[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: Group  ..  Group


Group

   Symmetric Group Character (SYMMETRIC FUNCTIONS)
   A`DefiningGroup : FldAb -> Rec
   AbelianGroup(GrpAb, Q) : Cat, [ RngIntElt ] -> GrpAb
   AbelianGroup(C, Q) : Cat, [ RngIntElt ] -> GrpFin
   AbelianGroup(GrpFP, [n1,...,nr]): Cat, [ RngIntElt ] -> GrpFP
   AbelianGroup(GrpPerm, Q) : Cat, [ RngIntElt ] -> GrpPerm
   AbelianGroup(GrpGPC, Q) : Cat, [RngIntElt] -> GrpGPC
   AbelianGroup(GrpPC, Q) : Cat, [RngIntElt] -> GrpPC
   AbelianGroup(G) : Grp -> GrpAb, Hom
   AbelianGroup(G) : GrpDrch -> GrpAb, Map
   AbelianGroup(G) : GrpGPC -> GrpAb, Map
   AbelianGroup(G) : GrpPC -> GrpAb, Map
   AbelianGroup(J) : JacHyp -> GrpAb, Map
   AbelianGroup< X | R > : List(Var), List(GrpAbRel) -> GrpAb, Hom(GrpAb)
   AbelianGroup(G) : ModAbVarSubGrp -> GrpAb, Map, Map
   AbelianGroup(A: parameters) : GrpAbGen -> GrpAb, Map
   AbelianGroup(H) : SetPtEll -> GrpAb, Map
   AbelianGroup([n1,...,nr]): [ RngIntElt ] -> GrpAb
   AbsoluteGaloisGroup(A) : FldAb -> GrpPerm, SeqEnum, GaloisData
   ActingGroup(A) : GGrp -> Grp
   ActingGroup(G) : GrpLie -> Grp, Map
   ActionGroup(M) : ModGrp -> GrpMat
   AdditiveGroup(F) : FldFin -> GrpAb, Map
   AdditiveGroup(Z) : RngInt -> GrpAb, Map
   AdditiveGroup(R) : RngIntRes -> GrpAb, Map
   AdditiveGroup(R) : RngPadRes -> GrpAb, Map
   AffineGammaLinearGroup(arguments)
   AffineGeneralLinearGroup(arguments)
   AffineGeneralLinearGroup(GrpMat, n, q) : Cat, RngIntElt, RngIntElt -> GrpMat
   AffineGroup(M) : GrpMat[FldFin] -> GrpPerm, { at ModTupFldElt atbrace
   AffineGroup(N) : Nfd -> GrpMat
   AffineSigmaLinearGroup(arguments)
   AffineSpecialLinearGroup(arguments)
   AffineSpecialLinearGroup(GrpMat, n, q) : Cat, RngIntElt, RngIntElt -> GrpMat
   AlmostSimpleGroupDatabase() : -> DB
   AlternatingGroup(C, n) : Cat, RngIntElt -> GrpFin
   AlternatingGroup(GrpFP, n) : Cat, RngIntElt -> GrpFP
   AlternatingGroup(GrpPerm, n) : Cat, RngIntElt -> GrpPerm
   ApproximateByTorsionGroup(G : parameters) : ModAbVarSubGrp -> ModAbVarSubGrp
   ArithmeticTriangleGroup(p,q,r) : RngIntElt, RngIntElt, RngIntElt -> GrpPSL2, Rng
   AutomaticGroup(F: parameters) : GrpFP -> GrpAtc
   AutomaticGroup(F: parameters) : GrpFP -> GrpAtc
   AutomorphismGroup(A) : AlgBas -> GrpMat, SeqEnum, SeqEnum, SeqEnum
   AutomorphismGroup(C) : CodeAdd -> GrpPerm
   AutomorphismGroup(Q) : CodeQuantum -> GrpPerm
   AutomorphismGroup(C) : Crv -> GrpAutCrv
   AutomorphismGroup(C,auts) : Crv, SeqEnum -> GrpAutCrv
   AutomorphismGroup(E) : CrvEll -> Grp, Map
   AutomorphismGroup(C) : CrvHyp -> GrpPerm, Map, Map
   AutomorphismGroup(A) : FldAb -> GrpFP, [Map], Map
   AutomorphismGroup(F) : FldAlg -> GrpPerm, PowMap, Map
   AutomorphismGroup(K, F) : FldAlg, FldAlg -> GrpPerm, PowMap, Map
   AutomorphismGroup(K, k) : FldFin, FldFin -> GrpPerm, [Map], Map
   AutomorphismGroup(K, k) : FldFun, FldFunG -> GrpFP, Map
   AutomorphismGroup(K) : FldFunG -> GrpFP, Map
   AutomorphismGroup(K,f) : FldFunG, Map -> Grp, Map, SeqEnum
   AutomorphismGroup(Q) : FldRat -> GrpPerm, PowMapAut, Map
   AutomorphismGroup(G): Grp -> GrpAuto
   AutomorphismGroup(G, Q, I): Grp, SeqEnum[GrpElt], SeqEnum[SeqEnum[GrpElt]] -> GrpAuto
   AutomorphismGroup(G) : GrpAb -> GrpAuto
   AutomorphismGroup(G) : GrpLie -> GrpLieAuto
   AutomorphismGroup(G): GrpPC -> GrpAuto
   AutomorphismGroup(D) : Inc -> GrpPerm, GSet, GSet, PowMap, Map
   AutomorphismGroup(D) : IncGeom -> GrpPerm
   AutomorphismGroup(L) : Lat -> GrpMat
   AutomorphismGroup(L, F) : Lat, [ AlgMatElt ] -> GrpMat
   AutomorphismGroup(M) : ModRng -> GrpMat
