
HANDBOOK OF MAGMA FUNCTIONS

Volume 5

Finite Groups

John Cannon Wieb Bosma

Claus Fieker Allan Steel

Editors

Version 2.19

Sydney

December 17, 2012

ii

MAGMA
C O M P U T E R • A L G E B R A

HANDBOOK OF MAGMA FUNCTIONS

Editors:

John Cannon Wieb Bosma Claus Fieker Allan Steel

Handbook Contributors:

Geoff Bailey, Wieb Bosma, Gavin Brown, Nils Bruin, John

Cannon, Jon Carlson, Scott Contini, Bruce Cox, Brendan

Creutz, Steve Donnelly, Tim Dokchitser, Willem de Graaf,

Andreas-Stephan Elsenhans, Claus Fieker, Damien Fisher,

Volker Gebhardt, Sergei Haller, Michael Harrison, Florian

Hess, Derek Holt, David Howden, Al Kasprzyk, Markus

Kirschmer, David Kohel, Axel Kohnert, Dimitri Leemans,

Paulette Lieby, Graham Matthews, Scott Murray, Eamonn

O’Brien, Dan Roozemond, Ben Smith, Bernd Souvignier,

William Stein, Allan Steel, Damien Stehlé, Nicole Suther-

land, Don Taylor, Bill Unger, Alexa van der Waall, Paul

van Wamelen, Helena Verrill, John Voight, Mark Watkins,

Greg White

Production Editors:

Wieb Bosma Claus Fieker Allan Steel Nicole Sutherland

HTML Production:

Claus Fieker Allan Steel

VOLUME 5: OVERVIEW

IX FINITE GROUPS 1455
57 GROUPS 1457
58 PERMUTATION GROUPS 1513
59 MATRIX GROUPS OVER GENERAL RINGS 1635
60 MATRIX GROUPS OVER FINITE FIELDS 1707
61 MATRIX GROUPS OVER INFINITE FIELDS 1757
62 MATRIX GROUPS OVER Q AND Z 1777
63 FINITE SOLUBLE GROUPS 1787
64 BLACK-BOX GROUPS 1867
65 ALMOST SIMPLE GROUPS 1873
66 DATABASES OF GROUPS 1933
67 AUTOMORPHISM GROUPS 1991
68 COHOMOLOGY AND EXTENSIONS 2009

vi VOLUME 5: CONTENTS

VOLUME 5: CONTENTS

IX FINITE GROUPS 1455

57 GROUPS . 1457

57.1 Introduction 1461
57.1.1 The Categories of Finite Groups 1461

57.2 Construction of Elements 1462
57.2.1 Construction of an Element 1462
57.2.2 Coercion 1462
57.2.3 Homomorphisms 1462
57.2.4 Arithmetic with Elements 1464

57.3 Construction of a General Group 1466
57.3.1 The General Group Constructors 1466
57.3.2 Construction of Subgroups 1470
57.3.3 Construction of Quotient Groups 1471

57.4 Standard Groups and Extensions 1473
57.4.1 Construction of a Standard Group 1473
57.4.2 Construction of Extensions 1475

57.5 Transfer Functions Between Group Categories 1476

57.6 Basic Operations 1479
57.6.1 Accessing Group Information 1480

57.7 Operations on the Set of Elements 1481
57.7.1 Order and Index Functions 1481
57.7.2 Membership and Equality 1482
57.7.3 Set Operations 1483
57.7.4 Random Elements 1484
57.7.5 Action on a Coset Space 1487

57.8 Standard Subgroup Constructions 1488
57.8.1 Abstract Group Predicates 1489

57.9 Characteristic Subgroups and Normal Structure 1491
57.9.1 Characteristic Subgroups and Subgroup Series 1491
57.9.2 The Abstract Structure of a Group 1493

57.10 Conjugacy Classes of Elements 1494

57.11 Conjugacy Classes of Subgroups 1498
57.11.1 Conjugacy Classes of Subgroups 1498
57.11.2 The Poset of Subgroup Classes 1502

57.12 Cohomology 1507

57.13 Characters and Representations 1508
57.13.1 Character Theory 1508
57.13.2 Representation Theory 1509

57.14 Databases of Groups 1511

57.15 Bibliography 1511

VOLUME 5: CONTENTS vii

58 PERMUTATION GROUPS 1513

58.1 Introduction 1519
58.1.1 Terminology 1519
58.1.2 The Category of Permutation Groups 1519
58.1.3 The Construction of a Permutation Group 1519
58.2 Creation of a Permutation Group 1520
58.2.1 Construction of the Symmetric Group 1520
58.2.2 Construction of a Permutation 1521
58.2.3 Construction of a General Permutation Group 1523
58.3 Elementary Properties of a Group 1524
58.3.1 Accessing Group Information 1524
58.3.2 Group Order 1526
58.3.3 Abstract Properties of a Group 1526
58.4 Homomorphisms 1527
58.5 Building Permutation Groups 1530
58.5.1 Some Standard Permutation Groups 1530
58.5.2 Direct Products and Wreath Products 1532
58.6 Permutations 1534
58.6.1 Coercion 1534
58.6.2 Arithmetic with Permutations 1534
58.6.3 Properties of Permutations 1535
58.6.4 Predicates for Permutations 1536
58.6.5 Set Operations 1537
58.7 Conjugacy 1539
58.8 Subgroups 1546
58.8.1 Construction of a Subgroup 1546
58.8.2 Membership and Equality 1548
58.8.3 Elementary Properties of a Subgroup 1549
58.8.4 Standard Subgroups 1550
58.8.5 Maximal Subgroups 1553
58.8.6 Conjugacy Classes of Subgroups 1555
58.8.7 Classes of Subgroups Satisfying a Condition 1560
58.9 Quotient Groups 1561
58.9.1 Construction of Quotient Groups 1561
58.9.2 Abelian, Nilpotent and Soluble Quotients 1562
58.10 Permutation Group Actions 1564
58.10.1 G-Sets 1564
58.10.2 Creating a G-Set 1564
58.10.3 Images, Orbits and Stabilizers 1567
58.10.4 Action on a G-Space 1572
58.10.5 Action on Orbits 1573
58.10.6 Action on a G-invariant Partition 1575
58.10.7 Action on a Coset Space 1580
58.10.8 Reduced Permutation Actions 1581
58.10.9 The Jellyfish Algorithm 1581
58.11 Normal and Subnormal Subgroups 1583
58.11.1 Characteristic Subgroups and Normal Series 1583
58.11.2 Maximal and Minimal Normal Subgroups 1586
58.11.3 Lattice of Normal Subgroups 1586
58.11.4 Composition and Chief Series 1587
58.11.5 The Socle 1590
58.11.6 The Soluble Radical and its Quotient 1593
58.11.7 Complements and Supplements 1595
58.11.8 Abelian Normal Subgroups 1597
58.12 Cosets and Transversals 1598
58.12.1 Cosets 1598

viii VOLUME 5: CONTENTS

58.12.2 Transversals 1600
58.13 Presentations 1600
58.13.1 Generators and Relations 1601
58.13.2 Permutations as Words 1601
58.14 Automorphism Groups 1602
58.15 Cohomology 1604
58.16 Representation Theory 1606
58.17 Identification 1608
58.17.1 Identification as an Abstract Group 1608
58.17.2 Identification as a Permutation Group 1608
58.18 Base and Strong Generating Set 1613
58.18.1 Construction of a Base and Strong Generating Set 1613
58.18.2 Defining Values for Attributes 1616
58.18.3 Accessing the Base and Strong Generating Set 1617
58.18.4 Working with a Base and Strong Generating Set 1618
58.18.5 Modifying a Base and Strong Generating Set 1620
58.19 Permutation Representations of Linear Groups 1620
58.20 Permutation Group Databases 1626
58.21 Ordered Partition Stacks 1627
58.21.1 Construction of Ordered Partition Stacks 1627
58.21.2 Properties of Ordered Partition Stacks 1627
58.21.3 Operations on Ordered Partition Stacks 1628
58.22 Bibliography 1630

59 MATRIX GROUPS OVER GENERAL RINGS 1635

59.1 Introduction 1639
59.1.1 Introduction to Matrix Groups 1639
59.1.2 The Support 1640
59.1.3 The Category of Matrix Groups 1640
59.1.4 The Construction of a Matrix Group 1640
59.2 Creation of a Matrix Group 1640
59.2.1 Construction of the General Linear Group 1640
59.2.2 Construction of a Matrix Group Element 1641
59.2.3 Construction of a General Matrix Group 1643
59.2.4 Changing Rings 1644
59.2.5 Coercion between Matrix Structures 1645
59.2.6 Accessing Associated Structures 1645
59.3 Homomorphisms 1646
59.3.1 Construction of Extensions 1648
59.4 Operations on Matrices 1649
59.4.1 Arithmetic with Matrices 1650
59.4.2 Predicates for Matrices 1652
59.4.3 Matrix Invariants 1652
59.5 Global Properties 1655
59.5.1 Group Order 1656
59.5.2 Membership and Equality 1657
59.5.3 Set Operations 1658
59.6 Abstract Group Predicates 1660
59.7 Conjugacy 1662
59.8 Subgroups 1666
59.8.1 Construction of Subgroups 1666
59.8.2 Elementary Properties of Subgroups 1667
59.8.3 Standard Subgroups 1667
59.8.4 Low Index Subgroups 1669
59.8.5 Conjugacy Classes of Subgroups 1670

VOLUME 5: CONTENTS ix

59.9 Quotient Groups 1672
59.9.1 Construction of Quotient Groups 1673
59.9.2 Abelian, Nilpotent and Soluble Quotients 1674

59.10 Matrix Group Actions 1675
59.10.1 Orbits and Stabilizers 1676
59.10.2 Orbit and Stabilizer Functions for Large Groups 1678
59.10.3 Action on Orbits 1684
59.10.4 Action on a Coset Space 1686
59.10.5 Action on the Natural G-Module 1687

59.11 Normal and Subnormal Subgroups 1688
59.11.1 Characteristic Subgroups and Subgroup Series 1688
59.11.2 The Soluble Radical and its Quotient 1690
59.11.3 Composition and Chief Factors 1691

59.12 Coset Tables and Transversals 1693

59.13 Presentations 1693
59.13.1 Presentations 1693
59.13.2 Matrices as Words 1694

59.14 Automorphism Groups 1694

59.15 Representation Theory 1697

59.16 Base and Strong Generating Set 1700
59.16.1 Introduction 1700
59.16.2 Controlling Selection of a Base 1700
59.16.3 Construction of a Base and Strong Generating Set 1701
59.16.4 Defining Values for Attributes 1703
59.16.5 Accessing the Base and Strong Generating Set 1703

