[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: denominator  ..  Derived


denominator

   Numerator and Denominator (RATIONAL FIELD)
   Numerator, Denominator and Degree (RATIONAL FUNCTION FIELDS)

Denominators

   ClearDenominators(f) : RngMPolElt -> RngMPolElt

Dense

   HasDenseRep(G) : Grph -> BoolElt
   HasSparseRepOnly(G) : Grph -> BoolElt
   HasDenseRepOnly(G) : Grph -> BoolElt
   HasDenseAndSparseRep(G) : Grph -> BoolElt
   HasSparseRep(G) : Grph -> BoolElt

Densely

   IsDenselyRepresented(H) : HilbSpc -> RngIntElt

Density

   CenterDensity(L) : Lat -> FldReElt
   CentreDensity(L) : Lat -> FldReElt
   Density(L) : Lat -> FldReElt
   Density(A) : Mtrx -> FldRe
   Density(A) : MtrxSprs -> FldRe
   DensityEvolutionBinarySymmetric(v, c, p) : RngIntElt, RngIntElt, FldReElt -> BoolElt
   DensityEvolutionGaussian(v, c, σ) : RngIntElt, RngIntElt, FldReElt -> BoolElt

density

   Density Evolution (LOW DENSITY PARITY CHECK CODES)

DensityEvolutionBinarySymmetric

   DensityEvolutionBinarySymmetric(v, c, p) : RngIntElt, RngIntElt, FldReElt -> BoolElt

DensityEvolutionGaussian

   DensityEvolutionGaussian(v, c, σ) : RngIntElt, RngIntElt, FldReElt -> BoolElt

Dependencies

   FindDependencies(P) : NFSProc -> .

dependency

   Algebraic Dependencies (REAL AND COMPLEX FIELDS)
   Finding dependencies: the Linear algebra stage (RING OF INTEGERS)

Dependent

   IsAlgebraicallyDependent(S) : RngMPolElt -> BoolElt
   IsLinearlyDependent(points) : [PtEll] -> BoolElt, ModTupRngElt

Depth

   Depth(x) : GrpGPCElt -> RngIntElt
   Depth(x) : GrpPCElt -> RngIntElt
   Depth(u) : ModTupRngElt -> RngIntElt
   Depth(v) : ModTupRngElt -> RngIntElt
   Depth(R) : RngInvar -> RngIntElt
   DepthFirstSearchTree(u) : GrphVert -> Grph, GrphVertSet, GrphEdgeSet, SeqEnum
   DepthFirstSearchTree(u) : GrphVert -> GrphMult, GrphVertSet, GrphEdgeSet, SeqEnum
   RngInvar_Depth (Example H110E13)

DepthFirstSearchTree

   DFSTree(u) : GrphVert -> Grph, GrphVertSet, GrphEdgeSet, SeqEnum
   DepthFirstSearchTree(u) : GrphVert -> Grph, GrphVertSet, GrphEdgeSet, SeqEnum
   DepthFirstSearchTree(u) : GrphVert -> GrphMult, GrphVertSet, GrphEdgeSet, SeqEnum

Derivation

   BaerDerivation(q2) : RngIntElt -> PlaneAff, PlanePtSet, PlaneLnSet
   ChangeDerivation(R, f) : RngDiff, RngElt -> RngDiff, Map
   ChangeDerivation(R, f) : RngDiffOp, RngElt -> RngDiffOp, Map
   Derivation(R) : RngDiff -> Map
   Derivation(R) : RngDiffOp -> Map
   HasProjectiveDerivation(F) : RngDiff -> BoolElt
   HasProjectiveDerivation(R) : RngDiffOp -> BoolElt
   HasZeroDerivation(F) : RngDiff -> BoolElt
   HasZeroDerivation(R) : RngDiffOp -> BoolElt
   OvalDerivation(q: parameters) : RngIntElt -> PlaneAff, PlanePtSet, PlaneLnSet
   RelativePrecisionOfDerivation(F) : RngDiff -> RngElt
   RelativePrecisionOfDerivation(R) : RngDiffOp -> RngElt

derivation

   Derivation and Differential (DIFFERENTIAL RINGS)
   Derivation and Differential (DIFFERENTIAL RINGS)
   Derivatives and Differentials (DIFFERENTIAL RINGS)

derivation-differential

   Derivation and Differential (DIFFERENTIAL RINGS)

derivation-differential-diff-ring-elts

   Derivatives and Differentials (DIFFERENTIAL RINGS)