   AutomorphismGroup(M) : Mtrx -> GrpPerm
   AutomorphismGroup(G) : Mtrx[RngUPol] -> GrpMat, FldFin
   AutomorphismGroup(N) : NfdDck -> GrpPerm, Map
   AutomorphismGroup(C: parameters) : Code -> GrpPerm, PowMap, Map
   AutomorphismGroup(G : parameters) : Grph -> GrpPerm, GSet, GSet, PowMap, Map, Grph
   AutomorphismGroup(G: parameters) : GrpMat -> GrpAuto
   AutomorphismGroup(G: parameters) : GrpPerm -> GrpAuto
   AutomorphismGroup(G: parameters): GrpPC -> GrpAuto
   AutomorphismGroup(P) : Prj -> GrpMat,Map
   AutomorphismGroup(L) : RngLocA -> Grp, Map
   AutomorphismGroup(L) : RngPad -> GrpPerm, Map
   AutomorphismGroup(K, k) : RngPad, RngPad -> GrpPerm, Map
   AutomorphismGroup(P) : TorPol -> GrpMat
   AutomorphismGroup(F) : [ AlgMatElt ] -> GrpMat
   AutomorphismGroupMatchingIdempotents(A) : AlgBas -> AlgBas, ModMatFldElt
   AutomorphismGroupOverCyclotomicExtension(CN,N,n): Crv, RngIntElt, RngIntElt -> GrpAutCrv
   AutomorphismGroupOverExtension(CN,N,n,u): Crv, RngIntElt, RngIntElt, RngElt -> GrpAutCrv
   AutomorphismGroupOverQ(CN,N): Crv, RngIntElt -> GrpAutCrv
   AutomorphismGroupSolubleGroup(G: parameters): GrpPC -> GrpAuto
   AutomorphismGroupStabilizer(C, k) : Code, RngIntElt -> GrpPerm, PowMap, Map
   AutomorphismGroupStabilizer(D, k) : Inc, RngIntElt -> GrpPerm, PowMap, Map
   BasicAlgebraOfGroupAlgebra(G,F): GrpPerm, FldFin -> AlgBas
   BlockGroup(D) : Inc -> GrpPerm
   BraidGroup(GrpFP, n) : Cat, RngIntElt -> GrpFP
   BraidGroup(W) : GrpFPCox -> GrpFP, Map
   BraidGroup(n: parameters) : RngIntElt -> GrpBrd
   BravaisGroup(G) : GrpMat[RngInt] -> GrpMat
   CanIdentifyGroup(o) : RngIntElt -> BoolElt
   CentralCollineationGroup(P, l) : Plane, PlaneLn -> GrpPerm, PowMap, Map
   CentralCollineationGroup(P, p) : Plane, PlanePt -> GrpPerm, PowMap, Map
   CentralCollineationGroup(P, p, l) : Plane, PlanePt, PlaneLn -> GrpPerm, PowMap, Map
   ChevalleyGroup(X, n, K: parameters) : MonStgElt, RngIntElt, FldFin -> GrpMat
   ClassGroup(C) : Crv[FldFin] -> GrpAb, Map, Map
   ClassGroup(K) : FldQuad -> GrpAb, Map
   ClassGroup(Q) : FldRat -> GrpAb, Map
   ClassGroup(K: parameters) : FldAlg -> GrpAb, Map
   ClassGroup(F : parameters) : FldFun -> GrpAb, Map, Map
   ClassGroup(F : parameters) : FldFunG -> GrpAb, Map, Map
   ClassGroup(Q: parameters) : QuadBin -> GrpAb, Map
   ClassGroup(O: parameters) : RngOrd -> GrpAb, Map
   ClassGroup(O) : RngFunOrd -> GrpAb, Map, Map
   ClassGroup(Z) : RngInt -> GrpAb, Map
   ClassGroupAbelianInvariants(C) : Crv[FldFin] -> [RngIntElt]
   ClassGroupAbelianInvariants(F : parameters) : FldFun -> SeqEnum
   ClassGroupAbelianInvariants(F : parameters) : FldFunG -> SeqEnum
   ClassGroupAbelianInvariants(O) : RngFunOrd -> SeqEnum
   ClassGroupCyclicFactorGenerators(O) : RngOrd -> ModHomElt
   ClassGroupExactSequence(F) : FldFunG -> Map, Map, Map
   ClassGroupExactSequence(O) : RngFunOrd -> Map, Map, Map
   ClassGroupGenerationBound(F) : FldFunG -> RngIntElt
   ClassGroupGenerationBound(q, g) : RngIntElt, RngIntElt -> RngIntElt
   ClassGroupGetUseMemory(O) : RngOrd -> BoolElt
   ClassGroupPRank(C) : Crv[FldFin] -> RngIntElt
   ClassGroupPRank(F) : FldFunG -> RngIntElt
   ClassGroupPRank(F) : FldFunG -> RngIntElt
   ClassGroupPrimeRepresentatives(O, I) : RngOrd, RngOrdIdl -> Map
   ClassGroupSetUseMemory(O, f) : RngOrd, BoolElt ->
   ClassGroupStructure(Q: parameters) : QuadBin -> [ RngIntElt ]
   CohomologyGroup(CM, n) : ModCoho, RngIntElt -> ModTupRng
   CoisogenyGroup(G) : GrpLie -> GrpAb, Map
   CoisogenyGroup(W) : GrpMat -> GrpAb, Map
   CoisogenyGroup(W) : GrpPermCox -> GrpAb
