[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: roots-coroots-weights  ..  Row


roots-coroots-weights

   Roots and Coroots (ROOT SYSTEMS)
   Roots, Coroots and Weights (GROUPS OF LIE TYPE)
   Roots, Coroots and Weights (ROOT DATA)

roots-direct

   Functions returning Roots (p-ADIC RINGS AND THEIR EXTENSIONS)

roots-ex

   Newton_roots-ex (Example H46E10)

RootsAndCoroots

   RootsAndCoroots(G) : GrpMat -> [RngIntElt], [ModTupRngElt], [ModTupRngElt]

RootsCoroots

   GrpCox_RootsCoroots (Example H98E17)
   GrpLie_RootsCoroots (Example H103E12)
   GrpRfl_RootsCoroots (Example H99E24)
   RootDtm_RootsCoroots (Example H97E17)
   RootSys_RootsCoroots (Example H96E10)

RootSequence

   RootSequence(V, f) : ModTupFld, Mtrx -> SeqEnum

RootSide

   RootSide(v) : GrphVert -> GrphVert

RootsInSplittingField

   RootsInSplittingField(f) : RngUPolElt[FldFin] -> [<RngUPolElt, RngIntElt>], FldFin

RootsNonExact

   RootsNonExact(p) : RngUPolElt[FldRe] -> [ FldComElt ], [ FldComElt ]
   FldRe_RootsNonExact (Example H25E6)

RootSpace

   CorootSpace(G) : GrpLie -> Lat
   RootSpace(G) : GrpLie -> Lat
   RootSpace(W) : GrpMat -> Lat
   RootSpace(W) : GrpPermCox -> .
   RootSpace(R) : RootStr -> ModTupFld
   RootSpace(R) : RootSys -> ModTupFld
   GrpCox_RootSpace (Example H98E16)
   GrpRfl_RootSpace (Example H99E23)
   RootSys_RootSpace (Example H96E9)

RootSubdata

   GrpLie_RootSubdata (Example H103E16)
   RootDtm_RootSubdata (Example H97E26)

rootsys

   Definition of a Root System (ROOT SYSTEMS)

RootSysSums

   RootSys_RootSysSums (Example H96E16)

RootSystem

   RootSystem(L) : AlgLie -> [ ModTupRngElt ], [ AlgLieElt ], [ ModTupRngElt ], AlgMatElt
   RootSystem(C) : AlgMatElt -> RootSys
   RootSystem(M) : AlgMatElt -> RootSys
   RootSystem(M) : AlgMatElt -> RootSys
   RootSystem(D) : GrphDir -> RootSys
   RootSystem(W) : GrpMat -> RootDtm
   RootSystem(W) : GrpPermCox -> RootDtm
   RootSystem(N) : MonStgElt -> RootSys
   RootSystem(A, B) : Mtrx, Mtrx -> RootSys
   RootSystem(R) : RootDtm -> RootSys
   AlgLie_RootSystem (Example H100E32)

RootVertex

   RootVertex(s) : GrphSpl -> GrphSplVert

Rosenhain

   RosenhainInvariants(t) : Mtrx -> Set

rosenhain

   From Period Matrix to Curve (HYPERELLIPTIC CURVES)

RosenhainInvariants

   RosenhainInvariants(t) : Mtrx -> Set

Rotate

   Rotate(~u, k) : ModTupFldElt, RngIntElt ->
   Rotate(u, k) : ModTupFldElt, RngIntElt -> ModTupFldElt
   Rotate(~u, k) : ModTupRngElt, RngIntElt ->
   Rotate(~u, k) : ModTupRngElt, RngIntElt ->
   Rotate(~u, k) : ModTupRngElt, RngIntElt ->
   Rotate(~u, k) : ModTupRngElt, RngIntElt ->
   Rotate(u, k) : ModTupRngElt, RngIntElt -> ModTupRngElt
   Rotate(u, k) : ModTupRngElt, RngIntElt -> ModTupRngElt
   Rotate(u, k) : ModTupRngElt, RngIntElt -> ModTupRngElt
   Rotate(u, k) : ModTupRngElt, RngIntElt -> ModTupRngElt
   Rotate(~S, p) : SeqEnum, RngIntElt ->
   RotateWord(u, n) : GrpFPElt, RngIntElt -> GrpFPElt
   RotateWord(u, n) : SgpFPElt, RngIntElt -> SgpFPElt

