[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: ModularParametrisation  ..  Module


ModularParametrisation

   ModularParametrisation(E, z, B : parameters) : CrvEll[FldRat], FldComElt, RngIntElt -> FldComElt
   ModularParametrization(E, z, B : parameters) : CrvEll[FldRat], FldComElt, RngIntElt -> FldComElt

ModularParametrization

   ModularParametrisation(E, z, B : parameters) : CrvEll[FldRat], FldComElt, RngIntElt -> FldComElt
   ModularParametrization(E, z, B : parameters) : CrvEll[FldRat], FldComElt, RngIntElt -> FldComElt

ModularPolarization

   ModularPolarization(A) : ModAbVar -> MapModAbVar

ModularSolution

   ModularSolution(A, M) : MtrxSprs, RngIntElt -> ModTupRng

ModularSymbols

   ModularSymbols(E) : CrvEll -> ModSym
   ModularSymbols(eps, k) : GrpDrchElt, RngIntElt -> ModSym
   ModularSymbols(eps, k, sign) : GrpDrchElt, RngIntElt, RngIntElt -> ModSym
   ModularSymbols(A) : ModAbVar -> SeqEnum
   ModularSymbols(H) : ModAbVarHomol -> SeqEnum
   ModularSymbols(M) : ModFrm -> SeqEnum
   ModularSymbols(M, sign) : ModFrm, RngIntElt -> ModSym
   ModularSymbols(M, N') : ModSym, RngIntElt -> ModSym
   ModularSymbols(s, sign) : MonStgElt, RngIntElt -> ModSym
   ModularSymbols(M : parameters) : ModSS -> ModSym
   ModularSymbols(M, sign : parameters) : ModSS, RngIntElt -> ModSym
   ModularSymbols(N) : RngIntElt -> ModSym
   ModularSymbols(N, k) : RngIntElt, RngIntElt -> ModSym
   ModularSymbols(N, k, F) : RngIntElt, RngIntElt, Fld -> ModSym
   ModularSymbols(N, k, F, sign) : RngIntElt, RngIntElt, Fld, RngIntElt -> ModSym
   ModularSymbols(N, k, sign) : RngIntElt, RngIntElt, RngIntElt -> ModSym
   ModFrm_ModularSymbols (Example H132E22)

