[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: with .. word
Construction of a Module with Specified Basis (FREE MODULES)
Modules HomR(M, N) with Given Basis (FREE MODULES)
EllipticCurveWithjInvariant(j) : RngElt -> CrvEll
EllipticCurveFromjInvariant(j) : RngElt -> CrvEll
HasseWittInvariant(C) : Crv[FldFin] -> RngIntElt
HasseWittInvariant(F) : FldFunG -> RngIntElt
HasseWittInvariant(F) : FldFunG -> RngIntElt
WittDecomposition(V) : ModTupFld -> SeqEnum[ModTupFld]
WittDesign(n) : RngIntElt -> Dsgn
WittIndex(V) : ModTupFld -> RngIntElt
WittInvariant(f, p) : RngMPolElt, RngIntElt -> RngIntElt
WittInvariants(f) : RngMPolElt -> SeqEnum
WittLieAlgebra(F, m, n) : Fld, RngIntElt, SeqEnum[RngIntElt] -> AlgLie, Map
WittRing(F, n) : Fld, RngIntElt -> RngWitt
The Ring of Witt Vectors of Finite Length (CLASS FIELD THEORY FOR GLOBAL FUNCTION FIELDS)
The Witt Designs (INCIDENCE STRUCTURES AND DESIGNS)
AlgLie_witt-alg-ex (Example H100E20)
The Ring of Witt Vectors of Finite Length (CLASS FIELD THEORY FOR GLOBAL FUNCTION FIELDS)
WittDecomposition(V) : ModTupFld -> SeqEnum[ModTupFld]
WittDesign(n) : RngIntElt -> Dsgn
Design_wittex (Example H147E4)
WittIndex(V) : ModTupFld -> RngIntElt
HasseMinkowskiInvariant(f, p) : RngMPolElt, RngIntElt -> RngIntElt
WittInvariant(f, p) : RngMPolElt, RngIntElt -> RngIntElt
HasseMinkowskiInvariants(f) : RngMPolElt -> SeqEnum
WittInvariants(f) : RngMPolElt -> SeqEnum
WittLieAlgebra(F, m, n) : Fld, RngIntElt, SeqEnum[RngIntElt] -> AlgLie, Map
WittRing(F, n) : Fld, RngIntElt -> RngWitt
ActingWord(G, x, y) : GrpPerm, Elt, Elt -> GrpFPElt
AlternatingElementToWord (G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt
AlternatingElementToWord (G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt
BaseImageWordStrip(H, x) : GrpPerm, GrpPermElt -> BoolElt, GrpFPElt, RngIntElt
ClassicalElementToWord(G, g): GrpMat[FldFin], GrpMatElt[FldFin] -> BoolElt, GrpSLPElt
ColumnWord(t) : Tbl -> SeqEnum
CompositionTreeElementToWord(G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt
EcheloniseWord(~P, ~r) : GrpPCpQuotientProc -> RngIntElt
FindWord(G,g) : GrpPSL2, GrpPSL2Elt -> SeqEnum
InverseRSKCorrespondenceDoubleWord(t1, t2) : Tbl, Tbl -> MonOrdElt, MonOrdElt
InverseRSKCorrespondenceSingleWord(t1, t2) : Tbl, Tbl -> MonOrdElt
InverseWordMap(G) : GrpMat -> Map
InverseWordMap(G) : GrpPerm -> Map
IsEmptyWord(u: parameters) : GrpBrdElt -> BoolElt
IsReverseLatticeWord(w) : MonOrdElt -> BoolElt
LargeReeElementToWord(G, g) : GrpMat, GrpMatElt -> BoolElt, GrpSLPElt
MinimumWord(C) : Code -> ModTupFldElt
Random(B, m, n: parameters) : GrpBrd, RngIntElt, RngIntElt -> GrpBrdElt
ReeElementToWord(G, g) : GrpMat, GrpMatElt -> BoolElt, GrpSLPElt
ReflectionWord(W, r) : GrpMat, RngIntElt -> []
ReflectionWord(W, r) : GrpPermCox, RngIntElt -> []
ReflectionWord(R, r) : RootDtm, RngIntElt -> []
ReflectionWord(R, r) : RootSys, RngIntElt -> []
RotateWord(u, n) : GrpFPElt, RngIntElt -> GrpFPElt
RotateWord(u, n) : SgpFPElt, RngIntElt -> SgpFPElt
SL2ElementToWord(G, g) : GrpMat, GrpMatElt -> BoolElt, GrpSLPElt
SL3ElementToWord (G, g) : GrpMat, GrpMatElt -> BoolElt, GrpSLPElt
SymmetricElementToWord (G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt
SymmetricElementToWord (G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt
SzElementToWord(G, g) : GrpMat, GrpMatElt -> BoolElt, GrpSLPElt
WeylWord(p) : PathLS -> SeqEnum
Word(t) : Tbl -> MonOrdElt
WordAcceptor(G) : GrpAtc -> Rec
WordAcceptorSize(G) : GrpAtc -> RngIntElt, RngIntElt
WordDifferenceAutomaton(G) : GrpAtc -> Rec
WordDifferenceSize(G) : GrpAtc -> RngIntElt, RngIntElt
WordDifferences(G) : GrpAtc -> SeqEnum
WordGroup(G) : GrpMat -> GrpSLP, Map
WordGroup(G) : GrpPerm -> GrpBB, Map
WordInStrongGenerators(H, x) : GrpPerm, GrpPermElt -> GrpFPElt
WordMap(G) : GrpMatUnip -> Map
WordProblem(A, x) : AlgMat -> BoolElt, AlgFrElt
WordProblemData(A) : AlgMat -> List
WordStrip(H, x) : GrpPerm, GrpPermElt -> BoolElt, GrpFPElt, RngIntElt
WordToSequence(u: parameters) : GrpBrdElt -> SeqEnum
WordToTableau(w) : MonOrdElt -> Tbl
Access Functions for Words (FINITELY PRESENTED GROUPS)
Arithmetic Operators for Words (FINITELY PRESENTED GROUPS)
Construction of Words (FINITELY PRESENTED GROUPS)
Permutations as Words (PERMUTATION GROUPS)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012