[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: ChiefFactors .. Class
ChiefFactors(G) : GrpMat -> [ <RngIntElt, RngIntElt, RngIntElt, RngIntElt> ]
ChiefFactors(G) : GrpPerm -> [ <RngIntElt, RngIntElt, RngIntElt, RngIntElt> ]
ChiefSeries(G) : GrpMat -> [ GrpMat ], [ <RngIntElt, RngIntElt, RngIntElt, RngIntElt> ]
ChiefSeries(G) : GrpPC -> [GrpPC]
ChiefSeries(G) : GrpPerm -> [ GrpPerm ], [ <RngIntElt, RngIntElt, RngIntElt, RngIntElt> ]
ChienChoyCode(P, G, n, S) : RngUPolElt, RngUPolElt, RngIntElt, FldFin -> Code
ChienChoyCode(P, G, n, S) : RngUPolElt, RngUPolElt, RngIntElt, FldFin -> Code
ProfilePrintChildrenByCount(G, n): GrphDir, GrphVert ->
ProfilePrintChildrenByTime(G, n): GrphDir, GrphVert ->
ChineseRemainderTheorem(I1, L1, e1, L2) : RngOrdIdl, [RngIntElt], RngOrdElt, [RngIntElt] -> RngOrdElt
CRT(I1, L1, e1, L2) : RngOrdIdl, [RngIntElt], RngOrdElt, [RngIntElt] -> RngOrdElt
ChineseRemainderTheorem(I1, I2, e1, e2) : RngFunOrdIdl, RngFunOrdIdl, RngFunOrdElt, RngFunOrdElt -> RngFunOrdElt
ChineseRemainderTheorem(I, J, a, b) : RngInt, RngInt, RngIntElt, RngIntElt -> RngIntElt
ChineseRemainderTheorem(I1, I2, e1, e2) : RngOrdIdl, RngOrdIdl, RngOrdElt, RngOrdElt -> RngOrdElt
ChineseRemainderTheorem(X, N) : [RngIntElt], [RngIntElt] -> RngIntElt
ChineseRemainderTheorem(X, M) : [RngUPolElt], [RngUPolElt] -> RngUPolElt
ChineseRemainderTheorem(I1, L1, e1, L2) : RngOrdIdl, [RngIntElt], RngOrdElt, [RngIntElt] -> RngOrdElt
CRT(I1, L1, e1, L2) : RngOrdIdl, [RngIntElt], RngOrdElt, [RngIntElt] -> RngOrdElt
ChineseRemainderTheorem(I1, I2, e1, e2) : RngFunOrdIdl, RngFunOrdIdl, RngFunOrdElt, RngFunOrdElt -> RngFunOrdElt
ChineseRemainderTheorem(I, J, a, b) : RngInt, RngInt, RngIntElt, RngIntElt -> RngIntElt
ChineseRemainderTheorem(I1, I2, e1, e2) : RngOrdIdl, RngOrdIdl, RngOrdElt, RngOrdElt -> RngOrdElt
ChineseRemainderTheorem(X, N) : [RngIntElt], [RngIntElt] -> RngIntElt
ChineseRemainderTheorem(X, M) : [RngUPolElt], [RngUPolElt] -> RngUPolElt
Cholesky(L, K) : Lat, FldRe -> AlgMatElt
Orthonormalize(L, K) : Lat, FldRe -> AlgMatElt
Orthonormalize(M, K) : MtrxSpcElt, Fld -> AlgMatElt
ChienChoyCode(P, G, n, S) : RngUPolElt, RngUPolElt, RngIntElt, FldFin -> Code
ChromaticIndex(G) : GrphUnd -> RngIntElt
ChromaticNumber(G) : GrphUnd -> RngIntElt
ChromaticPolynomial(G) : GrphUnd -> RngUPolElt
ChromaticIndex(G) : GrphUnd -> RngIntElt
ChromaticNumber(G) : GrphUnd -> RngIntElt
Graph_ChromaticNumber (Example H149E15)
ChromaticPolynomial(G) : GrphUnd -> RngUPolElt
cInvariants(E) : CrvEll -> [ RngElt ]
cInvariants(model) : ModelG1 -> [ RngElt ]
HasAllRootsOnUnitCircle(f) : RngUPolElt -> BoolElt
IsometricCircle(g) : GrpPSL2Elt -> RngElt, RngElt
IsometricCircle(g,D) : GrpPSL2Elt, SpcHyd -> RngElt, RngElt
Connectedness (GRAPHS)
Distances, Paths and Circuits in a Graph (GRAPHS)
Distances, Paths and Circuits in a Non-Weighted Graph (GRAPHS)
Distances, Paths and Circuits in a Possibly Weighted Graph (GRAPHS)
BorderedDoublyCirculantQRCode(p, a, b) : RngIntElt, RngElt, RngElt -> Code
DoublyCirculantQRCode(p) : RngIntElt -> Code
