[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: bound  ..  braid


bound

   Asymptotic Bounds on the Information Rate (LINEAR CODES OVER FINITE FIELDS)
   Bounds (LINEAR CODES OVER FINITE FIELDS)
   Bounds on the Minimum Distance (LINEAR CODES OVER FINITE FIELDS)

Boundary

   Boundary(X) : SmpCpx -> SmpCpx
   BoundaryIntersection(x) : [SpcHydElt] -> [FldComElt]
   BoundaryMap(C, n) : ModCpx, RngIntElt -> ModMatRngElt
   BoundaryMap(M) : ModSym -> ModMatFldElt
   BoundaryMaps(C) : ModCpx -> List
   BoundaryMatrix(X, q, A) : SmpCpx, RngIntElt, Rng -> Mtrx
   IsBoundary(N, p) : NwtnPgon,Tup -> BoolElt
   LayerBoundary(G,i,j,k) : GrpPC, RngIntElt, RngIntElt, RngIntElt -> RngIntElt
   MinorBoundary(G,i,j) : GrpPC, RngIntElt, RngIntElt -> RngIntElt
   NilpotentBoundary(G,i) : GrpPC, RngIntElt -> RngIntElt
   Points(P) : TorPol -> SeqEnum[TorLatElt]
   TriangulationOfBoundary(P) : TorPol -> SetEnum

boundary

   SmpCpx_boundary (Example H140E6)

BoundaryIntersection

   BoundaryIntersection(x) : [SpcHydElt] -> [FldComElt]

BoundaryMap

   BoundaryMap(C, n) : ModCpx, RngIntElt -> ModMatRngElt
   BoundaryMap(M) : ModSym -> ModMatFldElt
   ModSym_BoundaryMap (Example H133E12)

BoundaryMaps

   BoundaryMaps(C) : ModCpx -> List

BoundaryMatrix

   BoundaryMatrix(X, q, A) : SmpCpx, RngIntElt, Rng -> Mtrx

BoundaryPoints

   InteriorPoints(P) : TorPol -> SeqEnum[TorLatElt]
   BoundaryPoints(P) : TorPol -> SeqEnum[TorLatElt]
   Points(P) : TorPol -> SeqEnum[TorLatElt]

Bounded

   BoundedFSubspace(epsilon, k, degrees) : GrpDrchElt, RngIntElt, [RngIntElt] -> [ ModSym ]
   OrbitActionBounded(G, T, b) : GrpMat, Elt, RngIntElt -> BoolElt, Hom(Grp), GrpPerm, GrpMat
   OrbitBounded(G, y, b) : GrpMat, Elt, RngIntElt -> BoolElt, SetEnum
   OrbitImageBounded(G, T, b) : GrpMat, Set, RngIntElt -> BoolElt, GrpPerm
   OrbitKernelBounded(G, T, b) : GrpMat, Set, RngIntElt -> BoolElt, GrpMat
   WordsOfBoundedLeeWeight(C, l, u) : Code, RngIntElt, RngIntElt -> SetEnum
   WordsOfBoundedWeight(C, l, u: parameters) : Code, RngIntElt, RngIntElt -> { ModTupFldElt }
   WordsOfBoundedWeight(C, l, u: parameters) : Code, RngIntElt, RngIntElt -> { ModTupFldElt }

BoundedFSubspace

   BoundedFSubspace(epsilon, k, degrees) : GrpDrchElt, RngIntElt, [RngIntElt] -> [ ModSym ]

Bounds

   MinimumWeightBounds(C) : Code -> RngIntElt, RngIntElt
   PhiSelmerGroup(f,q) : RngUPolElt, RngIntElt -> GrpAb, Map
   RankBound(J) : JacHyp -> RngIntElt
   RankBounds(E) : CrvEll[FldFunG] -> RngIntElt, RngIntElt
   RankBounds(H: parameters) : SetPtEll -> RngIntElt, RngIntElt
   ResetMinimumWeightBounds(C) : Code ->
   SetClassGroupBounds(n) : Any ->
   UnsetBounds(L) : LP ->
   CrvEllQNF_Bounds (Example H122E8)

bounds

   Best Known Bounds (QUANTUM CODES)
   Best Known Bounds for Linear Codes (LINEAR CODES OVER FINITE FIELDS)
   Setting the Class Group Bounds Globally (ORDERS AND ALGEBRAIC FIELDS)

Box

   NaturalBlackBoxGroup(H) : Grp -> GrpBB

BQPlotkin

   BQPlotkinSum(D, E, F) : Code, Code, Code -> Code
   BQPlotkinSum(A, B, C) : Mtrx, Mtrx, Mtrx -> Mtrx

BQPlotkinSum

   BQPlotkinSum(D, E, F) : Code, Code, Code -> Code
   BQPlotkinSum(A, B, C) : Mtrx, Mtrx, Mtrx -> Mtrx

bracestar *}

   {* e1, e2, ..., en *} : Elt, ..., Elt -> SetMulti
   {* *} : Null -> SetMulti
   {* U | *} : Str -> SetMulti
   {* U | e1, e2, ..., em *} : Str, Elt, ..., Elt -> SetMulti
   {* e(x) : x in E | P(x) *}
   {* U | e(x) : x in E | P(x) *}
   {* e(x1,...,xk) : x1 in E1, ..., xkin Ek | P(x1, ..., xk) *}
   {* U | e(x1,...,xk) : x1 in E1, ...,xk in Ek | P(x1, ..., xk) *}

Bracket

   (a, b) : AlgAssElt, AlgAssElt -> AlgAssElt
   LieBracket(a, b) : AlgAssElt, AlgAssElt -> AlgAssElt

Braid

   BraidGroup(GrpFP, n) : Cat, RngIntElt -> GrpFP
   BraidGroup(W) : GrpFPCox -> GrpFP, Map
   BraidGroup(n: parameters) : RngIntElt -> GrpBrd
   PureBraidGroup(W) : GrpFPCox -> GrpFP, Map

braid

   Accessing Information (BRAID GROUPS)
   Arithmetic Operators and Functions for Elements (BRAID GROUPS)
   Automatic Conversions (BRAID GROUPS)
   Boolean Predicates for Elements (BRAID GROUPS)
   BRAID GROUPS
   Braid Groups (COXETER GROUPS)
   Computing Class Invariants Interactively (BRAID GROUPS)
   Computing Minimal Simple Elements (BRAID GROUPS)
   Computing Normal Forms of Elements (BRAID GROUPS)
   Computing the Class Invariants (BRAID GROUPS)
   Conjugacy Testing and Conjugacy Search (BRAID GROUPS)
   Conjugacy Testing and Conjugacy Search (BRAID GROUPS)
   Constructing and Accessing Braid Groups (BRAID GROUPS)
   Creating Elements of a Braid Group (BRAID GROUPS)
   Default Presentations (BRAID GROUPS)
   Definition of the Class Invariants (BRAID GROUPS)
   Introduction (BRAID GROUPS)
   Invariants of Conjugacy Classes (BRAID GROUPS)
   Lattice Operations (BRAID GROUPS)
   Lattice Structure and Simple Elements (BRAID GROUPS)
   Mixed Canonical Form and Lattice Operations (BRAID GROUPS)
   Normal Form for Elements of a Braid Group (BRAID GROUPS)
   Printing of Elements (BRAID GROUPS)
   Representation Used for Group Operations (BRAID GROUPS)
   Representing Elements of a Braid Group (BRAID GROUPS)
   Working with Elements of a Braid Group (BRAID GROUPS)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012