[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: blackbox  ..  BlumBlumShubModulus


blackbox

   BLACK-BOX GROUPS
   GROUPS OF STRAIGHT-LINE PROGRAMS

BLLC

   BestLengthLinearCode(K, k, d) : FldFin, RngIntElt, RngIntElt -> Code, BoolElt
   BLLC(K, k, d) : FldFin, RngIntElt, RngIntElt -> Code, BoolElt

BLLCLower

   BLLCLowerBound(F, k, d) : FldFin, RngIntElt, RngIntElt -> RngIntElt

BLLCLowerBound

   BLLCLowerBound(F, k, d) : FldFin, RngIntElt, RngIntElt -> RngIntElt

BLLCUpper

   BLLCUpperBound(F, k, d) : FldFin, RngIntElt, RngIntElt -> RngIntElt

BLLCUpperBound

   BLLCUpperBound(F, k, d) : FldFin, RngIntElt, RngIntElt -> RngIntElt

Block

   BasicAlgebraOfBlockAlgebra(S) : SeqEnum -> AlgBas
   BasicAlgebraOfPrincipalBlock(G,k) : GrpPerm, FldFin -> AlgBas
   Block(D, i) : Inc, RngIntElt -> IncBlk
   BlockDegree(D) : Dsgn -> RngIntElt
   BlockDegree(D, B) : Inc, IncBlk -> RngIntElt
   BlockDegrees(D) : Inc -> [ RngIntElt ]
   BlockGraph(D) : Inc -> Grph
   BlockGraph(D) : Inc -> GrphUnd
   BlockGroup(D) : Inc -> GrpPerm
   BlockMatrix(m, n, blocks) : RngIntElt, RngIntElt, [ Mtrx ] -> Mtrx
   BlockMatrix(m, n, rows) : RngIntElt, RngIntElt, [ [ Mtrx ] ] -> Mtrx
   BlockSet(D) : Inc -> IncBlkSet
   InsertBlock(A, B, i, j) : Mtrx, Mtrx, RngIntElt, RngIntElt -> Mtrx
   InsertBlock(~a, b, i, j) : Mtrx, Mtrx, RngIntElt, RngIntElt -> Mtrx
   InsertBlock(A, B, i, j) : MtrxSprs, MtrxSprs, RngIntElt, RngIntElt -> MtrxSprs
   IsBlock(G, S) : GrpPerm, { Elt } -> BoolElt
   IsBlock(D, S) : Inc, IncBlk -> BoolElt, IncBlk
   IsBlockTransitive(D) : Inc -> BoolElt
   IsolMinBlockSize(n, p, i) : RngIntElt, RngIntElt, RngIntElt -> RngIntElt
   Line(D, p, q) : Inc, IncPt, IncPt -> IncBlk
   ObstructionDescentBuildingBlock(M) : ModSym -> SeqEnum
   Submatrix(A, i, j, p, q) : Mtrx, RngIntElt, RngIntElt, RngIntElt, RngIntElt -> Mtrx
   Submatrix(a, i, j, p, q) : Mtrx, RngIntElt, RngIntElt, RngIntElt, RngIntElt -> Mtrx
   Submatrix(A, i, j, p, q) : MtrxSprs, RngIntElt, RngIntElt, RngIntElt, RngIntElt -> MtrxSprs
   SubmatrixRange(A, i, j, r, s) : Mtrx, RngIntElt, RngIntElt, RngIntElt, RngIntElt -> Mtrx
   SubmatrixRange(A, i, j, r, s) : MtrxSprs, RngIntElt, RngIntElt, RngIntElt, RngIntElt -> MtrxSprs

block

   Creating Points and Blocks (INCIDENCE STRUCTURES AND DESIGNS)
   Operations on Points and Blocks (INCIDENCE STRUCTURES AND DESIGNS)
   The Point-Set and Block-Set of an Incidence Structure (INCIDENCE STRUCTURES AND DESIGNS)

