[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: hamming .. Has
Hamming Weight (LINEAR CODES OVER FINITE RINGS)
Hamming Weight (LINEAR CODES OVER FINITE RINGS)
HammingAsymptoticBound(K, delta) : FldFin, FldPrElt -> FldPrElt
HammingCode(K, r) : FldFin, RngIntElt -> Code
CodeFld_HammingCode (Example H152E6)
HammingWeightEnumerator(C): Code -> RngMPolElt
WeightEnumerator(C): Code -> RngMPolElt
RightHandFactors(L) : RngDiffOpElt -> SeqEnum, SeqEnum[[BoolElt]]
Creation by Hand (RESOLUTION GRAPHS AND SPLICE DIAGRAMS)
Right Hand Factors of Operators (DIFFERENTIAL RINGS)
Error Handling Statements (STATEMENTS AND EXPRESSIONS)
HarmonicNumber(n) : RngIntElt -> FldRatElt
HarmonicNumber(n) : RngIntElt -> FldRatElt
HasAdditionAlgorithm(J) : JacHyp -> Bool
HasAffinePatch(X, i) : Sch, RngIntElt -> BoolElt
HasAllPQuotientsMetacyclic (G): GrpFP -> BoolElt, SeqEnum
HasAllRootsOnUnitCircle(f) : RngUPolElt -> BoolElt
HasAttribute(L, "c") : AlgKac, MonStgElt -> BoolElt, AlgKacElt
HasAttribute(GrpMat, "FirstBasicOrbitBound") : Cat, MonStgElt -> BoolElt, RngIntElt
HasAttribute(FldFin, "PowerPrinting", l) : Cat, MonStgElt, BoolElt ->
HasAttribute(F, "PowerPrinting") : FldFin, MonStgElt -> BoolElt, BoolElt
HasAttribute(A, s) : GrpAuto, MonStgElt -> BoolElt, .
HasAttribute(A, "GenWeights") : GrpAuto, MonStgElt -> BoolElt, [ RngIntElt ]
HasAttribute(A, "WeightSubgroupOrders") : GrpAuto, MonStgElt -> BoolElt, [ RngIntElt ]
HasAttribute(G, "IsVerified") : GrpMat, MonStgElt -> BoolElt
HasAttribute(G, "Base") : GrpMat, MonStgElt -> BoolElt, Tup
HasAttribute(G, "Order") : GrpMat, MonStgElt -> RngIntElt
HasAttribute(S, "DefaultPrecision") : RngSer, MonStgElt -> BoolElt, RngIntElt
HasCM(M : parameters) : ModSym -> BoolElt, RngIntElt
HasClique(G, k) : GrphUnd, RngIntElt -> BoolElt, { GrphVert }
HasClique(G, k, m : parameters) : GrphUnd, RngIntElt, BoolElt -> BoolElt, { GrphVert }
HasClique(G, k, m, f : parameters) : GrphUnd, RngIntElt, BoolElt, RngIntElt -> BoolElt, { GrphVert }
HasClosedCosetTable(P) : GrpFPCosetEnumProc -> BoolElt
HasComplement(G, U) : GrpAb, GrpAb -> BoolElt, GrpAb
HasComplement(G, M) : GrpPerm, GrpPerm -> BoolElt, GrpPerm
HasComplement(M, S) : ModGrp, ModGrp -> BoolElt, ModGrp
HasComplexConjugate(K) : FldAlg -> BoolElt, Map
HasComplexConjugate(K) : FldNum -> BoolElt, Map
HasComplexMultiplication(E) : CrvEll -> BoolElt, RngIntElt
HasComplexMultiplication(E) : CrvEll -> BoolElt, RngIntElt
HasCompositionTree(G) : Grp -> BoolElt
HasComputableAbelianQuotient(G) : GrpFP -> BoolElt, GrpAb, Map
HasComputableLCS(G) : GrpGPC -> BoolElt
HasDefinedModuleMap(C,n) : ModCpx, RngIntElt -> BoolElt
HasDefiningMap(L) : RngPad -> BoolElt, Map
HasFiniteDimension(Q) : RngMPolRes -> BoolElt
HasFiniteKernel(phi) : MapModAbVar -> BoolElt
HasFiniteOrder(g) : GrpMatElt -> BoolElt, RngIntElt
HasFiniteOrder(A) : Mtrx -> BoolElt
HasFiniteOrder (g : parameters ) : GrpMatElt -> BoolElt, RngIntElt
HasGCD(R) : Rng -> BoolElt
HasGNB(R, n, t) : RngPad, RngIntElt, RngIntElt -> BoolElt
HasGrevlexOrder(I) : RngMPol -> BoolElt
HasGroebnerBasis(I) : RngMPol -> BoolElt
HasHomogeneousBasis(A): AlgSym -> BoolElt
HasIndexOne(C,p) : CrvHyp, RngIntElt -> BoolElt