59.17 Soluble Matrix Groups 1704
59.17.1 Conversion to a PC-Group 1704
59.17.2 Soluble Group Functions 1704
59.17.3 p-group Functions 1705
59.17.4 Abelian Group Functions 1705

59.18 Bibliography 1705

60 MATRIX GROUPS OVER FINITE FIELDS 1707

60.1 Introduction 1709

60.2 Finding Elements with Prescribed Properties 1709

60.3 Monte Carlo Algorithms for Subgroups 1710

60.4 Aschbacher Reduction 1713
60.4.1 Introduction 1713
60.4.2 Primitivity 1714
60.4.3 Semilinearity 1716
60.4.4 Tensor Products 1718
60.4.5 Tensor-induced Groups 1720
60.4.6 Normalisers of Extraspecial r-groups and Symplectic 2-groups 1722
60.4.7 Writing Representations over Subfields 1724
60.4.8 Decompositions with Respect to a Normal Subgroup 1727

60.5 Constructive Recognition for Simple Groups 1731

60.6 Composition Trees for Matrix Groups 1735

60.7 The LMG functions 1744

60.8 Unipotent Matrix Groups 1752

60.9 Bibliography 1754

x VOLUME 5: CONTENTS

61 MATRIX GROUPS OVER INFINITE FIELDS 1757

61.1 Overview 1759
61.2 Construction of Congruence Homomorphisms 1760
61.3 Testing Finiteness 1761
61.4 Deciding Virtual Properties of Linear Groups 1763
61.5 Other Properties of Linear Groups 1766
61.6 Other Functions for Nilpotent Matrix Groups 1768
61.7 Examples 1768
61.8 Bibliography 1775

62 MATRIX GROUPS OVER Q AND Z 1777

62.1 Overview 1779
62.2 Invariant Forms 1779
62.3 Endomorphisms 1780
62.4 New Groups From Others 1781
62.5 Perfect Forms and Normalizers 1781
62.6 Conjugacy 1782
62.7 Conjugacy Tests for Matrices 1783
62.8 Examples 1783
62.9 Bibliography 1785

63 FINITE SOLUBLE GROUPS 1787

63.1 Introduction 1791
63.1.1 Power-Conjugate Presentations 1791
63.2 Creation of a Group 1792
63.2.1 Construction Functions 1792
63.2.2 Definition by Presentation 1793
63.2.3 Possibly Inconsistent Presentations 1796
63.3 Basic Group Properties 1797
63.3.1 Infrastructure 1797
63.3.2 Numerical Invariants 1798
63.3.3 Predicates 1798
63.4 Homomorphisms 1799
63.5 New Groups from Existing 1802
63.6 Elements 1806
63.6.1 Definition of Elements 1806
63.6.2 Arithmetic Operations on Elements 1808
63.6.3 Properties of Elements 1809
63.6.4 Predicates for Elements 1809
63.6.5 Set Operations 1810
63.7 Conjugacy 1813
63.8 Subgroups 1815
63.8.1 Definition of Subgroups by Generators 1815
63.8.2 Membership and Coercion 1816
63.8.3 Inclusion and Equality 1818
63.8.4 Standard Subgroup Constructions 1819
63.8.5 Properties of Subgroups 1820
63.8.6 Predicates for Subgroups 1821
63.8.7 Hall π-Subgroups and Sylow Systems 1823
63.8.8 Conjugacy Classes of Subgroups 1824
63.9 Quotient Groups 1828
63.9.1 Construction of Quotient Groups 1828
63.9.2 Abelian and p-Quotients 1829

VOLUME 5: CONTENTS xi

63.10 Normal Subgroups and Subgroup Series 1830
63.10.1 Characteristic Subgroups 1830
63.10.2 Subgroup Series 1831
63.10.3 Series for p-groups 1833
63.10.4 Normal Subgroups and Complements 1833
63.11 Cosets 1835
63.11.1 Coset Tables and Transversals 1835
63.11.2 Action on a Coset Space 1835
63.12 Automorphism Group 1836
63.12.1 General Soluble Group 1836
63.12.2 p-group 1840
63.12.3 Isomorphism and Standard Presentations 1842
63.13 Generating p-groups 1845
63.14 Representation Theory 1849
63.15 Central Extensions 1852
63.16 Transfer Between Group Categories 1855
63.16.1 Transfer to GrpPC 1855
63.16.2 Transfer from GrpPC 1856
63.17 More About Presentations 1858
63.17.1 Conditioned Presentations 1858
63.17.2 Special Presentations 1859
63.17.3 CompactPresentation 1862
63.18 Optimizing Magma Code 1863
63.18.1 PowerGroup 1863
63.19 Bibliography 1864

64 BLACK-BOX GROUPS 1867

64.1 Introduction 1869
64.2 Construction of an SLP-Group and its Elements 1869
64.2.1 Structure Constructors 1869
64.2.2 Construction of an Element 1869
64.3 Arithmetic with Elements 1869
64.3.1 Accessing the Defining Generators 1870
64.4 Operations on Elements 1870
64.4.1 Equality and Comparison 1870
64.4.2 Attributes of Elements 1870
64.5 Set-Theoretic Operations 1871
64.5.1 Membership and Equality 1871
64.5.2 Set Operations 1872
64.5.3 Coercions Between Related Groups 1872

65 ALMOST SIMPLE GROUPS 1873

65.1 Introduction 1877
65.1.1 Overview 1877
65.2 Creating Finite Groups of Lie Type 1878
65.2.1 Generic Creation Function 1878
65.2.2 The Orders of the Chevalley Groups 1879
65.2.3 Classical Groups 1880
65.2.4 Exceptional Groups 1887
65.3 Group Recognition 1889
65.3.1 Constructive Recognition of Alternating Groups 1890
65.3.2 Determining the Type of a Finite Group of Lie Type 1893
65.3.3 Classical Forms 1896
65.3.4 Recognizing Classical Groups in their Natural Representation 1900

xii VOLUME 5: CONTENTS

65.3.5 Constructive Recognition of Linear Groups 1902
65.3.6 Constructive Recognition of Symplectic Groups 1906
65.3.7 Constructive Recognition of Unitary Groups 1906
65.3.8 Constructive Recognition of SL(d, q) in Low Degree 1907
65.3.9 Constructive Recognition of Suzuki Groups 1908
65.3.10 Constructive Recognition of Small Ree Groups 1914
65.3.11 Constructive Recognition of Large Ree Groups 1917
65.4 Properties of Finite Groups Of Lie Type 1919
65.4.1 Maximal Subgroups of the Classical Groups 1919
65.4.2 Maximal Subgroups of the Exceptional Groups 1920
65.4.3 Sylow Subgroups of the Classical Groups 1921
65.4.4 Sylow Subgroups of Exceptional Groups 1922
65.4.5 Conjugacy of Subgroups of the Classical Groups 1925
65.4.6 Conjugacy of Elements of the Exceptional Groups 1926
65.4.7 Irreducible Subgroups of the General Linear Group 1926
65.5 Atlas Data for the Sporadic Groups 1927
65.6 Bibliography 1930

66 DATABASES OF GROUPS 1933

66.1 Introduction 1937
66.2 Database of Small Groups 1938
66.2.1 Basic Small Group Functions 1939
66.2.2 Processes 1943
66.2.3 Small Group Identification 1945
66.2.4 Accessing Internal Data 1946
66.3 The p-groups of Order Dividing p7 1948
66.4 Metacyclic p-groups 1949
66.5 Database of Perfect Groups 1951
66.5.1 Specifying an Entry of the Database 1952
66.5.2 Creating the Database 1952
66.5.3 Accessing the Database 1952
66.5.4 Finding Legal Keys 1954
66.6 Database of Almost-Simple Groups 1956
66.6.1 The Record Fields 1956
66.6.2 Creating the Database 1957
66.6.3 Accessing the Database 1958
66.7 Database of Transitive Groups 1960
66.7.1 Accessing the Databases 1960
66.7.2 Processes 1963
66.7.3 Transitive Group Identification 1964
66.8 Database of Primitive Groups 1965
66.8.1 Accessing the Databases 1965
66.8.2 Processes 1967
66.8.3 Primitive Group Identification 1969
66.9 Database of Rational Maximal Finite Matrix Groups 1969
66.10 Database of Integral Maximal Finite Matrix Groups 1971
66.11 Database of Finite Quaternionic Matrix Groups 1973
66.12 Database of Finite Symplectic Matrix Groups 1974
66.13 Database of Irreducible Matrix Groups 1976
66.13.1 Accessing the Database 1976
66.14 Database of Quasisimple Matrix Groups 1977
66.15 Database of Soluble Irreducible Groups 1978
66.15.1 Basic Functions 1978
66.15.2 Searching with Predicates 1980
66.15.3 Associated Functions 1981

VOLUME 5: CONTENTS xiii

66.15.4 Processes 1981
66.16 Database of ATLAS Groups 1983
66.16.1 Accessing the Database 1984
66.16.2 Accessing the ATLAS Groups 1984
66.16.3 Representations of the ATLAS Groups 1985
66.17 Fundamental Groups of 3-Manifolds 1986
66.17.1 Basic Functions 1986
66.17.2 Accessing the Data 1987
66.18 Bibliography 1988

67 AUTOMORPHISM GROUPS 1991

67.1 Introduction 1993
67.2 Creation of Automorphism Groups 1994
67.3 Access Functions 1996
67.4 Order Functions 1997
67.5 Representations of an Automorphism Group 1999
67.6 Automorphisms 2001
67.7 Stored Attributes of an Automorphism Group 2004
67.8 Holomorphs 2007
67.9 Bibliography 2008

68 COHOMOLOGY AND EXTENSIONS 2009

68.1 Introduction 2011
68.2 Creation of a Cohomology Module 2012
68.3 Accessing Properties of the Cohomology Module 2013
68.4 Calculating Cohomology 2014
68.5 Cocycles 2016
68.6 The Restriction to a Subgroup 2019
68.7 Other Operations on Cohomology Modules 2020
68.8 Constructing Extensions 2021
68.9 Constructing Distinct Extensions 2024
68.10 Finite Group Cohomology 2028
68.10.1 Creation of Gamma-groups 2029
68.10.2 Accessing Information 2030
68.10.3 One Cocycles 2031
68.10.4 Group Cohomology 2032
68.11 Bibliography 2035

