[Next][Prev] [Right] [____] [Up] [Index] [Root]

ENUMERATIVE COMBINATORICS

 
Acknowledgements
 
Introduction
 
Combinatorial Functions
 
Subsets of a Finite Set







DETAILS

 
Introduction

 
Combinatorial Functions
      Factorial(n) : RngIntElt -> RngIntElt
      NumberOfPermutations(n, k) : RngIntElt, RngIntElt -> RngIntElt
      Binomial(n, r) : RngIntElt, RngIntElt -> RngIntElt
      Multinomial(n, [r1, ... rn]) : RngIntElt, [RngIntElt] -> RngIntElt
      Fibonacci(n) : RngIntElt -> RngIntElt
      Catalan(n) : RngIntElt -> RngIntElt
      Lucas(n) : RngIntElt -> RngIntElt
      GeneralizedFibonacciNumber(g0, g1, n) : RngIntElt, RngIntElt, RngIntElt -> RngIntElt
      StirlingFirst(n, k) : RngIntElt, RngIntElt -> RngIntElt
      StirlingSecond(n, k) : RngIntElt, RngIntElt -> RngIntElt
      Bell(n) : RngIntElt -> RngIntElt
      EulerianNumber(n, r) : RngIntElt, RngIntElt -> RngIntElt
      HarmonicNumber(n) : RngIntElt -> FldRatElt
      BernoulliNumber(n) : RngIntElt -> FldRatElt
      BernoulliApproximation(n) : RngIntElt -> FldPrElt
      BernoulliPolynomial(n) : RngIntElt -> RngUPolElt

 
Subsets of a Finite Set
      Subsets(S) : SetEnum -> SetEnum
      Subsets(S, k) : SetEnum, RngIntElt -> SetEnum
      Multisets(S, k) : SetEnum, RngIntElt -> SetEnum
      Subsequences(S, k) : SetEnum, RngIntElt -> SetEnum
      Permutations(S) : SetEnum -> SetEnum;
      Permutations(S, k) : SetEnum, RngIntElt -> SetEnum;
      Example EnumComb_OddGraph (H144E1)

[Next][Prev] [Right] [____] [Up] [Index] [Root]
Version: V2.19 of Mon Dec 17 14:40:36 EST 2012