[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: value .. variety
Call by Value Evaluation (MAGMA SEMANTICS)
Function Values Assigned to Identifiers (MAGMA SEMANTICS)
ValueList(chi) : GrpDrchElt -> [RngElt]
AbsoluteValues(a) : FldAlgElt -> [FldPrElt]
AbsoluteValues(a) : FldNumElt -> [FldComElt]
FreefValues(L) : AlgLieExtr -> SeqEnum, SeqEnum
RandomProcess(G) : GrpFin -> Process
ShowValues() : ->
SplitAllByValues(P, V) : StkPtnOrd, SeqEnum[RngIntElt] -> BoolElt, RngIntElt
SplitCellsByValues(P, C, V) : StkPtnOrd, SeqEnum[RngIntElt], SeqEnum[RngIntElt] -> BoolElt, RngIntElt
ValuesOnUnitGenerators(chi) : GrpDrchElt -> [RngElt]
Single Values (REPRESENTATIONS OF SYMMETRIC GROUPS)
ValuesOnUnitGenerators(chi) : GrpDrchElt -> [RngElt]
VanLintBound(K, n, d) : FldFin, RngIntElt, RngIntElt -> RngIntElt
RngMPol_Vandermonde (Example H24E9)
VanLintBound(K, n, d) : FldFin, RngIntElt, RngIntElt -> RngIntElt
Generic Polarised Varieties (HILBERT SERIES OF POLARISED VARIETIES)
VariableWeights(P) : RngMPol -> [ RngIntElt ]
Grading(P) : RngMPol -> [ RngIntElt ]
VariableExtension(I, k, b) : RngMPol, RngIntElt, BoolElt -> RngMPol, Map
Environment Variables (ENVIRONMENT AND OPTIONS)
Variable Extension of Ideals (POLYNOMIAL RING IDEAL OPERATIONS)
Variables (ALGEBRAICALLY CLOSED FIELDS)
Variable Extension of Ideals (POLYNOMIAL RING IDEAL OPERATIONS)
VariableExtension(I, k, b) : RngMPol, RngIntElt, BoolElt -> RngMPol, Map
IntegerSolutionVariables(L) : LP -> SeqEnum
NumberOfVariables(L) : LP -> RngIntElt
SetIntegerSolutionVariables(L, I, m) : LP, SeqEnum[RngIntElt], BoolElt ->
VariableWeights(P) : RngMPol -> [ RngIntElt ]
Grading(P) : RngMPol -> [ RngIntElt ]
Func_Variadic (Example H2E4)
VariantRepresentatives(q, v) : RngIntElt, RngIntElt -> SeqEnum
Variants of Automorphism Group (GRAPHS)
VariantRepresentatives(q, v) : RngIntElt, RngIntElt -> SeqEnum
NumberOfVariants(N) : NfdDck -> RngIntElt
NumberOfVariants(q, v) : RngIntElt, RngIntElt -> RngIntElt
FldNear_variants (Example H22E2)
Elliptic Curves (MODULAR FORMS)
Toric Varieties (TORIC VARIETIES)
AmbientVariety(G) : ModAbVarSubGrp -> ModAbVar
IsAbelianVariety(A) : ModAbVar -> BoolElt
IsInSecantVariety(X,P) : Sch,Pt -> BoolElt
IsInTangentVariety(X,P) : Sch,Pt -> BoolElt
ModularAbelianVariety(E) : CrvEll -> ModAbVar
ModularAbelianVariety(L) : ModAbVarLSer -> ModAbVar
ModularAbelianVariety(f) : ModFrmElt -> ModAbVar
ModularAbelianVariety(M) : ModSym -> ModAbVar
ModularAbelianVariety(eps : parameters) : GrpDrchElt -> ModAbVar
ModularAbelianVariety(M : parameters) : ModFrm -> ModAbVar
ModularAbelianVariety(s : parameters) : MonStgElt -> ModAbVar
ModularAbelianVariety(X : parameters) : [ModFrm] -> ModAbVar
ModularAbelianVariety(X) : [ModSym] -> ModAbVar
PolarisedVariety(d,W,n) : RngIntElt,SeqEnum,RngUPolElt-> GRSch
SecantVariety(X) : Sch -> Sch
TangentVariety(X) : Sch -> Sch
ToricVariety(G) : DivTor -> TorVar
ToricVariety(k) : Fld -> TorVar
ToricVariety(k,n) : Fld,RngIntElt -> TorVar
ToricVariety(k,F) : Fld,TorFan -> TorVar
ToricVariety(k,Z) : Fld,[RngIntElt] -> TorVar
ToricVariety(k,Z,Q) : Fld,[RngIntElt],[FldRatElt] -> TorVar
ToricVariety(k,M,v) : Fld,[[RngIntElt]],[RngIntElt] -> TorVar
ToricVariety(C) : RngCox -> TorVar
ToricVarietyMap(X,Y,f) : TorVar,TorVar,Map -> TorMap
Variety(G) : DivSch -> Sch
Variety(D) : DivTorElt -> TorVar
Variety(I) : RngMPol -> [ ModTupFldElt ]
VarietySequence(I) : RngMPol -> [ [ RngElt ] ]
VarietySizeOverAlgebraicClosure(I) : RngMPol -> RngIntElt
ZeroModularAbelianVariety() : -> ModAbVar
ZeroModularAbelianVariety(k) : RngIntElt -> ModAbVar
Ideal_Variety (Example H106E3)
Ideal_Variety (Example H106E4)
Computation of Varieties (POLYNOMIAL RING IDEAL OPERATIONS)
Resolution of a Nonprojective Toric Variety (TORIC VARIETIES)
Secant Varieties (SCHEMES)
Studying the Parameter Space (LIE ALGEBRAS)
Tangent Varieties (SCHEMES)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012