[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: Resume .. RiemannRochSpace
ResumeEnumeration(~P: parameters) : GrpFPCosetEnumProc ->
ResumeEnumeration(~P: parameters) : GrpFPCosetEnumProc ->
Retrieve(x) : CopElt -> Elt
Retrieve (COPRODUCTS)
<Return>
IsReverseLatticeWord(w) : MonOrdElt -> BoolElt
Reverse(L) : List -> List
Reverse(~S) : SeqEnum ->
ReverseColumns(A) : Mtrx -> Mtrx
ReverseColumns(A) : MtrxSprs -> MtrxSprs
ReverseRows(A) : Mtrx -> Mtrx
ReverseRows(A) : MtrxSprs -> MtrxSprs
Reversion(f) : RngSerElt -> RngSerElt
ReverseColumns(A) : Mtrx -> Mtrx
ReverseColumns(A) : MtrxSprs -> MtrxSprs
ReverseRows(A) : Mtrx -> Mtrx
ReverseRows(A) : MtrxSprs -> MtrxSprs
Reverse(f) : RngSerElt -> RngSerElt
Reversion(f) : RngSerElt -> RngSerElt
Composition and Reversion (POWER, LAURENT AND PUISEUX SERIES)
RevertClass(~P) : GrpPCpQuotientProc ->
RevertClass(~P) : GrpPCpQuotientProc ->
FldForms_revisedminus (Example H29E9)
Rewind(F) : File ->
Rewrite(G, ~H : parameters) : GrpFP, GrpFP ->
Rewrite(G, H : parameters) : GrpFP, GrpFP -> GrpFP, Map
GrpFP_1_Rewrite (Example H70E48)
GROUPS DEFINED BY REWRITE SYSTEMS
MONOIDS GIVEN BY REWRITE SYSTEMS
GROUPS DEFINED BY REWRITE SYSTEMS
MONOIDS GIVEN BY REWRITE SYSTEMS
GrpFP_1_Rewrite2 (Example H70E49)
Rewriting (FINITELY PRESENTED GROUPS)
ReynoldsOperator(f, G) : RngMPolElt, GrpMat -> RngMPolElt
ReynoldsOperator(f, G) : RngMPolElt, GrpMat -> RngMPolElt
MinimalRGenerators(C) : TorCon -> SeqEnum
RGenerators(C) : TorCon -> SeqEnum
DickmanRho(u) : FldReElt -> FldReElt
PollardRho(n) : RngIntElt -> RngIntEltFact, [ RngIntElt ]
RHS(r) : Rel -> GrpAbElt
r[2] : GrpAbRel, RngIntElt -> GrpAbElt
r[2] : RelElt, RngIntElt -> GrpFPElt
RHS(r) : Rel -> SgpFPElt
IsLittlewoodRichardson(t) : Tbl -> BoolElt
LittlewoodRichardsonTensor(p, q) : ModTupRngElt, ModTupRngElt -> SeqEnum, SeqEnum[RngIntElt]
RichelotIsogenousSurface(J, kernel) : JacHyp, RngUPolElt[RngUPolRes] -> .
RichelotIsogenousSurfaces(J) : JacHyp -> List, List
Richelot Isogenies (HYPERELLIPTIC CURVES)
CrvHyp_richelot_isogeny (Example H125E14)
RichelotIsogenousSurface(J, kernel) : JacHyp, RngUPolElt[RngUPolRes] -> .
RichelotIsogenousSurfaces(J) : JacHyp -> List, List
lideal<S | X> : AlgQuatOrd, [AlgQuatElt] -> AlgQuatOrdIdl
RightIdeal(S, X) : AlgQuatOrd, [AlgQuatElt] -> AlgQuatOrdIdl
rideal<S | X> : AlgQuatOrd, [AlgQuatElt] -> AlgQuatOrd
ideal<S | X> : AlgQuatOrd, [AlgQuatElt] -> AlgQuatOrdIdl
LeftIdeal(S, X) : AlgQuatOrd, [AlgQuatElt] -> AlgQuatOrdIdl
ideal<A | L> : AlgFr, List -> AlgFr
lideal<O | M> : AlgAssVOrd, PMat -> AlgAssVOrdIdl
lideal<O | E> : AlgAssVOrd, [AlgAssVOrdElt] -> AlgAssVOrdIdl
rideal< cat : A | L> : Cat, AlgGrp, List -> AlgGrp, Map
rideal< A | L > : AlgGen, List -> AlgGen, Map
rideal<R | L> : AlgMat, List -> AlgMat
rideal<G | L1, ..., Lr> : SgpFP, SgpFPElt, ..., SgpFPElt -> SgpFPIdl
RiemannRochBasis(X, I) : Sch, RngMPol -> SeqEnum, RngMPolElt, ShfCoh
DivisorToSheaf(X, I) : Sch, RngMPol -> ShfCoh
RiemannRochBasis(D) : DivSchElt -> SeqEnum
RiemannRochBasis(D) : DivTorElt -> [RngElt]
RiemannRochCoordinates(f,D) : Any, DivSchElt -> BoolElt, SeqEnum
RiemannRochDimension(D) : DivTorElt -> RngIntElt
RiemannRochPolytope(D) : DivTorElt -> TorPol
RiemannRochSpace(D) : DivCrvElt -> ModFld,Map
RiemannRochSpace(D) : DivFunElt -> ModFld, Map
RiemannZeta() : -> LSer
Riemann--Roch Spaces (ALGEBRAIC CURVES)
Riemann--Roch Spaces (ALGEBRAIC CURVES)
RiemannRochBasis(X, I) : Sch, RngMPol -> SeqEnum, RngMPolElt, ShfCoh
DivisorToSheaf(X, I) : Sch, RngMPol -> ShfCoh
RiemannRochBasis(D) : DivSchElt -> SeqEnum
RiemannRochBasis(D) : DivTorElt -> [RngElt]
RiemannRochCoordinates(f,D) : Any, DivSchElt -> BoolElt, SeqEnum
RiemannRochDimension(D) : DivTorElt -> RngIntElt
RiemannRochPolytope(D) : DivTorElt -> TorPol
RiemannRochSpace(D) : DivSchElt -> ModTupFld, Map
RiemannRochBasis(D) : DivSchElt -> SeqEnum
RiemannRochSpace(D) : DivCrvElt -> ModFld,Map
RiemannRochSpace(D) : DivFunElt -> ModFld, Map
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012