PART IX
FINITE GROUPS

57 GROUPS 1457

58 PERMUTATION GROUPS 1513

59 MATRIX GROUPS OVER GENERAL RINGS 1635

60 MATRIX GROUPS OVER FINITE FIELDS 1707

61 MATRIX GROUPS OVER INFINITE FIELDS 1757

62 MATRIX GROUPS OVER Q AND Z 1777

63 FINITE SOLUBLE GROUPS 1787

64 BLACK-BOX GROUPS 1867

65 ALMOST SIMPLE GROUPS 1873

66 DATABASES OF GROUPS 1933

67 AUTOMORPHISM GROUPS 1991

68 COHOMOLOGY AND EXTENSIONS 2009

57 GROUPS
57.1 Introduction 1461

57.1.1 The Categories of Finite Groups . . 1461

57.2 Construction of Elements . . . 1462

57.2.1 Construction of an Element 1462

elt< > 1462
! 1462
Identity(G) 1462
Id(G) 1462

57.2.2 Coercion 1462

! 1462

57.2.3 Homomorphisms 1462

hom< > 1462
hom< > 1463
IdentityHomomorphism(G) 1463

57.2.4 Arithmetic with Elements 1464

* 1464
^ 1464
/ 1464
^ 1464
(g, h) 1464
(g1, ..., gr) 1464
eq 1464
ne 1465
IsId(g) 1465
IsIdentity(g) 1465
Order(g) 1465

57.3 Construction of a General Group1466

57.3.1 The General Group Constructors . 1466

PermutationGroup< > 1466
PermutationGroup< > 1466
MatrixGroup< > 1466
Group< > 1467
PolycyclicGroup< > 1467
AbelianGroup< > 1467

57.3.2 Construction of Subgroups 1470

sub< > 1470
ncl< > 1470

57.3.3 Construction of Quotient Groups . 1471

quo< > 1471
/ 1472

57.4 Standard Groups and Extensions1473

57.4.1 Construction of a Standard Group . 1473

AbelianGroup(C, Q) 1473
AbelianGroup(Q) 1473
AlternatingGroup(C, n) 1473
AlternatingGroup(n) 1473
Alt(C, n) 1473
Alt(n) 1473

CyclicGroup(C, n) 1473
CyclicGroup(n) 1473
DihedralGroup(C, n) 1473
DihedralGroup(n) 1473
DicyclicGroup(n) 1473
DicyclicGroup(A, a) 1473
SymmetricGroup(C, n) 1474
SymmetricGroup(n) 1474
Sym(GrpFin, n) 1474
Sym(n) 1474
ExtraSpecialGroup(C, p, n : -) 1474
ExtraSpecialGroup(p, n : -) 1474

57.4.2 Construction of Extensions 1475

DirectProduct(G, H) 1475
DirectProduct(Q) 1475
SemidirectProduct(K, H, f: -) 1475

57.5 Transfer Functions Between
Group Categories 1476

pQuotient(F, p, c: -) 1476
CosetAction(G, H) 1477
CosetImage(G, H) 1477
CosetKernel(G, H) 1477
GPCGroup(G) 1477
PCGroup(G) 1477
FPGroup(G: -) 1478

57.6 Basic Operations 1479

57.6.1 Accessing Group Information . . . 1480

. 1480
Generators(G) 1480
NumberOfGenerators(G) 1480
Ngens(G) 1480
Generic(G) 1480
Parent(g) 1480
Orbit(G, M, x) 1481
OrbitClosure(G, M, S) 1481

57.7 Operations on the Set of Ele-
ments 1481

57.7.1 Order and Index Functions 1481

Order(G) 1481
1481
FactoredOrder(G) 1481
Index(G, H) 1482
FactoredIndex(G, H) 1482

57.7.2 Membership and Equality 1482

in 1482
notin 1482
subset 1482
notsubset 1482
subset 1483
notsubset 1483
eq 1483

1458 FINITE GROUPS Part X

ne 1483

57.7.3 Set Operations 1483

NumberingMap(G) 1483
Representative(G) 1483
Rep(G) 1483

57.7.4 Random Elements 1484

Random(G: -) 1484
RandomProcess(G) 1485
RandomProcessWithWords(G) 1485
RandomProcessWithValues(G, Q) 1485
RandomProcessWithWordsAnd

Values(G, Q) 1485
Random(P) 1486
InitialiseProspector(G:-) 1486
InitialiseProspector(G:-) 1486
Prospector(G, f:-) 1486

57.7.5 Action on a Coset Space 1487

CosetTable(G, H) 1487
#CosetTable(G, f) 1487
Transversal(G, H) 1487
RightTransversal(G, H) 1487
CosetAction(G, H) 1488
CosetImage(G, H) 1488
CosetKernel(G, H) 1488

57.8 Standard Subgroup
Constructions 1488

^ 1488
Conjugate(H, g) 1488
meet 1488
CommutatorSubgroup(G, H, K) 1488
CommutatorSubgroup(H, K) 1488
Centralizer(G, g) 1488
Centraliser(G, g) 1488
Centralizer(G, H) 1489
Centraliser(G, H) 1489
Core(G, H) 1489
^ 1489
NormalClosure(G, H) 1489
Normalizer(G, H) 1489
Normaliser(G, H) 1489
pCore(G, p) 1489
SylowSubgroup(G, p) 1489
Sylow(G, p) 1489

57.8.1 Abstract Group Predicates 1489

IsAbelian(G) 1489
IsCyclic(G) 1489
IsElementaryAbelian(G) 1489
IsCentral(G, H) 1489
IsConjugate(G, g, h) 1490
IsConjugate(G, H, K) 1490
IsExtraSpecial(G) 1490
IsMaximal(G, H) 1490
IsNilpotent(G) 1490
IsNormal(G, H) 1490
IsPerfect(G) 1490

IsSelfNormalizing(G, H) 1490
IsSelfNormalising(G, H) 1490
IsSimple(G) 1490
IsSoluble(G) 1490
IsSolvable(G) 1490
IsSpecial(G) 1491
IsSubnormal(G, H) 1491
IsTrivial(G) 1491

57.9 Characteristic Subgroups and
Normal Structure 1491

57.9.1 Characteristic Subgroups and
Subgroup Series 1491

Centre(G) 1491
Center(G) 1491
Hypercentre(G) 1491
Hypercenter(G) 1491
DerivedLength(G) 1491
DerivedSeries(G) 1491
DerivedSubgroup(G) 1491
DerivedGroup(G) 1491
FittingSubgroup(G) 1491
FrattiniSubgroup(G) 1491
JenningsSeries(G) 1492
LowerCentralSeries(G) 1492
NilpotencyClass(G) 1492
^ 1492
NormalClosure(G, H) 1492
NormalLattice(G) 1492
NormalSubgroups(G) 1492
pCentralSeries(G, p) 1492
Radical(G) 1492
SolubleResidual(G) 1492
SolvableResidual(G) 1492
SubnormalSeries(G, H) 1492
UpperCentralSeries(G) 1492

57.9.2 The Abstract Structure of a Group 1493

CompositionFactors(G) 1493
AbelianInvariants(G) 1494
Invariants(G) 1494
AbelianBasis(G) 1494

57.10 Conjugacy Classes of Elements1494

Class(H, x) 1494
Conjugates(H, x) 1494
ClassMap(G: -) 1494
ConjugacyClasses(G: -) 1495
Classes(G: -) 1495
ClassRepresentative(G, x) 1496
IsConjugate(G, g, h) 1496
IsConjugate(G, H, K) 1496
Exponent(G) 1496
NumberOfClasses(G) 1496
Nclasses(G) 1496
PowerMap(G) 1496

57.11 Conjugacy Classes of
Subgroups 1498

57.11.1 Conjugacy Classes of Subgroups . 1498

Ch. 57 GROUPS 1459

SubgroupClasses(G: -) 1498
Subgroups(G: -) 1498
ElementaryAbelianSubgroups(G: -) 1499
AbelianSubgroups(G: -) 1499
CyclicSubgroups(G: -) 1499
NilpotentSubgroups(G: -) 1499
SolubleSubgroups(G: -) 1500
SolvableSubgroups(G: -) 1500
NonsolvableSubgroups(G: -) 1500
PerfectSubgroups(G: -) 1500
SimpleSubgroups(G: -) 1500
RegularSubgroups(G: -) 1500
SetVerbose("SubgroupLattice", i) 1500
Class(G, H) 1500
Conjugates(G, H) 1500

57.11.2 The Poset of Subgroup Classes . 1502

SubgroupLattice(G) 1502
1504
! 1504
! 1504
Bottom(L) 1504
Top(L) 1504
Random(L) 1504
IntegerRing() ! e 1506
eq 1506
ge 1506
ge 1506
le 1506
subset 1506
lt 1506
Group(e) 1506
Centraliser(e, f) 1506
Centralizer(e, f) 1506

Normaliser(e, f) 1506
Normalizer(e, f) 1506
Length(e) 1507
Order(e) 1507
MaximalSubgroups(e) 1507
MinimalOvergroups(e) 1507
NumberOfInclusions(e, f) 1507

57.12 Cohomology 1507

pMultiplicator(G, p) 1507
pCover(G, F, p) 1507
CohomologicalDimension(G, M, i) 1507
ExtensionProcess(G, M, F) 1507
Extension(P, Q) 1508
#NextExtension(P) 1508
SplitExtension(G, M, F) 1508

57.13 Characters and
Representations 1508

57.13.1 Character Theory 1508

CharacterDegrees(G) 1508
CharacterTable(G) 1508
PermutationCharacter(G) 1508
PermutationCharacter(G, H) 1509

57.13.2 Representation Theory 1509

GModule(G, S) 1509
GModule(G, A, B) 1509
PermutationModule(G, H, R) 1509
PermutationModule(G, R) 1509

57.14 Databases of Groups 1511

57.15 Bibliography 1511

Chapter 57

GROUPS

57.1 Introduction

Groups arise in several different categories in Magma. In the case of the category of
permutation groups and the category of soluble groups defined by a power-conjugate pre-
sentation, all groups in the category are finite. However, the finitely-presented group
category, the polycyclic group category, the abelian group category and the matrix group
category contain both finite and infinite groups. In the case of the abelian group category
and the matrix group category, a large number of functions are available for finite groups
only. In the near future, these functions will be extended to finite finitely-presented groups
of moderate order.

In this chapter, we discuss the functions that are provided for groups collectively, noting
especially those functions that are available only for finite groups. Descriptions of functions
that depend upon the particular category may be found in the chapter devoted to that
category.

57.1.1 The Categories of Finite Groups
At present Magma contains five main categories of finite groups:

(i) Permutation groups: category GrpPerm;

(ii) Finite matrix groups: category GrpMat;

(iii) Finite solvable groups given by a power-conjugate presentation: category GrpPC;

(iv) Finite abelian groups: category GrpAb;

(v) Finite polycyclic groups: category GrpGPC.

Note that the categories GrpMat, GrpAb and GrpGPC contain both finite and infinite groups;
most of the operations described in this chapter apply only to finite groups belonging to
these categories. In this chapter we will use the category name GrpFin to collectively
refer to categories GrpPerm and GrpPC and the subcategories of GrpMat, GrpAb and GrpGPC
consisting of finite groups. The category name Grp will be used when the operation does
not depend upon the finiteness of the group.

