[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: StabiliserCode .. Standard
StabiliserCode(Q) : CodeQuantum -> CodeAdd
StabilizerCode(Q) : CodeQuantum -> CodeAdd
StabiliserGroup(Q) : CodeQuantum -> GrpPC
StabilizerGroup(Q) : CodeQuantum -> GrpPC
StabilizerGroup(Q, G) : CodeQuantum, GrpPC -> GrpPC
StabiliserMatrix(Q) : CodeQuantum -> ModMatFldElt
StabilizerMatrix(Q) : CodeQuantum -> ModMatFldElt
StabiliserOfSpaces(Q) : SeqEnum -> GrpMat, SeqEnum
GrpMatGen_StabiliserOfSpaces (Example H59E20)
MonomialGroupStabilizer(C, k) : Code, RngIntElt -> GrpPerm, PowMap, Map
AutomorphismGroupStabilizer(C, k) : Code, RngIntElt -> GrpPerm, PowMap, Map
AutomorphismGroupStabilizer(D, k) : Inc, RngIntElt -> GrpPerm, PowMap, Map
BasicStabilizer(G, i) : GrpMat, RngIntElt -> GrpMat
BasicStabilizer(G, i) : GrpPerm, RngIntElt -> GrpPerm
BasicStabilizerChain(G) : GrpMat -> [GrpMat]
BasicStabilizerChain(G) : GrpPerm -> [GrpPerm]
CollineationGroupStabilizer(P, k) : Plane, RngIntElt -> GrpPerm, GSet, GSet, PowMap, Map
Stabilizer(G, y) : GrpMat, Elt -> GrpMat
Stabilizer(A, Y, y) : GrpPerm, Elt -> GrpPerm
Stabilizer(G, Y, y) : GrpPerm, Elt -> GrpPerm
Stabilizer(G, Y, y) : GrpPerm, Elt -> GrpPerm
Stabilizer(G, Y, y) : GrpPerm, GSet, Elt -> GrpPerm
Stabilizer(a,G) : SpcHypElt, GrpPSL2 -> GrpPSL2Elt
StabilizerCode(Q) : CodeQuantum -> CodeAdd
StabilizerGroup(Q) : CodeQuantum -> GrpPC
StabilizerGroup(Q, G) : CodeQuantum, GrpPC -> GrpPC
StabilizerLadder(G, d) : GrpPerm, RngMPolElt -> [GrpPerm]
StabilizerMatrix(Q) : CodeQuantum -> ModMatFldElt
Images, Orbits and Stabilizers (PERMUTATION GROUPS)
Orbit and Stabilizer Functions for Large Groups (MATRIX GROUPS OVER GENERAL RINGS)
Orbits and Stabilizers (MATRIX GROUPS OVER GENERAL RINGS)
StabiliserCode(Q) : CodeQuantum -> CodeAdd
StabilizerCode(Q) : CodeQuantum -> CodeAdd
StabiliserGroup(Q) : CodeQuantum -> GrpPC
StabilizerGroup(Q) : CodeQuantum -> GrpPC
StabilizerGroup(Q, G) : CodeQuantum, GrpPC -> GrpPC
StabilizerLadder(G, d) : GrpPerm, RngMPolElt -> [GrpPerm]
StabiliserMatrix(Q) : CodeQuantum -> ModMatFldElt
StabilizerMatrix(Q) : CodeQuantum -> ModMatFldElt
GrpPerm_Stabilizers (Example H58E24)
OrderedPartitionStack(n) : RngIntElt -> StkPtnOrd
OrderedPartitionStackZero(n, h) : RngIntElt, RngIntElt -> StkPtnOrd
Ordered Partition Stacks (PERMUTATION GROUPS)
Finding dependencies: the Linear algebra stage (RING OF INTEGERS)
The Auxiliary data stage (RING OF INTEGERS)
The Factorization stage (RING OF INTEGERS)
The Sieving stage (RING OF INTEGERS)
AddEdges(~N, S) : GrphNet, { < [ GrphVert, GrphVert ], RngIntElt > } ->
Incremental Construction: Adding Edges (NETWORKS)
