[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: dual .. DynkinDigraph
Sum, Intersection and Dual (ADDITIVE CODES)
Sum, Intersection and Dual (LINEAR CODES OVER FINITE FIELDS)
Sum, Intersection and Dual (LINEAR CODES OVER FINITE RINGS)
The Dual Space (ADDITIVE CODES)
The Dual Space (LINEAR CODES OVER FINITE FIELDS)
Lat_dual (Example H30E6)
The Dual Space (ADDITIVE CODES)
The Dual Space (LINEAR CODES OVER FINITE FIELDS)
Polyhedra_dual-toric-lattice (Example H143E10)
DualAtkinLehner(M, q) : ModSym, RngIntElt -> AlgMatElt
DualBasisLattice(L) : Lat -> Lat
DualCoxeterForm(W) : GrpPermCox -> AlgMatElt
CoxeterForm(W) : GrpPermCox -> AlgMatElt
CoxeterForm(R) : RootDtm -> AlgMatElt
CoxeterForm(R) : RootSys -> AlgMatElt
DualEuclideanWeightDistribution(C) : Code -> SeqEnum
DualFaceInDualFan(P,Q) : TorPol,[RngIntElt] -> TorFan
DualFan(P) : TorPol -> TorFan
DualHeckeOperator(M, n) : ModSym, RngIntElt -> AlgMatElt
DualIsogeny(phi) : Map -> Map
CrvEll_DualIsogeny (Example H120E20)
DualityAutomorphism(G) : GrpLie -> GrpLieAutoElt
DualityAutomorphism(G) : GrpLie -> GrpLieAutoElt
DualKroneckerZ4(C) : CodeLinRng -> CodeLinRng
DualLeeWeightDistribution(C) : Code -> SeqEnum
DualMorphism(R, S, phiX, phiY) : RootDtm, RootDtm, Map, Map -> Map
DualMorphism(R, S, Q) : RootDtm, RootDtm, [RngIntElt] -> Map
DualQuotient(L) : Lat -> GrpAb, Lat, Map
CodeFld_DualRS (Example H152E16)
Duals and Injectives (BASIC ALGEBRAS)
Duals and Injectives (BASIC ALGEBRAS)
DualStarInvolution(M) : ModSym -> AlgMatElt
DualVectorSpace(M) : ModSym -> ModTupFld
DualWeightDistribution(C) : Code -> [ <RngIntElt, RngIntElt> ]
DualWeightDistribution(C) : Code -> [ <RngIntElt, RngIntElt> ]
DualWeightDistribution(C) : CodeAdd -> [ <RngIntElt, RngIntElt> ]
To2DUpperHalfSpaceFundamentalDomian(z) : Mtrx -> Mtrx, Mtrx
DuvalPuiseuxExpansion(f, n) : RngUPolElt, RngIntElt -> SeqEnum
Operations associated with Duval's algorithm (NEWTON POLYGONS)
Operations not associated with Duval's Algorithm (NEWTON POLYGONS)
Newton_duval-ex (Example H46E9)
DuvalPuiseuxExpansion(f, n) : RngUPolElt, RngIntElt -> SeqEnum
SwinnertonDyerPolynomial(n) : RngIntElt -> RngUPolElt
Swinnerton-Dyer Polynomials (UNIVARIATE POLYNOMIAL RINGS)
Dynamic Typing (MAGMA SEMANTICS)
Dynamic Typing (MAGMA SEMANTICS)
DynkinDiagram(M) : AlgMatElt ->
DynkinDiagram(G) : GrpLie ->
DynkinDiagram(W) : GrpMat ->
DynkinDiagram(W) : GrpPermCox ->
DynkinDiagram(R) : RootStr ->
DynkinDiagram(R) : RootSys ->
DynkinDigraph(C) : AlgMatElt -> GrphDir
DynkinDigraph(G) : GrpLie -> GrphUnd
DynkinDigraph(W) : GrpMat -> GrphDir
DynkinDigraph(W) : GrpPermCox -> GrphDir
DynkinDigraph(N) : MonStgElt -> GrphDir
DynkinDigraph(R) : RootStr -> GrphDir
DynkinDigraph(R) : RootSys -> GrphDir
IrreducibleDynkinDigraph(X, n) : MonStgElt, RngIntElt -> GrphDir
IsDynkinDigraph(D) : GrphDir -> BoolElt
IsGenuineWeightedDynkinDiagram( L, wd ) : AlgLie, SeqEnum -> BoolElt, SeqEnum
WeightedDynkinDiagram( o ) : NilpOrbAlgLie -> SeqEnum
DynkinDiagram(M) : AlgMatElt ->
DynkinDiagram(G) : GrpLie ->
DynkinDiagram(W) : GrpMat ->
DynkinDiagram(W) : GrpPermCox ->
DynkinDiagram(R) : RootStr ->
DynkinDiagram(R) : RootSys ->
Cartan_DynkinDiagram (Example H95E17)
DynkinDigraph(C) : AlgMatElt -> GrphDir
DynkinDigraph(G) : GrpLie -> GrphUnd
DynkinDigraph(W) : GrpMat -> GrphDir
DynkinDigraph(W) : GrpPermCox -> GrphDir
DynkinDigraph(N) : MonStgElt -> GrphDir
DynkinDigraph(R) : RootStr -> GrphDir
DynkinDigraph(R) : RootSys -> GrphDir
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012