[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: RightGreatestCommonDivisor .. Ring
RightGcd(u, v: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
RightGreatestCommonDivisor(u, v: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
RightGCD(u, v: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
RightGCD(S: parameters) : Setq -> GrpBrdElt
RightHandFactors(L) : RngDiffOpElt -> SeqEnum, SeqEnum[[BoolElt]]
lideal<S | X> : AlgQuatOrd, [AlgQuatElt] -> AlgQuatOrdIdl
RightIdeal(S, X) : AlgQuatOrd, [AlgQuatElt] -> AlgQuatOrdIdl
rideal<S | X> : AlgQuatOrd, [AlgQuatElt] -> AlgQuatOrd
ideal<S | X> : AlgQuatOrd, [AlgQuatElt] -> AlgQuatOrdIdl
LeftIdeal(S, X) : AlgQuatOrd, [AlgQuatElt] -> AlgQuatOrdIdl
RightIdealClasses(S) : AlgQuatOrd -> [AlgQuatOrdIdl]
LeftIdealClasses(S) : AlgQuatOrd -> [AlgQuatOrdIdl]
RightInverse(phi : parameters) : MapModAbVar -> MapModAbVar, RngIntElt
RightInverseMorphism(phi : parameters) : MapModAbVar -> MapModAbVar
RightIsomorphism(I, J) : AlgQuatOrdIdl, AlgQuatOrdIdl -> Map, AlgQuatElt
RightLcm(u, v: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
RightLeastCommonMultiple(u, v: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
RightLCM(u, v: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
RightLCM(S: parameters) : Setq -> GrpBrdElt
RightLcm(u, v: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
RightLeastCommonMultiple(u, v: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
RightLCM(u, v: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
RightLCM(S: parameters) : Setq -> GrpBrdElt
RightLcm(u, v: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
RightLeastCommonMultiple(u, v: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
RightLCM(u, v: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
RightLCM(S: parameters) : Setq -> GrpBrdElt
RightMixedCanonicalForm(u: parameters) : GrpBrdElt -> Tup, Tup
RightNormalForm(~u: parameters) : GrpBrdElt ->
RightNormalForm(u: parameters) : GrpBrdElt -> GrpBrdElt
RightOrder(I) : AlgAssVOrdIdl[RngOrd] -> AlgAssVOrd
LeftOrder(I) : AlgAssVOrdIdl[RngOrd] -> AlgAssVOrd
RightOrder(I) : AlgQuatOrdIdl -> AlgQuatOrd
RightRegularModule(B) : AlgBas -> ModAlg
RightRepresentationMatrix(e) : AlgAssVOrdElt -> AlgMatElt
LeftRepresentationMatrix(e) : AlgAssVOrdElt -> AlgMatElt
RightString(W, r, s) : GrpPermCox, RngIntElt, RngIntElt -> RngIntElt
RightString(R, r, s) : RootDtm, RngIntElt, RngIntElt -> RngIntElt
RightString(R, r, s) : RootSys, RngIntElt, RngIntElt -> RngIntElt
RightStringLength(W, r, s) : GrpPermCox, RngIntElt, RngIntElt -> RngIntElt
RightStringLength(R, r, s) : RootDtm, RngIntElt, RngIntElt -> RngIntElt
RightStringLength(R, r, s) : RootSys, RngIntElt, RngIntElt -> RngIntElt
