[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: norm  ..  Normal


norm

   Conjugates, Norm and Trace (DIFFERENTIAL RINGS)
   Conjugates, Norm and Trace (RATIONAL FIELD)
   Conjugates, Norm and Trace (RING OF INTEGERS)
   Functions related to Norm and Trace (ALGEBRAIC FUNCTION FIELDS)
   Minimal Polynomial, Norm and Trace (ALGEBRAICALLY CLOSED FIELDS)
   Norm and Trace Functions (p-ADIC RINGS AND THEIR EXTENSIONS)
   Norm Equations (CLASS FIELD THEORY)
   Norm Equations (ORDERS AND ALGEBRAIC FIELDS)
   Norm Group (p-ADIC RINGS AND THEIR EXTENSIONS)
   Norm Spaces and Basis Reduction (QUATERNION ALGEBRAS)
   Norm, Trace and Frobenius (FINITE FIELDS)
   Norm, Trace, and Minimal Polynomial (NUMBER FIELDS)
   Norm, Trace, and Minimal Polynomial (ORDERS AND ALGEBRAIC FIELDS)
   Solving Norm Equations (NUMBER FIELDS)

norm-equation

   Norm Equations (ORDERS AND ALGEBRAIC FIELDS)
   Solving Norm Equations (NUMBER FIELDS)
   FldAb_norm-equation (Example H39E8)
   FldNum_norm-equation (Example H34E15)
   FldQuad_norm-equation (Example H35E5)
   RngInt_norm-equation (Example H18E9)
   RngOrd_norm-equation (Example H37E22)

norm-equations

   Norm Equations (CLASS FIELD THEORY)

norm-group

   Norm Group (p-ADIC RINGS AND THEIR EXTENSIONS)

norm-space

   Norm Spaces and Basis Reduction (QUATERNION ALGEBRAS)

norm-trace

   Norm and Trace Functions (p-ADIC RINGS AND THEIR EXTENSIONS)
   Norm, Trace and Frobenius (FINITE FIELDS)
   Norm, Trace, and Minimal Polynomial (NUMBER FIELDS)
   Norm, Trace, and Minimal Polynomial (ORDERS AND ALGEBRAIC FIELDS)

norm_equation

   Norm Equations (QUADRATIC FIELDS)

NormAbs

   NormAbs(a) : FldAlgElt -> FldRatElt
   AbsoluteNorm(a) : FldAlgElt -> FldRatElt
   AbsoluteNorm(a) : FldFinElt -> FldFinElt
   AbsoluteNorm(a) : FldNumElt -> FldRatElt
   AbsoluteNorm(I) : RngOrdIdl -> RngIntElt