DoublyCirculantQRCodeGF4(m, a) : RngIntElt, RngElt -> Code
BrauerClass(M) : ModSym -> SeqEnum
CalculateCanonicalClass(~g) : GrphRes ->
CanonicalClass(g) : GrphRes -> SeqEnum
CanonicalClass(X) : TorVar -> DivTorElt
Class(G, H) : GrpFin, GrpFin -> { GrpFin }
Class(H, x) : GrpFin, GrpFinElt -> { GrpFinElt }
Class(H, x) : GrpMat, GrpMatElt -> { GrpMatElt }
Class(H, g) : GrpPC, GrpPCElt -> { GrpPCElt }
Class(H, x) : GrpPerm, GrpPermElt -> { GrpPermElt }
ClassCentraliser(G, i) : GrpMat, RngIntElt -> GrpMat
ClassCentraliser(G, i) : GrpPerm, RngIntElt -> GrpPerm
ClassField(m, G) : Map, GrpAb -> FldAb
ClassFunctionSpace(G) : Grp -> AlgChtr
ClassGroup(C) : Crv[FldFin] -> GrpAb, Map, Map
ClassGroup(K) : FldQuad -> GrpAb, Map
ClassGroup(Q) : FldRat -> GrpAb, Map
ClassGroup(K: parameters) : FldAlg -> GrpAb, Map
ClassGroup(F : parameters) : FldFun -> GrpAb, Map, Map
ClassGroup(F : parameters) : FldFunG -> GrpAb, Map, Map
ClassGroup(Q: parameters) : QuadBin -> GrpAb, Map
ClassGroup(O: parameters) : RngOrd -> GrpAb, Map
ClassGroup(O) : RngFunOrd -> GrpAb, Map, Map
ClassGroup(Z) : RngInt -> GrpAb, Map
ClassGroupAbelianInvariants(C) : Crv[FldFin] -> [RngIntElt]
ClassGroupAbelianInvariants(F : parameters) : FldFun -> SeqEnum
ClassGroupAbelianInvariants(F : parameters) : FldFunG -> SeqEnum
ClassGroupAbelianInvariants(O) : RngFunOrd -> SeqEnum
ClassGroupCyclicFactorGenerators(O) : RngOrd -> ModHomElt
ClassGroupExactSequence(F) : FldFunG -> Map, Map, Map
ClassGroupExactSequence(O) : RngFunOrd -> Map, Map, Map
ClassGroupGenerationBound(F) : FldFunG -> RngIntElt
ClassGroupGenerationBound(q, g) : RngIntElt, RngIntElt -> RngIntElt
ClassGroupGetUseMemory(O) : RngOrd -> BoolElt
ClassGroupPRank(C) : Crv[FldFin] -> RngIntElt
ClassGroupPRank(F) : FldFunG -> RngIntElt
ClassGroupPRank(F) : FldFunG -> RngIntElt
ClassGroupPrimeRepresentatives(O, I) : RngOrd, RngOrdIdl -> Map
ClassGroupSetUseMemory(O, f) : RngOrd, BoolElt ->
ClassGroupStructure(Q: parameters) : QuadBin -> [ RngIntElt ]
ClassInvariants(G, g) : GrpMat, GrpMatElt -> .
ClassMap(G) : GrpMat -> Map
ClassMap(G) : GrpPC -> Map
ClassMap(G: parameters) : GrpFin -> Map
ClassMap(G: parameters) : GrpPerm -> Map
ClassNumber(C) : Crv[FldFin] -> RngIntElt
ClassNumber(F) : FldFun -> RngIntElt
ClassNumber(F) : FldFunG -> RngIntElt
ClassNumber(K) : FldQuad -> RngIntElt
ClassNumber(K: parameters) : FldAlg -> RngIntElt
ClassNumber(Q: parameters) : QuadBin -> RngIntElt
ClassNumber(O: parameters) : RngOrd -> RngIntElt
ClassNumber(O) : RngFunOrd -> RngIntElt
ClassNumberApproximation(F, e) : FldFunG, FldReElt -> FldReElt
ClassNumberApproximationBound(q, g, e) : RngIntElt, RngIntElt, RngIntElt, -> RngIntElt
ClassPowerCharacter(x, j) : AlgChtrElt, RngIntElt -> AlgChtrElt
ClassRepresentative(G, x) : GrpFin, GrpFinElt -> GrpFinElt
ClassRepresentative(G, x) : GrpMat, GrpMatElt -> GrpMatElt
ClassRepresentative(G, x) : GrpPC, GrpPCElt -> GrpPCElt
ClassRepresentative(G, x) : GrpPerm, GrpPermElt -> GrpPermElt
ClassRepresentative(I) : RngInt -> RngInt
ClassRepresentative(I) : RngOrdFracIdl -> RngOrdFracIdl
