[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: form  ..  Forms


form

   Canonical Forms (MATRIX ALGEBRAS)
   Computing Normal Forms of Elements (BRAID GROUPS)
   Index Form Equations (ORDERS AND ALGEBRAIC FIELDS)
   Matrix Action on Forms (BINARY QUADRATIC FORMS)
   Mixed Canonical Form and Lattice Operations (BRAID GROUPS)
   Normal Form for Elements of a Braid Group (BRAID GROUPS)
   Operations on Forms (BINARY QUADRATIC FORMS)

form-action-matrix

   Matrix Action on Forms (BINARY QUADRATIC FORMS)

form-operations

   Operations on Forms (BINARY QUADRATIC FORMS)

Formal

   FormalGroupHomomorphism(phi, prec) : MapSch, RngIntElt -> RngSerPowElt
   FormalGroupLaw(E, prec) : CrvEll, RngIntElt -> RngMPolElt
   FormalLog(E) : CrvEll -> RngSerPowElt, PtEll
   FormalPoint(P) : Pt -> Pt
   FormalSet(M) : Str -> SetFormal
   PowerFormalSet(R) : Str -> PowSetIndx

formal

   Formal Sequences (SEQUENCES)
   Formal Sets (SETS)
   The Formal Group (ELLIPTIC CURVES)
   The Formal Sequence Constructor (SEQUENCES)
   The Formal Set Constructor (SETS)

FormalGroupHomomorphism

   FormalGroupHomomorphism(phi, prec) : MapSch, RngIntElt -> RngSerPowElt

FormalGroupLaw

   FormalGroupLaw(E, prec) : CrvEll, RngIntElt -> RngMPolElt

FormalLog

   FormalLog(E) : CrvEll -> RngSerPowElt, PtEll

FormalPoint

   FormalPoint(P) : Pt -> Pt

FormalSet

   FormalSet(M) : Str -> SetFormal

Format

   Format(r) : Rec -> RecFormat
   GetElementPrintFormat(B) : GrpBrd -> MonStgElt
   SetElementPrintFormat(~B, s) : GrpBrd, MonStgElt ->

format

   RECORDS
   The Record Format Constructor (RECORDS)

formats

   Data files (RING OF INTEGERS)

Forms

   AmbiguousForms(Q) : QuadBin -> SeqEnum
   AntisymmetricForms(L) : Lat -> [ AlgMatElt ]
   AntisymmetricForms(L, n) : Lat, RngIntElt -> [ AlgMatElt ]
   BianchiCuspForms(F, N) : FldNum, RngOrdIdl -> ModFrmBianchi
   BinaryForms(N, p) : [RngIntElt], RngIntElt -> RngMPol, [[RngMPolElt]], RngMPol
   BinaryQuadraticForms(D) : RngIntElt -> QuadBin
   ClassicalForms(G: parameters): GrpMat -> Rec
   CuspForms(x) : Any -> ModFrm
   DihedralForms(M) : ModFrm -> List
   DimensionCuspForms(eps, k) : GrpDrchElt, RngIntElt -> RngIntElt
   DimensionCuspFormsGamma0(N, k) : RngIntElt, RngIntElt -> RngIntElt
   DimensionCuspFormsGamma1(N, k) : RngIntElt, RngIntElt -> RngIntElt
   DimensionNewCuspFormsGamma0(N, k) : RngIntElt, RngIntElt -> RngIntElt
   DimensionNewCuspFormsGamma1(N, k) : RngIntElt, RngIntElt -> RngIntElt
   HalfIntegralWeightForms(chi, w) : GrpDrchElt, FldRatElt -> ModFrm
   HalfIntegralWeightForms(G, w) : GrpPSL2, FldRatElt -> ModFrm
   HalfIntegralWeightForms(N, w) : RngIntElt, FldRatElt -> ModFrm
   HeegnerForms(E,D : parameters) : CrvEll[FldRat], RngIntElt -> SeqEnum
   HeegnerForms(N,D : parameters) : RngIntElt, RngIntElt -> SeqEnum
   HilbertCuspForms(F, N, k) : FldNum, RngOrdIdl, SeqEnum -> ModFrmHil
   InvariantBilinearForms(G) : GrpMat -> SeqEnum[AlgMatElt], SeqEnum[AlgMatElt]
   InvariantForms(G) : GrpMat -> SeqEnum
   InvariantForms(G) : GrpMat -> [ AlgMatElt ]
   InvariantForms(G, n) : GrpMat, RngIntElt -> [ AlgMatElt ]
   InvariantForms(L) : Lat -> [ AlgMatElt ]
   InvariantForms(L, n) : Lat, RngIntElt -> [ AlgMatElt ]
   InvariantQuadraticForms(G) : GrpMat -> SeqEnum[AlgMatElt]
   InvariantSesquilinearForms(G) : GrpMat -> SeqEnum[AlgMatElt]
   IsRingOfAllModularForms(M) : ModFrm -> BoolElt
   ModularForms(G) : -> ModFrm
   ModularForms(G, k) : -> ModFrm
   ModularForms(eps, k) : GrpDrchElt, RngIntElt -> ModFrm
   ModularForms(N) : RngIntElt -> ModFrm
   ModularForms(N, k) : RngIntElt, RngIntElt -> ModFrm
   ModularForms(chars, k) : [GrpDrchElt], RngIntElt -> ModFrm
   NumberOfAntisymmetricForms(L) : Lat -> RngIntElt
   NumberOfInvariantForms(G) : GrpMat -> RngIntElt, RngIntElt
   NumberOfInvariantForms(L) : Lat -> RngIntElt, RngIntElt
   NumberOfSymmetricForms(L) : Lat -> RngIntElt
   PGroupToForms(G) : GrpPC -> SeqEnum
   PerfectForms(G) : GrpMat[RngInt] -> SeqEnum
   ReducedForms(Q) : QuadBin -> [ QuadBinElt ]
   SemiInvariantBilinearForms(G) : GrpMat -> SeqEnum
   SemiInvariantQuadraticForms(G) : GrpMat -> SeqEnum
   SemiInvariantSesquilinearForms(G) : GrpMat -> SeqEnum
   SymmetricForms(L) : Lat -> [ AlgMatElt ]
   SymmetricForms(L, n) : Lat, RngIntElt -> [ AlgMatElt ]
   QuadBin_Forms (Example H33E1)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012