[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: Fibration  ..  Field


Fibration

   RandomEllipticFibration_d10g10(P) : Prj -> Srfc
   RandomEllipticFibration_d7g6(P) : Prj -> Srfc
   RandomEllipticFibration_d8g7(P) : Prj -> Srfc
   RandomEllipticFibration_d9g7(P) : Prj -> Srfc
   RationalPointsByFibration(X) : Sch -> SetIndx

Fibre

   IsMoriFibreSpace(X,i) : TorVar,RngIntElt -> BoolElt

Fibres

   HasIrregularFibres(s) : GrphSpl -> BoolElt

Field

   FixedField(A, U) : FldAb, GrpAb -> FldAb
   AbelianSubfield(A, U) : FldAb, GrpAb -> FldAb
   AbsoluteField(F) : FldAlg -> FldAlg
   AbsoluteField(F) : FldNum -> FldNum
   AbsoluteFunctionField(F) : FldFunG -> FldFunG
   AbsoluteModuleOverMinimalField(M) : ModGrp -> ModGrp
   AbsoluteModuleOverMinimalField(M, F) : ModGrp, FldFin -> ModGrp
   AbsoluteModulesOverMinimalField(Q, F) : [ ModGrp ], FldFin -> [ ModGrp ]
   AlgorithmicFunctionField(F) : FldFunFracSch -> FldFun, Map
   Alphabet(C) : Code -> Rng
   Alphabet(C) : Code -> Rng
   BaseField(A) : AlgQuat -> Fld
   BaseField(D) : DB -> FldFin
   BaseField(A) : FldAC -> Fld
   BaseField(A) : FldFunAb -> FldFunG
   BaseField(Q) : FldRat -> FldRat
   BaseField(A) : JacHyp -> Fld
   BaseField(J) : JacHyp -> Fld
   BaseField(M) : ModFrmBianchi ->
   BaseField(M) : ModFrmHil ->
   BaseField(f) : ModFrmHilElt -> Fld
   BaseField(R) : RngDiff -> Rng
   BaseField(R) : RootSys -> Fld
   BaseField(C) : Sch -> Fld
   BaseField(X) : Sch -> Fld
   BaseField(K) : SrfKum -> Fld
   BaseRing(F) : FldFun -> Rng
   BaseRing(FF) : FldFunOrd -> Rng
   BaseRing(L) : RngPad -> RngPad
   BaseRing(W) : RngWitt -> Fld
   BaseRing(C) : Sch -> Rng
   ChangeField(A,K) : ArtRep, FldNum -> ArtRep, BoolElt
   ClassField(m, G) : Map, GrpAb -> FldAb
   CoefficientField(x) : AlgChtrElt -> Rng
   CoefficientField(C) : Code -> Rng
   CoefficientField(V) : ModTupFld -> Fld
   CoefficientRing(A) : FldAb -> Fld
   CoefficientRing(M) : ModTupRng -> Rng
   CoefficientRing(R) : RngInvar -> Grp
   ComplexField() : -> FldCom
   ComplexField(R) : FldRe -> FldCom
   ComplexField(p) : RngIntElt -> FldCom
   ConstantField(F) : FldFunG -> Rng
   ConstantField(R) : RngDiff -> Rng
   ConstantFieldExtension(F, E) : FldFun, Rng -> FldFun, Map
   ConstantFieldExtension(F, C) : RngDiff, Fld -> RngDiff, Map
   ConstantFieldExtension(R, C) : RngDiffOp,Fld -> RngDiffOp, Map
   CyclotomicField(m) : RngIntElt -> FldCyc
   CyclotomicRelativeField(k, K) : FldCyc, FldCyc -> FldNum
   DecompositionField(p, A) : PlcNumElt, FldAb -> FldAb
   DecompositionField(p) : RngOrdIdl -> FldNum, Map
   DecompositionField(p, A) : RngOrdIdl, FldAb -> FldAb
   DegreeOfExactConstantField(m) : DivFunElt -> RngIntElt
   DegreeOfExactConstantField(m, U) : DivFunElt, GrpAb -> RngIntElt
   DegreeOfExactConstantField(A) : FldFunAb -> RngIntElt
   DegreeOfFieldExtension(G) : GrpMat -> RngIntElt
   DifferentialFieldExtension(L) : RngDiffOpElt, -> RngDiff
   DimensionOfExactConstantField(F) : FldFunG -> RngIntElt
   DimensionOfFieldOfGeometricIrreducibility(C): Crv -> RngIntElt
   ExactConstantField(F) : FldFunG -> Rng, Map
   ExactConstantField(F) : RngDiff -> RngDiff, Map
