[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: NPCGenerators .. Number
NPCGenerators(A) : GrpAuto -> RngIntElt
NPCgens(A) : GrpAuto -> RngIntElt
NumberOfPCGenerators(A) : GrpAuto -> RngIntElt
NumberOfPCGenerators(G) : GrpPC -> RngIntElt
Ngens(G) : GrpGPC -> RngIntElt
NumberOfPCGenerators(G) : GrpGPC -> RngIntElt
NPCgens(G) : GrpGPC -> RngIntElt
NumberOfGenerators(G) : GrpGPC -> RngIntElt
NumberOfPCGenerators(A) : GrpAuto -> RngIntElt
NumberOfPCGenerators(G) : GrpPC -> RngIntElt
Nqubits(H) : HilbSpc -> RngIntElt
NumberOfQubits(H) : HilbSpc -> RngIntElt
Nrels(P) : GrpFPTietzeProc -> RngIntElt
NumberOfRelations(P) : GrpFPTietzeProc -> RngIntElt
NumberOfRelations(G) : GrpRWS -> RngIntElt
NumberOfRelations(M) : MonRWS -> RngIntElt
Nrows(phi) : MapModAbVar -> RngIntElt
NumberOfRows(a) : AlgMatElt -> RngIntElt
NumberOfRows(u) : ModTupFldElt -> RngIntElt
NumberOfRows(A) : Mtrx -> RngIntElt
NumberOfRows(A) : MtrxSprs -> RngIntElt
Nsgens(G) : GrpMat -> RngIntElt
NumberOfStrongGenerators(G) : GrpMat -> RngIntElt
NumberOfStrongGenerators(G) : GrpPerm -> RngIntElt
NumberOfStrongGenerators(G, i) : GrpPerm, RngIntElt -> RngIntElt
BlumBlumShubModulus(b) : RngIntElt -> RngIntElt
Number Theoretic Bit Generators (PSEUDO-RANDOM BIT SEQUENCES)
NthPrime(n) : RngIntElt -> RngIntElt
NthPrime(n) : RngIntElt -> RngIntElt
GetNthreads() : -> RngIntElt
SetNthreads(n) : RngIntElt ->
nTorsionSubgroup(A, n) : ModAbVar, RngIntElt -> ModAbVarSubGrp
nTorsionSubgroup(G, n) : ModAbVarSubGrp, RngIntElt -> ModAbVarSubGrp
NuclearRank(G) : GrpPC -> RngIntElt
NuclearRank(G) : GrpPC -> RngIntElt
IsNull(G) : Grph -> BoolElt
IsNull(G) : GrphMult -> BoolElt
IsNull(S) : SeqEnum -> BoolElt
IsNull(R) : SetEnum -> BoolElt
IsNullHomotopy(f,H) : MapChn, MapChn -> BoolElt
JacobiThetaNullK(q, k) : FldReElt, RngIntElt -> FldReElt
Kernel(a) : AlgMatElt -> ModTup
Kernel(a) : ModMatRngElt -> ModTupFld, Map
Kernel(a) : ModMatRngElt -> ModTupRng
NullGraph( : parameters) : -> GrphUnd
NullHomotopy(f) : MapChn -> MapChn
NullspaceOfTranspose(X) : AlgMatLieElt -> ModTupRng
RowNullSpace(a) : AlgMatElt -> ModTup
NullGraph( : parameters) : -> GrphUnd
NullHomotopy(f) : MapChn -> MapChn
AlgBas_Nullhomotopy (Example H85E24)
Nullity(phi) : MapModAbVar -> RngIntElt
NullSpace(a) : AlgMatElt -> ModTup
Kernel(a) : AlgMatElt -> ModTup
Kernel(a) : ModMatRngElt -> ModTupFld, Map
Kernel(a) : ModMatRngElt -> ModTupRng
Nullspace(X) : AlgMatLieElt -> ModTupRng
Kernel(X) : AlgMatLieElt -> ModTupRng
Nullspace(A) : Mtrx -> ModTupRng
Nullspace(A) : MtrxSprs -> ModTupRng
