[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: sum  ..  Superlattice


sum

   Direct Sum (K[G]-MODULES AND GROUP REPRESENTATIONS)
   Direct Sum (MODULES OVER AN ALGEBRA)
   Sum, Intersection and Dual (ADDITIVE CODES)
   Sum, Intersection and Dual (LINEAR CODES OVER FINITE FIELDS)
   Sum, Intersection and Dual (LINEAR CODES OVER FINITE RINGS)
   SmpCpx_sum (Example H140E7)

sum-intersection-dual

   Sum, Intersection and Dual (ADDITIVE CODES)
   Sum, Intersection and Dual (LINEAR CODES OVER FINITE FIELDS)
   Sum, Intersection and Dual (LINEAR CODES OVER FINITE RINGS)

sumandadjoin

   AlgAss_sumandadjoin (Example H81E8)
   AlgAss_sumandadjoin (Example H81E9)

SumDual

   GrpCox_SumDual (Example H98E26)

SumIntersection

   CodeFld_SumIntersection (Example H152E15)
   CodeRng_SumIntersection (Example H155E23)

Summand

   IsDirectSummand(M, S) : ModGrp, ModGrp -> BoolElt, ModGrp
   HasComplement(M, S) : ModGrp, ModGrp -> BoolElt, ModGrp

Summands

   IndecomposableSummands(A) : AlgAssV -> [ AlgAssV ], [ AlgAssVElt ]
   DirectSumDecomposition(A) : AlgAssV -> [ AlgAssV ], [ AlgAssVElt ]
   DirectSumDecomposition(ρ) : Map[AlgLie, AlgMatLie] -> SeqEnum
   DirectSumDecomposition(ρ) : Map[GrpLie, GrpMat] -> SeqEnum
   DirectSumDecomposition(V) : ModAlg -> SeqEnum
   DirectSumDecomposition(M) : ModRng -> [ ModRng ]
   DirectSumDecomposition(R) : RootDtm -> [], RootDtm, Map
   DirectSumDecomposition(R) : RootSys -> []
   IndecomposableSummands(L) : AlgLie -> [ AlgLie ]
   Summands(L) : TorLat -> SeqEnum,SeqEnum,SeqEnum

summation

   Summation of Infinite Series (REAL AND COMPLEX FIELDS)

Summit

   IsSuperSummitRepresentative(u: parameters) : GrpBrdElt -> BoolElt
   IsUltraSummitRepresentative(u: parameters) : GrpBrdElt -> BoolElt
   MinimalElementConjugatingToSuperSummit(x, s: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
   MinimalElementConjugatingToUltraSummit(x, s: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
   SuperSummitCanonicalLength(u: parameters) : GrpBrdElt -> RngIntElt
   SuperSummitInfimum(u: parameters) : GrpBrdElt -> RngIntElt
   SuperSummitProcess(u: parameters) : GrpBrdElt -> GrpBrdClassProc
   SuperSummitRepresentative(u: parameters) : GrpBrdElt -> GrpBrdElt, GrpBrdElt
   SuperSummitSet(u: parameters) : GrpBrdElt -> SetIndx
   SuperSummitSupremum(u: parameters) : GrpBrdElt -> RngIntElt
   UltraSummitProcess(u: parameters) : GrpBrdElt -> GrpBrdClassProc
   UltraSummitRepresentative(u: parameters) : GrpBrdElt -> GrpBrdElt, GrpBrdElt
   UltraSummitSet(u: parameters) : GrpBrdElt -> SetIndx

SumNorm

   SumNorm(f) : RngMPolElt -> RngIntElt
   SumNorm(p) : RngUPolElt -> RngIntElt

SumOf

   SumOf(X) : [ModAbVar] -> ModAbVar

SumOfBettiNumbersOfSimpleModules

   SumOfBettiNumbersOfSimpleModules(A, n) : AlgBas, RngIntElt -> RngIntElt

SumOfDivisors

   SumOfDivisors(n) : RngIntElt -> RngIntElt

SumOfImages

   SumOfImages(phi, psi) : MapModAbVar, MapModAbVar -> ModAbVar, MapModAbVar, List

SumOfMorphismImages

   SumOfMorphismImages(X) : List -> ModAbVar, MapModAbVar, List

Sums

   ConjugatesToPowerSums(I) : [] -> []

SUnit

   IsSUnit(a, S) : FldFunElt, SetEnum[PlcFunElt] -> BoolElt
   IsSUnitWithPreimage(a, S) : FldFunElt, SetEnum[PlcFunElt] -> BoolElt, GrpAbElt
   SUnitAction(SU, Act, S) : Map, Map, SeqEnum[RngOrdIdl] -> Map
   SUnitAction(SU, Act, S) : Map, SeqEnum[Map], SeqEnum[RngOrdIdl] -> [Map]
   SUnitCohomologyProcess(S, U) : {RngOrdIdl}, GrpPerm -> {1}
   SUnitDiscLog(SU, x, S) : Map, FldAlgElt, SeqEnum[RngOrdIdl] -> GrpAbElt
   SUnitGroup(I) : RngOrdFracIdl -> GrpAb, Map
   SUnitGroup(S) : SetEnum[PlcFunElt] -> GrpAb, Map

SUnitAction

   SUnitAction(SU, Act, S) : Map, Map, SeqEnum[RngOrdIdl] -> Map
   SUnitAction(SU, Act, S) : Map, SeqEnum[Map], SeqEnum[RngOrdIdl] -> [Map]

SUnitCohomologyProcess

   SUnitCohomologyProcess(S, U) : {RngOrdIdl}, GrpPerm -> {1}

SUnitDiscLog

   SUnitDiscLog(SU, x, S) : Map, FldAlgElt, SeqEnum[RngOrdIdl] -> GrpAbElt

SUnitGroup

   SUnitGroup(I) : RngOrdFracIdl -> GrpAb, Map
   SUnitGroup(S) : SetEnum[PlcFunElt] -> GrpAb, Map

Super

   IsSuperSummitRepresentative(u: parameters) : GrpBrdElt -> BoolElt
   MinimalElementConjugatingToSuperSummit(x, s: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
   SuperScheme(X) : Sch -> Sch
   SuperSummitCanonicalLength(u: parameters) : GrpBrdElt -> RngIntElt
   SuperSummitInfimum(u: parameters) : GrpBrdElt -> RngIntElt
   SuperSummitProcess(u: parameters) : GrpBrdElt -> GrpBrdClassProc
   SuperSummitRepresentative(u: parameters) : GrpBrdElt -> GrpBrdElt, GrpBrdElt
   SuperSummitSet(u: parameters) : GrpBrdElt -> SetIndx
   SuperSummitSupremum(u: parameters) : GrpBrdElt -> RngIntElt

super

   Sub- and Superlattices and Quotients (LATTICES)

Supercuspidal

   IsSupercuspidal(pi) : RepLoc -> BoolElt

supercuspidal

   Supercuspidal Representations (ADMISSIBLE REPRESENTATIONS OF GL2(Qp))

supergraph

   Subgraphs and Quotient Graphs (GRAPHS)

Superlattice

   IsSuperlattice(L) : TorLat -> BoolElt
   Superlattice(L) : TorLat -> TorLat,TorLatMap

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012