[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: HasPoint .. Hecke
HasPoint(f,q,v) : RngUPolElt, RngIntElt, RngIntElt -> BoolElt, SeqEnum
HasPointsEverywhereLocally(f,q) : RngUPolElt, RngIntElt -> BoolElt
HasPointsOverExtension(X) : Sch -> BoolElt
HasPolynomial(N) : NwtnPgon -> BoolElt
HasPolynomialFactorization(R) : Rng -> BoolElt
HasElementaryBasis(A): AlgSym -> BoolElt
HasPowerSumBasis(A): AlgSym -> BoolElt
HasMonomialBasis(A): AlgSym -> BoolElt
HasHomogeneousBasis(A): AlgSym -> BoolElt
HasPreimage(x, f) : Any, Map -> BoolElt, Any
HasProjectiveDerivation(F) : RngDiff -> BoolElt
HasProjectiveDerivation(R) : RngDiffOp -> BoolElt
HasPRoot(R) : RngPad -> BoolElt
HasRandomPlace(F, m) : FldFun, RngIntElt -> BoolElt, PlcFunElt
HasRandomPlace(F, m) : FldFunG, RngIntElt -> BoolElt, PlcFunElt
HasRationalPoint(C) : CrvCon -> BoolElt, Pt
HasRationalSolutions(L, g) : RngDiffOpElt, RngElt -> BoolElt, RngElt, SeqEnum
HasResolution(D) : Inc -> BoolElt, { SetEnum }, RngIntElt
HasResolution(D, λ) : Inc, RngIntElt -> BoolElt, { SetEnum }
HasRoot(p) : RngUPolElt -> BoolElt, RngElt
HasRoot(f) : RngUPolElt -> BoolElt, RngPadElt
HasRoot(f) : RngUPolElt -> BoolElt, RngSerElt
HasRoot(p, S) : RngUPolElt, Rng -> BoolElt, RngElt
HasRootOfUnity(L, n) : RngPad, RngIntElt -> BoolElt
HasSchurBasis(A): AlgSym -> BoolElt
HasseWittInvariant(C) : Crv[FldFin] -> RngIntElt
HasseWittInvariant(F) : FldFunG -> RngIntElt
HasseWittInvariant(F) : FldFunG -> RngIntElt
WittInvariant(f, p) : RngMPolElt, RngIntElt -> RngIntElt
WittInvariants(f) : RngMPolElt -> SeqEnum
HasseMinkowskiInvariant(f, p) : RngMPolElt, RngIntElt -> RngIntElt
WittInvariant(f, p) : RngMPolElt, RngIntElt -> RngIntElt
HasseMinkowskiInvariants(f) : RngMPolElt -> SeqEnum
WittInvariants(f) : RngMPolElt -> SeqEnum
HasseWittInvariant(C) : Crv[FldFin] -> RngIntElt
HasseWittInvariant(F) : FldFunG -> RngIntElt
HasseWittInvariant(F) : FldFunG -> RngIntElt
HasSingularPointsOverExtension(C) : Sch -> BoolElt
HasSingularVector(V) : ModTupFld -> BoolElt, ModTupFldElt
HasDenseRep(G) : Grph -> BoolElt
HasSparseRepOnly(G) : Grph -> BoolElt
HasDenseRepOnly(G) : Grph -> BoolElt
HasDenseAndSparseRep(G) : Grph -> BoolElt
HasSparseRep(G) : Grph -> BoolElt
HasDenseRep(G) : Grph -> BoolElt
HasSparseRepOnly(G) : Grph -> BoolElt
HasDenseRepOnly(G) : Grph -> BoolElt
HasDenseAndSparseRep(G) : Grph -> BoolElt
HasSparseRep(G) : Grph -> BoolElt
IsEven(J) : JacHyp -> BoolElt
HasSquareSha(J) : JacHyp -> BoolElt
HasSupplement(G, M) : GrpPerm, GrpPerm -> BoolElt, GrpPerm
HasTwistedHopfStructure(U) : AlgQUE -> BoolElt, List
HasValidCosetTable(P) : GrpFPCosetEnumProc -> BoolElt
