[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: FactoredInverseDefiningPolynomials  ..  Factorization


FactoredInverseDefiningPolynomials

   FactoredInverseDefiningPolynomials(f) : MapSch -> SeqEnum

FactoredMCPolynomials

   FactoredMCPolynomials(A: parameters) : Mtrx -> [<RngUPolElt, RngIntElt>], [<RngUPolElt, RngIntElt>]
   FactoredMinimalAndCharacteristicPolynomials(A: parameters) : Mtrx -> [<RngUPolElt, RngIntElt>], [<RngUPolElt, RngIntElt>]

FactoredMinimalAndCharacteristicPolynomials

   FactoredMCPolynomials(A: parameters) : Mtrx -> [<RngUPolElt, RngIntElt>], [<RngUPolElt, RngIntElt>]
   FactoredMinimalAndCharacteristicPolynomials(A: parameters) : Mtrx -> [<RngUPolElt, RngIntElt>], [<RngUPolElt, RngIntElt>]

FactoredMinimalPolynomial

   FactoredMinimalPolynomial(A: parameters) : Mtrx -> [ <RngUPolElt, RngIntElt>]

FactoredModulus

   FactoredModulus(R) : RngIntRes -> RngIntEltFact

FactoredOrder

   FactoredOrder(A) : AlgMatElt -> [ <RngIntElt, RngIntElt> ]
   FactoredOrder(a) : AlgMatElt -> [ <RngIntElt, RngIntElt> ]
   FactoredOrder(a) : FldFinElt -> RngIntElt
   FactoredOrder(G) : GrpAb -> [<RngIntElt, RngIntElt>]
   FactoredOrder(A) : GrpAutCrv -> [ <RngIntElt, RngIntElt> ]
   FactoredOrder(A) : GrpAuto -> [ <RngIntElt, RngIntElt> ]
   FactoredOrder(G) : GrpFin -> [ <RngIntElt, RngIntElt> ]
   FactoredOrder(G) : GrpGPC -> [<RngIntElt, RngIntElt>]
   FactoredOrder(G) : GrpLie -> RngIntElt
   FactoredOrder(G) : GrpMat -> [ <RngIntElt, RngIntElt> ]
   FactoredOrder(g) : GrpMatElt -> [ <RngIntElt, RngIntElt> ], BoolElt
   FactoredOrder(G) : GrpPC -> [<RngIntElt, RngIntElt>]
   FactoredOrder(P) : GrpPCpQuotientProc -> [ <RngIntElt, RngIntElt> ]
   FactoredOrder(G) : GrpPerm -> [ <RngIntElt, RngIntElt> ]
   FactoredOrder(J) : JacHyp -> [ <RngIntElt, RngIntElt> ]
   FactoredOrder(P) : PtEll -> RngIntElt
   FactoredOrder(G) : SchGrpEll -> RngIntElt
   FactoredOrder(H) : SetPtEll -> RngIntElt
   Order(G) : GrpMatUnip -> RngIntElt
   Order(G: parameters) : GrpFP -> RngIntElt

FactoredProjectiveOrder

   FactoredProjectiveOrder(a) : AlgMatElt -> [ <RngIntElt, RngIntElt> ]
   FactoredProjectiveOrder(A) : AlgMatElt -> [ <RngIntElt, RngIntElt> ], RngElt
   FactoredProjectiveOrder(A) : AlgMatElt -> [ <RngIntElt, RngIntElt> ], RngElt

Factorial

   Factorial(n) : RngIntElt -> RngIntElt
   Factorial(n) : RngIntElt -> RngIntElt
   GaussianFactorial(n, v) : RngIntElt, RngElt -> RngElt
   IsFactorial(n) : RngIntElt -> BoolElt, RngIntElt

