[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: monomial  ..  Morphism


monomial

   Coefficients, Monomials and Terms (MULTIVARIATE POLYNOMIAL RINGS)
   Coefficients, Monomials, Terms and Degree (FINITELY PRESENTED ALGEBRAS)
   Transition Matrices from Monomial Basis (SYMMETRIC FUNCTIONS)

MonomialBasis

   MonomialBasis(Q) : RngMPolRes -> [ RngMPolResElt ]

MonomialCoefficient

   MonomialCoefficient(f, m) : AlgFrElt, AlgFrElt -> RngElt
   MonomialCoefficient(f, m) : RngMPolElt, RngMPolElt -> RngElt
   MonomialCoefficient(p, m) : RngUPolElt, RngUPolElt -> RngElt

MonomialGroup

   MonomialGroup(C: parameters) : Code -> GrpPerm, PowMap, Map
   AutomorphismGroup(C: parameters) : Code -> GrpPerm, PowMap, Map

MonomialGroupStabilizer

   MonomialGroupStabilizer(C, k) : Code, RngIntElt -> GrpPerm, PowMap, Map
   AutomorphismGroupStabilizer(C, k) : Code, RngIntElt -> GrpPerm, PowMap, Map

MonomialLattice

   MonomialLattice(C) : RngCox -> TorLat
   MonomialLattice(X) : TorVar -> TorLat

MonomialOrder

   MonomialOrder(P) : RngMPol -> Tup
   MonomialOrder(R) : RngMPolLoc -> Tup

MonomialOrderWeightVectors

   MonomialOrderWeightVectors(P) : RngMPol -> [ [ FldRatElt ] ]
   MonomialOrderWeightVectors(R) : RngMPol -> [ [ FldRatElt ] ]

Monomials

   CoefficientsAndMonomials(f) : RngMPolElt -> [ RngElt ], [ RngMPolElt ]
   Monomials(f) : AlgFrElt -> [ AlgFrElt ]
   Monomials(u) : AlgPBWElt -> SeqEnum
   Monomials(u) : AlgQUEElt -> SeqEnum
   Monomials(f) : RngMPolElt -> [ RngMPolElt ]
   Monomials(p) : RngUPolElt -> SeqEnum
   MonomialsOfDegree(P, d) : RngMPolElt, RngIntElt -> {@ RngMPolElt @}
   MonomialsOfWeightedDegree(P, d) : RngMPolElt, RngIntElt -> {@ RngMPolElt @}
   MonomialsOfWeightedDegree(X, D) : Sch, [RngIntElt] -> SetIndx

monomials

   Accessing Elements (SYMMETRIC FUNCTIONS)

MonomialsOfDegree

   MonomialsOfDegree(P, d) : RngMPolElt, RngIntElt -> {@ RngMPolElt @}

MonomialsOfWeightedDegree

   MonomialsOfWeightedDegree(P, d) : RngMPolElt, RngIntElt -> {@ RngMPolElt @}
   MonomialsOfWeightedDegree(X, D) : Sch, [RngIntElt] -> SetIndx

MonomialSubgroup

   MonomialSubgroup(C) : Code -> GrpPerm, PowMap, Map
   AutomorphismSubgroup(C) : Code -> GrpPerm, PowMap, Map

MonomialToElementaryMatrix

   MonomialToElementaryMatrix(n): RngIntElt -> AlgMatElt

MonomialToHomogeneousMatrix

   MonomialToHomogeneousMatrix(n): RngIntElt -> AlgMatElt

MonomialToPowerSumMatrix

   MonomialToPowerSumMatrix(n): RngIntElt -> AlgMatElt

MonomialToSchurMatrix

   MonomialToSchurMatrix(n): RngIntElt -> AlgMatElt

Monte

   DerivedGroupMonteCarlo (G : parameters) : GrpMat -> GrpMat
   HasOnlyOrdinarySingularitiesMonteCarlo(C) : CrvPln -> BoolElt, RngIntElt
   NormalClosureMonteCarlo (G, H ) : GrpMat, GrpMat -> GrpMat

monte

   Monte Carlo Algorithms for Subgroups (MATRIX GROUPS OVER FINITE FIELDS)

monte-carlo

   Monte Carlo Algorithms for Subgroups (MATRIX GROUPS OVER FINITE FIELDS)

Moody

   KacMoodyClass(C) : AlgMatElt -> MonStgElt, ModMatRngElt
   KacMoodyClasses(C) : AlgMatElt -> SeqEnum, SeqEnum, SeqEnum

