[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: other-ideal  ..  Over


other-ideal

   Other Functions on Ideals (UNIVARIATE POLYNOMIAL RINGS)

other-operations

   Other Operations (UNIVARIATE POLYNOMIAL RINGS)
   Other Operations on Cohomology Modules (COHOMOLOGY AND EXTENSIONS)

other-properties

   Other Properties of Linear Groups (MATRIX GROUPS OVER INFINITE FIELDS)

other-quotient

   Other Functions on Quotients (UNIVARIATE POLYNOMIAL RINGS)

other-tensprod

   Other Tensor Products (L-FUNCTIONS)

OtherMod

   ModAlg_OtherMod (Example H89E16)

Others

   New Groups From Others (MATRIX GROUPS OVER Q AND Z)

Out

   DivideOutIntegers(phi) : MapModAbVar -> MapModAbVar, RngIntElt
   MaximumOutDegree(G) : GrphDir -> RngIntElt, GrphVert
   MaximumOutDegree(G) : GrphMultDir -> RngIntElt, GrphVert
   MinimumOutDegree(G) : GrphDir -> RngIntElt, GrphVert
   MinimumOutDegree(G) : GrphMultDir -> RngIntElt, GrphVert
   OutDegree(u) : GrphVert -> RngIntElt
   OutDegree(u) : GrphVert -> RngIntElt
   OutNeighbours(u) : GrphVert -> { GrphVert }
   OutNeighbours(u) : GrphVert -> { GrphVert }

OutDegree

   OutDegree(u) : GrphVert -> RngIntElt
   OutDegree(u) : GrphVert -> RngIntElt

Outer

   IsOuter(R) : RootDtm -> BoolElt
   IsInner(R) : RootDtm -> BoolElt
   OuterFPGroup(A) : GrpAuto -> GrpFP, Map
   OuterFaces(N) : NwtnPgon -> SeqEnum
   OuterOrder(A) : GrpAuto -> RngIntElt
   OuterVertices(N) : NwtnPgon -> SeqEnum
   Shape(t) : Tbl -> SeqEnum[RngIntElt]

OuterFaces

   OuterFaces(N) : NwtnPgon -> SeqEnum

OuterFPGroup

   OuterFPGroup(A) : GrpAuto -> GrpFP, Map

OuterOrder

   OuterOrder(A) : GrpAuto -> RngIntElt

OuterShape

   OuterShape(t) : Tbl -> SeqEnum
   Shape(t) : Tbl -> SeqEnum[RngIntElt]

OuterVertices

   OuterVertices(N) : NwtnPgon -> SeqEnum

OutNeighbors

   OutNeighbors(u) : GrphVert -> { GrphVert }
   OutNeighbours(u) : GrphVert -> { GrphVert }
   OutNeighbours(u) : GrphVert -> { GrphVert }

OutNeighbours

   OutNeighbors(u) : GrphVert -> { GrphVert }
   OutNeighbours(u) : GrphVert -> { GrphVert }
   OutNeighbours(u) : GrphVert -> { GrphVert }

Output

   Verbose Output (BRANDT MODULES)
   HasOutputFile() : -> BoolElt
   SetOutputFile(F) : MonStgElt ->
   SetOutputFile(F) : MonStgElt ->
   UnsetOutputFile() : ->

output

   Redirecting Output (INPUT AND OUTPUT)