1462 FINITE GROUPS Part X

57.2 Construction of Elements

57.2.1 Construction of an Element
Throughout this subsection we shall assume that the carrier set for the group G is a subset
of the set S. Thus, if G is a permutation group on the set X, its carrier set will be a subset
of Sym(X).

elt< G | L >

Given a group G whose elements are a subset of the set S, and a list L of objects
a1, a2, . . . , an defining an element of S, construct this element g of S. Then, the
element g will be tested for membership of G, and if g is not an element of G, the
function will fail. If g does lie in G, g will be returned with G as its parent.

G ! Q

Given a group G whose elements are a subset of the set S, and a sequence Q =
[a1, a2, . . . , an] defining an element of S, construct this element g of S. Then, the
element g will be tested for membership of G, and if g is not an element of G, the
function will fail. If g does lie in G, g will be returned with G as its parent.

Identity(G)

Id(G)

Construct the identity element in the group G.

57.2.2 Coercion

G ! g

Given a group G and an element g of H, where G and H are subgroups of some
common over-group and g is contained in G, embed g in G. Thus this operator
changes the parent of g into G. The coercion may fail for groups in the category
GrpFP.

57.2.3 Homomorphisms

hom< G -> H | L >

Return the group homomorphism φ : G→ H defined by extending the map of the
generators of G, as given by the list L on the right side of the constructor. Suppose
that the generators of G are g1, . . . , gn, and that φ(gi) = hi for each i. Then L must
be one of the following:
(a) a list of the n 2-tuples < gi, hi > (order not important);
(b)a list of the n arrow-pairs gi -> hi (order not important);
(c) h1, . . . , hn (order is important).

For its computations, Magma often assumes that the mapping so defined is a ho-
momorphism without attempting to verify this.

Ch. 57 GROUPS 1463

For certain categories of groups, e.g. GrpGPC, the homomorphism constructor
provides some additional functionality. See the chapter on the appropriate category
for further information.

hom< G -> H | x :-> e(x) >

Return the group homomorphism φ : G→ H defined by the rule φ(x) = e(x), where
x is a general element of G and e(x) is an expression in x. The symbol x may be
any identifier name, and has local scope. For its computations, Magma assumes
the expression defines a homomorphism, but does not verify this.

IdentityHomomorphism(G)

Return the identity homomorphism φ : G→ G : x 7→ x.

Example H57E1

Construction of an isomorphism from the cyclic group of order 15 to the abelian group isomorphic
to Z/15Z, by giving the image of the generator:

> C15 := CyclicGroup(15);

> C15;

Permutation group C15 acting on a set of cardinality 15

Order = 15 = 3 * 5

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)

> A15 := AbelianGroup([15]);

> A15;

Abelian Group isomorphic to Z/15

Defined on 1 generator

Relations:

15*A15.1 = 0

> iso11 := hom< C15 -> A15 | C15.1 -> 11*A15.1 >;

> A15 eq iso11(C15);

true

> forall{ <c, d> : c, d in C15 | iso11(c * d) eq iso11(c) * iso11(d) };

true

Example H57E2

An endomorphism of the same cyclic group, defined using an expression. The image is cyclic of
order 5.

> C15 := CyclicGroup(15);

> h := hom< C15 -> C15 | g :-> g^3 >;

> forall{ <c, d> : c, d in C15 | h(c * d) eq h(c) * h(d) };

true

> im := h(C15);

> im;

Permutation group im acting on a set of cardinality 15

Order = 5

1464 FINITE GROUPS Part X

(1, 4, 7, 10, 13)(2, 5, 8, 11, 14)(3, 6, 9, 12, 15)

> IsCyclic(im);

true

57.2.4 Arithmetic with Elements

g * h

Product of element g and element h, where g and h belong to the same generic
group U . If g and h both belong to the same proper subgroup G of U , then the
result will be returned as an element of G; if g and h belong to subgroups H and K
of a subgroup G of U , then the product is returned as an element of G. Otherwise,
the product is returned as an element of U . The product in abelian groups is called
the sum and is written g + h instead.

g ^ n

The n-th power of the group element g, where n is a positive, negative or zero
integer. In abelian groups, this is written as a scalar product n * g instead.

g / h

Product of the group element g by the inverse of the group element h, i.e., the
element gh−1. Here g and h must belong to the same generic group U . The rules
for determining the parent group of g/h are the same as for gh. In abelian groups,
this is written additively as g - h.

g ^ h

Conjugate of the group element g by the group element h, i.e., the element h−1gh.
Here g and h must belong to the same generic group U . The rules for determining
the parent group of gh are the same as for gh. In abelian groups, this operation
does not exist.

(g, h)

Commutator of the group elements g and h, i.e., the element g−1h−1gh. Here g and
h must belong to the same generic group U . The rules for determining the parent
group of (g, h) are the same as those for gh.

(g1, ..., gr)

Given r elements g1, . . . , gr belonging to a common group, return their commutator.
Commutators are left-normed, so they are evaluated from left to right.

g eq h

Given elements g and h belonging to the same generic group, return true if g and
h are the same element, false otherwise.

Ch. 57 GROUPS 1465

g ne h

Given elements g and h belonging to the same generic group, return true if g and
h are distinct elements, false otherwise.

IsId(g)

IsIdentity(g)

Returns true if the group element g is the identity element.

Order(g)

The order of the group element g.

Example H57E3

We illustrate the arithmetic operations by applying them to some elements of Sym(9).

> G := Sym(9);

> x := G ! (1,2,4)(5,6,8)(3,9,7);

> y := G ! (4,5,6)(7,9,8);

> x*y;

(1, 2, 5, 4)(3, 8, 6, 7)

> x^-1;

(1, 4, 2)(3, 7, 9)(5, 8, 6)

> x^2;

(1, 4, 2)(3, 7, 9)(5, 8, 6)

> x / y;

(1, 2, 6, 9, 8, 4)(3, 7)

> x^y;

(1, 2, 5)(3, 8, 9)(4, 7, 6)

> (x, y);

(1, 7, 3, 6)(4, 5, 9, 8)

> x^y eq y^x;

false

> CycleStructure(x^2*y);

[<6, 1>, <2, 1>, <1, 1>]

> Degree(y);

6

> Order(x^2*y);

6

1466 FINITE GROUPS Part X

57.3 Construction of a General Group

57.3.1 The General Group Constructors
The chapters on the individual group categories describe several methods for constructing
groups; this section indicates one approach only.

PermutationGroup< X | L >

PermutationGroup< n | L >

MatrixGroup< n, R | L >

These expressions construct, respectively: a permutation group G acting on the set
X; a permutation group G acting on the set X = {1, . . . , n}; or a matrix group G
of degree n over the ring R. The generic group U of which G is a subgroup will
be Sym(X) in the permutation case or GL(n,R) in the matrix case. There are two
return values: G, and the inclusion homomorphism from G to U .

The generators of G are defined by the list L. Each term of L must be an object
of one of the following types:

(a)Either (permutation case) a sequence of n elements of X, or (matrix case) a
sequence of n2 elements of R, defining an element of U ;

(b)A set or sequence of sequences of type (a);

(c) An element of U ;

(d)A set or sequence of elements of U ;

(e) A subgroup of U ;

(f) A set or sequence of subgroups of U .

Each element or group specified by the list must belong to the same generic group.
The group G will be constructed as a subgroup of some group which contains each
of the elements and groups specified in the list.

The generators of G consist of the elements specified by the terms of the list L
together with the stored generators for groups specified by terms of the list. Rep-
etitions of an element and occurrences of the identity element are removed (unless
G is trivial).

The PermutationGroup constructor is shorthand for the two statements:
U := SymmetricGroup(X);
G := sub< U | L >;

and the MatrixGroup constructor is shorthand for the two statements:
U := GeneralLinearGroup(n, R);
G := sub< U | L >;

where sub< ... > is the subgroup constructor described in the next subsection.

Ch. 57 GROUPS 1467

Group< X | R >

PolycyclicGroup< X | R >

AbelianGroup< X | R >

These expressions construct, respectively, a finitely presented group, a finite soluble
group given by a power-conjugate presentation or a polycyclic group, and an abelian
group, in the categories GrpFP, GrpPC or GrpGPC, and GrpAb. Given a list X of
identifier names x1, . . . , xr, and a list of relations R over them, first construct the
free group F (in GrpFP or GrpAb) on the generators x1, · · · , xr, and then construct
the quotient G of F corresponding to the normal subgroup of F defined by the
relations R. There are two return values: G, and the natural homomorphism from
F to G.

The relations of G are defined by the list R. Each term of R must be an object
of one of the following types:

(a)A word w of F , interpreted as the relator w = identity of F ;

(b)A relation w1 = w2, where w1 and w2 are words of F ;

(c) A relation list w1 = w2 = · · · = wr, where the wi are words of F , interpreted as
the set of relations w1 = wr, . . . , wr−1 = wr.

Within R, the identity element of F may be represented by the digit 1 for Group or
PolycyclicGroup, and 0 for AbelianGroup.

The construct x1, . . . , xn defines names for the generators of G that are local
to the constructor, i.e., they are used when writing down the relations to the right
of the bar. However, no assignment of values to these identifiers is made. If the
user wants to refer to the generators by these (or other) names, then the generators
assignment construct must be used on the left hand side of an assignment statement.

The constructor PolycyclicGroup returns either a finite soluble group given
by a power-conjugate presentation (category GrpPC) or a general polycyclic group
(category GrpGPC), depending on the arguments. R must be either a valid power-
conjugate presentation for a finite soluble group or a consistent polycyclic presenta-
tion. If R is a valid power-conjugate presentation for a finite soluble group, a group
in the category GrpPC is returned, unless the parameter Class is set to "GrpGPC". If
the parameter Class is set to "GrpGPC" or if R is not a valid power-conjugate pre-
sentation for a finite soluble group and the parameter Class is not set to "GrpPC",
a general polycyclic group in the category GrpGPC is returned. In any case, the free
group F is in the category GrpFP. If R is neither a valid power-conjugate presenta-
tion for a finite soluble group nor a consistent polycyclic presentation, or if R does
not match the value of the parameter Class, a runtime error is caused.

For a detailed description of this constructor and in particular for a description
of power-conjugate presentations and consistent polycyclic presentations, we refer
to Chapter 63 and Chapter 72, respectively.

