[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: elements-arithmetic  ..  Eliminate


elements-arithmetic

   Arithmetic Operators (ALGEBRAIC FUNCTION FIELDS)

elements-boolean

   Predicates on Elements (ALGEBRAIC FUNCTION FIELDS)

elements-creation

   Creation of Elements (ALGEBRAIC FUNCTION FIELDS)

elements-equality-membership

   Equality and Membership (ALGEBRAIC FUNCTION FIELDS)

elements-norm-trace

   FldFunG_elements-norm-trace (Example H42E26)

elements-order

   Elements and Local Monomial Orders (LOCAL POLYNOMIAL RINGS)

elements-other_ops

   FldFunG_elements-other_ops (Example H42E29)

elements-parent-category

   Parent and Category (ALGEBRAIC FUNCTION FIELDS)

elements-sequence

   Sequence Conversions (ALGEBRAIC FUNCTION FIELDS)

ElementSequence

   ElementSequence(G) : GrpPC -> SeqEnum

ElementSet

   ElementSet(G, H) : GrpPerm, GrpPerm -> { GrpPermElt }

ElementToSequence

   ElementToSequence(f) : RngSerElt -> [ RngElt ], RngIntElt, RngIntElt
   Eltseq(f) : RngSerElt -> [ RngElt ], RngIntElt, RngIntElt
   Coefficients(f) : RngSerElt -> [ RngElt ], RngIntElt, RngIntElt
   Coefficients(e) : RngSerExtElt -> [ RngElt ]
   Coefficients(p) : RngUPolElt -> [ RngElt ]
   ElementToSequence(x) : AlgAssVOrdElt -> SeqEnum
   ElementToSequence(a) : AlgGenElt -> SeqEnum
   ElementToSequence(a) : AlgGrpElt -> SeqEnum
   ElementToSequence(a) : AlgLieElt -> SeqEnum
   ElementToSequence(a) : AlgMatElt -> [ RngElt ]
   ElementToSequence(x) : AlgQuatElt -> SeqEnum
   ElementToSequence(s) : BStgElt -> [ BStgElt ]
   ElementToSequence(a) : FldAlgElt -> [ FldAlgElt ]
   ElementToSequence(a) : FldFinElt -> [ FldFinElt ]
   ElementToSequence(a, E) : FldFinElt, FldFin -> [ FldFinElt ]
   ElementToSequence(a) : FldFunElt -> SeqEnum[FldElt]
   ElementToSequence(a) : FldNumElt -> [ FldNumElt ]
   ElementToSequence(a) : FldRatElt -> [FldRatElt]
   ElementToSequence(chi) : GrpDrchElt -> SeqEnum
   ElementToSequence(w) : GrpFPElt -> [ RngIntElt ]
   ElementToSequence(x) : GrpGPCElt -> [RngIntElt]
   ElementToSequence(g) : GrpMatElt -> [ RngElt ]
   ElementToSequence(x) : GrpPCElt -> [RngIntElt]
   ElementToSequence(g) : GrpPermElt -> [ Elt ]
   ElementToSequence(u) : GrpRWSElt -> [ RngIntElt ]
   ElementToSequence(u) : GrpRWSElt -> [ RngIntElt ]
   ElementToSequence(v) : LatElt -> [ RngElt ]
   ElementToSequence(a) : ModDedElt -> SeqEnum
   ElementToSequence(u) : ModRngElt -> [RngElt]
   ElementToSequence(u) : ModTupFldElt -> [RngElt]
   ElementToSequence(u) : ModTupRngElt -> [RngElt]
   ElementToSequence(w) : MonOrdElt -> SeqEnum
   ElementToSequence(u) : MonRWSElt -> [ RngIntElt ]
   ElementToSequence(s) : MonStgElt -> [ MonStgElt ]
   ElementToSequence(A) : Mtrx -> [ <RngIntElt, RngIntElt, RngElt> ]
   ElementToSequence(A) : Mtrx -> [ RngElt ]
   ElementToSequence(x) : NfdElt) -> SeqEnum
   ElementToSequence(l) : PlaneLn -> [ FldFinElt ]
   ElementToSequence(p) : PlanePt -> [ FldFinElt ]
   ElementToSequence(P): PtEll -> [ RngElt ]
   ElementToSequence(a) : RngGalElt -> [ RngIntResElt ]
   ElementToSequence(x) : RngPadElt -> [ RngElt ]
   ElementToSequence(u) : SgpFPElt -> [ SgpFPElt ]
   Eltseq(P) : PtHyp -> SeqEnum
   Eltseq(P) : PtHyp -> SeqEnum, RngIntElt
   Eltseq(f) : QuadBinElt -> SeqEnum[RngIntElt]
   Eltseq(f) : RngIntEltFact -> SeqEnum
   Eltseq(a) : RngOrdResElt -> []
   Eltseq(P) : SrfKumPt -> SeqEnum
   Representation(g) : GrpAbGenElt -> [RngIntElt]
   WordToSequence(u: parameters) : GrpBrdElt -> SeqEnum
   aInvariants(E) : CrvEll -> [ RngElt ]

ElementType

   ElementType(S) : Str -> Cat

Elias

   EliasAsymptoticBound(K, delta) : FldFin, FldPrElt -> FldPrElt
   EliasBound(K, n, d) : FldFin, RngIntElt, RngIntElt -> RngIntElt

EliasAsymptoticBound

   EliasAsymptoticBound(K, delta) : FldFin, FldPrElt -> FldPrElt

EliasBound

   EliasBound(K, n, d) : FldFin, RngIntElt, RngIntElt -> RngIntElt

Eliece

   McElieceEtAlAsymptoticBound(delta) : FldPrElt -> FldPrElt

Elieces

   McEliecesAttack(C, v, e) : Code, ModTupFldElt, RngIntElt -> ModTupFldElt

elim

   Elimination (k): elim (GRÖBNER BASES)
   Elimination List: elim (GRÖBNER BASES)

elim-k

   Elimination (k): elim (GRÖBNER BASES)

elim-list

   Elimination List: elim (GRÖBNER BASES)

Eliminate

   Eliminate(u, x, v) : GrpFPElt, GrpFPElt, GrpFPElt -> GrpFPElt
   Eliminate(~P: parameters) : GrpFPTietzeProc ->
   Eliminate(u, x, v) : SgpFPElt, SgpFPElt, SgpFPElt -> SgpFPElt
   Eliminate(U, x, v) : { GrpFPElt }, GrpFPElt, GrpFPElt -> { GrpFPElt }
   EliminateRedundancy(~P) : GrpPCpQuotientProc ->

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012