BlockDegree

   BlockSize(D) : Dsgn -> RngIntElt
   BlockDegree(D) : Dsgn -> RngIntElt
   BlockDegree(D, B) : Inc, IncBlk -> RngIntElt

BlockDegrees

   BlockSizes(D) : Inc -> [ RngIntElt ]
   BlockDegrees(D) : Inc -> [ RngIntElt ]

BlockGraph

   BlockGraph(D) : Inc -> Grph
   BlockGraph(D) : Inc -> GrphUnd

BlockGroup

   BlockGroup(D) : Inc -> GrpPerm

BlockMatrix

   BlockMatrix(m, n, blocks) : RngIntElt, RngIntElt, [ Mtrx ] -> Mtrx
   BlockMatrix(m, n, rows) : RngIntElt, RngIntElt, [ [ Mtrx ] ] -> Mtrx

Blocks

   Blocks(G) : GrpMat -> SeqEnum
   Blocks(D) : Inc -> { IncBlk }
   Blocks(T, p) : SeqEnum[AlgChtrElt], RngIntElt -> SeqEnum, SeqEnum
   BlocksAction(G, P) : GrpPerm, Any -> Hom(GrpPerm), GrpPerm, GrpPerm
   BlocksImage(G) : GrpMat -> GrpPerm
   BlocksImage(G, P) : GrpPerm, Any -> GrpPerm
   BlocksKernel(G, P) : GrpPerm, Any -> GrpPerm
   NumberOfBlocks(D) : Inc -> RngIntElt

blocks

   Building blocks (MODULAR ABELIAN VARIETIES)

BlocksAction

   BlocksAction(G, P) : GrpPerm, Any -> Hom(GrpPerm), GrpPerm, GrpPerm

BlocksActions

   GrpPerm_BlocksActions (Example H58E27)

BlocksActions-2

   GrpPerm_BlocksActions-2 (Example H58E28)

BlockSet

   BlockSet(D) : Inc -> IncBlkSet

BlocksImage

   BlocksImage(G) : GrpMat -> GrpPerm
   BlocksImage(G, P) : GrpPerm, Any -> GrpPerm

BlockSize

   BlockSize(D) : Dsgn -> RngIntElt
   BlockDegree(D) : Dsgn -> RngIntElt
   BlockDegree(D, B) : Inc, IncBlk -> RngIntElt

BlockSizes

   BlockSizes(D) : Inc -> [ RngIntElt ]
   BlockDegrees(D) : Inc -> [ RngIntElt ]

BlocksKernel

   BlocksKernel(G, P) : GrpPerm, Any -> GrpPerm

blow

   Resolution of Singularities (ALGEBRAIC CURVES)

blow-ups

   Resolution of Singularities (ALGEBRAIC CURVES)

Blowup

   Blowup(C) : CrvPln -> CrvPln, CrvPln
   Blowup(C,M) : CrvPln,Mtrx -> CrvPln, RngIntElt, RngIntElt
   Blowup(F,v): TorFan,TorLatElt -> TorFan
   Blowup(X,v) : TorVar,TorLatElt -> TorVar,TorMap

Blum

   BlumBlumShubModulus(b) : RngIntElt -> RngIntElt
   BBSModulus(b) : RngIntElt -> RngIntElt
   RandomSequenceBlumBlumShub(b, t) : RngIntElt, RngIntElt -> SeqEnum
   RandomSequenceBlumBlumShub(n, s, t) : RngIntElt, RngIntElt, RngIntElt -> SeqEnum

BlumBlumShub

   BlumBlumShub(b, t) : RngIntElt, RngIntElt -> SeqEnum
   RandomSequenceBlumBlumShub(b, t) : RngIntElt, RngIntElt -> SeqEnum
   RandomSequenceBlumBlumShub(n, s, t) : RngIntElt, RngIntElt, RngIntElt -> SeqEnum

BlumBlumShubModulus

   BlumBlumShubModulus(b) : RngIntElt -> RngIntElt
   BBSModulus(b) : RngIntElt -> RngIntElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012