[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: StabiliserCode  ..  Standard


StabiliserCode

   StabiliserCode(Q) : CodeQuantum -> CodeAdd
   StabilizerCode(Q) : CodeQuantum -> CodeAdd

StabiliserGroup

   StabiliserGroup(Q) : CodeQuantum -> GrpPC
   StabilizerGroup(Q) : CodeQuantum -> GrpPC
   StabilizerGroup(Q, G) : CodeQuantum, GrpPC -> GrpPC

StabiliserMatrix

   StabiliserMatrix(Q) : CodeQuantum -> ModMatFldElt
   StabilizerMatrix(Q) : CodeQuantum -> ModMatFldElt

StabiliserOfSpaces

   StabiliserOfSpaces(Q) : SeqEnum -> GrpMat, SeqEnum
   GrpMatGen_StabiliserOfSpaces (Example H59E20)

Stabilizer

   MonomialGroupStabilizer(C, k) : Code, RngIntElt -> GrpPerm, PowMap, Map
   AutomorphismGroupStabilizer(C, k) : Code, RngIntElt -> GrpPerm, PowMap, Map
   AutomorphismGroupStabilizer(D, k) : Inc, RngIntElt -> GrpPerm, PowMap, Map
   BasicStabilizer(G, i) : GrpMat, RngIntElt -> GrpMat
   BasicStabilizer(G, i) : GrpPerm, RngIntElt -> GrpPerm
   BasicStabilizerChain(G) : GrpMat -> [GrpMat]
   BasicStabilizerChain(G) : GrpPerm -> [GrpPerm]
   CollineationGroupStabilizer(P, k) : Plane, RngIntElt -> GrpPerm, GSet, GSet, PowMap, Map
   Stabilizer(G, y) : GrpMat, Elt -> GrpMat
   Stabilizer(A, Y, y) : GrpPerm, Elt -> GrpPerm
   Stabilizer(G, Y, y) : GrpPerm, Elt -> GrpPerm
   Stabilizer(G, Y, y) : GrpPerm, Elt -> GrpPerm
   Stabilizer(G, Y, y) : GrpPerm, GSet, Elt -> GrpPerm
   Stabilizer(a,G) : SpcHypElt, GrpPSL2 -> GrpPSL2Elt
   StabilizerCode(Q) : CodeQuantum -> CodeAdd
   StabilizerGroup(Q) : CodeQuantum -> GrpPC
   StabilizerGroup(Q, G) : CodeQuantum, GrpPC -> GrpPC
   StabilizerLadder(G, d) : GrpPerm, RngMPolElt -> [GrpPerm]
   StabilizerMatrix(Q) : CodeQuantum -> ModMatFldElt

stabilizer

   Images, Orbits and Stabilizers (PERMUTATION GROUPS)
   Orbit and Stabilizer Functions for Large Groups (MATRIX GROUPS OVER GENERAL RINGS)
   Orbits and Stabilizers (MATRIX GROUPS OVER GENERAL RINGS)

StabilizerCode

   StabiliserCode(Q) : CodeQuantum -> CodeAdd
   StabilizerCode(Q) : CodeQuantum -> CodeAdd

StabilizerGroup

   StabiliserGroup(Q) : CodeQuantum -> GrpPC
   StabilizerGroup(Q) : CodeQuantum -> GrpPC
   StabilizerGroup(Q, G) : CodeQuantum, GrpPC -> GrpPC

StabilizerLadder

   StabilizerLadder(G, d) : GrpPerm, RngMPolElt -> [GrpPerm]

StabilizerMatrix

   StabiliserMatrix(Q) : CodeQuantum -> ModMatFldElt
   StabilizerMatrix(Q) : CodeQuantum -> ModMatFldElt

Stabilizers

   GrpPerm_Stabilizers (Example H58E24)