1468 FINITE GROUPS Part X

Example H57E4

(1) The permutation group of degree 8 generated by the permutations (1, 7, 2, 8)(3, 6, 4, 5) and
(1, 4, 2, 3)(5, 7, 6, 8):

> G := PermutationGroup< 8 |

> (1, 7, 2, 8)(3, 6, 4, 5), (1, 4, 2, 3)(5, 7, 6, 8) >;

> G;

Permutation group G acting on a set of cardinality 8

(1, 7, 2, 8)(3, 6, 4, 5)

(1, 4, 2, 3)(5, 7, 6, 8)

(2) A matrix group of degree 2 over F9:

> K<w> := GF(9);

> M := MatrixGroup< 2, K | [w,w,1,2*w], [0,2*w,1,1], [1,0,1,2] >;

> M;

MatrixGroup(2, GF(3^2))

Generators:

[w w]

[1 w^5]

[0 w^5]

[1 1]

[1 0]

[1 2]

> Order(M);

5760

(3) The finitely presented group Q defined by the presentation

< s, t, u | t2, u17, s2 = ts = t, us = u16, ut = u >,

together with the natural homomorphism from the free group to Q:

> Q<s,t,u>, h := Group< s, t, u |

> t^2, u^17, s^2 = t^s = t, u^s = u^16, u^t = u >;

> Q;

Finitely presented group Q on 3 generators

Relations

t^2 = Id(Q)

u^17 = Id(Q)

s^2 = t

t^s = t

u^s = u^16

u^t = u

> Domain(h);

Finitely presented group on 3 generators (free)

(4) The soluble group of order 70 defined by the presentation < a, b, c | a2 = b, b5 = c, c7 >:

> G<a,b,c> := PolycyclicGroup< a, b, c | a^2 = b, b^5 = c, c^7 >;

Ch. 57 GROUPS 1469

> G;

GrpPC : G of order 70 = 2 * 5 * 7

PC-Relations:

a^2 = b,

b^5 = c,

c^7 = Id(G)

(5) A finite abelian group on 4 generators:

> G := AbelianGroup< h, i, j, k | 5*h, 4*i, 7*j, 2*k - h >;

> G;

Abelian Group isomorphic to Z/2 + Z/140

Defined on 4 generators

Relations:

G.1 + 8*G.4 = 0

4*G.2 = 0

7*G.3 = 0

10*G.4 = 0

> Order(G);

280

Example H57E5

Using the constructor PolycyclicGroup with different values of the parameter Class, we con-
struct the dihedral group of order 10 first as a finite soluble group given by a power-conjugate
presentation (GrpPC) and next as a general polycyclic group (GrpGPC). Note that the presenta-
tion 〈a, b | a2, b5, ba = b4〉 is both a valid power-conjugate presentation and a consistent polycyclic
presentation, so we have to set the parameter Class to "GrpGPC" if we want to construct a group
in the category GrpGPC.

> G1<a,b> := PolycyclicGroup< a,b | a^2, b^5, b^a=b^4 >;

> G1;

GrpPC : G1 of order 10 = 2 * 5

PC-Relations:

a^2 = Id(G1),

b^5 = Id(G1),

b^a = b^4

> G2<a,b> := PolycyclicGroup< a,b | a^2, b^5, b^a=b^4 : Class := "GrpGPC">;

> G2;

GrpGPC : G2 of order 10 = 2 * 5 on 2 PC-generators

PC-Relations:

a^2 = Id(G2),

b^5 = Id(G2),

b^a = b^4

We construct the infinite dihedral group as a group in the category GrpGPC from a consistent
polycyclic presentation. We do not have to use the parameter Class in this case.

> G3<a,b> := PolycyclicGroup< a,b | a^2, b^a=b^-1>;

> G3;

1470 FINITE GROUPS Part X

GrpGPC : G3 of infinite order on 2 PC-generators

PC-Relations:

a^2 = Id(G3),

b^a = b^-1

The presentation 〈a, b | a2, b4, ba = b3〉 is not a valid power-conjugate presentation for the dihedral
group of order 8, since the exponent of b is not prime. However, it is a consistent polycyclic
presentation. Consequently, the constructor PolycyclicGroup without specifying a value for the
parameter Class returns a group in the category GrpGPC.

> G4<a,b> := PolycyclicGroup< a,b | a^2, b^4, b^a=b^3 >;

> G4;

GrpGPC : G4 of order 2^3 on 2 PC-generators

PC-Relations:

a^2 = Id(G3),

b^4 = Id(G3),

b^a = b^3

57.3.2 Construction of Subgroups

sub< G | L >

Given the group G, construct the subgroup H of G, generated by the elements
specified by the list L, where L is a list of one or more items of the following types:

(a)A Magma object which may be coerced into G;

(b)A set or sequence of sequences of type (a);

(c) An element of G;

(d)A set or sequence of elements of G;

(e) A subgroup of G;

(f) A set or sequence of subgroups of G.

Each element or group specified by the list must belong to the same generic group.
The subgroup H will be constructed as a subgroup of some group which contains
each of the elements and groups specified in the list.

The generators of H consist of the elements specified by the terms of the list L
together with the stored generators for groups specified by terms of the list. Rep-
etitions of an element and occurrences of the identity element are removed (unless
H is trivial).

ncl< G | L >

Given the group G, construct the subgroup H of G that is the normal closure of the
subgroup H generated by the elements specified by the list L, where the possibilities
for L are the same as for the sub-constructor.

Ch. 57 GROUPS 1471

Example H57E6

Let Q be the finitely presented group in generators s, t, u constructed in an earlier example. We
construct the subgroup S of Q generated by ts2 and u4:

> Q<s,t,u>, h := Group< s, t, u |

> t^2, u^17, s^2 = t^s = t, u^s = u^16, u^t = u >;

> S := sub< Q | t*s^2, u^4 >;

> S;

Finitely presented group S on 2 generators

Generators as words

S.1 = $.2 * $.1^2

S.2 = $.3^4

57.3.3 Construction of Quotient Groups

quo< G | L >

Given the group G, construct the quotient group Q = G/N , where N is the normal
closure of the subgroup of G generated by the elements specified by L. The clause
L is a list of one or more items of the following types:

(a)A Magma object which can be coerced into G;

(b)A set or sequence of sequences of type (a);

(c) An element of G;

(d)A set or sequence of elements of G;

(e) A subgroup of G;

(f) A set or sequence of subgroups of G.

Each element or group specified by the list must belong to the same generic group.
The function returns

(a) the quotient group Q, and

(b)the natural homomorphism f : G→ Q.

Arbitrary quotients may be readily constructed in the case of the categories GrpFP,
GrpGPC, GrpPC and GrpAb. However, in the case of permutation and matrix groups,
currently the quotient group is constructed via its regular representation, so that
the application of this operator is restricted to the case where the index of N in G
is less than 230.

The second return value is the epimorphism from G to the resulting quotient
group.

1472 FINITE GROUPS Part X

G / N

Given a (normal) subgroup N of the group G, construct the quotient of G by N .
If G is in category GrpFP, N is not checked to be normal in G. In fact, the

returned group is the quotient of G by the normal closure of N in G. For all other
categories of groups, passing a subgroup which fails to be normal causes a runtime
error.

If G is a permutation or matrix group, the quotient group is constructed via its
regular representation, so that the application of this operator is restricted to the
case where the index of N in G is at most a million. The result returned need not
be regular, as an attempt is made to reduce the degree of the result.

Example H57E7

Construction of the quotient of an abelian group, with a demonstration of the use of the natural
homomorphism:

> G<[x]>, f := AbelianGroup< h, i, j, k | 8*h, 4*i, 6*j, 2*k - h >;

> T, n := quo< G | x[1] + 2*x[2] + 24*x[3], 16*x[3] >;

> T;

Abelian Group isomorphic to Z/2 + Z/16

Defined on 2 generators

Relations:

4*T.1 = 0

16*T.2 = 0

> n(x);

[

2*T.1,

T.1 + 12*T.2,

T.2

]

> n(sub< G | x[1] + x[2] + x[3] >);

Abelian Group isomorphic to Z/16

Defined on 1 generator in supergroup T:

$.1 = 3*T.1 + T.2

Relations:

16*$.1 = 0

Ch. 57 GROUPS 1473

57.4 Standard Groups and Extensions

57.4.1 Construction of a Standard Group
A number of functions are provided which construct various standard groups. The effect
of these functions is to construct the group on some standard set of generators. The group
category of the result may be specified as an argument to the function.

AbelianGroup(C, Q)

AbelianGroup(Q)

Construct the abelian group defined by the sequence Q = [n1, . . . , nr] of positive
integers. The function constructs the direct product of cyclic groups Zn1 × Zn2 ×
· · ·×Znr

. In some categories, ni may also be 0, denoting the infinite cyclic group Z.
If the single-argument version of the function is used, the group will be constructed
in the category GrpAb; otherwise, its category will be C, where C may be GrpAb,
GrpFP, GrpGPC, GrpPC or GrpPerm.

AlternatingGroup(C, n)

AlternatingGroup(n)

Alt(C, n)

Alt(n)

Construct the alternating group on n letters. If the single-argument version of the
function is used, the group will be constructed in the category GrpPerm; otherwise,
its category will be C, where C may be GrpFP or GrpPerm.

CyclicGroup(C, n)

CyclicGroup(n)

Construct the cyclic group of order n. If the single-argument version of the func-
tion is used, the group will be constructed in the category GrpPerm; otherwise, its
category will be C, where C may be GrpAb, GrpFP, GrpGPC, GrpPC or GrpPerm.

DihedralGroup(C, n)

DihedralGroup(n)

Construct the dihedral group of order 2 ∗ n. If the single-argument version of the
function is used, the group will be constructed in the category GrpPerm; otherwise,
its category will be C, where C may be GrpFP, GrpGPC, GrpPC or GrpPerm.

DicyclicGroup(n)

DicyclicGroup(A, a)

The first intrinsic constructs the dicyclic group of order 4n. The second, when given
an abelian group A and an element a of order 2, constructs the associated dicyclic
group generated by A and an x with x2 = a and ax = a−1 for all x ∈ A.

1474 FINITE GROUPS Part X

SymmetricGroup(C, n)

SymmetricGroup(n)

Sym(GrpFin, n)

Sym(n)

Construct the symmetric group on n letters. If the single-argument version of the
function is used, the group will be constructed in the category GrpPerm; otherwise,
its category will be C, where C may be GrpFP or GrpPerm.

ExtraSpecialGroup(C, p, n : parameters)

ExtraSpecialGroup(p, n : parameters)

Given a prime p and a small positive integer n, construct an extra-special group G
of order p2n+1. The isomorphism type of G can be selected using the parameter
Type described below.

If the two-argument version of the function is used, the group will be constructed
in the category GrpPerm; otherwise, its category will be C, where C may be GrpFP,
GrpGPC, GrpPC or GrpPerm. If C is GrpFP, GrpPC or GrpPerm, the prime p must be
small.

Type MonStgElt Default : “ + ”
Possible values for this parameter are “+” (default) and “−”.
If Type is set to “+”, the function returns for p = 2 the central product of n copies

of the dihedral group of order 8, and for p > 2 it returns the unique extra-special
group of order p2n+1 and exponent p.