NullspaceMatrix(A) : Mtrx -> ModTupRng
NullspaceMatrix(A) : MtrxSprs -> Mtrx
NullspaceOfTranspose(X) : AlgMatLieElt -> ModTupRng
NullspaceOfTranspose(A) : Mtrx -> ModTupRng
NullspaceOfTranspose(A) : MtrxSprs -> ModTupRng
RowNullSpace(a) : AlgMatElt -> ModTup
Mat_Nullspace (Example H26E7)
KernelMatrix(A) : Mtrx -> ModTupRng
NullspaceMatrix(A) : Mtrx -> ModTupRng
NullspaceMatrix(A) : MtrxSprs -> Mtrx
RowNullSpace(X) : AlgMatLieElt -> ModTupRng
NullspaceOfTranspose(X) : AlgMatLieElt -> ModTupRng
NullspaceOfTranspose(A) : Mtrx -> ModTupRng
NullspaceOfTranspose(A) : MtrxSprs -> ModTupRng
RowNullSpace(a) : AlgMatElt -> ModTup
NumExtraspecialPairs(R) : RootDtm -> SeqEnum
NumberOfPositiveRoots(C) : AlgMatElt -> RngIntElt
NumberOfPositiveRoots(W) : GrpFPCox -> RngIntElt
NumberOfPositiveRoots(G) : GrpLie -> RngIntElt
NumberOfPositiveRoots(W) : GrpMat -> RngIntElt
NumberOfPositiveRoots(W) : GrpPermCox -> RngIntElt
NumberOfPositiveRoots(N) : MonStgElt -> .
NumberOfPositiveRoots(R) : RootStr -> RngIntElt
NumberOfPositiveRoots(R) : RootSys -> RngIntElt
NumberOfFields(D) : DB -> RngIntElt
# D : DB -> RngIntElt
# D : DB -> RngIntElt
# D : DB -> RngIntElt
# D : DB -> RngIntElt
# D : DB -> RngIntElt
# D : DB -> RngIntElt
# D : DB -> RngIntElt
# D : DB -> RngIntElt
# D: DB -> RngIntElt
BernoulliNumber(n) : RngIntElt -> FldRatElt
BernoulliNumber(n) : RngIntElt -> FldRatElt
BettiNumber(E, i) : CrvEll, RngIntElt -> RngIntElt
BettiNumber(M, i, j) : ModMPol, RngIntElt -> RngIntElt
BettiNumber(X,q) : SmpCpx, RngIntElt -> RngIntElt
BogomolovNumber(X) : GRFano -> FldRatElt
CellNumber(P, h, x) : StkPtnOrd, RngIntElt, RngIntElt -> RngIntElt
ChernNumber(S,n) : Srfc, RngIntElt -> RngIntElt
ChromaticNumber(G) : GrphUnd -> RngIntElt
ClassNumber(C) : Crv[FldFin] -> RngIntElt
ClassNumber(F) : FldFun -> RngIntElt
ClassNumber(F) : FldFunG -> RngIntElt
ClassNumber(K) : FldQuad -> RngIntElt
ClassNumber(K: parameters) : FldAlg -> RngIntElt
ClassNumber(Q: parameters) : QuadBin -> RngIntElt
ClassNumber(O: parameters) : RngOrd -> RngIntElt
ClassNumber(O) : RngFunOrd -> RngIntElt
ClassNumberApproximation(F, e) : FldFunG, FldReElt -> FldReElt
ClassNumberApproximationBound(q, g, e) : RngIntElt, RngIntElt, RngIntElt, -> RngIntElt
CliqueNumber(G : parameters) : GrphUnd -> RngIntElt
CompositionTreeFactorNumber(G, g) : Grp, GrpElt -> RngIntElt
ConnectionNumber(D, p, B) : Inc, IncPt, IncBlk -> RngIntElt
CoxeterNumber(W) : GrpFPCox -> SeqEnum
CoxeterNumber(G) : GrpLie -> RngIntElt
CoxeterNumber(W) : GrpMat -> SeqEnum
Dimension(C) : Code -> RngIntElt