Stack

   OrderedPartitionStack(n) : RngIntElt -> StkPtnOrd
   OrderedPartitionStackZero(n, h) : RngIntElt, RngIntElt -> StkPtnOrd

stack

   Ordered Partition Stacks (PERMUTATION GROUPS)

stage

   Finding dependencies: the Linear algebra stage (RING OF INTEGERS)
   The Auxiliary data stage (RING OF INTEGERS)
   The Factorization stage (RING OF INTEGERS)
   The Sieving stage (RING OF INTEGERS)

stand

   AddEdges(~N, S) : GrphNet, { < [ GrphVert, GrphVert ], RngIntElt > } ->
   Incremental Construction: Adding Edges (NETWORKS)
   Standard Construction for Multigraphs (MULTIGRAPHS)
   Standard Construction for Networks (NETWORKS)
   Subgraphs (MULTIGRAPHS)
   Subgraphs (NETWORKS)
   Union of Networks (NETWORKS)

Standard

   ClassicalStandardGenerators(type, d, q) : MonStgElt, RngIntElt, RngIntElt -> []
   ClassicalStandardPresentation (type, d, q : parameters) : MonStgElt, RngIntElt, RngIntElt -> SLPGroup, []
   IsStandard(t) : Tbl -> BoolElt
   IsStandardAffinePatch(A) : Aff -> BoolElt, RngIntElt
   IsStandardParabolicSubgroup(W, H) : GrpPermCox, GrpPermCox -> BoolElt
   IsomorphismToStandardCopy(G, str : parameters) : Grp, MonStgElt -> BoolElt, Map
   NumberOfStandardTableaux(P) : SeqEnum -> RngIntElt
   NumberOfStandardTableauxOnWeight(n) : RngIntElt -> RngIntElt
   SparseRootDatum(N) : MonStgElt -> RootDtmSprs
   StandardAction(W) : GrpFPCox -> Map
   StandardAction(W) : GrpMat -> Map
   StandardActionGroup(W) : GrpFPCox -> GrpPerm, Map
   StandardActionGroup(W) : GrpMat -> GrpPerm, Map
   StandardAlternatingForm(n,R) : RngIntElt, Rng -> AlgMatElt
   StandardBasis(I) : RngMPolLoc -> RngMPolLocElt
   StandardBasis(S) : [ RngMPolLocElt ] -> [ RngMPolLocElt ]
   StandardForm(A) : AlgQuat -> RngElt, RngElt, AlgQuat, Map
   StandardForm(C) : Code -> Code, Map
   StandardForm(C) : Code -> Code, Map
   StandardFormConjugationMatrices(A) : AlgMat -> Tup
   StandardGenerators(L) : AlgKac -> SeqEnum[AlgKacElt], SeqEnum[AlgKacElt], SeqEnum[AlgKacElt]
   StandardGenerators(G, str : parameters) : Grp, MonStgElt -> BoolElt, SeqEnum, SeqEnum
   StandardGraph(G) : Grph -> Grph
   StandardGraph(G) : GrphMult -> GrphMult
   StandardGroup(G) : GrpPerm -> GrpPerm, Map
   StandardHermitianForm(n,K) : RngIntElt, Fld -> AlgMatElt, Map
   StandardLattice(n) : RngIntElt -> Lat
   StandardMaximalTorus(G) : GrpLie -> GrpLie
   StandardMetacyclicPGroup (P): Grp -> GrpPC
   StandardParabolicSubgroup(W, J) : GrpPermCox, () -> GrpPermCox
   StandardPresentation(G): GrpPC -> GrpPC, Map
   StandardPresentation(G, str : parameters) : Grp, MonStgElt -> BoolElt, SeqEnum, SeqEnum
   StandardPseudoAlternatingForm(n,K) : RngIntElt, Fld -> AlgMatElt
   StandardQuadraticForm(n, K : parameters) : RngIntElt, Fld -> AlgMatElt
   StandardRepresentation(L) : AlgLie -> Map
   StandardRepresentation(G) : GrpLie -> Map
   StandardRepresentation(G) : GrpLie -> Map
   StandardRootDatum(X, n) : MonStgElt, RngIntElt -> RootDtm
   StandardRootSystem(X, n) : MonStgElt, RngIntElt -> RootSys
   StandardSimplex(L) : TorLat -> TorPol
   StandardSymmetricForm(n, K) : RngIntElt, Fld -> AlgMatElt
   StandardTableaux(P) : SeqEnum[RngIntElt] -> SetEnum
   StandardTableauxOfWeight(n) : RngIntElt -> SetEnum
   GrpPC_Standard (Example H63E1)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012