[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: LMGFitting .. Local
LMGFittingSubgroup(G) : GrpMat -> GrpMat, GrpPC, Map
LMGFittingSubgroup(G) : GrpMat -> GrpMat, GrpPC, Map
LMGIndex(G, H) : GrpMat, GrpMat -> RngIntElt
LMGInitialise(G : parameters) : GrpMat ->
LMGInitialize(G : parameters) : GrpMat ->
LMGInitialise(G : parameters) : GrpMat ->
LMGInitialize(G : parameters) : GrpMat ->
LMGIsConjugate(G, H, K) : GrpMat, GrpMat, GrpMat -> BoolElt, GrpMatElt
LMGIsConjugate(G, g, h) : GrpMat, GrpMatElt, GrpMatElt -> BoolElt, GrpMatElt
LMGIsIn(G, x) : GrpMat, GrpMatElt -> BoolElt
LMGIsNilpotent(G) : GrpMat -> BoolElt
LMGIsNormal(G, H) : GrpMat, GrpMat -> BoolElt
LMGIsSoluble(G) : GrpMat -> BoolElt
LMGIsSubgroup(G, H) : GrpMat, GrpMat -> BoolElt
LMGIsConjugate(G, H, K) : GrpMat, GrpMat, GrpMat -> BoolElt, GrpMatElt
LMGIsConjugate(G, g, h) : GrpMat, GrpMatElt, GrpMatElt -> BoolElt, GrpMatElt
LMGIsIn(G, x) : GrpMat, GrpMatElt -> BoolElt
LMGIsNilpotent(G) : GrpMat -> BoolElt
LMGIsNormal(G, H) : GrpMat, GrpMat -> BoolElt
LMGIsSolvable(G) : GrpMat -> BoolElt
LMGIsSoluble(G) : GrpMat -> BoolElt
LMGIsSolvable(G) : GrpMat -> BoolElt
LMGIsSoluble(G) : GrpMat -> BoolElt
LMGIsSubgroup(G, H) : GrpMat, GrpMat -> BoolElt
LMGMaximalSubgroups(G) : GrpMat -> SeqEnum
LMGMaximalSubgroups(G) : GrpMat -> SeqEnum
LMGNormalClosure(G, H) : GrpMat, GrpMat -> GrpMat
LMGNormalClosure(G, H) : GrpMat, GrpMat -> GrpMat
LMGNormalizer(G, H) : GrpMat, GrpMat -> GrpMat
LMGNormaliser(G, H) : GrpMat, GrpMat -> GrpMat
LMGNormalizer(G, H) : GrpMat, GrpMat -> GrpMat
LMGNormaliser(G, H) : GrpMat, GrpMat -> GrpMat
LMGOrder(G) : GrpMat[FldFin] -> RngIntElt
LMGRadicalQuotient(G) : GrpMat -> GrpPerm, Map, GrpMat
LMGRadicalQuotient(G) : GrpMat -> GrpPerm, Map, GrpMat
SetLMGSchreierBound(n) : RngIntElt ->
LMGSocleStar(G) : GrpMat -> GrpMat
LMGSocleStarAction(G) : GrpMat -> Map, GrpPerm, GrpMat
LMGSocleStarActionKernel(G) : GrpMat -> GrpMat, GrpPC, Map
LMGSocleStarFactors(G) : GrpMat -> SeqEnum, SeqEnum
LMGSocleStarQuotient(G) : GrpMat -> GrpPerm, Map, GrpMat
LMGSocleStar(G) : GrpMat -> GrpMat
LMGSocleStarAction(G) : GrpMat -> Map, GrpPerm, GrpMat
LMGSocleStarActionKernel(G) : GrpMat -> GrpMat, GrpPC, Map
LMGSocleStarFactors(G) : GrpMat -> SeqEnum, SeqEnum
LMGSocleStarQuotient(G) : GrpMat -> GrpPerm, Map, GrpMat
LMGSolvableRadical(G) : GrpMat -> GrpMat, GrpPC, Map
LMGSolubleRadical(G) : GrpMat -> GrpMat, GrpPC, Map
