[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: Alphabet .. Ambient
Field(C) : Code -> Rng
Alphabet(C) : Code -> Rng
Alphabet(C) : Code -> Rng
Alphabet(C) : Code -> Rng
NumberOfTableauxOnAlphabet(P, m) : SeqEnum,RngIntElt -> RngIntElt
Changing the Alphabet of a Code (LINEAR CODES OVER FINITE FIELDS)
CodeAdd_alphabet-coeff-field (Example H156E6)
AlphaBetaData(H) : HypGeomData -> SeqEnum, SeqEnum
Alt(C, n) : Cat, RngIntElt -> GrpFin
AlternatingGroup(C, n) : Cat, RngIntElt -> GrpFin
AlternatingGroup(GrpFP, n) : Cat, RngIntElt -> GrpFP
AlternatingGroup(GrpPerm, n) : Cat, RngIntElt -> GrpPerm
AlternantCode(A, Y, r, S) : [ FldFinElt ], [ FldFinElt ], RngIntElt, FldFin -> Code
NonPrimitiveAlternantCode(n, m, r) : RngIntElt,RngIntElt,RngIntElt->Code
AlternantCode(A, Y, r, S) : [ FldFinElt ], [ FldFinElt ], RngIntElt, FldFin -> Code
CodeFld_AlternantCode (Example H152E28)
Creation of Points (HYPERELLIPTIC CURVES)
Models (HYPERELLIPTIC CURVES)
AlternatingCharacter(pa) : SeqEnum -> AlgChtrElt
AlternatingCharacter(pa, i) : SeqEnum, RngIntElt -> AlgChtrElt
AlternatingCharacterTable(d) : RngIntElt -> SeqEnum
AlternatingCharacterValue(pa, pe) : SeqEnum, GrpPermElt -> RngElt
AlternatingCharacterValue(pa, i, pe) : SeqEnum, RngIntElt, GrpPermElt -> RngElt
AlternatingDominant(D) : LieRepDec, GrpPermElt -> LieRepDec
AlternatingDominant(D, w) : LieRepDec, GrpPermElt -> LieRepDec
AlternatingElementToWord (G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt
AlternatingElementToWord (G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt
AlternatingGroup(C, n) : Cat, RngIntElt -> GrpFin
AlternatingGroup(GrpFP, n) : Cat, RngIntElt -> GrpFP
AlternatingGroup(GrpPerm, n) : Cat, RngIntElt -> GrpPerm
AlternatingPower(R, n, v) : RootDtm, RngIntElt, ModTupRngElt -> LieRepDec
AlternatingSquarePreimage (G, g) : GrpMat, GrpMatElt -> GrpMatElt
AlternatingSum(m, i) : Map, RngIntElt -> FldReElt
AlternatingWeylSum(R, v) : RootDtm, ModTupRngElt -> LieRepDec
FrobeniusFormAlternating(A) : AlgMatElt -> SeqEnum
IsAlternating(G) : GrpPerm -> BoolElt
RecogniseAlternating(G, n: parameters) : Grp, RngIntElt -> BoolElt, Map, Map, Map, Map, BoolElt
RecogniseAlternating(G, n: parameters) : Grp, RngIntElt -> BoolElt, Map, Map, Map, Map, BoolElt
RecogniseAlternatingOrSymmetric(G, n) : Grp, RngIntElt -> BoolElt, BoolElt, UserProgram, UserProgram
RecogniseAlternatingOrSymmetric(G, n) : Grp, RngIntElt -> BoolElt, BoolElt, UserProgram, UserProgram
RecogniseAlternatingSquare (G) : GrpMat -> BoolElt, GrpMat
StandardAlternatingForm(n,R) : RngIntElt, Rng -> AlgMatElt
StandardPseudoAlternatingForm(n,K) : RngIntElt, Fld -> AlgMatElt
AlternatingCharacter(pa) : SeqEnum -> AlgChtrElt
AlternatingCharacter(pa, i) : SeqEnum, RngIntElt -> AlgChtrElt
AlternatingCharacterTable(d) : RngIntElt -> SeqEnum
AlternatingCharacterValue(pa, pe) : SeqEnum, GrpPermElt -> RngElt
AlternatingCharacterValue(pa, i, pe) : SeqEnum, RngIntElt, GrpPermElt -> RngElt
AlternatingDominant(D) : LieRepDec, GrpPermElt -> LieRepDec
AlternatingDominant(D, w) : LieRepDec, GrpPermElt -> LieRepDec
LieReps_AlternatingDominant (Example H104E13)
AlternatingElementToWord (G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt
AlternatingElementToWord (G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt
FldForms_alternatingform (Example H29E7)
Alt(C, n) : Cat, RngIntElt -> GrpFin
AlternatingGroup(C, n) : Cat, RngIntElt -> GrpFin
AlternatingGroup(GrpFP, n) : Cat, RngIntElt -> GrpFP
AlternatingGroup(GrpPerm, n) : Cat, RngIntElt -> GrpPerm
AlternatingPower(R, n, v) : RootDtm, RngIntElt, ModTupRngElt -> LieRepDec
AlternatingSquarePreimage (G, g) : GrpMat, GrpMatElt -> GrpMatElt
AlternatingSum(m, i) : Map, RngIntElt -> FldReElt
AlternatingWeylSum(R, v) : RootDtm, ModTupRngElt -> LieRepDec
Irreducible Characters (REPRESENTATIONS OF SYMMETRIC GROUPS)
GuessAltsymDegree(G: parameters) : Grp -> BoolElt, MonStgElt, RngIntElt
GuessAltsymDegree(G: parameters) : Grp -> BoolElt, MonStgElt, RngIntElt
IsAltsym(G) : GrpPerm -> BoolElt
Constructive Recognition of Alternating Groups (ALMOST SIMPLE GROUPS)
Character Table (REPRESENTATIONS OF SYMMETRIC GROUPS)
Single Values (REPRESENTATIONS OF SYMMETRIC GROUPS)
AmbientSpace(L) : LinearSys -> Prj
Ambient(L) : LinearSys -> Prj
Ambient(M) : ModMPol -> ModMPol
Ambient(C) : TorCon -> TorLat
Ambient(F) : TorFan -> TorLat
AmbientMatrix(f) : ModMPolHom -> ModMatRngElt
AmbientModule(M) : ModBrdt -> ModBrdt
AmbientSpace(C) : Code -> ModTupRng
AmbientSpace(C) : Code -> ModTupRng
AmbientSpace(C) : Code -> ModTupRng
AmbientSpace(L) : Lat -> ModTupFld, Map
AmbientSpace(M) : ModFrm -> ModFrm
AmbientSpace(C) : Sch -> Sch
AmbientSpace(X) : Sch -> Sch
AmbientVariety(G) : ModAbVarSubGrp -> ModAbVar
ChangeAmbient(C,L) : TorCon,TorLat -> TorCon
HeightOnAmbient(P) : Pt -> FldReElt
IsAmbient(M) : ModBrdt -> BoolElt
IsAmbient(M) : ModMPol -> BoolElt
IsAmbient(X) : Sch -> BoolElt
IsAmbientSpace(M) : ModFrm -> BoolElt
IsAmbientSpace(M) : ModSS -> BoolElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012