Factorisation

   CombineIdealFactorisation(~D) : DivSchElt ->
   ComputePrimeFactorisation(~D) : DivSchElt ->
   ComputeReducedFactorisation(~D) : DivSchElt ->
   Factorisation(A) : ModAbVar -> List
   Factorisation(L) : RngDiffOpElt -> SeqEnum, SeqEnum
   FactorisationToPolynomial(f) : [Tup] -> BoolElt
   Factorization(L) : LSer -> SeqEnum[Tup]
   Factorization(I) : RngFunOrdIdl -> [ <RngFunOrdIdl, RngIntElt> ]
   Factorization(n) : RngIntElt -> RngIntEltFact, RngIntElt, SeqEnum
   Factorization(I) : RngOrdFracIdl -> [<RngOrdIdl, RngIntElt>]
   Factorization(n) : RngQuadElt -> SeqEnum, Tup
   Factorization(f) : RngUPolElt -> [ < RngUPolElt, RngIntElt >], RngElt
   FactorizationOverSplittingField(f) : RngUPolElt[FldFin] -> [<RngUPolElt, RngIntElt>], FldFin
   FactorizationToInteger(s) : [ <RngIntElt, RngIntElt> ] -> RngIntElt
   IdealFactorisation(D) : DivSchElt -> SeqEnum
   IsFactorisationPrime(D) : DivSchElt -> BoolElt

factorisation

   Coprime Index 1 and LCLM Factorisation (DIFFERENTIAL RINGS)
   Factorisation of Operators over Differential Laurent Series Rings (DIFFERENTIAL RINGS)

FactorisationOverSplittingField

   FactorisationOverSplittingField(f) : RngUPolElt[FldFin] -> [<RngUPolElt, RngIntElt>], FldFin
   FactorizationOverSplittingField(f) : RngUPolElt[FldFin] -> [<RngUPolElt, RngIntElt>], FldFin

FactorisationToInteger

   FactorisationToInteger(s) : [ <RngIntElt, RngIntElt> ] -> RngIntElt
   Facint(s) : [ <RngIntElt, RngIntElt> ] -> RngIntElt
   FactorizationToInteger(s) : [ <RngIntElt, RngIntElt> ] -> RngIntElt

FactorisationToPolynomial

   Facpol(f) : [Tup] -> BoolElt
   FactorisationToPolynomial(f) : [Tup] -> BoolElt

Factorization

   DistinctDegreeFactorization(f) : RngUPolElt -> [ <RngIntElt, RngUPolElt> ]
   EqualDegreeFactorization(f, d, g) : RngUPolElt, RngIntElt, RngUPolElt -> [ RngUPolElt ]
   Facint(f) : RngIntEltFact -> RngIntElt
   Factorisation(A) : ModAbVar -> List
   Factorisation(L) : RngDiffOpElt -> SeqEnum, SeqEnum
   Factorization(I) : AlgQuatOrdIdl -> SeqEnum
   Factorization(L) : LSer -> SeqEnum[Tup]
   Factorization(I) : RngFunOrdIdl -> [ <RngFunOrdIdl, RngIntElt> ]
   Factorization(n) : RngIntElt -> RngIntEltFact, RngIntElt, SeqEnum
   Factorization(f) : RngMPolElt -> [ < RngMPolElt, RngIntElt >], RngElt
   Factorization(I) : RngOrdFracIdl -> [<RngOrdIdl, RngIntElt>]
   Factorization(n) : RngQuadElt -> SeqEnum, Tup
   Factorization(f) : RngUPolElt -> [ < RngUPolElt, RngIntElt > ]
   Factorization(f) : RngUPolElt -> [ < RngUPolElt, RngIntElt >], RngElt
   Factorization(f) : RngUPolElt[RngLocA] -> SeqEnum, RngElt, Any
   Factorization(f) : RngUPolElt[RngSerPow[FldFin]] -> [ < RngUPolElt[RngSerPow], RngIntElt > ], RngSerPowElt
   FactorizationOverSplittingField(f) : RngUPolElt[FldFin] -> [<RngUPolElt, RngIntElt>], FldFin
   FactorizationToInteger(s) : [ <RngIntElt, RngIntElt> ] -> RngIntElt
   HasPolynomialFactorization(R) : Rng -> BoolElt
   IsUFD(R) : Rng -> BoolElt
   PartialFactorization(S) : [ RngIntElt ] -> [ RngIntEltFact ]
   SeqFact(s) : SeqEnum -> RngIntEltFact
   SquareFreeFactorization(f) : RngUPolElt -> [ < RngUPolElt, RngIntElt > ]
   SquarefreeFactorization(n) : RngIntElt -> RngIntElt, RngIntElt
   SquarefreeFactorization(f) : RngMPolElt -> [ <RngMPolElt, RngIntElt> ]
   SquarefreeFactorization(f) : RngUPolElt -> [ <RngUPolElt, RngIntElt> ]
   AlgAff_Factorization (Example H108E5)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012