[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: Pollard .. Polynomial
PollardRho(n) : RngIntElt -> RngIntEltFact, [ RngIntElt ]
PollardRho(n) : RngIntElt -> RngIntEltFact, [ RngIntElt ]
PolyMapKernel(f) : Map -> RngMPol
PolyToSeries(s) : RngMPolElt -> RngPowAlgElt
Straight-line Polynomials (GALOIS THEORY OF NUMBER FIELDS)
Using Newton Polygons to Find Roots of Polynomials over Series Rings (NEWTON POLYGONS)
AlgSym_poly bang (Example H146E4)
RngLocA_poly-fact (Example H51E8)
RngLoc_Poly-Hensel (Example H47E19)
Using Newton Polygons to Find Roots of Polynomials over Series Rings (NEWTON POLYGONS)
Newton_poly-ops-ex (Example H46E6)
Polynomials over General Local Fields (GENERAL LOCAL FIELDS)
PolycyclicGroup< X | R > : List(Identifiers), List(GrpFPRel) -> GrpPC, Hom
AbelianGroup< X | R > : List(Identifiers), List(GrpAbRel) -> GrpAb, Hom(GrpAb)
Group< X | R > : List(Identifiers), List(GrpFPRel) -> GrpFP, Hom(Grp)
IsPolycyclic(G : parameters) : GrpMat -> BoolElt
IsPolycyclicByFinite(G : parameters) : GrpMat -> BoolElt
PolycyclicGenerators(G) : GrpMat -> [ GrpPCElt ]
PolycyclicGroup< x1, ..., xn | R : parameters > : List(Identifiers), List(GrpFPRel) -> GrpGPC, Map
PolycyclicGroup< x1, ..., xn | R : parameters > : List(Identifiers), List(GrpFPRel) -> GrpPC, Map
Introduction (POLYCYCLIC GROUPS)
POLYCYCLIC GROUPS
Polycyclic Groups and Polycyclic Presentations (POLYCYCLIC GROUPS)
Polycyclic Groups and Polycyclic Presentations (POLYCYCLIC GROUPS)
Introduction (POLYCYCLIC GROUPS)
PolycyclicGenerators(G) : GrpMat -> [ GrpPCElt ]
PolycyclicGroup< X | R > : List(Identifiers), List(GrpFPRel) -> GrpPC, Hom
AbelianGroup< X | R > : List(Identifiers), List(GrpAbRel) -> GrpAb, Hom(GrpAb)
Group< X | R > : List(Identifiers), List(GrpFPRel) -> GrpFP, Hom(Grp)
PolycyclicGroup< x1, ..., xn | R : parameters > : List(Identifiers), List(GrpFPRel) -> GrpGPC, Map
PolycyclicGroup< x1, ..., xn | R : parameters > : List(Identifiers), List(GrpFPRel) -> GrpPC, Map
GrpGPC_PolycyclicGroup (Example H72E2)
GrpPC_PolycyclicGroup (Example H63E2)
Grp_PolycyclicGroup (Example H57E5)
IsNewtonPolygonOf(N, f) : NwtnPgon, RngElt -> BoolElt
IsPolygon(G) : Grph -> BoolElt
NewtonPolygon(C) : Crv -> NwtnPgon
NewtonPolygon(L) : RngDiffOpElt -> NwtnPgon, RingDiffOpElt
NewtonPolygon(L, p) : RngDiffOpElt, PlcFunElt -> NwtnPgon, RingDiffOpElt
NewtonPolygon(f) : RngMPolElt -> NwtnPgon
NewtonPolygon(f) : RngUPolElt -> NwtnPgon
NewtonPolygon(f) : RngUPolElt -> NwtnPgon
NewtonPolygon(f, p) : RngUPolElt, PlcFunElt -> NwtnPgon
NewtonPolygon(f, p) : RngUPolElt, RngOrdIdl -> NwtnPgon
NewtonPolygon(V) : SeqEnum -> NwtnPgon
