[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: function-application  ..  Fundamental


function-application

   Function Application (MAGMA SEMANTICS)

function-expression

   Function Expressions (MAGMA SEMANTICS)

function-field

   ALGEBRAIC FUNCTION FIELDS

function-field-class

   CLASS FIELD THEORY FOR GLOBAL FUNCTION FIELDS

function-procedure

   Functions and Procedures (FUNCTIONS, PROCEDURES AND PACKAGES)

function-procedure-package

   FUNCTIONS, PROCEDURES AND PACKAGES

function-value-assignment

   Function Values Assigned to Identifiers (MAGMA SEMANTICS)

function_field

   Function Field (HYPERELLIPTIC CURVES)
   Function Fields (ALGEBRAIC CURVES)
   Polynomials (ELLIPTIC CURVES)

function_field_and_polynomials

   Function Field and Polynomial Ring (HYPERELLIPTIC CURVES)

Functional

   CheckFunctionalEquation(L) : LSer -> FldComElt
   LSeries(weight, gamma, conductor, cffun) : FldReElt,[FldRatElt],FldReElt,Any -> LSer

Functionality

   HypergeometricMotiveClearTable() : Void -> Void
   Functionality (HYPERGEOMETRIC MOTIVES)

functionality

   Related Functionality (MODELS OF GENUS ONE CURVES)

FunctionDegree

   FunctionDegree(f) : MapSch -> RngIntElt

FunctionField

   FunctionField(A) : Aff -> FldFunFracSch
   FunctionField(C) : Crv -> FldFunFracSch
   FunctionField(X) : CrvMod -> FldFun
   FunctionField(D) : DiffFun -> FldFun
   FunctionField(d) : DiffFunElt -> FldFun
   FunctionField(G) : DivFun -> FldFun
   FunctionField(D) : DivFunElt -> FldFun
   FunctionField(A) : FldFunAb -> FldFun
   FunctionField(F) : FldInvar -> FldFunRat
   FunctionField(f : parameters) : RngMPolElt -> FldFun
   FunctionField(S) : PlcFun -> FldFun
   FunctionField(P) : PlcFunElt -> FldFun
   FunctionField(R) : Rng -> FldFunG
   FunctionField(R) : Rng -> FldFunRat
   FunctionField(R, r) : Rng, RngIntElt -> FldFunRat
   FunctionField(O) : RngFunOrd -> FldFun
   FunctionField(e) : RngWittElt -> FldFun, Map
   FunctionField(A) : Sch -> FldFunFracSch
   FunctionField(C) : Sch -> FldFunG
   FunctionField(S) : [RngMPolElt] -> FldFun
   FunctionField(S) : [RngUPolElt] -> FldFun
   ext< K | f > : FldFunRat, RngUPolElt -> FldFun
   FldFunRat_FunctionField (Example H41E1)

FunctionFieldDatabase

   FunctionFieldDatabase(q, d) : RngIntElt, RngIntElt -> DB

FunctionFieldDifferential

   CurvePlace(C, p) : Crv, PlcFunElt -> PlcCrvElt
   FunctionFieldDivisor(d) : DivCrvElt -> DivFunElt
   CurveDivisor(C, d) : Crv, DivFunElt -> DivCrvElt
   FunctionFieldDifferential(d) : DiffCrvElt -> DiffFunElt
   CurveDifferential(C, d) : Crv, DiffFunElt -> DiffCrvElt
   FunctionFieldPlace(p) : PlcCrvElt -> PlcFunElt

FunctionFieldDivisor

   CurvePlace(C, p) : Crv, PlcFunElt -> PlcCrvElt
   FunctionFieldDivisor(d) : DivCrvElt -> DivFunElt
   CurveDivisor(C, d) : Crv, DivFunElt -> DivCrvElt
   FunctionFieldDifferential(d) : DiffCrvElt -> DiffFunElt
   CurveDifferential(C, d) : Crv, DiffFunElt -> DiffCrvElt
   FunctionFieldPlace(p) : PlcCrvElt -> PlcFunElt

