[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: ShortVectorsMatrix .. Similar
ShortVectorsMatrix(L, u) : Lat, RngElt -> ModMatRngElt
ShortVectorsProcess(L, u) : Lat, RngElt -> LatEnumProc
ShowIdentifiers() : ->
ShowMemoryUsage() : ->
ShowOptions(~P : parameters) : GrpFPTietzeProc ->
ShowPrevious() : ->
ShowPrevious(i) : RngIntElt ->
ShowValues() : ->
ShowIdentifiers() : ->
ShowMemoryUsage() : ->
ShowOptions(~P : parameters) : GrpFPTietzeProc ->
ShowPrevious() : ->
ShowPrevious(i) : RngIntElt ->
ShowValues() : ->
ShrikhandeGraph() : -> GrphUnd
GewirtzGraph() : -> GrphUnd
ClebschGraph() : -> GrphUnd
ShrikhandeGraph() : -> GrphUnd
GewirtzGraph() : -> GrphUnd
ClebschGraph() : -> GrphUnd
ShrinkingGenerator(C1, S1, C2, S2, t) : RngUPolElt, SeqEnum, RngUPolElt,SeqEnum, RngIntElt -> SeqEnum
ShrinkingGenerator(C1, S1, C2, S2, t) : RngUPolElt, SeqEnum, RngUPolElt,SeqEnum, RngIntElt -> SeqEnum
BlumBlumShubModulus(b) : RngIntElt -> RngIntElt
BBSModulus(b) : RngIntElt -> RngIntElt
RandomSequenceBlumBlumShub(b, t) : RngIntElt, RngIntElt -> SeqEnum
RandomSequenceBlumBlumShub(n, s, t) : RngIntElt, RngIntElt, RngIntElt -> SeqEnum
RootSide(v) : GrphVert -> GrphVert
IsRightIdeal(I) : AlgAssVOrdIdl -> BoolElt
IsTwoSidedIdeal(I) : AlgAssVOrdIdl -> BoolElt
IsLeftIdeal(I) : AlgAssVOrdIdl -> BoolElt
TwoSidedIdealClassGroup(S : Support) : AlgAssVOrd -> GrpAb, Map
TwoSidedIdealClasses(S) : AlgQuatOrd -> [AlgQuatOrdIdl]
SiegelTransformation(u, v) : ModTupFldElt, ModTupFldElt -> AlgMatElt
FldForms_siegel (Example H29E13)
Lseries_siegel-modular-form (Example H127E28)
SiegelTransformation(u, v) : ModTupFldElt, ModTupFldElt -> AlgMatElt
NFS(n, F, m1, m2) : RngIntElt, RngMPolElt, RngIntElt, RngIntElt -> RngIntElt
NumberFieldSieve(n, F, m1, m2) : RngIntElt, RngMPolElt, RngIntElt, RngIntElt -> RngIntElt
PolynomialSieve(F, m, J0, J1,MaxAlpha) : RngMPolElt, RngIntElt, RngIntElt, RngIntElt, FldReElt -> List
Sieve(K) : FldFin ->
The Sieving stage (RING OF INTEGERS)
ASigmaL(arguments)
AffineSigmaLinearGroup(arguments)
DivisorSigma(i, n) : RngIntElt, RngIntElt -> RngIntElt
ProjectiveSigmaLinearGroup(arguments)
ProjectiveSigmaSymplecticGroup(arguments)
ProjectiveSigmaUnitaryGroup(arguments)
CanSignNormalize(F) : RngUPolTwstElt -> BoolElt, RngUPolTwstElt, RngElt
Sign(a, p) : FldFunElt, PlcFunElt -> RngElt
Sign(q) : FldRatElt -> RngIntElt
Sign(r) : FldReElt -> RngIntElt
Sign(g) : GrpPermElt -> RngIntElt
Sign(x) : Infty -> RngIntElt
Sign(L) : LSer -> .
Sign(A) : ModAbVar -> RngIntElt
Sign(n) : RngIntElt -> RngIntElt
Sign(f) : RngMPolElt -> RngIntElt
Sign(p) : RngUPolElt -> RngIntElt
SignDecomposition(D) : DivCrvElt -> DivElt,DivElt
SignDecomposition(D) : DivSchElt -> DivSchElt, DivSchElt
Absolute Value and Sign (RATIONAL FIELD)
Signature(F) : FldAlg -> RngIntElt, RngIntElt
Signature(Q) : FldRat -> RngIntElt, RngIntElt
Signature(G) : GrpPSL2 -> SeqEnum
Signature(Z) : RngInt -> RngIntElt, RngIntElt
Signature(O) : RngOrd -> RngIntElt, RngIntElt
ListSignatures(C) : Cat ->
ListSignatures(F, C) : Intrinsic, Cat ->
SignDecomposition(D) : DivCrvElt -> DivElt,DivElt
SignDecomposition(D) : DivSchElt -> DivSchElt, DivSchElt
ExtraspecialSigns(R) : RootDtm -> []
RealSigns(a) : FldNumElt -> []
RealSigns(a) : RngOrdElt -> []
SiksekBound(H: parameters) : SetPtEll -> FldPrElt
SiksekBound(H: parameters) : SetPtEll -> FldPrElt
RubinSilverbergPolynomials(n, J : parameters) : RngIntElt, RngElt -> RngElt, RngElt
SilvermanBound(H) : SetPtEll -> FldPrElt
SilvermanBound(H) : SetPtEll -> FldPrElt
SimNEQ(K, e, f) : FldNum, FldNumElt, FldNumElt -> BoolElt, [FldNumElt]
SimNEQ(K, e, f) : FldNum, FldNumElt, FldNumElt -> BoolElt, [FldNumElt]
Isometries and Similarities (POLAR SPACES)
a ~ b : AlgSymElt, AlgSymElt -> AlgSymElt
IsSimilar(A, B) : AlgMatElt, AlgMatElt -> BoolElt, AlgMatElt
IsSimilar(a, b) : AlgMatElt, AlgMatElt -> BoolElt, AlgMatElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012