[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: sum .. Superlattice
Direct Sum (K[G]-MODULES AND GROUP REPRESENTATIONS)
Direct Sum (MODULES OVER AN ALGEBRA)
Sum, Intersection and Dual (ADDITIVE CODES)
Sum, Intersection and Dual (LINEAR CODES OVER FINITE FIELDS)
Sum, Intersection and Dual (LINEAR CODES OVER FINITE RINGS)
SmpCpx_sum (Example H140E7)
Sum, Intersection and Dual (ADDITIVE CODES)
Sum, Intersection and Dual (LINEAR CODES OVER FINITE FIELDS)
Sum, Intersection and Dual (LINEAR CODES OVER FINITE RINGS)
AlgAss_sumandadjoin (Example H81E8)
AlgAss_sumandadjoin (Example H81E9)
GrpCox_SumDual (Example H98E26)
CodeFld_SumIntersection (Example H152E15)
CodeRng_SumIntersection (Example H155E23)
IsDirectSummand(M, S) : ModGrp, ModGrp -> BoolElt, ModGrp
HasComplement(M, S) : ModGrp, ModGrp -> BoolElt, ModGrp
IndecomposableSummands(A) : AlgAssV -> [ AlgAssV ], [ AlgAssVElt ]
DirectSumDecomposition(A) : AlgAssV -> [ AlgAssV ], [ AlgAssVElt ]
DirectSumDecomposition(ρ) : Map[AlgLie, AlgMatLie] -> SeqEnum
DirectSumDecomposition(ρ) : Map[GrpLie, GrpMat] -> SeqEnum
DirectSumDecomposition(V) : ModAlg -> SeqEnum
DirectSumDecomposition(M) : ModRng -> [ ModRng ]
DirectSumDecomposition(R) : RootDtm -> [], RootDtm, Map
DirectSumDecomposition(R) : RootSys -> []
IndecomposableSummands(L) : AlgLie -> [ AlgLie ]
Summands(L) : TorLat -> SeqEnum,SeqEnum,SeqEnum
Summation of Infinite Series (REAL AND COMPLEX FIELDS)
IsSuperSummitRepresentative(u: parameters) : GrpBrdElt -> BoolElt
IsUltraSummitRepresentative(u: parameters) : GrpBrdElt -> BoolElt
MinimalElementConjugatingToSuperSummit(x, s: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
MinimalElementConjugatingToUltraSummit(x, s: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
SuperSummitCanonicalLength(u: parameters) : GrpBrdElt -> RngIntElt
SuperSummitInfimum(u: parameters) : GrpBrdElt -> RngIntElt
SuperSummitProcess(u: parameters) : GrpBrdElt -> GrpBrdClassProc
SuperSummitRepresentative(u: parameters) : GrpBrdElt -> GrpBrdElt, GrpBrdElt
SuperSummitSet(u: parameters) : GrpBrdElt -> SetIndx
SuperSummitSupremum(u: parameters) : GrpBrdElt -> RngIntElt
UltraSummitProcess(u: parameters) : GrpBrdElt -> GrpBrdClassProc
UltraSummitRepresentative(u: parameters) : GrpBrdElt -> GrpBrdElt, GrpBrdElt
UltraSummitSet(u: parameters) : GrpBrdElt -> SetIndx
SumNorm(f) : RngMPolElt -> RngIntElt
SumNorm(p) : RngUPolElt -> RngIntElt
SumOf(X) : [ModAbVar] -> ModAbVar
SumOfBettiNumbersOfSimpleModules(A, n) : AlgBas, RngIntElt -> RngIntElt
SumOfDivisors(n) : RngIntElt -> RngIntElt
SumOfImages(phi, psi) : MapModAbVar, MapModAbVar -> ModAbVar, MapModAbVar, List
SumOfMorphismImages(X) : List -> ModAbVar, MapModAbVar, List
ConjugatesToPowerSums(I) : [] -> []
IsSUnit(a, S) : FldFunElt, SetEnum[PlcFunElt] -> BoolElt
IsSUnitWithPreimage(a, S) : FldFunElt, SetEnum[PlcFunElt] -> BoolElt, GrpAbElt
SUnitAction(SU, Act, S) : Map, Map, SeqEnum[RngOrdIdl] -> Map
SUnitAction(SU, Act, S) : Map, SeqEnum[Map], SeqEnum[RngOrdIdl] -> [Map]
SUnitCohomologyProcess(S, U) : {RngOrdIdl}, GrpPerm -> {1}
SUnitDiscLog(SU, x, S) : Map, FldAlgElt, SeqEnum[RngOrdIdl] -> GrpAbElt
SUnitGroup(I) : RngOrdFracIdl -> GrpAb, Map
SUnitGroup(S) : SetEnum[PlcFunElt] -> GrpAb, Map
SUnitAction(SU, Act, S) : Map, Map, SeqEnum[RngOrdIdl] -> Map
SUnitAction(SU, Act, S) : Map, SeqEnum[Map], SeqEnum[RngOrdIdl] -> [Map]
SUnitCohomologyProcess(S, U) : {RngOrdIdl}, GrpPerm -> {1}
SUnitDiscLog(SU, x, S) : Map, FldAlgElt, SeqEnum[RngOrdIdl] -> GrpAbElt
SUnitGroup(I) : RngOrdFracIdl -> GrpAb, Map
SUnitGroup(S) : SetEnum[PlcFunElt] -> GrpAb, Map
IsSuperSummitRepresentative(u: parameters) : GrpBrdElt -> BoolElt
MinimalElementConjugatingToSuperSummit(x, s: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
SuperScheme(X) : Sch -> Sch
SuperSummitCanonicalLength(u: parameters) : GrpBrdElt -> RngIntElt
SuperSummitInfimum(u: parameters) : GrpBrdElt -> RngIntElt
SuperSummitProcess(u: parameters) : GrpBrdElt -> GrpBrdClassProc
SuperSummitRepresentative(u: parameters) : GrpBrdElt -> GrpBrdElt, GrpBrdElt
SuperSummitSet(u: parameters) : GrpBrdElt -> SetIndx
SuperSummitSupremum(u: parameters) : GrpBrdElt -> RngIntElt
Sub- and Superlattices and Quotients (LATTICES)
IsSupercuspidal(pi) : RepLoc -> BoolElt
Supercuspidal Representations (ADMISSIBLE REPRESENTATIONS OF GL2(Qp))
Subgraphs and Quotient Graphs (GRAPHS)
IsSuperlattice(L) : TorLat -> BoolElt
Superlattice(L) : TorLat -> TorLat,TorLatMap
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012