   CoisogenyGroup(R) : RootDtm -> GrpAb, Map
   CollineationGroup(P) : Plane -> GrpPerm, GSet, GSet, PowMap, Map
   CollineationGroupStabilizer(P, k) : Plane, RngIntElt -> GrpPerm, GSet, GSet, PowMap, Map
   CommutatorSubgroup(G) : GrpFP -> GrpFP
   CommutatorSubgroup(G) : GrpMat -> GrpMat
   CommutatorSubgroup(G) : GrpPC -> GrpPC
   CommutatorSubgroup(G) : GrpPerm -> GrpPerm
   CompleteClassGroup(O) : RngOrd ->
   ComplexReflectionGroup(X, n) : MonStgElt, RngIntElt -> GrpMat, Map
   ComplexReflectionGroup(C) : Mtrx -> GrpMat, Map
   ComponentGroup(M) : CrvRegModel -> GrpAb
   ComponentGroupOfIntersection(A, B) : ModAbVar, ModAbVar -> ModAbVarSubGrp
   ComponentGroupOfKernel(phi) : MapModAbVar -> ModAbVarSubGrp
   ComponentGroupOrder(A, p) : ModAbVar, RngIntElt -> RngIntElt
   ComponentGroupOrder(M, p) : ModSym, RngIntElt -> RngIntElt
   CompositionTreeNiceGroup(G) : Grp -> GrpMat[FldFin]
   ConditionalClassGroup(K) : FldAlg -> GrpAb, Map
   ConditionalClassGroup(O) : RngOrd -> GrpAb, Map
   ConditionedGroup(G) : GrpPC -> GrpPC
   ConformalOrthogonalGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
   ConformalOrthogonalGroupMinus(n, q) : RngIntElt, RngIntElt -> GrpMat
   ConformalOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
   ConformalSymplecticGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
   ConformalUnitaryGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
   CongruenceGroup(M1, M2, prec) : ModFrm, ModFrm, RngIntElt -> GrpAb
   CongruenceGroup(M : parameters) : ModSym -> GrpAb
   CongruenceGroupAnemic(M1, M2, prec) : ModFrm, ModFrm, RngIntElt -> GrpAb
   CorrelationGroup(D) : IncGeom -> GrpPerm
   CosetTableToPermutationGroup(G, T) : GrpFP, Map -> GrpPerm
   CoxeterGroup(GrpFPCox, C) : Cat, AlgMatElt -> GrpFPCox
   CoxeterGroup(GrpFPCox, M) : Cat, AlgMatElt -> GrpFPCox
   CoxeterGroup(GrpFPCox, M) : Cat, AlgMatElt -> GrpFPCox
   CoxeterGroup(GrpPermCox, M) : Cat, AlgMatElt -> GrpPermCox
   CoxeterGroup(M) : Cat, AlgMatElt -> GrpPermCox
   CoxeterGroup(GrpFP, W) : Cat, GrpFPCox -> GrpFP, Map
   CoxeterGroup(GrpFP, W) : Cat, GrpFPCox -> GrpFP, Map
   CoxeterGroup(GrpPerm, W) : Cat, GrpFPCox -> GrpPerm, Map
   CoxeterGroup(GrpPermCox, W) : Cat, GrpFPCox -> GrpPermCox, Map
   CoxeterGroup(GrpFPCox, D) : Cat, GrphDir -> GrpFPCox
   CoxeterGroup(GrpFPCox, G) : Cat, GrphUnd -> GrpFPCox
   CoxeterGroup(GrpFPCox, W) : Cat, GrpMat -> GrpFPCox
   CoxeterGroup(GrpFPCox, W) : Cat, GrpMat -> GrpPermCox
   CoxeterGroup(GrpPermCox, W) : Cat, GrpMat -> GrpPermCox
   CoxeterGroup(GrpFP, W) : Cat, GrpMat -> GrpPermCox, Map
   CoxeterGroup(GrpPerm, W) : Cat, GrpMat -> GrpPermCox, Map
   CoxeterGroup(GrpPermCox, W) : Cat, GrpMat -> GrpPermCox, Map
   CoxeterGroup(GrpFP, W) : Cat, GrpPermCox -> GrpFP, Map
   CoxeterGroup(GrpFP, W) : Cat, GrpPermCox -> GrpFPCox
   CoxeterGroup(GrpFPCox, W) : Cat, GrpPermCox -> GrpFPCox, Map
   CoxeterGroup(GrpPerm, W) : Cat, GrpPermCox -> GrpPerm, Map
   CoxeterGroup(GrpFP, t) : Cat, MonStgElt -> GrpFP
   CoxeterGroup(GrpFPCox, N) : Cat, MonStgElt -> GrpFPCox
   CoxeterGroup(GrpFPCox, R) : Cat, RootDtm -> GrpFPCox
   CoxeterGroup(GrpFPCox, R) : Cat, RootSys -> GrpFPCox
   CoxeterGroup(GrpFPCox, R) : Cat, RootSys -> RngIntElt
   CoxeterGroup(A, B) : Mtrx, Mtrx -> GrpPermCox
   CoxeterGroup(R) : RootDtm -> GrpPermCox
   CoxeterGroup(R) : RootSys -> RngIntElt
   CoxeterGroupOrder(C) : AlgMatElt -> .
   CoxeterGroupOrder(M) : AlgMatElt -> .
   CoxeterGroupOrder(D) : GrphDir -> .
   CoxeterGroupOrder(G) : GrphUnd -> .
   CoxeterGroupOrder(N) : MonStgElt -> .
