[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: Incidence  ..  Indecomposable


Incidence

   IncidenceDigraph(A) : ModMatRngElt -> GrphDir
   IncidenceGeometry(C) : CosetGeom -> IncGeom
   IncidenceGeometry(G) : GrphUnd -> IncGeom
   IncidenceGraph(D) : Inc -> Grph
   IncidenceGraph(D) : Inc -> GrphUnd
   IncidenceGraph(D) : IncGeom -> GrphUnd, GrphVertSet, GrphEdgeSet
   IncidenceGraph(A) : ModMatRngElt -> GrphUnd
   IncidenceGraph(P) : Plane -> Grph
   IncidenceGraph(P) : Plane -> GrphUnd
   IncidenceMatrix(G) : Grph -> ModHomElt
   IncidenceMatrix(D) : Inc -> ModMatRngElt
   IncidenceMatrix(P) : Plane -> AlgMatElt
   IncidenceStructure(G) : Grph -> Inc
   IncidenceStructure(I) : Inc -> Inc
   IncidenceStructure< v | X > : RngIntElt, List -> Inc

incidence

   Construction of an Incidence Geometry (INCIDENCE GEOMETRY)
   HADAMARD MATRICES
   INCIDENCE GEOMETRY
   INCIDENCE STRUCTURES AND DESIGNS

incidence-geometry

   INCIDENCE GEOMETRY

incidence-structure-design

   INCIDENCE STRUCTURES AND DESIGNS

incidence-structure-hadamard

   HADAMARD MATRICES

IncidenceDigraph

   IncidenceDigraph(A) : ModMatRngElt -> GrphDir

IncidenceGeometry

   IncidenceGeometry(C) : CosetGeom -> IncGeom
   IncidenceGeometry(G) : GrphUnd -> IncGeom

IncidenceGraph

   IncidenceGraph(D) : Inc -> Grph
   IncidenceGraph(D) : Inc -> GrphUnd
   IncidenceGraph(D) : IncGeom -> GrphUnd, GrphVertSet, GrphEdgeSet
   IncidenceGraph(A) : ModMatRngElt -> GrphUnd
   IncidenceGraph(P) : Plane -> Grph
   IncidenceGraph(P) : Plane -> GrphUnd

IncidenceMatrix

   IncidenceMatrix(G) : Grph -> ModHomElt
   IncidenceMatrix(D) : Inc -> ModMatRngElt
   IncidenceMatrix(P) : Plane -> AlgMatElt

IncidenceStructure

   IncidenceStructure(G) : Grph -> Inc
   IncidenceStructure(I) : Inc -> Inc
   IncidenceStructure< v | X > : RngIntElt, List -> Inc

Incident

   IncidentEdges(u) : GrphVert -> SetEnum
   IncidentEdges(u) : GrphVert -> { GrphEdge }
   IncidentEdges(u) : GrphVert -> { GrphEdge }
   IncidentEdges(u) : GrphVert -> { GrphEdge }
   IncidentEdges(u) : GrphVert -> { GrphEdge }
   IncidentEdges(u) : GrphVert -> { GrphEdge }

IncidentEdges

   IncidentEdges(u) : GrphVert -> SetEnum
   IncidentEdges(u) : GrphVert -> { GrphEdge }
   IncidentEdges(u) : GrphVert -> { GrphEdge }
   IncidentEdges(u) : GrphVert -> { GrphEdge }
   IncidentEdges(u) : GrphVert -> { GrphEdge }
   IncidentEdges(u) : GrphVert -> { GrphEdge }

Include

   Include(~S, x) : SeqEnum, Elt ->
   Include(~S, x) : SetEnum, Elt ->
   IncludeAutomorphism(~C, p) : Code, GrpPermElt ->
   IncludeWeight(X,w) : GRK3,RngIntElt -> GRK3
   IncludeWeight(~X,w) : GRSch,RngIntElt ->
   Set_Include (Example H9E10)

IncludeAutomorphism

   IncludeAutomorphism(~C, p) : Code, GrpPermElt ->

IncludeWeight

   IncludeWeight(X,w) : GRK3,RngIntElt -> GRK3
   IncludeWeight(~X,w) : GRSch,RngIntElt ->

Inclusion

   InclusionMap(G, H) : GrpGPC, GrpGPC -> Map
   InclusionMap(G, H) : GrpPC, GrpPC -> Map
   SubalgebrasInclusionGraph( t ) : MonStgElt -> GrphDir

inclusion

   Inclusion and Equality (FINITE SOLUBLE GROUPS)

inclusion-equality

   Inclusion and Equality (FINITE SOLUBLE GROUPS)

InclusionMap

   InclusionMap(G, H) : GrpGPC, GrpGPC -> Map
   InclusionMap(G, H) : GrpPC, GrpPC -> Map

Inclusions

   NumberOfInclusions(e, f) : SubGrpLatElt, SubGrpLatElt -> RngIntElt

incr

   AddEdges(~N, S) : GrphNet, { < [ GrphVert, GrphVert ], RngIntElt > } ->
   Incremental Construction: Adding Edges (NETWORKS)

Increasing

   MaximalIncreasingSequence(w) : MonOrdElt -> RngIntElt
   MaximalIncreasingSequences(w, k) : SeqEnum,RngIntElt -> RngIntElt

Indecomposable

   IndecomposableSummands(A) : AlgAssV -> [ AlgAssV ], [ AlgAssVElt ]
   DirectSumDecomposition(A) : AlgAssV -> [ AlgAssV ], [ AlgAssVElt ]
   DirectSumDecomposition(ρ) : Map[AlgLie, AlgMatLie] -> SeqEnum
   DirectSumDecomposition(ρ) : Map[GrpLie, GrpMat] -> SeqEnum
   DirectSumDecomposition(V) : ModAlg -> SeqEnum
   DirectSumDecomposition(M) : ModRng -> [ ModRng ]
   DirectSumDecomposition(R) : RootDtm -> [], RootDtm, Map
   DirectSumDecomposition(R) : RootSys -> []
   IndecomposableSummands(L) : AlgLie -> [ AlgLie ]
   IsIndecomposable(M, B) : ModBrdt, RngIntElt -> BoolElt
   ProjectiveIndecomposableDimensions(G, K) : Grp, FldFin -> SeqEnum
   ProjectiveIndecomposableModule(I: parameters) : ModGrp -> ModGrp
   ProjectiveIndecomposableModules(G, K: parameters) : Grp, FldFin -> SeqEnum

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012