[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: makenewdb .. Map
Making New Databases (HILBERT SERIES OF POLARISED VARIETIES)
MakePCMap(A, P, S) : Aff, Prj, SeqEnum ->
MakeProjectiveClosureMap(A, P, S) : Aff,Prj,SeqEnum ->
MakePCMap(A, P, S) : Aff, Prj, SeqEnum ->
MakeProjectiveClosureMap(A, P, S) : Aff,Prj,SeqEnum ->
MakeResolutionGraph(g,s,t) : GrphDir,SeqEnum,SeqEnum -> GrphRes
MakeResolutionGraph(N) : NwtnPgon -> GrphRes
MakeSpliceDiagram(g,e,a) : GrphDir,SeqEnum,SeqEnum -> GrphSpl
MakeSpliceDiagram(e,l,a) : SeqEnum,SeqEnum,SeqEnum -> GrphSpl
MakeType(S) : MonStgElt -> Cat
Manifold(D, i) : DB, RngIntElt -> Rec
ManifoldDatabase() : -> DB
ManifoldDatabase() : -> DB
Basic Functions (DATABASES OF GROUPS)
Fundamental Groups of 3-Manifolds (DATABASES OF GROUPS)
GrpData_manifolds (Example H66E24)
ConvertFromManinSymbol(M, x) : ModSym, Tup -> ModSymElt
ManinConstant(E) : CrvEll[FldRat] -> RngIntElt
ManinSymbol(x) : ModSymElt -> SeqEnum
ManinConstant(E) : CrvEll[FldRat] -> RngIntElt
ManinSymbol(x) : ModSymElt -> SeqEnum
Manipulation of Quantum States (QUANTUM CODES)
MantissaExponent(r) : FldReElt -> FldReElt, RngIntElt
MantissaExponent(r) : FldReElt -> FldReElt, RngIntElt
AffineAlgebraMapKernel(phi) : Map -> MPol
AlgebraMap(f) : MapSch -> Map
ArtinMap(A) : FldAb -> Map
ArtinSchreierMap(W) : RngWitt -> Map
AugmentationMap(A) : AlgGrp -> Map
BoundaryMap(C, n) : ModCpx, RngIntElt -> ModMatRngElt
BoundaryMap(M) : ModSym -> ModMatFldElt
CanonicalMap(C) : Crv -> MapSch
ChainMap(Q, C, D, n) : SeqEnum, ModCpx, ModCpx, RngIntElt -> MapChn
ClassMap(G) : GrpMat -> Map
ClassMap(G) : GrpPC -> Map
ClassMap(G: parameters) : GrpFin -> Map
ClassMap(G: parameters) : GrpPerm -> Map
CoboundaryMapImage(M, i, c) : ModCoho, RngIntElt, UserProgram -> UserProgram
CocycleMap(alpha) : OneCoC -> Map
CoefficientMap(L) : LinearSys -> ModTupFldElt
CohomologyElementToChainMap(P, d, n) : ModCpx ,RngIntElt, RngIntElt -> MapChn
CohomologyElementToCompactChainMap(PR, d, n): Rec, RngIntElt, RngIntElt -> ModMatFldElt
CohomologyGeneratorToChainMap(P,Q,C,n) : ModCpx, ModCpx, Rec, RngIntElt -> MapChn
CohomologyGeneratorToChainMap(P, C, n) : ModCpx, Tup, RngIntElt -> MapChn
ConstantMap(X,Y,p) : Sch,Sch,Pt -> MapSch
CorestrictionMapImage(G, C, c, i) : Grp, ModCoho, UserProgram, RngIntElt -> UserProgram
DefiningMap(L) : RngPad -> Map
DegeneracyMap(M1, M2, d) : ModSym, ModSym, RngIntElt -> Map
DegreeMap(M : parameters) : ModSym -> [ Tup ], Fld
DescentMaps(phi) : Map -> Map, Map
DivisorMap(D) : DivCrvElt -> MapSch
DivisorMap(S) : ShfCoh -> Map,Sch
EmbeddingMap(F, L): FldAlg, FldAlg -> Map
EmbeddingMap(F, L): FldNum, FldNum -> Map
EmbeddingMap(e) : SubFldLatElt -> Map
FrobeniusMap(E) : CrvEll -> Map
FrobeniusMap(E, i) : CrvEll, RngIntElt -> Map
FrobeniusMap(G,q) : GrpLie, RngIntElt -> GrpLieAutoElt
FrobeniusMap(W) : RngWitt -> Map
Genus2GonalMap(C) : Crv -> MapSch
Genus3GonalMap(C) : Crv -> RngIntElt, MapSch
Genus4GonalMap(C) : Crv -> RngIntElt, MapSch
Genus5GonalMap(C) : Crv -> RngIntElt, MapSch, Crv, UserProgram
Genus6GonalMap(C) : Crv -> RngIntElt, RngIntElt, MapSch, MapSch
GenusAndCanonicalMap(C) : Crv -> RngIntElt, BoolElt, MapSch
GrayMap(C) : Code -> Map
GrayMapImage(C) : Code -> [ ModTupRngElt ]
HasDefinedModuleMap(C,n) : ModCpx, RngIntElt -> BoolElt
HasDefiningMap(L) : RngPad -> BoolElt, Map
HasLinearGrayMapImage(C) : Code -> BoolElt, Code
HighMap(Aoo,terms) : Rec, SeqEnum[RngElt] -> MapChn
IdentityAutomorphism(X) : Sch -> MapAutSch