RightTransversal(G, H) : Grp, Grp -> {@ GrpElt @}, Map
Transversal(G, H) : Grp, Grp -> {@ GrpElt @}, Map
Transversal(G, H) : GrpAb, GrpAb -> {@ GrpAbElt @}, Map
Transversal(G, H) : GrpFP, GrpFP -> {@ GrpFPElt @}, Map
Transversal(P) : GrpFPCosetEnumProc -> {@ GrpFPElt @}, Map
Transversal(G, H) : GrpGPC, GrpGPC -> {@ GrpGPCElt @}, Map
Transversal(G, H) : GrpMat, GrpMat -> {@ GrpMatElt @}, Map
Transversal(G, H) : GrpPC, GrpPC -> {@ GrpPCElt @}, Map
Transversal(G, H) : GrpPerm, GrpPerm -> {@ GrpPermElt atbrace, Map
RightZeroExtension(C) : ModCpx -> ModCpx
AbsoluteQuotientRing(A) : FldAC -> RngUPolRes
AbsoluteAffineAlgebra(A) : FldAC -> RngUPolRes
AffineAlgebra(A) : FldAC -> RngMPolRes
BaseField(A) : AlgQuat -> Fld
BaseField(A) : JacHyp -> Fld
BaseField(J) : JacHyp -> Fld
BaseField(M) : ModFrmBianchi ->
BaseField(M) : ModFrmHil ->
BaseField(R) : RootSys -> Fld
BaseField(C) : Sch -> Fld
BaseField(K) : SrfKum -> Fld
BaseRing(O) : AlgAssVOrd -> Rng
BaseRing(B) : AlgBas -> Rng
BaseRing(F) : AlgFr -> Rng
BaseRing(R) : AlgMat -> Rng
BaseRing(L) : AlgSym -> Rng
BaseRing(E) : CrvEll -> Rng
BaseRing(A) : FldAb -> Rng
BaseRing(F) : FldFun -> Rng
BaseRing(FF) : FldFunOrd -> Rng
BaseRing(F) : FldFunRat -> Rng
BaseRing(G) : GrpDrch -> Rng
BaseRing(chi) : GrpDrchElt -> Rng
BaseRing(G) : GrpLie -> Rng
BaseRing(G) : GrpLie -> Rng
BaseRing(G) : GrpPSL2 -> Rng
BaseRing(L) : Lat -> Rng
BaseRing(A) : ModAbVar -> Rng
BaseRing(M) : ModBrdt -> Rng
BaseRing(M) : ModDed -> Rng
BaseRing(model) : ModelG1 -> Rng
BaseRing(M) : ModFrm -> Rng
BaseRing(M) : ModSS -> Rng
BaseRing(A) : Mtrx -> Rng
BaseRing(A) : MtrxSprs -> Rng
BaseRing(C) : RngCox -> Fld
BaseRing(R) : RngDiff -> Rng
BaseRing(R) : RngDiffOp -> Rng
BaseRing(O) : RngFunOrd -> Rng
BaseRing(L) : RngLocA -> Rng
BaseRing(P) : RngMPol -> Rng
BaseRing(O) : RngOrd -> Rng
BaseRing(L) : RngPad -> RngPad
BaseRing(R) : RngPowLaz -> Rng
BaseRing(R) : RngSer -> Rng
BaseRing(R) : RngSLPol -> Rng
BaseRing(P) : RngUPol -> Rng
BaseRing(R) : RngUPolTwst -> Rng
BaseRing(F) : RngUPolTwstElt -> Rng
BaseRing(W) : RngWitt -> Fld
BaseRing(R) : RootDtm -> RngInt
BaseRing(C) : Sch -> Rng
BaseRing(X) : Sch -> Rng
BaseRing(G) : SchGrpEll -> Rng
BooleanPolynomialRing(n) : RngIntElt -> RngMPolBool
BooleanPolynomialRing(n, order) : RngIntElt, MonStgElt -> RngMPolBool
BooleanPolynomialRing(B, Q) : RngMPolBool, [RngIntElt] -> RngMPolBoolElt
CanChangeRing(A, R) : ModAbVar, Rng -> BoolElt, ModAbVar
CentreOfEndomorphismRing(G) : GrpMat -> AlgMat
CentreOfEndomorphismRing(L) : Lat -> AlgMat
CentreOfEndomorphismRing(M) : ModRng -> AlgMat
ChangeRing(I, S) : AlgFr, Rng -> AlgFr
ChangeRing(A, S) : AlgGen, Rng -> AlgGen, Map
ChangeRing(A, S, f) : AlgGen, Rng, Map -> AlgGen, Map
ChangeRing(L, S) : AlgLie, Rng -> AlgLie, Map