PolygonGraph(n : parameters) : RngIntElt -> GrphUnd
NEWTON POLYGONS
Newton Polygons (DIFFERENTIAL RINGS)
PolygonGraph(n : parameters) : RngIntElt -> GrphUnd
DisplayPolygons(P,file) : SeqEnum, MonStgElt ->
Cones and Polyhedra (CONVEX POLYTOPES AND POLYHEDRA)
CONVEX POLYTOPES AND POLYHEDRA
Geometrical Properties of Cones and Polyhedra (TORIC VARIETIES)
Polyhedra (CONVEX POLYTOPES AND POLYHEDRA)
Polytopes, Cones and Polyhedra (CONVEX POLYTOPES AND POLYHEDRA)
ConeToPolyhedron(C) : TorCon -> TorPol
EmptyPolyhedron(L) : TorLat -> TorPol
FixedSubspaceToPolyhedron(G) : GrpMat -> TorPol
HalfspaceToPolyhedron(v,h) : TorLatElt,FldRatElt -> TorPol
HyperplaneToPolyhedron(v,h) : TorLatElt,FldRatElt -> TorPol
Polyhedron(D) : DivTorElt -> TorPol
Polyhedron(C) : TorCon -> TorPol
Polyhedron(C,f,v) : TorCon,Map,TorLatElt -> TorPol
Polyhedron(C,H,h) : TorCon,TorLatElt,FldRatElt -> TorPol
PolyhedronInSublattice(P) : TorPol -> TorPol,Map,TorLatElt
PolyhedronInSublattice(P) : TorPol -> TorPol,Map,TorLatElt
Polylog(m, s) : RngIntElt, FldComElt -> FldComElt
Polylog(m, f) : RngIntElt, RngSerElt -> RngSerElt
PolylogD(m, s) : RngIntElt, FldComElt -> FldComElt
PolylogDold(m, s) : RngIntElt, FldComElt -> FldComElt
PolylogP(m, s) : RngIntElt, FldComElt -> FldComElt
PolylogD(m, s) : RngIntElt, FldComElt -> FldComElt
PolylogDold(m, s) : RngIntElt, FldComElt -> FldComElt
PolylogP(m, s) : RngIntElt, FldComElt -> FldComElt
PolylogD(m, s) : RngIntElt, FldComElt -> FldComElt
PolylogDold(m, s) : RngIntElt, FldComElt -> FldComElt
PolylogP(m, s) : RngIntElt, FldComElt -> FldComElt
PolylogD(m, s) : RngIntElt, FldComElt -> FldComElt
PolyMapKernel(f) : Map -> RngMPol
AbsoluteCharacteristicPolynomial(a) : FldAlgElt -> RngUPolElt
AbsoluteCharacteristicPolynomial(a) : FldNumElt -> RngUPolElt
AbsoluteMinimalPolynomial(a) : FldAlgElt -> RngUPolElt
AbsoluteMinimalPolynomial(a) : FldFunElt -> RngUPolElt
AbsoluteMinimalPolynomial(a) : FldNumElt -> RngUPolElt
AbsolutePolynomial(A) : FldAC ->
AdditivePolynomialFromRoots(x, P) : RngElt, PlcFunElt -> RngUPolTwstElt
AtkinModularPolynomial(N) : RngIntElt -> RngMPolElt
BerlekampMassey(S) : SeqEnum -> RngUPolElt, RngIntElt
BernoulliPolynomial(n) : RngIntElt -> RngUPolElt
BernoulliPolynomial(n) : RngIntElt -> RngUPolElt
BooleanPolynomialRing(n) : RngIntElt -> RngMPolBool
BooleanPolynomialRing(n, order) : RngIntElt, MonStgElt -> RngMPolBool
BooleanPolynomialRing(B, Q) : RngMPolBool, [RngIntElt] -> RngMPolBoolElt
CanonicalModularPolynomial(N) : RngIntElt -> RngMPolElt
CharacteristicPolynomial(x) : AlgAssVOrdElt -> RngUPolElt
CharacteristicPolynomial(x) : AlgQuatElt -> RngUPolElt
CharacteristicPolynomial(a) : FldAlgElt -> RngUPolElt
