[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: IsogenyMapPsiMulti  ..  Isometry


IsogenyMapPsiMulti

   IsogenyMapPsiMulti(I) : Map -> RngUPolElt

IsogenyMapPsiSquared

   IsogenyMapPsiSquared(I) : Map -> RngUPolElt

isogs_sm_mod_crvs

   Parametrized Structures (SMALL MODULAR CURVES)

Isol

   Group(D, n, p, i) : DB, RngIntElt, RngIntElt, RngIntElt -> GrpMat
   IsolGroup(n, p, i) : RngIntElt, RngIntElt, RngIntElt -> GrpMat
   IsolGroupDatabase() : -> DB
   IsolGroupOfDegreeFieldSatisfying(d, p, f) : RngIntElt, RngIntElt, Any -> GrpMat
   IsolGroupOfDegreeSatisfying(d, f) : RngIntElt, Any -> GrpMat
   IsolGroupSatisfying(f) : Any -> GrpMat
   IsolGroupsOfDegreeFieldSatisfying(d, p, f) : RngIntElt, RngIntElt, Any -> SeqEnum
   IsolGroupsOfDegreeSatisfying(d, f) : RngIntElt, Any -> SeqEnum
   IsolGroupsSatisfying(f) : Any -> SeqEnum
   IsolGuardian(n, p, i) : RngIntElt, RngIntElt, RngIntElt -> GrpMat
   IsolInfo(n, p, i) : RngIntElt, RngIntElt, RngIntElt -> MonStgElt
   IsolIsPrimitive(n, p, i) : RngIntElt, RngIntElt, RngIntElt -> BoolElt
   IsolMinBlockSize(n, p, i) : RngIntElt, RngIntElt, RngIntElt -> RngIntElt
   IsolNumberOfDegreeField(n, p) : RngIntElt, RngIntElt -> RngIntElt
   IsolOrder(n, p, i) : RngIntElt, RngIntElt, RngIntElt -> RngIntElt
   IsolProcess() : -> Process
   IsolProcessOfDegree(d) : . -> Process
   IsolProcessOfDegreeField(d, p) : ., . -> Process
   IsolProcessOfField(p) : . -> Process

Isolated

   IsIsolated(B) : GRBskt -> BoolElt
   IsIsolated(p) : GRPtS -> BoolElt
   IsolatedPointsFinder(S,P) : Sch, SeqEnum -> List
   IsolatedPointsLiftToMinimalPolynomials(S,P) : Sch, SeqEnum -> BoolElt, SeqEnum
   IsolatedPointsLifter(S,P) : Sch, SeqEnum -> BoolElt, Pt

isolated

   Isolated Points on Schemes (SCHEMES)

IsolatedPointsFinder

   IsolatedPointsFinder(S,P) : Sch, SeqEnum -> List

IsolatedPointsLifter

   IsolatedPointsLifter(S,P) : Sch, SeqEnum -> BoolElt, Pt

IsolatedPointsLiftToMinimalPolynomials

   IsolatedPointsLiftToMinimalPolynomials(S,P) : Sch, SeqEnum -> BoolElt, SeqEnum

isolgps

   Basic Functions (DATABASES OF GROUPS)
   Database of Soluble Irreducible Groups (DATABASES OF GROUPS)

isolgps-database

   Database of Soluble Irreducible Groups (DATABASES OF GROUPS)

IsolGroup

   Group(D, n, p, i) : DB, RngIntElt, RngIntElt, RngIntElt -> GrpMat
   IsolGroup(n, p, i) : RngIntElt, RngIntElt, RngIntElt -> GrpMat
   GrpData_IsolGroup (Example H66E20)

IsolGroupDatabase

   IsolGroupDatabase() : -> DB

IsolGroupOfDegreeFieldSatisfying

   IsolGroupOfDegreeFieldSatisfying(d, p, f) : RngIntElt, RngIntElt, Any -> GrpMat

IsolGroupOfDegreeSatisfying

   IsolGroupOfDegreeSatisfying(d, f) : RngIntElt, Any -> GrpMat

IsolGroupSatisfying

   IsolGroupSatisfying(f) : Any -> GrpMat

IsolGroupsOfDegreeFieldSatisfying

   IsolGroupsOfDegreeFieldSatisfying(d, p, f) : RngIntElt, RngIntElt, Any -> SeqEnum

