Combinatorial Functions
Factorial(n) : RngIntElt -> RngIntElt
NumberOfPermutations(n, k) : RngIntElt, RngIntElt -> RngIntElt
Binomial(n, r) : RngIntElt, RngIntElt -> RngIntElt
Multinomial(n, [r1, ... rn]) : RngIntElt, [RngIntElt] -> RngIntElt
Fibonacci(n) : RngIntElt -> RngIntElt
Catalan(n) : RngIntElt -> RngIntElt
Lucas(n) : RngIntElt -> RngIntElt
GeneralizedFibonacciNumber(g0, g1, n) : RngIntElt, RngIntElt, RngIntElt -> RngIntElt
StirlingFirst(n, k) : RngIntElt, RngIntElt -> RngIntElt
StirlingSecond(n, k) : RngIntElt, RngIntElt -> RngIntElt
Bell(n) : RngIntElt -> RngIntElt
EulerianNumber(n, r) : RngIntElt, RngIntElt -> RngIntElt
HarmonicNumber(n) : RngIntElt -> FldRatElt
BernoulliNumber(n) : RngIntElt -> FldRatElt
BernoulliApproximation(n) : RngIntElt -> FldPrElt
BernoulliPolynomial(n) : RngIntElt -> RngUPolElt
Subsets of a Finite Set
Subsets(S) : SetEnum -> SetEnum
Subsets(S, k) : SetEnum, RngIntElt -> SetEnum
Multisets(S, k) : SetEnum, RngIntElt -> SetEnum
Subsequences(S, k) : SetEnum, RngIntElt -> SetEnum
Permutations(S) : SetEnum -> SetEnum;
Permutations(S, k) : SetEnum, RngIntElt -> SetEnum;
Example EnumComb_OddGraph (H144E1)
[Next][Prev] [Right] [____] [Up] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012