[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: PreimageIdeal  ..  Primary


PreimageIdeal

   PreimageIdeal(I) : AlgFP -> AlgFr
   PreimageIdeal(I) : RngMPolRes -> RngMPol

PreimageRing

   PreimageRing(A) : AlgFP -> AlgFr
   PreimageRing(Q) : RngMPolRes -> RngMPol
   PreimageRing(Q) : RngUPolRes -> RngUPol

Preparata

   PreparataCode(m): RngIntElt, RngUPolElt -> Code

PreparataCode

   PreparataCode(m): RngIntElt, RngUPolElt -> Code

Preprune

   Preprune(C) : ModCpx -> ModCpx
   Preprune(C,n) : ModCpx, RngIntElt -> ModCpx

Presentation

   ClassicalStandardPresentation (type, d, q : parameters) : MonStgElt, RngIntElt, RngIntElt -> SLPGroup, []
   CompactPresentation(G) : GrpPC -> [RngIntElt]
   CoxeterGroup(GrpFP, W) : Cat, GrpPermCox -> GrpFPCox
   GetPresentation(B) : GrpBrd -> MonStgElt
   IsIdenticalPresentation(G, H) : GrpGPC, GrpGPC -> BoolElt
   IsIdenticalPresentation(G, H) : GrpPC, GrpPC -> BoolElt
   NilpotentPresentation(G) : GrpGPC -> GrpGPC, Map
   Presentation(A) : AlgMat -> AlgFr, AlgFr, Map
   Presentation(M) : ModMPol -> [ ModMPol ]
   PresentationIsSmall(G) : GrpGPC -> BoolElt
   PresentationLength(G) : GrpFP -> RngIntElt
   PresentationLength(P) : GrpFPTietzeProc -> RngIntElt
   PresentationMatrix(f) : ModMPolHom -> ModMatRngElt
   SatisfiesSzPresentation(G) : GrpMat -> BoolElt
   SetPresentation(~B, s) : GrpBrd, MonStgElt ->
   Simplify(~P : parameters) : GrpFPTietzeProc ->
   SpecialPresentation(G) : GrpPC -> GrpPC
   StandardPresentation(G): GrpPC -> GrpPC, Map
   StandardPresentation(G, str : parameters) : Grp, MonStgElt -> BoolElt, SeqEnum, SeqEnum
   SzPresentation(q) : RngIntElt -> GrpFP, HomGrp
   AlgMat_Presentation (Example H83E12)

presentation

   CompactPresentation (FINITE SOLUBLE GROUPS)
   Conditioned Presentations (FINITE SOLUBLE GROUPS)
   Constructing a Presentation for a Subgroup (FINITELY PRESENTED GROUPS)
   Isomorphism and Standard Presentations (FINITE SOLUBLE GROUPS)
   Presentation of Submodules (FREE MODULES)
   Presentations (MATRIX GROUPS OVER GENERAL RINGS)
   Properties of a Polycyclic Presentation (POLYCYCLIC GROUPS)
   Special Presentations (FINITE SOLUBLE GROUPS)
   Specification of a Presentation (ABELIAN GROUPS)
   Specification of a Presentation (FINITELY PRESENTED SEMIGROUPS)
   Structuring Presentations (FINITELY PRESENTED ALGEBRAS)
   The Presentation of Submodules (INTRODUCTION TO MODULES [MODULES])

presentation-properties

   Properties of a Polycyclic Presentation (POLYCYCLIC GROUPS)

PresentationIsSmall

   PresentationIsSmall(G) : GrpGPC -> BoolElt

PresentationLength

   PresentationLength(G) : GrpFP -> RngIntElt
   PresentationLength(P) : GrpFPTietzeProc -> RngIntElt

PresentationMatrix

   Matrix(f) : ModMPolHom -> ModMatRngElt
   PresentationMatrix(f) : ModMPolHom -> ModMatRngElt

presentations

   Generators and Presentations (MATRIX ALGEBRAS)
   Modifying Presentations (FINITELY PRESENTED GROUPS: ADVANCED)
   More About Presentations (FINITE SOLUBLE GROUPS)
   Power-Conjugate Presentations (FINITE SOLUBLE GROUPS)
   Presentations (PERMUTATION GROUPS)
   Presentations for Matrix Algebras (MATRIX ALGEBRAS)

presented

   FINITELY PRESENTED ALGEBRAS
   Finitely Presented Algebras (FINITELY PRESENTED ALGEBRAS)
   FINITELY PRESENTED GROUPS
   FINITELY PRESENTED GROUPS: ADVANCED
   Finitely Presented Modules (FINITELY PRESENTED ALGEBRAS)
   FINITELY PRESENTED SEMIGROUPS

Previous

   ClearPrevious() : ->
   GetPreviousSize() : -> RngIntElt
   PreviousPrime(n) : RngIntElt -> RngIntElt
   SetPreviousSize(n) : RngIntElt ->
   ShowPrevious() : ->
   ShowPrevious(i) : RngIntElt ->

previous

   PrimeDivisors(n) : RngIntElt -> [RngIntElt]
   Other Functions Relating to Primes (RING OF INTEGERS)

PreviousPrime

   PreviousPrime(n) : RngIntElt -> RngIntElt

PRI

   IsPRI(C) : CosetGeom -> BoolElt
   IsPrimitive(C) : CosetGeom -> BoolElt

Primality

   IsPrimeCertificate(cert) : List -> BoolElt
   PrimalityCertificate(n) : RngIntElt -> List

primality

   Primality (RING OF INTEGERS)

PrimalityCertificate

   IsPrimeCertificate(cert) : List -> BoolElt
   PrimalityCertificate(n) : RngIntElt -> List

Primary

   IsPrimary(I) : RngMPol -> BoolElt
   IsPrimary(I) : RngMPolRes -> BoolElt
   Primary(a) : RngQuadElt -> RngQuadElt
   PrimaryAlgebra(R) : RngInvar -> RngMPol
   PrimaryComponents(X) : Sch -> SeqEnum
   PrimaryDecomposition(I) : RngMPol -> [ RngMPol ], [ RngMPol ]
   PrimaryDecomposition(I) : RngMPolRes -> [ RngMPolRes ], [ RngMPolRes ]
   PrimaryIdeal(R) : RngInvar -> RngMPol
   PrimaryInvariantFactors(a) : AlgMatElt -> [ <RngUPolElt, RngIntElt ]
   PrimaryInvariantFactors(A) : Mtrx -> [ <RngUPolElt, RngIntElt> ]
   R`PrimaryInvariants
   PrimaryInvariants(A) : GrpAb -> [ RngIntElt ]
   PrimaryInvariants(R) : RngInvar -> [ RngMPolElt ]
   PrimaryRationalForm(a) : AlgMatElt -> AlgMatElt, AlgMatElt, [ <RngUPolElt, RngIntElt ]
   PrimaryRationalForm(A) : Mtrx -> AlgMatElt, AlgMatElt, [ <RngUPolElt, RngIntElt ]

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012