   ExponentialFieldExtension(F, f) : RngDiff, RngDiffElt -> RngDiff
   ExtendField(C, L) : Code, FldFin -> Code, Map
   ExtendField(G, L) : GrpMat, FldFin -> GrpMat, Map
   ExtendField(V, L) : ModTupFld, Fld -> ModTupFld, MapHom
   ExtensionField<F, x | P> : FldFin, ... -> FldFin, Map
   FactorizationOverSplittingField(f) : RngUPolElt[FldFin] -> [<RngUPolElt, RngIntElt>], FldFin
   Field(A) : ArtRep -> FldNum
   Field(H) : HilbSpc -> FldCom
   Field(P) : Plane -> FldFin
   FieldAutomorphism(G, sigma) : GrpLie, Map -> Map
   FieldMorphism(f) : Map -> Map
   FieldOfDefinition(H) : HomModAbVar -> ModAbVar
   FieldOfDefinition(phi) : MapModAbVar -> ModAbVar
   FieldOfDefinition(A) : ModAbVar -> Fld
   FieldOfDefinition(x) : ModAbVarElt -> ModTupFldElt
   FieldOfDefinition(G) : ModAbVarSubGrp -> Fld
   FieldOfFractions(Q) : FldRat -> FldRat
   FieldOfFractions(R) : RngDiff -> RngDiff, Map
   FieldOfFractions(O) : RngFunOrd -> FldFunOrd
   FieldOfFractions(Z) : RngInt -> FldRat
   FieldOfFractions(O) : RngOrd -> FldOrd
   FieldOfFractions(R) : RngPad -> FldPad
   FieldOfFractions(R) : RngSer -> RngSerLaur
   FieldOfFractions(E) : RngSerExt -> RngSerExt
   FieldOfFractions(P) : RngUPol -> FldFunRat
   FieldOfFractions(V) : RngVal -> Rng
   FieldOfGeometricIrreducibility(C) : Crv -> Rng, Map
   FiniteField(q) : RngIntElt -> FldFin
   FiniteField(p, n) : RngIntElt, RngIntElt -> FldFin
   FixedField(K, U) : FldAlg, GrpPerm -> FldNum, Map
   FixedField(K, S) : FldAlg, [Map] -> FldNum, Map
   FixedField(L, G) : RngLocA, GrpPerm -> RngLocA
   FixedField(V) : SSGalRep -> RngSerLaur
   FunctionField(A) : Aff -> FldFunFracSch
   FunctionField(C) : Crv -> FldFunFracSch
   FunctionField(X) : CrvMod -> FldFun
   FunctionField(D) : DiffFun -> FldFun
   FunctionField(d) : DiffFunElt -> FldFun
   FunctionField(G) : DivFun -> FldFun
   FunctionField(D) : DivFunElt -> FldFun
   FunctionField(A) : FldFunAb -> FldFun
   FunctionField(F) : FldInvar -> FldFunRat
   FunctionField(f : parameters) : RngMPolElt -> FldFun
   FunctionField(S) : PlcFun -> FldFun
   FunctionField(P) : PlcFunElt -> FldFun
   FunctionField(R) : Rng -> FldFunG
   FunctionField(R) : Rng -> FldFunRat
   FunctionField(R, r) : Rng, RngIntElt -> FldFunRat
   FunctionField(O) : RngFunOrd -> FldFun
   FunctionField(e) : RngWittElt -> FldFun, Map
   FunctionField(A) : Sch -> FldFunFracSch
   FunctionField(C) : Sch -> FldFunG
   FunctionField(S) : [RngMPolElt] -> FldFun
   FunctionField(S) : [RngUPolElt] -> FldFun
   FunctionFieldDatabase(q, d) : RngIntElt, RngIntElt -> DB
   FunctionFieldPlace(p) : PlcCrvElt -> PlcFunElt
   GHomOverCentralizingField(M, N) : ModGrp, ModGrp -> ModMatGrp
   GaloisSplittingField(f) : RngUPolElt -> FldNum, [FldNumElt], GrpPerm, [[FldNumElt]]
   GenusField(A): FldAb -> FldAb
   GetDefaultRealField() : -> FldRe
   GroundField(F) : FldAlg -> Fld
   GroundField(F) : FldFin -> FldFin
   GroundField(F) : FldNum -> Fld
   HeckeEigenvalueField(M) : ModFrmHil -> Fld
   HeckeEigenvalueField(M) : ModSym -> Fld, Map
   HermitianFunctionField(p, d) : RngIntElt, RngIntElt -> FldFun
   HilbertClassField(K) : FldAlg -> FldAb
