[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: NilpotencyClass  ..  nlac


NilpotencyClass

   NilpotencyClass(G) : GrpFin -> RngIntElt
   NilpotencyClass(G) : GrpGPC -> RngIntElt
   NilpotencyClass(G) : GrpMat -> RngIntElt
   NilpotencyClass(G) : GrpPC -> RngIntElt
   NilpotencyClass(G) : GrpPerm -> RngIntElt

Nilpotent

   CyclicSubgroups(G) : GrpPC -> SeqEnum
   ElementaryAbelianSubgroups(G) : GrpPC -> SeqEnum
   NilpotentSubgroups(G) : GrpPC -> SeqEnum
   AbelianSubgroups(G) : GrpPC -> SeqEnum
   AllNilpotentLieAlgebras(F, d) : Fld, RngIntElt -> SeqEnum
   FreeNilpotentGroup(r, e) : RngIntElt, RngIntElt -> GrpGPC
   IsIrreducibleFiniteNilpotent(G : parameters): GrpMat -> BoolElt, Any
   IsNilpotent(f) : AlgFPElt -> BoolElt, RngIntElt
   IsNilpotent(a) : AlgGenElt -> BoolElt, RngIntElt
   IsNilpotent(L) : AlgLie -> BoolElt
   IsNilpotent(a) : AlgMatElt -> BoolElt, RngIntElt
   IsNilpotent(G) : GrpFin -> BoolElt
   IsNilpotent(G) : GrpGPC -> BoolElt
   IsNilpotent(G) : GrpMat -> BoolElt
   IsNilpotent(G) : GrpMat -> BoolElt
   IsNilpotent(G) : GrpPC -> BoolElt
   IsNilpotent(G) : GrpPerm -> BoolElt
   IsNilpotent(x) : RngElt -> BoolElt
   IsNilpotent(f) : RngMPolResElt -> BoolElt, RngIntElt
   IsNilpotentByFinite(G : parameters) : GrpMat -> BoolElt
   IsPrimitiveFiniteNilpotent(G : parameters): GrpMat -> BoolElt, Any
   LMGIsNilpotent(G) : GrpMat -> BoolElt
   NilpotentBoundary(G,i) : GrpPC, RngIntElt -> RngIntElt
   NilpotentLength(G) : GrpPC -> RngIntElt
   NilpotentLieAlgebra( F, r, k : parameters) : Fld, RngIntElt, RngIntElt -> AlgLie
   NilpotentOrbit( L, e ) : AlgLie, AlgLieElt -> NilpOrbAlgLie
   NilpotentOrbit( L, wd ) : AlgLie, SeqEnum -> NilpOrbAlgLie
   NilpotentOrbits( L ) : AlgLie -> SeqEnum
   NilpotentPresentation(G) : GrpGPC -> GrpGPC, Map
   NilpotentQuotient(G, c) : GrpMat, RngIntElt -> GrpGPC, Map
   NilpotentQuotient(G, c) : GrpPerm, RngIntElt -> GrpGPC, Map
   NilpotentQuotient(G, c: parameters) : GrpFP, RngIntElt -> GrpGPC, Map
   NilpotentQuotient(R, d) : [ AlgFPLieElt ], RngIntElt -> AlgLie, SeqEnum, SeqEnum, UserProgram
   NilpotentSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
   NilpotentSubgroups(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
   NonNilpotentElement(L) : AlgLie -> AlgLieElt

nilpotent

   Nilpotent Orbits in Simple Lie Algebras (LIE ALGEBRAS)
   Nilpotent Quotient (FINITELY PRESENTED GROUPS)
   Properties of Subgroups Requiring a Nil-po-tent Covering Group (POLYCYCLIC GROUPS)
   Solvable and Nilpotent Lie Algebras Classification (LIE ALGEBRAS)
   Subgroup Constructions Requiring a Nil-po-tent Covering Group (POLYCYCLIC GROUPS)

nilpotent-orbits

   Nilpotent Orbits in Simple Lie Algebras (LIE ALGEBRAS)

nilpotent-quotient

   Nilpotent Quotient (FINITELY PRESENTED GROUPS)

nilpotent_groups

   Other Functions for Nilpotent Matrix Groups (MATRIX GROUPS OVER INFINITE FIELDS)

NilpotentBoundary

   NilpotentBoundary(G,i) : GrpPC, RngIntElt -> RngIntElt

NilpotentLength

   NilpotentLength(G) : GrpPC -> RngIntElt

NilpotentLieAlgebra

   NilpotentLieAlgebra( F, r, k : parameters) : Fld, RngIntElt, RngIntElt -> AlgLie

NilpotentOrbit

   NilpotentOrbit( L, e ) : AlgLie, AlgLieElt -> NilpOrbAlgLie
   NilpotentOrbit( L, wd ) : AlgLie, SeqEnum -> NilpOrbAlgLie

NilpotentOrbits

   NilpotentOrbits( L ) : AlgLie -> SeqEnum

NilpotentPresentation

   NilpotentPresentation(G) : GrpGPC -> GrpGPC, Map

NilpotentQuotient

   NilpotentQuotient(G, c) : GrpMat, RngIntElt -> GrpGPC, Map
   NilpotentQuotient(G, c) : GrpPerm, RngIntElt -> GrpGPC, Map
   NilpotentQuotient(G, c: parameters) : GrpFP, RngIntElt -> GrpGPC, Map
   NilpotentQuotient(R, d) : [ AlgFPLieElt ], RngIntElt -> AlgLie, SeqEnum, SeqEnum, UserProgram
   AlgLie_NilpotentQuotient (Example H100E9)

NilpotentQuotient0

   GrpFP_1_NilpotentQuotient0 (Example H70E35)

NilpotentQuotient1

   GrpFP_1_NilpotentQuotient1 (Example H70E36)

NilpotentQuotient2

   GrpFP_1_NilpotentQuotient2 (Example H70E37)

NilpotentQuotient3

   GrpFP_1_NilpotentQuotient3 (Example H70E38)

NilpotentSubgroups

   CyclicSubgroups(G) : GrpPC -> SeqEnum
   ElementaryAbelianSubgroups(G) : GrpPC -> SeqEnum
   NilpotentSubgroups(G) : GrpPC -> SeqEnum
   AbelianSubgroups(G) : GrpPC -> SeqEnum
   NilpotentSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
   NilpotentSubgroups(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]

Nilradical

   Nilradical(L) : AlgLie -> AlgLie

Nine

   NineDescent(C : parameters) : Crv -> SeqEnum, List
   NineSelmerSet(C) : Crv -> RngIntElt

NineDescent

   Nine-Descent (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
   NineDescent(C : parameters) : Crv -> SeqEnum, List

NineSelmerSet

   NineSelmerSet(C) : Crv -> RngIntElt

NInvariant

   jNInvariant(p,N) : Pt, RngIntElt -> RngElt

nIsogeny

   nIsogeny(A, n) : ModAbVar, FldRatElt -> MapModAbVar

NLAC

   IdDataNLAC(L) : AlgLie -> MonStgElt, SeqEnum, Map

nlac

   The List of Nilpotent Lie Algebras (LIE ALGEBRAS)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012