FunctionFieldPlace

   CurvePlace(C, p) : Crv, PlcFunElt -> PlcCrvElt
   FunctionFieldDivisor(d) : DivCrvElt -> DivFunElt
   CurveDivisor(C, d) : Crv, DivFunElt -> DivCrvElt
   FunctionFieldDifferential(d) : DiffCrvElt -> DiffFunElt
   CurveDifferential(C, d) : Crv, DiffFunElt -> DiffCrvElt
   FunctionFieldPlace(p) : PlcCrvElt -> PlcFunElt

FunctionFields

   FunctionFields(D) : DB -> [ FldFunG ]

Functions

   EulerFactorsByDeformation(Q, Y) : RngMPolElt, SeqEnum -> SeqEnum
   ZetaFunctionsByDeformation(Q, Y) : RngMPolElt, SeqEnum -> SeqEnum
   JacobianOrdersByDeformation(Q, Y) : RngMPolElt, SeqEnum -> SeqEnum
   FldAC_Functions (Example H40E4)
   FldFin_Functions (Example H21E3)
   FldFin_Functions (Example H21E4)

functions

   Associated Structures (MODULAR CURVES)
   Constructing Artin Representations (ARTIN REPRESENTATIONS)
   Construction Functions (FINITE SOLUBLE GROUPS)
   Conversion Functions (INCIDENCE GEOMETRY)
   Creation Functions (NUMBER FIELDS)
   Creation of Symmetric Functions (SYMMETRIC FUNCTIONS)
   Differential Operators of Algebraic Functions (DIFFERENTIAL RINGS)
   Elementary Functions (MODULES OVER DEDEKIND DOMAINS)
   Functions (INVARIANT THEORY)
   Functions and Homogeneity on Ambient Spaces (SCHEMES)
   Functions for Invariant Fields (INVARIANT THEORY)
   The Functions (FINITELY PRESENTED GROUPS: ADVANCED)
   Transfer Between Group Categories (FINITE SOLUBLE GROUPS)

Fundamental

   FundamentalClosure(R, S) : RootDtm, SetEnum -> SetEnum
   FundamentalCoweights(R) : RootDtm -> Mtrx
   FundamentalDiscriminant(D) : RngIntElt -> RngIntElt
   FundamentalDomain(G) : GrpPSL2 -> SeqEnum
   FundamentalDomain(G) : GrpPSL2 -> SeqEnum
   FundamentalDomain(G,D) : GrpPSL2, SpcHyd -> SeqEnum
   FundamentalDomain(FS) : SymFry -> SeqEnum
   FundamentalElement(B: parameters) : GrpBrd -> GrpBrdElt
   FundamentalGroup(C) : AlgMatElt -> GrpAb
   FundamentalGroup(D) : GrphDir -> GrpAb
   FundamentalGroup(G) : GrpLie -> GrpAb, Map
   FundamentalGroup(W) : GrpMat -> GrpAb
   FundamentalGroup(W) : GrpPermCox -> GrpAb
   FundamentalGroup(N) : MonStgElt -> GrpAb
   FundamentalGroup(R) : RootDtm -> GrpAb, Map
   FundamentalInvariants(F) : FldInvar -> RngMPol
   FundamentalInvariants(R) : RngInvar -> RngMPol
   FundamentalInvariants(R) : RngInvar -> [ RngMPolElt ]
   FundamentalQuotient(Q) : QuadBin -> Map
   FundamentalUnit(K) : FldQuad -> FldQuadElt
   FundamentalUnits(O) : RngFunOrd -> SeqEnum[RngFunOrdElt]
   FundamentalWeights(G) : GrpLie -> Mtrx
   FundamentalWeights(W) : GrpMat -> Mtrx
   FundamentalWeights(W) : GrpPermCox -> SeqEnum
   FundamentalWeights(R) : RootDtm -> Mtrx
   IsFundamental(D) : RngIntElt -> BoolElt
   SetOrderUnitsAreFundamental(O) : RngOrd ->
   To2DUpperHalfSpaceFundamentalDomian(z) : Mtrx -> Mtrx, Mtrx

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012