[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: access-algebra  ..  Action


access-algebra

   The Algebra (MODULES OVER AN ALGEBRA)

access-modification

   Access and Modification Functions (RECORDS)
   Accessing and Modifying Sets (SETS)

access-vector-space

   The Underlying Vector Space (MODULES OVER AN ALGEBRA)

access_exs

   Sheaf_access_exs (Example H113E2)

AccessOperations

   Access Operations (ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES)

accessors

   Accessor Functions (COHERENT SHEAVES)
   Accessors and Expansion (ALGEBRAIC POWER SERIES RINGS)
   RngPowAlg_accessors (Example H52E2)

ACEProc1

   GrpFP_2_ACEProc1 (Example H71E3)

ACEProc2

   GrpFP_2_ACEProc2 (Example H71E4)

ACEProc3

   GrpFP_2_ACEProc3 (Example H71E5)

ACEProc4

   GrpFP_2_ACEProc4 (Example H71E6)

ACEProcCosetSpace

   GrpFP_2_ACEProcCosetSpace (Example H71E8)

ACEProcTransversal

   GrpFP_2_ACEProcTransversal (Example H71E7)

Acting

   ActingGroup(A) : GGrp -> Grp
   ActingGroup(G) : GrpLie -> Grp, Map
   ActingWord(G, x, y) : GrpPerm, Elt, Elt -> GrpFPElt

