[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: transversal .. Triangular
RightTransversal(G, H) : GrpMat, GrpMat -> {@ GrpMatElt @}, Map
Coset Tables and Transversals (MATRIX GROUPS OVER GENERAL RINGS)
TransversalElt(W, H, x) : GrpPermCox, GrpPermCox, GrpPermElt -> GrpPermElt
TransversalElt(W, H, x, J) : GrpPermCox, GrpPermCox, GrpPermElt, GrpPermCox -> GrpPermElt
TransversalElt(W, x, H) : GrpPermCox, GrpPermElt, GrpPermCox -> GrpPermElt
TransversalProcess(G, H) : GrpPerm, GrpPerm -> GrpPermTransProc
TransversalProcessNext(P) : GrpPermTransProc -> GrpPermElt
TransversalProcessRemaining(P) : GrpPermTransProc -> RngIntElt
GrpCox_Transversals (Example H98E25)
Coset Tables and Transversals (FINITE SOLUBLE GROUPS)
Cosets and Transversals (PERMUTATION GROUPS)
Transversals (PERMUTATION GROUPS)
TransversalWords(W, H) : GrpPermCox, GrpPermCox -> @ @
CalculateTransverseIntersections(~g) : GrphRes ->
IsTransverse(C,D,p) : Sch,Sch,Pt -> BoolElt
ModifyTransverseIntersection(~v,n) : GrphResVert,RngIntElt ->
TransverseIndex(C) : GRCrvS -> RngIntElt
TransverseIntersections(g) : GrphRes -> SeqEnum
TransverseType(C) : GRCrvS -> GRPtS
TransverseIndex(C) : GRCrvS -> RngIntElt
TransverseIntersections(g) : GrphRes -> SeqEnum
TransverseType(C) : GRCrvS -> GRPtS
Traps for Young Players (MAGMA SEMANTICS)
Trap 1 (MAGMA SEMANTICS)
Trap 2 (MAGMA SEMANTICS)
TrapezoidalQuadrature(f, a, b, n) : Program, FldReElt, FldReElt, RngIntElt -> FldReElt
TrapezoidalQuadrature(f, a, b, n) : Program, FldReElt, FldReElt, RngIntElt -> FldReElt
HadamardTrasformation(e) : HilbSpcElt -> HilbSpcElt
BFSTree(u) : GrphVert -> Grph
BreadthFirstSearchTree(u) : GrphVert -> Grph, GrphVertSet, GrphEdgeSet
BreadthFirstSearchTree(u) : GrphVert -> GrphMult, GrphVertSet, GrphEdgeSet
CleanCompositionTree(G) : Grp ->
CompositionTree(G : parameters) : GrpMat[FldFin] -> []
CompositionTreeCBM(G) : GrpMat[FldFin -> GrpMatElt
CompositionTreeElementToWord(G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt
CompositionTreeFactorNumber(G, g) : Grp, GrpElt -> RngIntElt
CompositionTreeFastVerification(G) : Grp -> BoolElt
CompositionTreeNiceGroup(G) : Grp -> GrpMat[FldFin]
CompositionTreeNiceToUser(G) : Grp -> Map, []
CompositionTreeOrder(G) : Grp -> RngIntElt
CompositionTreeReductionInfo(G, t) : Grp, RngIntElt -> MonStgElt,Grp, Grp
CompositionTreeSLPGroup(G) : Grp -> GrpSLP, Map
CompositionTreeSeries(G) : Grp -> SeqEnum, List, List, List, BoolElt, []
CompositionTreeVerify(G) : Grp -> BoolElt, []
DepthFirstSearchTree(u) : GrphVert -> Grph, GrphVertSet, GrphEdgeSet, SeqEnum
DepthFirstSearchTree(u) : GrphVert -> GrphMult, GrphVertSet, GrphEdgeSet, SeqEnum
DisplayCompTreeNodes(G : parameters) : Grp ->
HasCompositionTree(G) : Grp -> BoolElt
IrreducibleSimpleSubalgebraTreeSU(Q, d) : SeqEnum[SeqEnum[Tup]], RngIntElt -> GrphDir
IsPathTree(B) : AlgBas -> Bool
IsRootedTree(G) : GrphDir -> BoolElt, GrphVert
IsTree(G) : Grph -> BoolElt
MinimumWeightTree(u : parameters) : GrphVert -> SeqEnum
PathTree(B, i) : AlgBas, RngIntElt -> ModRng
RandomTree(n : parameters) : RngIntElt -> GrphUnd
SpanningTree(G) : GrphMultUnd -> GrphMultUnd, GrphVertSet, GrphEdgeSet
SpanningTree(G) : GrphUnd -> Grph, GrphVertSet, GrphEdgeSet
Composition Trees for Matrix Groups (MATRIX GROUPS OVER FINITE FIELDS)
Directed Trees (GRAPHS)
Spanning Trees (MULTIGRAPHS)
Spanning Trees of a Graph or Digraph (GRAPHS)
PrintTreesSU(Q, F) : SeqEnum[SeqEnum[Tup]], MonStgElt ->
TrialDivision(n) : RngIntElt -> RngIntEltFact, [ RngIntElt ]
TrialDivision(n, B) : RngQuadElt, RngIntElt -> SeqEnum, SeqEnum, Tup
TrialDivision(n) : RngIntElt -> RngIntEltFact, [ RngIntElt ]
TrialDivision(n, B) : RngQuadElt, RngIntElt -> SeqEnum, SeqEnum, Tup
AdmissableTriangleGroups() : -> SeqEnum
ArithmeticTriangleGroup(p,q,r) : RngIntElt, RngIntElt, RngIntElt -> GrpPSL2, Rng
IsTriangleGroup(G) : GrpPSL2 -> BoolElt
PascalTriangle(D) : Dsgn -> SeqEnum
ReduceToTriangleVertices(G,z) : GrpPSL2, SpcHypElt -> SpcHypElt
Triangle Groups (ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES)
Triangle Groups (ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES)
GrpPSL2Shim_Triangle239CMPoints1 (Example H131E9)
GrpPSL2Shim_Triangle239CMPoints2 (Example H131E10)
IsLowerTriangular(A) : Mtrx -> BoolElt
IsLowerTriangular(A) : MtrxSprs -> BoolElt
IsUpperTriangular(A) : Mtrx -> BoolElt
IsUpperTriangular(A) : MtrxSprs -> BoolElt
LowerTriangularMatrix(R, Q) : Rng, [ RngElt ] -> Mtrx
LowerTriangularMatrix(Q) : [ RngElt ] -> Mtrx
TriangularDecomposition(I) : RngMPol -> [ RngMPol ], BoolElt
TriangularGraph(n) : RngIntElt -> GrphUnd
UpperTriangularMatrix(R, Q) : Rng, [ RngElt ] -> Mtrx
UpperTriangularMatrix(Q) : [ RngElt ] -> Mtrx
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012