[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: ray  ..  real


ray

   Ray Class Groups (CLASS FIELD THEORY)

ray-class-group

   Ray Class Groups (CLASS FIELD THEORY)

RayClassField

   RayClassField(D) : DivNumElt -> FldAb
   RayClassField(m) : Map -> FldAb

RayClassGroup

   RayClassGroup(D) : DivFunElt -> GrpAb, Map
   RayClassGroup(D) : DivNumElt -> GrpAb, Map
   RayClassGroup(I) : RngOrdIdl -> GrpAb, Map

RayClassGroupDiscLog

   RayClassGroupDiscLog(y, D) : DivFunElt, DivFunElt -> GrpAbElt

RayLattice

   RayLattice(C) : RngCox -> TorLat

RayLatticeMap

   RayLatticeMap(C) : RngCox -> Map

RayResidueRing

   RayResidueRing(D) : DivFunElt -> GrpAb, Map
   RayResidueRing(D) : DivNumElt -> GrpAb, Map
   RayResidueRing(I) : RngOrdIdl -> GrpAb, Map

Rays

   AllRays(F) : TorFan -> SeqEnum
   ExtremalRays(X) : TorVar -> SeqEnum
   PureRays(F) : TorFan -> SeqEnum
   Rays(C) : TorCon -> SeqEnum
   Rays(F) : TorFan -> SeqEnum
   Rays(X) : TorVar -> SeqEnum
   VirtualRays(F) : TorFan -> SeqEnum

RC

   IsRC(X) : IncGeom -> BoolElt
   IsResiduallyConnected(X) : IncGeom -> BoolElt

Re

   Real(z) : SpcHydElt -> FldReElt
   Re(z) : SpcHydElt -> FldReElt
   Real(c) : FldComElt -> FldReElt

Reachable

   Reachable(u, v) : GrphVert, GrphVert -> BoolElt
   Reachable(u, v : parameters) : GrphVert, GrphVert -> BoolElt, RngElt

Read

   Read(F) : MonStgElt -> MonStgElt
   Read(P : parameters) : IO -> MonStgElt
   Read(S : parameters) : IO -> MonStgElt
   ReadBinary(F) : MonStgElt -> BStgElt
   ReadBytes(P : parameters) : IO -> SeqEnum
   ReadBytes(S : parameters) : IO -> SeqEnum
   IO_Read (Example H3E10)

read

   read identifier;
   readi identifier;

ReadBinary

   ReadBinary(F) : MonStgElt -> BStgElt

ReadBytes

   ReadBytes(P : parameters) : IO -> SeqEnum
   ReadBytes(S : parameters) : IO -> SeqEnum

readi

   readi identifier, prompt;
   readi identifier;

reading

   Reading a Complete File (INPUT AND OUTPUT)
   Reading Edge Decorations (MULTIGRAPHS)

reading-file

   Reading a Complete File (INPUT AND OUTPUT)

Real

   GetDefaultRealField() : -> FldRe
   IsReal(x) : AlgChtrElt -> BoolElt
   IsReal(c) : FldComElt -> BoolElt
   IsReal(a) : FldCycElt -> BoolElt
   IsReal(p) : PlcNumElt -> BoolElt
   IsReal(p) : PlcNumElt -> BoolElt
   IsReal(z) : SpcHypElt -> BoolElt
   IsRealReflectionGroup(G) : GrpMat -> BoolElt, [], []
   IsTotallyReal(K) : FldAlg -> BoolElt
   QuarticNumberOfRealRoots(q) : RngUPolElt -> RngUPolElt
   Re(z) : SpcHydElt -> FldReElt
   Real(c) : FldComElt -> FldReElt
   Real(z) : SpcHypElt -> FldReElt
   RealEmbeddings(a) : FldNumElt -> []
   RealEmbeddings(a) : RngOrdElt -> []
   RealField() : -> FldRe
   RealField(p) : RngIntElt -> FldRe
   RealHomology(A) : ModAbVar -> ModTupFld
   RealInjection(R) : RootSys -> .
   RealMatrix(phi) : MapModAbVar -> ModMatFldElt
   RealPeriod(E: parameters) : CrvEll -> FldReElt
   RealPlaces(K) : FldRat -> [PlcNumElt]
   RealPlaces(K) : FldRat -> [PlcNumElt]
   RealSigns(a) : FldNumElt -> []
   RealSigns(a) : RngOrdElt -> []
   RealTamagawaNumber(M) : ModSym -> RngIntElt
   RealVectorSpace(H) : ModAbVarHomol -> ModTupFld
   RealVolume(M, prec) : ModSym, RngIntElt -> FldPrElt
   SetDefaultRealField(R) : FldRe ->
   SplitRealPlace(A) : AlgQuat -> PlcNum

real

   Construction of Real Reflection Groups (REFLECTION GROUPS)
   REAL AND COMPLEX FIELDS
   Real and Complex Valued Functions (NUMBER FIELDS)
   Real and Complex Valued Functions (ORDERS AND ALGEBRAIC FIELDS)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012