LMGSolvableRadical(G) : GrpMat -> GrpMat, GrpPC, Map
LMGSolubleRadical(G) : GrpMat -> GrpMat, GrpPC, Map
LMGSolvableRadical(G) : GrpMat -> GrpMat, GrpPC, Map
LMGSolubleRadical(G) : GrpMat -> GrpMat, GrpPC, Map
LMGSolvableRadical(G) : GrpMat -> GrpMat, GrpPC, Map
LMGSolubleRadical(G) : GrpMat -> GrpMat, GrpPC, Map
LMGSylow(G,p) : GrpMat, RngIntElt -> GrpMat
LMGUnipotentRadical(G) : GrpMat -> GrpMat, GrpPC, Map
LMGUnipotentRadical(G) : GrpMat -> GrpMat, GrpPC, Map
Loading a Program File (INPUT AND OUTPUT)
load "filename";
loc< R | a1, ..., ar > : Rng, RngElt, ..., RngElt -> Rng, Map
LocalFactorization(f) : RngUPolElt -> [ < RngUPolElt, RngIntElt >]
Factorization(f) : RngUPolElt -> [ < RngUPolElt, RngIntElt > ]
IsLocalNorm(A, x) : FldAb, RngOrdElt -> BoolElt
IsLocalNorm(A, x, p) : FldAb, RngOrdElt, PlcNumElt -> BoolElt
IsLocalNorm(A, x, i) : FldAb, RngOrdElt, RngIntElt -> BoolElt
IsLocalNorm(A, x, p) : FldAb, RngOrdElt, RngOrdIdl -> BoolElt
LocalComponent(M, p) : ModSym, RngIntElt -> RepLoc
LocalCoxeterGroup(H) : GrpPermCox -> GrpPermCox, Map
LocalDegree(P) : PlcNumElt -> RngIntElt
LocalDegree(P) : PlcNumElt -> RngIntElt
LocalField(L, f) : FldPad, RngUPolElt -> RngLocA
LocalGenera(G) : SymGen -> Lat
LocalHeight(P, Pl : parameters) : PtEll, PlcNumElt -> FldPrElt
LocalHeight(P, Pl) : PtEll, PlcFunElt -> FldPrElt
LocalHeight(P, p) : PtEll, RngIntElt -> FldComElt
LocalInformation(E) : CrvEll -> [ < Tup > ]
LocalInformation(E) : CrvEll -> [ Tup ]
LocalInformation(E, p) : CrvEll, RngIntElt -> <RngIntElt, RngIntElt, RngIntElt, RngIntElt, SymKod, BoolElt>, CrvEll
LocalInformation(E) : CrvEll, RngIntElt -> [ Tup ]
LocalInformation(E) : CrvEll, RngOrdIdl -> Tup, CrvEll
LocalInformation(E, P) : CrvEll, RngOrdIdl -> Tup, CrvEll
LocalInformation(E, Pl) : CrvEll[FldFun], PlcFunElt -> Tup, CrvEll
LocalPolynomialRing(K, n) : Rng, RngIntElt -> RngMPolLoc
LocalPolynomialRing(K, n, order) : Rng, RngIntElt, MonStgElt, ... -> RngMPolLoc
LocalPolynomialRing(K, n, T) : Rng, RngIntElt, Tup -> RngMPolLoc
LocalRing(P, prec) : RngOrdIdl, RngIntElt -> RngLoc, Map
LocalRing(P, k) : RngOrdIdl, RngIntElt -> RngPad, Map
LocalRing(W) : RngWitt -> RngLoc, Map
LocalTwoSelmerMap(P) : RngOrdIdl -> Map
LocalTwoSelmerMap(A, P) : RngUPolRes, RngOrdIdl -> Map, SeqEnum
LocalUniformizer(P) : PlcFunElt -> FldFunGElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012