[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: domain .. Dual
(Co)Domain and (Co)Kernel (MAPPINGS)
Canonical Forms for Matrices over Euclidean Domains (MATRIX ALGEBRAS)
(Co)Domain and (Co)Kernel (MAPPINGS)
Fundamental Domain (ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES)
Fundamental Domains (ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES)
To2DUpperHalfSpaceFundamentalDomian(z) : Mtrx -> Mtrx, Mtrx
AlternatingDominant(D) : LieRepDec, GrpPermElt -> LieRepDec
AlternatingDominant(D, w) : LieRepDec, GrpPermElt -> LieRepDec
DominantCharacter(D) : LieRepDec -> LieRepDec
DominantDiagonalForm(X) : Mtrx[RngUPol] -> Mtrx, Mtrx, GrpMat, FldFin
DominantLSPath(R, hw) : RootDtm, SeqEnum -> PathLS
DominantWeight(G, v) : GrpLie, . -> ModTupFldElt, GrpFPCoxElt
DominantWeight(W, v) : GrpMat, . -> ModTupFldElt, GrpFPCoxElt
DominantWeight(W, v) : GrpPermCox, . -> ModTupFldElt, GrpFPCoxElt
DominantWeight(R, v) : RootDtm, . -> ModTupFldElt, GrpFPCoxElt
IsDominant(f) : MapSch -> BoolElt
IsDominant(R, v) : RootDtm, . -> ModTupFldElt, GrpFPCoxElt
IsDominant(R, v) : RootDtm, . -> ModTupFldElt, GrpFPCoxElt
IsDominant(R, v) : RootDtm, . -> ModTupFldElt, GrpFPCoxElt
DominantCharacter(D) : LieRepDec -> LieRepDec
DominantDiagonalForm(X) : Mtrx[RngUPol] -> Mtrx, Mtrx, GrpMat, FldFin
DominantLSPath(R, hw) : RootDtm, SeqEnum -> PathLS
DominantWeight(G, v) : GrpLie, . -> ModTupFldElt, GrpFPCoxElt
DominantWeight(W, v) : GrpMat, . -> ModTupFldElt, GrpFPCoxElt
DominantWeight(W, v) : GrpPermCox, . -> ModTupFldElt, GrpFPCoxElt
DominantWeight(R, v) : RootDtm, . -> ModTupFldElt, GrpFPCoxElt
GrpCox_DominantWeights (Example H98E21)
GrpRfl_DominantWeights (Example H99E27)
RootDtm_DominantWeights (Example H97E25)
MinimumDominatingSet(G) : GrphUnd -> SetEnum
DotProduct(u, v) : ModTupFldElt, ModTupFldElt -> FldElt
DotProductMatrix(W) : SeqEnum[ModTupFldElt] -> AlgMatElt
DotProduct(u, v) : ModTupFldElt, ModTupFldElt -> FldElt
DotProductMatrix(W) : SeqEnum[ModTupFldElt] -> AlgMatElt
Double(P) : SrfKumPt -> SrfKumPt
DoubleCoset(G, H, g, K ) : GrpFP, GrpFP, GrpFPElt, GrpFP -> GrpFPDcosElt
DoubleCoset(G, H, g, K) : GrpPerm, GrpPerm, GrpPermElt, GrpPerm -> GrpPermDcosElt
DoubleCosetRepresentatives(G, H, K) : GrpPerm, GrpPerm, GrpPerm -> SeqEnum, SeqEnum
DoubleCosets(G, H, K) : GrpFP, GrpFP, GrpFP -> { GrpFPDcosElt }
DoubleGenusOneModel(model) : ModelG1 -> ModelG1
DoublePlotkinSum(E, F, G, H) : Code, Code, Code, Code -> Code
DoublePlotkinSum(A, B, C, D) : Mtrx, Mtrx, Mtrx, Mtrx -> Mtrx
InverseRSKCorrespondenceDoubleWord(t1, t2) : Tbl, Tbl -> MonOrdElt, MonOrdElt
IsDoublePoint(p) : Pt -> BoolElt
Double Coset Spaces: Construction (FINITELY PRESENTED GROUPS)
Double Coset Spaces: Construction (FINITELY PRESENTED GROUPS)
DoubleCoset(G, H, g, K ) : GrpFP, GrpFP, GrpFPElt, GrpFP -> GrpFPDcosElt
DoubleCoset(G, H, g, K) : GrpPerm, GrpPerm, GrpPermElt, GrpPerm -> GrpPermDcosElt
DoubleCosetRepresentatives(G, H, K) : GrpPerm, GrpPerm, GrpPerm -> SeqEnum, SeqEnum
DoubleCosets(G, H, K) : GrpFP, GrpFP, GrpFP -> { GrpFPDcosElt }
GrpFP_1_DoubleCosets (Example H70E64)
DoubleGenusOneModel(model) : ModelG1 -> ModelG1
DoublePlotkinSum(E, F, G, H) : Code, Code, Code, Code -> Code
DoublePlotkinSum(A, B, C, D) : Mtrx, Mtrx, Mtrx, Mtrx -> Mtrx