Moore

   MooreDeterminant(M) : Mtrx -> Mtrx

MooreDeterminant

   MooreDeterminant(M) : Mtrx -> Mtrx

Mordell

   GeometricMordellWeilLattice(E) : CrvEll[FldFunRat] -> Lat, Map
   MordellWeilGroup(E : parameters) : CrvEll[FldFunRat] -> GrpAb, Map
   MordellWeilGroup(H: parameters) : SetPtEll -> GrpAb, Map
   MordellWeilLattice(E) : CrvEll[FldFunRat] -> Lat, Map
   MordellWeilShaInformation(E: parameters) : CrvEll -> [RngIntElt], [PtEll], [Tup]
   MordellWeilShaInformation(E: parameters) : CrvEll -> [RngIntElt], [PtEll], [Tup]
   Rank(H: parameters) : SetPtEll -> RngIntElt
   RankBounds(H: parameters) : SetPtEll -> RngIntElt, RngIntElt

mordell

   Heights and Regulator (HYPERELLIPTIC CURVES)
   Mordell--Weil Groups (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
   The Mordell--Weil Group (ELLIPTIC CURVES OVER FUNCTION FIELDS)

mordell-weil-anf

   Mordell--Weil Groups (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)

mordell-weil-group

   The Mordell--Weil Group (ELLIPTIC CURVES OVER FUNCTION FIELDS)

mordell-weil-heights-hyp

   Heights and Regulator (HYPERELLIPTIC CURVES)

MordellWeil

   CrvEllQNF_MordellWeil (Example H122E5)

MordellWeilGroup

   MordellWeilGroup(E : parameters) : CrvEll[FldFunRat] -> GrpAb, Map
   MordellWeilGroup(H: parameters) : SetPtEll -> GrpAb, Map

MordellWeilLattice

   MordellWeilLattice(E) : CrvEll[FldFunRat] -> Lat, Map

MordellWeilRank

   MordellWeilRank(H: parameters) : SetPtEll -> RngIntElt
   Rank(H: parameters) : SetPtEll -> RngIntElt

MordellWeilRankBounds

   MordellWeilRankBounds(H: parameters) : SetPtEll -> RngIntElt, RngIntElt
   RankBounds(H: parameters) : SetPtEll -> RngIntElt, RngIntElt

MordellWeilShaInformation

   DescentInformation(E: parameters) : CrvEll -> [RngIntElt], [PtEll], [Tup]
   MordellWeilShaInformation(E: parameters) : CrvEll -> [RngIntElt], [PtEll], [Tup]
   MordellWeilShaInformation(E: parameters) : CrvEll -> [RngIntElt], [PtEll], [Tup]

more

   Basic Constructions (COHERENT SHEAVES)
   More About Presentations (FINITE SOLUBLE GROUPS)

more-cons

   Basic Constructions (COHERENT SHEAVES)

more-difficult

   GrpCoh_more-difficult (Example H68E3)

more-graphics

   GrpPSL2_more-graphics (Example H130E10)

more-presentations

   More About Presentations (FINITE SOLUBLE GROUPS)

Mori

   IsMoriFibreSpace(X,i) : TorVar,RngIntElt -> BoolElt
   MoriCone(X) : TorVar -> TorCon

MoriCone

   MoriCone(X) : TorVar -> TorCon

Morphism

   Morphism(e) : SubModLatElt -> Mtrx
   BasisMatrix(e) : SubModLatElt -> Mtrx
   DualMorphism(R, S, phiX, phiY) : RootDtm, RootDtm, Map, Map -> Map
   DualMorphism(R, S, Q) : RootDtm, RootDtm, [RngIntElt] -> Map
   FieldMorphism(f) : Map -> Map
   IdentityFieldMorphism(F) : Fld -> Map
   IsMorphism(f) : Map -> Bool
   IsMorphism(phi) : MapModAbVar -> BoolElt
   LeftInverseMorphism(phi : parameters) : MapModAbVar -> MapModAbVar
   Morphism(A, B) : AlgGen, AlgGen -> Map
   Morphism(L, M) : AlgLie, AlgLie -> Map
   Morphism(H, G) : GrpAb, GrpAb -> ModMatRngElt
   Morphism(M, N) : ModDed, ModDed -> Map
   Morphism(M, N) : ModMPol, ModMPol -> ModMPolHom
   Morphism(M, N) : ModRng, ModRng -> ModMatRngElt
   Morphism(M, N) : ModRng, ModRng -> ModMatRngElt
   Morphism(U, V) : ModTupFld, ModTupFld -> RModMatElt
   Morphism(M, N) : ModTupRng, ModTupRng -> ModMatRngElt
   Morphism(R, S, phiX, phiY) : RootDtm, RootDtm, Map, Map -> Map
   Morphism(R, S, Q) : RootDtm, RootDtm, [RngIntElt] -> Map
   Morphism(e) : SubModLatElt -> ModMatRngElt
   RightInverseMorphism(phi : parameters) : MapModAbVar -> MapModAbVar
   SumOfMorphismImages(X) : List -> ModAbVar, MapModAbVar, List

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012