ChangeRing(L, S, f) : AlgLie, Rng, Map -> AlgLie, Map
ChangeRing(A, S) : AlgMat, Rng -> AlgMat, Map
ChangeRing(A, S, f) : AlgMat, Rng, Map -> AlgMat, Map
ChangeRing(U, R) : AlgQUE, Rng -> AlgQUE
ChangeRing(U, S) : AlgUE, Rng -> AlgUE
ChangeRing(E, K) : CrvEll, Rng -> CrvEll
ChangeRing(G, K) : GrpLie, Rng -> GrpLie
ChangeRing(G, S) : GrpMat, Rng -> GrpMat, Map
ChangeRing(G, S, f) : GrpMat, Rng, Map -> GrpMat, Map
ChangeRing(L, S) : Lat, Rng -> Lat, Map
ChangeRing(A, R) : ModAbVar, Rng -> ModAbVar
ChangeRing(model, B) : ModelG1, Rng -> ModelG1
ChangeRing(M, S) : ModRng, Rng -> ModRng, Map
ChangeRing(M, S) : ModRng, Rng -> ModRng, Map
ChangeRing(M, S) : ModRng, Rng -> ModRng, Map
ChangeRing(M, S, f) : ModRng, Rng, Map -> ModRng, Map
ChangeRing(M, S, f) : ModRng, Rng, Map -> ModRng, Map
ChangeRing(M, S, f) : ModRng, Rng, Map -> ModRng, Map
ChangeRing(A, R) : Mtrx, Rng -> Mtrx
ChangeRing(A, R, f) : Mtrx, Rng, Map -> Mtrx
ChangeRing(A, R) : MtrxSprs, Rng -> MtrxSprs
ChangeRing(I, S) : RngMPol, Rng -> RngMPol
ChangeRing(M, S) : RngMPol, Rng -> RngMPol
ChangeRing(P, S) : RngMPol, Rng -> RngMPol
ChangeRing(I, L) : RngMPolLoc, Rng -> RngMPolLoc
ChangeRing(s,R) : RngPowAlgElt, RngMPol -> RngPowAlgElt
ChangeRing(L, C) : RngPowLaz, Rng -> RngPowLaz, Map
ChangeRing(R, C) : RngSer, Rng -> RngSer, Map
ChangeRing(P, S) : RngUPol, Rng -> RngUPol, Map
ChangeRing(P, S, f) : RngUPol, Rng, Map -> RngUPol, Map
ChangeRing(C, K) : Sch, Rng -> Sch
ClassFunctionSpace(G) : Grp -> AlgChtr
CoefficientRing(A) : AlgFP -> Rng
CoefficientRing(L) : AlgFPLie -> Rng
CoefficientRing(A) : AlgGen -> Rng
CoefficientRing(A) : AlgGrp -> Rng
CoefficientRing(A) : AlgGrpSub -> Rng
CoefficientRing(L) : AlgKac -> Rng
CoefficientRing(L) : AlgLie -> Rng
CoefficientRing(L) : AlgLieExtr -> Rng
CoefficientRing(U) : AlgPBW -> Rng
CoefficientRing(U) : AlgQUE -> Fld
CoefficientRing(A) : FldAb -> Fld
CoefficientRing(G) : GrpMat -> Rng
CoefficientRing(M): ModAlg -> Fld
CoefficientRing(M) : ModMPol -> ModMPol
CoefficientRing(M) : ModRng -> Rng
CoefficientRing(M) : ModTupRng -> Rng
CoefficientRing(D) : PhiMod -> RngSerLaur
CoefficientRing(R) : RngInvar -> Grp
CoefficientRing(Q) : RngMPolRes -> Rng
CoefficientRing(E) : RngSerExt -> Rng
CoefficientRing(V) : SSGalRep -> FldFin
CohomologyRing(k, n) : ModAlgBas, RngIntElt -> Rec
CohomologyRingGenerators(P) : Rec -> Rec
CohomologyRingQuotient(CR) : Rec -> Rng,Map
ConstantRing(R) : RngDiff -> Rng
ConstantRing(R) : RngDiffOp -> Rng
CoordinateRing(L) : Lat -> RngInt
CoordinateRing(A) : Sch -> Rng
CoordinateRing(C) : Sch -> Rng
CoordinateRing(A) : Sch -> RngMPol
CoordinateRing(X) : Sch -> RngMPol
CoxRing(k,F) : Fld,TorFan -> RngCox
CoxRing(R,B,Z,Q) : RngMPol,SeqEnum,SeqEnum,SeqEnum -> RngCox
