[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: EquationOrder .. error-correcting-linear-code
EquationOrder(A) : FldAb -> RngOrd
EquationOrder(K) : FldNum -> RngOrd
EquationOrder(F) : FldQuad -> RngQuad
EquationOrder(O) : RngFunOrd -> RngFunOrd
EquationOrder(O) : RngOrd -> RngOrd
EquationOrder(f) : RngUPolElt -> RngOrd
EquationOrderFinite(F) : FldFun -> RngFunOrd
EquationOrderInfinite(F) : FldFun -> RngFunOrd
DefiningEquations(model) : ModelG1 -> [ RngMPolElt ]
DefiningPolynomials(f) : MapSch -> SeqEnum
Equations(model) : ModelG1 -> [ RngMPolElt ]
LinearSpanEquations(C) : TorCon -> SeqEnum
Functions of the Equations (SCHEMES)
Norm Equations (CLASS FIELD THEORY)
EquidimensionalDecomposition(I) : RngMPol -> [ RngMPol ]
FineEquidimensionalDecomposition(I) : RngMPol -> SeqEnum
EquidimensionalPart(I) : RngMPol -> RngMPol
Equidimensional Decomposition (POLYNOMIAL RING IDEAL OPERATIONS)
Equidimensional Decomposition (POLYNOMIAL RING IDEAL OPERATIONS)
EquidimensionalDecomposition(I) : RngMPol -> [ RngMPol ]
FineEquidimensionalDecomposition(I) : RngMPol -> SeqEnum
EquidimensionalPart(I) : RngMPol -> RngMPol
Ideal_EquidimensionalDecomposition (Example H106E12)
EquidimensionalDecomposition(I) : RngMPol -> [ RngMPol ]
FineEquidimensionalDecomposition(I) : RngMPol -> SeqEnum
EquidimensionalPart(I) : RngMPol -> RngMPol
IsEquidistant(C) : Code -> BoolElt
EquitablePartition(P, G) : { { GrphVert } }, GrphUnd -> { { GrphVert } }
IsEquitable(G, P) : GrphUnd, { { GrphVert } } -> BoolElt
EquitablePartition(P, G) : { { GrphVert } }, GrphUnd -> { { GrphVert } }
IsEquivalent(C, D: parameters) : Code, Code -> BoolElt, Map
Equivalence and Isomorphism of Codes (LINEAR CODES OVER FINITE FIELDS)
Linear Equivalence of Divisors (ALGEBRAIC CURVES)
IsLinearlyEquivalent(D,E) : DivTorElt,DivTorElt -> BoolElt
AreLinearlyEquivalent(D,E) : DivTorElt,DivTorElt -> BoolElt
ColonIdealEquivalent(I, f) : RngMPol, RngMPolElt -> RngMPol, RngMPolElt
EquivalentPoint(x) : SpcHypElt -> SpcHypElt, GrpPSL2Elt
IsBravaisEquivalent(G, H) : GrpMat[RngInt], GrpMat[RngInt] -> BoolElt, GrpMatElt
IsCartanEquivalent(C1, C2) : AlgMatElt, AlgMatElt -> BoolElt
IsCartanEquivalent(G, H) : GrpLie, GrpLie -> BoolElt
IsCartanEquivalent(W1, W2) : GrpMat, GrpMat -> BoolElt
IsCartanEquivalent(W1, W2) : GrpPermCox, GrpPermCox -> BoolElt
IsCartanEquivalent(N1, N2) : MonStgElt, MonStgElt -> BoolElt
IsCartanEquivalent(R1, R2) : RootDtm, RootDtm -> BoolElt
IsCartanEquivalent(R1, R2) : RootSys, RootSys -> BoolElt
IsEquivalent(G,a,b) : GrpPSL2, SpcHypElt, SpcHypElt -> BoolElt, GrpPSL2Elt
IsEquivalent(g,h,G) : GrpPSL2Elt, GrpPSL2Elt, GrpPSL2 -> BoolElt
IsEquivalent(model1, model2) : ModelG1, ModelG1 -> BoolElt, Tup
IsEquivalent(f, g) : QuadBinElt, QuadBinElt -> BoolElt, AlgMatElt
IsEquivalent(f,g) : RngUPolElt, RngUPolElt -> BoolElt
IsGL2Equivalent(f, g, n) : RngUPolElt, RngUPolElt, RngIntElt -> BoolElt, SeqEnum
IsHadamardEquivalent(H, J : parameters) : AlgMatElt, AlgMatElt -> BoolElt, AlgMatElt, AlgMatElt
IsIsomorphic(C, D: parameters) : Code, Code -> BoolElt, Map
IsKnuthEquivalent(w1, w2) : MonOrdElt, MonOrdElt -> BoolElt
IsLinearlyEquivalent(D1,D2) : DivCrvElt,DivCrvElt -> BoolElt
IsLinearlyEquivalent(D,E) : DivSchElt, DivSchElt -> BoolElt, FldFunFracSchElt
IsLinearlyEquivalentToCartier(D) : DivTorElt -> BoolElt, DivTorElt
Writing Representations over Subfields (MATRIX GROUPS OVER FINITE FIELDS)
Writing Representations over Subfields (MATRIX GROUPS OVER FINITE FIELDS)
EquivalentPoint(x) : SpcHypElt -> SpcHypElt, GrpPSL2Elt
Erf(r) : FldReElt -> FldReElt
ErrorFunction(r) : FldReElt -> FldReElt
Erfc(r) : FldReElt -> FldReElt
ComplementaryErrorFunction(r) : FldReElt -> FldReElt
Erfc(r) : FldReElt -> FldReElt
ComplementaryErrorFunction(r) : FldReElt -> FldReElt
Error(x) : Any -> Err
ErrorFunction(r) : FldReElt -> FldReElt
QuantumBinaryErrorGroup(n) : RngIntElt -> GrpPC
QuantumErrorGroup(Q) : CodeQuantum -> GrpPC
QuantumErrorGroup(p, n) : RngIntElt, RngIntElt -> GrpPC
SetDebugOnError(f) : BoolElt ->
SetQuitOnError(b) : BoolElt ->
ADDITIVE CODES
ALGEBRAIC-GEOMETRIC CODES
Catching Errors (STATEMENTS AND EXPRESSIONS)
Error Handling Statements (STATEMENTS AND EXPRESSIONS)
LINEAR CODES OVER FINITE FIELDS
LINEAR CODES OVER FINITE RINGS
LOW DENSITY PARITY CHECK CODES
QUANTUM CODES
The Error Objects (STATEMENTS AND EXPRESSIONS)
error expression, ..., expression;
Catching Errors (STATEMENTS AND EXPRESSIONS)
ADDITIVE CODES
ALGEBRAIC-GEOMETRIC CODES
LINEAR CODES OVER FINITE FIELDS
LINEAR CODES OVER FINITE RINGS
LOW DENSITY PARITY CHECK CODES
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012