   CoxeterGroupOrder(R) : RootStr -> RngIntElt
   CoxeterGroupOrder(R) : RootSys -> RngIntElt
   CyclicGroup(C, n) : Cat, RngIntElt -> GrpFin
   CyclicGroup(GrpFP, n) : Cat, RngIntElt -> GrpFP
   CyclicGroup(GrpGPC, n) : Cat, RngIntElt -> GrpGPC
   CyclicGroup(GrpPC, n) : Cat, RngIntElt -> GrpPC
   CyclicGroup(GrpPerm, n) : Cat, RngIntElt -> GrpPerm
   CyclotomicAutomorphismGroup(K) : FldCyc -> GrpAb, Map
   DecompositionGroup(P) : PlcNumElt -> GrpPerm
   DecompositionGroup(P) : PlcNumElt -> GrpPerm
   DecompositionGroup(p, A) : PlcNumElt, FldAb -> GrpAb
   DecompositionGroup(p) : RngIntElt -> GrpPerm
   DecompositionGroup(p, A) : RngIntElt, FldAb -> GrpAb
   DecompositionGroup(L) : RngLocA -> GrpPerm
   DerivedGroupMonteCarlo (G : parameters) : GrpMat -> GrpMat
   DerivedSubgroup(G) : GrpFin -> GrpFin
   DerivedSubgroup(G) : GrpGPC -> GrpGPC
   DicyclicGroup(n) : RngIntElt -> GrpFP
   DihedralGroup(C, n) : Cat, RngIntElt -> GrpFin
   DihedralGroup(GrpFP, n) : Cat, RngIntElt -> GrpFP
   DihedralGroup(GrpGPC, n) : Cat, RngIntElt -> GrpGPC
   DihedralGroup(GrpPC, n) : Cat, RngIntElt -> GrpPC
   DihedralGroup(GrpPerm, n) : Cat, RngIntElt -> GrpPerm
   DirichletGroup(N) : RngIntElt -> GrpDrch
   DirichletGroup(N,R) : RngIntElt, Rng -> GrpDrch
   DirichletGroup(N,R,z,r) : RngIntElt, Rng, RngElt, RngIntElt -> GrpDrch
   DirichletGroup(I) : RngOrdIdl -> GrpDrchNF
   DivisorClassGroup(C) : RngCox -> TorLat
   DivisorGroup(C) : Crv -> DivCrv
   DivisorGroup(D) : DivCrvElt -> DivCrv
   DivisorGroup(F) : FldFun -> DivFun
   DivisorGroup(F) : FldFun -> DivFun
   DivisorGroup(F) : FldFunG -> DivFun
   DivisorGroup(X) : Sch -> DivSch
   DivisorGroup(X) : TorVar -> DivTor
   EdgeGroup(G) : Grph -> GrpPerm, GSet
   ElementaryAbelianGroup(GrpGPC, p, n) : Cat, RngIntElt, RngIntElt -> GrpGPC
   EvaluateClassGroup(O) : RngOrd -> BoolElt
   ExistsGroupData(D, o1, o2): DB, RngIntElt, RngIntElt -> BoolElt
   ExtendedUnitGroup(D) : NfdDck -> GrpMat
   ExtensionsOfElementaryAbelianGroup(p, d, G) : RngIntElt, RngIntElt, GrpPerm -> SeqEnum
   ExtensionsOfSolubleGroup(H, G) : GrpPerm, GrpPerm -> SeqEnum
   ExtraSpecialGroup(G) : GrpMat -> GrpMat
   ExtraSpecialGroup(C, p, n : parameters) : Cat, RngIntElt, RngIntElt -> GrpFin
   ExtraSpecialGroup(GrpFP, p, n : parameters) : Cat, RngIntElt, RngIntElt -> GrpFP
   ExtraSpecialGroup(GrpGPC, p, n : parameters) : Cat, RngIntElt, RngIntElt -> GrpGPC
   ExtraSpecialGroup(GrpPC, p, n : parameters) : Cat, RngIntElt, RngIntElt -> GrpPC
   ExtraSpecialGroup(GrpPerm, p, n : parameters) : Cat, RngIntElt, RngIntElt -> GrpPerm
   ExtractGroup(P) : GrpFPLixProc -> GrpFP
   ExtractGroup(P) : GrpPCpQuotientProc -> GrpPC
   FactoredChevalleyGroupOrder(type, n, F: parameters) : MonStgElt, RngIntElt, FldFin -> RngIntEltFact
   FittingSubgroup(G) : GrpGPC -> GrpGPC
   FittingSubgroup(G) : GrpPC -> GrpPC
   FixedGroup(K, L) : FldAlg, FldAlg -> GrpPerm
   FixedGroup(K, a) : FldAlg, FldAlgElt -> GrpPerm
   FixedGroup(K, L) : FldAlg, [FldAlgElt] -> GrpPerm
   FormalGroupHomomorphism(phi, prec) : MapSch, RngIntElt -> RngSerPowElt
   FormalGroupLaw(E, prec) : CrvEll, RngIntElt -> RngMPolElt
   FreeAbelianGroup(GrpGPC, n) : Cat, RngIntElt -> GrpGPC
   FreeAbelianGroup(n) : RngIntElt -> GrpAb
   FreeGroup(n) : RngIntElt -> GrpFP
   FreeNilpotentGroup(r, e) : RngIntElt, RngIntElt -> GrpGPC
   FuchsianGroup(A) : AlgQuat -> GrpPSL2
   FuchsianGroup(A, N) : AlgQuat, RngOrdIdl -> GrpPSL2
   FuchsianGroup(O) : AlgQuatOrd -> GrpPSL2
   FullDirichletGroup(N) : RngIntElt -> GrpDrch
   FundamentalGroup(C) : AlgMatElt -> GrpAb
   FundamentalGroup(D) : GrphDir -> GrpAb
   FundamentalGroup(G) : GrpLie -> GrpAb, Map
   FundamentalGroup(W) : GrpMat -> GrpAb
   FundamentalGroup(W) : GrpPermCox -> GrpAb
   FundamentalGroup(N) : MonStgElt -> GrpAb
   FundamentalGroup(R) : RootDtm -> GrpAb, Map
   GaloisGroup(K, k) : FldFin, FldFin -> GrpPerm, [FldFinElt]
   GaloisGroup(F) : FldFun -> GrpPerm, [RngElt], GaloisData