Derivations

   LieAlgebraOfDerivations(L) : AlgLie -> AlgLie, Rec

Derivative

   Derivative(f, v) : FldFunRatMElt, RngIntElt -> FldFunRatMElt
   Derivative(f, v, k) : FldFunRatMElt, RngIntElt, RngIntElt -> FldFunRatMElt
   Derivative(f) : FldFunRatUElt -> FldFunRatUElt
   Derivative(f, k) : FldFunRatUElt, RngIntElt -> FldFunRatUElt
   Derivative(s) : RngDiffElt -> RngDiffElt
   Derivative(f, i) : RngMPolElt, RngIntElt -> RngMPolElt
   Derivative(f, k, i) : RngMPolElt, RngIntElt -> RngMPolElt
   Derivative(s) : RngPowLazElt -> RngPowLazElt
   Derivative(f) : RngSerElt -> RngSerElt
   Derivative(f, n) : RngSerElt, RngIntElt -> RngSerElt
   Derivative(x, i) : RngSLPolElt, RngIntElt -> RngSLPolElt
   Derivative(p) : RngUPolElt -> RngUPolElt
   Derivative(p, n) : RngUPolElt, RngIntElt -> RngUPolElt
   LogDerivative(s) : FldReElt -> FldReElt
   NumericalDerivative(f, n, z) : UserProgram, RngIntElt, FldComElt -> FldComElt

derivative

   Derivative (RATIONAL FUNCTION FIELDS)
   Derivative, Integral (MULTIVARIATE POLYNOMIAL RINGS)
   Derivative, Integral (UNIVARIATE POLYNOMIAL RINGS)
   Evaluation and Derivative (POWER, LAURENT AND PUISEUX SERIES)

derivative-differential-diff-ring-elements

   RngDiff_derivative-differential-diff-ring-elements (Example H111E17)

derivative-integral

   Derivative, Integral (MULTIVARIATE POLYNOMIAL RINGS)
   Derivative, Integral (UNIVARIATE POLYNOMIAL RINGS)

Derived

   DerivedSubgroup(G) : GrpAb -> GrpAb
   CommutatorSubgroup(G) : GrpAb -> GrpAb
   CommutatorSubgroup(G) : GrpFP -> GrpFP
   CommutatorSubgroup(G) : GrpMat -> GrpMat
   CommutatorSubgroup(G) : GrpPC -> GrpPC
   CommutatorSubgroup(G) : GrpPerm -> GrpPerm
   DerivedGroupMonteCarlo (G : parameters) : GrpMat -> GrpMat
   DerivedLength(G) : GrpFin -> RngIntElt
   DerivedLength(G) : GrpGPC -> RngIntElt
   DerivedLength(G) : GrpMat -> RngIntElt
   DerivedLength(G) : GrpPC -> RngIntElt
   DerivedLength(G) : GrpPerm -> RngIntElt
   DerivedSeries(L) : AlgLie -> [ AlgLie ]
   DerivedSeries(G) : GrpFin -> [ GrpFin ]
   DerivedSeries(G) : GrpGPC -> [GrpGPC]
   DerivedSeries(G) : GrpMat -> [ GrpMat ]
   DerivedSeries(G) : GrpPC -> [GrpPC]
   DerivedSeries(G) : GrpPerm -> [ GrpPerm ]
   DerivedSubgroup(G) : GrpFin -> GrpFin
   DerivedSubgroup(G) : GrpGPC -> GrpGPC

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012