ModularSymbolToIntegralHomology

   ModularSymbolToIntegralHomology(A, x) : ModAbVar, SeqEnum -> ModTupFldElt

ModularSymbolToRationalHomology

   ModularSymbolToRationalHomology(A, x) : ModAbVar, ModSymElt -> ModTupFldElt

Module

   AbsoluteModuleOverMinimalField(M) : ModGrp -> ModGrp
   AbsoluteModuleOverMinimalField(M, F) : ModGrp, FldFin -> ModGrp
   AbsolutelyIrreducibleModule(M) : ModRng -> ModRng
   AmbientModule(M) : ModBrdt -> ModBrdt
   AnalyticDrinfeldModule(F, p) : FldFun, PlcFunElt -> RngUPolTwstElt
   AnalyticModule(x, p) : RngElt, PlcFunElt -> RngElt
   BaseModule(R) : AlgMat -> ModTup
   BaseModule(L) : AlgMatLie -> ModTupRng
   BaseModule(M) : AlgMatLie -> ModTupRng
   BrandtModule(A) : AlgQuatOrd -> ModBrdt
   BrandtModule(M, N) : AlgQuatOrd, RngElt -> ModBrdt
   BrandtModule(M) : ModSS -> ModBrdt
   BrandtModule(D) : RngIntElt -> ModBrdt
   BrandtModuleDimension(D, N) : RngElt, RngElt -> RngIntElt
   BrandtModuleDimension(D, N) : RngIntElt, RngIntElt -> RngIntElt
   CarlitzModule(R, x) : RngUPolTwst, RngUPolElt -> RngUPolTwstElt
   CohomologyLeftModuleGenerators(P, CP, Q) : Tup, Tup, Tup -> Tup
   CohomologyModule(A) : FldAb -> ModGrp, Map, Map, Map
   CohomologyModule(G, A, M) : GrpPerm, GrpAb, Any -> ModCoho
   CohomologyModule(G, M) : GrpPerm, ModGrp -> ModCoho
   CohomologyModule(G, Q, T) : GrpPerm, SeqEnum, SeqEnum -> ModCoho
   CohomologyRightModuleGenerators(P, Q, CQ) : Rec, Rec, Rec -> Rec
   ColonModule(M, J) : ModMPol, RngMPol -> ModMPol
   CommutatorModule(A, B) : AlgAss, AlgAss -> ModTupRng
   ElementaryPhiModule(S,d,h) : RngSerLaur, RngIntElt, RngIntElt -> PhiMod
   FullModule(S) : ShfCoh -> ModMPol
   GradedModule(R, k) : Rng, RngIntElt -> ModMPol
   GradedModule(R, W) : Rng, [ RngIntElt ] -> ModMPol
   GradedModule(I) : RngMPol -> ModMPol
   HasDefinedModuleMap(C,n) : ModCpx, RngIntElt -> BoolElt
   HighestWeightModule(L, w) : AlgLie, SeqEnum -> ModTupAlg
   HighestWeightModule(U, w) : AlgQUE, SeqEnum -> ModTupAlg
   HomogeneousModuleTest(P, S, F) : [ RngMPol ], [ RngMPol ], RngMPol -> BoolElt, [ RngMPol ]
   HomogeneousModuleTest(P, S, F) : [ RngMPol ], [ RngMPol ], RngMPol -> BoolElt, [ RngMPol ]
   HomogeneousModuleTest(P, S, L) : [ RngMPol ], [ RngMPol ], [ RngMPol ] -> [ BoolElt ], [ [ RngMPol ] ]
   HomogeneousModuleTest(P, S, L) : [ RngMPol ], [ RngMPol ], [ RngMPol ] -> [ BoolElt ], [ [ RngMPol ] ]
   HomogeneousModuleTestBasis(P, S, L) : [ RngMPol ], [ RngMPol ], [ RngMPol ] -> [ BoolElt ], [ [ RngMPol ] ]
   InjectiveModule(B, i) : AlgBas, RngIntElt -> ModAlg
   InjectiveSyzygyModule(M, n) : ModAlg, RngIntElt -> ModAlg
   IrreducibleModule(B, i) : AlgBas, RngIntElt -> ModAlg
   IsLeftModule(M): ModAlg -> BoolElt
   IsModuleHomomorphism(f) : ModMatFldElt -> BoolElt
   IsModuleHomomorphism(X) : ModMatFldElt -> BoolElt
   IsPermutationModule(M) : ModRng -> BoolElt
   IsRightModule(M): ModAlg -> BoolElt
   MinimalSyzygyModule(M) : ModMPol -> [ ModMPolElt ]
   Module(A, m): Alg, Map[SetCart, ModRng] -> ModAlg
   Module(O) : AlgAssVOrd[RngOrd] -> PMat