EulerianNumber(n, r) : RngIntElt, RngIntElt -> RngIntElt
GaussNumber(n, v) : RngIntElt, RngElt -> RngElt
GeneralizedFibonacciNumber(g0, g1, n) : RngIntElt, RngIntElt, RngIntElt -> RngIntElt
GeneralizedFibonacciNumber(g0, g1, n) : RngIntElt, RngIntElt, RngIntElt -> RngIntElt
GeneratorNumber(w) : GrpFPElt -> RngIntElt
HarmonicNumber(n) : RngIntElt -> FldRatElt
HermiteNumber(L) : Lat -> FldReElt
HirschNumber(G) : GrpGPC -> RngIntElt
HodgeNumber(S,i,j) : Srfc, RngIntElt, RngIntElt -> RngIntElt
IdentificationNumber(D, i): DB, RngIntElt -> RngIntElt
IndependenceNumber(G: parameters) : GrphUnd -> RngIntElt
IntersectionNumber(D1,D2) : DivSchElt, DivSchElt-> FldRatElt
IntersectionNumber(D, i, j) : Dsgn, RngIntElt, RngIntElt -> RngIntElt
IntersectionNumber(C,D,p) : Sch,Sch,Pt -> RngIntElt
IsolNumberOfDegreeField(n, p) : RngIntElt, RngIntElt -> RngIntElt
KissingNumber(L) : Lat -> RngElt
KostkaNumber(S, C) : SeqEnum[RngIntElt], SeqEnum[RngIntElt] -> RngIntElt
MagicNumber(C) : GRCrvS -> RngIntElt
MaximalNumberOfCosets(P) : GrpFPCosetEnumProc -> RngIntElt
MilnorNumber(f) : RngMPolElt -> RngElt
MinimalChernNumber(S,n) : Srfc, RngIntElt -> RngIntElt
MinusTamagawaNumber(M) : ModSym -> RngIntElt
NFaces(G) : GrphMultUnd -> RngIntElt
NFaces(G) : GrphUnd -> RngIntElt
Ngens(M) : ModDed -> RngIntElt
NormalNumber(C) : GRCrvS -> RngIntElt
Number(D,X) : DB,GRK3 -> RngIntElt,GRK3
NumberField(A) : FldAb -> FldNum
NumberField(F) : FldOrd -> FldNum
NumberField(P) : PlcNum -> FldNum
NumberField(P) : PlcNum -> FldNum
NumberField(P) : PlcNumElt -> FldNum
NumberField(P) : PlcNumElt -> FldNum
NumberField(O) : RngOrd -> FldNum
NumberField(O) : RngQuad -> FldQuad
NumberField(f) : RngUPolElt -> FldNum
NumberField(f) : RngUPolElt -> FldNum
NumberField(e) : SubFldLatElt -> FldNum
NumberField(s) : [ RngUPolElt ] -> FldNum
NumberField(s) : [ RngUPolElt ] -> FldNum
NumberFieldDatabase(d) : RngIntElt -> DB
NumberFieldSieve(n, F, m1, m2) : RngIntElt, RngMPolElt, RngIntElt, RngIntElt -> RngIntElt
NumberFields(D) : DB -> [ FldNum ]
NumberFields(D, d) : DB, RngIntElt -> [ FldNum ]
NumberOfActionGenerators(L) : Lat -> RngIntElt
NumberOfActionGenerators(M) : ModGrp -> RngIntElt
NumberOfActionGenerators(M) : ModRng -> RngIntElt
NumberOfAffinePatches(X) : Sch -> BoolElt
NumberOfAlgebraicGenerators(G) : GrpLie -> RngIntElt
NumberOfAntisymmetricForms(L) : Lat -> RngIntElt
NumberOfBlocks(D) : Inc -> RngIntElt
NumberOfCells(P, h) : StkPtnOrd, RngIntElt -> RngIntElt
NumberOfClasses(D) : DB -> RngIntElt
NumberOfClasses(G) : GrpFin -> RngIntElt
NumberOfClasses(G) : GrpMat -> RngIntElt