Standard Construction for Multigraphs (MULTIGRAPHS)
Standard Construction for Networks (NETWORKS)
Subgraphs (MULTIGRAPHS)
Subgraphs (NETWORKS)
Union of Networks (NETWORKS)
ClassicalStandardGenerators(type, d, q) : MonStgElt, RngIntElt, RngIntElt -> []
ClassicalStandardPresentation (type, d, q : parameters) : MonStgElt, RngIntElt, RngIntElt -> SLPGroup, []
IsStandard(t) : Tbl -> BoolElt
IsStandardAffinePatch(A) : Aff -> BoolElt, RngIntElt
IsStandardParabolicSubgroup(W, H) : GrpPermCox, GrpPermCox -> BoolElt
IsomorphismToStandardCopy(G, str : parameters) : Grp, MonStgElt -> BoolElt, Map
NumberOfStandardTableaux(P) : SeqEnum -> RngIntElt
NumberOfStandardTableauxOnWeight(n) : RngIntElt -> RngIntElt
SparseRootDatum(N) : MonStgElt -> RootDtmSprs
StandardAction(W) : GrpFPCox -> Map
StandardAction(W) : GrpMat -> Map
StandardActionGroup(W) : GrpFPCox -> GrpPerm, Map
StandardActionGroup(W) : GrpMat -> GrpPerm, Map
StandardAlternatingForm(n,R) : RngIntElt, Rng -> AlgMatElt
StandardBasis(I) : RngMPolLoc -> RngMPolLocElt
StandardBasis(S) : [ RngMPolLocElt ] -> [ RngMPolLocElt ]
StandardForm(A) : AlgQuat -> RngElt, RngElt, AlgQuat, Map
StandardForm(C) : Code -> Code, Map
StandardForm(C) : Code -> Code, Map
StandardFormConjugationMatrices(A) : AlgMat -> Tup
StandardGenerators(L) : AlgKac -> SeqEnum[AlgKacElt], SeqEnum[AlgKacElt], SeqEnum[AlgKacElt]
StandardGenerators(G, str : parameters) : Grp, MonStgElt -> BoolElt, SeqEnum, SeqEnum
StandardGraph(G) : Grph -> Grph
StandardGraph(G) : GrphMult -> GrphMult
StandardGroup(G) : GrpPerm -> GrpPerm, Map
StandardHermitianForm(n,K) : RngIntElt, Fld -> AlgMatElt, Map
StandardLattice(n) : RngIntElt -> Lat
StandardMaximalTorus(G) : GrpLie -> GrpLie
StandardMetacyclicPGroup (P): Grp -> GrpPC
StandardParabolicSubgroup(W, J) : GrpPermCox, () -> GrpPermCox
StandardPresentation(G): GrpPC -> GrpPC, Map
StandardPresentation(G, str : parameters) : Grp, MonStgElt -> BoolElt, SeqEnum, SeqEnum
StandardPseudoAlternatingForm(n,K) : RngIntElt, Fld -> AlgMatElt
StandardQuadraticForm(n, K : parameters) : RngIntElt, Fld -> AlgMatElt
StandardRepresentation(L) : AlgLie -> Map
StandardRepresentation(G) : GrpLie -> Map
StandardRepresentation(G) : GrpLie -> Map
StandardRootDatum(X, n) : MonStgElt, RngIntElt -> RootDtm
StandardRootSystem(X, n) : MonStgElt, RngIntElt -> RootSys
StandardSimplex(L) : TorLat -> TorPol
StandardSymmetricForm(n, K) : RngIntElt, Fld -> AlgMatElt
StandardTableaux(P) : SeqEnum[RngIntElt] -> SetEnum
StandardTableauxOfWeight(n) : RngIntElt -> SetEnum
GrpPC_Standard (Example H63E1)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012