[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: free-modules  ..  FrobeniusActionOnPoints


free-modules

   Free Modules (FREE MODULES)

free-resolution

   Constructing Free Resolutions (MODULES OVER MULTIVARIATE RINGS)
   Free Resolutions (MODULES OVER MULTIVARIATE RINGS)

FreeAbelianGroup

   FreeAbelianGroup(GrpGPC, n) : Cat, RngIntElt -> GrpGPC
   FreeAbelianGroup(n) : RngIntElt -> GrpAb
   GrpAb_FreeAbelianGroup (Example H69E1)

FreeAbelianQuotient

   FreeAbelianQuotient(G) : GrpAb -> GrpAb, Map
   FreeAbelianQuotient(G) : GrpGPC -> GrpAb, Map

FreeAlgebra

   FreeAlgebra(K, n) : Fld, RngIntElt -> AlgFr
   FreeAlgebra(R, M) : Rng, MonFP -> AlgFPOld

Freef

   FreefValues(L) : AlgLieExtr -> SeqEnum, SeqEnum

FreefValues

   FreefValues(L) : AlgLieExtr -> SeqEnum, SeqEnum

FreeGroup

   FreeGroup(n) : RngIntElt -> GrpFP

FreeLie

   AlgLie_FreeLie (Example H100E3)

FreeLieAlgebra

   FreeLieAlgebra(F, n) : Rng, RngIntElt -> AlgFPLie
   AlgLie_FreeLieAlgebra (Example H100E4)

FreeMonoid

   FreeMonoid(n) : RngIntElt -> MonFP

FreeNilpotentGroup

   FreeNilpotentGroup(r, e) : RngIntElt, RngIntElt -> GrpGPC

FreeProduct

   FreeProduct(G, H) : GrpFP, GrpFP -> GrpFP
   FreeProduct(R, S) : SgpFP, SgpFP -> SgpFP
   FreeProduct(Q) : [ GrpFP ] -> GrpFP

FreeResolution

   FreeResolution(M) : ModMPol -> ModCpx, ModMPolHom
   FreeResolution(R) : RngInvar -> [ ModMPol ]
   PMod_FreeResolution (Example H109E7)

FreeResolution1

   PMod_FreeResolution1 (Example H109E8)

FreeResolutionLocal

   PMod_FreeResolutionLocal (Example H109E11)

FreeSemigroup

   FreeSemigroup(n) : RngIntElt -> SgpFP
   SgpFP_FreeSemigroup (Example H77E1)

freeze

   freeze;

Frequency

   DecompositionTypeFrequency(A, a, b) : FldAb, RngIntElt, RngIntElt -> Mset
   DecompositionTypeFrequency(A, l) : FldAb, [ ] -> Mset

Frobenius

   Frobenius Homomorphism (SYMMETRIC FUNCTIONS)
   Frobenius(s) : AlgSymElt -> AlgSymElt
   Frobenius(a) : FldFinElt -> FldFinElt
   Frobenius(a, E) : FldFinElt, FldFin -> FldFinElt
   Frobenius(a, E, r) : FldFinElt, FldFin, RngIntElt -> FldFinElt
   Frobenius(a, r) : FldFinElt, RngIntElt -> FldFinElt
   Frobenius(P, k) : JacHypPt, FldFin -> JacHypPt
   Frobenius(P, q) : PtEll[FldFunRat], RngIntElt -> PtEll
   Frobenius(P, F) : PtHyp, FldFin -> PtHyp
   FrobeniusActionOnPoints(S, q : parameters) : [ PtEll ], RngIntElt -> AlgMatElt
   FrobeniusActionOnReducibleFiber(L) : < Tup > -> AlgMatElt
   FrobeniusActionOnTrivialLattice(E) : CrvEll -> AlgMatElt
   FrobeniusAutomorphism(A, p) : FldAb, RngOrdIdl -> Map
   FrobeniusAutomorphism(L) : RngLocA -> Map
   FrobeniusAutomorphisms(G) : GrpMat -> SeqEnum
   FrobeniusElement(K, p) : FldNum, RngIntElt -> GrpPermElt
   FrobeniusFormAlternating(A) : AlgMatElt -> SeqEnum
   FrobeniusImage(A, e) : Mtrx, RngIntElt -> Mtrx
   FrobeniusImage(e) : RngWittElt -> RngWittElt
   FrobeniusMap(E) : CrvEll -> Map
   FrobeniusMap(E, i) : CrvEll, RngIntElt -> Map
   FrobeniusMap(G,q) : GrpLie, RngIntElt -> GrpLieAutoElt
   FrobeniusMap(W) : RngWitt -> Map
   FrobeniusMatrix(D) : PhiMod -> AlgMatElt
   FrobeniusPolynomial(A, P) : ModAbVar, RngOrdIdl -> RngUPolElt
   FrobeniusPolynomial(A : parameters) : ModAbVar -> RngUPolElt
   FrobeniusPolynomial(A, p : parameters) : ModAbVar, RngIntElt -> RngUPolElt
   FrobeniusTraceDirect(E, p) : CrvEll, RngIntElt -> RngIntElt
   FrobeniusTracesToWeilPolynomials(tr, q, i, deg) : SeqEnum, RngIntElt, RngIntElt, RngIntElt -> SeqEnum
   IsFrobenius(G) : GrpPerm -> BoolElt
   MultiplyFrobenius(b,f,F) : RngElt, RngUPolElt, Map -> RngElt
   Trace(H): SetPtEll -> RngIntElt
   Trace(H, r): SetPtEll, RngIntElt -> RngIntElt
   TraceOfFrobenius(E, p) : CrvEll[FldFunRat], RngElt -> BoolElt, CrvEll
   TracesOfFrobenius(E, B) : CrvEll, RngIntElt -> SeqEnum
   CrvEll_Frobenius (Example H120E21)

frobenius

   Action of Frobenius (ELLIPTIC CURVES OVER FUNCTION FIELDS)
   Frobenius (HYPERELLIPTIC CURVES)
   Frobenius (HYPERELLIPTIC CURVES)

Frobenius automorphism

   AlgSym_Frobenius automorphism (Example H146E14)

frobenius-action

   Action of Frobenius (ELLIPTIC CURVES OVER FUNCTION FIELDS)

Frobenius-Automorphism

   Frobenius Homomorphism (SYMMETRIC FUNCTIONS)

frobenius-traces

   CrvEllQNF_frobenius-traces (Example H122E1)

FrobeniusActionOnPoints

   FrobeniusActionOnPoints(S, q : parameters) : [ PtEll ], RngIntElt -> AlgMatElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012