[Next][Prev] [Right] [Left] [Up] [Index] [Root]

GROUPS DEFINED BY REWRITE SYSTEMS

 
Acknowledgements
 
Introduction
      Terminology
      The Category of Rewrite Groups
      The Construction of a Rewrite Group
 
Constructing Confluent Presentations
      The Knuth-Bendix Procedure
      Defining Orderings
      Setting Limits
      Accessing Group Information
 
Properties of a Rewrite Group
 
Arithmetic with Words
      Construction of a Word
      Element Operations
 
Operations on the Set of Group Elements
 
Homomorphisms
      General Remarks
      Construction of Homomorphisms
 
Conversion to a Finitely Presented Group
 
Bibliography







DETAILS

 
Introduction

      Terminology

      The Category of Rewrite Groups

      The Construction of a Rewrite Group

 
Constructing Confluent Presentations

      The Knuth-Bendix Procedure
            RWSGroup(F: parameters) : MonFP -> MonRWS
            Example GrpRWS_RWSGroup (H74E1)

      Defining Orderings
            RWSGroup(F: parameters) : MonFP -> MonRWS
            Example GrpRWS_RWSGroup-2 (H74E2)
            Example GrpRWS_RWSGroup-3 (H74E3)

      Setting Limits
            RWSMonoid(F: parameters) : MonFP -> MonRWS
            SetVerbose("KBMAG", v) : MonStgElt, RngIntElt ->

      Accessing Group Information
            G . i : GrpRWS, RngIntElt -> GrpRWSElt
            Generators(G) : GrpRWS -> [GrpRWSElt]
            NumberOfGenerators(G) : GrpRWS -> RngIntElt
            Relations(G) : GrpRWS -> [GrpFPRel]
            NumberOfRelations(G) : GrpRWS -> RngIntElt
            Ordering(G) : GrpRWS -> String
            Example GrpRWS_BasicAccess (H74E4)

 
Properties of a Rewrite Group
      IsConfluent(G) : GrpRWS -> BoolElt
      IsFinite(G) : GrpRWS -> BoolElt, RngIntElt
      Order(G) : GrpRWS -> RngIntElt
      Example GrpRWS_IsConfluent (H74E5)
      Example GrpRWS_Order (H74E6)

 
Arithmetic with Words

      Construction of a Word
            Identity(G) : GrpRWS -> GrpRWSElt
            G ! [ i1, ..., is ] : GrpRWS, [ RngIntElt ] -> GrpRWSElt
            Parent(w) : GrpRWSElt -> GrpRWS
            Example GrpRWS_Words (H74E7)

      Element Operations
            u * v : GrpRWSElt, GrpRWSElt -> GrpRWSElt
            u / v : GrpRWSElt, GrpRWSElt -> GrpRWSElt
            u ^ n : GrpRWSElt, RngIntElt -> GrpRWSElt
            u ^ v : GrpRWSElt, GrpRWSElt -> GrpRWSElt
            Inverse(w) : GrpRWSElt -> GrpRWSElt
            (u, v) : GrpRWSElt, GrpRWSElt -> GrpRWSElt
            (u1, ..., ur) : GrpRWSElt, ..., GrpRWSElt -> GrpRWSElt
            u eq v : GrpRWSElt, GrpRWSElt -> BoolElt
            u ne v : GrpRWSElt, GrpRWSElt -> BoolElt
            IsId(w) : GrpRWSElt -> BoolElt
            # u : GrpRWSElt -> RngIntElt
            ElementToSequence(u) : GrpRWSElt -> [ RngIntElt ]
            Example GrpRWS_Arithmetic (H74E8)

 
Operations on the Set of Group Elements
      Random(G, n) : GrpRWS, RngIntElt -> GrpRWSElt
      Random(G) : GrpRWS -> GrpRWSElt
      Representative(G) : GrpRWS -> GrpRWSElt
      Set(G, a, b) : GrpRWS, RngIntElt, RngIntElt -> SetEnum
      Set(G) : GrpRWS -> SetEnum
      Seq(G, a, b) : GrpRWS, RngIntElt, RngIntElt -> SeqEnum
      Seq(G) : GrpRWS -> SeqEnum
      Example GrpRWS_Set (H74E9)

 
Homomorphisms

      General Remarks

      Construction of Homomorphisms
            hom< R -> G | S > : Struct , Struct -> Map

 
Conversion to a Finitely Presented Group
      Example GrpRWS_Conversion (H74E10)

 
Bibliography

[Next][Prev] [Right] [____] [Up] [Index] [Root]
Version: V2.19 of Mon Dec 17 14:40:36 EST 2012