HasValidIndex(P) : GrpFPCosetEnumProc -> BoolElt
HasWeakIntersectionProperty(C) : CosetGeom -> BoolElt
HasZeroDerivation(F) : RngDiff -> BoolElt
HasZeroDerivation(R) : RngDiffOp -> BoolElt
HBinomial(U, i, n) : AlgIUE, RngIntElt, RngIntElt -> AlgIUEElt
AlgLie_HBinomial (Example H100E51)
AlgSym_HE (Example H146E21)
BasicAlgebraOfHeckeAlgebra(G, H, F): GrpPerm, GrpPerm, FldFin) -> AlgBas
DeleteHeckePrecomputation(O) : AlgAssVOrd ->
DirichletCharacter(I, B) : RngOrdIdl, Tup -> GrpDrchNFElt, GrpDrchNF
DiscriminantOfHeckeAlgebra(M : Bound) : ModSym -> RngIntElt
DualHeckeOperator(M, n) : ModSym, RngIntElt -> AlgMatElt
FactoredHeckePolynomial(A, n) : ModAbVar, RngIntElt -> RngUPolElt
HeckeAlgebra(M : Bound) : ModSym -> AlgMat
HeckeAlgebra(A) : ModAbVar -> HomModAbVar
HeckeBound(M) : ModSym -> RngIntElt
HeckeCharacterGroup(I) : RngOrdIdl -> GrpHecke
HeckeEigenvalue(f, p) : ModBrdtElt, RngElt -> RngElt
HeckeEigenvalue(f, P) : ModFrmHilElt, RngOrdIdl -> FldAlgElt
HeckeEigenvalueBound(M, P) : ModFrmHil, RngOrdIdl -> RngIntElt
HeckeEigenvalueField(M) : ModFrmHil -> Fld
HeckeEigenvalueField(M) : ModSym -> Fld, Map
HeckeEigenvalueRing(M : parameters) : ModSym -> Rng, Map
HeckeLift(chi) : GrpDrchNFElt -> GrpHeckeElt, GrpHecke
HeckeOperator(A, n) : ModAbVar, RngIntElt -> MapModAbVar
HeckeOperator(M, n) : ModBrdt, RngIntElt -> AlgMatElt
HeckeOperator(M, n) : ModFrm, RngIntElt -> AlgMatElt
HeckeOperator(M, P) : ModFrmBianchi, RngOrdIdl -> Mtrx
HeckeOperator(M, P) : ModFrmHil, RngOrdIdl -> Mtrx
HeckeOperator(M, n) : ModSS, RngIntElt -> AlgMatElt
HeckeOperator(M, n) : ModSym, RngIntElt -> AlgMatElt
HeckeOperator(n,f) : RngIntElt, ModFrmElt -> ModFrmElt
HeckePolynomial(A, n) : ModAbVar, RngIntElt -> RngUPolElt
HeckePolynomial(M, n) : ModSym, RngIntElt -> RngUPolResElt
HeckePolynomial(M, n : parameters) : ModFrm, RngIntElt -> RngUPolElt
IntegralHeckeOperator(M, n) : ModSym, RngIntElt -> AlgMatElt
IsHeckeAlgebra(H) : HomModAbVar -> BoolElt
IsHeckeOperator(phi) : MapModAbVar -> BoolElt, RngIntElt
MinimalHeckePolynomial(A, n) : ModAbVar, RngIntElt -> RngUPolElt
OverconvergentHeckeSeries(p, N, k, m) : RngIntElt, RngIntElt, RngIntElt, RngIntElt -> RngUPolElt
OverconvergentHeckeSeries(p, N, kseq, m) : RngIntElt, RngIntElt, SeqEnum, RngIntElt -> RngUPolElt
OverconvergentHeckeSeriesDegreeBound(p, N, k, m) : RngIntElt, RngIntElt, RngIntElt, RngIntElt -> RngIntElt
QuaternionOrder(M) : ModBrdt -> AlgQuatOrd
SetHeckeBound(M, n) : ModSym, RngIntElt -> RngIntElt
TestHeckeRep(W,r) : GrpFPCox, SeqEnum -> .
WG2HeckeRep(W,wg) : GrpFPCox, GrphUnd -> SeqEnum
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012