If Type is set to “−”, the function returns for p = 2 the central product of a
quaternion group of order 8 and n− 1 copies of the dihedral group of order 8, and
for p > 2 it returns the unique extra-special group of order p2n+1 and exponent p2.

Example H57E8

(1) The abelian group Z6 × Z2 × Z7 in the category GrpAb:

> A := AbelianGroup([6, 2, 7]);

> A;

Abelian Group isomorphic to Z/2 + Z/42

Defined on 3 generators

Relations:

6*A.1 = 0

2*A.2 = 0

7*A.3 = 0

(2) The alternating group on 6 letters as a permutation group:

> A6 := Alt(6);

> A6;

Permutation group A6 acting on a set of cardinality 6

Order = 360 = 2^3 * 3^2 * 5

Ch. 57 GROUPS 1475

(1, 2)(3, 4, 5, 6)

(1, 2, 3)

(3) The dihedral group of order 8 as a GrpPC:

> D8 := DihedralGroup(GrpPC, 4);

> D8;

GrpPC : D8 of order 8 = 2^3

PC-Relations:

D8.2^2 = D8.3,

D8.2^D8.1 = D8.2 * D8.3

(4) The symmetric group on 7 letters as a finitely presented group on generators a and b:

> S7<a, b> := SymmetricGroup(GrpFP, 7);

> S7;

Finitely presented group S7 on 2 generators

Relations

a^7 = Id(S7)

b^2 = Id(S7)

(a * b)^6 = Id(S7)

(a^-1 * b * a * b)^3 = Id(S7)

(b * a^-2 * b * a^2)^2 = Id(S7)

(b * a^-3 * b * a^3)^2 = Id(S7)

57.4.2 Construction of Extensions

DirectProduct(G, H)

Given two groups G andH belonging to the category C, construct the direct product
of G and H as a group in C.

DirectProduct(Q)

Given a sequence Q of n groups belonging to the category C, construct the direct
product Q[1]×Q[2]× . . .×Q[n] as a group in the category C.

SemidirectProduct(K, H, f: parameters)

Given two groups K and H and a homomorphism f : H → Aut(K), construct the
semidirect product of K and H where the elements of H act on K via the map f .
Return the semidirect product, and maps embedding H and K into the semidirect
product.

MaxDeg RngIntElt Default : 1000000
The maximum degree permutation representation the algorithm will attempt.

UseRegular BoolElt Default : false

Setting UseRegular to true forces the algorithm to go via the regular representations
of K and H.

1476 FINITE GROUPS Part X

Example H57E9

We define G to be the symmetric group of degree 4 and H to be the dihedral group of order 8.
We then form the direct product of G and H.

> G := SymmetricGroup(4);

> H := DihedralGroup(3);

> D := DirectProduct(G, H);

> D;

Permutation group D acting on a set of cardinality 7

(1, 2, 3, 4)

(1, 2)

(5, 6, 7)

(5, 6)

> Order(D);

144

57.5 Transfer Functions Between Group Categories
Since certain group computations are possible or feasible only for particular group rep-
resentations, it is often useful to transfer a group from one category to another. The
functions in this section take a group and return a group isomorphic to it (or isomorphic
to some related group) in another category.

pQuotient(F, p, c: parameters)

Given a group F in category GrpFP, a prime p and a positive integer c, construct the
largest p-quotient G of F having lower exponent-p class at most c (or 127, if c is given
as 0) as group in the category GrpPC. The function also returns the homomorphism
from F to G.

The parameters are:
Exponent RngIntElt Default : 0

If Exponent := m, enforce the exponent law, xm = 1, on the group.
Metabelian BoolElt Default : false

If Metabelian := true, then a consistent pcp is constructed for the largest
metabelian p-quotient of F having lower exponent-p class at most c.

Print RngIntElt Default : 0
This parameter controls the volume of printing. By default its value is that returned
by GetVerbose("pQuotient"), which is 0 unless it has been changed through use
of SetVerbose. The effect is the following:

Print := 0 : No output.
Print := 1 : Report order of p-quotient at each class.
Print := 2 : Report statistics and redundancy information about tails, consis-

tency, collection of relations and exponent enforcement components of calculation.

Ch. 57 GROUPS 1477

Print := 3 : Report in detail on the construction of each class.
Note that the presentation displayed is a power-commutator presentation (since this
is the version stored by the p-quotient).

Workspace RngIntElt Default : 5000000

The amount of space requested for the p-quotient computation.

CosetAction(G, H)

Given a subgroup H of the group G, construct the permutation representation of
G given by the action of G on the set of (right) cosets of H in G. The function
returns:

(a)The natural homomorphism f : G→ L;

(b)The induced permutation group L (the image of f);

(c) (if possible) The kernel K of the action (a subgroup of G).

If G is a finitely presented group, then K may be returned undefined.
The permutation representation is obtained by using the Todd-Coxeter procedure

to construct the coset table for H in G. Note that G may be an infinite group: it is
only necessary that the index of H in G be finite.

CosetImage(G, H)

Given a subgroup H of the group G, construct the image of G given by its action
on the (right) coset space of H in G, returning it as a permutation group. (This is
also the second return value of CosetAction(G, H).)

CosetKernel(G, H)

Given a subgroup H of the group G, construct the kernel of G in its action on the
(right) coset space of H in G. (This is also the third return value of CosetAction(G,
H).) This function may fail if G is a finitely presented group; it is only available when
the index of H in G is very small.

GPCGroup(G)

Given a soluble group G, in the category GrpPerm, GrpMat, GrpAb or GrpPC, con-
struct a polycyclic group P isomorphic toG. CurrentlyGmust be finite, if it is in the
category GrpMat. In addition to returning P , the function returns an isomorphism
φ : G→ P .

PCGroup(G)

Given a finite soluble group G, in the category GrpPerm, GrpMat, GrpAb or GrpGPC,
construct a group S given by a power-conjugate presentation, which is isomorphic
to G. In addition to returning S, the function returns an isomorphism φ : G→ S.

1478 FINITE GROUPS Part X

FPGroup(G: parameters)

StrongGenerators BoolElt Default : false

Random BoolElt Default : true

Max RngIntElt Default : 100

Run RngIntElt Default : 20

Given a group G, in the category GrpPerm, GrpMat, GrpGPC or GrpPC, construct a
finitely presented group F isomorphic to G, by presenting the group on its given gen-
erators. For groups in the category GrpPerm and GrpMat, the Todd-Coxeter Schreier
algorithm is used to construct the presentation and a choice of a presentation on the
given generators or on the strong generators is available. In addition to returning
F , the function returns an isomorphism φ : F → G, such that φ(F.i) = G.i for all i.

If the parameter StrongGenerators is set to true (GrpPerm and GrpMat only),
the presentation will be constructed on the strong generators of G instead of the
given generators. If strong generators are not already known for G, they will be
constructed; in this case, the other parameters are also meaningful. The parame-
ter Random with its associated parameters Max and Run may be used to apply the
Random Schreier algorithm to construct a probable BSGS before commencing the
construction of the presentation.

Example H57E10

We construct a finitely presented group G and a subgroup H, then find the permutation repre-
sentation of G given by its action on the cosets of H. Since the induced permutation group L
has the same order as G, the representation is faithful, and the homomorphism f : G → L is an
isomorphism.

> G<a, b> := Group< a, b | a^3, b^3, (b * a)^4,

> ((b^-1)^a * b^-1)^2 * b^a * b >;

> Order(G);

168

> H := sub< G | a^2 * b^2, (a * b)^2 >;

> Index(G, H);

7

> f, L := CosetAction(G, H);

> f;

Mapping from: GrpFP: G to GrpPerm: L

> L;

Permutation group L acting on a set of cardinality 7

(1, 2, 3)(4, 7, 5)

(1, 3, 4)(2, 5, 6)

> Order(L);

168

Ch. 57 GROUPS 1479

Example H57E11

A permutation representation of Sp(2, 4).

> M := SymplecticGroup(2, 4);

> #M;

60

> Ms := sub< M | M.1 * M.2 >;

> Index(M, Ms);

12

> PG := CosetImage(M, Ms);

> PG;

Permutation group PG acting on a set of cardinality 12

(1, 2, 4)(3, 5, 7)(6, 8, 10)(9, 11, 12)

(1, 3, 2)(4, 6, 8)(5, 7, 9)(10, 12, 11)

> #PG;

60

Example H57E12

A finitely presented group isomorphic to PSU(3, 3):

> G := PSU(3, 3);

> F<a, b>, phi := FPGroup(G);

> F;

Finitely presented group F on 2 generators

Relations

a^8 = Id(F)

b^8 = Id(F)

(b * a^-1 * b)^3 = Id(F)

b * a^-1 * b^-1 * a^-1 * b^-1 * a^-1 * b * a^-1 * b * a^-1 = Id(F)

b^-1 * a^-2 * b^-1 * a^-2 * b^-1 * a^-1 * b^-2 * a^-1 = Id(F)

> phi(a) eq G.1 and phi(b) eq G.2;

true

57.6 Basic Operations

1480 FINITE GROUPS Part X

57.6.1 Accessing Group Information
The functions in this group provide access to basic information stored for a group G.

G . i

The i-th defining generator for G, if i > 0. If i < 0, then the inverse of the −i-th
defining generator is returned. G.0 is equivalent to Identity(G).

Generators(G)

A set containing the defining generators for G.

NumberOfGenerators(G)

Ngens(G)

The number of defining generators for G.

Generic(G)

Given a group G in the category GrpPerm or GrpMat, return the generic group
containing G, i.e., the largest group in which G is naturally embedded. The precise
definition of generic group depends upon the category to which G belongs.

Parent(g)

The parent group G for the group element g.

Example H57E13

The Suzuki simple group G = Sz(8) is constructed. Its generic group is GL(4, K), where K is the
finite field with 8 elements. The field K is constructed first, so that its generator may be given
the printname z. Then the three generators of G are printed, in the standard order of indexing.

> K<z> := GF(2, 3);

> G := SuzukiGroup(8);

> Generic(G);

GL(4, GF(2, 3))

> Ngens(G);

3

> for i in [1..3] do

> print "generator", i, G.i;

> print "order", Order(G.i), "\r";

> end for;

generator 1

[0 0 0 1]

[0 0 1 0]

[0 1 0 0]

[1 0 0 0]

order 2

generator 2

Ch. 57 GROUPS 1481

[z^2 0 0 0]

[0 z^6 0 0]

[0 0 z 0]

[0 0 0 z^5]

order 7

generator 3

[1 0 0 0]

[z^2 1 0 0]

[0 z 1 0]

[z^5 z^3 z^2 1]

order 4

Orbit(G, M, x)

Given a finitely generated group G that acts on the parent structure of x through
the map (or user defined function) M , compute the orbit of x under G. Thus, for
every generator g of G, M(g) must return a function that can be applied to x or
any other element in the parent of x.

