[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: ModelToString .. Modular
ModelToString(model) : ModelG1 -> MonStgElt
Eltseq(model) : ModelG1 -> [ RngElt ]
ModelType(X) : CrvMod -> MonStgElt
Modexp(a, k, m) : RngFunOrdElt, RngIntElt, RngUPolElt -> RngFunOrdElt
Modexp(n, k, m) : RngIntElt, RngIntElt, RngIntElt -> RngIntElt
Modexp(a, n, m) : RngOrdElt, RngIntElt, RngIntElt -> RngOrdElt
Modexp(a, e, n) : RngQuadElt, RngInt, RngQuadElt -> RngQuadElt
Modexp(f, n, g) : RngUPolElt, RngIntElt, RngUPolElt -> RngUPolElt
Access and Modification Functions (RECORDS)
Accessing and Modifying Sets (SETS)
Changing the Alphabet of a Code (LINEAR CODES OVER FINITE FIELDS)
Changing the Coefficient Field (VECTOR SPACES)
Changing the Coefficient Ring (FREE MODULES)
Elementary Tietze Transformations (FINITELY PRESENTED SEMIGROUPS)
Modifying a Base and Strong Generating Set (PERMUTATION GROUPS)
Modifying Enumerated Sequences (SEQUENCES)
Modifying Sets (SETS)
Modifying the Universe of a Set or Sequence (INTRODUCTION TO AGGREGATES [SETS, SEQUENCES, AND MAPPINGS])
Changing the Alphabet of a Code (LINEAR CODES OVER FINITE FIELDS)
KSpace(V, F) : ModTupFld, Fld -> ModTupFld, Map
KMatrixSpace(V, F) : ModTupFld, Fld -> ModTupFld, Map
KModule(V, F) : ModTupFld, Fld -> ModTupFld, Map
Changing the Coefficient Field (VECTOR SPACES)
Changing the Coefficient Ring (FREE MODULES)
Elementary Tietze Transformations (FINITELY PRESENTED SEMIGROUPS)
Modifying Resolution Graphs (RESOLUTION GRAPHS AND SPLICE DIAGRAMS)
ModifySelfintersection(~v,n) : GrphResVert,RngIntElt ->
ModifyTransverseIntersection(~v,n) : GrphResVert,RngIntElt ->
AlgBas_modify presentation (Example H85E9)
Modifying Presentations (FINITELY PRESENTED GROUPS: ADVANCED)
Modifying Presentations (FINITELY PRESENTED GROUPS: ADVANCED)
ModifySelfintersection(~v,n) : GrphResVert,RngIntElt ->
ModifyTransverseIntersection(~v,n) : GrphResVert,RngIntElt ->
Modinv(E, M) : RngOrdElt, RngOrdIdl -> RngOrdElt
InverseMod(E, M) : RngOrdElt, RngIntElt -> RngOrdElt
Modinv(a, m) : RngFunOrdElt, RngFunOrdIdl -> RngFunOrdElt
Modinv(n, m) : RngIntElt, RngIntElt -> RngIntElt
Modorder(n, m) : RngIntElt, RngIntElt -> RngIntElt
Minimal Models (ALGEBRAIC SURFACES)
Modifiers (ALGEBRAIC POWER SERIES RINGS)
Modsqrt(n, m) : RngIntElt, RngIntElt -> BoolElt, RngIntElt
AtkinModularPolynomial(N) : RngIntElt -> RngMPolElt
CanonicalModularPolynomial(N) : RngIntElt -> RngMPolElt
ClassicalModularPolynomial(N) : RngIntElt -> RngMPolElt
CommonModularStructure(X) : [ModAbVar] -> List, List
DefiningModularSymbolsSpace(pi) : RepLoc -> ModSym
ExistsModularCurveDatabase(t) : MonStgElt -> BoolElt
IsAttachedToModularSymbols(A) : ModAbVar -> BoolElt
IsAttachedToModularSymbols(H) : ModAbVarHomol -> BoolElt
IsInSmallModularCurveDatabase(N) : RngIntElt -> Boolelt
IsModularCurve(X) : Sch -> BoolElt
IsRingOfAllModularForms(M) : ModFrm -> BoolElt
ModularAbelianVariety(E) : CrvEll -> ModAbVar
ModularAbelianVariety(L) : ModAbVarLSer -> ModAbVar
ModularAbelianVariety(f) : ModFrmElt -> ModAbVar
ModularAbelianVariety(M) : ModSym -> ModAbVar
ModularAbelianVariety(eps : parameters) : GrpDrchElt -> ModAbVar
ModularAbelianVariety(M : parameters) : ModFrm -> ModAbVar