RotateWord

   RotateWord(u, n) : GrpFPElt, RngIntElt -> GrpFPElt
   RotateWord(u, n) : SgpFPElt, RngIntElt -> SgpFPElt

Round

   Round(q) : FldRatElt -> RngIntElt
   Round(r) : FldReElt -> FldReElt
   Round(x) : Infty -> Infty
   Round(n) : RngIntElt -> RngIntElt
   Round(p) : RngUPolElt -> RngUPolElt
   RoundDownDivisor(D) : DivSchElt -> DivSchElt
   RoundUpDivisor(D) : DivSchElt -> DivSchElt

round

   Rounding and Truncating (RATIONAL FIELD)

Round2

   RngOrd_Round2 (Example H37E5)

RoundDownDivisor

   RoundDownDivisor(D) : DivSchElt -> DivSchElt

rounding

   Rounding (REAL AND COMPLEX FIELDS)

RoundUpDivisor

   RoundUpDivisor(D) : DivSchElt -> DivSchElt

Row

   AddRow(~a, u, i, j) : AlgMatElt, RngElt, RngIntElt, RngIntElt ->
   AddRow(A, c, i, j) : Mtrx, RngElt, RngIntElt, RngIntElt -> Mtrx
   AddRow(A, c, i, j) : MtrxSprs, RngElt, RngIntElt, RngIntElt -> MtrxSprs
   FirstIndexOfRow(t, i) : Tbl,RngIntElt -> RngIntElt
   GeneralisedRowReduction(ρ) : GrpLie, Map -> Map
   GeneralisedRowReduction(ρ) : Map -> Map
   HadamardRowDesign(H, i) : AlgMatElt, RngIntElt -> Dsgn
   Image(a) : AlgMatElt -> ModTup
   InverseRowInsert(~t, i, j) : Tbl, RngIntElt, RngIntElt ->
   LastIndexOfRow(t, i) : Tbl,RngIntElt -> RngIntElt
   MultiplyRow(~a, u, j) : AlgMatElt, RngElt, RngIntElt ->
   MultiplyRow(A, c, i) : Mtrx, RngElt, RngIntElt -> Mtrx
   MultiplyRow(A, c, i) : MtrxSprs, RngElt, RngIntElt -> MtrxSprs
   NullspaceOfTranspose(X) : AlgMatLieElt -> ModTupRng
   RemoveRow(A, i) : Mtrx, RngIntElt -> Mtrx
   RemoveRow(A, i) : MtrxSprs, RngIntElt -> MtrxSprs
   RemoveRowColumn(A, i, j) : Mtrx, RngIntElt -> Mtrx
   RemoveRowColumn(A, i, j) : MtrxSprs, RngIntElt -> MtrxSprs
   Row(t, i) : Tbl, RngIntElt -> MonOrdElt
   RowInsert(~t, w) : Tbl, MonOrdElt ->
   RowInsert(~t, x) : Tbl, RngIntElt ->
   RowNullSpace(a) : AlgMatElt -> ModTup
   RowSequence(A) : Mtrx -> [ [RngElt] ]
   RowSkewLength(t, i) : Tbl,RngIntElt -> RngIntElt
   RowSubmatrix(A, i) : Mtrx, RngIntElt -> Mtrx
   RowSubmatrix(A, i, k) : Mtrx, RngIntElt, RngIntElt -> Mtrx
   RowSubmatrix(A, i) : MtrxSprs, RngIntElt -> MtrxSprs
   RowSubmatrix(A, i, k) : MtrxSprs, RngIntElt, RngIntElt -> MtrxSprs
   RowSubmatrixRange(A, i, j) : Mtrx, RngIntElt, RngIntElt -> Mtrx
   RowSubmatrixRange(A, i, j) : MtrxSprs, RngIntElt, RngIntElt -> MtrxSprs
   RowWeight(A, i) : MtrxSprs, RngIntElt -> RngIntElt
   RowWeights(A) : MtrxSprs -> [RngIntElt]
   Word(t) : Tbl -> MonOrdElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012