   GaloisGroup(K) : FldNum -> GrpPerm, SeqEnum, GaloisData
   GaloisGroup(K) : FldNum -> GrpPerm, [RngElt], GaloisData
   GaloisGroup(f) : RngUPolElt -> GrpPerm, [ RngElt ], GaloisData
   GaloisGroup(f) : RngUPolElt[RngInt] -> GrpPerm, SeqEnum, GaloisData
   GaloisGroupInvariant(G, H) : GrpPerm, GrpPerm -> RngSLPolElt
   GammaGroup(k, G) : Fld, GrpLie -> GGrp
   GammaGroup(k, A) : Fld, GrpLieAuto -> GGrp
   GammaGroup(Gamma, A, action) : Grp, Grp, Map[Grp, GrpAuto] -> GGrp
   GammaGroup(alpha) : OneCoC -> GGrp
   GeneralLinearGroup(n, R) : RngIntElt, Rng -> GrpMat
   GeneralLinearGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
   GeneralOrthogonalGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
   GeneralOrthogonalGroupMinus(n, q) : RngIntElt, RngIntElt -> GrpMat
   GeneralOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
   GeneralUnitaryGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
   GenericAbelianGroup(U: parameters) : . -> GrpAbGen
   GenericGroup(X) : [] -> GrpFp, Map
   GeometricAutomorphismGroup(C) : CrvHyp -> GrpFP
   GeometricAutomorphismGroupFromShiodaInvariants(JI) : SeqEnum -> GrpPerm
   GeometricAutomorphismGroupGenus2Classification(F) : FldFin -> SeqEnum,SeqEnum
   GeometricAutomorphismGroupGenus3Classification(F) : FldFin -> SeqEnum,SeqEnum
   GlobalUnitGroup(C) : Crv[FldFin] -> GrpAb, Map
   GlobalUnitGroup(F) : FldFun -> GrpAb, Map
   GlobalUnitGroup(F) : FldFunG -> GrpAb, Map
   GradedAutomorphismGroup(A) : AlgBas -> GrpMat, SeqEnum[ModMatFldElt], SeqEnum[ModMatFldElt], SeqEnum[ModMatFldElt]
   GradedAutomorphismGroupMatchingIdempotents(A) : AlgBas -> GrpMat, SeqEnum, SecEnum
   Group(A) : AlgBasGrpP -> Grp
   Group(R) : AlgChtr -> Grp
   Group(S) : AlgGrpSub -> Grp
   Group(A) : ArtRep -> GrpPerm
   Group(C) : CosetGeom -> GrpPerm
   Group(D, i): DB, RngIntElt -> GrpFP, SeqEnum
   Group(D, i): DB, RngIntElt -> GrpMat
   Group(D, i): DB, RngIntElt -> GrpMat
   Group(D, i): DB, RngIntElt -> GrpMat
   Group(D, i): DB, RngIntElt -> GrpMat
   Group(D, d, i): DB, RngIntElt, RngIntElt -> GrpMat
   Group(D, d, i): DB, RngIntElt, RngIntElt -> GrpMat
   Group(D, d, i): DB, RngIntElt, RngIntElt -> GrpMat
   Group(D, d, i): DB, RngIntElt, RngIntElt -> GrpMat
   Group(F) : FldInvar -> Grp
   Group(A) : GGrp -> Grp
   Group(A) : GrpAuto -> Grp
   Group(V) : GrpFPCos -> GrpFP
   Group(P) : GrpFPCosetEnumProc -> GrpFP
   Group(P) : GrpFPTietzeProc -> GrpFP, Map
   Group(G) : GrpPSL2 -> GrpFP, Map, Map
   Group(Y) : GSet -> GrpPerm
   Group(L) : Lat -> GrpMat
   Group< X | R > : List(Identifiers), List(GrpFPRel) -> GrpFP, Hom(Grp)
   Group< X | R > : List(Var), List(GrpFPRel) -> GrpFP, Hom(Grp)
   Group(CM) : ModCoho -> Grp
   Group(M) : ModGrp -> Grp
   Group(R) : RngInvar -> Grp
   Group(e) : SubGrpLatElt -> GrpFin
   Group(FS) : SymFry -> GrpPSL2
   GroupAlgebra(S) : AlgGrpSub -> AlgGrp
   GroupAlgebra( R, G: parameters ) : Rng, Grp -> AlgGrp
   GroupAlgebra(R, G) : Rng, Grp -> AlgGrp
   GroupAlgebraAsStarAlgebra(R, G) : Rng, Grp -> AlgGrp
   GroupData(D, i): DB, RngIntElt -> Rec
   GroupIdeal(F) : FldInvar -> RngMPol
   GroupIdeal(R) : RngInvar -> RngMPol
   GroupOfLieType(L) : AlgLie -> GrpLie
   GroupOfLieType(C, k) : AlgMatElt, Rng -> GrpLie
   GroupOfLieType(W, k) : GrpMat, Rng -> GrpLie
   GroupOfLieType(W, k) : GrpPermCox, Rng -> GrpLie
   GroupOfLieType(W, R) : GrpPermCox, Rng -> GrpLie
   GroupOfLieType(W, q) : GrpPermCox, RngIntElt -> GrpLie
   GroupOfLieType(N, k) : MonStgElt, Rng -> GrpLie
   GroupOfLieType(N, q) : MonStgElt, RngIntElt -> GrpLie
   GroupOfLieType(C, k) : Mtrx, Rng -> GrpLie
   GroupOfLieType(C, q) : Mtrx, RngIntElt -> GrpLie
   GroupOfLieType(R, k) : RootDtm, Rng -> GrpLie
   GroupOfLieType(R, k) : RootDtm, Rng -> GrpLie
   GroupOfLieType(R, q) : RootDtm, RngIntElt -> GrpLie
   GroupOfLieTypeFactoredOrder(R, q) : RootDtm, RngElt -> RngIntElt
   GroupOfLieTypeHomomorphism(phi, k) : Map, Rng -> .