ModularAbelianVariety(s : parameters) : MonStgElt -> ModAbVar
ModularAbelianVariety(X : parameters) : [ModFrm] -> ModAbVar
ModularAbelianVariety(X) : [ModSym] -> ModAbVar
ModularCurve(D, N) : DB, RngIntElt -> CrvMod
ModularCurve(X,t,N) : Sch, MonStgElt, RngIntElt -> CrvMod
ModularCurveDatabase(t) : MonStgElt -> DB
ModularCurveQuotient(N,A) : RngIntElt, [RngIntElt] -> Crv
ModularDegree(E) : CrvEll -> RngIntElt
ModularDegree(A) : ModAbVar -> RngIntElt
ModularDegree(M) : ModSym -> RngIntElt
ModularEmbedding(A) : ModAbVar -> MapModAbVar
ModularEquation(M) : ModSS -> RngMPolElt
ModularForm(E) : CrvEll -> ModFrm
ModularForm(E) : CrvEll -> ModFrmElt
ModularForms(G) : -> ModFrm
ModularForms(G, k) : -> ModFrm
ModularForms(eps, k) : GrpDrchElt, RngIntElt -> ModFrm
ModularForms(N) : RngIntElt -> ModFrm
ModularForms(N, k) : RngIntElt, RngIntElt -> ModFrm
ModularForms(chars, k) : [GrpDrchElt], RngIntElt -> ModFrm
ModularHyperellipticCurve(B) : [ModSym] -> BoolElt, RngUPol
ModularHyperellipticCurve(F) : [RngSerPowElt] -> BoolElt, RngUPol
ModularKernel(M) : ModSym -> GrpAb
ModularNonHyperellipticCurveGenus3(F) : [RngSerPowElt] -> BoolElt, RngMPolElt
ModularParameterization(A) : ModAbVar -> MapModAbVar
ModularParametrization(E, z, B : parameters) : CrvEll[FldRat], FldComElt, RngIntElt -> FldComElt
ModularPolarization(A) : ModAbVar -> MapModAbVar
ModularSolution(A, M) : MtrxSprs, RngIntElt -> ModTupRng
ModularSymbolToIntegralHomology(A, x) : ModAbVar, SeqEnum -> ModTupFldElt
ModularSymbolToRationalHomology(A, x) : ModAbVar, ModSymElt -> ModTupFldElt
ModularSymbols(E) : CrvEll -> ModSym
ModularSymbols(eps, k) : GrpDrchElt, RngIntElt -> ModSym
ModularSymbols(eps, k, sign) : GrpDrchElt, RngIntElt, RngIntElt -> ModSym
ModularSymbols(A) : ModAbVar -> SeqEnum
ModularSymbols(H) : ModAbVarHomol -> SeqEnum
ModularSymbols(M) : ModFrm -> SeqEnum
ModularSymbols(M, sign) : ModFrm, RngIntElt -> ModSym
ModularSymbols(M, N') : ModSym, RngIntElt -> ModSym
ModularSymbols(s, sign) : MonStgElt, RngIntElt -> ModSym
ModularSymbols(M : parameters) : ModSS -> ModSym
ModularSymbols(M, sign : parameters) : ModSS, RngIntElt -> ModSym
ModularSymbols(N) : RngIntElt -> ModSym
ModularSymbols(N, k) : RngIntElt, RngIntElt -> ModSym
ModularSymbols(N, k, F) : RngIntElt, RngIntElt, Fld -> ModSym
ModularSymbols(N, k, F, sign) : RngIntElt, RngIntElt, Fld, RngIntElt -> ModSym
ModularSymbols(N, k, sign) : RngIntElt, RngIntElt, RngIntElt -> ModSym
NewModularHyperellipticCurve(B) : [ModSym] -> BoolElt, RngUPol
NewModularHyperellipticCurve(F) : [RngSerPowElt] -> BoolElt, RngUPol
NewModularHyperellipticCurves(N, g) : RngIntElt, RngIntElt -> SeqEnum
NewModularNonHyperellipticCurveGenus3(B) : [ModSym] -> BoolElt, RngMPolElt
NewModularNonHyperellipticCurveGenus3(F) : [RngSerPowElt] -> BoolElt, RngMPolElt
NewModularNonHyperellipticCurvesGenus3(N) : RngIntElt, RngIntElt -> SeqEnum
SmallModularCurve(N) : RngIntElt -> Crv
ThetaSeriesModularForm(L) : Lat -> ModFrmElt
ThetaSeriesModularFormSpace(L) : Lat -> ModFrm
ZeroModularAbelianVariety() : -> ModAbVar
ZeroModularAbelianVariety(k) : RngIntElt -> ModAbVar
GrpFP_1_Modular (Example H70E7)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012