[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: infinite .. Initialise
Infinite L2 quotients (FINITELY PRESENTED GROUPS)
Summation of Infinite Series (REAL AND COMPLEX FIELDS)
Summation of Infinite Series (REAL AND COMPLEX FIELDS)
FiniteDivisor(D) : DivFunElt -> DivFunElt
InfiniteDivisor(D) : DivFunElt -> DivFunElt
FiniteSplit(D) : DivFunElt -> DivFunElt, DivFunElt
InfinitePart(P) : TorPol -> TorCon
InfinitePlaces(K) : FldAlg -> SeqEnum
InfinitePlaces(F) : FldFun -> [PlcFunElt]
InfinitePlaces(K) : FldNum -> SeqEnum
GrpFP_1_InfinitePositiveChar (Example H70E25)
InfiniteSum(m, i) : Map, RngIntElt -> FldReElt
HyperplaneAtInfinity(X) : Sch -> Sch
Infinity() : -> Infty
LineAtInfinity(A) : Aff -> CrvPln
MinusInfinity() : -> Infty
NumberOfPointsAtInfinity(C) : CrvHyp -> RngIntElt
PointsAtInfinity(C) : Crv -> SetEnum
PointsAtInfinity(C) : CrvHyp -> SetIndx
PointsAtInfinity(C) : CrvHyp -> SetIndx
PointsAtInfinity(H) : SetPtEll -> @ PtEll @
TranslationToInfinity(C,p) : Crv,Pt -> Crv,AutSch
A-infinity Algebra Structures on Group Cohomology (BASIC ALGEBRAS)
Infinities (RING OF INTEGERS)
InflationMap(PR2, PR1, AC2, AC1, REL1, theta) : Rec, Rec, Rec, Rec, Rec -> SeqEnum
InflationMapImage(M, c) : Map, UserProgram -> UserProgram
InflationMap(PR2, PR1, AC2, AC1, REL1, theta) : Rec, Rec, Rec, Rec, Rec -> SeqEnum
LiftCocycle(M, c) : Map, UserProgram -> UserProgram
InflationMapImage(M, c) : Map, UserProgram -> UserProgram
Restrictions and Inflations (BASIC ALGEBRAS)
InflectionPoints(C) : Sch -> Sch
Flexes(C) : Sch -> Sch
IsInflectionPoint(p) : Sch,Pt -> BoolElt,RngIntElt
InflectionPoints(C) : Sch -> Sch
Flexes(C) : Sch -> Sch
CompositionTreeReductionInfo(G, t) : Grp, RngIntElt -> MonStgElt,Grp, Grp
IsolInfo(n, p, i) : RngIntElt, RngIntElt, RngIntElt -> MonStgElt
ListTypes() : ->
Other Information Procedures (ENVIRONMENT AND OPTIONS)
Properties of Ordered Partition Stacks (PERMUTATION GROUPS)
AllInformationSets(C) : Code -> [ [ RngIntElt ] ]
AnalyticInformation(E) : CrvEll[FldFunG] -> Tup
HadamardDatabaseInformation(D : parameters) : DB -> Rec
HadamardDatabaseInformationEmpty(: parameters) : -> Rec
InformationRate(C) : Code -> FldPrElt
InformationRate(C) : Code -> FldPrElt
InformationRate(C) : Code -> RngPrElt
InformationSet(C) : Code -> [ RngIntElt ]
InformationSpace(C) : Code -> ModTupFld
LocalInformation(E) : CrvEll -> [ < Tup > ]
LocalInformation(E) : CrvEll -> [ Tup ]
LocalInformation(E, p) : CrvEll, RngIntElt -> <RngIntElt, RngIntElt, RngIntElt, RngIntElt, SymKod, BoolElt>, CrvEll
LocalInformation(E) : CrvEll, RngIntElt -> [ Tup ]
LocalInformation(E) : CrvEll, RngOrdIdl -> Tup, CrvEll
LocalInformation(E, P) : CrvEll, RngOrdIdl -> Tup, CrvEll
LocalInformation(E, Pl) : CrvEll[FldFun], PlcFunElt -> Tup, CrvEll
MordellWeilShaInformation(E: parameters) : CrvEll -> [RngIntElt], [PtEll], [Tup]
MordellWeilShaInformation(E: parameters) : CrvEll -> [RngIntElt], [PtEll], [Tup]
SocketInformation(S) : IO -> Tup, Tup
Asymptotic Bounds on the Information Rate (LINEAR CODES OVER FINITE FIELDS)
Class Information from a Conjugacy Class Poset (GROUPS)
Database Information (LATTICES)
The Information Space and Information Sets (LINEAR CODES OVER FINITE FIELDS)
The Information Space and Information Sets (LINEAR CODES OVER FINITE FIELDS)
InformationRate(C) : Code -> FldPrElt
InformationRate(C) : Code -> FldPrElt
InformationRate(C) : Code -> RngPrElt
InformationSet(C) : Code -> [ RngIntElt ]
InformationSpace(C) : Code -> ModTupFld
Infrastructure (FINITE SOLUBLE GROUPS)
AbsolutelyIrreducibleModulesInit(G, F : parameters) : GrpPC, Fld -> SolRepProc
IrreducibleRepresentationsInit(G, F : parameters) : GrpPC, Fld -> SolRepProc
IrreducibleModulesInit(G, F : parameters) : GrpPC, Fld -> SolRepProc
AbsolutelyIrreducibleRepresentationsInit(G, F : parameters) : GrpPC, Fld -> SolRepProc
PlaceEnumInit(K) : FldFun -> PlcEnum
PlaceEnumInit(K, Pos) : FldFun, [RngIntElt]) -> PlcEnum
PlaceEnumInit(P) : PlcFunElt -> PlcEnum
InitialCoefficients(X) : GRSch -> SeqEnum
InitialVertex(e) : GrphEdge -> GrphVert
InitialVertex(e) : GrphEdge -> GrphVert
The Initial Context (MAGMA SEMANTICS)
The Initial Context (MAGMA SEMANTICS)
InitialCoefficients(X) : GRSch -> SeqEnum
InitialiseProspector(G:parameters): GrpMat ->
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012