[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: conjugate .. Connection
Conjugacy (MATRIX GROUPS OVER GENERAL RINGS)
Conjugacy (PERMUTATION GROUPS)
Conjugacy (POLYCYCLIC GROUPS)
Conjugacy Classes of Elements (GROUPS)
Conjugates, Norm and Trace (RATIONAL FIELD)
Conjugates, Norm and Trace (RING OF INTEGERS)
Conjugation of Class Functions (CHARACTERS OF FINITE GROUPS)
Conjugates, Norm and Trace (RATIONAL FIELD)
Conjugates, Norm and Trace (RING OF INTEGERS)
ConjugateIntoBorel(g) : GrpLieElt -> GrpLieElt, GrpLieElt
ConjugateIntoTorus(g) : GrpLieElt -> GrpLieElt, GrpLieElt
ConjugatePartition(P) : SeqEnum -> SeqEnum
Conjugates(G, H) : GrpFin, GrpElt -> { GrpElt }
Class(G, H) : GrpFin, GrpFin -> { GrpFin }
Class(H, x) : GrpFin, GrpFinElt -> { GrpFinElt }
Class(H, x) : GrpMat, GrpMatElt -> { GrpMatElt }
Class(H, g) : GrpPC, GrpPCElt -> { GrpPCElt }
Class(H, x) : GrpPerm, GrpPermElt -> { GrpPermElt }
Conjugates(a) : FldACElt -> [ FldACElt ]
Conjugates(a) : FldAlgElt -> [ FldComElt ]
Conjugates(a) : FldNumElt -> [ FldComElt ]
ConjugatesToPowerSums(I) : [] -> []
ExcludedConjugate(P) : GrpFPCosetEnumProc -> GrpFPElt
ExcludedConjugates(V) : GrpFPCos -> { GrpFPElt }
PositiveConjugates(u: parameters) : GrpBrdElt -> SetIndx
PositiveConjugatesProcess(u: parameters) : GrpBrdElt -> GrpBrdClassProc
ShimuraConjugates(mu) : AlgAssVOrdElt -> SeqEnum
GrpBrd_Conjugates (Example H73E7)
Conjugates (CYCLOTOMIC FIELDS)
Conjugates (QUADRATIC FIELDS)
Conjugates, Norm and Trace (DIFFERENTIAL RINGS)
Conjugates, Norm and Trace (DIFFERENTIAL RINGS)
GrpBrd_ConjugatesProcess (Example H73E8)
ConjugatesToPowerSums(I) : [] -> []
ConjugateTranspose(M, sigma) : Mtrx, Map -> Mtrx
MinimalElementConjugatingToPositive(x, s: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
MinimalElementConjugatingToSuperSummit(x, s: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
MinimalElementConjugatingToUltraSummit(x, s: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
ClassicalSylowConjugation(G,P,S) : GrpMat, GrpMat, GrpMat -> GrpMatElt
ConjugationClassLength(l) : SeqEnum -> RngIntElt
StandardFormConjugationMatrices(A) : AlgMat -> Tup
ConjugationClassLength(l) : SeqEnum -> RngIntElt
CharacterTableConlon(G) : Grp -> SeqEnum
CharacterTableConlon(G) : GrpPC -> [ AlgChtrElt ]
Connect(v,w) : GrphResVert,GrphResVert -> GrphRes
ConnectedKernel(phi) : MapModAbVar -> ModAbVar, MapModAbVar
IsConnected(G) : GrphMultUnd -> BoolElt
IsConnected(G) : GrphUnd -> BoolElt
IsKEdgeConnected(G, k) : Grph, RngIntElt -> BoolElt
IsKEdgeConnected(G, k : parameters) : GrphMult, RngIntElt -> BoolElt
IsKVertexConnected(G, k) : Grph, RngIntElt -> BoolElt
IsKVertexConnected(G, k : parameters) : GrphMult, RngIntElt -> BoolElt
IsResiduallyConnected(X) : IncGeom -> BoolElt
IsSimplyConnected(G) : GrpLie -> BoolElt
IsSimplyConnected(R) : RootDtm -> BoolElt
IsStronglyConnected(G) : GrphDir -> BoolElt
IsStronglyConnected(G) : GrphMultDir -> BoolElt
IsWeaklyConnected(G) : GrphDir -> BoolElt
IsWeaklyConnected(G) : GrphMultDir -> BoolElt
IsWeaklySimplyConnected(G) : GrpLie -> BoolElt
IsWeaklySimplyConnected(R) : RootDtm -> BoolElt
SimplyConnectedVersion(R) : RootDtm -> RootDtm, Map
StronglyConnectedComponents(G) : GrphDir -> [ { GrphVert } ]
StronglyConnectedComponents(G) : GrphMultDir -> [ { GrphVert } ]
ConnectedKernel(phi) : MapModAbVar -> ModAbVar, MapModAbVar
Connectedness (GRAPHS)
Connectedness (MULTIGRAPHS)
Connectedness in a Graph (GRAPHS)
Connectedness in a Multigraph (MULTIGRAPHS)
Connectedness in a Graph (GRAPHS)
Connectedness (GRAPHS)
ConnectingHomomorphism(f, g, n) : MapChn, MapChn, RngIntElt -> ModMatRngElt
ConnectingHomomorphism(f, g, n) : MapChn, MapChn, RngIntElt -> ModMatRngElt
ConnectionPolynomial(S) : SeqEnum -> RngUPolElt, RngIntElt
CharacteristicPolynomial(S) : SeqEnum -> RngUPolElt, RngIntElt
BerlekampMassey(S) : SeqEnum -> RngUPolElt, RngIntElt
ConnectionNumber(D, p, B) : Inc, IncPt, IncBlk -> RngIntElt
WaitForConnection(S) : IO -> IO
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012