   GroupOfLieTypeHomomorphism(phi, k) : Map, Rng -> GrpLie
   GroupOfLieTypeOrder(R, q) : RootDtm, RngElt -> RngIntElt
   HadamardAutomorphismGroup(H : parameters) : AlgMatElt -> AlgMatElt
   HeckeCharacterGroup(I) : RngOrdIdl -> GrpHecke
   HermitianAutomorphismGroup(M) : Mtrx -> GrpMat
   HomologyGroup(X, q) : SmpCpx, RngIntElt -> ModRng
   IdentifyAlmostSimpleGroup(G) : GrpPerm -> Map, GrpPerm
   IdentifyGroup(G): Grp -> Tup
   IdentifyGroup(G): GrpFP -> Tup
   ImproveAutomorphismGroup(F, E) : FldAb, SeqEnum -> GrpFP, SeqEnum
   InducedGammaGroup(A, B) : GGrp, Grp -> GGrp
   InertiaGroup(p) : RngOrdIdl -> GrpPerm
   InnerAutomorphismGroup(L) : AlgLie -> GrpLie, Map
   IntegralGroup(G) : GrpMat -> GrpMat, AlgMatElt
   IntegralMatrixGroupDatabase() : -> DB
   IntersectionGroup(M1, M2) : ModSym, ModSym -> GrpAb
   IntersectionGroup(S) : SeqEnum -> GrpAb
   InvolutionClassicalGroupEven (G : parameters) : GrpMat[FldFin] ->GrpMatElt[FldFin], GrpSLPElt, RngIntElt
   IrreducibleCoxeterGroup(GrpFPCox, X, n) : Cat, MonStgElt, RngIntElt -> GrpFPCox
   IrreducibleMatrixGroup(k, p, n) : RngIntElt, RngIntElt, RngIntElt -> GrpMat
   IrreducibleReflectionGroup(X, n) : MonStgElt, RngIntElt -> GrpMat
   IsInSmallGroupDatabase(o) : RngIntElt -> BoolElt
   IsIsomorphicSolubleGroup(G, H: parameters) : GrpPC, GrpPC -> BoolElt, Map
   IsLargeReeGroup(G) : GrpMat -> BoolElt, RngIntElt
   IsLinearGroup(G) : GrpMat -> BoolElt
   IsOrthogonalGroup(G) : GrpMat ->BoolElt
   IsRealReflectionGroup(G) : GrpMat -> BoolElt, [], []
   IsReeGroup(G) : GrpMat -> BoolElt, RngIntElt
   IsReflectionGroup(G) : GrpMat -> BoolElt
   IsReflectionGroup(G) : GrpMat -> BoolElt
   IsSoluble(D, o, n) : DB, RngIntElt, RngIntElt -> Grp
   IsSolubleAutomorphismGroupPGroup(A) : GrpAuto -> BoolElt
   IsSuzukiGroup(G) : GrpMat -> BoolElt, RngIntElt
   IsSymplecticGroup(G) : GrpMat -> BoolElt
   IsTriangleGroup(G) : GrpPSL2 -> BoolElt
   IsUnitaryGroup(G) : GrpMat -> BoolElt
   IsogenyGroup(G) : GrpLie -> GrpAb, Map
   IsogenyGroup(W) : GrpMat -> GrpAb, Map
   IsogenyGroup(W) : GrpPermCox -> GrpAb
   IsogenyGroup(R) : RootDtm -> GrpAb, Map
   IsolGroup(n, p, i) : RngIntElt, RngIntElt, RngIntElt -> GrpMat
   IsolGroupDatabase() : -> DB
   IsolGroupOfDegreeFieldSatisfying(d, p, f) : RngIntElt, RngIntElt, Any -> GrpMat
   IsolGroupOfDegreeSatisfying(d, f) : RngIntElt, Any -> GrpMat
   IsolGroupSatisfying(f) : Any -> GrpMat
   IsometryGroup(V) : ModTupFld) -> GrpMat
   IsometryGroup(F : parameters) : AlgMatElt -> GrpMat
   IsometryGroup(S : parameters) : SeqEnum -> GrpMat
   IspGroup(G) : GrpAb -> BoolElt
   LMGDerivedGroup(G) : GrpMat -> GrpMat
   LargeReeGroup(q) : RngIntElt -> GrpMat
   LineGroup(P) : Plane -> GrpPerm, PowMap, Map
   LocalCoxeterGroup(H) : GrpPermCox -> GrpPermCox, Map
   MatrixGroup(K) : DBAtlasKeyMatRep -> GrpMat
   MatrixGroup(M) : ModGrp -> GrpMat
   MatrixGroup< n, R | L > : RngIntElt, Rng, List -> GrpMat
   MordellWeilGroup(E : parameters) : CrvEll[FldFunRat] -> GrpAb, Map
   MordellWeilGroup(H: parameters) : SetPtEll -> GrpAb, Map
   MultiplicativeGroup(S) : AlgQuatOrd[RngInt] -> GrpPerm, Map
   MultiplicativeGroup(F) : FldFin -> GrpAb, Map
   MultiplicativeGroup(Z) : RngInt -> GrpAb, Map
   MultiplicativeGroup(R) : RngIntRes -> GrpAb, Map
   NaturalBlackBoxGroup(H) : Grp -> GrpBB
   NaturalGroup(L) : Lat -> GrpMat
   NormGroup(A) : AlgMat -> GrpMat
   NormGroup(A) : FldAb -> Map, RngOrdIdl, [RngIntElt]
   NormGroup(F) : FldFun -> DivFunElt, GrpAb
   NormGroup(R, m) : FldPad, Map -> GrpAb, Map
   NormGroupDiscriminant(m, G) : Map, GrpAb -> RngIntElt
   NormOneGroup(S) : AlgAssVOrd -> GrpPerm, Map
   OrderAutomorphismGroupAbelianPGroup (A) : SeqEnum -> RngIntElt
   PCGroupAutomorphismGroupPGroup(A) : GrpAuto -> BoolElt, Map, GrpPC
   PGO(arguments)
   PGOMinus(arguments)
   PGOPlus(arguments)
   PSO(arguments)
   PSOMinus(arguments)
   PSOPlus(arguments)
   PerfectGroupDatabase() : -> DB
   PermutationGroup(C) : Code -> GrpPerm, PowMap, Map
   PermutationGroup(C) : CodeAdd -> GrpPerm
   PermutationGroup(Q) : CodeQuantum -> GrpPerm
   PermutationGroup(K) : DBAtlasKeyPermRep -> GrpPerm
   PermutationGroup(A) : GrpAb -> GrpPerm, Hom(Grp)
   PermutationGroup(A) : GrpAutCrv -> GrpPerm
   PermutationGroup(A) : GrpAuto -> GrpPerm
   PermutationGroup(G) : GrpFP -> GrpPerm, GrpHom