IdentityMap(E) : CrvEll -> Map
IdentityMap(A) : ModAbVar -> MapModAbVar
IdentityMap(R) : RootDtm -> Map
IdentityMap(X) : Sch -> MapSch
IdentityMap(L) : TorLat -> TorLatMap
IdentityMap(X) : TorVar -> TorMap
InclusionMap(G, H) : GrpGPC, GrpGPC -> Map
InclusionMap(G, H) : GrpPC, GrpPC -> Map
InducedMap(m1, m2, h, c) : Map, Map, Map, RngIntElt -> Map
InducedMapOnHomology(f, n) : MapChn, RngIntElt -> ModTupFldElt
InflationMap(PR2, PR1, AC2, AC1, REL1, theta) : Rec, Rec, Rec, Rec, Rec -> SeqEnum
InflationMapImage(M, c) : Map, UserProgram -> UserProgram
InverseWordMap(G) : GrpMat -> Map
InverseWordMap(G) : GrpPerm -> Map
IsChainMap(L, C, D, n) : List, ModCpx, ModCpx, RngIntElt -> BoolElt
IsChainMap(f) : MapChn -> BoolElt
IsFanMap(F1,F2) : TorFan,TorFan -> BoolElt
IsFanMap(F1,F2,f) : TorFan,TorFan,Map -> BoolElt
IsProperChainMap(f) : MapChn -> BoolElt
IsZeroMap(C, n) : ModCpx, RngIntElt -> BoolElt
IsogenyMapOmega(I) : Map -> RngMPolElt
IsogenyMapPhi(I) : Map -> RngUPolElt
IsogenyMapPhiMulti(I) : Map -> RngUPolElt
IsogenyMapPsi(I) : Map -> RngUPolElt
IsogenyMapPsiMulti(I) : Map -> RngUPolElt
IsogenyMapPsiSquared(I) : Map -> RngUPolElt
LatticeMap(L,Q) : TorLat,[TorLatElt] -> TorLatMap
LiftMap(m, R) : Map, RngDiffOp -> Map
LocalTwoSelmerMap(P) : RngOrdIdl -> Map
LocalTwoSelmerMap(A, P) : RngUPolRes, RngOrdIdl -> Map, SeqEnum
MakeProjectiveClosureMap(A, P, S) : Aff,Prj,SeqEnum ->
ModuleMap(f, n) : MapChn, RngIntElt -> ModMatRngElt
NaturalMap(A, B) : ModAbVar, ModAbVar -> MapModAbVar
NaturalMap(A, B, d) : ModAbVar, ModAbVar, RngIntElt -> MapModAbVar
NegationMap(E) : CrvEll -> Map
NumberingMap(G) : GrpAb -> Map
NumberingMap(G) : GrpFin -> Map
NumberingMap(G) : GrpMat -> Map
NumberingMap(G) : GrpPC -> Map
NumberingMap(G) : GrpPerm -> Map
PolyMapKernel(f) : Map -> RngMPol
PolynomialMap(L) : LinearSys -> RngMPolElt
PowerMap(G) : GrpFin -> Map
PowerMap(G) : GrpMat -> Map
PowerMap(G) : GrpPC -> Map
PowerMap(G) : GrpPerm -> Map
PrincipalDivisorMap(F) : FldFunG -> Map
PrincipalIdealMap(O) : RngFunOrd -> Map
ProjectionMap(CN,N,CM,M) : Crv, RngIntElt, Crv, RngIntElt -> MapSch
ProjectionMap(CN,N,CM,M,r) : Crv, RngIntElt, Crv, RngIntElt, RngIntElt -> MapSch
ProjectiveClosureMap(A) : Aff -> MapSch
ProjectiveMap(f, Y) : FldFunFracSchElt, Sch -> MapSch
ProjectiveMap(L, Y) : [FldFunFracSchElt], Sch -> MapSch
QuotientMap(Q1, Q2) : QuadBin, QuadBin -> Map
RationalMap(i, t) : Map, Map -> Map
RayLatticeMap(C) : RngCox -> Map
ResolveFanMap(F1,F2) : TorFan,TorFan -> TorFan
RestrictionChainMap(P1,P2) : Rec, Rec -> MapChn
RestrictionMap(L) : AlgLie -> Map
RingMap(P) : SetPt -> Map
SPrincipalDivisorMap(S) : SetEnum[PlcFunElt] -> Map
SchemeGraphMap(X, Y, I) : Sch, Sch, RngMPol -> MapSchGrph
SchemeGraphMapToSchemeMap(f) : MapSchGrph -> MapSch
SchemeMap(f) : GrpAutCrvElt -> MapAutSch
SzClassMap(G) : GrpMat -> Map
ToricVarietyMap(X,Y,f) : TorVar,TorVar,Map -> TorMap
TranslationMap(E, P) : CrvEll, PtEll -> Map
TranslationMap(R, e) : RngDiffOp, RngElt -> Map
UniversalMap(C, S, [ n1, ..., nm ]) : Cop, Str, [ Map ] -> Map
VerschiebungMap(W) : RngWitt -> Map
WeilToClassGroupsMap(C) : RngCox -> Map
WordMap(G) : GrpMatUnip -> Map
ZeroChainMap(C, D) : ModCpx, ModCpx -> MapChn
ZeroMap(A) : ModAbVar -> MapModAbVar
ZeroMap(M, N) : ModAlg, ModAlg -> ModMatFld
ZeroMap(L,K) : TorLat,TorLat -> TorLatMap
hom< L -> K | M > : TorLat,TorLat,Mtrx -> TorLatMap
CrvEll_Map (Example H120E19)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012