[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: IsIsomorphicBigPeriodMatrices  ..  IsMaximal


IsIsomorphicBigPeriodMatrices

   IsIsomorphicBigPeriodMatrices(P1, P2) : Mtrx, Mtrx -> Bool, Mtrx, Mtrx

IsIsomorphicCubicSurface

   IsIsomorphicCubicSurface(f,g) : MPolElt, MPolElt -> BoolElt, List

IsIsomorphicOverQt

   IsIsomorphicOverQt(K, L) : FldFun, FldFun -> BoolElt, Map

IsIsomorphicSmallPeriodMatrices

   IsIsomorphicSmallPeriodMatrices(t1,t2) : Mtrx, Mtrx -> Bool, Mtrx

IsIsomorphicSolubleGroup

   IsIsomorphicSolubleGroup(G, H: parameters) : GrpPC, GrpPC -> BoolElt, Map

IsIsomorphicWithTwist

   IsIsomorphicWithTwist(S, T) : ShfCoh, ShfCoh -> BoolElt, RngIntElt, ShfHom
   IsIsomorphic(S, T) : ShfCoh, ShfCoh -> BoolElt, ShfHom

IsIsomorphism

   IsIsomorphism(I) : Map -> BoolElt, Map
   IsIsomorphism(f) : MapChn -> BoolElt
   IsIsomorphism(phi) : MapModAbVar -> BoolElt
   IsIsomorphism(f) : MapSch -> BoolElt, IsoSch
   IsIsomorphism(m) : Map[AlgLie, AlgLie] -> BoolElt

IsKEdgeConnected

   IsKEdgeConnected(G, k) : Grph, RngIntElt -> BoolElt
   IsKEdgeConnected(G, k : parameters) : GrphMult, RngIntElt -> BoolElt

IsKnownIsomorphic

   IsKnownIsomorphic(L, M) : AlgLie, AlgLie -> BoolElt, BoolElt, .

IsKnuthEquivalent

   IsKnuthEquivalent(w1, w2) : MonOrdElt, MonOrdElt -> BoolElt

IsKVertexConnected

   IsKVertexConnected(G, k) : Grph, RngIntElt -> BoolElt
   IsKVertexConnected(G, k : parameters) : GrphMult, RngIntElt -> BoolElt

IsLabelled

   IsLabelled(e) : GrphEdge -> BoolElt
   IsLabelled(E) : GrphEdgeSet -> BoolElt
   IsLabelled(u) : GrphVert -> BoolElt
   IsLabelled(V) : GrphVertSet -> BoolElt

IsLargeReeGroup

   IsLargeReeGroup(G) : GrpMat -> BoolElt, RngIntElt

IsLDPC

   IsLDPC(C) : Code -> BoolElt
   CodeLDPC_IsLDPC (Example H154E1)
   CodeLDPC_IsLDPC (Example H154E2)

IsLE

   IsLE(u, v: parameters) : GrpBrdElt, GrpBrdElt -> BoolElt
   IsLe(u, v: parameters) : GrpBrdElt, GrpBrdElt -> BoolElt
   u ≤v : GrpBrdElt, GrpBrdElt -> BoolElt

IsLe

   IsLE(u, v: parameters) : GrpBrdElt, GrpBrdElt -> BoolElt
   IsLe(u, v: parameters) : GrpBrdElt, GrpBrdElt -> BoolElt
   u ≤v : GrpBrdElt, GrpBrdElt -> BoolElt

IsLeaf

   IsLeaf(m) : AlgFPLieElt -> BoolElt, AlgFPLieElt, AlgFPLieElt
   AlgLie_IsLeaf (Example H100E5)

IsLeftIdeal

   IsRightIdeal(I) : AlgAssVOrdIdl -> BoolElt
   IsTwoSidedIdeal(I) : AlgAssVOrdIdl -> BoolElt
   IsLeftIdeal(I) : AlgAssVOrdIdl -> BoolElt
   IsLeftIdeal(A,S) : AlgBas, ModTupFld -> Bool
   IsLeftIdeal(S) : AlgGrpSub -> BoolElt

IsLeftIsomorphic

   IsRightIsomorphic(I, J) : AlgAssVOrdIdl[RngOrd], AlgAssVOrdIdl[RngOrd] -> BoolElt, AlgQuatElt
   IsLeftIsomorphic(I, J) : AlgAssVOrdIdl[RngOrd], AlgAssVOrdIdl[RngOrd] -> BoolElt, AlgQuatElt
   IsLeftIsomorphic(I, J) : AlgQuatOrdIdl, AlgQuatOrdIdl -> BoolElt, Map, AlgQuatElt

