[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: socle  ..  SolubleQuotient


socle

   Socle Series (MODULES OVER AN ALGEBRA)
   The Socle (PERMUTATION GROUPS)

SocleAction

   SocleAction(G) : GrpPerm -> Hom, GrpPerm, GrpPerm

SocleFactor

   SocleFactor(G) : GrpPerm -> GrpPerm

SocleFactors

   SocleFactors(G) : GrpPerm -> [ GrpPerm ]
   SocleFactors(M) : ModRng -> [ ModRng ]

SocleImage

   SocleImage(G) : GrpPerm -> GrpPerm

SocleKernel

   SocleKernel(G) : GrpPerm -> GrpPerm

SocleQuotient

   SocleQuotient(G) : GrpPerm -> GrpPerm, Hom, GrpPerm

SocleSeries

   SocleSeries(G) : GrpPerm -> [ GrpPerm ]
   SocleSeries(M) : ModRng -> [ ModRng ], [ ModRng ], AlgMatElt

sol

   Local Solubility (SCHEMES)
   The Schur Algorithm for Soluble Groups (K[G]-MODULES AND GROUP REPRESENTATIONS)

Solomon

   InverseMattsonSolomonTransform(A, n) : RngUPolElt, RngIntElt -> RngUPolElt
   MattsonSolomonTransform(f, n) : RngUPolElt, RngIntElt -> RngUPolElt
   ReedSolomonCode(K, d, b) : FldFin, RngIntElt, RngIntElt -> Code
   ReedSolomonCode(n, d) : RngIntElt, RngIntElt -> Code

solomon

   Mattson--Solomon Transforms (LINEAR CODES OVER FINITE FIELDS)
   Reed--Solomon and Justesen Codes (LINEAR CODES OVER FINITE FIELDS)

sols

   Rational Solutions (DIFFERENTIAL RINGS)

Soluble

   AutomorphismGroupSolubleGroup(G: parameters): GrpPC -> GrpAuto
   ExtensionsOfSolubleGroup(H, G) : GrpPerm, GrpPerm -> SeqEnum
   IrreducibleSolubleSubgroups(n, q) : RngIntElt, RngIntElt -> SeqEnum
   IsIsomorphicSolubleGroup(G, H: parameters) : GrpPC, GrpPC -> BoolElt, Map
   IsSoluble(L) : AlgLie -> BoolElt
   IsSoluble(D, o, n) : DB, RngIntElt, RngIntElt -> Grp
   IsSoluble(A) : GrpAuto -> BoolElt
   IsSoluble(G) : GrpFin -> BoolElt
   IsSoluble(G) : GrpGPC -> BoolElt
   IsSoluble(G) : GrpMat -> BoolElt
   IsSoluble(G) : GrpPC -> BoolElt
   IsSoluble(G) : GrpPerm -> BoolElt
   IsSoluble(G : parameters) : GrpMat -> BoolElt
   IsSolubleAutomorphismGroupPGroup(A) : GrpAuto -> BoolElt
   IsSolubleByFinite(G : parameters) : GrpMat -> BoolElt
   LMGIsSoluble(G) : GrpMat -> BoolElt
   NumberOfIrreducibleMatrixGroups(k, p) : RngIntElt, RngIntElt -> RngIntElt
   NumberOfPrimitiveGroups(d) : RngIntElt -> RngIntElt
   Radical(G) : GrpMat -> GrpMat
   Radical(G) : GrpPerm -> GrpPerm
   SolubleNormalQuotient(G, H) : GrpPerm -> GrpPerm, Hom(GrpPerm), GrpPerm
   SolubleQuotient(G) : Grp -> GrpPC, Map
   SolubleQuotient(F, n : parameters): GrpFP, RngIntElt -> GrpPC, Map, SeqEnum, MonStgElt
   SolubleRadical(L) : AlgLie -> AlgLie
   SolubleRadical(G) : GrpLie -> GrpLie
   SolubleResidual(G) : GrpFin -> GrpFin
   SolubleResidual(G) : GrpMat -> GrpMat
   SolubleResidual(G) : GrpPerm -> GrpPerm
   SolubleSchreier(G: parameters) : GrpPerm : ->
   SolubleSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
   SolvableQuotient(G): GrpMat -> GrpPC, Map
   SolvableQuotient(G): GrpPerm, RngIntElt -> GrpPC, Map, SeqEnum, MonStgElt
   SolvableQuotient(G : parameters): GrpFP, RngIntElt -> GrpPC, Map, SeqEnum, MonStgElt
   SolvableQuotient(F, n : parameters): GrpFP, RngIntElt -> GrpPC, Map, SeqEnum, MonStgElt

soluble

   FINITE SOLUBLE GROUPS
   General Soluble Group (FINITE SOLUBLE GROUPS)
   Lifting Algorithm (FINITE SOLUBLE GROUPS)
   Lifting from the Automorphism Group of a Sylow p-subgroup (FINITE SOLUBLE GROUPS)
   Soluble Matrix Groups (MATRIX GROUPS OVER GENERAL RINGS)
   Soluble Quotient (FINITELY PRESENTED GROUPS)
   Soluble Quotients (FINITELY PRESENTED GROUPS: ADVANCED)
   The Soluble Radical and its Quotient (MATRIX GROUPS OVER GENERAL RINGS)
   The Soluble Radical and its Quotient (PERMUTATION GROUPS)

soluble-matrix-group

   Invariants(G) : GrpMat -> [ RngIntElt ]
   Soluble Matrix Groups (MATRIX GROUPS OVER GENERAL RINGS)

soluble-quotient

   Soluble Quotient (FINITELY PRESENTED GROUPS)

soluble-quotients

   SolvableQuotient(F, n : parameters): GrpFP, RngIntElt -> GrpPC, Map, SeqEnum, MonStgElt
   Soluble Quotients (FINITELY PRESENTED GROUPS: ADVANCED)

soluble-radical

   The Soluble Radical and its Quotient (MATRIX GROUPS OVER GENERAL RINGS)
   The Soluble Radical and its Quotient (PERMUTATION GROUPS)

SolubleNormalQuotient

   SolubleNormalQuotient(G, H) : GrpPerm -> GrpPerm, Hom(GrpPerm), GrpPerm

SolubleQuotient

   SolvableQuotient(G) : Grp -> GrpPC, Map
   SolubleQuotient(G) : Grp -> GrpPC, Map
   SolubleQuotient(F, n : parameters): GrpFP, RngIntElt -> GrpPC, Map, SeqEnum, MonStgElt
   SolvableQuotient(G): GrpMat -> GrpPC, Map
   SolvableQuotient(G): GrpPerm, RngIntElt -> GrpPC, Map, SeqEnum, MonStgElt
   SolvableQuotient(G : parameters): GrpFP, RngIntElt -> GrpPC, Map, SeqEnum, MonStgElt
   SolvableQuotient(F, n : parameters): GrpFP, RngIntElt -> GrpPC, Map, SeqEnum, MonStgElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012