[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: minimal  ..  MinimalPolynomial


minimal

   Computing Minimal Simple Elements (BRAID GROUPS)
   Minimal and Characteristic Polynomial (FINITE FIELDS)
   Minimal Polynomial, Norm and Trace (ALGEBRAICALLY CLOSED FIELDS)
   Socle Series (MODULES OVER AN ALGEBRA)

minimal-characteristic-polynomial

   Minimal and Characteristic Polynomial (FINITE FIELDS)

minimal-field

   ModGrp_minimal-field (Example H90E11)

minimal-polynomial-norm-trace

   Minimal Polynomial, Norm and Trace (ALGEBRAICALLY CLOSED FIELDS)

minimal-submodule-socle-series

   Socle Series (MODULES OVER AN ALGEBRA)

minimal-vector-sequence

   FldFunRat_minimal-vector-sequence (Example H41E6)

MinimalAlgebraGenerators

   MinimalAlgebraGenerators(L) : [ RngMPol ] -> [ RngMPol ]
   MinimalAlgebraGenerators(L) : [ RngMPol ] -> [ RngMPol ]
   RngInvar_MinimalAlgebraGenerators (Example H110E15)

MinimalAndCharacteristicPolynomials

   MCPolynomials(A) : Mtrx -> RngUPolElt, RngUPolElt
   MinimalAndCharacteristicPolynomials(A: parameters) : Mtrx -> RngUPolElt, RngUPolElt

MinimalBaseRingCharacter

   MinimalBaseRingCharacter(chi) : GrpDrchElt -> GrpDrchElt

MinimalBasis

   MinimalBasis(M) : ModMPol -> [ ModMPolElt ]
   MinimalBasis(X) : Sch -> [ RngMPolElt ]
   MinimalBasis(S) : [ ModMPolElt ] -> [ ModMPolElt ]

MinimalChernNumber

   MinimalChernNumber(S,n) : Srfc, RngIntElt -> RngIntElt

MinimalCyclotomicField

   MinimalCyclotomicField(a) : FldRatElt -> FldRat
   MinimalField(a) : FldRatElt -> FldRat
   MinimalField(S) : [ FldCycElt ] -> FldCyc

MinimalDecomposition

   MinimalDecomposition(S) : [ RngMPol ] -> [ RngMPol ]

MinimalDegreeModel

   MinimalDegreeModel(E) : CrvEll[FldFunRat] -> CrvEll, Map, Map

MinimalElementConjugatingToPositive

   MinimalElementConjugatingToPositive(x, s: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt

MinimalElementConjugatingToSuperSummit

   MinimalElementConjugatingToSuperSummit(x, s: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt

MinimalElementConjugatingToUltraSummit

   MinimalElementConjugatingToUltraSummit(x, s: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt

MinimalField

   MinimalCyclotomicField(a) : FldRatElt -> FldRat
   MinimalField(a) : FldRatElt -> FldRat
   MinimalField(q) : FldRatElt -> FldRat
   MinimalField(G) : GrpMat -> FldFin
   MinimalField(M) : ModRng -> FldFin
   MinimalField(S) : SetEnum -> FldRat
   MinimalField(S) : [ FldCycElt ] -> FldCyc

MinimalFreeResolution

   MinimalFreeResolution(R) : RngInvar -> [ ModMPol ]

MinimalGeneratorForm

   MinimalGeneratorForm(A) : AlgBas -> Rec

MinimalGeneratorFormAlgebra

   MinimalGeneratorFormAlgebra(A) : AlgBas -> AlgBas

MinimalHeckePolynomial

   MinimalHeckePolynomial(A, n) : ModAbVar, RngIntElt -> RngUPolElt

MinimalIdeals

   MinimalIdeals(L : parameters) : AlgLie -> [ AlgLie ], BoolElt
   MinimalLeftIdeals(A : parameters) : AlgGen -> [ AlgGen ], BoolElt

MinimalIdentity

   MinimalIdentity(A, S) : AlgBas, SeqEnum[AlgBasElt] -> AlgBasElt

MinimalInequalities

   MinimalInequalities(C) : TorCon -> SeqEnum
   Inequalities(C) : TorCon -> SeqEnum

