[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: simplicial .. Singular
Simplicial Complexes (SIMPLICIAL HOMOLOGY)
SIMPLICIAL HOMOLOGY
Simplicial Complexes (SIMPLICIAL HOMOLOGY)
SimplicialComplex(G) : Grph -> SmpCpx
SimplicialComplex(f) : SeqEnum[SetEnum] -> SmpCpx
SimplicialProjectivePlane() : -> SmpCpx
SimplicialSubdivision(F) : TorFan -> TorFan
Simplification (FINITELY PRESENTED GROUPS)
IsSimplifiedModel(E) : CrvEll -> BoolElt
IsSimplifiedModel(C) : CrvHyp -> BoolElt
SimplifiedModel(E): CrvEll -> CrvEll, Map, Map
SimplifiedModel(C) : CrvHyp -> CrvHyp, MapIsoSch
SimplifiedModel(E): CrvEll -> CrvEll, Map, Map
SimplifiedModel(C) : CrvHyp -> CrvHyp, MapIsoSch
Simplify(A) : FldAC ->
Simplify(D) : Inc -> Inc
Simplify(M) : ModDed -> ModDed
Simplify(G: parameters) : GrpFP -> GrpFP, Map
Simplify(~P : parameters) : GrpFPTietzeProc ->
Simplify(O) : RngFunOrd -> RngFunOrd
Simplify(O) : RngOrd -> RngOrd
SimplifyLength(G: parameters) : GrpFP -> GrpFP, Map
SimplifyLength(~P : parameters) : GrpFPTietzeProc ->
SimplifyRep(s) : RngPowAlgElt -> RngPowAlgElt
Simplification (ALGEBRAICALLY CLOSED FIELDS)
GrpFP_1_Simplify1 (Example H70E68)
SimplifyLength(G: parameters) : GrpFP -> GrpFP, Map
SimplifyLength(~P : parameters) : GrpFPTietzeProc ->
SimplifyPresentation(~P : parameters) : GrpFPTietzeProc ->
Simplify(~P : parameters) : GrpFPTietzeProc ->
SimplifyRep(s) : RngPowAlgElt -> RngPowAlgElt
IsSimplyConnected(G) : GrpLie -> BoolElt
IsSimplyConnected(R) : RootDtm -> BoolElt
IsSimplyLaced(C) : AlgMatElt -> BoolElt
IsSimplyLaced(M) : AlgMatElt -> BoolElt
IsSimplyLaced(D) : GrphDir -> BoolElt
IsSimplyLaced(G) : GrphUnd -> BoolElt
IsSimplyLaced(G) : GrpLie-> BoolElt
IsSimplyLaced(W) : GrpMat -> BoolElt
IsSimplyLaced(W) : GrpPermCox-> BoolElt
IsSimplyLaced(N) : MonStgElt -> BoolElt
IsSimplyLaced(R) : RootStr -> BoolElt
IsSimplyLaced(R) : RootSys-> BoolElt
IsWeaklySimplyConnected(G) : GrpLie -> BoolElt
IsWeaklySimplyConnected(R) : RootDtm -> BoolElt
SimplyConnectedVersion(R) : RootDtm -> RootDtm, Map
SimplyConnectedVersion(R) : RootDtm -> RootDtm, Map
SimpsonQuadrature(f, a, b, n) : Program, FldReElt, FldReElt, RngIntElt -> FldReElt
SimpsonQuadrature(f, a, b, n) : Program, FldReElt, FldReElt, RngIntElt -> FldReElt
SimsSchreier(G: parameters) : GrpPerm : ->
SimsSchreier(G: parameters) : GrpPerm : ->
Sin(c) : FldComElt -> FldComElt
Sin(f) : RngSerElt -> RngSerElt
Sin(f) : RngSerElt -> RngSerElt
Sincos(s) : FldReElt -> FldReElt, FldReElt
Sincos(f) : RngSerElt -> RngSerElt
Sincos(f) : RngSerElt -> RngSerElt
Creation of Curve Singularities (HILBERT SERIES OF POLARISED VARIETIES)
Creation of Point Singularities (HILBERT SERIES OF POLARISED VARIETIES)
Curve Singularities (HILBERT SERIES OF POLARISED VARIETIES)
Identifying Special Types of Point Singularity (HILBERT SERIES OF POLARISED VARIETIES)
Point Singularities (HILBERT SERIES OF POLARISED VARIETIES)
Singularity Analysis (ALGEBRAIC CURVES)
Singularity Analysis (ALGEBRAIC CURVES)
SingerDifferenceSet(n, q) : RngIntElt, RngIntElt -> { RngIntResElt }
SingerDifferenceSet(n, q) : RngIntElt, RngIntElt -> { RngIntResElt }
InverseRSKCorrespondenceSingleWord(t1, t2) : Tbl, Tbl -> MonOrdElt
IsSinglePrecision(n) : RngIntElt -> BoolElt
The `single use' Rule (MAGMA SEMANTICS)
The `single use' Rule (MAGMA SEMANTICS)
SingletonAsymptoticBound(delta) : FldPrElt -> FldPrElt
SingletonBound(K, n, d) : FldFin, RngIntElt, RngIntElt -> RngIntElt
SingletonAsymptoticBound(delta) : FldPrElt -> FldPrElt
SingletonBound(K, n, d) : FldFin, RngIntElt, RngIntElt -> RngIntElt
Singularity Properties (ALGEBRAIC SURFACES)
CuspIsSingular(N,d) : RngIntElt, RngIntElt -> BoolElt
HasSingularPointsOverExtension(C) : Sch -> BoolElt
HasSingularVector(V) : ModTupFld -> BoolElt, ModTupFldElt
IsIrregularSingularPlace(L, p) : RngDiffOpElt, PlcFunElt -> BoolElt
IsRegularSingularOperator(L) : RngDiffOpElt -> BoolElt, SetEnum
IsRegularSingularPlace(L, p) : RngDiffOpElt, PlcFunElt -> BoolElt
IsSingular(V) : ModTupFld -> BoolElt, ModTupFldElt
IsSingular(A) : Mtrx -> BoolElt
IsSingular(C) : Sch -> BoolElt
IsSingular(X) : Sch -> BoolElt
IsSingular(p) : Sch,Pt -> BoolElt
IsSingular(p) : Sch,Pt -> BoolElt
IsSingular(C) : TorCon -> BoolElt
IsSingular(F) : TorFan -> BoolElt
IsSingular(X) : TorVar -> BoolElt
IsTotallySingular(V) : ModTupFld) -> BoolElt
MaximalTotallySingularSubspace(V) : ModTupFld -> ModTupFld
ParametrizeSingularDegree3DelPezzo(X,P2) : Sch, Prj -> BoolElt, MapIsoSch
SetsOfSingularPlaces(L) : RngDiffOpElt -> SetEnum, SetEnum
SingularCones(F) : TorFan -> SeqEnum,SeqEnum
SingularPoints(C) : Sch -> SetIndx
SingularRadical(V) : ModTupFld -> ModTupFld
SingularRank(X) : GRK3 -> RngIntElt
SingularSubscheme(X) : Sch -> Sch
TotallySingularComplement(V, U, W) : ModTupFld, ModTupFld, ModTupFld) -> ModTupFld
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012