[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: SplitAllByValues .. Square
SplitAllByValues(P, V) : StkPtnOrd, SeqEnum[RngIntElt] -> BoolElt, RngIntElt
SplitCell(P, i, x) : StkPtnOrd, RngIntElt, RngIntElt -> BoolElt
SplitCellsByValues(P, C, V) : StkPtnOrd, SeqEnum[RngIntElt], SeqEnum[RngIntElt] -> BoolElt, RngIntElt
Splitcomponents(G) : GrphMultUnd -> [ { GrphVert } ], [ [ GrphVert ]]
Splitcomponents(G) : GrphUnd -> [ { GrphVert } ], [ [ GrphVert ]]
SplitExtension(G, M, F) : GrpPerm, ModRng, GrpFP -> GrpFP
SplitExtension(G, M, F) : GrpPerm, ModRng, GrpFP -> GrpFP
SplitExtension(CM) : ModCoho -> Grp, HomGrp, Map
SplitMaximalToralSubalgebra(L) : AlgLie -> AlgLie
SplittingCartanSubalgebra(L) : AlgLie -> AlgLie
SplitRealPlace(A) : AlgQuat -> PlcNum
SplitRootDatum(R) : RootDtm -> RootDtm
UntwistedRootDatum(R) : RootDtm -> RootDtm
FactorisationOverSplittingField(f) : RngUPolElt[FldFin] -> [<RngUPolElt, RngIntElt>], FldFin
FactorizationOverSplittingField(f) : RngUPolElt[FldFin] -> [<RngUPolElt, RngIntElt>], FldFin
GaloisSplittingField(f) : RngUPolElt -> FldNum, [FldNumElt], GrpPerm, [[FldNumElt]]
HyperbolicSplitting(V) : ModTupFld -> SeqEnum, SeqEnum
IsSplittingCartanSubalgebra(L, H) : AlgLie, AlgLie -> BoolElt
IsSplittingField(K, A) : Fld, AlgQuat -> BoolElt, AlgQuatElt, Map
PointsOverSplittingField(Z) : Clstr -> SetEnum
RootsInSplittingField(f) : RngUPolElt[FldFin] -> [<RngUPolElt, RngIntElt>], FldFin
SplittingCartanSubalgebra(L) : AlgLie -> AlgLie
SplittingField(F) : FldAlg -> FldAlg, SeqEnum
SplittingField(F) : FldNum -> FldNum, SeqEnum
SplittingField(f) : RngUPolElt -> FldAlg
SplittingField(f) : RngUPolElt -> FldNum
SplittingField(S) : RngUPolElt[FldFin] -> FldFin
SplittingField(P) : RngUPolElt[FldFin] -> FldFin
SplittingField(f, R) : RngUPolElt[RngInt], RngPad -> RngPad
SplittingField(L) : [RngUPolElt] -> FldNum, [FldNumElt]
SplittingField(L) : [RngUPolElt] -> FldNum, [FldNumElt]
Reducibility (MODULES OVER AN ALGEBRA)
SplitMaximalToralSubalgebra(L) : AlgLie -> AlgLie
SplittingCartanSubalgebra(L) : AlgLie -> AlgLie
SplittingField(F) : FldAlg -> FldAlg, SeqEnum
SplittingField(F) : FldNum -> FldNum, SeqEnum
SplittingField(f) : RngUPolElt -> FldAlg
SplittingField(f) : RngUPolElt -> FldNum
SplittingField(S) : RngUPolElt[FldFin] -> FldFin
SplittingField(P) : RngUPolElt[FldFin] -> FldFin
SplittingField(f, R) : RngUPolElt[RngInt], RngPad -> RngPad
SplittingField(L) : [RngUPolElt] -> FldNum, [FldNumElt]
SplittingField(L) : [RngUPolElt] -> FldNum, [FldNumElt]
AlgLie_SplitToral (Example H100E40)
SplitToralSubalgebra(L) : AlgLie -> AlgLie
SPolynomial(f, g) : ModMPolElt, ModMPolElt -> ModMPolElt
SPolynomial(f, g) : RngMPolElt, RngMPolElt -> RngMPolElt
GrpASim_SporadicJ1 (Example H65E22)
IsSPrincipal(D, S) : DivFunElt, SetEnum[PlcFunElt] -> BoolElt, FldFunElt
SPrincipalDivisorMap(S) : SetEnum[PlcFunElt] -> Map
