[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: isomorphism  ..  Isp


isomorphism

   Arithmetic with Isomorphisms (HYPERELLIPTIC CURVES)
   Creation of Isomorphisms (HYPERELLIPTIC CURVES)
   Equivalence and Isomorphism of Codes (LINEAR CODES OVER FINITE FIELDS)
   The Isomorphism (FINITELY PRESENTED ALGEBRAS)

isomorphism-arithmetic

   Arithmetic with Isomorphisms (HYPERELLIPTIC CURVES)

isomorphism-creation

   Creation of Isomorphisms (HYPERELLIPTIC CURVES)

isomorphism-equivalence

   IsEquivalent(C, D: parameters) : Code, Code -> BoolElt, Map
   Equivalence and Isomorphism of Codes (LINEAR CODES OVER FINITE FIELDS)

Isomorphism-examples

   Examples (QUATERNION ALGEBRAS)

Isomorphism_algebras

   AlgQuat_Isomorphism_algebras (Example H86E23)

Isomorphism_example

   AlgQuat_Isomorphism_example (Example H86E24)

isomorphism_fp

   Searching for Isomorphisms (FINITELY PRESENTED GROUPS)

IsomorphismAndEquivalence

   Cartan_IsomorphismAndEquivalence (Example H95E14)

IsomorphismData

   IsomorphismData(I) : Map -> [ RngElt ]

IsomorphismIsogeny

   RootDtm_IsomorphismIsogeny (Example H97E8)

Isomorphisms

   Isomorphisms(C, D) : Crv, Crv -> SeqEnum
   Isomorphisms(K, E) : FldFunG, FldFunG -> [Map]
   Isomorphisms(K,E,p1,p2) : FldFunG, FldFunG, PlcFunElt, PlcFunElt -> [Map]
   CrvEll_Isomorphisms (Example H120E17)
   FldFunG_Isomorphisms (Example H42E18)

isomorphisms

   Invariants of Isomorphisms (HYPERELLIPTIC CURVES)
   Isomorphisms (QUATERNION ALGEBRAS)
   Isomorphisms of Algebras (QUATERNION ALGEBRAS)
   Isomorphisms of Ideals (QUATERNION ALGEBRAS)
   Isomorphisms of Orders (QUATERNION ALGEBRAS)

isomorphisms-algebras

   Isomorphisms of Algebras (QUATERNION ALGEBRAS)

isomorphisms-ideals

   Isomorphisms of Ideals (QUATERNION ALGEBRAS)

isomorphisms-orders

   Isomorphisms of Orders (QUATERNION ALGEBRAS)

IsomorphismToIsogeny

   IsomorphismToIsogeny(I) : Map -> Map

IsomorphismToStandardCopy

   IsomorphismToStandardCopy(G, str : parameters) : Grp, MonStgElt -> BoolElt, Map

IsomorphismTypesOfBasicAlgebraSequence

   IsomorphismTypesOfBasicAlgebraSequence(S) : SeqEnum -> SeqEnum

IsomorphismTypesOfRadicalLayers

   IsomorphismTypesOfRadicalLayers(M) : ModAlgBas -> SeqEnum

IsomorphismTypesOfSocleLayers

   IsomorphismTypesOfSocleLayers(M) : ModAlgBas -> SeqEnum

IsOne

   IsOne(a) : AlgGenElt -> BoolElt
   IsOne(a) : AlgMatElt -> BoolElt
   IsOne(a) : FldACElt -> BoolElt
   IsOne(u) : MonFPElt -> BoolElt
   IsOne(A) : Mtrx -> BoolElt
   IsOne(A) : MtrxSprs -> BoolElt
   IsOne(s) : RngDiffElt -> BoolElt
   IsOne(L) : RngDiffOpElt -> BoolElt
   IsOne(a) : RngElt -> BoolElt
   IsOne(I) : RngFunOrdIdl -> BoolElt
   IsOne(a) : RngLocAElt -> BoolElt
   IsOne(I) : RngOrdIdl -> BoolElt
   IsOne(a) : RngOrdResElt -> BoolElt
   IsOne(x) : RngPadElt -> BoolElt
   IsOne(s) : RngPowLazElt -> BoolElt

IsOneCoboundary

   IsOneCoboundary(CM, s) : ModCoho, UserProgram -> BoolElt, UserProgram

IsOneCocycle

   IsOneCocycle(A, imgs) : GGrp, SeqEnum[GrpElt] -> BoolElt, OneCoC

IsOnlyMotivic

   IsOnlyMotivic(A) : ModAbVar -> BoolElt

IsOptimal

   IsOptimal(phi) : MapModAbVar -> BoolElt

IsOrbit

   IsOrbit(G, S) : GrpPerm, { Elt } -> BoolElt

IsOrder

   IsOrder(P, m) : PtEll, RngIntElt -> BoolElt

IsOrdered

   IsOrdered(R) : Rng -> BoolElt

IsOrderTerm

   IsOrderTerm(s) : RngDiffElt -> BoolElt

IsOrdinary

   IsOrdinary(E) : CrvEll -> BoolElt

IsOrdinaryProjective

   IsOrdinaryProjective(X) : Sch -> BoolElt

IsOrdinaryProjectiveSpace

   IsOrdinaryProjectiveSpace(X) : Sch -> BoolElt

IsOrdinarySingularity

   IsOrdinarySingularity(p) : Sch,Pt -> BoolElt
   IsOrdinarySingularity(p) : Sch,Pt -> BoolElt

IsOrthogonalGroup

   IsOrthogonalGroup(G) : GrpMat ->BoolElt

isos

   Isomorphisms, Isogenies and Endomorphism Rings of Analytic Jacobians (HYPERELLIPTIC CURVES)

Isotropic

   HasIsotropicVector(V) : ModTupFld -> BoolElt, ModTupFldElt
   IsTotallyIsotropic(V) : ModTupFld) -> BoolElt
   IsotropicSubspace(f) : RngMPolElt -> ModTupRng
   MaximalTotallyIsotropicSubspace(V) : ModTupFld -> ModTupFld

isotropic

   Isotropic Subspaces (QUADRATIC FORMS)

IsotropicSubspace

   IsotropicSubspace(f) : RngMPolElt -> ModTupRng

isotropy-and-witt

   QuadForm_isotropy-and-witt (Example H32E1)

IsOuter

   IsOuter(R) : RootDtm -> BoolElt
   IsInner(R) : RootDtm -> BoolElt

IsOverQ

   IsOverQ(H) : HomModAbVar -> HomModAbVar

IsOverSmallerField

   IsOverSmallerField (G : parameters) : GrpMat -> BoolElt, GrpMat
   IsOverSmallerField(G, k : parameters) : GrpMat -> BoolElt, GrpMat
   GrpMatFF_IsOverSmallerField (Example H60E7)

Isp

   IsRestricted(L) : AlgLie -> BoolElt, Map
   IspLieAlgebra(L) : AlgLie -> BoolElt, Map
   IsRestrictable(L) : AlgLie -> BoolElt, Map
   IsRestrictedSubalgebra(L, M) : AlgLie, AlgLie -> AlgLie
   IspGroup(G) : GrpAb -> BoolElt
   IspIntegral(C, p) : CrvHyp, RngIntElt -> BoolElt
   IspMaximal(O, p) : AlgAssVOrd, RngOrdIdl -> BoolElt
   IspMinimal(C, p) : CrvHyp, RngIntElt -> BoolElt, BoolElt
   IspNormal(C, p) : CrvHyp, RngIntElt -> BoolElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012