CoxRing(X) : TorVar -> RngCox
DefRing(G) : GrpLie -> Rng
DifferentialLaurentSeriesRing(C) : Fld -> RngDiff
DifferentialOperatorRing(F) : RngDiff -> RngDiffOp
DifferentialRing(P, f, C) : Rng, Map, Rng -> RngDiff
DifferentialRingExtension(L) : RngDiffOpElt -> RngDiff
DimensionOfCentreOfEndomorphismRing(G) : GrpMat -> RngIntElt
DimensionOfCentreOfEndomorphismRing(L) : Lat -> RngIntElt
DimensionOfEndomorphismRing(G) : GrpMat -> RngIntElt
DimensionOfEndomorphismRing(L) : Lat -> RngIntElt
EndomorphismAlgebra(M) : ModRng -> AlgMat
EndomorphismRing(A) : AnHcJac -> AlgMat, SeqEnum
EndomorphismRing(G) : GrpMat -> AlgMat
EndomorphismRing(L) : Lat -> AlgMat
EndomorphismRing(P) : Mtrx -> AlgMat
GaloisRing(q, d) : RngIntElt, RngIntElt -> RngGal
GaloisRing(p, a, d) : RngIntElt, RngIntElt, RngIntElt -> RngGal
GaloisRing(p, a, D) : RngIntElt, RngIntElt, RngUPol -> RngGal
GaloisRing(q, D) : RngIntElt, RngUPol -> RngGal
GeneratorsOverBaseRing(K) : FldNum -> FldNumElt
GeneratorsSequenceOverBaseRing(K) : FldNum -> [FldNumElt]
GroundField(F) : FldAlg -> Fld
GroundField(F) : FldNum -> Fld
HeckeEigenvalueRing(M : parameters) : ModSym -> Rng, Map
IntegerRing() : -> RngInt
IntegerRing(F) : FldFunRat -> RngPol
IntegerRing(F) : FldPad -> RngPad
IntegerRing(F) : RngFrac -> Rng
IntegerRing(R) : RngSer -> RngSerPow
IntegerRing(E) : RngSerExt -> RngSerExt
Integers(O) : RngOrd -> RngOrd
InvariantRing(G) : GrpMat -> RngInvar
InvariantRing(I, A) : RngMPol, Mtrx -> RngInvar
IsDifferentialLaurentSeriesRing(R) : Rng -> BoolElt
IsDifferentialOperatorRing(R) : . -> BoolElt
IsDifferentialSeriesRing(R) : Rng -> BoolElt
IsDivisionRing(R) : Rng -> BoolElt
IsEuclideanRing(R) : Rng -> BoolElt
IsMagmaEuclideanRing(R) : Rng -> BoolElt
IsMatrixRing(A) : AlgQuat -> BoolElt, AlgMat, Map
IsPIR(R) : Rng -> BoolElt
IsPrincipalIdealRing(F) : FldAlg -> BoolElt
IsPrincipalIdealRing(F) : FldNum -> BoolElt
IsPrincipalIdealRing(O) : RngOrd -> BoolElt
IsRing(H) : HomModAbVar -> BoolElt
IsRingHomomorphism(m) : Map -> BoolElt
IsRingHomomorphism(m) : Map -> BoolElt
IsRingOfAllModularForms(M) : ModFrm -> BoolElt
LaurentSeriesRing(L) : AlgKac -> RngSerLaur
LaurentSeriesRing(R) : Rng -> RngSerLaur
LazyPowerSeriesRing(C, n) : Rng, RngIntElt -> RngPowLaz
LocalPolynomialRing(K, n) : Rng, RngIntElt -> RngMPolLoc
LocalPolynomialRing(K, n, order) : Rng, RngIntElt, MonStgElt, ... -> RngMPolLoc
LocalPolynomialRing(K, n, T) : Rng, RngIntElt, Tup -> RngMPolLoc
LocalRing(P, prec) : RngOrdIdl, RngIntElt -> RngLoc, Map
LocalRing(P, k) : RngOrdIdl, RngIntElt -> RngPad, Map
LocalRing(W) : RngWitt -> RngLoc, Map
MatrixAlgebra(S, n) : Rng, RngIntElt -> AlgMat
MatrixAlgebra<S, n | L> : Rng, RngIntElt, List -> AlgMat
