[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: irreducible  ..  IsAbelian


irreducible

   Generic Functions for Finding Irreducible Modules (K[G]-MODULES AND GROUP REPRESENTATIONS)
   Irreducible Subgroups of the General Linear Group (ALMOST SIMPLE GROUPS)
   The Burnside Algorithm (K[G]-MODULES AND GROUP REPRESENTATIONS)
   The Construction of all Irreducible Modules (K[G]-MODULES AND GROUP REPRESENTATIONS)
   The Rational Algorithm (K[G]-MODULES AND GROUP REPRESENTATIONS)
   The Schur Algorithm for Soluble Groups (K[G]-MODULES AND GROUP REPRESENTATIONS)
   The Table of Irreducible Characters (CHARACTERS OF FINITE GROUPS)

irreducible-modules

   Generic Functions for Finding Irreducible Modules (K[G]-MODULES AND GROUP REPRESENTATIONS)
   The Construction of all Irreducible Modules (K[G]-MODULES AND GROUP REPRESENTATIONS)

irreducible-modules-integral

   The Rational Algorithm (K[G]-MODULES AND GROUP REPRESENTATIONS)

irreducible-modules-perm-mat

   The Burnside Algorithm (K[G]-MODULES AND GROUP REPRESENTATIONS)

irreducible-modules-sol

   The Schur Algorithm for Soluble Groups (K[G]-MODULES AND GROUP REPRESENTATIONS)

irreducible-subgroups

   Irreducible Subgroups of the General Linear Group (ALMOST SIMPLE GROUPS)

IrreducibleCartanMatrix

   IrreducibleCartanMatrix(X, n) : MonStgElt, RngIntElt -> AlgMatElt

IrreducibleCoxeter

   Cartan_IrreducibleCoxeter (Example H95E13)

IrreducibleCoxeterGraph

   IrreducibleCoxeterGraph(X, n) : MonStgElt, RngIntElt -> GrpUnd

IrreducibleCoxeterGroup

   IrreducibleCoxeterGroup(GrpFPCox, X, n) : Cat, MonStgElt, RngIntElt -> GrpFPCox

IrreducibleCoxeterMatrix

   IrreducibleCoxeterMatrix(X, n) : MonStgElt, RngIntElt -> AlgMatElt

IrreducibleDynkinDigraph

   IrreducibleDynkinDigraph(X, n) : MonStgElt, RngIntElt -> GrphDir

IrreducibleLowTermGF2Polynomial

   IrreducibleLowTermGF2Polynomial(n) : RngIntElt -> RngUPolElt

IrreducibleMatrixGroup

   IrreducibleMatrixGroup(k, p, n) : RngIntElt, RngIntElt, RngIntElt -> GrpMat

IrreducibleModule

   SimpleModule(B, i) : AlgBas, RngIntElt -> ModAlg
   IrreducibleModule(B, i) : AlgBas, RngIntElt -> ModAlg

IrreducibleModules

   AbsolutelyIrreducibleModules(G, K : parameters) : Grp, Fld -> SeqEnum
   IrreducibleModules(G, K : parameters) : Grp, Fld -> SeqEnum
   IrreducibleModules(G, K : parameters) : Grp, Fld -> SeqEnum
   IrreducibleModules(G, Q : parameters) : Grp, FldRat -> SeqEnum, SeqEnum
   ModGrp_IrreducibleModules (Example H90E13)
   ModGrp_IrreducibleModules (Example H90E16)

IrreducibleModules2

   ModGrp_IrreducibleModules2 (Example H90E17)

IrreducibleModules_M11

   ModGrp_IrreducibleModules_M11 (Example H90E14)

IrreducibleModulesBurnside

   IrreducibleModulesBurnside(G, K : parameters ) : Grp, FldFin -> [ ModGrp ]

IrreducibleModulesInit

   AbsolutelyIrreducibleModulesInit(G, F : parameters) : GrpPC, Fld -> SolRepProc
   IrreducibleRepresentationsInit(G, F : parameters) : GrpPC, Fld -> SolRepProc
   IrreducibleModulesInit(G, F : parameters) : GrpPC, Fld -> SolRepProc
   AbsolutelyIrreducibleRepresentationsInit(G, F : parameters) : GrpPC, Fld -> SolRepProc

IrreducibleModulesSchur

   IrreducibleModulesSchur(G, K: parameters) : GrpPC, Rng -> List[GModule]
   IrreducibleRepresentationsSchur(G, k: parameters) : GrpPC, Rng -> List[Map]

IrreduciblePolynomial

   IrreduciblePolynomial(F, n) : FldFin, RngIntElt -> RngUPolElt

IrreducibleReflectionGroup

   IrreducibleReflectionGroup(X, n) : MonStgElt, RngIntElt -> GrpMat

IrreducibleRepresentationsInit

   AbsolutelyIrreducibleModulesInit(G, F : parameters) : GrpPC, Fld -> SolRepProc
   IrreducibleRepresentationsInit(G, F : parameters) : GrpPC, Fld -> SolRepProc
   IrreducibleModulesInit(G, F : parameters) : GrpPC, Fld -> SolRepProc
   AbsolutelyIrreducibleRepresentationsInit(G, F : parameters) : GrpPC, Fld -> SolRepProc

