[Next][Prev] [Right] [Left] [Up] [Index] [Root]

Soluble Matrix Groups

The functions described in this section apply only to finite groups for which a base and strong generating set may be constructed.

Subsections

Conversion to a PC-Group

PolycyclicGenerators(G) : GrpMat -> [ GrpPCElt ]
Construct a polycyclic generating sequence for the soluble group G.
PCGroup(G) : GrpMat -> GrpPC, Map
Given a soluble group G, construct a group S in category GrpPC, isomorphic to G. In addition to returning S, the function returns an isomorphism φ: G -> S.

Soluble Group Functions

pCentralSeries(G, p) : GrpMat, RngIntElt -> [ GrpMat ]
Given a soluble group G, and a prime p dividing |G|, return the lower p-central series for G. The series is returned as a sequence of subgroups.

p-group Functions

IsSpecial(G) : GrpMat -> BoolElt
Given a p-group G, return true if G is special, false otherwise.
IsExtraSpecial(G) : GrpMat -> BoolElt
Given a p-group G, return true if G is extraspecial, false otherwise.
FrattiniSubgroup(G) : GrpMat -> GrpMat
Given a p-group G, return the Frattini subgroup.
JenningsSeries(G) : GrpMat -> [ GrpMat ]
Given a p-group G, return the Jennings series for G. The series is returned as a sequence of subgroups.

Abelian Group Functions

AbelianInvariants(G) : GrpMat -> [ RngIntElt ]
Invariants(G) : GrpMat -> [ RngIntElt ]
Given an abelian group G, return a sequence Q containing the types of each p-primary component of G.
 [Next][Prev] [Right] [Left] [Up] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012