MatrixRing(A, eps) : AlgQuat, AlgQuatElt -> AlgMat, Map
MaximalOrder(F) : FldAlg -> RngOrd
MaximalOrder(F) : FldNum -> RngOrd
MaximalOrder(F) : FldQuad -> RngQuad
MaximalOrder(Q) : FldRat -> RngInt
MinimalBaseRingCharacter(chi) : GrpDrchElt -> GrpDrchElt
MultiplicatorRing(I): AlgAssVOrdIdl -> AlgAssVOrd
MultiplicatorRing(I) : RngFunOrdIdl -> RngFunOrd
MultiplicatorRing(I) : RngFunOrdIdl -> RngFunOrd
MultiplicatorRing(I) : RngOrdFracIdl -> Rng
OriginalRing(A) : AlgFP -> Rng
OriginalRing(Q) : RngMPolRes -> Rng
ParentRing(N) : NwtnPgon -> Rng
PolynomialAlgebra(R) : Rng -> RngUPol
PolynomialRing(model) : ModelG1 -> RngMPol
PolynomialRing(R, n) : Rng, RngIntElt -> RngMPol
PolynomialRing(R, n) : Rng, RngIntElt -> RngMPol
PolynomialRing(R, n, order) : Rng, RngIntElt, MonStgElt, ... -> RngMPol
PolynomialRing(R, n, order) : Rng, RngIntElt, MonStgElt, ... -> RngMPol
PolynomialRing(R, n, T) : Rng, RngIntElt, Tup -> RngMPol
PolynomialRing(R, Q) : Rng, [ RngIntElt ] -> RngMPol
PolynomialRing(R) : RngInvar -> RngMPol
PowerSeriesRing(R) : Rng -> RngSerPow
PreimageRing(A) : AlgFP -> AlgFr
PreimageRing(Q) : RngMPolRes -> RngMPol
PreimageRing(Q) : RngUPolRes -> RngUPol
PrimeRing(F) : FldFun -> Rng
PrimeRing(R) : Rng -> Rng
PrimeRing(L) : RngPad -> RngPad
PuiseuxSeriesRing(R) : Rng -> RngSerPuis
QuaternionOrder(G) : GrpPSL2 -> AlgQuatOrd
QuotientRing(R, I) : RngDiff, RngMPol -> RngDiff, Map
RayResidueRing(D) : DivFunElt -> GrpAb, Map
RayResidueRing(D) : DivNumElt -> GrpAb, Map
RayResidueRing(I) : RngOrdIdl -> GrpAb, Map
ResidueClassRing(m) : RngIntElt -> RngIntRes
ResidueClassRing(Q) : RngIntEltFact -> RngIntRes
Ring(CM) : ModCoho -> ModGrp
Ring(P) : SetPt -> Rng
Ring(H) : SetPtEll -> Rng
RingClassGroup(O) : RngOrd -> GrpAb, Map
RingGeneratedBy(H) : HomModAbVar -> HomModAbVar
RingMap(P) : SetPt -> Map
RingOfFractions(R) : RngDiff -> RngDiff, Map
RingOfFractions(Q) : RngMPolRes -> RngFunFrac
RingOfIntegers(R) : RngPad -> RngPad
SLPolynomialRing(R, n) : Rng, RngIntElt -> RngSLPol
SetTargetRing(~chi, e) : GrpDrchNFElt, RngElt ->
UnderlyingRing(F) : FldFunG -> FldFunG
UnderlyingRing(C) : RngCox -> RngMPol
UnderlyingRing(R) : RngDiff -> Rng
UnramifiedQuotientRing(K, k) : FldFin, RngIntElt -> Rng
ValuationRing(F) : FldFun -> RngVal
ValuationRing(F, f) : FldFun, RngUPolElt -> RngVal
ValuationRing(F) : FldFunRat -> RngVal
ValuationRing(F, f) : FldFunRat, RngUPolElt -> RngVal
ValuationRing(Q, p) : FldRat, RngIntElt -> RngVal
WittRing(F, n) : Fld, RngIntElt -> RngWitt
pAdicQuotientRing(p, k) : RngIntElt, RngIntElt -> RngPadRes
pAdicRing(p) : RngIntElt -> RngPad
pAdicRing(p, k) : RngIntElt, RngIntElt -> RngPad
pMatrixRing(A, p) : AlgQuat, RngOrdIdl -> AlgMat, Map, Map
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012