NumberOfClasses(G) : GrpPC -> RngIntElt
NumberOfClasses(G) : GrpPerm -> RngIntElt
NumberOfColumns(a) : AlgMatElt -> RngIntElt
NumberOfColumns(u) : ModTupFldElt -> RngIntElt
NumberOfColumns(A) : Mtrx -> RngIntElt
NumberOfColumns(A) : MtrxSprs -> RngIntElt
NumberOfComponents(C) : SetCart -> RngIntElt
NumberOfComponents(K) : SymKod -> RngIntElt
NumberOfConstantWords(C, i) : Code, RngIntElt -> RngIntElt
NumberOfConstraints(L) : LP -> RngIntElt
NumberOfCoordinates(X) : Sch -> RngIntElt
NumberOfCurves(D, N) : DB, RngIntElt -> RngIntElt
NumberOfCurves(D, N, i) : DB, RngIntElt, RngIntElt -> RngIntElt
NumberOfDivisors(n) : RngIntElt -> RngIntElt
NumberOfExtensions(R, n) : RngPad, RngIntElt -> RngIntElt
NumberOfFacets(P) : TorPol -> RngIntElt
NumberOfFields(D, d) : DB, RngIntElt -> RngIntElt
NumberOfFixedSpaces(x, s) : GrpMatElt, RngIntElt -> RngIntElt
NumberOfGenerators(B) : AlgBas -> RngIntElt
NumberOfGenerators(L) : AlgLieExtr -> RngIntElt
NumberOfGenerators(R) : AlgMat -> { AlgMatElt }
NumberOfGenerators(C) : Code -> RngIntElt
NumberOfGenerators(G) : Grp -> RngIntElt
NumberOfGenerators(A) : GrpAb -> RngIntElt
NumberOfGenerators(A) : GrpAbGen -> RngIntElt
NumberOfGenerators(A) : GrpAutCrv -> RngIntElt
NumberOfGenerators(A) : GrpAuto -> RngIntElt
NumberOfGenerators(G) : GrpBB -> RngIntElt
NumberOfGenerators(B) : GrpBrd -> RngIntElt
NumberOfGenerators(G) : GrpDrch -> RngIntElt
NumberOfGenerators(G) : GrpFP -> RngIntElt
NumberOfGenerators(P) : GrpFPTietzeProc -> RngIntElt
NumberOfGenerators(G) : GrpGPC -> RngIntElt
NumberOfGenerators(G) : GrpLie -> RngIntElt
NumberOfGenerators(G) : GrpMat -> RngIntElt
NumberOfGenerators(G) : GrpPC -> RngIntElt
NumberOfGenerators(G) : GrpPerm -> RngIntElt
NumberOfGenerators(G) : GrpRWS -> RngIntElt
NumberOfGenerators(G) : GrpRWS -> RngIntElt
NumberOfGenerators(G) : GrpSLP -> RngIntElt
NumberOfGenerators(M) : ModTupFld -> RngIntElt
NumberOfGenerators(M) : MonRWS -> RngIntElt
NumberOfGenerators(H) : SetPtEll -> RngIntElt
NumberOfGenerators(H) : SetPtEll -> RngIntElt
NumberOfGenerators(S) : SgpFP -> RngIntElt
NumberOfGradings(C) : RngCox -> RngIntElt
NumberOfGradings(X) : Sch -> RngIntElt
NumberOfGraphs(D) : DB -> RngIntElt
NumberOfGraphs(D, S) : DB, SeqEnum -> RngIntElt
NumberOfGroups(D, d) : DB, RngIntElt -> RngIntElt
NumberOfGroups(D, d) : DB, RngIntElt -> RngIntElt
NumberOfGroups(D, d) : DB, RngIntElt -> RngIntElt
NumberOfGroups(D, d) : DB, RngIntElt -> RngIntElt
NumberOfGroups(D, o) : DB, RngIntElt -> RngIntElt
NumberOfGroups(D, o1, o2): DB, RngIntElt, RngIntElt -> RngIntElt, RngIntElt