   PermutationGroup(D, i: parameters): DB, RngIntElt -> GrpPerm
   PermutationGroup< n | L > : RngIntElt, List -> GrpPerm
   PermutationGroup< X | L > : Set, List -> GrpPerm
   PermutationGroup< X | L > : Set, List -> GrpPerm, Hom
   PhiSelmerGroup(f,q) : RngUPolElt, RngIntElt -> GrpAb, Map
   PicardGroup(O) : RngQuad -> GrpAb, Map
   Places(K) : FldNum -> PlcNum
   Places(K) : FldNum -> PlcNum
   PointGroup(D) : Inc -> GrpPerm, GSet
   PolycyclicGroup< x1, ..., xn | R : parameters > : List(Identifiers), List(GrpFPRel) -> GrpGPC, Map
   PolycyclicGroup< x1, ..., xn | R : parameters > : List(Identifiers), List(GrpFPRel) -> GrpPC, Map
   PowerGroup(G) : GrpPC -> PowerGroup
   PrimitiveGroup(d) : RngIntElt -> GrpPerm, MonStgElt, MonStgElt
   PrimitiveGroup(d, f) : RngIntElt, Program -> GrpPerm, MonStgElt
   PrimitiveGroup(d, n) : RngIntElt, RngIntElt -> GrpPerm, MonStgElt, MonStgElt
   PrimitiveGroup(S, f) : [RngIntElt], Program -> GrpPerm, MonStgElt
   PrimitiveGroupDatabaseLimit() : -> RngIntElt
   PrimitiveGroupDescription(d, n) : RngIntElt, RngIntElt -> MonStgElt
   PrimitiveGroupIdentification(G) : GrpPerm -> RngIntElt, RngIntElt
   PrimitiveGroupProcess(d: parameters) : RngIntElt -> Process
   PrimitiveGroupProcess(d, f: parameters) : RngIntElt, Program -> Process
   PrincipalUnitGroup(R) : RngPad -> GrpAb, Map
   PrincipalUnitGroupGenerators(R) : RngPad -> SeqEnum
   ProbableAutomorphismGroup(A) : FldAb -> GrpFP, SeqEnum
   ProjectiveGammaLinearGroup(arguments)
   ProjectiveGammaUnitaryGroup(arguments)
   ProjectiveGeneralLinearGroup(arguments)
   ProjectiveGeneralUnitaryGroup(arguments)
   ProjectiveSigmaLinearGroup(arguments)
   ProjectiveSigmaSymplecticGroup(arguments)
   ProjectiveSigmaUnitaryGroup(arguments)
   ProjectiveSpecialLinearGroup(arguments)
   ProjectiveSpecialUnitaryGroup(arguments)
   ProjectiveSuzukiGroup(arguments)
   ProjectiveSymplecticGroup(arguments)
   PseudoReflectionGroup(A, B) : Mtrx, Mtrx -> GrpMat, Map
   PureBraidGroup(W) : GrpFPCox -> GrpFP, Map
   QuadraticClassGroupTwoPart(K) : FldQuad -> GrpAb, Map
   QuantumBinaryErrorGroup(n) : RngIntElt -> GrpPC
   QuantumErrorGroup(Q) : CodeQuantum -> GrpPC
   QuantumErrorGroup(p, n) : RngIntElt, RngIntElt -> GrpPC
   QuasisimpleMatrixGroup(N, d, p : parameters) : MonStgElt, RngIntElt, RngIntElt ->GrpMat
   QuaternionicMatrixGroupDatabase() : -> DB
   RamificationGroup(p) : RngOrdIdl -> GrpPerm
   RamificationGroup(p, i) : RngOrdIdl, RngIntElt -> GrpPerm
   RationalMatrixGroupDatabase() : -> DB
   RayClassGroup(D) : DivFunElt -> GrpAb, Map
   RayClassGroup(D) : DivNumElt -> GrpAb, Map
   RayClassGroup(I) : RngOrdIdl -> GrpAb, Map
   RayClassGroupDiscLog(y, D) : DivFunElt, DivFunElt -> GrpAbElt
   ReeGroup(q) : RngIntElt -> GrpMat
   ReflectionGroup(M) : AlgMatElt -> GrpMat
   ReflectionGroup(M) : AlgMatElt -> GrpMat
   ReflectionGroup(W) : Cat, GrpPermCox -> GrpMat, Map
   ReflectionGroup(W) : GrpFPCox -> GrpMat, Map
   ReflectionGroup(W) : GrpFPCox -> GrpMat, Map
   ReflectionGroup(W) : GrpPermCox -> GrpMat
   ReflectionGroup(W) : GrpPermCox -> GrpMat, Map
   ReflectionGroup(W) : GrpPermCox -> GrpMat, Map
   ReflectionGroup(N) : MonStgElt -> GrpMat
   ReflectionGroup(R) : RootDtm -> GrpMat
   ReflectionGroup(R) : RootSys -> GrpMat
   ReflectionGroup(R) : RootSys -> GrpMat
   RingClassGroup(O) : RngOrd -> GrpAb, Map
   SClassGroup(S) : SetEnum[PlcFunElt] -> GrpAb, Map, Map
   SClassGroupAbelianInvariants(S) : SetEnum[PlcFunElt] -> SeqEnum
   SClassGroupExactSequence(S) : SetEnum[PlcFunElt] -> Map, Map, Map
   SUnitGroup(I) : RngOrdFracIdl -> GrpAb, Map
   SUnitGroup(S) : SetEnum[PlcFunElt] -> GrpAb, Map
   SchurIndexGroup(n: parameters) : RngIntElt -> GrpPC
   SelmerGroup(phi) : Map -> GrpAb, Map, Map, SeqEnum, SetEnum
   SemiLinearGroup(G, S) : GrpMat, FldFin -> GrpMat
   SetClassGroupBoundMaps(f1, f2) : Map, Map ->
   SetClassGroupBounds(n) : Any ->
   ShephardTodd(m, p, n) : RngIntElt, RngIntElt, RngIntElt -> GrpMat, Fld
   SimilarityGroup(V) : ModTupFld) -> GrpMat
   SimilarityGroup(F : parameters) : AlgMatElt -> GrpMat
   SimpleGroupName(G : parameters): GrpMat -> BoolElt, List
   SimpleGroupOfLieType(X, n, k) : MonStgElt, RngIntElt, Rng -> GrpLie
   SimpleGroupOfLieType(X, n, q) : MonStgElt, RngIntElt, RngIntElt -> GrpLie
   SmallGroup(o: parameters) : RngIntElt -> Grp
