[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: and .. Approximant
Absolute Value and Sign (RATIONAL FIELD)
Cusps and Elliptic Points of Congruence Subgroups (CONGRUENCE SUBGROUPS OF PSL2(R))
Geometrical Properties of Cones and Polyhedra (TORIC VARIETIES)
Ordering of Sequences (RATIONAL FUNCTION FIELDS)
x and y : BoolElt, BoolElt -> BoolElt
Six and Twelve Descent (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
CongruenceGroupAnemic(M1, M2, prec) : ModFrm, ModFrm, RngIntElt -> GrpAb
Lattices from Algebraic Number Fields (LATTICES)
Mordell--Weil Groups (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
Two Descent (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
Scheme_anf-local-solv (Example H112E23)
Scheme_anf1 (Example H112E21)
Scheme_anf2 (Example H112E22)
Scheme_anf_lift (Example H112E24)
FldNum_anfdb-basic1 (Example H34E28)
FldNum_anfdb-basic2 (Example H34E29)
Arithmetic Properties of Schemes and Points (SCHEMES)
Height (SCHEMES)
Height (SCHEMES)
Angle(e1,e2) : [SpcHydElt], [SpcHydElt] -> FldReElt
Angle(e1,e2) : [SpcHypElt], [SpcHypElt] -> FldReElt
TangentAngle(x,y) : SpcHydElt, SpcHydElt -> FldReElt
TangentAngle(x,y) : SpcHypElt, SpcHypElt -> FldReElt
AnisotropicSubdatum(R) : RootDtm -> RootDtm
IsAnisotropic(R) : RootDtm -> BoolElt
AnisotropicSubdatum(R) : RootDtm -> RootDtm
Annihilator(A,S) : AlgBas, SeqEnum[AlgBasElt] -> SeqEnum[AlgBasElt]
Annihilator(M) : ModMPol -> RngMPol
LeftAnnihilator(A, B) : AlgAss, AlgAss -> AlgAss, AlgAss
LeftAnnihilator(A, S) : AlgBas, SeqEnum[AlgBasElt] -> SeqEnum[AlgBasElt]
LeftAnnihilator(S) : AlgGrpSub -> AlgGrpSub
RightAnnihilator(A, B) : AlgAss, AlgAss -> AlgAss, AlgAss
RightAnnihilator(A, S) : AlgBas, SeqEnum[AlgBasElt] -> SeqEnum[AlgBaselt]
RightAnnihilator(S) : AlgGrpSub -> AlgGrpSub
FldFunRat_another-example (Example H41E8)
AntiAutomorphismTau(U) : AlgQUE -> Map
AntiAutomorphismTau(U) : AlgQUE -> Map
IsAnticanonical(D) : DivSchElt -> BoolElt
Antipode(U) : AlgQUE -> Map
AntisymmetricForms(L) : Lat -> [ AlgMatElt ]
AntisymmetricForms(L, n) : Lat, RngIntElt -> [ AlgMatElt ]
AntisymmetricMatrix(R, Q) : Rng, [ RngElt ] -> Mtrx
AntisymmetricMatrix(Q) : [ RngElt ] -> Mtrx
InvariantForms(G) : GrpMat -> [ AlgMatElt ]
InvariantForms(G, n) : GrpMat, RngIntElt -> [ AlgMatElt ]
NumberOfAntisymmetricForms(L) : Lat -> RngIntElt
NumberOfInvariantForms(G) : GrpMat -> RngIntElt, RngIntElt
AntisymmetricForms(L) : Lat -> [ AlgMatElt ]
AntisymmetricForms(L, n) : Lat, RngIntElt -> [ AlgMatElt ]
InvariantForms(G) : GrpMat -> [ AlgMatElt ]
InvariantForms(G, n) : GrpMat, RngIntElt -> [ AlgMatElt ]
AntisymmetricMatrix(R, Q) : Rng, [ RngElt ] -> Mtrx
AntisymmetricMatrix(Q) : [ RngElt ] -> Mtrx
ApparentEquationDegrees(X) : GRSch -> RngIntElt
ApparentSyzygyDegrees(X) : GRSch -> RngIntElt
BettiNumbers(X) : GRSch -> RngIntElt
ApparentCodimension(X) : GRSch -> RngIntElt
ApparentCodimension(f) : RngUPolElt -> RngIntElt
ApparentEquationDegrees(X) : GRSch -> RngIntElt
ApparentSyzygyDegrees(X) : GRSch -> RngIntElt
BettiNumbers(X) : GRSch -> RngIntElt
ApparentCodimension(X) : GRSch -> RngIntElt
ApparentCodimension(f) : RngUPolElt -> RngIntElt
ApparentEquationDegrees(X) : GRSch -> RngIntElt
ApparentSyzygyDegrees(X) : GRSch -> RngIntElt
BettiNumbers(X) : GRSch -> RngIntElt
ApparentCodimension(X) : GRSch -> RngIntElt
ApparentCodimension(f) : RngUPolElt -> RngIntElt
ApparentEquationDegrees(X) : GRSch -> RngIntElt
ApparentSyzygyDegrees(X) : GRSch -> RngIntElt
BettiNumbers(X) : GRSch -> RngIntElt
ApparentCodimension(X) : GRSch -> RngIntElt
ApparentCodimension(f) : RngUPolElt -> RngIntElt
Append(~S, x) : List, Elt ->
Append(S, x) : List, Elt -> List
Append(~S, x) : SeqEnum, Elt ->
Append(~T, x) : Tup, Elt ->
Append(T, x) : Tup, Elt -> Tup
Function Application (MAGMA SEMANTICS)
ApplyTransformation(g, model) : Tup, ModelG1 -> ModelG1
g * model : Tup, ModelG1 -> ModelG1
Apply(L, f) : RngDiffOpElt, RngElt -> RngElt
ApplyContravariant(c, d) : MPolElt, MPolElt -> MPolElt
Application of Operators (DIFFERENTIAL RINGS)
Application of Operators (DIFFERENTIAL RINGS)
ApplyContravariant(c, d) : MPolElt, MPolElt -> MPolElt
ApplyTransformation(g, model) : Tup, ModelG1 -> ModelG1
g * model : Tup, ModelG1 -> ModelG1
PadeHermiteApproximant(f,m) : SeqEnum, RngIntElt -> ModTupRngElt, SeqEnum
PadeHermiteApproximant(f,d) : SeqEnum, SeqEnum -> ModTupRngElt, SeqEnum, RngIntElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012