[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: hom-spaces .. Homology-Functors_to_Categories_of_Lattices_and_Vector_Spaces2
Scheme_hom-spaces (Example H112E31)
HomAdjoints(m,n,S) : RngIntElt, RngIntElt, Srfc -> SeqEnum
IsHomeomorphic(G: parameters) : GrphMultUnd -> BoolElt
IsHomeomorphic(G : parameters) : GrphUnd -> BoolElt
HomGenerators(G, H) : GrpAb, GrpAb -> GrpAb, Map
HomGenerators(G, U) : GrpPC, GrpPC -> [<AlgMatElt, RngIntElt>]
Transition Matrices from Homogeneous Basis (SYMMETRIC FUNCTIONS)
ElementaryToHomogeneousMatrix(n): RngIntElt -> AlgMatElt
HasHomogeneousBasis(A): AlgSym -> BoolElt
HomogeneousComponent(f, d) : RngMPolElt, RngIntElt -> RngMPolElt
HomogeneousComponents(f) : RngMPolElt -> [ RngMPolElt ]
HomogeneousModuleTest(P, S, F) : [ RngMPol ], [ RngMPol ], RngMPol -> BoolElt, [ RngMPol ]
HomogeneousModuleTest(P, S, F) : [ RngMPol ], [ RngMPol ], RngMPol -> BoolElt, [ RngMPol ]
HomogeneousModuleTest(P, S, L) : [ RngMPol ], [ RngMPol ], [ RngMPol ] -> [ BoolElt ], [ [ RngMPol ] ]
HomogeneousModuleTest(P, S, L) : [ RngMPol ], [ RngMPol ], [ RngMPol ] -> [ BoolElt ], [ [ RngMPol ] ]
HomogeneousModuleTestBasis(P, S, L) : [ RngMPol ], [ RngMPol ], [ RngMPol ] -> [ BoolElt ], [ [ RngMPol ] ]
HomogeneousToElementaryMatrix(n): RngIntElt -> AlgMatElt
HomogeneousToMonomialMatrix(n): RngIntElt -> AlgMatElt
HomogeneousToPowerSumMatrix(n): RngIntElt -> AlgMatElt
HomogeneousToSchurMatrix(n): RngIntElt -> AlgMatElt
IsGraded(M) : ModMPol -> BoolElt
IsGraded(f) : ModMPolHom -> BoolElt
IsHomogeneous(s): AlgSymElt -> BoolElt
IsHomogeneous(f) : ModMPolElt -> BoolElt
IsHomogeneous(I) : RngMPol -> BoolElt
IsHomogeneous(f) : RngMPolElt -> BoolElt
IsHomogeneous(X,f) : Sch,RngMPolElt -> BoolElt
MonomialToHomogeneousMatrix(n): RngIntElt -> AlgMatElt
PowerSumToHomogeneousMatrix(n): RngIntElt -> AlgMatElt
SchurToHomogeneousMatrix(n): RngIntElt -> AlgMatElt
SymmetricFunctionAlgebraHomogeneous(R) : Rng -> AlgSym
HomogeneousComponent(f, d) : RngMPolElt, RngIntElt -> RngMPolElt
HomogeneousComponents(f) : RngMPolElt -> [ RngMPolElt ]
HomogeneousModuleTest(P, S, F) : [ RngMPol ], [ RngMPol ], RngMPol -> BoolElt, [ RngMPol ]
HomogeneousModuleTest(P, S, F) : [ RngMPol ], [ RngMPol ], RngMPol -> BoolElt, [ RngMPol ]
HomogeneousModuleTest(P, S, L) : [ RngMPol ], [ RngMPol ], [ RngMPol ] -> [ BoolElt ], [ [ RngMPol ] ]
HomogeneousModuleTest(P, S, L) : [ RngMPol ], [ RngMPol ], [ RngMPol ] -> [ BoolElt ], [ [ RngMPol ] ]
Ideal_HomogeneousModuleTest1 (Example H106E19)
RngInvar_HomogeneousModuleTest2 (Example H110E16)
HomogeneousModuleTestBasis(P, S, L) : [ RngMPol ], [ RngMPol ], [ RngMPol ] -> [ BoolElt ], [ [ RngMPol ] ]
HomogeneousToElementaryMatrix(n): RngIntElt -> AlgMatElt
HomogeneousToMonomialMatrix(n): RngIntElt -> AlgMatElt
HomogeneousToPowerSumMatrix(n): RngIntElt -> AlgMatElt
HomogeneousToSchurMatrix(n): RngIntElt -> AlgMatElt
Homogenization(I, b) : RngMPol, RngIntElt, BoolElt -> RngMPol, Map
Homogenization of Ideals (POLYNOMIAL RING IDEAL OPERATIONS)
HomologicalDimension(M) : ModMPol -> RngInt
HomologicalDimension(R) : RngInvar -> RngInt
Homological Algebra Toolkit (BASIC ALGEBRAS)
HomologicalDimension(M) : ModMPol -> RngInt
HomologicalDimension(R) : RngInvar -> RngInt
DimensionOfHomology(C, n) : ModCpx, RngIntElt -> RngIntElt
DimensionsOfHomology(C) : ModCpx -> SeqEnum
Homology(A) : ModAbVar -> ModAbVarHomol
Homology(C) : ModCpx -> SeqEnum
Homology(C, n) : ModCpx, RngIntElt -> SeqEnum
Homology(X) : SmpCpx -> SeqEnum, SeqEnum
HomologyBasis(A) : AnHcJac -> SeqEnum, SeqEnum, Mtrx
HomologyGenerators(X) : SmpCpx ->
HomologyGroup(X, q) : SmpCpx, RngIntElt -> ModRng
InducedMapOnHomology(f, n) : MapChn, RngIntElt -> ModTupFldElt
IntegralHomology(A) : ModAbVar -> Lat
LongExactSequenceOnHomology(f, g) : MapChn, MapChn -> ModCpx
ModularSymbolToIntegralHomology(A, x) : ModAbVar, SeqEnum -> ModTupFldElt
ModularSymbolToRationalHomology(A, x) : ModAbVar, ModSymElt -> ModTupFldElt
RationalHomology(A) : ModAbVar -> ModTupFld
RealHomology(A) : ModAbVar -> ModTupFld
SimpleHomologyDimensions(M) : ModAlg -> SeqEnum
Homology (MODULAR ABELIAN VARIETIES)
Homology Computation (SIMPLICIAL HOMOLOGY)
SmpCpx_homology (Example H140E13)
Homology Computation (SIMPLICIAL HOMOLOGY)
ModAbVar_Homology-Creation (Example H136E44)
ModAbVar_Homology-Functors_to_Categories_of_Lattices_and_Vector_Spaces (Example H136E47)
ModAbVar_Homology-Functors_to_Categories_of_Lattices_and_Vector_Spaces2 (Example H136E48)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012