[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: arithmetic-diff-op-ring-elts  ..  Assert


arithmetic-diff-op-ring-elts

   Arithmetic (DIFFERENTIAL RINGS)

arithmetic-diff-ring-elts

   Arithmetic (DIFFERENTIAL RINGS)

arithmetic-function

   Arithmetic Functions (RING OF INTEGERS)

arithmetic-progression

   The Arithmetic Progression Constructors (SEQUENCES)
   The Arithmetic Progression Constructors (SETS)

arithmetic_jacobian

   Arithmetic of Points (HYPERELLIPTIC CURVES)

Arithmetically

   IsArithmeticallyCohenMacaulay(S) : ShfCoh -> BoolElt
   IsCohenMacaulay(X) : Sch -> BoolElt

ArithmeticFuchsianGroups

   Arithmetic Fuchsian Groups (ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES)

ArithmeticGenus

   ArithmeticGenus(C) : Crv -> RngIntElt
   ArithmeticGenus(X) : Sch -> RngIntElt
   ArithmeticGenus(S) : Srfc -> RngIntElt

ArithmeticGenusOfDesingularization

   ArithmeticGenusOfDesingularization(S) : Srfc -> RngIntElt

ArithmeticGeometricMean

   AGM(x, y) : FldReElt, FldReElt -> FldReElt
   ArithmeticGeometricMean(x, y) : FldReElt, FldReElt -> FldReElt
   ArithmeticGeometricMean(x, y) : RngSerElt, RngSerElt -> RngSerElt

ArithmeticTriangleGroup

   ArithmeticTriangleGroup(p,q,r) : RngIntElt, RngIntElt, RngIntElt -> GrpPSL2, Rng

ArithmeticVolume

   ArithmeticVolume(G) : GrpPSL2 -> FldRatElt
   ArithmeticVolume(P) : [SpcHydElt] -> FldReElt

armitage

   Lseries_armitage (Example H127E4)

Array

   AssociativeArray(): -> Assoc
   AssociativeArray(I): Str -> Assoc
   EnumerationCostArray(L) : Lat -> ModTupFldElt
   GammaArray(H) : HypGeomData -> SeqEnum
   IntersectionArray(G) : GrphUnd -> [RngIntElt]

Arrows

   Arrows(s) : GrphRes -> SeqEnum

Artin

   ArtinMap(A) : FldAb -> Map
   ArtinRepresentation(ch) : GrpDrchElt -> ArtRep
   ArtinRepresentation(H, t) : HypGeomData, FldRatElt -> ArtRep
   ArtinRepresentations(K) : FldNum -> SeqEnum
   ArtinSchreierExtension(c,a,b) : FldFin, FldFin, FldFin -> FldFun
   ArtinSchreierImage(e) : RngWittElt -> RngWittElt
   ArtinSchreierMap(W) : RngWitt -> Map
   ArtinTateFormula(f, q, h20) : RngUPolElt, RngIntElt, RngIntElt -> RngIntElt, RngIntElt
   IsInArtinSchreierRepresentation(K) : FldFun -> BoolElt, FldFunElt

artin-arith1

   ArtRep_artin-arith1 (Example H44E5)

artin-arith2

   ArtRep_artin-arith2 (Example H44E6)

artin-const

   ArtRep_artin-const (Example H44E1)

artin-invariants

   ArtRep_artin-invariants (Example H44E3)

artin-minimize

   ArtRep_artin-minimize (Example H44E2)

ArtinMap

   ArtinMap(A) : FldAb -> Map

ArtinRepresentation

   ArtinRepresentation(ch) : GrpDrchElt -> ArtRep
   ArtinRepresentation(H, t) : HypGeomData, FldRatElt -> ArtRep

ArtinRepresentations

   ArtinRepresentations(K) : FldNum -> SeqEnum

ArtinSchreierExtension

   ArtinSchreierExtension(c,a,b) : FldFin, FldFin, FldFin -> FldFun

ArtinSchreierImage

   ArtinSchreierImage(e) : RngWittElt -> RngWittElt

ArtinSchreierMap

   ArtinSchreierMap(W) : RngWitt -> Map

ArtinTateFormula

   ArtinTateFormula(f, q, h20) : RngUPolElt, RngIntElt, RngIntElt -> RngIntElt, RngIntElt

artrep

   ARTIN REPRESENTATIONS

As

   AsExtensionOf(O1, O2) : RngFunOrd, RngFunOrd -> RngFunOrd
   AsExtensionOf(O, P) : RngOrd, RngOrd -> RngOrd
   GroupAlgebraAsStarAlgebra(R, G) : Rng, Grp -> AlgGrp
   IsSplitAsIdealAt(I, l) : RngOrdFracIdl, UserProgram -> BoolElt, UserProgram, [RngOrdIdl]
   RationalsAsNumberField() : FldRat -> FldNum
   RationalsAsNumberField() : FldRat -> FldNum
   UnitGroupAsSubgroup(O) : RngOrd -> GrpAb

aschbacher

   Aschbacher Reduction (MATRIX GROUPS OVER FINITE FIELDS)
   Introduction (MATRIX GROUPS OVER FINITE FIELDS)

aschbacher-reduction

   Aschbacher Reduction (MATRIX GROUPS OVER FINITE FIELDS)

AsExtensionOf

   AsExtensionOf(O1, O2) : RngFunOrd, RngFunOrd -> RngFunOrd
   AsExtensionOf(O, P) : RngOrd, RngOrd -> RngOrd

ASigma

   ASigmaL(arguments)
   AffineSigmaLinearGroup(arguments)

ASigmaL

   ASigmaL(arguments)
   AffineSigmaLinearGroup(arguments)

ASL

   ASL(arguments)
   AffineSpecialLinearGroup(arguments)
   AffineSpecialLinearGroup(GrpMat, n, q) : Cat, RngIntElt, RngIntElt -> GrpMat

Assert

   AssertAttribute(x, "IsCharacter", b) : AlgChtrElt, MonStgElt, BoolElt ->
   AssertAttribute(FldFin, "PowerPrinting", l) : Cat, MonStgElt, BoolElt ->
   AssertAttribute(GrpMat, "FirstBasicOrbitBound", n) : Cat, MonStgElt, RngIntElt ->
   AssertAttribute(RngInt, "CunninghamStorageLimit", l) : Cat, MonStgElt, RngIntElt ->
   AssertAttribute(G, "IsVerified", b) : GrpMat, MonStgElt, BoolElt ->
   AssertAttribute(G, "Order", n) : GrpMat, MonStgElt, RngIntElt ->
   AssertAttribute(G, "Classes", Q) : GrpMat, MonStgElt, SeqEnum ->
   AssertAttribute(G, "Base", B) : GrpMat, MonStgElt, Tup ->
   [Future release] AssertAttribute(G, "BSGS", S) : GrpPerm, MonStgElt, GrpPermBSGS ->
   AssertAttribute(G, "Order", n) : GrpPerm, MonStgElt, RngIntElt ->
   AssertAttribute(G, "Classes", Q) : GrpPerm, MonStgElt, SeqEnum ->
   AssertAttribute(G, "Order", Q) : GrpPerm, MonStgElt, [<RngIntElt, RngIntElt>] ->
   AssertAttribute(S, "DefaultPrecision", n) : RngSer, MonStgElt, RngIntElt ->
   AssertEmbedding(~A, phi) : ModAbVar, MapModAbVar ->
   SetPowerPrinting(F, l) : FldFin, BoolElt ->

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012