[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: elliptic-curve-fldfun  ..  elt


elliptic-curve-fldfun

   ELLIPTIC CURVES OVER FUNCTION FIELDS

elliptic-curve-qnf

   ELLIPTIC CURVES OVER Q AND NUMBER FIELDS

elliptic-curves

   Elliptic Curves (MODULAR SYMBOLS)

elliptic-modular

   Elliptic and Modular Functions (REAL AND COMPLEX FIELDS)

elliptic_logs

   Analytic Information (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)

EllipticCurve

   EllipticCurve(C) : Crv -> CrvEll, MapSch
   EllipticCurve(C, pl) : Crv, PlcCrvElt -> CrvEll, MapSch
   EllipticCurve(C, P) : Crv, Pt -> CrvEll, MapSch
   EllipticCurve(D, S): DB, MonStgElt -> CrvEll
   EllipticCurve(D, N, I, J): DB, RngIntElt, RngIntElt, RngIntElt -> CrvEll
   EllipticCurve(H) : HypGeomData -> CrvEll
   EllipticCurve(A) : ModAbVar -> CrvEll
   EllipticCurve(f) : ModFrmElt -> CrvEll
   EllipticCurve(M) : ModSym -> CrvEll
   EllipticCurve(f) : RngUPolElt -> CrvEll
   EllipticCurve(C) : Sch -> CrvEll, MapSch
   EllipticCurve([a, b]) : [ RngElt ] -> CrvEll
   AlgAff_EllipticCurve (Example H108E4)

EllipticCurveDatabase

   CremonaDatabase(: parameters) : -> DB
   EllipticCurveDatabase(: parameters) : -> DB

EllipticCurveFromjInvariant

   EllipticCurveWithjInvariant(j) : RngElt -> CrvEll
   EllipticCurveFromjInvariant(j) : RngElt -> CrvEll

EllipticCurveFromPeriods

   EllipticCurveFromPeriods(om: parameters) : [ FldComElt ] -> CrvEll

EllipticCurves

   EllipticCurves(D) : DB -> [ CrvEll ]
   EllipticCurves(D, S) : DB, MonStgElt -> [ CrvEll ]
   EllipticCurves(D, N) : DB, RngIntElt -> [ CrvEll ]
   EllipticCurves(D, N, I) : DB, RngIntElt, RngIntElt -> [ CrvEll ]
   ModFrm_EllipticCurves (Example H132E21)

EllipticCurveSearch

   EllipticCurveWithGoodReductionSearch(S, Effort) : Set, RngIntElt -> SeqEnum
   EllipticCurveSearch(N, Effort) : RngOrdIdl, RngIntElt -> SeqEnum
   EllipticCurveSearch(N, Effort) : [], RngIntElt -> SeqEnum

EllipticCurveWithGoodReductionSearch

   EllipticCurveWithGoodReductionSearch(S, Effort) : Set, RngIntElt -> SeqEnum
   EllipticCurveSearch(N, Effort) : RngOrdIdl, RngIntElt -> SeqEnum

EllipticCurveWithjInvariant

   EllipticCurveWithjInvariant(j) : RngElt -> CrvEll
   EllipticCurveFromjInvariant(j) : RngElt -> CrvEll

EllipticExponential

   EllipticExponential(E, z) : CrvEll, FldComElt -> [ FldComElt ]
   EllipticExponential(E, S) : CrvEll, FldRatElt -> [ FldComElt ]

EllipticInvariants

   EllipticInvariants(G) : GrpPSL2 -> SeqEnum
   EllipticInvariants(A, n) : ModAbVar, RngIntElt -> FldReElt, FldReElt, FldReElt, CrvEll

EllipticLogarithm

   EllipticLogarithm(E, S): CrvEll, [ FldComElt ] -> FldComElt
   EllipticLogarithm(P: parameters): PtEll[FldRat] -> FldComElt

EllipticPeriods

   EllipticPeriods(A, n) : ModAbVar, RngIntElt -> FldReElt, FldReElt

EllipticPoints

   EllipticPoints(G) : GrpPSL2, SpcHyp -> [SpcHypElt]

Elt

   EltTup(x) : AlgKacElt -> Tup
   Mij2EltRootTable(seq) : SeqEnum -> SeqEnum[SeqEnum[RngIntElt]]
   TransversalElt(W, H, x) : GrpPermCox, GrpPermCox, GrpPermElt -> GrpPermElt
   TransversalElt(W, H, x, J) : GrpPermCox, GrpPermCox, GrpPermElt, GrpPermCox -> GrpPermElt
   TransversalElt(W, x, H) : GrpPermCox, GrpPermElt, GrpPermCox -> GrpPermElt

