[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: curve .. Cuspidal
ALGEBRAIC CURVES
Creation from Curve Singularities (RESOLUTION GRAPHS AND SPLICE DIAGRAMS)
Creation of a Modular Curve (MODULAR CURVES)
Creation of an Elliptic Curve (ELLIPTIC CURVES)
Creation of Curve Singularities (HILBERT SERIES OF POLARISED VARIETIES)
Curve Singularities (HILBERT SERIES OF POLARISED VARIETIES)
Curves (ALGEBRAIC CURVES)
Elliptic Curve Chabauty (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
ELLIPTIC CURVES
ELLIPTIC CURVES OVER FINITE FIELDS
ELLIPTIC CURVES OVER FUNCTION FIELDS
ELLIPTIC CURVES OVER Q AND NUMBER FIELDS
HYPERELLIPTIC CURVES
Local Geometry (ALGEBRAIC CURVES)
Crv_curve-base-change (Example H114E2)
Crv_curve-differentials (Example H114E25)
Crv_curve-hessian (Example H114E3)
Crv_curve-iscusp (Example H114E6)
Curve Singularities (HILBERT SERIES OF POLARISED VARIETIES)
Embedded Formal Desingularization of Curves (ALGEBRAIC SURFACES)
Creation from Invariants (HYPERELLIPTIC CURVES)
CurvePlace(C, p) : Crv, PlcFunElt -> PlcCrvElt
FunctionFieldDivisor(d) : DivCrvElt -> DivFunElt
CurveDivisor(C, d) : Crv, DivFunElt -> DivCrvElt
FunctionFieldDifferential(d) : DiffCrvElt -> DiffFunElt
CurveDifferential(C, d) : Crv, DiffFunElt -> DiffCrvElt
FunctionFieldPlace(p) : PlcCrvElt -> PlcFunElt
CurvePlace(C, p) : Crv, PlcFunElt -> PlcCrvElt
FunctionFieldDivisor(d) : DivCrvElt -> DivFunElt
CurveDivisor(C, d) : Crv, DivFunElt -> DivCrvElt
FunctionFieldDifferential(d) : DiffCrvElt -> DiffFunElt
CurveDifferential(C, d) : Crv, DiffFunElt -> DiffCrvElt
FunctionFieldPlace(p) : PlcCrvElt -> PlcFunElt
CrvHyp_CurveFromInvts (Example H125E7)
Genus and Singularities (ALGEBRAIC CURVES)
Global Geometry (ALGEBRAIC CURVES)
CurvePlace(C, p) : Crv, PlcFunElt -> PlcCrvElt
FunctionFieldDivisor(d) : DivCrvElt -> DivFunElt
CurveDivisor(C, d) : Crv, DivFunElt -> DivCrvElt
FunctionFieldDifferential(d) : DiffCrvElt -> DiffFunElt
CurveDifferential(C, d) : Crv, DiffFunElt -> DiffCrvElt
FunctionFieldPlace(p) : PlcCrvElt -> PlcFunElt
CurveQuotient(G): GrpAutCrv -> Crv, MapSch
NumberOfCurves(D) : DB -> RngIntElt
# D : DB -> RngIntElt
Curves(B) : GRBskt -> SeqEnum
EffectiveSubcanonicalCurves(g) : RngIntElt -> SeqEnum
EllipticCurves(D) : DB -> [ CrvEll ]
EllipticCurves(D, S) : DB, MonStgElt -> [ CrvEll ]
EllipticCurves(D, N) : DB, RngIntElt -> [ CrvEll ]
EllipticCurves(D, N, I) : DB, RngIntElt, RngIntElt -> [ CrvEll ]
IneffectiveSubcanonicalCurves(g) : RngIntElt -> SeqEnum
IsogenousCurves(E) : CrvEll[FldRat] -> SeqEnum, RngIntElt
NewModularHyperellipticCurves(N, g) : RngIntElt, RngIntElt -> SeqEnum
NewModularNonHyperellipticCurvesGenus3(N) : RngIntElt, RngIntElt -> SeqEnum
NumberOfCurves(D, N) : DB, RngIntElt -> RngIntElt
NumberOfCurves(D, N, i) : DB, RngIntElt, RngIntElt -> RngIntElt
Algebraic Curves (ALGEBRAIC CURVES)
Base Change (ALGEBRAIC CURVES)
Basic Attributes (ALGEBRAIC CURVES)
Basic Invariants (ALGEBRAIC CURVES)
Creation (ALGEBRAIC CURVES)
Elliptic Curves (MODULAR SYMBOLS)
MODULAR CURVES
Ordinary Plane Curves (ALGEBRAIC CURVES)
Random Curves (ALGEBRAIC CURVES)
SMALL MODULAR CURVES
SUPERSINGULAR DIVISORS ON MODULAR CURVES
Basic Attributes (ALGEBRAIC CURVES)
Base Change (ALGEBRAIC CURVES)
Creation (ALGEBRAIC CURVES)
Scheme_curves-in-space (Example H112E62)
Basic Invariants (ALGEBRAIC CURVES)
BianchiCuspForms(F, N) : FldNum, RngOrdIdl -> ModFrmBianchi
Cusp(CN,N,d) : Crv, RngIntElt, RngIntElt -> Any
CuspForms(x) : Any -> ModFrm
CuspIsSingular(N,d) : RngIntElt, RngIntElt -> BoolElt
CuspPlaces(CN,N,d) : Crv, RngIntElt, RngIntElt -> SeqEnum[PlcCrvElt]
CuspWidth(G,x) : GrpPSL2, SetCspElt -> RngIntElt
DimensionCuspForms(eps, k) : GrpDrchElt, RngIntElt -> RngIntElt
DimensionCuspFormsGamma0(N, k) : RngIntElt, RngIntElt -> RngIntElt
DimensionCuspFormsGamma1(N, k) : RngIntElt, RngIntElt -> RngIntElt
DimensionNewCuspFormsGamma0(N, k) : RngIntElt, RngIntElt -> RngIntElt
DimensionNewCuspFormsGamma1(N, k) : RngIntElt, RngIntElt -> RngIntElt
HilbertCuspForms(F, N, k) : FldNum, RngOrdIdl, SeqEnum -> ModFrmHil
IsCusp(p) : Crv,Pt -> BoolElt
IsCusp(z) : SpcHypElt -> BoolElt
GrpPSL2_cusp-example (Example H130E5)
CuspForms(x) : Any -> ModFrm
CuspidalInducingDatum(pi) : RepLoc -> ModGrp
CuspidalSubgroup(A) : ModAbVar -> ModAbVarSubGrp
CuspidalSubspace(M) : ModBrdt -> ModBrdt
CuspidalSubspace(M) : ModFrm -> ModFrm
CuspidalSubspace(M) : ModSS -> ModSS
CuspidalSubspace(M) : ModSym -> ModSym
EisensteinProjection(f) : ModFrmElt -> ModFrmElt
IsCuspidal(M) : ModBrdt -> BoolElt
IsCuspidal(M) : ModFrm -> BoolElt
IsCuspidal(M) : ModFrmHil -> BoolElt
IsCuspidal(M) : ModSym -> BoolElt
NonCuspidalQRationalPoints(CN,N) : Crv, RngIntElt -> SeqEnum
RationalCuspidalSubgroup(A) : ModAbVar -> ModAbVarSubGrp
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012