[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: IsAbelianByFinite  ..  IsCanonical


IsAbelianByFinite

   IsAbelianByFinite(G : parameters) : GrpMat -> BoolElt

IsAbelianVariety

   IsAbelianVariety(A) : ModAbVar -> BoolElt

IsAbsoluteField

   IsAbsoluteField(K) : FldAlg -> BoolElt
   IsAbsoluteField(K) : FldNum -> BoolElt

IsAbsolutelyIrreducible

   IsAbsolutelyIrreducible(C) : Crv -> BoolElt
   IsAbsolutelyIrreducible(G) : GrpMat -> BoolElt
   IsAbsolutelyIrreducible(M) : ModRng -> BoolElt, AlgMatElt, RngIntElt
   IsAbsolutelyIrreducible(R) : RootStr -> BoolElt

IsAbsoluteOrder

   IsAbsoluteOrder(O) : RngFunOrd -> BoolElt
   IsAbsoluteOrder(O) : RngOrd -> BoolElt

IsAdditiveOrder

   IsAdditiveOrder(R, Q) : RootStr, [RngIntElt] -> BoolElt
   IsAdditiveOrder(R, Q) : RootSys, [RngIntElt] -> BoolElt

IsAdditiveProjective

   IsAdditiveProjective(C) : CodeAdd -> BoolElt

IsAdjoint

   IsAdjoint(G) : GrpLie -> BoolElt
   IsAdjoint(R) : RootDtm -> BoolElt

IsAffine

   IsAffine(W) : GrpFPCox -> BoolElt
   IsAffine(G) : GrpPerm -> BoolElt, GrpPerm
   IsAffine(X) : Sch -> BoolElt
   IsAffine(X) : Sch -> BoolElt

IsAffineLinear

   IsAffineLinear(f) : MapSch -> BoolElt
   IsAffineLinear(P) : TorPol -> BoolElt

IsAlgebraHomomorphism

   IsAlgebraHomomorphism(A, B, psi) : AlgBas, AlgBas, Map -> Bool
   IsAlgebraHomomorphism(A, B, psi) : AlgBas, Mtrx -> Bool
   IsAlgebraHomomorphism(psi): Map -> Bool

IsAlgebraic

   IsAlgebraic(h) : GrpLieAutoElt -> BoolElt

IsAlgebraicallyDependent

   IsAlgebraicallyDependent(S) : RngMPolElt -> BoolElt

IsAlgebraicallyIsomorphic

   IsAlgebraicallyIsomorphic(G, H) : GrpLie, GrpLie -> BoolElt, Map

IsAlgebraicDifferentialField

   IsAlgebraicDifferentialField(R) : Rng -> BoolElt

IsAlgebraicGeometric

   IsAlgebraicGeometric(C) : Code -> BoolElt

IsAlternating

   IsAlternating(G) : GrpPerm -> BoolElt

IsAltsym

   IsAltsym(G) : GrpPerm -> BoolElt

IsAmbient

   IsAmbient(M) : ModBrdt -> BoolElt
   IsAmbient(M) : ModMPol -> BoolElt
   IsAmbient(X) : Sch -> BoolElt

IsAmbientSpace

   IsAmbientSpace(M) : ModFrm -> BoolElt
   IsAmbientSpace(M) : ModSS -> BoolElt

IsAmple

   IsAmple(D) : DivTorElt -> BoolElt

IsAnalyticallyIrreducible

   IsAnalyticallyIrreducible(p) : CrvPln,Pt -> BoolElt

IsAnisotropic

   IsAnisotropic(R) : RootDtm -> BoolElt

IsAnticanonical

   IsAnticanonical(D) : DivSchElt -> BoolElt

IsArc

   IsArc(P, A) : Plane, { PlanePt } -> BoolElt

IsArithmeticallyCohenMacaulay

   IsArithmeticallyCohenMacaulay(S) : ShfCoh -> BoolElt
   IsCohenMacaulay(X) : Sch -> BoolElt

IsArithmeticallyGorenstein

   IsGorenstein(X) : Sch -> BoolElt
   IsArithmeticallyCohenMacaulay(X) : Sch -> BoolElt
   IsArithmeticallyGorenstein(X) : Sch -> BoolElt
   IsCohenMacaulay(X) : Sch -> BoolElt

IsAssociative

   IsAssociative(A) : AlgGen -> BoolElt

IsAttachedToModularSymbols

   IsAttachedToModularSymbols(A) : ModAbVar -> BoolElt
   IsAttachedToModularSymbols(H) : ModAbVarHomol -> BoolElt

IsAttachedToNewform

   IsAttachedToNewform(A) : ModAbVar -> BoolElt, ModAbVar, MapModAbVar

IsAutomaticGroup

   IsAutomaticGroup(F: parameters) : GrpFP -> BoolElt, GrpAtc
   AutomaticGroup(F: parameters) : GrpFP -> GrpAtc
   AutomaticGroup(F: parameters) : GrpFP -> GrpAtc

IsAutomorphism

   IsAutomorphism(f) : MapSch -> BoolElt,AutSch

IsBalanced

   IsBalanced(D, t: parameters) : Inc, RngIntElt -> BoolElt, RngIntElt

IsBasePointFree

   IsBasePointFree(D) : DivSchElt -> BoolElt
   IsMobile(D) : DivSchElt -> BoolElt
   BaseLocus(D) : DivSchElt -> Sch
   IsBasePointFree(L) : LinearSys -> BoolElt

IsBiconnected

   IsBiconnected(G) : GrphMultUnd -> BoolElt
   IsBiconnected(G) : GrphUnd -> BoolElt

IsBig

   IsBig(D) : DivTorElt -> BoolElt

IsBijective

   IsBijective(a) : ModMatRngElt -> BoolElt
   IsBijective(f) : ModMPolHom -> BoolElt

IsBipartite

   IsBipartite(G) : GrphMultUnd -> BoolElt
   IsBipartite(G) : GrphUnd -> BoolElt

IsBlock

   IsBlock(G, S) : GrpPerm, { Elt } -> BoolElt
   IsBlock(D, S) : Inc, IncBlk -> BoolElt, IncBlk

IsBlockTransitive

   IsBlockTransitive(D) : Inc -> BoolElt

IsBogomolovUnstable

   IsBogomolovUnstable(X) : GRFano -> BoolElt

IsBoundary

   IsBoundary(N, p) : NwtnPgon,Tup -> BoolElt

IsBravaisEquivalent

   IsBravaisEquivalent(G, H) : GrpMat[RngInt], GrpMat[RngInt] -> BoolElt, GrpMatElt

IsCanonical

   IsCanonical(D) : DivCrvElt -> BoolElt, DiffCrvElt
   IsCanonical(D) : DivFunElt -> BoolElt, DiffFunElt
   IsCanonical(D) : DivFunElt -> BoolElt, DiffFunElt
   IsCanonical(D) : DivSchElt -> BoolElt
   IsCanonical(B) : GRBskt -> BoolElt
   IsCanonical(C) : GRCrvS -> BoolElt
   IsCanonical(p) : GRPtS -> BoolElt
   IsCanonical(C) : TorCon -> BoolElt
   IsCanonical(F) : TorFan -> BoolElt
   IsCanonical(X) : TorVar -> BoolElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012