[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: common .. Companion
Contpp(p) : RngUPolElt -> RngIntElt, RngUPolElt
Common Divisors and Common Multiples (UNIVARIATE POLYNOMIAL RINGS)
Greatest Common Divisors (MULTIVARIATE POLYNOMIAL RINGS)
Greatest Common Divisors (QUADRATIC FIELDS)
CommonComplement(V, U, W) : ModTupFld, ModTupFld, ModTupFld) -> ModTupFld
CommonEigenspaces(A) : AlgMat -> [**], [[FldElt]]
CommonEigenspaces(Q) : [AlgMatElt] -> [**], [[FldElt]]
CommonModularStructure(X) : [ModAbVar] -> List, List
CommonOverfield(K, L) : FldFin, FldFin -> FldFin
CommonZeros(F, L) : FldFunG, SeqEnum[ FldFunGElt ] -> SeqEnum[ PlcFunElt ]
CommonZeros(L) : [FldFunFracSchElt[Crv]] -> [PlcCrvElt]
CommonZeros(L) : [FldFunGElt] -> [PlcFunElt]
IsCommutative(A) : AlgBas -> Bool
IsCommutative(A) : AlgFP -> BoolElt
IsCommutative(A) : AlgGen -> BoolElt
IsCommutative(H) : HomModAbVar -> BoolElt
IsCommutative(R) : Rng -> BoolElt
MaximalCommutativeSubalgebra(A,S) : SeqEnum) -> AlgBas, Map
Commutator(g, h) : GrpLieElt, GrpLieElt -> GrpLieElt
(g, h) : GrpLieElt, GrpLieElt -> GrpLieElt
CommutatorGraph(L) : AlgLieExtr -> GrphUnd
CommutatorIdeal(A, B) : AlgAss, AlgAss -> AlgAss
CommutatorIdeal(S) : AlgQuatOrd -> AlgQuatOrdIdl
CommutatorModule(A, B) : AlgAss, AlgAss -> ModTupRng
CommutatorSubgroup(G) : GrpAb -> GrpAb
CommutatorSubgroup(H, K) : GrpAb, GrpAb -> GrpAb
CommutatorSubgroup(G, H, K) : GrpFin, GrpFin, GrpFin -> GrpFin
CommutatorSubgroup(G) : GrpFP -> GrpFP
CommutatorSubgroup(G, H, K) : GrpGPC, GrpGPC, GrpGPC -> GrpGPC
CommutatorSubgroup(G) : GrpMat -> GrpMat
CommutatorSubgroup(G, H, K) : GrpMat, GrpMat, GrpMat -> GrpMat
CommutatorSubgroup(G) : GrpPC -> GrpPC
CommutatorSubgroup(G, H, K) : GrpPC, GrpPC, GrpPC -> GrpPC
CommutatorSubgroup(G) : GrpPerm -> GrpPerm
CommutatorSubgroup(G, H, K) : GrpPerm, GrpPerm, GrpPerm -> GrpPerm
CommutatorGraph(L) : AlgLieExtr -> GrphUnd
CommutatorIdeal(A, B) : AlgAss, AlgAss -> AlgAss
CommutatorIdeal(S) : AlgQuatOrd -> AlgQuatOrdIdl
CommutatorModule(A, B) : AlgAss, AlgAss -> ModTupRng
DerivedSubgroup(G) : GrpAb -> GrpAb
CommutatorSubgroup(G) : GrpAb -> GrpAb
CommutatorSubgroup(H, K) : GrpAb, GrpAb -> GrpAb
CommutatorSubgroup(G, H, K) : GrpFin, GrpFin, GrpFin -> GrpFin
CommutatorSubgroup(G) : GrpFP -> GrpFP
CommutatorSubgroup(G, H, K) : GrpGPC, GrpGPC, GrpGPC -> GrpGPC
CommutatorSubgroup(G) : GrpMat -> GrpMat
CommutatorSubgroup(G, H, K) : GrpMat, GrpMat, GrpMat -> GrpMat
CommutatorSubgroup(G) : GrpPC -> GrpPC
CommutatorSubgroup(G, H, K) : GrpPC, GrpPC, GrpPC -> GrpPC
CommutatorSubgroup(G) : GrpPerm -> GrpPerm
CommutatorSubgroup(G, H, K) : GrpPerm, GrpPerm, GrpPerm -> GrpPerm
DisplayCompTreeNodes(G : parameters) : Grp ->
comp<K|P> : FldAlg, RngOrdIdl -> FldLoc, Map
Completion(K, P) : FldAlg, RngOrdIdl -> FldLoc, Map
Completion(K, P) : FldNum, RngOrdIdl -> FldLoc, Map
comp< R | a1, ..., ar > : Rng, RngElt, ..., RngElt -> Rng, Map
AllCompactChainMaps(PR) : Rec -> Rec
CohomologyElementToCompactChainMap(PR, d, n): Rec, RngIntElt, RngIntElt -> ModMatFldElt
CompactInjectiveResolution(M, n) : ModAlg, RngIntElt -> Rec
CompactPart(P) : TorPol -> TorPol
CompactPresentation(G) : GrpPC -> [RngIntElt]
CompactProjectiveResolution(M, n) : ModAlg, RngIntElt -> Rec
CompactProjectiveResolutionPGroup(M, n) : ModAlgBas, RngIntElt -> Rec
CompactProjectiveResolutionsOfSimpleModules(A,n) : AlgBas, RngIntElt -> SeqEnum
IsCompactHyperbolic(W) : GrpFPCox -> BoolElt
IsCoxeterHyperbolic(M) : AlgMatElt -> BoolElt
IsCoxeterHyperbolic(G) : GrphUnd -> BoolElt
SetAutoCompact(b) : BoolElt ->
CompactPresentation (FINITE SOLUBLE GROUPS)
CompactPresentation (FINITE SOLUBLE GROUPS)
CompactInjectiveResolution(M, n) : ModAlg, RngIntElt -> Rec
CompactPart(P) : TorPol -> TorPol
CompactPresentation(G) : GrpPC -> [RngIntElt]
GrpPC_CompactPresentation (Example H63E36)
CompactProjectiveResolution(M, n) : ModAlg, RngIntElt -> Rec
CompactProjectiveResolutionPGroup(M, n) : ModAlgBas, RngIntElt -> Rec
CompactProjectiveResolution(M, n) : ModAlgBas, RngIntElt -> Rec
CompactProjectiveResolutionPGroup(M, n) : ModAlgBas, RngIntElt -> Rec
CompactProjectiveResolutionsOfSimpleModules(A,n) : AlgBas, RngIntElt -> SeqEnum
CompanionMatrix(L) : RngDiffOpElt -> AlgMatElt
CompanionMatrix(f) : RngUPolElt -> AlgMatElt
CompanionMatrix(p) : RngUPolElt -> AlgMatElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012