   HilbertClassField(K, p) : FldFun, PlcFunElt -> FldFunAb
   ISABaseField(F,G) : Fld, Fld -> BoolElt
   IdentityFieldMorphism(F) : Fld -> Map
   InertiaField(p) : RngOrdIdl -> FldNum, Map
   InvariantField(G, K) : GrpPerm, Fld -> FldInvar
   IsAbsoluteField(K) : FldAlg -> BoolElt
   IsAbsoluteField(K) : FldNum -> BoolElt
   IsAlgebraicDifferentialField(R) : Rng -> BoolElt
   IsDifferentialField(R) : Rng -> BoolElt
   IsField(H) : HomModAbVar -> BoolElt, Fld, Map, Map
   IsField(R) : Rng -> BoolElt
   IsField(R) : RngDiff -> BoolElt
   IsOverSmallerField (G : parameters) : GrpMat -> BoolElt, GrpMat
   IsOverSmallerField(G, k : parameters) : GrpMat -> BoolElt, GrpMat
   IsPrimeField(F) : Fld -> BoolElt
   IsRationalFunctionField(F) : FldFunG -> BoolElt
   IsRealisableOverSmallerField(M) : ModGrp -> BoolElt, ModGrp
   IsSplittingField(K, A) : Fld, AlgQuat -> BoolElt, AlgQuatElt, Map
   IsolGroupOfDegreeFieldSatisfying(d, p, f) : RngIntElt, RngIntElt, Any -> GrpMat
   IsolGroupsOfDegreeFieldSatisfying(d, p, f) : RngIntElt, RngIntElt, Any -> SeqEnum
   IsolNumberOfDegreeField(n, p) : RngIntElt, RngIntElt -> RngIntElt
   IsolProcessOfDegreeField(d, p) : ., . -> Process
   IsolProcessOfField(p) : . -> Process
   LocalField(L, f) : FldPad, RngUPolElt -> RngLocA
   LogarithmicFieldExtension(F, f) : RngDiff, RngDiffElt -> RngDiff
   MatRepFieldSizes(A) : GrpAtlas -> SetEnum[RngIntElt]
   MinimalField(a) : FldRatElt -> FldRat
   MinimalField(q) : FldRatElt -> FldRat
   MinimalField(G) : GrpMat -> FldFin
   MinimalField(M) : ModRng -> FldFin
   MinimalField(S) : SetEnum -> FldRat
   MinimalField(S) : [ FldCycElt ] -> FldCyc
   ModuleOverSmallerField(M, F) : ModGrp, FldFin -> ModGrp
   ModulesOverCommonField(M, N) : ModGrp, ModGrp -> ModGrp, ModGrp
   ModulesOverSmallerField(Q, F) : SeqEnum, FldFin -> ModGrp
   NumberField(A) : FldAb -> FldNum
   NumberField(F) : FldOrd -> FldNum
   NumberField(P) : PlcNum -> FldNum
   NumberField(P) : PlcNum -> FldNum
   NumberField(P) : PlcNumElt -> FldNum
   NumberField(P) : PlcNumElt -> FldNum
   NumberField(O) : RngOrd -> FldNum
   NumberField(O) : RngQuad -> FldQuad
   NumberField(f) : RngUPolElt -> FldNum
   NumberField(f) : RngUPolElt -> FldNum
   NumberField(e) : SubFldLatElt -> FldNum
   NumberField(s) : [ RngUPolElt ] -> FldNum
   NumberField(s) : [ RngUPolElt ] -> FldNum
   NumberFieldDatabase(d) : RngIntElt -> DB
   NumberFieldSieve(n, F, m1, m2) : RngIntElt, RngMPolElt, RngIntElt, RngIntElt -> RngIntElt
   NumberOfPlacesOfDegreeOneECFBound(C) : Crv -> RngIntElt
   NumberOfPlacesOfDegreeOneECFBound(F) : FldFunG -> RngIntElt
   NumberOfPlacesOfDegreeOneOverExactConstantField(C) : Crv[FldFin] -> RngIntElt
   NumberOfPlacesOfDegreeOneOverExactConstantField(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
   NumberOfPlacesOfDegreeOneOverExactConstantField(F, m) : FldFun, RngIntElt -> RngIntElt
   NumberOfPlacesOfDegreeOneOverExactConstantField(F) : FldFunG -> RngIntElt
   NumberOfPlacesOfDegreeOneOverExactConstantField(F, m) : FldFunG, RngIntElt -> RngIntElt
   NumberOfPlacesOfDegreeOneOverExactConstantFieldBound(F, m) : FldFun, RngIntElt -> RngIntElt