MinimalInteger

   MinimalInteger(I) : RngOrdIdl -> RngElt

MinimalIntegerSolution

   MinimalIntegerSolution(LHS, relations, RHS, objective) : Mtrx, Mtrx, Mtrx, Mtrx -> Mtrx, RngIntElt

minimalize

   Minimalization and Homogeneous Module Testing (INVARIANT THEORY)

minimalize-module

   Minimalization and Homogeneous Module Testing (INVARIANT THEORY)

MinimalLeftIdeals

   MinimalRightIdeals(A : parameters) : AlgGen -> [ AlgGen ], BoolElt
   MinimalIdeals(A : parameters) : AlgGen -> [ AlgGen ], BoolElt
   MinimalLeftIdeals(A : parameters) : AlgGen -> [ AlgGen ], BoolElt

MinimalModel

   MinimalModel(C) : CrvCon -> CrvCon, Map
   MinimalModel(E) : CrvEll -> CrvEll, Map, Map
   MinimalModel(E, p) : CrvEll, RngIntElt -> CrvEll, Map, Map
   MinimalModel(E) : CrvEll[FldFunG] -> CrvEll, MapIsoSch

MinimalModelGeneralType

   CanonicalWeightedModel(S) : Srfc -> Map, BoolElt
   MinimalModelGeneralType(S) : Srfc -> Map, BoolElt

MinimalModelKodairaDimensionOne

   MinimalModelKodairaDimensionOne(S) : Srfc -> Map, Map

MinimalModelKodairaDimensionZero

   MinimalModelKodairaDimensionZero(S) : Srfc -> Map

MinimalModelRationalSurface

   MinimalModelRationalSurface(S) : Srfc -> Map

MinimalModelRuledSurface

   MinimalModelRuledSurface(S) : Srfc -> Map

MinimalNormalSubgroup

   MinimalNormalSubgroup(G) : GrpPC -> GrpPC
   MinimalNormalSubgroup(G, N) : GrpPC -> GrpPC

MinimalNormalSubgroups

   MinimalNormalSubgroups(G) : GrpPC -> [GrpPC]
   MinimalNormalSubgroups(G) : GrpPerm -> [ GrpPerm ]

MinimalOverfields

   MinimalOverfields(e) : SubFldLatElt -> [ SubFldLatElt ]

MinimalOvergroup

   MinimalOvergroup(G, H) : GrpFP, GrpFP -> GrpFP

MinimalOvergroups

   MinimalOvergroups(e) : SubGrpLatElt -> { SubGrpLatElt }

MinimalParabolics

   MinimalParabolics(C) : CosetGeom -> SetIndx
   MinParabolics(C) : CosetGeom -> SetIndx

MinimalPartition

   MinimalPartition(G: parameters) : GrpPerm -> GSet

MinimalPartitions

   MinimalPartitions(G: parameters) : GrpPerm -> [ GSet ]

MinimalPolynomial

   MinimalPolynomial(x) : AlgAssVOrdElt -> RngUPolElt
   MinimalPolynomial(f) : AlgFPElt -> RngUPol
   MinimalPolynomial(a) : AlgGenElt -> RngUPolElt
   MinimalPolynomial(a) : AlgMatElt -> RngUPolElt
   MinimalPolynomial(x) : AlgQuatElt -> RngUPolElt
   MinimalPolynomial(a) : FldACElt -> RngUPolElt
   MinimalPolynomial(a) : FldAlgElt -> RngUPolElt
   MinimalPolynomial(a) : FldFinElt -> RngUPolElt
   MinimalPolynomial(a, E) : FldFinElt, FldFin -> RngUPolElt
   MinimalPolynomial(a, R) : FldFunElt, Rng -> RngUPolElt
   MinimalPolynomial(a) : FldNumElt -> RngUPolElt
   MinimalPolynomial(q) : FldRatElt -> RngUPolElt
   MinimalPolynomial(g) : GrpMatElt -> RngPolElt
   MinimalPolynomial(phi) : MapModAbVar -> RngUPolElt
   MinimalPolynomial(A: parameters) : Mtrx -> RngUPolElt
   MinimalPolynomial(s) : RngDiffElt -> RngUPolElt
   MinimalPolynomial(n) : RngIntElt -> RngUPolElt
   MinimalPolynomial(f) : RngMPolResElt -> RngUPol
   MinimalPolynomial(x) : RngPadElt -> RngUPolElt
   MinimalPolynomial(x, R) : RngPadElt, RngPad -> RngUPolElt
   AlgAff_MinimalPolynomial (Example H108E3)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012