[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: primary .. PrimeIdeal
Primary Decomposition (POLYNOMIAL RING IDEAL OPERATIONS)
Primary Invariants (INVARIANT THEORY)
Primary Decomposition (POLYNOMIAL RING IDEAL OPERATIONS)
PrimaryAlgebra(R) : RngInvar -> RngMPol
PrimaryComponents(X) : Sch -> SeqEnum
PrimaryDecomposition(I) : RngMPol -> [ RngMPol ], [ RngMPol ]
PrimaryDecomposition(I) : RngMPolRes -> [ RngMPolRes ], [ RngMPolRes ]
Ideal_PrimaryDecomposition (Example H106E10)
PrimaryIdeal(R) : RngInvar -> RngMPol
PrimaryInvariantFactors(a) : AlgMatElt -> [ <RngUPolElt, RngIntElt ]
PrimaryInvariantFactors(A) : Mtrx -> [ <RngUPolElt, RngIntElt> ]
R`PrimaryInvariants
PrimaryInvariants(A) : GrpAb -> [ RngIntElt ]
PrimaryInvariants(R) : RngInvar -> [ RngMPolElt ]
PrimaryRationalForm(a) : AlgMatElt -> AlgMatElt, AlgMatElt, [ <RngUPolElt, RngIntElt ]
PrimaryRationalForm(A) : Mtrx -> AlgMatElt, AlgMatElt, [ <RngUPolElt, RngIntElt ]
ClassGroupPrimeRepresentatives(O, I) : RngOrd, RngOrdIdl -> Map
ComputePrimeFactorisation(~D) : DivSchElt ->
DegreeOnePrimeIdeals(O, B) : RngOrd, RngIntElt -> [ RngOrdIdl ]
IsFactorisationPrime(D) : DivSchElt -> BoolElt
IsPrime(D) : DivSchElt -> BoolElt
IsPrime(x) : RngElt -> BoolElt
IsPrime(I) : RngFunOrdIdl -> BoolElt
IsPrime(n) : RngIntElt -> BoolElt
IsPrime(n) : RngIntElt -> BoolElt
IsPrime(I) : RngMPol -> BoolElt
IsPrime(I) : RngMPolRes -> BoolElt
IsPrime(I) : RngOrdIdl -> BoolElt, RngOrdIdl
IsPrimeField(F) : Fld -> BoolElt
IsPrimePower(n) : RngIntElt -> BoolElt, RngIntElt, RngIntElt
IsProbablePrime(n: parameter) : RngIntElt -> BoolElt
NegativePrimeDivisors(D) : DivSchElt -> SeqEnum
NextPrime(n) : RngIntElt -> RngIntElt
NthPrime(n) : RngIntElt -> RngIntElt
NumberOfPrimePolynomials(q, d) : RngIntElt, RngIntElt -> RngIntElt
PreviousPrime(n) : RngIntElt -> RngIntElt
PrimalityCertificate(n) : RngIntElt -> List
Prime(M) : ModSS -> RngIntElt
Prime(L) : RngLocA -> RngElt
Prime(L) : RngPad -> RngIntElt
Prime(G) : SymGenLoc -> RngIntElt
PrimeBasis(n) : RngIntElt -> [RngIntElt]
PrimeBasis(n) : RngIntElt -> [RngIntElt]
PrimeComponents(X) : Sch -> SeqEnum
PrimeField(F) : Fld -> Fld
PrimeField(F) : FldFin -> FldFin
PrimeField(N) : Nfd -> FldFin
PrimeForm(Q, p) : QuadBin, RngIntElt -> QuadBinElt
PrimeIdeal(S, p) : AlgQuatOrd, RngElt -> AlgQuatOrdIdl
PrimePolynomials(R, d) : RngUPol, RngIntElt -> SeqEnum[ RngUPolElt ]
PrimePowerRepresentation(x, k, a) : FldFunGElt, RngIntElt, FldFunGElt -> SeqEnum
PrimeRing(F) : FldFun -> Rng
PrimeRing(R) : Rng -> Rng
PrimeRing(L) : RngPad -> RngPad
RandomPrime(n: parameter) : RngIntElt -> RngIntElt
RandomPrime(n: parameter) : RngIntElt -> RngIntElt
RandomPrime(n, a, b, x: parameter) :RngIntElt, RngIntElt, RngIntElt -> BoolElt, RngIntElt
RandomPrime(n, a, b, x: parameter) :RngIntElt, RngIntElt, RngIntElt -> BoolElt, RngIntElt
RandomPrimePolynomial(R, d) : RngUPol, RngIntElt -> RngUPolElt
Functions on Prime Ideals (ALGEBRAIC FUNCTION FIELDS)
Predicates on Prime Ideals (ALGEBRAIC FUNCTION FIELDS)
Primes and Primality Testing (RING OF INTEGERS)
PrimeDivisors(n) : RngIntElt -> [RngIntElt]
PrimeBasis(n) : RngIntElt -> [RngIntElt]
PrimeBasis(n) : RngIntElt -> [RngIntElt]
PrimeComponents(X) : Sch -> SeqEnum
PrimeDivisors(n) : RngIntElt -> [RngIntElt]
PrimeBasis(n) : RngIntElt -> [RngIntElt]
PrimeBasis(n) : RngIntElt -> [RngIntElt]
PrimeFactorisation(D) : DivSchElt -> SeqEnum
ComputePrimeFactorisation(~D) : DivSchElt ->
PrimeField(F) : Fld -> Fld
PrimeField(F) : FldFin -> FldFin
PrimeField(N) : Nfd -> FldFin
PrimeRing(F) : FldFun -> Rng
PrimeRing(L) : RngPad -> RngPad
PrimeForm(Q, p) : QuadBin, RngIntElt -> QuadBinElt
PrimeIdeal(S, p) : AlgQuatOrd, RngElt -> AlgQuatOrdIdl
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012