   SmallGroup(o, f: parameters) : RngIntElt, Program -> Grp
   SmallGroup(o, f: parameters) : RngIntElt, Program -> Grp
   SmallGroup(o, n) : RngIntElt, RngIntElt -> Grp
   SmallGroupDatabase() : -> DB
   SmallGroupDatabaseLimit() : -> RngIntElt
   SmallGroupDecoding(c, o) : RngIntElt, RngIntElt -> GrpPC
   SmallGroupEncoding(G) : GrpPC -> RngIntElt, RngIntElt
   SmallGroupIsInsoluble(o, n) : RngIntElt, RngIntElt -> Grp
   SmallGroupProcess(o: parameters) : RngIntElt -> Process
   SmallGroupProcess(o, f: parameters) : RngIntElt, Program -> Process
   SmallGroupProcess(S: parameters) : [RngIntElt] -> Process
   SmallGroupProcess(S, f: parameters) : [RngIntElt], Program -> Process
   SpecialLinearGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
   SpecialOrthogonalGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
   SpecialOrthogonalGroupMinus(n, q) : RngIntElt, RngIntElt -> GrpMat
   SpecialOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
   SpecialUnitaryGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
   StabilizerGroup(Q) : CodeQuantum -> GrpPC
   StabilizerGroup(Q, G) : CodeQuantum, GrpPC -> GrpPC
   StandardActionGroup(W) : GrpFPCox -> GrpPerm, Map
   StandardActionGroup(W) : GrpMat -> GrpPerm, Map
   StandardGroup(G) : GrpPerm -> GrpPerm, Map
   StarOnGroupAlgebra(A) : AlgGrp -> Map
   SuzukiGroup(q) : RngIntElt -> GrpMat
   Sym(GrpPerm, n) : Cat, RngIntElt -> GrpPerm
   Sym(n) : RngIntElt -> GrpPerm
   Sym(X) : Set -> GrpPerm
   SymmetricGroup(C, n) : Cat, RngIntElt -> GrpFin
   SymmetricGroup(GrpFP, n) : Cat, RngIntElt -> GrpFP
   SymplecticGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
   SymplecticMatrixGroupDatabase() : -> DB
   ThreeSelmerGroup(E : parameters) : CrvEll -> GrpAb, Map
   TorsionUnitGroup(K) : FldNum -> GrpAb, Map
   TorsionUnitGroup(O) : RngOrd -> GrpAb, Map
   TransitiveGroup(d) : RngIntElt -> GrpPerm, MonStgElt
   TransitiveGroup(d, f) : RngIntElt, Program -> GrpPerm, MonStgElt
   TransitiveGroup(d, n) : RngIntElt, RngIntElt -> GrpPerm, MonStgElt
   TransitiveGroup(S, f) : [RngIntElt], Program -> GrpPerm, MonStgElt
   TransitiveGroupDatabaseLimit() : -> RngIntElt
   TransitiveGroupDescription(G) : GrpPerm -> MonStgElt
   TransitiveGroupDescription(d, n) : RngIntElt, RngIntElt -> MonStgElt
   TransitiveGroupIdentification(G) : GrpPerm -> RngIntElt, RngIntElt
   TransitiveGroupProcess(d) : RngIntElt -> Process
   TransitiveGroupProcess(d, f) : RngIntElt, Program -> Process
   TransitiveGroupProcess(S) : [RngIntElt] -> Process
   TransitiveGroupProcess(S, f) : [RngIntElt], Program -> Process
   TwistedGroup(A, alpha) : GGrp, OneCoC -> GGrp
   TwistedGroupOfLieType(c) : OneCoC -> GrpLie
   TwistedGroupOfLieType(R, k, K) : RootDtm, Rng, Rng-> GrpLie
   TwoSelmerGroup(E) : CrvEll -> GrpAb, Map, SetEnum, Map, SeqEnum
   TwoSelmerGroup(E) : CrvEll[FldFunG] -> GrpAb, MapSch
   TwoSelmerGroup(J) : JacHyp -> GrpAb, Map, Any, Any
   TwoSidedIdealClassGroup(S : Support) : AlgAssVOrd -> GrpAb, Map
   TwoTransitiveGroupIdentification(G) : GrpPerm -> Tup
   UnipotentMatrixGroup(G) : GrpMat -> GrpMatUnip
   UnitGroup(K) : FldNum -> GrpAb, Map
   UnitGroup(F) : FldPad -> GrpAb, Map
   UnitGroup(Q) : FldRat -> GrpAb, Map
   UnitGroup(N) : Nfd -> GrpMat, Map
   UnitGroup(O) : RngFunOrd -> GrpAb, Map
   UnitGroup(R) : RngIntRes -> GrpAb, Map
   UnitGroup(O) : RngOrd -> GrpAb, Map
   UnitGroup(OQ) : RngOrdRes -> GrpAb, Map
   UnitGroup(R) : RngPad -> GrpAb, Map
   UnitGroupAsSubgroup(O) : RngOrd -> GrpAb
   UnitGroupGenerators(F) : FldPad -> SeqEnum
   UnitGroupGenerators(R) : RngPad -> SeqEnum
   WG2GroupRep(wg) : GrphUnd -> SeqEnum
   WeylGroup(L) : AlgLie -> GrpPermCox
   WeylGroup(GrpFPCox, L) : Cat, AlgLie -> GrpPermCox
   WeylGroup(GrpMat, L) : Cat, AlgLie -> GrpPermCox
   WeylGroup(GrpFPCox, G) : Cat, GrpLie -> GrpFPCox
   WeylGroup(GrpMat, G) : Cat, GrpLie -> GrpMat
   WeylGroup(G) : GrpLie -> GrpPermCox
   WordGroup(G) : GrpMat -> GrpSLP, Map
   WordGroup(G) : GrpPerm -> GrpBB, Map
   pCoveringGroup(~P) : GrpPCpQuotientProc ->
   pSelmerGroup(p,F) : RngIntElt, FldPad -> GrpAb, Map
   pSelmerGroup(p, S) : RngIntElt, { RngOrdIdl } -> G, m
   pSelmerGroup(A, p, S) : RngUPolRes, RngIntElt, SetEnum[RngOrdIdl] -> GrpAb, Map

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012