Normal

   A`IsNormal : FldAb -> Bool
   AbelianNormalQuotient(G, H) : GrpPerm -> GrpPerm, Hom(GrpPerm), GrpPerm
   AbelianNormalSubgroup(G) : GrpPerm -> GrpPerm
   CentralizerOfNormalSubgroup(G, H) : GrpPerm, GrpPerm -> GrpPerm
   ElementaryAbelianNormalSubgroup(G) : GrpPerm -> GrpPerm
   IntersectionWithNormalSubgroup(G, N: parameters) : GrpPerm, GrpPerm -> GrpPerm
   IsNormal(A) : FldAb -> BoolElt
   IsNormal(F) : FldAlg -> BoolElt
   IsNormal(a) : FldFinElt -> BoolElt
   IsNormal(a, E) : FldFinElt -> BoolElt
   IsNormal(F) : FldNum -> BoolElt
   IsNormal(G, H) : GrpFin, GrpFin -> BoolElt
   IsNormal(G, H) : GrpFP, GrpFP -> BoolElt
   IsNormal(G, H) : GrpGPC, GrpGPC -> BoolElt
   IsNormal(G, H) : GrpMat, GrpMat -> BoolElt
   IsNormal(G, H) : GrpPC, GrpPC -> BoolElt
   IsNormal(G, H) : GrpPerm, GrpPerm -> BoolElt
   IsNormal(K) : RngPad -> BoolElt
   IsNormal(K, k) : RngPad, RngPad -> BoolElt
   IsNormal(S) : Srfc -> BoolElt
   IspNormal(C, p) : CrvHyp, RngIntElt -> BoolElt
   LMGIsNormal(G, H) : GrpMat, GrpMat -> BoolElt
   LeftNormalForm(~u: parameters) : GrpBrdElt ->
   LeftNormalForm(u: parameters) : GrpBrdElt -> GrpBrdElt
   LowIndexNormalSubgroups(G, n: parameters) : GrpFP, RngIntElt -> [ Rec ]
   MaximalNormalSubgroup(G) : GrpPerm -> GrpPerm
   MinimalNormalSubgroup(G) : GrpPC -> GrpPC
   MinimalNormalSubgroup(G, N) : GrpPC -> GrpPC
   MinimalNormalSubgroups(G) : GrpPC -> [GrpPC]
   MinimalNormalSubgroups(G) : GrpPerm -> [ GrpPerm ]
   NormalClosureMonteCarlo (G, H ) : GrpMat, GrpMat -> GrpMat
   NormalComplements(G, H, N) : GrpPC, GrpPC -> SeqEnum
   NormalComplements(G, N) : GrpPC, GrpPC -> SeqEnum
   NormalElement(F) : FldFin -> FldFinElt
   NormalElement(F, E) : FldFin, FldFin -> FldFinElt
   NormalFan(F,C) : TorFan,TorCon -> TorFan,Map
   NormalForm(f, I) : AlgFrElt, AlgFr -> AlgFrElt
   NormalForm(f, S) : AlgFrElt, [ AlgFrElt ] -> AlgFrElt
   NormalForm(f, S) : ModMPolElt, ModMPol -> ModMPolElt
   NormalForm(f, I) : RngMPolElt, RngMPol -> RngMPolElt
   NormalForm(f, S) : RngMPolElt, [ RngMPolElt ] -> RngMPolElt, [ RngMPolElt ]
   NormalForm(f, I) : RngMPolLocElt, RngMPolLoc -> RngMPolLocElt
   NormalLattice(G) : GrpFin -> NormalLattice
   NormalLattice(G) : GrpPC -> SubGrpLat
   NormalLattice(G) : GrpPerm -> SubGrpLat
   NormalNumber(C) : GRCrvS -> RngIntElt
   NormalSubfields(A) : FldAb -> []
   NormalSubgroups(G) : GrpFin -> [ Rec ]
   NormalSubgroups(G) : GrpPC -> SeqEnum
   NormalSubgroups(G) : GrpPerm -> [ Rec ]
   NormalSubgroups(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
   Parametrization(C) : CrvCon -> MapSch
   RandomElementOfNormalClosure(G, N): Grp -> GrpElt
   RightNormalForm(~u: parameters) : GrpBrdElt ->
   RightNormalForm(u: parameters) : GrpBrdElt -> GrpBrdElt
   SolubleNormalQuotient(G, H) : GrpPerm -> GrpPerm, Hom(GrpPerm), GrpPerm
   TwoElementNormal(I) : RngInt -> RngIntElt, RngIntElt
   TwoElementNormal(I) : RngOrdIdl -> RngOrdElt, RngOrdElt, RngIntElt
   H ^ G : GrpFin -> GrpFin
   H ^ G : GrpFin, GrpFin -> GrpFin
   H ^ G : GrpFP, GrpFP -> GrpFP
   H ^ G : GrpGPC, GrpGPC -> GrpGPC
   H ^ G : GrpMat -> GrpMat
   H ^ G : GrpMat, GrpMat -> GrpMat
   H ^ G : GrpPC, GrpPC -> GrpPC
   H ^ G : GrpPerm, GrpPerm -> GrpPerm
   pElementaryAbelianNormalSubgroup(G, p) : GrpPerm, RngIntElt -> GrpPerm

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012