IrreducibleRepresentationsSchur

   IrreducibleModulesSchur(G, k: parameters) : GrpPC, Rng -> List[GModule]
   IrreducibleRepresentationsSchur(G, k: parameters) : GrpPC, Rng -> List[Map]

IrreducibleRootDatum

   IrreducibleRootDatum(X, n) : MonStgElt, RngIntElt -> RootDtm
   RootDtm_IrreducibleRootDatum (Example H97E4)

IrreducibleRootSystem

   IrreducibleRootSystem(X, n) : MonStgElt, RngIntElt -> RootSys
   RootSys_IrreducibleRootSystem (Example H96E4)

Irreducibles

   KnownIrreducibles(R) : AlgChtr -> SeqEnum
   RemoveIrreducibles(I, C) : [ AlgChtrElt ], [ AlgChtrElt ] -> [ AlgChtrElt ], [ AlgChtrElt ]

irreducibles

   Finding Irreducibles (CHARACTERS OF FINITE GROUPS)

IrreducibleSecondaryInvariants

   IrreducibleSecondaryInvariants(R) : RngInvar -> [ RngMPolElt ]

IrreducibleSimpleSubalgebrasOfSU

   IrreducibleSimpleSubalgebrasOfSU(N) : RngIntElt -> SeqEnum

IrreducibleSimpleSubalgebraTreeSU

   IrreducibleSimpleSubalgebraTreeSU(Q, d) : SeqEnum[SeqEnum[Tup]], RngIntElt -> GrphDir

IrreducibleSolubleSubgroups

   IrreducibleSolubleSubgroups(n, q) : RngIntElt, RngIntElt -> SeqEnum

IrreducibleSparseGF2Polynomial

   IrreducibleSparseGF2Polynomial(n) : RngIntElt -> RngUPolElt

IrreducibleSubgroups

   IrreducibleSubgroups(n, q) : RngIntElt, RngIntElt -> SeqEnum

irreg

   Zassenhaus Nearfields (NEARFIELDS)

Irregular

   HasIrregularFibres(s) : GrphSpl -> BoolElt
   IrregularLDPCEnsemble(n, Sv, Sc) : RngIntElt, SeqEnum, SeqEnum -> Code
   IsIrregularSingularPlace(L, p) : RngDiffOpElt, PlcFunElt -> BoolElt

Irregularity

   Irregularity(S) : Srfc -> RngIntElt

IrregularLDPCEnsemble

   IrregularLDPCEnsemble(n, Sv, Sc) : RngIntElt, SeqEnum, SeqEnum -> Code

Irrelevant

   IrrelevantComponents(C) : RngCox -> SeqEnum
   IrrelevantGenerators(C) : RngCox -> SeqEnum
   IrrelevantIdeal(C) : RngCox -> SeqEnum
   IrrelevantIdeal(X) : TorVar -> SeqEnum

IrrelevantComponents

   IrrelevantComponents(C) : RngCox -> SeqEnum

IrrelevantGenerators

   IrrelevantGenerators(C) : RngCox -> SeqEnum

IrrelevantIdeal

   IrrelevantIdeal(C) : RngCox -> SeqEnum
   IrrelevantIdeal(X) : TorVar -> SeqEnum

irrgp

   Database of Irreducible Matrix Groups (DATABASES OF GROUPS)

irrgp-data

   Database of Irreducible Matrix Groups (DATABASES OF GROUPS)

is

   The where ... is Construction (STATEMENTS AND EXPRESSIONS)

is-hyper-surfacr-divisor-example

   Crv_is-hyper-surfacr-divisor-example (Example H114E32)

Is2

   Is2T1(C) : CosetGeom -> BoolElt
   IsLocallyTwoTransitive(C) : CosetGeom -> BoolElt

Is2T1

   Is2T1(C) : CosetGeom -> BoolElt
   IsLocallyTwoTransitive(C) : CosetGeom -> BoolElt

is_hyperelliptic

   Crv_is_hyperelliptic (Example H114E14)

ISA

   ISA(T, U) : Cat, Cat -> BoolElt

ISABase

   ISABaseField(F,G) : Fld, Fld -> BoolElt

ISABaseField

   ISABaseField(F,G) : Fld, Fld -> BoolElt

IsAbelian

   IsAbelian(L) : AlgLie -> BoolElt
   IsAbelian(A) : FldAb -> BoolElt
   IsAbelian(F) : FldAlg -> BoolElt
   IsAbelian(F) : FldNum -> BoolElt
   IsAbelian(K, k) : FldPad, FldPad -> BoolElt
   IsAbelian(G) : GrpFin -> BoolElt
   IsAbelian(G) : GrpGPC -> BoolElt
   IsAbelian(G) : GrpLie -> BoolElt
   IsAbelian(G) : GrpMat -> BoolElt
   IsAbelian(G) : GrpPC -> BoolElt
   IsAbelian(G) : GrpPerm -> BoolElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012