[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: Identification  ..  Identity


Identification

   IdentificationNumber(D, i): DB, RngIntElt -> RngIntElt
   PrimitiveGroupIdentification(G) : GrpPerm -> RngIntElt, RngIntElt
   TransitiveGroupIdentification(G) : GrpPerm -> RngIntElt, RngIntElt
   TwoTransitiveGroupIdentification(G) : GrpPerm -> Tup

identification

   Identification (PERMUTATION GROUPS)
   Identification as a Permutation Group (PERMUTATION GROUPS)
   Identification as an Abstract Group (PERMUTATION GROUPS)
   Small Group Identification (FINITELY PRESENTED GROUPS)

identification-abstract

   Identification as an Abstract Group (PERMUTATION GROUPS)

identification-permutation

   Identification as a Permutation Group (PERMUTATION GROUPS)

IdentificationNumber

   IdentificationNumber(D, i): DB, RngIntElt -> RngIntElt

identifier

   Identifier Classes (MAGMA SEMANTICS)
   Identifiers (STATEMENTS AND EXPRESSIONS)
   Uninitialized Identifiers (MAGMA SEMANTICS)

identifier-class

   Identifier Classes (MAGMA SEMANTICS)

Identifiers

   ShowIdentifiers() : ->
   State_Identifiers (Example H1E1)

Identify

   CanIdentifyGroup(o) : RngIntElt -> BoolElt
   Identify(H, t) : HypGeomData, FldRatElt -> Any
   IdentifyAlmostSimpleGroup(G) : GrpPerm -> Map, GrpPerm
   IdentifyGroup(G): Grp -> Tup
   IdentifyGroup(G): GrpFP -> Tup
   IdentifyOneCocycle(CM, s) : ModCoho, UserProgram -> ModTupRngElt
   IdentifyTwoCocycle(CM, s) : ModCoho, UserProgram -> ModTupRngElt
   IdentifyZeroCocycle(CM, s) : ModCoho, UserProgram -> ModTupRngElt

identify

   Identification of Hypergeometric Data as Other Objects (HYPERGEOMETRIC MOTIVES)
   Small Group Identification (DATABASES OF GROUPS)

IdentifyAlmostSimpleGroup

   IdentifyAlmostSimpleGroup(G) : GrpPerm -> Map, GrpPerm

IdentifyGroup

   IdentifyGroup(G): Grp -> Tup
   IdentifyGroup(G): GrpFP -> Tup
   GrpFP_1_IdentifyGroup (Example H70E75)

IdentifyOneCocycle

   IdentifyOneCocycle(CM, s) : ModCoho, UserProgram -> ModTupRngElt

IdentifySimple

   GrpASim_IdentifySimple (Example H65E6)

IdentifyTwoCocycle

   IdentifyTwoCocycle(CM, s) : ModCoho, UserProgram -> ModTupRngElt

IdentifyZeroCocycle

   IdentifyZeroCocycle(CM, s) : ModCoho, UserProgram -> ModTupRngElt

Identity

   Id(J) : JacHyp -> JacHypPt
   Identity(J) : JacHyp -> JacHypPt
   J ! 0 : JacHyp, RngIntElt -> JacHypPt
   Id(R) : AlgChtr -> AlgChtrElt
   Identity(S) : DiffCrv -> DiffCrvElt
   Identity(D) : DiffFun -> DiffFunElt
   Identity(D) : DivCrv -> DivCrvElt
   Identity(G) : DivFun -> DivFunElt
   Identity(G) : Grp -> GrpElt
   Identity(G) : Grp -> GrpPermElt
   Identity(A) : GrpAb -> GrpAbElt
   Identity(G) : GrpAtc -> GrpAtcElt
   Identity(A) : GrpAutCrv -> GrpAutCrvElt
   Identity(A) : GrpAuto -> GrpAutoElt
   Identity(G) : GrpBB -> GrpBBElt
   Identity(B) : GrpBrd -> GrpBrdElt
   Identity(G) : GrpFP -> GrpFPElt
   Identity(G) : GrpGPC -> GrpGPCElt
   Identity(G) : GrpLie -> GrpLieElt
   Identity(G) : GrpMat -> GrpMatElt
   Identity(G) : GrpPC -> GrpPCElt
   Identity(G) : GrpPSL2 -> GrpPSL2Elt
   Identity(G) : GrpRWS -> GrpRWSElt
   Identity(G) : GrpSLP -> GrpSLPElt
   Identity(M) : MonRWS -> MonRWSElt
   Identity(N) : Nfd -> NfdElt
   Identity(Q) : QuadBin -> QuadBinElt
   IdentityAutomorphism(L) : AlgLie -> Map
   IdentityAutomorphism(G) : GrpLie -> GrpLieAutoElt
   IdentityAutomorphism(A) : Sch -> AutSch
   IdentityAutomorphism(X) : Sch -> MapAutSch
   IdentityFieldMorphism(F) : Fld -> Map
   IdentityHomomorphism(G) : Grp -> Map
   IdentityHomomorphism(G) : GrpPC -> Map
   IdentityIsogeny(E) : CrvEll -> Map
   IdentityMap(E) : CrvEll -> Map
   IdentityMap(A) : ModAbVar -> MapModAbVar
   IdentityMap(R) : RootDtm -> Map
   IdentityMap(X) : Sch -> MapSch
   IdentityMap(L) : TorLat -> TorLatMap
   IdentityMap(X) : TorVar -> TorMap
   IdentitySparseMatrix(R, n) : Rng, RngElt -> MtrxSprs
   IsId(g) : GrpElt -> BoolElt
   IsId(g) : GrpPermElt -> BoolElt
   IsId(w) : GrpRWSElt -> BoolElt
   IsId(w) : GrpRWSElt -> BoolElt
   IsId(w) : MonRWSElt -> BoolElt
   IsId(P) : PtEll -> BoolElt
   IsIdentity(u) : GrpAbElt -> BoolElt
   IsIdentity(g) : GrpGPCElt -> BoolElt
   IsIdentity(g) : GrpMatElt -> BoolElt
   IsIdentity(g) : GrpPCElt -> BoolElt
   IsIdentity(f) : Map -> BoolElt
   IsIdentity(u: parameters) : GrpBrdElt -> BoolElt
   IsIdentity(f) : QuadBinElt -> BoolElt
   IsZero(P) : JacHypPt -> BoolElt
   MinimalIdentity(A, S) : AlgBas, SeqEnum[AlgBasElt] -> AlgBasElt
   One(R) : RngDiff -> RngDiffElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012