Oval

   OvalDerivation(q: parameters) : RngIntElt -> PlaneAff, PlanePtSet, PlaneLnSet

OvalDerivation

   OvalDerivation(q: parameters) : RngIntElt -> PlaneAff, PlanePtSet, PlaneLnSet

Over

   AbsoluteModuleOverMinimalField(M) : ModGrp -> ModGrp
   AbsoluteModuleOverMinimalField(M, F) : ModGrp, FldFin -> ModGrp
   AbsoluteModulesOverMinimalField(Q, F) : [ ModGrp ], FldFin -> [ ModGrp ]
   AlgebraOverCenter(A) : Alg -> AlgAss, Map;
   AutomorphismGroupOverCyclotomicExtension(CN,N,n): Crv, RngIntElt, RngIntElt -> GrpAutCrv
   AutomorphismGroupOverExtension(CN,N,n,u): Crv, RngIntElt, RngIntElt, RngElt -> GrpAutCrv
   AutomorphismGroupOverQ(CN,N): Crv, RngIntElt -> GrpAutCrv
   DirichletCharacterOverNF(chi) : GrpDrchElt -> GrpDrchNFElt
   FactorizationOverSplittingField(f) : RngUPolElt[FldFin] -> [<RngUPolElt, RngIntElt>], FldFin
   GHomOverCentralizingField(M, N) : ModGrp, ModGrp -> ModMatGrp
   GeneratorsOverBaseRing(K) : FldNum -> FldNumElt
   GeneratorsSequenceOverBaseRing(K) : FldNum -> [FldNumElt]
   HasPointsOverExtension(X) : Sch -> BoolElt
   HasSingularPointsOverExtension(C) : Sch -> BoolElt
   IntegralMatrixOverQ(phi) : MapModAbVar -> ModMatFldElt
   IsIsomorphicOverQt(K, L) : FldFun, FldFun -> BoolElt, Map
   IsOverQ(H) : HomModAbVar -> HomModAbVar
   IsOverSmallerField (G : parameters) : GrpMat -> BoolElt, GrpMat
   IsOverSmallerField(G, k : parameters) : GrpMat -> BoolElt, GrpMat
   IsRealisableOverSmallerField(M) : ModGrp -> BoolElt, ModGrp
   IsRealisableOverSubfield(M, F) : ModGrp, FldFin -> BoolElt, ModGrp
   LiftDescendant(C) : CrvHyp -> SeqEnum[ CrvHyp ], List, MapSch
   LogCanonicalThresholdOverExtension(C) : Sch -> FldRatElt
   ModuleOverSmallerField(M, F) : ModGrp, FldFin -> ModGrp
   ModulesOverCommonField(M, N) : ModGrp, ModGrp -> ModGrp, ModGrp
   ModulesOverSmallerField(Q, F) : SeqEnum, FldFin -> ModGrp
   NumberOfPlacesOfDegreeOneECFBound(C) : Crv -> RngIntElt
   NumberOfPlacesOfDegreeOneECFBound(F) : FldFunG -> RngIntElt
   NumberOfPlacesOfDegreeOneOverExactConstantField(C) : Crv[FldFin] -> RngIntElt
   NumberOfPlacesOfDegreeOneOverExactConstantField(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
   NumberOfPlacesOfDegreeOneOverExactConstantField(F, m) : FldFun, RngIntElt -> RngIntElt
   NumberOfPlacesOfDegreeOneOverExactConstantField(F) : FldFunG -> RngIntElt
   NumberOfPlacesOfDegreeOneOverExactConstantField(F, m) : FldFunG, RngIntElt -> RngIntElt
   NumberOfPlacesOfDegreeOneOverExactConstantFieldBound(F, m) : FldFun, RngIntElt -> RngIntElt
   NumberOfPlacesOfDegreeOverExactConstantField(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
   NumberOfPlacesOfDegreeOverExactConstantField(F, m) : FldFun, RngIntElt -> RngIntElt
   NumberOfPlacesOfDegreeOverExactConstantField(F, m) : FldFunG, RngIntElt -> RngIntElt
   OverDimension(V) : ModTupFld -> RngIntElt
   OverDimension(u) : ModTupFldElt -> RngIntElt
   OverDimension(M) : ModTupRng -> RngIntElt
   OverDimension(u) : ModTupRngElt -> RngIntElt
   PointsOverSplittingField(Z) : Clstr -> SetEnum
   VarietySizeOverAlgebraicClosure(I) : RngMPol -> RngIntElt
   WeilPolynomialOverFieldExtension(f, deg) : RngUPolElt, RngIntElt -> RngUPolElt
   WriteGModuleOver(M, K) : ModGrp, FldAlg -> ModGrp
   WriteOverLargerField(G) : GrpMat -> GrpMat, GrpAb, SeqEnum
   WriteOverSmallerField(G, F) : GrpMat, FldFin -> GrpMat, Map
   WriteOverSmallerField(M, F) : ModGrp, FldFin -> ModGrp, Map
   WriteRepresentationOver(R, K) : Map, FldAlg -> Map

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012