[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: error-correcting-quantum-code  ..  Euler


error-correcting-quantum-code

   QUANTUM CODES

error-handling

   Error Handling Statements (STATEMENTS AND EXPRESSIONS)

error-if

   error if boolexpr, expression, ..., expression;

error-object

   The Error Objects (STATEMENTS AND EXPRESSIONS)

error_group

   Quantum Error Group (QUANTUM CODES)

ErrorFunction

   Erf(r) : FldReElt -> FldReElt
   ErrorFunction(r) : FldReElt -> FldReElt

errors

   assert2 boolexpr;
   assert3 boolexpr;
   Error Checking and Assertions (STATEMENTS AND EXPRESSIONS)

Estimate

   DimensionsEstimate(L, g) : AlgLieExtr, UserProgram -> SeqEnum, SetMulti
   EstimateOrbit(G, v: parameters) : GrpMat, ModTupFldElt -> RngIntElt, RngIntElt, RngIntElt

EstimateOrbit

   EstimateOrbit(G, v: parameters) : GrpMat, ModTupFldElt -> RngIntElt, RngIntElt, RngIntElt

Et

   McElieceEtAlAsymptoticBound(delta) : FldPrElt -> FldPrElt

Eta

   DedekindEta(s) : FldComElt -> FldComElt
   DedekindEta(z) : RngSerElt -> RngSerElt
   Eta(A) : AlgGrp -> AlgGrpElt
   EtaTPairing(P, Q, n, q) : PtEll, PtEll, RngIntElt, RngIntElt -> RngElt
   ReducedEtaTPairing(P, Q, n, q) : PtEll, PtEll, RngIntElt, RngIntElt -> RngElt

Etale

   IsEtale(D) : PhiMod -> BoolElt

etale

   Auxiliary Functions for Etale Algebras (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)

Etaq

   EtaqPairing(P, Q, n, q) : PtEll, PtEll, RngIntElt, RngIntElt -> RngElt

EtaqPairing

   EtaqPairing(P, Q, n, q) : PtEll, PtEll, RngIntElt, RngIntElt -> RngElt

EtaTPairing

   EtaTPairing(P, Q, n, q) : PtEll, PtEll, RngIntElt, RngIntElt -> RngElt

Euclidean

   Canonical Forms for Matrices over Euclidean Domains (MATRIX ALGEBRAS)
   Euclidean Operations (GALOIS RINGS)
   DualEuclideanWeightDistribution(C) : Code -> SeqEnum
   EuclideanDistance(u, v) : ModTupRngElt, ModTupRngElt -> RngIntElt
   EuclideanLeftDivision(D, N) : RngDiffOpElt, RngDiffOpElt -> RngDiffOpElt,RngDiffOpElt
   EuclideanNorm(n) : RngIntElt -> RngIntElt
   EuclideanNorm(p) : RngUPol -> RngIntElt
   EuclideanNorm(v) : RngValElt -> RngIntElt
   EuclideanRightDivision(N, D) : RngDiffOpElt, RngDiffOpElt -> RngDiffOpElt,RngDiffOpElt
   EuclideanWeight(v) : ModTupRngElt -> RngIntElt
   EuclideanWeight(a) : RngIntRes -> RngIntElt
   EuclideanWeightDistribution(C) : Code -> SeqEnum
   EuclideanWeightEnumerator(C): Code -> RngMPolElt
   IsEuclideanDomain(F) : FldAlg -> BoolElt
   IsEuclideanDomain(F) : FldNum -> BoolElt
   IsEuclideanDomain(R) : Rng -> BoolElt
   IsEuclideanRing(R) : Rng -> BoolElt
   IsMagmaEuclideanRing(R) : Rng -> BoolElt
   MinimumEuclideanWeight(C) : Code -> RngIntElt

euclidean

   Canonical Forms over Euclidean Domains (MATRICES)
   Euclidean Algorithms, GCDs and LCMs (DIFFERENTIAL RINGS)
   Euclidean Right and Left Division (DIFFERENTIAL RINGS)
   Euclidean Weight (LINEAR CODES OVER FINITE RINGS)
   Gröbner Bases over Euclidean Rings (GRÖBNER BASES)
   Least Common Left Multiples (DIFFERENTIAL RINGS)

euclidean-algorithms

   Euclidean Algorithms, GCDs and LCMs (DIFFERENTIAL RINGS)

euclidean-dist

   CodeRng_euclidean-dist (Example H155E20)

euclidean-division

   Euclidean Right and Left Division (DIFFERENTIAL RINGS)
   Least Common Left Multiples (DIFFERENTIAL RINGS)

Euclidean-domain

   Canonical Forms for Matrices over Euclidean Domains (MATRIX ALGEBRAS)

EuclideanDistance

   EuclideanDistance(u, v) : ModTupRngElt, ModTupRngElt -> RngIntElt

EuclideanLeftDivision

   EuclideanLeftDivision(D, N) : RngDiffOpElt, RngDiffOpElt -> RngDiffOpElt,RngDiffOpElt

EuclideanNorm

   EuclideanNorm(n) : RngIntElt -> RngIntElt
   EuclideanNorm(p) : RngUPol -> RngIntElt
   EuclideanNorm(v) : RngValElt -> RngIntElt

EuclideanRightDivision

   EuclideanRightDivision(N, D) : RngDiffOpElt, RngDiffOpElt -> RngDiffOpElt,RngDiffOpElt

EuclideanWeight

   EuclideanWeight(v) : ModTupRngElt -> RngIntElt
   EuclideanWeight(a) : RngIntRes -> RngIntElt

EuclideanWeightDistribution

   EuclideanWeightDistribution(C) : Code -> SeqEnum

EuclideanWeightEnumerator

   EuclideanWeightEnumerator(C): Code -> RngMPolElt

Euler

   EulerCharacteristic(s) : GrphSpl -> RngIntElt
   EulerCharacteristic(X) : SmpCpx -> RngIntElt
   EulerFactor(A, p) : ArtRep, RngIntElt -> RngUPolElt
   EulerFactor(H, t, p) : HypGeomData, FldRatElt, RngIntElt -> RngUPolElt
   EulerFactor(J) : JacHyp -> RngUPolElt
   EulerFactor(J, K) : JacHyp, FldFin -> RngUPolElt
   EulerFactor(L, p) : LSer, RngIntElt -> .var Degree : RngIntElt : var Precision: RngIntElt Default: desGiven an L-series and a prime p, this computes thepth Euler factor, either as a polynomial or a power series.The optional parameter Degree will truncate the series to that length,and the optional parameter Precision is of use when the series isdefined over the complex numbers.
   EulerFactorModChar(J) : JacHyp -> RngUPolElt
   EulerGamma(R) : FldRe -> FldReElt
   EulerPhi(n) : RngIntElt -> RngIntElt
   EulerPhiInverse(m) : RngIntElt -> RngIntElt
   EulerProduct(O, B) : RngOrd, RngIntElt -> FldReElt
   FactoredEulerPhi(n) : RngIntElt -> RngIntEltFact
   FactoredEulerPhiInverse(n) : RngIntElt -> RngIntEltFact
   JacobianOrdersByDeformation(Q, Y) : RngMPolElt, SeqEnum -> SeqEnum

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012