[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: generalized-cartan .. GeneratorMatrix
AlgLieKM_generalized-cartan (Example H101E1)
GeneralizedFibonacciNumber(g0, g1, n) : RngIntElt, RngIntElt, RngIntElt -> RngIntElt
GeneralizedFibonacciNumber(g0, g1, n) : RngIntElt, RngIntElt, RngIntElt -> RngIntElt
GeneralizedSrivastavaCode(A, W, Z, t, S) : [ FldFinElt ], [ FldFinElt ], [ FldFinElt ], RngIntElt, FldFin -> Code
GL(n, R) : RngIntElt, Rng -> GrpMat
GeneralLinearGroup(n, R) : RngIntElt, Rng -> GrpMat
GeneralLinearGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
GO(n, q) : RngIntElt, RngIntElt -> GrpMat
GeneralOrthogonalGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
GOMinus(n, q) : RngIntElt, RngIntElt -> GrpMat
GeneralOrthogonalGroupMinus(n, q) : RngIntElt, RngIntElt -> GrpMat
GOPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
GeneralOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
GU(n, q) : RngIntElt, RngIntElt -> GrpMat
GeneralUnitaryGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
GenerateGraphs(n : parameters) : RngIntElt -> File
RandomIdealGeneratedBy(A, n) : AlgBas, RngIntElt -> ModTupFld
RingGeneratedBy(H) : HomModAbVar -> HomModAbVar
GenerateGraphs(n : parameters) : RngIntElt -> File
GeneratepGroups (p, d, c : parameters) : RngIntElt, RngIntElt,RngIntElt -> [GrpPC], RngIntElt
GeneratepGroups (p, d, c : parameters) : RngIntElt, RngIntElt,RngIntElt -> [GrpPC], RngIntElt
GrpPC_GeneratepGroups (Example H63E28)
GeneratingWords(G, H) : GrpFP, GrpFP -> { GrpFPElt }
GrpPC_Generating_p_groups (Example H63E27)
GeneratingWords(G, H) : GrpFP, GrpFP -> { GrpFPElt }
ClassGroupGenerationBound(F) : FldFunG -> RngIntElt
ClassGroupGenerationBound(q, g) : RngIntElt, RngIntElt -> RngIntElt
Generating Graphs (GRAPHS)
Generator(F) : FldFin -> FldFinElt
F . 1 : FldFin, RngIntElt -> FldFinElt
R . 1 : RngGal -> RngGalElt
ActionGenerator(B, i) : AlgBas, RngIntElt -> SeqEnum
ActionGenerator(L, i) : Lat, RngIntElt -> GrpMat
ActionGenerator(M, i) : ModGrp, RngIntElt -> AlgMatElt
ActionGenerator(M, i) : ModRng, RngIntElt -> AlgMatElt
AddGenerator(G) : GrpFP -> GrpFP
AddGenerator(G, x) : GrpFP, . -> BoolElt, GrpFP, Map
AddGenerator(G, w) : GrpFP, GrpFPElt -> GrpFP
AddGenerator(S) : SgpFP -> SgpFP
AddGenerator(S, w) : SgpFP, SgpFPElt -> SgpFP
AddNormalizingGenerator(~H, x) : GrpPerm, GrpPermElt ->
AddSubgroupGenerator(~P, w) : GrpFPCosetEnumProc, GrpFPElt ->
CohomologyGeneratorToChainMap(P,Q,C,n) : ModCpx, ModCpx, Rec, RngIntElt -> MapChn
CohomologyGeneratorToChainMap(P, C, n) : ModCpx, Tup, RngIntElt -> MapChn
DeleteGenerator(G, x) : GrpFP, GrpFPElt -> GrpFP
DeleteGenerator(S, y) : SgpFP, SgpFPElt -> SgpFP
Generator(F, E) : FldFin, FldFin -> FldFinElt
Generator(I) : RngInt -> RngIntElt
GeneratorMatrix(C) : Code -> ModMatFldElt
GeneratorMatrix(C) : Code -> ModMatFldElt
GeneratorMatrix(C) : Code -> ModMatRngElt
GeneratorNumber(w) : GrpFPElt -> RngIntElt
GeneratorOrder(G) : GrpAtc -> SeqEnum
GeneratorPolynomial(C) : Code -> RngUPolElt
GeneratorStructure(P) : GrpPCpQuotientProc ->
LeadingGenerator(w) : GrpFPElt -> GrpFPElt
LeadingGenerator(x) : GrpGPCElt -> GrpGPCElt
LeadingGenerator(x) : GrpPCElt -> GrpPCElt
MinimalGeneratorForm(A) : AlgBas -> Rec
MinimalGeneratorFormAlgebra(A) : AlgBas -> AlgBas
NaturalActionGenerator(L, i) : Lat, RngIntElt -> GrpMat
SemisimpleGeneratorData(A) : AlgMat -> SeqEnum
ShrinkingGenerator(C1, S1, C2, S2, t) : RngUPolElt, SeqEnum, RngUPolElt,SeqEnum, RngIntElt -> SeqEnum
UnivariateEliminationIdealGenerator(I, i) : RngMPol, RngIntElt -> RngMPolElt
Base and Strong Generating Set (MATRIX GROUPS OVER GENERAL RINGS)
Base and Strong Generating Set (PERMUTATION GROUPS)
Construction of a Base and Strong Generating Set (PERMUTATION GROUPS)
Finding Special Elements (NUMBER FIELDS)
Finding Special Elements (ORDERS AND ALGEBRAIC FIELDS)
Generator Assignment (STATEMENTS AND EXPRESSIONS)
Special Elements (FINITE FIELDS)
The Generator Polynomial (LINEAR CODES OVER FINITE FIELDS)
Univariate Elimination Ideal Generators (POLYNOMIAL RING IDEAL OPERATIONS)
Generator Assignment (STATEMENTS AND EXPRESSIONS)
The Generator Polynomial (LINEAR CODES OVER FINITE FIELDS)
Finding Special Elements (NUMBER FIELDS)
Finding Special Elements (ORDERS AND ALGEBRAIC FIELDS)
Special Elements (FINITE FIELDS)
Reducing Generating Sets (FINITELY PRESENTED GROUPS)
BasisMatrix(C) : Code -> ModMatRngElt
GeneratorMatrix(C) : Code -> ModMatFldElt
GeneratorMatrix(C) : Code -> ModMatFldElt
GeneratorMatrix(C) : Code -> ModMatRngElt
CodeFld_GeneratorMatrix (Example H152E8)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012