   Module(A) : AlgGen -> ModTupRng
   Module(S) : AlgGrpSub -> ModTupRng, Map
   Module(L) : AlgLie -> ModTupRng
   Module(CM) : ModCoho -> ModGrp
   Module(X) : PMat -> ModDed
   Module(R) : RngInvar -> ModMPol, Map
   Module(O) : RngOrd -> ModDed, Map
   Module(O, n) : RngOrd, RngIntElt -> ModDed
   Module(I) : RngOrdFracIdl -> ModDed, Map
   Module(I) : RngOrdFracIdl -> ModDed, Map
   Module(L, R) : SeqEnum[ DiffFunElt ], Rng -> Mod, Map, SeqEnum[ ModElt ]
   Module(L, R) : SeqEnum[ FldFunGElt ], Rng -> Mod, Map, SeqEnum[ ModElt ]
   Module(S) : SeqEnum[ModElt] -> ModDed, Map
   Module(S) : SeqEnum[RngOrdFracIdl] -> ModDed
   Module(S) : SeqEnum[Tup] -> ModDed, Map
   Module(S) : ShfCoh -> ModMPol
   Module(e) : SubModLatElt -> ModRng
   Module(L) : [DiffCrvElt] -> Mod, Map, [ ModElt ]
   Module(S) : [FldFunFracSchElt[Crv]] -> Mod, Map, [ModElt]
   ModuleHomomorphism(f) : ShfHom -> ModMPolHom
   ModuleMap(f, n) : MapChn, RngIntElt -> ModMatRngElt
   ModuleOverSmallerField(M, F) : ModGrp, FldFin -> ModGrp
   ModuleWithBasis(Q): SeqEnum -> ModAlg
   NextRepresentation(P) : SolRepProc -> BoolElt, Map
   NormSpace(S) : AlgQuatOrd -> ModTupRng, Map
   PermutationModule(G, K) : Grp, Fld -> ModGrp
   PermutationModule(G, H, K) : Grp, Grp, Fld -> ModGrp
   PermutationModule(G, H, R) : Grp, Grp, Rng -> ModGrp
   PermutationModule(G, V) : Grp, ModTupFld -> ModGrp
   PermutationModule(G, u) : Grp, ModTupFldElt -> ModGrp
   PermutationModule(G, H, R) : GrpFin, GrpFin, Rng -> ModGrpFin
   PermutationModule(G, H, R) : GrpMat, GrpMat, Rng -> ModGrp
   PermutationModule(G, K) : GrpPerm, Fld -> ModGrp
   PermutationModule(G, R) : GrpPerm, Rng -> ModGrp
   PermutationModule(G, R) : GrpPerm, Rng -> ModGrpFin
   PhiModule(M) : AlgMatElt -> PhiMod
   PhiModuleElement(x,D) : AlgMatElt, PhiMod -> PhiModElt
   ProjectiveIndecomposableModule(I: parameters) : ModGrp -> ModGrp
   ProjectiveModule(B, i) : AlgBas, RngIntElt -> ModRng
   ProjectiveModule(B, S) : AlgBas, SeqEnum[RngIntElt] -> ModAlg, SeqEnum, SeqEnum
   QuotientModule(A, S) : AlgFP, AlgFP -> AlgFP
   QuotientModule(A, S) : AlgFP, AlgFP -> AlgFP
   QuotientModule(A, S) : AlgFP, AlgFP -> AlgFP
   QuotientModule(A, S) : AlgFP, AlgFP -> AlgFP
   QuotientModule(A, S) : AlgFPOld, AlgFPOld -> [AlgMatElt], [ModTupFldElt], [AlgFPEltOld]
   QuotientModule(I) : RngMPol -> ModMPol
   QuotientModuleAction(G, S) : GrpMat -> Map, GrpMat
   QuotientModuleImage(G, S) : GrpMat -> GrpMat
   RelationModule(M) : ModMPol -> [ ModMPol ]
   RightRegularModule(B) : AlgBas -> ModAlg
   SubalgebraModule(B, M): Alg, ModAlg -> ModAlg
   SupersingularModule(p,N : parameters) : RngIntElt, RngInt -> ModSS
   SupersingularModule(p) : RngIntElt -> ModForm
   SyzygyModule(M, n) : ModAlg, RngIntElt -> ModAlg
   SyzygyModule(M) : ModMPol -> [ ModMPolElt ]
   SyzygyModule(Q) : [ RngMPolElt ] -> ModTupRng
   TrivialModule(G, K) : Grp, Fld -> ModGrp
   ZeroModule(B) : AlgBas -> ModAlg
   RngInvar_Module (Example H110E11)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012