ActingGroup

   ActingGroup(A) : GGrp -> Grp
   ActingGroup(G) : GrpLie -> Grp, Map

ActingWord

   ActingWord(G, x, y) : GrpPerm, Elt, Elt -> GrpFPElt

Action

   Action(V) : GrpFPCos -> Map
   Action(A, Y) : GrpPerm, GSet -> Hom(Grp), GrpPerm, GrpPerm
   Action(G, Y) : GrpPerm, GSet -> Hom(Grp), GrpPerm, GrpPerm
   Action(G, Y) : GrpPerm, GSet -> Hom(Grp), GrpPerm, GrpPerm
   Action(G, Y) : GrpPerm, GSet -> Hom(Grp), GrpPerm, GrpPerm
   Action(Y) : GSet -> Map
   Action(M) : ModAlg -> AlgMat
   Action(M) : ModRng -> AlgMat
   ActionGenerator(B, i) : AlgBas, RngIntElt -> SeqEnum
   ActionGenerator(L, i) : Lat, RngIntElt -> GrpMat
   ActionGenerator(M, i) : ModGrp, RngIntElt -> AlgMatElt
   ActionGenerator(M, i) : ModRng, RngIntElt -> AlgMatElt
   ActionGenerators(M) : ModGrp -> [ AlgMatElt ]
   ActionGroup(M) : ModGrp -> GrpMat
   ActionImage(A, Y) : GrpPerm, GSet -> GrpPerm
   ActionImage(G, Y) : GrpPerm, GSet -> GrpPerm
   ActionImage(G, Y) : GrpPerm, GSet -> GrpPerm
   ActionImage(G, Y) : GrpPerm, GSet -> GrpPerm
   ActionKernel(A, Y) : GrpPerm, GSet -> GrpPerm
   ActionKernel(G, Y) : GrpPerm, GSet -> GrpPerm
   ActionKernel(G, Y) : GrpPerm, GSet -> GrpPerm
   ActionKernel(G, Y) : GrpPerm, GSet -> GrpPerm
   ActionMatrix(A,x) : AlgBas, Mtrx -> ModMatFldElt
   ActionMatrix(M, a): ModAlg, AlgElt -> AlgMatElt
   AffineAction(G) : GrpPerm -> Hom, GrpPerm, GrpPerm
   BlocksAction(G, P) : GrpPerm, Any -> Hom(GrpPerm), GrpPerm, GrpPerm
   CosetAction(G, H) : Grp, Grp -> Hom(Grp), GrpPerm, Grp
   CosetAction(G, H) : Grp, Grp -> Hom(Grp), GrpPerm, Grp
   CosetAction(G, H) : Grp, Grp -> Hom(Grp), GrpPerm, Grp
   CosetAction(G, H) : Grp, Grp -> Hom(Grp), GrpPerm, GrpPC
   CosetAction(V) : GrpFPCos, Grp -> Hom(Grp), GrpPerm
   CosetAction(P) : GrpFPCosetEnumProc -> Map, GrpPerm, GrpFP
   CosetAction(G, H) : GrpGPC, GrpGPC -> Map, GrpPerm, GrpGPC
   CosetAction(G, H) : GrpMat, GrpMat -> Hom(Grp), GrpPerm, GrpMat
   CosetAction(G, H: parameters) : Grp, Grp -> Hom(Grp), GrpPerm, GrpPerm
   ExtraSpecialAction(G, g) : GrpMat, GrpMatElt -> GrpMatElt
   FrobeniusActionOnPoints(S, q : parameters) : [ PtEll ], RngIntElt -> AlgMatElt
   FrobeniusActionOnReducibleFiber(L) : < Tup > -> AlgMatElt
   FrobeniusActionOnTrivialLattice(E) : CrvEll -> AlgMatElt
   GModuleAction(M) : ModGrp -> Map(Hom)
   GammaAction(A) : GGrp -> Map[Grp, GrpAuto]
   GammaAction(R) : RootDtm -> Rec
   GammaActionOnSimples(R) : RootDtm -> HomGrp
   IdempotentActionGenerators(B, i) : AlgBas, RngIntElt -> SeqEnum
   ImprimitiveAction(G, g) : GrpMat, GrpMatElt -> GrpPermElt
   LMGSocleStarAction(G) : GrpMat -> Map, GrpPerm, GrpMat
   LMGSocleStarActionKernel(G) : GrpMat -> GrpMat, GrpPC, Map
   NaturalActionGenerator(L, i) : Lat, RngIntElt -> GrpMat
   NonIdempotentActionGenerators(B, i) : AlgBas, RngIntElt -> SeqEnum
   NumberOfActionGenerators(L) : Lat -> RngIntElt
   NumberOfActionGenerators(M) : ModGrp -> RngIntElt
   NumberOfActionGenerators(M) : ModRng -> RngIntElt
   OrbitAction(G, T) : GrpMat, Elt -> Hom(Grp), GrpPerm, GrpMat
   OrbitAction(G, T) : GrpPerm, GSet -> Hom(Grp), GrpPerm, GrpPerm
   OrbitActionBounded(G, T, b) : GrpMat, Elt, RngIntElt -> BoolElt, Hom(Grp), GrpPerm, GrpMat
   QuotientModuleAction(G, S) : GrpMat -> Map, GrpMat
   RModuleWithAction(H) : HomModAbVar -> ModED
   RModuleWithAction(H, p) : HomModAbVar, RngIntElt -> ModED
   RootAction(W) : GrpPermCox -> Map
   SUnitAction(SU, Act, S) : Map, Map, SeqEnum[RngOrdIdl] -> Map
   SUnitAction(SU, Act, S) : Map, SeqEnum[Map], SeqEnum[RngOrdIdl] -> [Map]
   SocleAction(G) : GrpPerm -> Hom, GrpPerm, GrpPerm
   StandardAction(W) : GrpFPCox -> Map
   StandardAction(W) : GrpMat -> Map
   StandardActionGroup(W) : GrpFPCox -> GrpPerm, Map
   StandardActionGroup(W) : GrpMat -> GrpPerm, Map
   SubmoduleAction(G, S) : GrpMat -> Map, GrpMat
   TensorInducedAction(G, g) : GrpMat, GrpMatElt -> GrpPermElt
   GrpCox_Action (Example H98E23)
   GrpRfl_Action (Example H99E25)
   ModAlg_Action (Example H89E15)
   RootDtm_Action (Example H97E20)
   RootSys_Action (Example H96E12)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012