CharacteristicPolynomial(a) : FldFinElt -> RngUPolElt
CharacteristicPolynomial(a, E) : FldFinElt, FldFin -> RngUPolElt
CharacteristicPolynomial(a, R) : FldFunElt, Rng -> RngUPolElt
CharacteristicPolynomial(a) : FldNumElt -> RngUPolElt
CharacteristicPolynomial(G) : GrphUnd -> RngUPolElt
CharacteristicPolynomial(phi) : MapModAbVar -> RngUPolElt
CharacteristicPolynomial(a: parameters) : AlgMatElt -> RngUPolElt
CharacteristicPolynomial(g: parameters) : GrpMatElt -> RngPolElt
CharacteristicPolynomial(A: parameters) : Mtrx -> RngUPolElt
CharacteristicPolynomial(x) : RngPadElt -> RngUPolElt
CharacteristicPolynomial(x, R) : RngPadElt, RngPad -> RngUPolElt
CharacteristicPolynomialFromTraces(traces) : [ Fld ] -> RngUPolElt
CharacteristicPolynomialFromTraces(traces, d, q, i) : [ Fld ], RngIntElt, RngIntElt, RngIntElt -> RngUPolElt, RngUPolElt
CheckPolynomial(C) : Code -> RngUPolElt
CheckWeilPolynomial(f, q, h20) : RngUPolElt, RngIntElt, RngIntElt -> BoolElt
ChevalleyOrderPolynomial(type, n: parameters) : MonStgElt, RngIntElt -> RngUPolElt
ChromaticPolynomial(G) : GrphUnd -> RngUPolElt
ClassicalModularPolynomial(N) : RngIntElt -> RngMPolElt
ConwayPolynomial(p, n) : RngIntElt, RngIntElt -> RngUPolElt
CyclotomicPolynomial(m) : RngIntElt -> RngUPolElt
DefiningPolynomial(A) : ArtRep -> RngUPolElt
DefiningPolynomial(C) : Crv -> RngMPolElt
DefiningPolynomial(E) : CrvEll -> RngMPolElt
DefiningPolynomial(F) : FldAlg -> RngUPolElt
DefiningPolynomial(F) : FldFin -> RngUPolElt
DefiningPolynomial(F, E) : FldFin -> RngUPolElt
DefiningPolynomial(F) : FldFun -> RngUPolElt
DefiningPolynomial(F) : FldNum -> RngUPolElt
DefiningPolynomial(Q) : FldRat -> RngUPolElt
DefiningPolynomial(L) : RngLocA -> RngUPolElt
DefiningPolynomial(L) : RngPad -> RngUPolElt
DefiningPolynomial(s) : RngPowAlgElt -> RngUPolElt
DefiningPolynomial(E) : RngSerExt -> RngUPolElt
DefiningPolynomial(C) : Sch -> RngMPolElt
DefiningPolynomial(C) : Sch -> RngMPolElt
DefiningPolynomial(X) : Sch -> RngMPolElt
DefiningPolynomial(K) : SrfKum -> RngMPolElt
DefiningSubschemePolynomial(G) : SchGrpEll -> RngUPolElt
DivisionPolynomial(E, n) : CrvEll, RngIntElt -> RngUPolElt, RngUPolElt, RngUPolElt
EhrhartPolynomial(P) : TorPol -> [RngUPolElt]
ElementarySymmetricPolynomial(P, k) : RngMPol, RngIntElt -> RngMPolElt
ElementarySymmetricPolynomial(P, k) : RngMPol, RngIntElt -> RngMPolElt
EvaluatePolynomial(C, a, b, c) : CrvHyp, RngElt, RngElt, RngElt -> RngElt
ExistsConwayPolynomial(p, n) : RngIntElt, RngIntElt -> BoolElt, RngUPolElt
FactoredCharacteristicPolynomial(phi) : MapModAbVar -> RngUPolElt
FactoredCharacteristicPolynomial(A: parameters) : Mtrx -> [ <RngUPolElt, RngIntElt>]
