpace(L) : Lat -> ModTupFld, Map
CoordinateVector(L, v) : Lat, LatElt -> LatElt
CoordinateVector(v) : LatElt -> LatElt
p[i] : Pt, RngIntElt -> RngElt
p[i] : Pt, RngIntElt -> RngElt
CoordinateLattice(L) : Lat -> Lat
CoordinateMatrix(I) : RngMPol -> Matrix
CoordinateRing(L) : Lat -> RngInt
CoordinateRing(A) : Sch -> Rng
CoordinateRing(C) : Sch -> Rng
CoordinateRing(A) : Sch -> RngMPol
CoordinateRing(X) : Sch -> RngMPol
Coordinates(S, a) : AlgGen, AlgGenElt -> SeqEnum
Coordinates(S, a) : AlgGrpSub, AlgGrpElt -> [ RingElt ]
Coordinates(M, a) : AlgLie, AlgLieElt -> SeqEnum
Coordinates(R, X) : AlgMat, AlgMatElt -> [ RngElt ]
Coordinates(C, u) : Code, ModTupRngElt -> [ RngFinElt ]
Coordinates(C, u) : Code, ModTupRngElt -> [ RngFinElt ]
Coordinates(C, u) : Code, ModTupRngElt -> [ RngFinElt ]
Coordinates(L, v) : Lat, LatElt -> [ RngIntElt ]
Coordinates(v) : LatElt -> [ RngIntElt ]
Coordinates(f, M) : ModMPolElt, ModMPol -> [ RngMPolElt ]
Coordinates(V, v) : ModTupFld, ModTupFldElt -> [FldElt]
Coordinates(M, u) : ModTupRng, ModTupRngElt -> [RngElt]
Coordinates(P, l) : Plane, PlaneLn -> [ FldFinElt ]
Coordinates(P, p) : Plane, PlanePt -> [ FldFinElt ]
Coordinates(p) : Pt -> SeqEnum
Coordinates(p) : Pt -> SeqEnum
Coordinates(p) : Pt -> SeqEnum
Coordinates(I, f) : RngMPol, RngMPolElt -> [ RngMPolElt ]
CoordinatesToElement(L, C) : Lat, [ RngIntElt ] -> LatElt
ElementToSequence(x) : AlgQuatElt -> SeqEnum
IdentityAutomorphism(A) : Sch -> AutSch
LatticeCoordinates(x) : ModAbVarElt -> ModTupFldElt
NumberOfCoordinates(X) : Sch -> RngIntElt
RiemannRochCoordinates(f,D) : Any, DivSchElt -> BoolElt, SeqEnum
CodeFld_Coordinates (Example H152E12)
GB_Coordinates (Example H105E9)
CoordinateSpace(L) : Lat -> ModTupFld, Map
Coordelt(L, C) : Lat, [ RngIntElt ] -> LatElt
CoordinatesToElement(L, C) : Lat, [ RngIntElt ] -> LatElt
CoordinateVector(L, v) : Lat, LatElt -> LatElt
CoordinateVector(v) : LatElt -> LatElt
Choosing Coordinates (ALGEBRAIC CURVES)
Function Fields and Divisors (ALGEBRAIC CURVES)
cop< S1, S2, ..., Sk > : Str, Str, ... -> Cop, [ Map ]
Cop_cop (Example H14E1)
COPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
ConformalOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
CoprimeBasis(S) : [ RngIntElt ] -> [ RngIntElt ]
CoprimeBasis(L) : [RngOrdFracIdl] -> RngOrdIdl
CoprimeBasisInsert(~L, I) : [RngOrdIdl], RngOrdFracIdl ->
CoprimeRepresentative(I, J) : RngOrdIdl, RngOrdIdl -> FldOrdElt
CoprimeBasis(S) : [ RngIntElt ] -> [ RngIntElt ]
CoprimeBasis(L) : [RngOrdFracIdl] -> RngOrdIdl
CoprimeBasisInsert(~L, I) : [RngOrdIdl], RngOrdFracIdl ->
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012