[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: conjugate  ..  Connection


conjugate

   Conjugacy (MATRIX GROUPS OVER GENERAL RINGS)
   Conjugacy (PERMUTATION GROUPS)
   Conjugacy (POLYCYCLIC GROUPS)
   Conjugacy Classes of Elements (GROUPS)
   Conjugates, Norm and Trace (RATIONAL FIELD)
   Conjugates, Norm and Trace (RING OF INTEGERS)
   Conjugation of Class Functions (CHARACTERS OF FINITE GROUPS)

conjugate-norm-trace

   Conjugates, Norm and Trace (RATIONAL FIELD)
   Conjugates, Norm and Trace (RING OF INTEGERS)

ConjugateIntoBorel

   ConjugateIntoBorel(g) : GrpLieElt -> GrpLieElt, GrpLieElt

ConjugateIntoTorus

   ConjugateIntoTorus(g) : GrpLieElt -> GrpLieElt, GrpLieElt

ConjugatePartition

   ConjugatePartition(P) : SeqEnum -> SeqEnum

Conjugates

   Conjugates(G, H) : GrpFin, GrpElt -> { GrpElt }
   Class(G, H) : GrpFin, GrpFin -> { GrpFin }
   Class(H, x) : GrpFin, GrpFinElt -> { GrpFinElt }
   Class(H, x) : GrpMat, GrpMatElt -> { GrpMatElt }
   Class(H, g) : GrpPC, GrpPCElt -> { GrpPCElt }
   Class(H, x) : GrpPerm, GrpPermElt -> { GrpPermElt }
   Conjugates(a) : FldACElt -> [ FldACElt ]
   Conjugates(a) : FldAlgElt -> [ FldComElt ]
   Conjugates(a) : FldNumElt -> [ FldComElt ]
   ConjugatesToPowerSums(I) : [] -> []
   ExcludedConjugate(P) : GrpFPCosetEnumProc -> GrpFPElt
   ExcludedConjugates(V) : GrpFPCos -> { GrpFPElt }
   PositiveConjugates(u: parameters) : GrpBrdElt -> SetIndx
   PositiveConjugatesProcess(u: parameters) : GrpBrdElt -> GrpBrdClassProc
   ShimuraConjugates(mu) : AlgAssVOrdElt -> SeqEnum
   GrpBrd_Conjugates (Example H73E7)

conjugates

   Conjugates (CYCLOTOMIC FIELDS)
   Conjugates (QUADRATIC FIELDS)
   Conjugates, Norm and Trace (DIFFERENTIAL RINGS)

conjugates-norm-trace-diff-ring-elts

   Conjugates, Norm and Trace (DIFFERENTIAL RINGS)

ConjugatesProcess

   GrpBrd_ConjugatesProcess (Example H73E8)

ConjugatesToPowerSums

   ConjugatesToPowerSums(I) : [] -> []

ConjugateTranspose

   ConjugateTranspose(M, sigma) : Mtrx, Map -> Mtrx

Conjugating

   MinimalElementConjugatingToPositive(x, s: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
   MinimalElementConjugatingToSuperSummit(x, s: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
   MinimalElementConjugatingToUltraSummit(x, s: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt

Conjugation

   ClassicalSylowConjugation(G,P,S) : GrpMat, GrpMat, GrpMat -> GrpMatElt
   ConjugationClassLength(l) : SeqEnum -> RngIntElt
   StandardFormConjugationMatrices(A) : AlgMat -> Tup

ConjugationClassLength

   ConjugationClassLength(l) : SeqEnum -> RngIntElt

Conlon

   CharacterTableConlon(G) : Grp -> SeqEnum
   CharacterTableConlon(G) : GrpPC -> [ AlgChtrElt ]

Connect

   Connect(v,w) : GrphResVert,GrphResVert -> GrphRes

Connected

   ConnectedKernel(phi) : MapModAbVar -> ModAbVar, MapModAbVar
   IsConnected(G) : GrphMultUnd -> BoolElt
   IsConnected(G) : GrphUnd -> BoolElt
   IsKEdgeConnected(G, k) : Grph, RngIntElt -> BoolElt
   IsKEdgeConnected(G, k : parameters) : GrphMult, RngIntElt -> BoolElt
   IsKVertexConnected(G, k) : Grph, RngIntElt -> BoolElt
   IsKVertexConnected(G, k : parameters) : GrphMult, RngIntElt -> BoolElt
   IsResiduallyConnected(X) : IncGeom -> BoolElt
   IsSimplyConnected(G) : GrpLie -> BoolElt
   IsSimplyConnected(R) : RootDtm -> BoolElt
   IsStronglyConnected(G) : GrphDir -> BoolElt
   IsStronglyConnected(G) : GrphMultDir -> BoolElt
   IsWeaklyConnected(G) : GrphDir -> BoolElt
   IsWeaklyConnected(G) : GrphMultDir -> BoolElt
   IsWeaklySimplyConnected(G) : GrpLie -> BoolElt
   IsWeaklySimplyConnected(R) : RootDtm -> BoolElt
   SimplyConnectedVersion(R) : RootDtm -> RootDtm, Map
   StronglyConnectedComponents(G) : GrphDir -> [ { GrphVert } ]
   StronglyConnectedComponents(G) : GrphMultDir -> [ { GrphVert } ]

ConnectedKernel

   ConnectedKernel(phi) : MapModAbVar -> ModAbVar, MapModAbVar

connectedness

   Connectedness (GRAPHS)
   Connectedness (MULTIGRAPHS)
   Connectedness in a Graph (GRAPHS)
   Connectedness in a Multigraph (MULTIGRAPHS)

connectedness-graph

   Connectedness in a Graph (GRAPHS)

connectedness-path-circuit

   Connectedness (GRAPHS)

Connecting

   ConnectingHomomorphism(f, g, n) : MapChn, MapChn, RngIntElt -> ModMatRngElt

ConnectingHomomorphism

   ConnectingHomomorphism(f, g, n) : MapChn, MapChn, RngIntElt -> ModMatRngElt

Connection

   ConnectionPolynomial(S) : SeqEnum -> RngUPolElt, RngIntElt
   CharacteristicPolynomial(S) : SeqEnum -> RngUPolElt, RngIntElt
   BerlekampMassey(S) : SeqEnum -> RngUPolElt, RngIntElt
   ConnectionNumber(D, p, B) : Inc, IncPt, IncBlk -> RngIntElt
   WaitForConnection(S) : IO -> IO

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012