NumberOfInclusions(e, f) : SubGrpLatElt, SubGrpLatElt -> RngIntElt
NumberOfInvariantForms(G) : GrpMat -> RngIntElt, RngIntElt
NumberOfInvariantForms(L) : Lat -> RngIntElt, RngIntElt
NumberOfIrreducibleMatrixGroups(k, p) : RngIntElt, RngIntElt -> RngIntElt
NumberOfIsogenyClasses(D, N) : DB, RngIntElt -> RngIntElt
NumberOfLattices(D, N): DB, MonStgElt -> RngIntElt
NumberOfLattices(D, d): DB, RngIntElt -> RngIntElt
NumberOfLevels( V ) : LatLat -> RngIntElt
NumberOfLines(P) : Plane -> RngIntElt
NumberOfMatrices(D, n) : DB, RngIntElt -> RngIntElt
NumberOfMetacyclicPGroups (p, n): RngIntElt, RngIntElt -> SeqEnum
NumberOfNewformClasses(M : parameters) : ModFrm -> RngIntElt
NumberOfNonZeroEntries(A) : Mtrx -> RngIntElt
NumberOfNonZeroEntries(A) : MtrxSprs -> RngIntElt
NumberOfPCGenerators(A) : GrpAuto -> RngIntElt
NumberOfPCGenerators(G) : GrpPC -> RngIntElt
NumberOfPCGenerators(P) : GrpPCpQuotientProc -> RngIntElt
NumberOfPartitions(n) : RngIntElt -> RngIntElt
NumberOfPartitions(n) : RngIntElt -> RngIntElt
NumberOfPermutations(n, k) : RngIntElt, RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOne(m, U) : DivFunElt, GrpAb -> RngIntElt
NumberOfPlacesOfDegreeOne(A) : FldFunAb -> RngIntElt
NumberOfPlacesOfDegreeOneECFBound(C) : Crv -> RngIntElt
NumberOfPlacesOfDegreeOneECFBound(F) : FldFunG -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField(C) : Crv[FldFin] -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField(F, m) : FldFun, RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField(F) : FldFunG -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField(F, m) : FldFunG, RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantFieldBound(F, m) : FldFun, RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOverExactConstantField(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOverExactConstantField(F, m) : FldFun, RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOverExactConstantField(F, m) : FldFunG, RngIntElt -> RngIntElt
NumberOfPoints(D) : Inc -> RngInt
NumberOfPoints(P) : Plane -> RngIntElt
NumberOfPoints(P) : TorPol -> RngIntElt
NumberOfPointsAtInfinity(C) : CrvHyp -> RngIntElt
NumberOfPointsOnCubicSurface(f) : RngMPolElt -> RngIntElt, RngIntElt
NumberOfPointsOnSurface(E, e) : CrvEll, RngIntElt -> RngIntElt
NumberOfPositiveRoots(C) : AlgMatElt -> RngIntElt
NumberOfPositiveRoots(W) : GrpFPCox -> RngIntElt
NumberOfPositiveRoots(G) : GrpLie -> RngIntElt
NumberOfPositiveRoots(W) : GrpMat -> RngIntElt
NumberOfPositiveRoots(W) : GrpPermCox -> RngIntElt
NumberOfPositiveRoots(N) : MonStgElt -> .