If the orbit is infinite, this process will eventually run out of memory.

OrbitClosure(G, M, S)

Given a finitely generated group G acting on the universe of S through the map
or user defined function M , compute the smallest subset T containing S that is
G-invariant. Thus, for every generator g of G, M(g) must return a function that
can be applied to an arbitrary element in the universe of S.

If the orbit closure is infinite, this process will eventually run out of memory.

57.7 Operations on the Set of Elements

57.7.1 Order and Index Functions

Order(G)

#G

The order of the group G as an integer. If the order is not currently known, it will
be computed. Computing the order may fail for groups in the category GrpFP; cf.
Chapter 70.

FactoredOrder(G)

The order of the finite group G returned as a factored integer. The factorization
is returned in the form of a sequence Q which is defined as follows: If #G =
pe1
1 . . . pen

n , ei > 0, then Q will be the integer sequence [〈p1, e1〉, . . . , 〈pn, en〉]. If
the orders of G is not known, it will be computed. Computing the order may fail
for groups in the category GrpFP; cf. Chapter 70.

1482 FINITE GROUPS Part X

Index(G, H)

The index of the subgroup H in the group G. The index is returned as an integer.
Computing the index may fail for groups in the category GrpFP; cf. Chapter 70.

FactoredIndex(G, H)

The index of the subgroup H in the group G. H must have finite index in G. The in-
dex is returned as a factored integer. The format is the same as for FactoredOrder.
Computing the index may fail for groups in the category GrpFP; cf. Chapter 70.

Example H57E14

Exploration of the order and index functions for a finitely presented group and its subgroup:

> Q<s,t,u>, h := Group< s, t, u |

> t^2, u^17, s^2 = t^s = t, u^s = u^16, u^t = u >;

> Order(Q);

68

> FactoredOrder(Q);

[<2, 2>, <17, 1>]

> S := sub< Q | t*s^2, u^4 >;

> Index(Q, S);

4

> #S;

17

57.7.2 Membership and Equality

g in G

Given a group element g and a group G, return true if g is an element of G, false
otherwise.

g notin G

Given a group element g and a group G, return true if g is not an element of G,
false otherwise.

S subset G

Given a group G and a set S of group elements belonging to a group H, where G
and H belong the same generic group, return true if S is a subset of G, false
otherwise.

S notsubset G

Given a group G and a set S of group elements belonging to a group H, where G
and H belong the same generic group, return true if S is not a subset of G, false
otherwise.

Ch. 57 GROUPS 1483

H subset G

Given groups G and H belonging to the same generic group, return true if H is a
subgroup of G, false otherwise.

H notsubset G

Given groups G and H belonging to the same generic group, return true if H is not
a subgroup of G, false otherwise.

H eq G

Given groups G and H belonging to the same generic group, return true if G and
H are the same group, false otherwise.

H ne G

Given groups G and H belonging to the same generic group, return true if G and
H are distinct groups, false otherwise.

57.7.3 Set Operations

NumberingMap(G)

Given a finite group G in the category GrpPerm, GrpMat, GrpPC or GrpAb, return a
bijective mapping from the group G onto the set of integers {1 . . . |G|}. The actual
mapping depends upon the particular representation of G.

Representative(G)

Rep(G)

An element chosen from the group G.

Example H57E15

We use the function NumberingMap to construct the multiplication table for the dihedral group of
order 12.

> G := DihedralGroup(6);

> f := NumberingMap(G);

> [[f(x*y) : y in G] : x in G];

[

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],

[2, 3, 4, 5, 6, 1, 12, 7, 8, 9, 10, 11],

[3, 4, 5, 6, 1, 2, 11, 12, 7, 8, 9, 10],

[4, 5, 6, 1, 2, 3, 10, 11, 12, 7, 8, 9],

[5, 6, 1, 2, 3, 4, 9, 10, 11, 12, 7, 8],

[6, 1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 7],

[7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6],

[8, 9, 10, 11, 12, 7, 6, 1, 2, 3, 4, 5],

[9, 10, 11, 12, 7, 8, 5, 6, 1, 2, 3, 4],

[10, 11, 12, 7, 8, 9, 4, 5, 6, 1, 2, 3],

1484 FINITE GROUPS Part X

[11, 12, 7, 8, 9, 10, 3, 4, 5, 6, 1, 2],

[12, 7, 8, 9, 10, 11, 2, 3, 4, 5, 6, 1]

]

57.7.4 Random Elements

Random(G: parameters)

Short BoolElt Default : false

A randomly chosen element for the group G. If a representation of the carrier set of
G has already been created, then the element chosen will be genuinely random. If
such a representation has not yet been created, then the random element is chosen by
multiplying out a random word in the generators. Since it is not usually practical
to choose words long enough to properly sample the elements of G, the element
returned will usually be biased. The boolean-valued parameter Short is used in this
situation to indicate that a short word will suffice. Thus, if Random is invoked with
Short assigned the value true then the element is constructed using a short word.

Example H57E16

We illustrate the use of the function Random using the wreath product of the symmetric group of
degree 4 and the cyclic group of order 6.

> G := WreathProduct(Sym(4), CyclicGroup(6));

> G;

Permutation group G acting on a set of cardinality 24

(1, 5, 9, 13, 17, 21)(2, 6, 10, 14, 18, 22) (3, 7, 11, 15, 19, 23)

(4, 8, 12, 16, 20, 24)

(1, 2, 3, 4)

(1, 2)

> Order(G);

1146617856

> Random(G);

(1, 17, 12, 4, 18, 10, 3, 20, 9, 2, 19, 11)(5, 22, 13, 6, 21, 15)

(7, 24, 16)(8, 23, 14)

// We display the cycle structures of 10 random elements of G

> R := [CycleStructure(Random(G)) : i in [1..10]];

> R;

[

[<6, 1>, <3, 6>],

[<9, 1>, <6, 2>, <3, 1>],

[<9, 2>, <3, 2>],

[<12, 1>, <9, 1>, <3, 1>],

[<18, 1>, <6, 1>],

[<18, 1>, <6, 1>],

[<12, 1>, <6, 2>],

Ch. 57 GROUPS 1485

[<6, 3>, <2, 3>],

[<6, 1>, <4, 3>, <2, 3>],

[<6, 3>, <3, 2>]

]

RandomProcess(G)

RandomProcessWithWords(G)

RandomProcessWithValues(G, Q)

RandomProcessWithWordsAndValues(G, Q)

Slots RngIntElt Default : 10
Scramble RngIntElt Default : 50
WordGroup GrpSLP Default :

Create a process to generate randomly chosen elements from the group G. The
process uses a variant of the product-replacement method similar to the Rattle
method of [LGM02]. The generating set stored in the process has N elements, where
N is the maximum of the specified value for Slots and Ngens(G)+1. Initially they
are the generators of G repeated as necessary and the accumulator is the identity.
Random elements are now produced by successive calls to Random(P), where P
is the process created by this function. Each such call returns the current value
of the accumulator, modifying the generating set as for product-replacement, and
modifying the accumulator by multiplying by the new member of the generating
set. Setting Scramble := m causes m such operations to be performed before the
process is returned.

The functions with words and values create a process that returns extra group
elements for each call. A process created with words returns, as second return value
for each call to Random(P), the GrpSLPElt describing the random element returned
as a straight-line program in the group generators. The parameter WordGroup may
be used to specify a particular group for the words to be elements of.

A process created with values takes as input a sequence of group elements Q
giving the values assigned to each generator of G. The second value returned is the
result of computing in parallel with these values as with the generators of G. In
particular, if the elements of Q are homomorphic images of the generators of G,
then the second return value from Random(P) will be the image of the first under
this homomorphism.

A process created with words and values does all of the above, with the three
return values of Random(P) being a random element of G, the straight-line program
and the value.

The use of this function on a finitely-presented group G is not recommended.
Since there is no reduction of words, the random elements generated may be ex-
tremely long.

1486 FINITE GROUPS Part X

Random(P)

Given a random element process P created by the function RandomProcess(G) for
the finite group G, construct a random element of G by forming a random product
over the expanded generating set constructed when the process was created. For
large permutation or matrix groups for which a BSGS is not known, this function
should be used in preference to Random(G).

If the process was created with words or values then there will be second and
third return values as described under RandomProcess above.

InitialiseProspector(G:parameters)

InitialiseProspector(G:parameters)

Initialise a product-replacement prospector for the given group. This is an extension
of the product-replacement algorithm that searches for an element x ∈ G such that
some predicate is true for this element. The prospector aims to find elements x so
that the corresponding straight-line program for x is short. Statistical tests and
various heuristics are used to achieve this.

Generally, output from product-replacement with short straight-line programs
is not very random. Prospector aims to run product-replacement until the output
looks random, then start a search for the element wanted. At all times, if the output
starts to look non-random, or word lengths grow too far without finding an element,
the prospector may return to a previous state of product replacement and try again,
searching in a different direction. The statistical tests are used to make concrete
the notion of “looks random”. For permutation groups the test used is based on
number of cycles of the element. For matrix groups the test statistic is the number
of factors of the characteristic polynomial.

Prospector(G, f:parameters)

Run an initialised prospector for group G to find x ∈ G such that f(x) is true. The
first return value gives the success or failure of the search. If this value is true, then
the second and third return values are x and a straight-line program giving x in
terms of the group generators. The parameter MaxTries may be set to limit the
number of random selections made by the prospector when attempting to find x.

Example H57E17

We find a random pair of generators for the symmetric group of degree 300 and use a random
process to find an element which is a 300-cycle as a straight-line program in the generators. The
proportion of such elements is 1 in 300, so we expect the program to have length 600.

> SetSeed(1);

> S := Sym(300);

> repeat G := sub<S|Random(S),Random(S)>;

> until IsSymmetric(G);

> P := RandomProcessWithWords(G);

> repeat x,w := Random(P);

Ch. 57 GROUPS 1487

> until CycleStructure(x) eq [<300,1>];

> #w;

936

Note that the group S, known to be a symmetric group, has an efficient uniform random element
generator available as above. The word length was somewhat longer than the expected value.
Now we set up a prospector and use it to search for an element of the same cycle structure. The
defining word for the new element should be shorter than the expected 600.

> InitialiseProspector(G);

true

> test := func<x|CycleStructure(x) eq [<300,1>]>;

> a,x,w := Prospector(G, test);

> a;

true

> #w;

206

> Evaluate(w, [G.1,G.2]) eq x;

true

57.7.5 Action on a Coset Space

CosetTable(G, H)

The (right) coset table for G over subgroup H relative to its defining generators.

#CosetTable(G, f)

The coset table for G corresponding to the permutation representation f of G, where
f is a homomorphism of G onto a transitive permutation group.