IsolGroupsOfDegreeSatisfying

   IsolGroupsOfDegreeSatisfying(d, f) : RngIntElt, Any -> SeqEnum

IsolGroupsSatisfying

   IsolGroupsSatisfying(f) : Any -> SeqEnum

IsolGuardian

   IsolGuardian(n, p, i) : RngIntElt, RngIntElt, RngIntElt -> GrpMat

IsolInfo

   IsolInfo(n, p, i) : RngIntElt, RngIntElt, RngIntElt -> MonStgElt

IsolIsPrimitive

   IsolIsPrimitive(n, p, i) : RngIntElt, RngIntElt, RngIntElt -> BoolElt

IsolMinBlockSize

   IsolMinBlockSize(n, p, i) : RngIntElt, RngIntElt, RngIntElt -> RngIntElt

IsolNumberOfDegreeField

   IsolNumberOfDegreeField(n, p) : RngIntElt, RngIntElt -> RngIntElt

IsolOrder

   IsolOrder(n, p, i) : RngIntElt, RngIntElt, RngIntElt -> RngIntElt

IsolProcess

   IsolProcess() : -> Process

IsolProcessOfDegree

   IsolProcessOfDegree(d) : . -> Process

IsolProcessOfDegreeField

   IsolProcessOfDegreeField(d, p) : ., . -> Process

IsolProcessOfField

   IsolProcessOfField(p) : . -> Process

Isom

   GLat_Isom (Example H31E4)

isom

   Automorphism Group and Isometry Testing (LATTICES WITH GROUP ACTION)
   Automorphism Group and Isometry Testing over Fq[t] (LATTICES WITH GROUP ACTION)
   Isometries and Similarities (POLAR SPACES)

isom-sim

   Isometries and Similarities (POLAR SPACES)

Isometric

   IsIsomorphic(L, M) : Lat, Lat -> BoolElt, AlgMatElt
   IsIsometric(L, M) : Lat, Lat -> BoolElt, AlgMatElt
   IsIsometric(L, F1, M, F()2) : Lat, [ AlgMatElt ], Lat, [ AlgMatElt ] -> BoolElt, AlgMatElt
   IsIsometric(V, W) : ModTupFld, ModTupFld -> BoolElt, Map
   IsIsometric(G1, G2) : Mtrx[RngUPol], Mtrx[RngUPol] -> BoolElt, Mtrx, FldFin
   IsIsometric(F1, F()2) : [ AlgMatElt ], [ AlgMatElt ] -> BoolElt, AlgMatElt
   IsometricCircle(g) : GrpPSL2Elt -> RngElt, RngElt
   IsometricCircle(g,D) : GrpPSL2Elt, SpcHyd -> RngElt, RngElt

isometric

   FldForms_isometric (Example H29E14)

IsometricCircle

   IsometricCircle(g) : GrpPSL2Elt -> RngElt, RngElt
   IsometricCircle(g,D) : GrpPSL2Elt, SpcHyd -> RngElt, RngElt

Isometry

   ExtendIsometry(V, U, f) : ModTupFld, ModTupFld, Map -> Map
   IsIsometry(f) : Map -> BoolElt
   IsIsometry(U, V, f) : ModTupFld, ModTupFld, Map -> BoolElt
   IsIsometry(V, g) : ModTupFld, Mtrx -> BoolElt
   IsometryGroup(V) : ModTupFld) -> GrpMat
   IsometryGroup(F : parameters) : AlgMatElt -> GrpMat
   IsometryGroup(S : parameters) : SeqEnum -> GrpMat
   WallIsometry(V, I, mu) : ModTupFld, ModTupFld, Map -> Mtrx

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012