NumberOfPositiveRoots(R) : RootStr -> RngIntElt
NumberOfPositiveRoots(R) : RootSys -> RngIntElt
NumberOfPrimePolynomials(q, d) : RngIntElt, RngIntElt -> RngIntElt
NumberOfPrimitiveGroups(d) : RngIntElt -> RngIntElt
NumberOfProjectives(B) : AlgBas -> RngIntElt
NumberOfPunctures(C): CrvPln -> RngIntElt
NumberOfQubits(H) : HilbSpc -> RngIntElt
NumberOfQuotientGradings(C) : RngCox -> RngIntElt
NumberOfQuotientGradings(X) : TorVar -> SeqEnum
NumberOfRationalPoints(A) : ModAbVar -> RngIntElt, RngIntElt
NumberOfRelations(P) : GrpFPTietzeProc -> RngIntElt
NumberOfRelations(G) : GrpRWS -> RngIntElt
NumberOfRelations(M) : MonRWS -> RngIntElt
NumberOfRelationsRequired(P) : NFSProc -> RngIntElt
NumberOfRepresentations(D, i): DB, RngIntElt -> RngIntElt
NumberOfRows(a) : AlgMatElt -> RngIntElt
NumberOfRows(u) : ModTupFldElt -> RngIntElt
NumberOfRows(A) : Mtrx -> RngIntElt
NumberOfRows(A) : MtrxSprs -> RngIntElt
NumberOfRows(t) : Tbl -> RngIntElt
NumberOfSkewRows(t) : Tbl -> RngIntElt
NumberOfSmallGroups(o) : RngIntElt -> RngIntElt
NumberOfSmoothDivisors(n, m, P) : RngIntElt, RngIntElt, SeqEnum[RngElt] -> RngElt
NumberOfStandardTableaux(P) : SeqEnum -> RngIntElt
NumberOfStandardTableauxOnWeight(n) : RngIntElt -> RngIntElt
NumberOfStrings(B) : GrpBrd -> RngIntElt
NumberOfStrongGenerators(G) : GrpMat -> RngIntElt
NumberOfStrongGenerators(G) : GrpPerm -> RngIntElt
NumberOfStrongGenerators(G, i) : GrpPerm, RngIntElt -> RngIntElt
NumberOfSubgroupsAbelianPGroup (A) : SeqEnum -> SeqEnum
NumberOfSymmetricForms(L) : Lat -> RngIntElt
NumberOfTableauxOnAlphabet(P, m) : SeqEnum,RngIntElt -> RngIntElt
NumberOfTransitiveGroups(d) : RngIntElt -> RngIntElt
NumberOfVariables(L) : LP -> RngIntElt
NumberOfVariants(N) : NfdDck -> RngIntElt
NumberOfVariants(q, v) : RngIntElt, RngIntElt -> RngIntElt
NumberOfVertices(P) : TorPol -> RngIntElt
NumberOfWords(C, w) : Code, RngIntElt -> RngIntElt
NumberOfWords(C, w) : Code, RngIntElt -> RngIntElt
Order(G) : Grph -> RngIntElt
Order(G) : GrphMult -> RngIntElt
PicardGroup(O) : RngQuad -> GrpAb, Map
PseudoDimension(C) : Code -> RngIntElt
QuarticNumberOfRealRoots(q) : RngUPolElt -> RngUPolElt
Rank(W) : GrpFPCox -> RngIntElt
Rank(W) : GrpMat -> RngIntElt
RationalsAsNumberField() : FldRat -> FldNum
RationalsAsNumberField() : FldRat -> FldNum
RealTamagawaNumber(M) : ModSym -> RngIntElt
ReplicationNumber(D) : Dsgn -> RngIntElt
RepresentationNumber(f, n) : QuadBinElt, RngIntElt -> RngIntElt
RootNumber(E) : CrvEll -> RngIntElt
RootNumber(E) : CrvEll -> RngIntElt
RootNumber(E) : CrvEll -> RngIntElt
RootNumber(E, p) : CrvEll, RngIntElt -> RngIntElt
RootNumber(E, P) : CrvEll, RngOrdIdl -> RngIntElt
SClassNumber(S) : SetEnum[PlcFunElt] -> RngIntElt
ShephardToddNumber(X, n) : MonStgElt, RngIntElt -> RngIntElt
Size(G) : Grph -> RngIntElt
Size(G) : GrphMult -> RngIntElt
TamagawaNumber(E, p) : CrvEll, RngIntElt -> RngIntElt
TamagawaNumber(A) : ModAbVar -> RngIntElt, RngIntElt, BoolElt
TamagawaNumber(A, p) : ModAbVar, RngIntElt -> RngIntElt, RngIntElt, BoolElt
TamagawaNumber(M, p) : ModSym, RngIntElt -> RngIntElt
TjurinaNumber(f) : RngMPolElt -> RngElt
TotalNumberOfCosets(P) : GrpFPCosetEnumProc -> RngIntElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012