[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: element-access  ..  Elementary


element-access

   Access Functions for Elements (POLYCYCLIC GROUPS)

element-arith

   Arithmetic with Elements (MODULES OVER DEDEKIND DOMAINS)

element-Boolean

   Predicates on Algebra Elements (FINITELY PRESENTED ALGEBRAS)
   Predicates on Nearfield Elements (NEARFIELDS)
   Predicates on Ring Elements (ALGEBRAICALLY CLOSED FIELDS)
   Predicates on Ring Elements (FINITE FIELDS)
   Predicates on Ring Elements (GALOIS RINGS)
   Predicates on Ring Elements (INTEGER RESIDUE CLASS RINGS)
   Predicates on Ring Elements (INTRODUCTION TO RINGS [BASIC RINGS])
   Predicates on Ring Elements (MULTIVARIATE POLYNOMIAL RINGS)
   Predicates on Ring Elements (POWER, LAURENT AND PUISEUX SERIES)
   Predicates on Ring Elements (RATIONAL FIELD)
   Predicates on Ring Elements (RATIONAL FUNCTION FIELDS)
   Predicates on Ring Elements (RING OF INTEGERS)
   Predicates on Ring Elements (UNIVARIATE POLYNOMIAL RINGS)

element-construct

   Construction of Elements (LIE ALGEBRAS)

element-construct-matrix

   Construction of Matrix Elements (LIE ALGEBRAS)

element-construct-sc

   Construction of Elements of Structure Constant Algebras (LIE ALGEBRAS)

element-construction

   Constructing Elements (GROUPS OF LIE TYPE)

Element-Creation

   Creation of Elements (BRANDT MODULES)
   Operations on Elements (BRANDT MODULES)

element-creation

   Id(A) : GrpAb -> GrpAbElt
   A ! 0 : GrpAb, RngIntElt -> GrpAbElt
   Construction of Elements (ABELIAN GROUPS)
   Element Creation (INTEGER RESIDUE CLASS RINGS)

element-definition

   Id(G) : GrpGPC -> GrpGPCElt
   G ! 1 : GrpGPC, RngIntElt -> GrpGPCElt
   Specification of Elements (POLYCYCLIC GROUPS)

element-norm-trace

   Functions related to Norm and Trace (ALGEBRAIC FUNCTION FIELDS)

Element-of-congruence-subgroup-in-terms-of-generators

   GrpPSL2_Element-of-congruence-subgroup-in-terms-of-generators (Example H130E4)

element-operations

   Element Operations on Differential Ring Elements (DIFFERENTIAL RINGS)

element-operations-diff-op-rings

   Element Operations on Differential Operators (DIFFERENTIAL RINGS)

element-operators

   Basic Operations (GROUPS OF LIE TYPE)
   Conjugacy and Cohomology (GROUPS OF LIE TYPE)
   Decompositions (GROUPS OF LIE TYPE)
   Operations on Elements (GROUPS OF LIE TYPE)
   Properties of Elements (GROUPS OF LIE TYPE)

element-ops

   RngIntRes_element-ops (Example H19E4)

element-ops-orders

   Minimum(a, O) : FldFunElt, RngFunOrd -> RngElt, RngElt
   Functions related to Orders and Integrality (ALGEBRAIC FUNCTION FIELDS)

element-ops-other

   Other Element Operations (ALGEBRAIC FUNCTION FIELDS)
   Other Element Operations (ALGEBRAIC FUNCTION FIELDS)

element-ops-places

   Functions related to Places and Divisors (ALGEBRAIC FUNCTION FIELDS)

element-order

   Finding Elements with Prescribed Properties (MATRIX GROUPS OVER FINITE FIELDS)

element-properties

   Properties of Groups of Lie Type (GROUPS OF LIE TYPE)

Element_Arithmetic

   AlgQuat_Element_Arithmetic (Example H86E9)

element_properties

   Attributes of Elements (BLACK-BOX GROUPS)

Elementary

   Elementary Invariants (BRANDT MODULES)
   AbelianSubgroups(G) : GrpPC -> SeqEnum
   ElementaryAbelianGroup(GrpGPC, p, n) : Cat, RngIntElt, RngIntElt -> GrpGPC
   ElementaryAbelianNormalSubgroup(G) : GrpPerm -> GrpPerm
   ElementaryAbelianQuotient(G, p) : GrpAb, RngIntElt -> GrpAb, Map
   ElementaryAbelianQuotient(G, p) : GrpFP, RngIntElt -> GrpAb, Map
   ElementaryAbelianQuotient(G, p) : GrpGPC, RngIntElt -> GrpAb, Map
   ElementaryAbelianQuotient(G, p) : GrpMat, RngIntElt -> GrpAb, Map
   ElementaryAbelianQuotient(G, p) : GrpPC, RngIntElt -> GrpAb, Map
   ElementaryAbelianQuotient(G, p) : GrpPerm, RngIntElt -> GrpAb, Map
   ElementaryAbelianSeries(G) : GrpPC -> [GrpPC]
   ElementaryAbelianSeries(G: parameters) : GrpMat -> [ GrpMat ]
   ElementaryAbelianSeries(G: parameters) : GrpPerm -> [ GrpPerm ]
   ElementaryAbelianSeriesCanonical(G) : GrpMat -> [ GrpMat ]
   ElementaryAbelianSeriesCanonical(G) : GrpPC -> [GrpPC]
   ElementaryAbelianSeriesCanonical(G) : GrpPerm -> [ GrpPerm ]
   ElementaryAbelianSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
   ElementaryAbelianSubgroups(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
   ElementaryDivisors(a) : AlgMatElt -> [RngElt]
   ElementaryDivisors(M, N) : ModDed, ModDed -> SeqEnum
   ElementaryDivisors(A) : Mtrx -> [RngElt]
   ElementaryDivisors(A) : MtrxSprs -> [RngElt]
   ElementaryPhiModule(S,d,h) : RngSerLaur, RngIntElt, RngIntElt -> PhiMod
   ElementarySymmetricPolynomial(P, k) : RngMPol, RngIntElt -> RngMPolElt
   ElementarySymmetricPolynomial(P, k) : RngMPol, RngIntElt -> RngMPolElt
   ElementaryToHomogeneousMatrix(n): RngIntElt -> AlgMatElt
   ElementaryToMonomialMatrix(n): RngIntElt -> AlgMatElt
   ElementaryToPowerSumMatrix(n): RngIntElt -> AlgMatElt
   ElementaryToSchurMatrix(n): RngIntElt -> AlgMatElt
   ExtensionsOfElementaryAbelianGroup(p, d, G) : RngIntElt, RngIntElt, GrpPerm -> SeqEnum
   HasHomogeneousBasis(A): AlgSym -> BoolElt
   HomogeneousToElementaryMatrix(n): RngIntElt -> AlgMatElt
   IsElementaryAbelian(G) : GrpAb -> BoolElt
   IsElementaryAbelian(G) : GrpFin -> BoolElt
   IsElementaryAbelian(G) : GrpGPC -> BoolElt
   IsElementaryAbelian(G) : GrpMat -> BoolElt
   IsElementaryAbelian(G) : GrpPC -> BoolElt
   IsElementaryAbelian(G) : GrpPerm -> BoolElt
   MonomialToElementaryMatrix(n): RngIntElt -> AlgMatElt
   PowerSumToElementaryMatrix(n): RngIntElt -> AlgMatElt
   PowerSumToElementarySymmetric(I) : [] -> []
   SchurToElementaryMatrix(n): RngIntElt -> AlgMatElt
   SymmetricFunctionAlgebraElementary(R) : Rng -> AlgSym

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012