   NumberOfPlacesOfDegreeOverExactConstantField(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
   NumberOfPlacesOfDegreeOverExactConstantField(F, m) : FldFun, RngIntElt -> RngIntElt
   NumberOfPlacesOfDegreeOverExactConstantField(F, m) : FldFunG, RngIntElt -> RngIntElt
   PointsOverSplittingField(Z) : Clstr -> SetEnum
   PrimeField(F) : Fld -> Fld
   PrimeField(F) : FldFin -> FldFin
   PrimeField(N) : Nfd -> FldFin
   PrimeRing(F) : FldFun -> Rng
   PrimeRing(L) : RngPad -> RngPad
   QuadraticField(m) : RngIntElt -> FldQuad
   RamificationField(p) : RngOrdIdl -> FldNum, Map
   RamificationField(p, i) : RngOrdIdl, RngIntElt -> FldNum, Map
   RationalDifferentialField(C) : Fld -> RngDiff
   Rationals() : -> FldRat
   RationalsAsNumberField() : FldRat -> FldNum
   RationalsAsNumberField() : FldRat -> FldNum
   RayClassField(D) : DivNumElt -> FldAb
   RayClassField(m) : Map -> FldAb
   RealField() : -> FldRe
   RealField(p) : RngIntElt -> FldRe
   RelativeField(F, L) : FldAlg, FldAlg -> FldAlg
   RelativeField(F, L) : FldNum, FldNum -> FldNum
   RelativeField(L, m) : RngLocA, Map -> RngLocA, Map, Map
   ResidueClassField(P) : PlcCrvElt -> Rng
   ResidueClassField(P) : PlcFunElt -> Rng, Map
   ResidueClassField(P) : PlcNumElt -> Fld
   ResidueClassField(P) : PlcNumElt -> Fld
   ResidueClassField(I) : Rng -> Fld, Map
   ResidueClassField(I) : RngFunOrdIdl -> Rng, Map
   ResidueClassField(L) : RngLocA -> Rng, Map
   ResidueClassField(O, I) : RngOrd, RngOrdIdl -> FldFin, Map
   ResidueClassField(L) : RngPad -> FldFin, Map
   ResidueClassField(R) : RngSer -> Rng, Map
   ResidueClassField(E) : RngSerExt -> FldFin
   ResidueField(R) : RngGal -> FldFin
   RestrictField(G, S) : GrpMat, FldFin -> GrpMat, Map
   RestrictField(V, L) : ModTupFld, Fld -> ModTupFld, MapHom
   RingOfFractions(Q) : RngMPolRes -> RngFunFrac
   RootsInSplittingField(f) : RngUPolElt[FldFin] -> [<RngUPolElt, RngIntElt>], FldFin
   SetDefaultRealField(R) : FldRe ->
   SmallerField(G) : GrpMat -> FLdFin
   SmallerFieldBasis(G) : GrpMat -> GrpMatElt
   SmallerFieldImage(G, g) : GrpMat, GrpMatElt -> GrpMatElt
   SplittingField(F) : FldAlg -> FldAlg, SeqEnum
   SplittingField(F) : FldNum -> FldNum, SeqEnum
   SplittingField(f) : RngUPolElt -> FldAlg
   SplittingField(f) : RngUPolElt -> FldNum
   SplittingField(S) : RngUPolElt[FldFin] -> FldFin
   SplittingField(P) : RngUPolElt[FldFin] -> FldFin
   SplittingField(f, R) : RngUPolElt[RngInt], RngPad -> RngPad
   SplittingField(L) : [RngUPolElt] -> FldNum, [FldNumElt]
   SplittingField(L) : [RngUPolElt] -> FldNum, [FldNumElt]
   SubfieldSubcode(C, S) : Code, FldFin -> Code, Map
   UnderlyingField(R) : RngDiff -> Rng
   UnderlyingRing(F) : FldFunG -> FldFunG
   WeilPolynomialOverFieldExtension(f, deg) : RngUPolElt, RngIntElt -> RngUPolElt
   WriteOverLargerField(G) : GrpMat -> GrpMat, GrpAb, SeqEnum
   WriteOverSmallerField(G, F) : GrpMat, FldFin -> GrpMat, Map
   WriteOverSmallerField(M, F) : ModGrp, FldFin -> ModGrp, Map
   ext< K | f > : FldFunRat, RngUPolElt -> FldFun
   pAdicRing(p) : RngIntElt -> RngPad
   pAdicRing(p, k) : RngIntElt, RngIntElt -> RngPad

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012