[Next][Prev] [Right] [Left] [Up] [Index] [Root]

Other Functions for Nilpotent Matrix Groups

SylowSystem(G : parameters) : GrpMat[FldFin] -> []
    Verify: BoolElt                     Default: false
Given a nilpotent matrix group G over a finite field, this function constructs one Sylow p-subgroup for each prime p dividing |G| using the algorithm of [DF06]. If the optional parameter Verify is set to true, then we first verify that G is nilpotent.

The next two functions were developed and implemented by Tobias Rossmann.

IsIrreducibleFiniteNilpotent(G : parameters): GrpMat -> BoolElt, Any
    DecideOnly: BoolElt                 Default: false
    Verify: BoolElt                     Default: false
Let G be a finite nilpotent matrix group over K, where K is a number field or a rational function field over a number field. The function returns true if G is irreducible or false and a proper submodule of GModule(G). The construction of a submodule can be suppressed by setting DecideOnly to true. If the optional parameter Verify is set to true, then the function checks if G is nilpotent and finite. The algorithm used for irreducibility testing is described in [Ros10a].
IsPrimitiveFiniteNilpotent(G : parameters): GrpMat -> BoolElt, Any
    DecideOnly: BoolElt                 Default: false
    Verify: BoolElt                     Default: false
Let G be an irreducible finite nilpotent matrix group over K, where K is a number field or a rational function field over a number field. The function returns true if G is primitive, or false and a system of imprimitivity for G given as a sequence of subspaces of RSpace(G). The construction of a system of imprimitivity can be suppressed by setting DecideOnly to true. If the optional parameter Verify is set to true, then the function checks if G is nilpotent and finite. The algorithm used for primitivity testing is described in [Ros10b].
 [Next][Prev] [Right] [Left] [Up] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012