FactoredHeckePolynomial(A, n) : ModAbVar, RngIntElt -> RngUPolElt
FactoredMinimalPolynomial(A: parameters) : Mtrx -> [ <RngUPolElt, RngIntElt>]
FactorisationToPolynomial(f) : [Tup] -> BoolElt
FrobeniusPolynomial(A, P) : ModAbVar, RngOrdIdl -> RngUPolElt
FrobeniusPolynomial(A : parameters) : ModAbVar -> RngUPolElt
FrobeniusPolynomial(A, p : parameters) : ModAbVar, RngIntElt -> RngUPolElt
GegenbauerPolynomial(n, m) : RngIntElt, RngElt ->RngUPolElt
GeneratorPolynomial(C) : Code -> RngUPolElt
HasPolynomial(N) : NwtnPgon -> BoolElt
HasPolynomialFactorization(R) : Rng -> BoolElt
HeckePolynomial(A, n) : ModAbVar, RngIntElt -> RngUPolElt
HeckePolynomial(M, n) : ModSym, RngIntElt -> RngUPolResElt
HeckePolynomial(M, n : parameters) : ModFrm, RngIntElt -> RngUPolElt
HermitePolynomial(n) : RngIntElt -> RngUPolElt
HilbertClassPolynomial(D) : RngIntElt -> RngUPolElt
HilbertClassPolynomial(D) : RngIntElt -> RngUPolElt
HilbertPolynomial(D) : DivTor -> [RngUPolElt]
HilbertPolynomial(I) : ModMPol -> RngUPolElt, RngIntElt
HilbertPolynomial(I) : RngMPol -> RngUPolElt, RngIntElt
HilbertPolynomialOfCurve(g,m) : RngIntElt,RngIntElt -> RngUPolElt
HyperellipticCurveFromShiodaInvariants(JI) : SeqEnum[FldFin] -> CrvHyp, GrpPerm
HyperellipticPolynomial(A) : AnHcJac -> RngUPolElt
IndicialPolynomial(L, p) : RngDiffOpElt, PlcFunElt -> RngElt
IrreducibleLowTermGF2Polynomial(n) : RngIntElt -> RngUPolElt
IrreduciblePolynomial(F, n) : FldFin, RngIntElt -> RngUPolElt
IrreducibleSparseGF2Polynomial(n) : RngIntElt -> RngUPolElt
IsPolynomial(s) : RngPowAlgElt -> BoolElt, RngMPolElt
IsProbablyPermutationPolynomial(p) : RngUPolElt -> BoolElt
IsRegular(f) : MapSch -> BoolElt
KrawchoukPolynomial(K, n, k) : FldFin, RngIntElt, RngIntElt -> RngUPolElt
LaguerrePolynomial(n) : RngIntElt -> RngUPolElt
LegendrePolynomial(C) : CrvCon -> RngMPolElt, ModMatRngElt
LegendrePolynomial(n) : RngIntElt -> RngUPolElt
LocalPolynomialRing(K, n) : Rng, RngIntElt -> RngMPolLoc
LocalPolynomialRing(K, n, order) : Rng, RngIntElt, MonStgElt, ... -> RngMPolLoc
LocalPolynomialRing(K, n, T) : Rng, RngIntElt, Tup -> RngMPolLoc
MinimalHeckePolynomial(A, n) : ModAbVar, RngIntElt -> RngUPolElt
MinimalPolynomial(x) : AlgAssVOrdElt -> RngUPolElt
MinimalPolynomial(f) : AlgFPElt -> RngUPol
MinimalPolynomial(a) : AlgGenElt -> RngUPolElt
MinimalPolynomial(a) : AlgMatElt -> RngUPolElt
MinimalPolynomial(x) : AlgQuatElt -> RngUPolElt
MinimalPolynomial(a) : FldACElt -> RngUPolElt
MinimalPolynomial(a) : FldAlgElt -> RngUPolElt
MinimalPolynomial(a) : FldFinElt -> RngUPolElt
MinimalPolynomial(a, E) : FldFinElt, FldFin -> RngUPolElt