IsLeftModule

   IsLeftModule(M): ModAlg -> BoolElt

IsLexicographicallyOrdered

   IsLexicographicallyOrdered(w1, w2) : MonOrdElt, MonOrdElt -> boolean

IsLie

   IsLie(A) : AlgGen -> BoolElt

IsLinear

   IsLinear(x) : AlgChtrElt -> BoolElt
   IsLinear(f) : MapSch -> BoolElt
   IsLinear(X) : Sch -> BoolElt

IsLinearGroup

   IsLinearGroup(G) : GrpMat -> BoolElt

IsLinearlyDependent

   IsLinearlyIndependent(points) : [PtEll] -> BoolElt, ModTupRngElt
   IndependentGenerators(points) : [PtEll] -> [PtEll]
   IsLinearlyDependent(points) : [PtEll] -> BoolElt, ModTupRngElt

IsLinearlyEquivalent

   IsLinearlyEquivalent(D,E) : DivTorElt,DivTorElt -> BoolElt
   AreLinearlyEquivalent(D,E) : DivTorElt,DivTorElt -> BoolElt
   IsLinearlyEquivalent(D1,D2) : DivCrvElt,DivCrvElt -> BoolElt
   IsLinearlyEquivalent(D,E) : DivSchElt, DivSchElt -> BoolElt, FldFunFracSchElt

IsLinearlyEquivalentToCartier

   IsLinearlyEquivalentToCartier(D) : DivTorElt -> BoolElt, DivTorElt

IsLinearlyIndependent

   IsLinearlyIndependent(points) : [PtEll] -> BoolElt, ModTupRngElt
   IndependentGenerators(points) : [PtEll] -> [PtEll]
   IsLinearlyDependent(points) : [PtEll] -> BoolElt, ModTupRngElt
   IsLinearlyIndependent(P, Q) : PtEll, PtEll -> BoolElt, ModTupElt
   IsLinearlyIndependent(P, Q, n) : PtEll, PtEll, RngIntElt -> BoolElt
   IsLinearlyIndependent(S) : [ PtEll ] -> BoolElt, ModTupElt
   IsLinearlyIndependent(S, n) : [ PtEll ], RngIntElt -> BoolElt

IsLinearSpace

   IsLinearSpace(D) : Inc -> BoolElt

IsLinearSystemNonEmpty

   IsLinearSystemNonEmpty(D) : DivSchElt -> BoolElt, DivSchElt

IsLineRegular

   IsLineRegular(D) : IncNsp -> BoolElt, RngIntElt

IsLineTransitive

   IsLineTransitive(P) : Plane -> BoolElt

IsLittlewoodRichardson

   IsLittlewoodRichardson(t) : Tbl -> BoolElt

IsLocallyFree

   IsLocallyFree(S) : ShfCoh -> BoolElt, RngIntElt

IsLocallySolvable

   IsLocallySolvable(X, p) : Sch, RngOrdIdl -> BoolElt, Pt

IsLocallyTwoTransitive

   Is2T1(C) : CosetGeom -> BoolElt
   IsLocallyTwoTransitive(C) : CosetGeom -> BoolElt

IsLocalNorm

   IsLocalNorm(A, x) : FldAb, RngOrdElt -> BoolElt
   IsLocalNorm(A, x, p) : FldAb, RngOrdElt, PlcNumElt -> BoolElt
   IsLocalNorm(A, x, i) : FldAb, RngOrdElt, RngIntElt -> BoolElt
   IsLocalNorm(A, x, p) : FldAb, RngOrdElt, RngOrdIdl -> BoolElt

IsLongRoot

   IsLongRoot(G, r) : GrpLie, RngIntElt -> BoolElt
   IsLongRoot(W, r) : GrpPermCox, RngIntElt -> BoolElt
   IsLongRoot(R, r) : RootStr, RngIntElt -> BoolElt
   IsLongRoot(R, r) : RootSys, RngIntElt -> BoolElt

IsLowerTriangular

   IsLowerTriangular(A) : Mtrx -> BoolElt
   IsLowerTriangular(A) : MtrxSprs -> BoolElt

IsMagmaEuclideanRing

   IsMagmaEuclideanRing(R) : Rng -> BoolElt

IsMatrixRing

   IsMatrixRing(A) : AlgQuat -> BoolElt, AlgMat, Map

IsMaximal

   IsMaximal(O) : AlgAssVOrd -> BoolElt
   IsMaximal(G, H) : GrpAb, GrpAb -> BoolElt
   IsMaximal(G, H) : GrpFin, GrpFin -> BoolElt
   IsMaximal(G, H) : GrpFP, GrpFP -> BoolElt
   IsMaximal(G, H) : GrpMat, GrpMat -> BoolElt
   IsMaximal(G, H) : GrpPC, GrpPC -> BoolElt
   IsMaximal(G, H: parameters) : GrpPerm, GrpPerm -> BoolElt
   IsMaximal(O) : RngFunOrd -> BoolElt
   IsMaximal(I) : RngMPol -> BoolElt
   IsMaximal(O) : RngOrd -> BoolElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012