[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: DihedralSubspace  ..  Dimension


DihedralSubspace

   DihedralSubspace(M) : ModFrm -> ModFrm

Dilog

   Dilog(s) : FldComElt -> FldComElt

Dimension

   BestDimensionLinearCode(K, n, d) : FldFin, RngIntElt, RngIntElt -> Code
   BDLC(K, n, d) : FldFin, RngIntElt, RngIntElt -> Code, BoolElt
   BrandtModuleDimension(D, N) : RngElt, RngElt -> RngIntElt
   BrandtModuleDimension(D, N) : RngIntElt, RngIntElt -> RngIntElt
   CohomologicalDimension(G, M, i) : GrpFin, ModRng, RngIntElt -> RngIntElt
   CohomologicalDimension(G, M, i) : GrpPerm, ModRng, RngIntElt -> RngIntElt
   CohomologicalDimension(G, M, n) : GrpPerm, ModRng, RngIntElt -> RngIntElt
   CohomologicalDimension(CM, n) : ModCoho, RngIntElt -> RngIntElt
   CohomologicalDimension(M, n) : ModGrp, n -> RngIntElt
   CohomologicalDimension(M, n) : ModGrp, n -> RngIntElt
   CohomologyDimension(M,r,n) : ModMPolGrd, RngIntElt, RngIntElt -> RngIntElt
   CohomologyDimension(S, r, n) : ShfCoh, RngIntElt, RngIntElt -> RngIntElt
   ConesOfMaximalDimension(F) : TorFan -> SeqEnum
   Degree(O) : AlgAssVOrd -> RngIntElt
   Degree(A) : ArtRep -> RngIntElt
   Dimension(B) : AlgBas -> RngIntElt
   Dimension(A) : AlgFP -> RngIntElt
   Dimension(A) : AlgGen -> RngIntElt
   Dimension(L) : AlgKac -> Infty
   Dimension(L) : AlgLie -> RngIntElt
   Dimension(L) : AlgLieExtr -> RngIntElt
   Dimension(R) : AlgMat -> RngIntElt
   Dimension(A) : AnHcJac -> RngIntElt
   Dimension(C) : Code -> FldRatElt
   Dimension(C) : Code -> RngIntElt
   Dimension(D) : DivCrvElt -> RngIntElt
   Dimension(D) : DivFunElt -> RngIntElt
   Dimension(C) : GRCrvS -> RngIntElt
   Dimension(G) : GrpLie -> RngIntElt
   Dimension(W) : GrpPermCox -> RngIntElt
   Dimension(p) : GRPtS -> RngIntElt
   Dimension(X) : GRSch -> RngIntElt
   Dimension(H) : HilbSpc -> RngIntElt
   Dimension(H) : HomModAbVar -> RngIntElt
   Dimension(J) : JacHyp -> RngIntElt
   Dimension(L) : Lat -> RngIntElt
   Dimension(L) : LinearSys -> RngIntElt
   Dimension(A) : ModAbVar -> RngIntElt
   Dimension(H) : ModAbVarHomol -> RngIntElt
   Dimension(M) : ModAlg -> RngIntElt
   Dimension(M): ModAlg -> RngIntElt
   Dimension(M) : ModBrdt -> RngIntElt
   Dimension(CM) : ModCoho -> RngIntElt
   Dimension(M) : ModDed -> RngIntElt
   Dimension(M) : ModFrm -> RngIntElt
   Dimension(M) : ModFrmBianchi -> RngIntElt
   Dimension(M) : ModFrmHil -> RngIntElt
   Dimension(M) : ModSS -> RngIntElt
   Dimension(V) : ModTupFld -> RngIntElt
   Dimension(V) : ModTupFld -> RngIntElt
   Dimension(D) : PhiMod -> RngIntElt
   Dimension(pm) : PMat -> RngIntElt
   Dimension(I) : RngMPol -> RngIntElt, [ RngIntElt ]
   Dimension(I) : RngMPolLoc -> RngIntElt, [ RngIntElt ]
   Dimension(Q) : RngMPolRes -> RngIntElt
   Dimension(R) : RootStr -> RngIntElt
   Dimension(R) : RootSys -> RngIntElt
   Dimension(X) : Sch -> RngIntElt
   Dimension(X) : SmpCpx -> RngIntelt
   Dimension(e) : SubModLatElt -> RngIntElt
   Dimension(G) : SymGenLoc -> RngIntElt
   Dimension(C) : TorCon -> RngIntElt
   Dimension(L) : TorLat -> RngIntElt
   DimensionByFormula(M) : ModFrm -> RngIntElt
   DimensionByFormula(N, k) : RngIntElt, FldRatElt -> RngIntElt
   DimensionCuspForms(eps, k) : GrpDrchElt, RngIntElt -> RngIntElt
   DimensionCuspFormsGamma0(N, k) : RngIntElt, RngIntElt -> RngIntElt
   DimensionCuspFormsGamma1(N, k) : RngIntElt, RngIntElt -> RngIntElt
   DimensionNewCuspFormsGamma0(N, k) : RngIntElt, RngIntElt -> RngIntElt
   DimensionNewCuspFormsGamma1(N, k) : RngIntElt, RngIntElt -> RngIntElt
   DimensionOfCentreOfEndomorphismRing(G) : GrpMat -> RngIntElt
   DimensionOfCentreOfEndomorphismRing(L) : Lat -> RngIntElt
   DimensionOfEndomorphismRing(G) : GrpMat -> RngIntElt
   DimensionOfEndomorphismRing(L) : Lat -> RngIntElt
   DimensionOfExactConstantField(F) : FldFunG -> RngIntElt
   DimensionOfFieldOfGeometricIrreducibility(C): Crv -> RngIntElt
   DimensionOfGlobalSections(S) : ShfCoh -> RngIntElt
   DimensionOfHomology(C, n) : ModCpx, RngIntElt -> RngIntElt
   DimensionOfKernelZ2(C) : CodeLinRng -> RngIntElt
   DimensionOfSpanZ2(C) : CodeLinRng -> RngIntElt
   HasFiniteDimension(Q) : RngMPolRes -> BoolElt
   HomologicalDimension(M) : ModMPol -> RngInt
   HomologicalDimension(R) : RngInvar -> RngInt
   IsDimensionCompatible(B) : AlgBas -> Bool
   IsMaximalDimension(C) : TorCon -> BoolElt
   KodairaEnriquesDimension(S) : Srfc -> RngIntElt
   LargestDimension(D) : DB -> RngIntElt
   LargestDimension(D) : DB -> RngIntElt
   LargestDimension(D) : DB -> RngIntElt
   LargestDimension(D) : DB -> RngIntElt
   LargestDimension(D): DB -> RngIntElt
   MinimalModelKodairaDimensionOne(S) : Srfc -> Map, Map
   MinimalModelKodairaDimensionZero(S) : Srfc -> Map
   OverDimension(V) : ModTupFld -> RngIntElt
   OverDimension(u) : ModTupFldElt -> RngIntElt
   OverDimension(M) : ModTupRng -> RngIntElt
   OverDimension(u) : ModTupRngElt -> RngIntElt
   PseudoDimension(C) : Code -> RngIntElt
   QuantumDimension(R, w) : RootDtm, ModTupRngElt -> SetMulti
   QuotientDimension(I) : RngMPol -> RngIntElt
   QuotientDimension(I) : RngMPol -> RngIntElt
   RepresentationDimension(D) : LieRepDec -> RngIntElt
   RepresentationDimension(R, v) : RootDtm, SeqEnum -> RngIntElt
   RiemannRochDimension(D) : DivTorElt -> RngIntElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012