[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: isomorphism .. Isp
Arithmetic with Isomorphisms (HYPERELLIPTIC CURVES)
Creation of Isomorphisms (HYPERELLIPTIC CURVES)
Equivalence and Isomorphism of Codes (LINEAR CODES OVER FINITE FIELDS)
The Isomorphism (FINITELY PRESENTED ALGEBRAS)
Arithmetic with Isomorphisms (HYPERELLIPTIC CURVES)
Creation of Isomorphisms (HYPERELLIPTIC CURVES)
IsEquivalent(C, D: parameters) : Code, Code -> BoolElt, Map
Equivalence and Isomorphism of Codes (LINEAR CODES OVER FINITE FIELDS)
Examples (QUATERNION ALGEBRAS)
AlgQuat_Isomorphism_algebras (Example H86E23)
AlgQuat_Isomorphism_example (Example H86E24)
Searching for Isomorphisms (FINITELY PRESENTED GROUPS)
Cartan_IsomorphismAndEquivalence (Example H95E14)
IsomorphismData(I) : Map -> [ RngElt ]
RootDtm_IsomorphismIsogeny (Example H97E8)
Isomorphisms(C, D) : Crv, Crv -> SeqEnum
Isomorphisms(K, E) : FldFunG, FldFunG -> [Map]
Isomorphisms(K,E,p1,p2) : FldFunG, FldFunG, PlcFunElt, PlcFunElt -> [Map]
CrvEll_Isomorphisms (Example H120E17)
FldFunG_Isomorphisms (Example H42E18)
Invariants of Isomorphisms (HYPERELLIPTIC CURVES)
Isomorphisms (QUATERNION ALGEBRAS)
Isomorphisms of Algebras (QUATERNION ALGEBRAS)
Isomorphisms of Ideals (QUATERNION ALGEBRAS)
Isomorphisms of Orders (QUATERNION ALGEBRAS)
Isomorphisms of Algebras (QUATERNION ALGEBRAS)
Isomorphisms of Ideals (QUATERNION ALGEBRAS)
Isomorphisms of Orders (QUATERNION ALGEBRAS)
IsomorphismToIsogeny(I) : Map -> Map
IsomorphismToStandardCopy(G, str : parameters) : Grp, MonStgElt -> BoolElt, Map
IsomorphismTypesOfBasicAlgebraSequence(S) : SeqEnum -> SeqEnum
IsomorphismTypesOfRadicalLayers(M) : ModAlgBas -> SeqEnum
IsomorphismTypesOfSocleLayers(M) : ModAlgBas -> SeqEnum
IsOne(a) : AlgGenElt -> BoolElt
IsOne(a) : AlgMatElt -> BoolElt
IsOne(a) : FldACElt -> BoolElt
IsOne(u) : MonFPElt -> BoolElt
IsOne(A) : Mtrx -> BoolElt
IsOne(A) : MtrxSprs -> BoolElt
IsOne(s) : RngDiffElt -> BoolElt
IsOne(L) : RngDiffOpElt -> BoolElt
IsOne(a) : RngElt -> BoolElt
IsOne(I) : RngFunOrdIdl -> BoolElt
IsOne(a) : RngLocAElt -> BoolElt
IsOne(I) : RngOrdIdl -> BoolElt
IsOne(a) : RngOrdResElt -> BoolElt
IsOne(x) : RngPadElt -> BoolElt
IsOne(s) : RngPowLazElt -> BoolElt
IsOneCoboundary(CM, s) : ModCoho, UserProgram -> BoolElt, UserProgram
IsOneCocycle(A, imgs) : GGrp, SeqEnum[GrpElt] -> BoolElt, OneCoC
IsOnlyMotivic(A) : ModAbVar -> BoolElt
IsOptimal(phi) : MapModAbVar -> BoolElt
IsOrbit(G, S) : GrpPerm, { Elt } -> BoolElt
IsOrder(P, m) : PtEll, RngIntElt -> BoolElt
IsOrdered(R) : Rng -> BoolElt
IsOrderTerm(s) : RngDiffElt -> BoolElt
IsOrdinary(E) : CrvEll -> BoolElt
IsOrdinaryProjective(X) : Sch -> BoolElt
IsOrdinaryProjectiveSpace(X) : Sch -> BoolElt
IsOrdinarySingularity(p) : Sch,Pt -> BoolElt
IsOrdinarySingularity(p) : Sch,Pt -> BoolElt
IsOrthogonalGroup(G) : GrpMat ->BoolElt
Isomorphisms, Isogenies and Endomorphism Rings of Analytic Jacobians (HYPERELLIPTIC CURVES)
HasIsotropicVector(V) : ModTupFld -> BoolElt, ModTupFldElt
IsTotallyIsotropic(V) : ModTupFld) -> BoolElt
IsotropicSubspace(f) : RngMPolElt -> ModTupRng
MaximalTotallyIsotropicSubspace(V) : ModTupFld -> ModTupFld
Isotropic Subspaces (QUADRATIC FORMS)
IsotropicSubspace(f) : RngMPolElt -> ModTupRng
QuadForm_isotropy-and-witt (Example H32E1)
IsOuter(R) : RootDtm -> BoolElt
IsInner(R) : RootDtm -> BoolElt
IsOverQ(H) : HomModAbVar -> HomModAbVar
IsOverSmallerField (G : parameters) : GrpMat -> BoolElt, GrpMat
IsOverSmallerField(G, k : parameters) : GrpMat -> BoolElt, GrpMat
GrpMatFF_IsOverSmallerField (Example H60E7)
IsRestricted(L) : AlgLie -> BoolElt, Map
IspLieAlgebra(L) : AlgLie -> BoolElt, Map
IsRestrictable(L) : AlgLie -> BoolElt, Map
IsRestrictedSubalgebra(L, M) : AlgLie, AlgLie -> AlgLie
IspGroup(G) : GrpAb -> BoolElt
IspIntegral(C, p) : CrvHyp, RngIntElt -> BoolElt
IspMaximal(O, p) : AlgAssVOrd, RngOrdIdl -> BoolElt
IspMinimal(C, p) : CrvHyp, RngIntElt -> BoolElt, BoolElt
IspNormal(C, p) : CrvHyp, RngIntElt -> BoolElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012