[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: ModulesOverCommonField  ..  Monomial


ModulesOverCommonField

   ModulesOverCommonField(M, N) : ModGrp, ModGrp -> ModGrp, ModGrp

ModulesOverSmallerField

   ModulesOverSmallerField(Q, F) : SeqEnum, FldFin -> ModGrp

ModuleWithBasis

   ModuleWithBasis(Q): SeqEnum -> ModAlg

Moduli

   Moduli(L) : AlgLie -> SeqEnum
   Moduli(M) : ModTupRng -> [ RngElt ]
   ModuliPoints(X,E) : CrvMod, CrvEll -> SeqEnum

Moduli points

   CrvMod_Moduli points (Example H128E1)

ModuliOfLieAlgebra

   AlgLie_ModuliOfLieAlgebra (Example H100E29)

ModuliPoints

   ModuliPoints(X,E) : CrvMod, CrvEll -> SeqEnum

Modulus

   BlumBlumShubModulus(b) : RngIntElt -> RngIntElt
   BBSModulus(b) : RngIntElt -> RngIntElt
   Conductor(psi) : GrossenChar -> RngOrdIdl, SeqEnum
   CongruenceModulus(A) : ModAbVar -> RngIntElt
   CongruenceModulus(M : parameters) : ModSym -> RngIntElt
   FactoredModulus(R) : RngIntRes -> RngIntEltFact
   Modulus(c) : FldComElt -> FldReElt
   Modulus(G) : GrpDrch -> RngIntElt
   Modulus(chi) : GrpDrchElt -> RngIntElt
   Modulus(G) : GrpDrchNF -> RngOrdIdl, SeqEnum
   Modulus(R) : RngIntRes -> RngInt
   Modulus(OQ) : RngOrdRes -> RngOrdIdl
   Modulus(Q) : RngUPolRes -> RngUPolElt

Moebius

   MoebiusMu(n) : RngIntElt -> RngIntElt
   MoebiusStrip() : -> SmpCpx

MoebiusMu

   MoebiusMu(n) : RngIntElt -> RngIntElt

MoebiusStrip

   MoebiusStrip() : -> SmpCpx

Molien

   MolienSeries(G) : GrpMat -> FldFunUElt
   MolienSeriesApproximation(G, n) : GrpPerm, RngIntElt -> RngSerLaurElt

molien

   Molien Series (INVARIANT THEORY)

MolienSeries

   MolienSeries(G) : GrpMat -> FldFunUElt
   RngInvar_MolienSeries (Example H110E5)

MolienSeriesApproximation

   MolienSeriesApproximation(G, n) : GrpPerm, RngIntElt -> RngSerLaurElt

Monic

   IsMonic(L) : RngDiffOpElt -> BoolElt
   IsWeaklyMonic(L) : RngDiffOpElt -> BoolElt
   MonicDifferentialOperator(L) : RngDiffOpElt -> RngDiffOpElt
   ResolveAffineMonicSurface(s) : RngUPolElt -> List, RngIntElt

MonicDifferentialOperator

   MonicDifferentialOperator(L) : RngDiffOpElt -> RngDiffOpElt

Monodromy

   MonodromyPairing(P, Q) : ModSSElt, ModSSElt -> RngIntElt
   MonodromyWeights(M) : ModSS -> SeqEnum
   ModSS_Monodromy (Example H135E9)

monodromy

   The Monodromy Pairing (SUPERSINGULAR DIVISORS ON MODULAR CURVES)

monodromy-pairing

   The Monodromy Pairing (SUPERSINGULAR DIVISORS ON MODULAR CURVES)

MonodromyPairing

   MonodromyPairing(P, Q) : ModSSElt, ModSSElt -> RngIntElt

MonodromyWeights

   MonodromyWeights(M) : ModSS -> SeqEnum

Monoid

   FreeMonoid(n) : RngIntElt -> MonFP
   Monoid< generators | relations > : MonFPElt, ..., MonFPElt, Rel, ..., Rel -> MonFP
   OrderedIntegerMonoid() : -> MonOrd
   OrderedMonoid(P) : MonPlc -> MonOrd
   OrderedMonoid(M) : MonPlc -> MonOrd;
   OrderedMonoid(n) : RngIntElt -> MonOrd
   PlacticIntegerMonoid() : -> MonOrd
   PlacticMonoid(O) : MonOrd -> MonOrd
   TableauIntegerMonoid() : -> MonTbl
   TableauMonoid(O) : MonOrd -> MonTbl
   SgpFP_Monoid (Example H77E2)

monoid

   Ordered Monoids (PARTITIONS, WORDS AND YOUNG TABLEAUX)
   Plactic Monoids (PARTITIONS, WORDS AND YOUNG TABLEAUX)
   Tableau Monoids (PARTITIONS, WORDS AND YOUNG TABLEAUX)

Monomial

   MonomialGroup(C: parameters) : Code -> GrpPerm, PowMap, Map
   AutomorphismGroup(C: parameters) : Code -> GrpPerm, PowMap, Map
   AutomorphismGroupStabilizer(C, k) : Code, RngIntElt -> GrpPerm, PowMap, Map
   AutomorphismSubgroup(C) : Code -> GrpPerm, PowMap, Map
   CoxMonomialLattice(C) : RngCox -> TorLat
   CoxMonomialLattice(X) : TorVar -> TorLat
   DefiningMonomial(D) : DivTorElt -> RngMPolElt
   ElementaryToMonomialMatrix(n): RngIntElt -> AlgMatElt
   HasHomogeneousBasis(A): AlgSym -> BoolElt
   HomogeneousToMonomialMatrix(n): RngIntElt -> AlgMatElt
   LatticeElementToMonomial(D,v) : DivTorElt,TorLatElt -> RngMPolElt
   LeadingMonomial(f) : AlgFrElt -> AlgFrElt
   LeadingMonomial(f) : RngMPolElt -> RngMPolElt
   LeadingMonomialIdeal(I) : RngMPol -> RngMPol
   LeadingMonomialIdeal(I) : RngMPolLoc -> RngMPolLoc
   Monomial(P, E) : RngMPol, [ RngIntElt ] -> RngMPolElt
   MonomialBasis(Q) : RngMPolRes -> [ RngMPolResElt ]
   MonomialCoefficient(f, m) : AlgFrElt, AlgFrElt -> RngElt
   MonomialCoefficient(f, m) : RngMPolElt, RngMPolElt -> RngElt
   MonomialCoefficient(p, m) : RngUPolElt, RngUPolElt -> RngElt
   MonomialLattice(C) : RngCox -> TorLat
   MonomialLattice(X) : TorVar -> TorLat
   MonomialOrder(P) : RngMPol -> Tup
   MonomialOrder(R) : RngMPolLoc -> Tup
   MonomialOrderWeightVectors(P) : RngMPol -> [ [ FldRatElt ] ]
   MonomialOrderWeightVectors(R) : RngMPol -> [ [ FldRatElt ] ]
   MonomialToElementaryMatrix(n): RngIntElt -> AlgMatElt
   MonomialToHomogeneousMatrix(n): RngIntElt -> AlgMatElt
   MonomialToPowerSumMatrix(n): RngIntElt -> AlgMatElt
   MonomialToSchurMatrix(n): RngIntElt -> AlgMatElt
   PowerSumToMonomialMatrix(n): RngIntElt -> AlgMatElt
   SchurToMonomialMatrix(n): RngIntElt -> AlgMatElt
   SymmetricFunctionAlgebraMonomial(R) : Rng -> AlgSym

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012