SPrincipalDivisorMap(S) : SetEnum[PlcFunElt] -> Map
Sprint(x) : Elt -> MonStgElt
Printing to a String (INPUT AND OUTPUT)
Sprintf(F, ...) : MonStgElt, ... -> MonStgElt
IO_Sprintf (Example H3E8)
RootDtm_SprsRD (Example H97E6)
RootDtm_SprsRDsumsub (Example H97E7)
InverseSqrt(x) : RngPadElt -> RngPadElt
InverseSquareRoot(x) : RngPadElt -> RngPadElt
InverseSquareRoot(x, y) : RngPadElt, RngPadElt -> RngPadElt
Sqrt(a) : FldNumElt -> FldNumElt
Sqrt(x) : GrpDrchElt -> GrpDrchElt
Sqrt(a) : RngIntResElt -> RngIntResElt
Sqrt(a) : RngOrdElt -> RngOrdElt
SquareRoot(a) : FldACElt -> FldACElt
SquareRoot(c) : FldComElt -> FldComElt
SquareRoot(a) : FldFinElt -> FldFinElt
SquareRoot(I) : RngFunOrdIdl -> RngFunOrdIdl
SquareRoot(I) : RngOrdFracIdl -> RngOrdFracIdl
SquareRoot(x) : RngPadElt -> RngPadElt
SquareRoot(s) : RngPowLazElt -> RngPowLazElt
SquareRoot(f) : RngSerElt -> RngSerElt
AllSqrts(a) : RngIntResElt -> [ RngIntResElt ]
AllSquareRoots(a) : RngIntResElt -> [ RngIntResElt ]
AllSqrts(a) : RngIntResElt -> [ RngIntResElt ]
AllSquareRoots(a) : RngIntResElt -> [ RngIntResElt ]
AlternatingSquarePreimage (G, g) : GrpMat, GrpMatElt -> GrpMatElt
CompleteTheSquare(model) : ModelG1 -> ModelG1
ExteriorSquare(a) : AlgMat -> AlgMatElt
ExteriorSquare(L) : Lat -> Lat
ExteriorSquare(M) : ModGrp -> ModGrp
HasSquareSha(J) : JacHyp -> BoolElt
InverseSquareRoot(x) : RngPadElt -> RngPadElt
InverseSquareRoot(x, y) : RngPadElt, RngPadElt -> RngPadElt
IsPower(a, k) : FldAlgElt, RngIntElt -> BoolElt, FldAlgElt
IsPower(a, k) : FldNumElt, RngIntElt -> BoolElt, FldNumElt
IsSquare(a) : FldACElt -> BoolElt
IsSquare(a) : FldFinElt -> BoolElt
IsSquare(I) : RngFunOrdIdl -> BoolElt, RngFunOrdIdl
IsSquare(n) : RngIntElt -> BoolElt, RngIntElt
IsSquare(n) : RngIntResElt -> BoolElt, RngIntResElt
IsSquare(I) : RngOrdFracIdl -> BoolElt, RngOrdFracIdl
IsSquare(x) : RngPadElt -> BoolElt, RngPadElt
IsSquare(s) : RngPowLazElt -> BoolElt, RngPowLazElt
RecogniseAlternatingSquare (G) : GrpMat -> BoolElt, GrpMat
RecogniseSymmetricSquare (G) : GrpMat -> BoolElt, GrpMat
Sqrt(a) : FldNumElt -> FldNumElt
Sqrt(a) : RngIntResElt -> RngIntResElt
Sqrt(a) : RngOrdElt -> RngOrdElt
SquareFreeFactorization(f) : RngUPolElt -> [ < RngUPolElt, RngIntElt > ]
SquareLatticeGraph(n) : RngIntElt -> GrphUnd
SquareRoot(a) : FldACElt -> FldACElt
SquareRoot(c) : FldComElt -> FldComElt
SquareRoot(a) : FldFinElt -> FldFinElt
SquareRoot(I) : RngFunOrdIdl -> RngFunOrdIdl
SquareRoot(I) : RngOrdFracIdl -> RngOrdFracIdl
SquareRoot(x) : RngPadElt -> RngPadElt
SquareRoot(s) : RngPowLazElt -> RngPowLazElt
SquareRoot(f) : RngSerElt -> RngSerElt
SymmetricSquare(a) : AlgMatElt -> AlgMatElt
SymmetricSquare(L) : Lat -> Lat
SymmetricSquare(M) : ModGrp -> ModGrp
SymmetricSquarePreimage (G, g) : GrpMat, GrpMatElt -> GrpMatElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012