[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: Near .. Network
IsNearLinearSpace(D) : Inc -> BoolElt
NearLinearSpace(I) : Inc -> IncNsp
NearLinearSpace< v | X : parameters > : RngIntElt, List -> IncNsp
DicksonNearfield(q, v : parameters) : RngIntElt, RngIntElt -> NfdDck
ZassenhausNearfield(n) : RngIntElt -> NfdZss
Automorphisms (NEARFIELDS)
Constructing Nearfields (NEARFIELDS)
Nearfield Planes (NEARFIELDS)
Nearfield Properties (NEARFIELDS)
Operations on Elements (NEARFIELDS)
Operations on Nearfields (NEARFIELDS)
The Group of Units (NEARFIELDS)
Constructing Nearfields (NEARFIELDS)
Operations on Elements (NEARFIELDS)
Automorphisms (NEARFIELDS)
Operations on Nearfields (NEARFIELDS)
Nearfield Planes (NEARFIELDS)
Nearfield Properties (NEARFIELDS)
The Group of Units (NEARFIELDS)
NearLinearSpace(I) : Inc -> IncNsp
NearLinearSpace< v | X : parameters > : RngIntElt, List -> IncNsp
IsNearlyPerfect(C) : Code -> BoolElt
IsNeat(G, H) : GrpAb, GrpAb -> BoolElt
IsNef(D) : DivSchElt -> BoolElt
IsNef(D) : DivTorElt -> BoolElt
IsNefAndBig(D) : DivSchElt -> BoolElt
NefCone(X) : TorVar -> TorCon
NefCone(X) : TorVar -> TorCon
NegationMap(E) : CrvEll -> Map
NegationMap(E) : CrvEll -> Map
PositiveGammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
NegativeGammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
ZeroGammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
GammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
HasNegativeWeightCycle(G) : Grph -> BoolElt
HasNegativeWeightCycle(u : parameters) : GrphVert -> BoolElt
IsNegative(W, r) : GrpPermCox, RngIntElt -> BoolElt
IsNegative(R, r) : RootStr, RngIntElt -> BoolElt
IsNegative(R, r) : RootSys, RngIntElt -> BoolElt
IsNegativeDefinite(F) : ModMatRngElt -> BoolElt
IsNegativeSemiDefinite(F) : ModMatRngElt -> BoolElt
Negative(W, r) : GrpPermCox, RngIntElt -> RngIntElt
Negative(R, r) : RootStr, RngIntElt -> RngIntElt
Negative(R, r) : RootSys, RngIntElt -> RngIntElt
NegativePrimeDivisors(D) : DivSchElt -> SeqEnum
RelativeRoots(R) : RootDtm -> SetIndx
PositiveGammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
NegativeGammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
ZeroGammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
GammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
NegativePrimeDivisors(D) : DivSchElt -> SeqEnum
PositiveRelativeRoots(R) : RootDtm -> SetIndx
NegativeRelativeRoots(R) : RootDtm -> SetIndx
SimpleRelativeRoots(R) : RootDtm -> SetIndx
RelativeRoots(R) : RootDtm -> SetIndx
Neighbor(L, v, p) : Lat, LatElt, RngIntElt -> Lat
Neighbour(L, v, p) : Lat, LatElt, RngIntElt -> Lat
NeighbourClosure(L, p) : Lat, RngIntElt -> Lat
NeighborClosure(L, p) : Lat, RngIntElt -> Lat
NeighbourClosure(L, p) : Lat, RngIntElt -> Lat
InNeighbors(u) : GrphVert -> { GrphVert }
InNeighbours(u) : GrphVert -> { GrphVert }
InNeighbours(u) : GrphVert -> { GrphVert }
Neighbours(u) : GrphVert -> { GrphVert }
Neighbours(u) : GrphVert -> { GrphVert }
Neighbours(L, p) : Lat, RngIntElt -> Lat
OutNeighbours(u) : GrphVert -> { GrphVert }
OutNeighbours(u) : GrphVert -> { GrphVert }
Neighbor(L, v, p) : Lat, LatElt, RngIntElt -> Lat
Neighbour(L, v, p) : Lat, LatElt, RngIntElt -> Lat
NeighbourClosure(L, p) : Lat, RngIntElt -> Lat
Lat_Neighbour (Example H30E19)
NeighborClosure(L, p) : Lat, RngIntElt -> Lat
NeighbourClosure(L, p) : Lat, RngIntElt -> Lat
InNeighbors(u) : GrphVert -> { GrphVert }
InNeighbours(u) : GrphVert -> { GrphVert }
InNeighbours(u) : GrphVert -> { GrphVert }
Neighbours(u) : GrphVert -> { GrphVert }
Neighbours(u) : GrphVert -> { GrphVert }
Neighbours(L, p) : Lat, RngIntElt -> Lat
OutNeighbours(u) : GrphVert -> { GrphVert }
OutNeighbours(u) : GrphVert -> { GrphVert }
Neighbour Relations and Graphs (LATTICES)
SimNEQ(K, e, f) : FldNum, FldNumElt, FldNumElt -> BoolElt, [FldNumElt]
SimNEQ(K, e, f) : FldNum, FldNumElt, FldNumElt -> BoolElt, [FldNumElt]
Set_NestedExists (Example H9E13)
Seq_NestedIteration (Example H10E6)
Nested Aggregates (INTRODUCTION TO AGGREGATES [SETS, SEQUENCES, AND MAPPINGS])
Network<n | edges > : RngIntElt, List -> GrphNet, GrphVertSet, GrphEdgeSet
UnderlyingNetwork(G) : Grph -> GrphNet, GrphVertSet, GrphEdgeSet
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012