ClassRepresentativeFromInvariants(G, p, h, t) : GrpMat, SeqEnum, SeqEnum, FldFinElt -> GrpMatElt
ClassTwo(p, d : parameters) : RngIntElt, RngIntElt -> SeqEnum
CohomologyClass(alpha) : OneCoC -> SetIndx[OneCoC]
CompleteClassGroup(O) : RngOrd ->
ConditionalClassGroup(K) : FldAlg -> GrpAb, Map
ConditionalClassGroup(O) : RngOrd -> GrpAb, Map
ConjugationClassLength(l) : SeqEnum -> RngIntElt
Degree(I) : RngFunOrdIdl -> RngIntElt
DivisorClassGroup(C) : RngCox -> TorLat
DivisorClassLattice(C) : RngCox -> TorLat
DivisorClassLattice(X) : TorVar -> TorLat
EvaluateClassGroup(O) : RngOrd -> BoolElt
ExtendedCohomologyClass(alpha) : OneCoC -> SetEnum[OneCoC]
HasParallelClass(D) : Inc -> BoolElt, { IncBlk }
HilbertClassField(K) : FldAlg -> FldAb
HilbertClassField(K, p) : FldFun, PlcFunElt -> FldFunAb
HilbertClassPolynomial(D) : RngIntElt -> RngUPolElt
HilbertClassPolynomial(D) : RngIntElt -> RngUPolElt
InertiaDegree(P) : PlcFunElt -> RngIntElt
IsParallelClass(D, B, C) : Inc, IncBlk, IncBlk -> BoolElt, { IncBlk }
KacMoodyClass(C) : AlgMatElt -> MonStgElt, ModMatRngElt
NextClass(~P : parameters) : GrpPCpQuotientProc ->
NilpotencyClass(G) : GrpFin -> RngIntElt
NilpotencyClass(G) : GrpGPC -> RngIntElt
NilpotencyClass(G) : GrpMat -> RngIntElt
NilpotencyClass(G) : GrpPC -> RngIntElt
NilpotencyClass(G) : GrpPerm -> RngIntElt
PCClass(x) : GrpPCElt -> RngIntElt
ParallelClass(P, l) : Plane, PlaneLn -> { PlaneLn }
PicardClass(D) : DivTorElt -> TorLatElt
QuadraticClassGroupTwoPart(K) : FldQuad -> GrpAb, Map
RayClassField(D) : DivNumElt -> FldAb
RayClassField(m) : Map -> FldAb
RayClassGroup(D) : DivFunElt -> GrpAb, Map
RayClassGroup(D) : DivNumElt -> GrpAb, Map
RayClassGroup(I) : RngOrdIdl -> GrpAb, Map
RayClassGroupDiscLog(y, D) : DivFunElt, DivFunElt -> GrpAbElt
ResidueClassField(P) : PlcCrvElt -> Rng
ResidueClassField(P) : PlcFunElt -> Rng, Map
ResidueClassField(P) : PlcNumElt -> Fld
ResidueClassField(P) : PlcNumElt -> Fld
ResidueClassField(I) : Rng -> Fld, Map
ResidueClassField(I) : RngFunOrdIdl -> Rng, Map
ResidueClassField(L) : RngLocA -> Rng, Map
ResidueClassField(O, I) : RngOrd, RngOrdIdl -> FldFin, Map
ResidueClassField(L) : RngPad -> FldFin, Map
ResidueClassField(R) : RngSer -> Rng, Map
ResidueClassField(E) : RngSerExt -> FldFin
ResidueClassRing(m) : RngIntElt -> RngIntRes
ResidueClassRing(Q) : RngIntEltFact -> RngIntRes
RevertClass(~P) : GrpPCpQuotientProc ->
RingClassGroup(O) : RngOrd -> GrpAb, Map
SetClassGroupBoundMaps(f1, f2) : Map, Map ->
SetClassGroupBounds(n) : Any ->
StartNewClass(~P: parameters) : GrpPCpQuotientProc ->
SteinitzClass(M) : ModDed -> RngOrdIdl
SzClassMap(G) : GrpMat -> Map
SzClassRepresentative(G, g) : GrpMat, GrpMatElt -> GrpMatElt, GrpMatElt
TwoSidedIdealClassGroup(S : Support) : AlgAssVOrd -> GrpAb, Map
WeberClassPolynomial(D) : RngIntElt -> RngUPolElt
WeberClassPolynomial(D) : RngIntElt -> RngUPolElt, FldFunRatUElt
WeberToHilbertClassPolynomial(f,D) : RngUPolElt, RngIntElt -> RngUPolElt
WeilToClassGroupsMap(C) : RngCox -> Map
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012