[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: field .. file
Affine Algebras which are Fields (AFFINE ALGEBRAS)
ALGEBRAIC FUNCTION FIELDS
ALGEBRAICALLY CLOSED FIELDS
Arithmetic (NUMBER FIELDS)
Arithmetic (ORDERS AND ALGEBRAIC FIELDS)
Canonical Forms for Matrices over a Field (MATRIX ALGEBRAS)
Canonical Forms over Fields (MATRICES)
Changing the Coefficient Field (VECTOR SPACES)
CLASS FIELD THEORY FOR GLOBAL FUNCTION FIELDS
FINITE FIELDS
Invariant Fields (INVARIANT THEORY)
NUMBER FIELDS
ORDERS AND ALGEBRAIC FIELDS
RATIONAL FUNCTION FIELDS
Residue Class Fields (INTRODUCTION TO RINGS [BASIC RINGS])
Rings and Fields of Fractions of Affine Algebras (AFFINE ALGEBRAS)
Z as a Number Field Order (INTEGER RESIDUE CLASS RINGS)
Arithmetic (NUMBER FIELDS)
Arithmetic (ORDERS AND ALGEBRAIC FIELDS)
POLAR SPACES
NEARFIELDS
FieldAutomorphism(G, sigma) : GrpLie, Map -> Map
FieldMorphism(f) : Map -> Map
FieldOfDefinition(H) : HomModAbVar -> ModAbVar
FieldOfDefinition(phi) : MapModAbVar -> ModAbVar
FieldOfDefinition(A) : ModAbVar -> Fld
FieldOfDefinition(x) : ModAbVarElt -> ModTupFldElt
FieldOfDefinition(G) : ModAbVarSubGrp -> Fld
FieldOfFractions(Q) : FldRat -> FldRat
FieldOfFractions(R) : RngDiff -> RngDiff, Map
FieldOfFractions(O) : RngFunOrd -> FldFunOrd
FieldOfFractions(Z) : RngInt -> FldRat
FieldOfFractions(O) : RngOrd -> FldOrd
FieldOfFractions(R) : RngPad -> FldPad
FieldOfFractions(R) : RngSer -> RngSerLaur
FieldOfFractions(E) : RngSerExt -> RngSerExt
FieldOfFractions(P) : RngUPol -> FldFunRat
FieldOfFractions(V) : RngVal -> Rng
RingOfFractions(Q) : RngMPolRes -> RngFunFrac
AlgAff_FieldOfFractions (Example H108E7)
FieldOfGeometricIrreducibility(C) : Crv -> Rng, Map
NumberOfFields(D) : DB -> RngIntElt
# D : DB -> RngIntElt
# D : DB -> RngIntElt
FunctionFields(D) : DB -> [ FldFunG ]
MergeFields(F, L) : FldAlg, FldAlg -> SeqEnum
MergeFields(F, L) : FldNum, FldNum -> SeqEnum
NumberFields(D) : DB -> [ FldNum ]
NumberFields(D, d) : DB, RngIntElt -> [ FldNum ]
NumberOfFields(D, d) : DB, RngIntElt -> RngIntElt
Class Field Theory (p-ADIC RINGS AND THEIR EXTENSIONS)
Class Fields (p-ADIC RINGS AND THEIR EXTENSIONS)
Creation (DIFFERENTIAL RINGS)
Creation of Algebraic Function Fields (ALGEBRAIC FUNCTION FIELDS)
Creation of Class Fields (CLASS FIELD THEORY FOR GLOBAL FUNCTION FIELDS)
Gröbner Bases over Fields (GRÖBNER BASES)
Jacobians over Number Fields or Q (HYPERELLIPTIC CURVES)
p-adic Fields (p-ADIC RINGS AND THEIR EXTENSIONS)
The Record Fields (DATABASES OF GROUPS)
MAGMA_STARTUP_FILE
CreateCharacterFile(P) : NFSProc -> .
CreateCharacterFile(P, cc) : NFSProc, RngIntElt -> .
CreateCycleFile(P) : NFSProc -> .
HasOutputFile() : -> BoolElt
OpenGraphFile(s, f, p): MonStgElt, RngIntElt, RngIntElt -> File
PrintFile(F, x) : MonStgElt, Any ->
PrintFile(F, x, L) : MonStgElt, Any, MonStgElt ->
PrintFileMagma(F, x) : MonStgElt, Any ->
SetLogFile(F) : MonStgElt ->
SetLogFile(F) : MonStgElt ->
SetOutputFile(F) : MonStgElt ->
SetOutputFile(F) : MonStgElt ->
UnsetLogFile() : ->
UnsetOutputFile() : ->
External Files (INPUT AND OUTPUT)
Opening Files (INPUT AND OUTPUT)
Printing to a File (INPUT AND OUTPUT)
Reading a Complete File (INPUT AND OUTPUT)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012