HasIndexOneEverywhereLocally(C) : CrvHyp -> BoolElt
HasInfiniteComputableAbelianQuotient(G) : GrpFP -> BoolElt, GrpAb, Map
HasInfinitePSL2Quotient(G) :: GrpFP -> BoolElt, SeqEnum
HasIntersectionProperty(C) : CosetGeom -> BoolElt
HasIntersectionPropertyN(C,n) : CosetGeom, RngIntElt -> BoolElt, BoolElt
HasInverse(f) : Map -> MonStgElt, Map
HasIrregularFibres(s) : GrphSpl -> BoolElt
HasIsotropicVector(V) : ModTupFld -> BoolElt, ModTupFldElt
HasKnownInverse(f) : MapSch -> Bool
HasLeviSubalgebra(L) : AlgLie -> BoolElt
HasLinearGrayMapImage(C) : Code -> BoolElt, Code
HasMultiplicityOne(A) : ModAbVar -> BoolElt
HasNegativeWeightCycle(G) : Grph -> BoolElt
HasNegativeWeightCycle(u : parameters) : GrphVert -> BoolElt
HasNonsingularPoint(X) : Sch -> BoolElt,Pt
HasOddDegreeModel(C) : CrvHyp -> BoolElt, CrvHyp, MapIsoSch
HasOnlyOrdinarySingularities(C) : CrvPln -> BoolElt, RngIntElt, RngMPol
HasOnlyOrdinarySingularitiesMonteCarlo(C) : CrvPln -> BoolElt, RngIntElt
HasOnlySimpleSingularities(S) : Srfc -> BoolElt, List
HasOrder(P, n) : JacHypPt, RngIntElt -> BoolElt
HasOutputFile() : -> BoolElt
HasPRoot(R) : RngPad -> BoolElt
HasParallelClass(D) : Inc -> BoolElt, { IncBlk }
HasParallelism(D: parameters) : Inc, RngIntElt -> BoolElt, { SetEnum }
HasPlace(C, m) : Crv[FldFin], RngIntElt -> BoolElt,PlcCrvElt
HasPlace(F, m) : FldFun, RngIntElt -> PlcFunElt
HasPlace(F, m) : FldFunG, RngIntElt -> BoolElt, PlcFunElt
HasPoint(f,q,v) : RngUPolElt, RngIntElt, RngIntElt -> BoolElt, SeqEnum
HasPointsEverywhereLocally(f,q) : RngUPolElt, RngIntElt -> BoolElt
HasPointsOverExtension(X) : Sch -> BoolElt
HasPolynomial(N) : NwtnPgon -> BoolElt
HasPolynomialFactorization(R) : Rng -> BoolElt
HasPreimage(x, f) : Any, Map -> BoolElt, Any
HasProjectiveDerivation(F) : RngDiff -> BoolElt
HasProjectiveDerivation(R) : RngDiffOp -> BoolElt
HasRandomPlace(F, m) : FldFun, RngIntElt -> BoolElt, PlcFunElt
HasRandomPlace(F, m) : FldFunG, RngIntElt -> BoolElt, PlcFunElt
HasRationalPoint(C) : CrvCon -> BoolElt, Pt
HasRationalSolutions(L, g) : RngDiffOpElt, RngElt -> BoolElt, RngElt, SeqEnum
HasResolution(D) : Inc -> BoolElt, { SetEnum }, RngIntElt
HasResolution(D, λ) : Inc, RngIntElt -> BoolElt, { SetEnum }
HasRoot(p) : RngUPolElt -> BoolElt, RngElt
HasRoot(f) : RngUPolElt -> BoolElt, RngPadElt
HasRoot(f) : RngUPolElt -> BoolElt, RngSerElt
HasRoot(p, S) : RngUPolElt, Rng -> BoolElt, RngElt
HasRootOfUnity(L, n) : RngPad, RngIntElt -> BoolElt
HasSchurBasis(A): AlgSym -> BoolElt
HasSingularPointsOverExtension(C) : Sch -> BoolElt
HasSingularVector(V) : ModTupFld -> BoolElt, ModTupFldElt
HasSparseRep(G) : Grph -> BoolElt
HasSquareSha(J) : JacHyp -> BoolElt
HasSupplement(G, M) : GrpPerm, GrpPerm -> BoolElt, GrpPerm
HasTwistedHopfStructure(U) : AlgQUE -> BoolElt, List
HasValidCosetTable(P) : GrpFPCosetEnumProc -> BoolElt
HasValidIndex(P) : GrpFPCosetEnumProc -> BoolElt
HasWeakIntersectionProperty(C) : CosetGeom -> BoolElt
HasZeroDerivation(F) : RngDiff -> BoolElt
HasZeroDerivation(R) : RngDiffOp -> BoolElt
IsSplittingField(K, A) : Fld, AlgQuat -> BoolElt, AlgQuatElt, Map
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012