MinimalPolynomial(a, R) : FldFunElt, Rng -> RngUPolElt
MinimalPolynomial(a) : FldNumElt -> RngUPolElt
MinimalPolynomial(q) : FldRatElt -> RngUPolElt
MinimalPolynomial(g) : GrpMatElt -> RngPolElt
MinimalPolynomial(phi) : MapModAbVar -> RngUPolElt
MinimalPolynomial(A: parameters) : Mtrx -> RngUPolElt
MinimalPolynomial(s) : RngDiffElt -> RngUPolElt
MinimalPolynomial(n) : RngIntElt -> RngUPolElt
MinimalPolynomial(f) : RngMPolResElt -> RngUPol
MinimalPolynomial(x) : RngPadElt -> RngUPolElt
MinimalPolynomial(x, R) : RngPadElt, RngPad -> RngUPolElt
MultivariatePolynomial(P, f, i) : RngMPol, RngUPolElt, RngIntElt -> RngMPolElt
NewtonPolynomial(F) : NwtnPgonFace -> RngUPolElt
Polynomial(N) : NwtnPgon -> RngElt
Polynomial(R, f) : Rng, RngUPolElt -> RngUPolElt
Polynomial(R, Q) : Rng, [ RngElt] -> RngUPolElt
Polynomial(G) : RngUPolTwstElt -> RngUPolElt
Polynomial(Q) : [ RngElt ] -> RngUPolElt
Polynomial(C, M) : [RngElt], [RngMPolElt] -> RngMPolElt
PolynomialAlgebra(R) : Rng -> RngUPol
PolynomialCoefficient(s, i) : RngPowLazElt, RngIntElt -> RngPowLazElt
PolynomialMap(L) : LinearSys -> RngMPolElt
PolynomialRing(model) : ModelG1 -> RngMPol
PolynomialRing(R, n) : Rng, RngIntElt -> RngMPol
PolynomialRing(R, n) : Rng, RngIntElt -> RngMPol
PolynomialRing(R, n, order) : Rng, RngIntElt, MonStgElt, ... -> RngMPol
PolynomialRing(R, n, order) : Rng, RngIntElt, MonStgElt, ... -> RngMPol
PolynomialRing(R, n, T) : Rng, RngIntElt, Tup -> RngMPol
PolynomialRing(R, Q) : Rng, [ RngIntElt ] -> RngMPol
PolynomialRing(R) : RngInvar -> RngMPol
PolynomialSieve(F, m, J0, J1,MaxAlpha) : RngMPolElt, RngIntElt, RngIntElt, RngIntElt, FldReElt -> List
PowerPolynomial(f,n) : RngUPolElt, RngIntElt -> RngUPolElt
PrimitivePolynomial(F, m) : FldFin, RngIntElt -> RngUPolElt
QuadraticFormPolynomial(V) : ModTupRng -> RngPolElt
RandomIrreduciblePolynomial(F, n) : FldFin, RngIntElt -> RngUPolElt
RandomPrimePolynomial(R, d) : RngUPol, RngIntElt -> RngUPolElt
ReciprocalPolynomial(f) : RngUPolElt -> RngUPolElt
ReducedLegendrePolynomial(C) : CrvCon -> RngMPolElt, ModMatRngElt
SupersingularPolynomial(p) : RngIntElt -> RngUPolElt
SwinnertonDyerPolynomial(n) : RngIntElt -> RngUPolElt
TwoTorsionPolynomial(E) : CrvEll -> RngMPolElt
UnivariatePolynomial(f) : RngMPolElt -> RngUPolElt
WeberClassPolynomial(D) : RngIntElt -> RngUPolElt
WeberClassPolynomial(D) : RngIntElt -> RngUPolElt, FldFunRatUElt
WeberToHilbertClassPolynomial(f,D) : RngUPolElt, RngIntElt -> RngUPolElt
WeilPolynomialOverFieldExtension(f, deg) : RngUPolElt, RngIntElt -> RngUPolElt
WeilPolynomialToRankBound(f, q) : RngUPolElt, RngIntElt -> RngIntElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012