[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: multig-adj-deg .. MultiplicationByMMap
Adjacency and Degree (MULTIGRAPHS)
Adjacency and Degree Functions for Multidigraphs (MULTIGRAPHS)
Adjacency and Degree Functions for Mul-tigraphs (MULTIGRAPHS)
AssignCapacities(~G, D) : GrphMult, [RngIntElt] ->
AssignWeights(~G, D) : GrphMult, [RngElt] ->
Assigning Edge Decorations (MULTIGRAPHS)
Connectedness (MULTIGRAPHS)
Connectedness in a Multigraph (MULTIGRAPHS)
Construction of Multigraphs (MULTIGRAPHS)
Vertex Insertion, Contraction (MULTIGRAPHS)
Converting between Simple Graphs and Multigraphs (MULTIGRAPHS)
Orientated Graphs (MULTIGRAPHS)
Conversion Functions (MULTIGRAPHS)
Vertex and Edge Decorations (MULTIGRAPHS)
DeleteCapacities(~G) : GrphMult ->
DeleteWeights(~G) : GrphMult ->
Deleting Edge Decorations (MULTIGRAPHS)
Connectedness in a Multidigraph (MULTIGRAPHS)
Construction of a General Multidigraph (MULTIGRAPHS)
DeleteCapacities(~G) : GrphMult ->
DeleteWeights(~G) : GrphMult ->
Edge Decorations (MULTIGRAPHS)
Elementary Invariants and Predicates for Multigraphs (MULTIGRAPHS)
General Vertex and Edge Connectivity in Multigraphs and Multidigraphs (MULTIGRAPHS)
Introduction (MULTIGRAPHS)
Maximum Matching in Bipartite Multigraphs (MULTIGRAPHS)
RemoveEdge(~G, e) : GrphMult, GrphEdge ->
RemoveEdges(~G, S) : GrphMult, { GrphEdge } ->
Incremental Construction of Multigraphs (MULTIGRAPHS)
Adding Edges (MULTIGRAPHS)
Adding Vertices (MULTIGRAPHS)
RemoveEdge(~G, e) : GrphMult, GrphEdge ->
RemoveEdges(~G, S) : GrphMult, { GrphEdge } ->
Removing Edges (MULTIGRAPHS)
RemoveVertex(~G, v) : GrphMult, GrphVert ->
RemoveVertices(~G, U) : GrphMult, { GrphVert } ->
Removing Vertices (MULTIGRAPHS)
EdgeCapacities(G) : GrphMult -> SeqEnum
EdgeWeights(G) : GrphMult -> SeqEnum
Reading Edge Decorations (MULTIGRAPHS)
Standard Construction for Multigraphs (MULTIGRAPHS)
Subgraphs (MULTIGRAPHS)
Operations on the Support (MULTIGRAPHS)
Testing for Edge Decorations (MULTIGRAPHS)
Triconnectivity for Multigraphs (MULTIGRAPHS)
Unlabelled, or Uncapacitated, or Unweighted Graphs (MULTIGRAPHS)
Construction of a General Multigraph (MULTIGRAPHS)
Unions of Multigraphs (MULTIGRAPHS)
Vertex Decorations: Labels (MULTIGRAPHS)
The Vertex--Set and Edge--Set of Multigraphs (MULTIGRAPHS)
MULTIGRAPHS
MultiGraph<n | edges > : RngIntElt, List -> GrphMultUnd, GrphVertSet, GrphEdgeSet
Multinomial(n, [a1, ... an]) : RngIntElt, [RngIntElt] -> RngIntElt
Multinomial(n, [r1, ... rn]) : RngIntElt, [RngIntElt] -> RngIntElt
MultipartiteGraph(Q) : [RngIntElt] -> GrphUnd
MultipartiteGraph(Q) : [RngIntElt] -> GrphUnd
ExtendedLeastCommonLeftMultiple(A, B) : RngDiffOpElt, RngDiffOpElt -> RngDiffOpElt, RngDiffOpElt, RngDiffOpElt
ExtendedLeastCommonLeftMultiple(S) : [RngDiffOpElt] -> RngDiffOpElt, SeqEnum
IntegralMultiple(D) : DivSchElt -> DivSchElt,RngIntElt
LCM(D1, D2) : DivCrvElt, DivCrvElt -> DivCrvElt
LCM(D1, D2) : DivFunElt, DivFunElt -> DivFunElt
LCM(I, J) : RngOrdFracIdl, RngOrdFracIdl -> RngOrdFracIdl
Lcm(a, b) : RngQuadElt, RngQuadElt -> RngQuadElt
LeastCommonLeftMultiple(L) : RngDiffOpElt -> RngDiffOpElt
LeastCommonLeftMultiple(A, B) : RngDiffOpElt, RngDiffOpElt -> RngDiffOpElt
LeastCommonMultiple(m, n) : RngIntElt, RngIntElt -> RngIntElt
LeastCommonMultiple(a, b) : RngIntResElt, RngIntResElt -> RngIntResElt
LeastCommonMultiple(f, g) : RngMPolElt, RngMPolElt -> RngMPolElt
LeastCommonMultiple(f, g) : RngUPolElt, RngUPolElt -> RngUPolElt
LeastCommonMultiple(s) : [RngIntElt] -> RngIntElt
LeastCommonMultiple(Q) : [RngIntResElt] -> RngIntResElt
LeftLCM(u, v: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
LeftLCM(S: parameters) : Setq -> GrpBrdElt
PseudoAddMultiple(P1, P2, P3, n) : SrfKumPt, SrfKumPt, SrfKumPt, RngIntElt -> SrfKumPt
RightLCM(u, v: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
RightLCM(S: parameters) : Setq -> GrpBrdElt
TorsionMultiple(A) : ModAbVar -> RngIntElt
State_MultipleReturns (Example H1E2)
HasComplexMultiplication(E) : CrvEll -> BoolElt, RngIntElt
HasComplexMultiplication(E) : CrvEll -> BoolElt, RngIntElt
MultiplicationByMMap(E, m) : CrvEll, RngIntElt -> Map
MultiplicationTable(O) : AlgAssVOrd -> SeqEnum
MultiplicationTable(~L) : AlgLieExtr ->
MultiplicationTable(L) : AlgLieExtr -> SeqEnum
MultiplicationTable(O) : RngOrd -> [AlgMatElt]
Complex Multiplication (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
Complex Multiplication (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
Multiplication (SYMMETRIC FUNCTIONS)
MultiplicationByMMap(E, m) : CrvEll, RngIntElt -> Map
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012