[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: generators .. Genus
Addition of Extra Generators (GROUPS OF STRAIGHT-LINE PROGRAMS)
Cohomology Generators (BASIC ALGEBRAS)
Generators and Presentations (MATRIX ALGEBRAS)
Generators of Cones (CONVEX POLYTOPES AND POLYHEDRA)
Generators and Presentations (MATRIX ALGEBRAS)
GeneratorsOverBaseRing(K) : FldNum -> FldNumElt
GeneratorsSequence(K): FldNum -> [FldNumElt]
GeneratorsSequence(G) : GrpPerm -> [ GrpPermElt ]
GeneratorsSequenceOverBaseRing(K) : FldNum -> [FldNumElt]
GeneratorStructure(P) : GrpPCpQuotientProc ->
Generic(M) : ModMPol -> ModMPol
Ambient(M) : ModMPol -> ModMPol
Curve(G) : SchGrpEll -> CrvEll
Generic(I) : AlgFr -> AlgFr
Generic(R) : AlgMat -> AlgMat
Generic(M) : AlgMatLie -> AlgMatLie
Generic(C) : Code -> Code
Generic(C) : Code -> Code
Generic(C) : Code -> Code
Generic(G) : Grp -> Grp
Generic(G) : GrpMat -> GrpMat
Generic(G) : GrpPerm -> GrpPerm
Generic(V) : ModFld -> ModFld
Generic(M) : ModRng -> ModRng
Generic(I) : RngMPol -> RngMPol
Generic(I) : RngMPolLoc -> RngMPolLoc
GenericAbelianGroup(U: parameters) : . -> GrpAbGen
GenericGroup(X) : [] -> GrpFp, Map
GenericModel(n) : RngIntElt -> ModelG1
GenericPoint(X) : Sch -> Pt
Ngens(A) : GrpAbGen -> RngIntElt
Accessing Generators (ABELIAN GROUPS)
Construction of a Generic Abelian Group (ABELIAN GROUPS)
Generic Creation Function (ALMOST SIMPLE GROUPS)
Generic Element Functions and Predicates (REAL AND COMPLEX FIELDS)
Generic Groups (CLASS FIELD THEORY)
Generic Ring Functions (INTRODUCTION TO RINGS [BASIC RINGS])
Parent and Category (ALGEBRAICALLY CLOSED FIELDS)
Parent and Category (FINITE FIELDS)
Parent and Category (GALOIS RINGS)
Parent and Category (INTEGER RESIDUE CLASS RINGS)
Parent and Category (NEARFIELDS)
Parent and Category (RATIONAL FIELD)
Parent and Category (RING OF INTEGERS)
Properties (p-ADIC RINGS AND THEIR EXTENSIONS)
Related Structures (FINITELY PRESENTED ALGEBRAS)
Related Structures (MULTIVARIATE POLYNOMIAL RINGS)
Related Structures (RATIONAL FIELD)
Related Structures (SYMMETRIC FUNCTIONS)
Related Structures (UNIVARIATE POLYNOMIAL RINGS)
Specification of a Generic Abelian Group (ABELIAN GROUPS)
pAdicGalois_generic (Example H93E1)
Construction of a Generic Abelian Group (ABELIAN GROUPS)
Ngens(A) : GrpAbGen -> RngIntElt
Accessing Generators (ABELIAN GROUPS)
Generic Groups (CLASS FIELD THEORY)
CrvG1_generic-model (Example H124E1)
Specification of a Generic Abelian Group (ABELIAN GROUPS)
GenericAbelianGroup(U: parameters) : . -> GrpAbGen
CrvEll_GenericCurve (Example H120E11)
GenericGroup(X) : [] -> GrpFp, Map
GenericModel(n) : RngIntElt -> ModelG1
GenericPoint(X) : Sch -> Pt
CrvEll_GenericPoint (Example H120E24)
GrpAb_GenericSubgroupCreation (Example H69E9)
Definition of Subgroups by Generators (FINITE SOLUBLE GROUPS)
IsGenuineWeightedDynkinDiagram( L, wd ) : AlgLie, SeqEnum -> BoolElt, SeqEnum
ArithmeticGenus(C) : Crv -> RngIntElt
ArithmeticGenus(X) : Sch -> RngIntElt
ArithmeticGenus(S) : Srfc -> RngIntElt
ArithmeticGenusOfDesingularization(S) : Srfc -> RngIntElt
Dimension(A) : AnHcJac -> RngIntElt
DoubleGenusOneModel(model) : ModelG1 -> ModelG1
FanoBaseGenus(X) : GRFano -> RngIntElt
FanoGenus(X) : GRFano -> RngIntElt
Genus(C) : Crv -> RngIntElt
Genus(C) : Crv -> RngIntElt
Genus(C) : CrvHyp -> RngIntElt
Genus(X) : CrvMod -> RngIntElt
Genus(m, U) : DivFunElt, GrpAb -> RngIntElt
Genus(A) : FldFunAb -> RngIntElt
Genus(F) : FldFunG -> RngIntElt
Genus(X) : GRK3 -> RngIntElt
Genus(G) : GrpPSL2 -> RngIntElt
Genus(L) : Lat -> SymGen
GenusAndCanonicalMap(C) : Crv -> RngIntElt, BoolElt, MapSch
GenusContribution(g) : GrphRes -> RngIntElt
GenusField(A): FldAb -> FldAb
GenusOneModel(C) : Crv -> ModelG1
GenusOneModel(mat) : Mtrx -> ModelG1
GenusOneModel(n, E) : RngIntElt, CrvEll -> ModelG1, Crv, MapSch, MapSch
GenusOneModel(n, seq) : RngIntElt, [ RngElt ] -> ModelG1
GenusOneModel(f) : RngMPolElt -> ModelG1
GenusOneModel(mats) : [ AlgMatElt ] -> ModelG1
GenusRepresentatives(L) : Lat -> [ Lat ]
GeometricGenus(S) : Srfc -> RngIntElt
GeometricGenusOfDesingularization(S) : Srfc -> RngIntElt
HyperellipticCurveOfGenus(g, f, h) : RngIntElt, RngUPolElt, RngUPolElt -> CrvHyp
IsGenus(G) : SymGen -> BoolElt
IsGenusOneModel(f) : RngMPolElt -> BoolElt, ModelG1
IsHyperellipticCurveOfGenus(g, [f, h]) : RngIntElt, [RngUPolElt] -> BoolElt, CrvHyp
IsSpinorGenus(G) : SymGen -> BoolElt
RandomCurveByGenus(g, K) : RngIntElt, Fld -> Crv
RandomGenusOneModel(n) : RngIntElt -> ModelG1
SpinorGenus(L) : Lat -> SymGen
TwoGenus(X) : GRK3 -> RngIntElt
WeilDescentGenus(E,k) : FldFun, FldFin -> RngIntElt
WeilDescentGenus(E, k, c) : FldFun, FldFin, FldFinElt -> RngIntElt
Lat_Genus (Example H30E20)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012