[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: ReducedLegendreModel .. Ree
ReducedLegendreModel(C) : CrvCon -> CrvCon, MapIsoSch
ReducedLegendrePolynomial(C) : CrvCon -> RngMPolElt, ModMatRngElt
ReducedMinimalWeierstrassModel(C) : CrvHyp -> CrvHyp, MapIsoSch
ReducedModel(C) : CrvHyp -> CrvHyp, MapIsoSch
ReducedOrbits(Q) : QuadBin -> [ {@ QuadBinElt @} ]
ReducedSubscheme(X) : Sch -> Sch, MapSch
ReducedTatePairing(P, Q, n) : PtEll, PtEll, RngIntElt -> RngElt
GrpFP_1_ReduceGeneratingSet (Example H70E70)
ReduceGenerators(G) : GrpFP -> GrpFP, Map
ReduceGenerators(~G) : GrpPerm ->
ReduceGroebnerBasis(S) : [ RngMPolElt ] -> [ RngMPolElt ]
ModRng_ReduceHom (Example H54E9)
ReducePlaneCurve(f) : MPolElt -> RngMPolElt, Mtrx
ReduceQuadrics(seq) : [RngMPolElt] -> [RngMPolElt], AlgMatElt, AlgMatElt
ReduceToTriangleVertices(G,z) : GrpPSL2, SpcHypElt -> SpcHypElt
ReduceVector(W, ~v) : ModTupRng, ModTupRngElt ->
ReduceVector(W, v) : ModTupRng, ModTupRngElt -> ModTupRngElt
FrobeniusActionOnReducibleFiber(L) : < Tup > -> AlgMatElt
IsCompletelyReducible(G : parameters) : GrpMat -> BoolElt
FldForms_reducible (Example H29E19)
Reducing Vectors Relative to a Subspace (VECTOR SPACES)
Reducing Vectors Relative to a Subspace (VECTOR SPACES)
BasisReduction(L) : Lat -> Lat, AlgMatElt
BasisReduction(X) : ModMatRngElt -> ModMatRngElt, AlgMatElt, RngIntElt
CompositionTreeReductionInfo(G, t) : Grp, RngIntElt -> MonStgElt,Grp, Grp
DegreeReduction(G) : GrpPerm -> GrpPerm, Hom
EllipticCurveSearch(N, Effort) : RngOrdIdl, RngIntElt -> SeqEnum
GeneralisedRowReduction(ρ) : GrpLie, Map -> Map
GeneralisedRowReduction(ρ) : Map -> Map
Reduction(E, p) : CrvEll, RngOrdIdl -> CrvEll, Map
Reduction(D) : DivCrvElt -> DivCrvElt, RngIntElt, DivCrvElt, FldFunFracSchElt
Reduction(D) : DivFunElt -> DivFunElt, RngIntElt, DivFunElt, FldFunElt
Reduction(L) : LinearSys -> LinearSys
Reduction(p) : Pt -> Pt
Reduction(f) : QuadBinElt -> QuadBinElt, Mtrx
Reduction(I) : RngQuadFracIdl -> RngQuadFracIdl
ReductionOrbit(f) : QuadBinElt -> SeqEnum[QuadBinElt]
ReductionStep(f) : QuadBinElt -> QuadBinElt
ReductionType(E, p) : CrvEll, RngIntElt -> MonStgElt
Set_Reduction (Example H9E14)
Aschbacher Reduction (MATRIX GROUPS OVER FINITE FIELDS)
Recursion, Reduction, and Iteration (SEQUENCES)
Reduction (SEQUENCES)
Reduction and Iteration over Sets (SETS)
Reduction of Matrices and Lattices (LATTICES)
Reduction of varphi-modules and Galois Representations (MOD P GALOIS REPRESENTATIONS)
The Normal Form for Words (COXETER GROUPS)
Reduction and Iteration over Sets (SETS)
CrvEllFldFun_Reductionmodp (Example H123E5)
ReductionOrbit(f) : QuadBinElt -> SeqEnum[QuadBinElt]
Reductions(f, p) : ModFrmElt, RngIntElt -> List
Reduced Permutation Actions (PERMUTATION GROUPS)
Reductions and Embeddings (MODULAR FORMS)
Reductions and Embeddings (MODULAR FORMS)
ModFrm_ReductionsAndEmbeddings (Example H132E17)
ReductionStep(f) : QuadBinElt -> QuadBinElt
ReductionType(E, p) : CrvEll, RngIntElt -> MonStgElt
IsReductive(L) : AlgLie -> BoolElt
Rank(G) : GrpLie -> RngIntElt
ReductiveType(L) : AlgLie -> RootDtm, MonStgElt, SeqEnum, SeqEnum
Almost Reductive Lie Algebras (LIE ALGEBRAS)
Almost Reductive Lie Algebras (LIE ALGEBRAS)
AlgLie_ReductiveLieAlgebra (Example H100E17)
ReductiveRank(G) : GrpLie -> RngIntElt
Rank(G) : GrpLie -> RngIntElt
ReductiveType(L) : AlgLie -> RootDtm, MonStgElt, SeqEnum, SeqEnum
AlgLie_ReductiveType (Example H100E31)
Reductum(f) : RngMPolElt -> RngMPolElt
Reductum(f, i) : RngMPolElt, RngIntElt -> RngMPolElt
Reductum(f) : RngUPolElt -> RngUPolElt
EliminateRedundancy(~P) : GrpPCpQuotientProc ->
AddRedundantGenerators(G, Q) : GrpSLP, [ GrpSLPElt ] -> GrpSLP
IsLargeReeGroup(G) : GrpMat -> BoolElt, RngIntElt
IsReeGroup(G) : GrpMat -> BoolElt, RngIntElt
LargeReeElementToWord(G, g) : GrpMat, GrpMatElt -> BoolElt, GrpSLPElt
LargeReeGroup(q) : RngIntElt -> GrpMat
LargeReeSylow(G, p) : GrpMat, RngIntElt -> GrpMat, SeqEnum
RecogniseLargeRee(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map
RecogniseRee(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map
ReeConjugacyClasses(G) : GrpMat -> SeqEnum
ReeElementToWord(G, g) : GrpMat, GrpMatElt -> BoolElt, GrpSLPElt
ReeGroup(q) : RngIntElt -> GrpMat
ReeIrreducibleRepresentation(F, twists : parameters) : FldFin, SeqEnum[RngIntElt] -> GrpMat
ReeMaximalSubgroups(G) : GrpMat -> SeqEnum, SeqEnum
ReeMaximalSubgroupsConjugacy(G, R, S) : GrpMat, GrpMat, GrpMat -> GrpMatElt, GrpSLPElt
ReeSylow(G, p) : GrpMat, RngIntElt -> GrpMat, SeqEnum
ReeSylowConjugacy(G, R, S, p) : GrpMat, GrpMat, GrpMat, RngIntElt -> GrpMatElt, GrpSLPElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012