elt

   Arithmetic (GENERAL LOCAL FIELDS)
   Arithmetic for Ideals (ASSOCIATIVE ALGEBRAS)
   Arithmetic of Elements (ASSOCIATIVE ALGEBRAS)
   Arithmetic of Elements (QUATERNION ALGEBRAS)
   Arithmetic Operators (ALGEBRAIC FUNCTION FIELDS)
   Conjugacy (FINITE SOLUBLE GROUPS)
   Creation of Elements (ASSOCIATIVE ALGEBRAS)
   Creation of Elements (QUATERNION ALGEBRAS)
   Creation of Ideals (ASSOCIATIVE ALGEBRAS)
   Elements of Modular Abelian Varieties (MODULAR ABELIAN VARIETIES)
   Equality and Membership (ALGEBRAIC FUNCTION FIELDS)
   Functions on Elements (ALGEBRAIC FUNCTION FIELDS)
   Indexing (LIE ALGEBRAS)
   Operations on Elements (ALGEBRAIC FUNCTION FIELDS)
   Operations on Elements (COXETER GROUPS)
   Operations on Elements (GROUP ALGEBRAS)
   Other (ALGEBRAIC FUNCTION FIELDS)
   Other Operations on Elements (ALGEBRAIC FUNCTION FIELDS)
   Other Operations on Elements (GENERAL LOCAL FIELDS)
   Other Operations with Elements (ASSOCIATIVE ALGEBRAS)
   Other Point and Line Functions (FINITE PLANES)
   Predicates on Elements (ALGEBRAIC FUNCTION FIELDS)
   Predicates on Elements (ASSOCIATIVE ALGEBRAS)
   Predicates on Elements (GENERAL LOCAL FIELDS)
   Roots of Elements (p-ADIC RINGS AND THEIR EXTENSIONS)
   C ! [a1, ..., an] : Code, [ RngElt ] -> ModTupRngElt
   C ! [a1, ..., an] : Code, [ RngElt ] -> ModTupRngElt
   C ! [a1, ..., an] : Code, [ RngElt ] -> ModTupRngElt
   C ! [x, y] : CrvHyp, [RngElt] -> PtHyp
   F ! a : FldAlg, RngElt -> FldAlgElt
   F ! [a0, a1, ..., am - 1] : FldAlg, [RngElt] -> FldAlgElt
   F ! a : FldFun, . -> FldFunElt
   FF ! a : FldFunOrd, Any -> FldFunOrdElt
   F ! [a, b] : FldFunRat, RngUPolElt, RngUPolElt -> FldFunRatElt
   F ! a : FldNum, RngElt -> FldNumElt
   F ! [a0, a1, ..., am - 1] : FldNum, [RngElt] -> FldNumElt
   Q ! [a, b] : FldRat, RngIntElt, RngIntElt -> FldRatElt
   J ! [a, b] : JacHyp, [ RngUPolElt ] -> JacHypPt
   L ! Q : Lat, [ RngElt ] -> LatElt
   Q ! [a, b, c] : QuadBin, RngIntElt, RngIntElt, RngIntElt -> QuadBinElt
   O ! a : RngFunOrd, . -> RngFunOrdElt
   O ! a : RngOrd, RngElt -> RngOrdElt
   O ! [a0, a1, ..., am - 1] : RngOrd, [ RngElt ] -> RngOrdElt
   P ! s : RngUPol, RngElt -> RngPolElt
   J ! [S, T] : [[PtHyp]] -> JacHypPt
   P - Q : PtHyp, PtHyp -> JacHypPt
   Identity(G) : GrpLie -> GrpLieElt
   elt< R | a > : AlgFr, RngElt -> AlgFrElt
   elt< A | r1, r2, ..., rn > : AlgGen, RngElt, RngElt, ..., RngElt -> AlgGenElt
   elt< A | r, g > : AlgGrp, RngElt, GrpElt -> AlgGrpElt
   elt<L | < [ ( <) p1, y1 ( >), ... ], λ, μ( >) > : AlgKac, Tup -> AlgKacElt
   elt<L | r1, r2, ..., rn> : AlgLie, RngElt, RngElt, ..., RngElt -> AlgLieElt
   elt< R | L > : AlgMat, RngElt -> AlgMatElt
   elt<R | L> : AlgMatLie, [ RngElt ] -> AlgMatLieElt
   elt<C | x, y> : FldCom, FldReElt, FldReElt -> FldComElt
   elt<F | a> : FldFin, RngElt -> FldFinElt
   elt<F | a0, ..., an - 1> : FldFin, [FldFinElt] -> FldFinElt
   elt< F | a0, a1, ..., an - 1> : FldFun, RngElt , ..., RngElt -> FldFunElt
   elt<R | m, n> : FldRe, FldReElt, RngIntElt -> FldReElt
   elt< G | L > : Grp, List(Elt) -> GrpElt
   elt<G | L> : GrpLie, List -> GrpMatElt
   elt< G | L > : GrpMat, List(RngElt) -> GrpMatElt
   elt< G | L > : GrpPerm, List(Elt) -> GrpPermElt
   elt< M | a1, ..., an > : ModRng, List -> ModRngElt
   elt<V | L> : ModTupFld, List -> ModTupFldElt
   elt< M | a1, ..., an > : ModTupRng, List -> ModTupRngElt
   elt< R | a1, ..., ak :parameters> : AlgChtr, FldCycElt, ..., FldCycElt -> AlgChtrElt
   elt< O | a1, a2, ..., an> : RngFunOrd, RngElt , ..., RngElt -> RngFunOrdElt
   elt< Z | 0xa1a2...ar > : RngInt, RngIntElt -> RngIntElt
   elt< Z | a1a2...ar > : RngInt, RngIntElt -> RngIntElt
   elt< R | v, [ a1, ..., ad], p > : RngIntElt, SeqEnum, RngIntElt -> RngSerElt
   elt< R | k > : RngIntRes, RngIntElt -> RngIntResElt
   elt< R | a > : RngMPol, RngElt -> RngMPolElt
   elt<L | u> : RngPad, RngElt -> RngPadElt
   elt<L | u, r> : RngPad, RngElt, RngIntElt -> RngPadElt
   elt<L | v, u, r> : RngPad, RngIntElt, RngElt, RngIntElt -> RngPadElt
   elt<R | m> : RngPowLaz, Map -> RngPowLazElt
   elt< P | a0, ..., ad > : RngUPol, RngElt, ..., RngElt -> RngUPolElt
   elt< C | a1, a2, ..., ak > : SetCart, Elt, ..., Elt -> Tup

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012