[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: IsPrimePower .. IsQuasisplit
IsPrimePower(n) : RngIntElt -> BoolElt, RngIntElt, RngIntElt
Modulus(psi) : GrossenChar -> RngOrdIdl, SeqEnum
IsPrimitive(psi) : GrossenChar -> BoolElt
AssociatedPrimitiveGrossencharacter(psi) : GrossenChar -> GrossenChar
Conductor(psi) : GrossenChar -> RngOrdIdl, SeqEnum
IsPrimitive(C) : CosetGeom -> BoolElt
IsPrimitive(a) : FldAlgElt -> BoolElt
IsPrimitive(a) : FldFinElt -> BoolElt
IsPrimitive(a) : FldNumElt -> BoolElt
IsPrimitive(chi) : GrpDrchElt -> BoolElt
IsPrimitive(chi) : GrpDrchNFElt -> BoolElt
IsPrimitive(G) : GrphUnd -> BoolElt
IsPrimitive(G) : GrpPerm -> BoolElt
IsPrimitive(G, Y) : GrpPerm, GSet -> BoolElt
IsPrimitive(H) : HypGeomData -> BoolElt, RngIntElt
IsPrimitive(G: parameters) : GrpMat -> BoolElt
IsPrimitive(n, m) : RngIntElt, RngIntElt -> BoolElt
IsPrimitive(n) : RngIntResElt -> BoolElt
IsPrimitive(f) : RngUPolElt -> BoolElt
IsPrimitive(v) : TorLatElt -> BoolElt
GrpMatFF_IsPrimitive (Example H60E2)
IsPrimitiveFiniteNilpotent(G : parameters): GrpMat -> BoolElt, Any
IsPrincipal(I) : AlgAssVOrdIdl -> BoolElt, AlgQuatElt
IsPrincipal(D) : DivCrvElt -> BoolElt, FldFunFracSchElt
IsPrincipal(D) : DivSchElt -> BoolElt, FldFunFracSchElt
IsPrincipal(D) : DivTorElt -> BoolElt
IsPrincipal(I) : RngFunOrdIdl -> BoolElt, FldFunElt
IsPrincipal(I) : RngMPol -> BoolElt, RngMPolElt
IsPrincipal(I) : RngOrdFracIdl -> BoolElt, FldOrdElt
IsPrincipalIdealDomain(R) : Rng -> BoolElt
IsPID(R) : Rng -> BoolElt
IsPrincipalIdealRing(R) : Rng -> BoolElt
IsPIR(R) : Rng -> BoolElt
IsPrincipalIdealRing(F) : FldAlg -> BoolElt
IsPrincipalIdealRing(F) : FldNum -> BoolElt
IsPrincipalIdealRing(O) : RngOrd -> BoolElt
IsPrincipalSeries(pi) : RepLoc -> BoolElt
IsProbablyPrime(n: parameter) : RngIntElt -> BoolElt
IsProbablePrime(n: parameter) : RngIntElt -> BoolElt
IsProbablyMaximal(G, H: parameters) : GrpPerm, GrpPerm -> BoolElt
IsProbablyPerfect(G : parameters): Grp -> BoolElt
GrpMatFF_IsProbablyPerfect (Example H60E1)
IsProbablyPermutationPolynomial(p) : RngUPolElt -> BoolElt
IsProbablyPrime(n: parameter) : RngIntElt -> BoolElt
IsProbablePrime(n: parameter) : RngIntElt -> BoolElt
IsProbablySupersingular(E) : CrvEll -> BoolElt
IsProductOfParallelDescendingCycles(p) : GrpPermElt -> BoolElt
IsProjective(C) : Code -> BoolElt
IsProjective(C) : Code -> BoolElt
IsProjective(C) : Code -> BoolElt
IsProjective(M) : ModAlg -> BoolElt, SeqEnum
IsProjective(X) : Sch -> BoolElt
IsProjective(X) : Sch -> BoolElt
IsProjective(X) : TorVar -> BoolElt
IsProjectivelyIrreducible(R) : RootStr -> BoolElt
IsProjectivelyIrreducible(R) : RootSys -> BoolElt
IsProper(I) : AlgFP -> BoolElt
IsProper(I) : RngMPol -> BoolElt
IsProper(I) : RngMPolLoc -> BoolElt
IsProper(I) : RngMPolRes -> BoolElt
IsProperChainMap(f) : MapChn -> BoolElt
IsProportional(X, k) : Mtrx, RngIntElt -> BoolElt, Tup
IsPseudoReflection(r) : Mtrx -> BoolElt, ModTupRngElt, ModTupRngElt
IsPseudoSymplecticSpace(W) : ModTupFld -> BoolElt
IspSubalgebra(L, M) : AlgLie, AlgLie -> AlgLie
IsRestrictedSubalgebra(L, M) : AlgLie, AlgLie -> AlgLie
IsPure(Q) : CodeQuantum -> BoolElt
IsPure(G, H) : GrpAb, GrpAb -> BoolElt
IsQCartier(D) : DivTorElt -> BoolElt
IsSimplicial(P) : TorPol -> BoolElt
IsQFactorial(C) : TorCon -> BoolElt
IsQFactorial(F) : TorFan -> BoolElt
IsQFactorial(X) : TorVar -> BoolElt
IsQGorenstein(C) : TorCon -> BoolElt
IsQGorenstein(F) : TorFan -> BoolElt
IsQGorenstein(X) : TorVar -> BoolElt
IsQPrincipal(D) : DivTorElt -> BoolElt
Isqrt(n) : RngIntElt -> RngIntElt
IsQuadratic(K) : FldAlg -> BoolElt, FldQuad
IsQuadratic(K) : FldNum -> BoolElt, FldQuad
IsQuadraticTwist(E, F) : CrvEll, CrvEll -> BoolElt, RngElt
IsQuadraticTwist(C, D) : CrvHyp, CrvHyp -> BoolElt, RngElt
IsQuadricIntersection(C) : Crv -> BoolElt, [AlgMatElt]
IsQuasisplit(R) : RootDtm -> BoolElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012