BorderedDoublyCirculantQRCode(p, a, b) : RngIntElt, RngElt, RngElt -> Code
DoublyCirculantQRCode(p) : RngIntElt -> Code
DoublyCirculantQRCodeGF4(m, a) : RngIntElt, RngElt -> Code
IsDoublyEven(C) : Code -> BoolElt
DoublyCirculantQRCode(p) : RngIntElt -> Code
DoublyCirculantQRCodeGF4(m, a) : RngIntElt, RngElt -> Code
RoundDownDivisor(D) : DivSchElt -> DivSchElt
Introduction (ALGEBRAIC SURFACES)
Creation of General Del Pezzos (ALGEBRAIC SURFACES)
Del Pezzo Surfaces (ALGEBRAIC SURFACES)
Creation of General Del Pezzos (ALGEBRAIC SURFACES)
Del Pezzo Surfaces (ALGEBRAIC SURFACES)
AlgSrf_dp34 (Example H116E22)
Creation of Polynomial Rings and their Ideals (POLYNOMIAL RING IDEAL OPERATIONS)
AnalyticDrinfeldModule(F, p) : FldFun, PlcFunElt -> RngUPolTwstElt
Analytic Theory (CLASS FIELD THEORY FOR GLOBAL FUNCTION FIELDS)
FldFunAb_drinfeld (Example H43E5)
CharacterTableDS(G :parameters) : Grp -> SeqEnum, SeqEnum
Operations on Root Data (ROOT DATA)
AGDualCode(S, D) : [PlcCrvElt], DivCrvElt -> Code
AlgebraicGeometricDualCode(S, D) : [PlcCrvElt], DivCrvElt -> Code
CoxeterForm(W) : GrpPermCox -> AlgMatElt
CoxeterForm(R) : RootDtm -> AlgMatElt
CoxeterForm(R) : RootSys -> AlgMatElt
Dual(C) : Code -> Code
Dual(C) : Code -> Code
Dual(C) : Code -> Code
Dual(C) : Code -> Code
Dual(C) : CodeAdd -> CodeAdd
Dual(G) : GrpAb -> GrpAb, Map
Dual(G) : GrpLie -> GrpLie
Dual(G) : GrpMat -> BoolElt
Dual(W) : GrpPermCox -> GrpPermCox
Dual(D) : Inc -> Inc
Dual(L) : Lat -> Lat
Dual(A) : ModAbVar -> ModAbVar
Dual(M) : ModAlg -> ModAlg
Dual(C) : ModCpx -> ModCpx
Dual(M) : ModDed -> ModDed
Dual(M) : ModGrp -> ModGrp
Dual(P) : Plane -> Plane, PlanePtSet, PlaneLnSet
Dual(R) : RootDtm -> RootDtm, Map
Dual(R) : RootSys -> RootSys
Dual(S) : ShfCoh -> ShfCoh
Dual(C): TorCon -> TorCon
Dual(L) : TorLat -> TorLat
DualAtkinLehner(M, q) : ModSym, RngIntElt -> AlgMatElt
DualBasisLattice(L) : Lat -> Lat
DualEuclideanWeightDistribution(C) : Code -> SeqEnum
DualFaceInDualFan(P,Q) : TorPol,[RngIntElt] -> TorFan
DualFan(P) : TorPol -> TorFan
DualHeckeOperator(M, n) : ModSym, RngIntElt -> AlgMatElt
DualIsogeny(phi) : Map -> Map
DualKroneckerZ4(C) : CodeLinRng -> CodeLinRng
DualLeeWeightDistribution(C) : Code -> SeqEnum
DualMorphism(R, S, phiX, phiY) : RootDtm, RootDtm, Map, Map -> Map
DualMorphism(R, S, Q) : RootDtm, RootDtm, [RngIntElt] -> Map
DualQuotient(L) : Lat -> GrpAb, Lat, Map
DualStarInvolution(M) : ModSym -> AlgMatElt
DualVectorSpace(M) : ModSym -> ModTupFld
DualWeightDistribution(C) : Code -> [ <RngIntElt, RngIntElt> ]
DualWeightDistribution(C) : Code -> [ <RngIntElt, RngIntElt> ]
DualWeightDistribution(C) : CodeAdd -> [ <RngIntElt, RngIntElt> ]
IsDualComputable(A) : ModAbVar -> BoolElt, ModAbVar
IsSelfDual(C) : Code -> BoolElt
IsSelfDual(C) : Code -> BoolElt
IsSelfDual(C) : Code -> BoolElt
IsSelfDual(D) : Inc -> BoolElt
IsSelfDual(A) : ModAbVar -> BoolElt
IsSelfDual(P) : PlaneProj -> BoolElt
IsSymplecticSelfDual(C) : CodeAdd -> BoolElt
PartialDual(L, n) : Lat, RngIntElt -> Lat
PlanarDual(G) : GrphUnd -> GrphUnd
SemilinearDual(M, mu) : ModGrp,Map -> ModGrp
SymplecticDual(C) : CodeAdd -> CodeAdd
TwistedDual(M, lambda) : ModGrp, Map -> ModGrp
TwistedSemilinearDual(M, lambda, mu) : ModGrp, Map, Map -> ModGrp
ModGrp_Dual (Example H90E9)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012