Transversal(G, H)

RightTransversal(G, H)

Given a group G and a subgroup H of G, this function returns

(a)An indexed set of elements T of G forming a right transversal for G over H;

(b)The corresponding transversal mapping φ : G→ T . If T = [t1, . . . , tr] and g ∈ G,
φ is defined by φ(g) = ti, where g ∈ Hti.

1488 FINITE GROUPS Part X

CosetAction(G, H)

Given a subgroup H of the group G, construct the permutation representation of
G given by the action of G on the set of (right) cosets of H in G. The function
returns:
(a)The natural homomorphism f : G→ L;
(b)The induced group L;
(c) The kernel K of the action (a subgroup of G).
Note that G may be any type of group. If G is a finitely presented group, then K
may be returned undefined.

CosetImage(G, H)

Given a subgroup H of the group G, construct the image L of G given by the action
of G on the set of (right) cosets of H in G.

CosetKernel(G, H)

Given a subgroup H of the group G, construct the kernel of the action of G on the
set of (right) cosets of H in G.

57.8 Standard Subgroup Constructions

Some functions described in this section may not exist or may have restrictions for some
categories of groups. Details can be found in the chapters on the individual categories.

H ^ g

Conjugate(H, g)

Construct the conjugate g−1Hg of the group H by the element g. The group H and
the element g must belong to the same generic group.

H meet K

Given groups H and K which belong to the same symmetric group, construct the
intersection of H and K.

CommutatorSubgroup(G, H, K)

CommutatorSubgroup(H, K)

Given groups H and K, both subgroups of the group G, construct the commutator
subgroup of H and K in the group G. If K is a subgroup of H, then the group G
may be omitted.

Centralizer(G, g)

Centraliser(G, g)

Construct the centralizer of the element g in the group G.

Ch. 57 GROUPS 1489

Centralizer(G, H)

Centraliser(G, H)

Construct the centralizer of the group H in the group G.

Core(G, H)

Given a subgroup H of the group G, construct the maximal normal subgroup of G
that is contained in the subgroup H.

H ^ G

NormalClosure(G, H)

Given a subgroup H of the group G, construct the normal closure of H in G.

Normalizer(G, H)

Normaliser(G, H)

Given a subgroup H of the group G, construct the normalizer of H in G.

pCore(G, p)

Given a group G and a prime p dividing the order of G, construct the maximal
normal p-subgroup of G.

SylowSubgroup(G, p)

Sylow(G, p)

Given a group G and a prime p, construct a Sylow p-subgroup of G.

57.8.1 Abstract Group Predicates
Some functions described in this section may not exist or may have restrictions for some
categories of groups. Details can be found in the chapters on the individual categories.

IsAbelian(G)

Returns true if the group G is abelian, false otherwise.

IsCyclic(G)

Returns true if the group G is cyclic, false otherwise.

IsElementaryAbelian(G)

Returns true if the group G is elementary abelian, false otherwise.

IsCentral(G, H)

Return true if the subgroup H of the group G lies in the centre of G, false
otherwise.

1490 FINITE GROUPS Part X

IsConjugate(G, g, h)

Given a group G and elements g and h belonging to G, return the value true if g
and h are conjugate in G. The function returns a second value if the elements are
conjugate: an element k which conjugates g into h.

IsConjugate(G, H, K)

Given a group G and subgroups H and K belonging to G, return the value true if
H and K are conjugate in G. The function returns a second value if the subgroups
are conjugate: an element z which conjugates H into K.

IsExtraSpecial(G)

Given a group G is a p-group G, return true if G is extra-special, false otherwise.

IsMaximal(G, H)

Returns true if the subgroup H of the group G is a maximal subgroup of G. This
function is evaluated by constructing the permutation representation of G on the
cosets of H and testing this representation for primitivity. For this reason, the
use of IsMaximal should be avoided if the index of H in G exceeds a one hundred
thousand.

IsNilpotent(G)

Return true if the group G is nilpotent, false otherwise.

IsNormal(G, H)

Return true if the subgroup H of the group G is a normal subgroup of G, false
otherwise.

IsPerfect(G)

Return true if the group G is perfect, false otherwise.

IsSelfNormalizing(G, H)

IsSelfNormalising(G, H)

Return true if the subgroup H of the group G is self-normalizing in G, false
otherwise.

IsSimple(G)

Return true if the group G is simple, false otherwise.

IsSoluble(G)

IsSolvable(G)

Return true if the group G is soluble, false otherwise.

Ch. 57 GROUPS 1491

IsSpecial(G)

Given a p-group G, return true if G is special, false otherwise.

IsSubnormal(G, H)

Return true if the subgroup H of the group G is subnormal in G, false otherwise.

IsTrivial(G)

Return true if G is trivial, false otherwise.

57.9 Characteristic Subgroups and Normal Structure

57.9.1 Characteristic Subgroups and Subgroup Series
Some functions described in this section may not exist or may have restrictions for some
categories of groups. Details can be found in the chapters on the individual categories.

Centre(G)

Center(G)

Construct the centre of the group G.

Hypercentre(G)

Hypercenter(G)

Construct the hypercentre of the group G (the stationary term of the upper central
series).

DerivedLength(G)

The derived length of G. If G is non-soluble, the function returns the number of
terms in the series terminating with the soluble residual.

DerivedSeries(G)

The derived series of the group G. The series is returned as a sequence of subgroups.

DerivedSubgroup(G)

DerivedGroup(G)

The derived subgroup of the group G.

FittingSubgroup(G)

The Fitting subgroup of the group G.

FrattiniSubgroup(G)

Given a group G that is a p-group, return the Frattini subgroup.

1492 FINITE GROUPS Part X

JenningsSeries(G)

Given a p-group G, return the Jennings series for G. The series is returned as a
sequence of subgroups.

LowerCentralSeries(G)

The lower central series of G. The series is returned as a sequence of subgroups.

NilpotencyClass(G)

The nilpotency class of the group G. If the group is not nilpotent, the value −1 is
returned.

H ^ G

NormalClosure(G, H)

The normal closure of the subgroup H of group G.

NormalLattice(G)

The normal subgroups of G arranged as a lattice.

NormalSubgroups(G)

The normal subgroups of G.

pCentralSeries(G, p)

Given a soluble group G, and a prime p dividing |G|, return the lower p-central
series for G. The series is returned as a sequence of subgroups.

Radical(G)

The maximal normal solvable subgroup of the group G.

SolubleResidual(G)

SolvableResidual(G)

The solvable residual of the group G.

SubnormalSeries(G, H)

Given a group G and a subnormal subgroup H of G, return a sequence of subgroups
commencing with G and terminating with H, such that each subgroup is normal in
the previous one. If H is not subnormal in G, the empty sequence is returned.

UpperCentralSeries(G)

The upper central series of G. The series is returned as a sequence of subgroups
commencing with the trivial subgroup. Since the algorithm used requires the con-
jugacy classes of G, this function is much more restricted in its range of application
than DerivedSeries and LowerCentralSeries.

Ch. 57 GROUPS 1493

f Family name
1 A(d, q)
2 B(d, q)
3 C(d, q)
4 D(d, q)
5 G(2, q)
6 F(4, q)
7 E(6, q)
8 E(7, q)
9 E(8, q)
10 2A(d, q)
11 2B(2, q)
12 2D(d, q)
13 3D(4, q)
14 2G(2, q)
15 2F(4, q)
16 2E(6, q)
17 Alternating(d)
18 Sporadic group — see Table 2.
19 Cyclic(q)

d Group name
1 M11

2 M12

3 M22

4 M23

5 M24

6 J1

7 HS
8 J2

9 MCL
10 SUZ
11 J3

12 CO1

13 CO2

14 CO3

15 HE
16 M(22)
17 M(23)
18 M(24)
19 LY
20 RU
21 ON
22 TH
23 HA
24 BM
25 M
26 J4

Table 1: Family numbers and names Table 2: Sporadic groups

57.9.2 The Abstract Structure of a Group

CompositionFactors(G)

Given a finite group G in the category GrpPerm, GrpMat, GrpPC of GrpAb, return a
sequence S of tuples that represent the composition factors of G, ordered according
to some composition series of G. Each tuple is a triple of integers f , d, q that defines
the isomorphism type of the corresponding composition factor. A triple < f, d, q >
describes a simple group as follows. The integer f defines the family to which the
group belongs, and d and q are the parameters of the family. The length of the
sequence S is the number of composition factors of G. The families are listed in
Tables 1 and 2 on page 1493.

1494 FINITE GROUPS Part X

AbelianInvariants(G)

Invariants(G)

Given an abelian group G in the category GrpPerm, GrpMat, GrpPC of GrpAb, return
a sequence Q containing the types of each p-primary component of G.

AbelianBasis(G)

Given an abelian group G in the category GrpPerm, GrpPC of GrpAb, return sequences
B and I where I contains the types of each p-primary component ofG andB contains
corresponding elements of G which have the order given and generate G.

57.10 Conjugacy Classes of Elements

There are three aspects of the conjugacy problem for elements: determining whether two
elements are conjugate in a group G, determining a set of representatives for the conju-
gacy classes of elements of G, and listing all the elements in a particular class of G. The
algorithms used depend on the category of G. If G is in category GrpPerm or GrpMat, con-
jugacy is determined by means of a backtrack search over base-images. If G is in category
GrpPC, testing conjugacy is performed by transforming each element into a standard rep-
resentative of its conjugacy class by an orbit-stabilizer process that works down a sequence
of increasing quotients of G. Conjugacy testing for a group G in category GrpGPC is only
possible if G is nilpotent. In this case, an algorithm by E. Lo [Lo98] is used.

Some functions described in this section may not exist or may have restrictions for some
categories of groups. Details can be found in the chapters on the individual categories.

Class(H, x)

Conjugates(H, x)

Given a group H and an element x belonging to a group K such that H and K are
subgroups of the same symmetric group, this function returns the set of conjugates
of x under the action of H. If H = K, the function returns the conjugacy class of
x in H.

ClassMap(G: parameters)

Given a group G, construct the conjugacy classes and the class map f for G. For
any element x of G, f(x) will be the index of the conjugacy class of x in the sequence
returned by the Classes function.

If G is a permutation group, the construction may be controlled using the param-
eters Orbits, WeakLimit and StrongLimit. If the parameter Orbits is set true,
the classes are computed as orbits of elements under conjugation and the class map
is stored as a list of images of the elements of G (a list of length |G|). This option
gives fast evaluation of the class map but is practical only in the case of very small
groups. With Orbits := false, WeakLimit and StrongLimit are used to control
the random classes algorithm (see function Classes).

Ch. 57 GROUPS 1495

ConjugacyClasses(G: parameters)

Classes(G: parameters)

WeakLimit RngIntElt Default : 200
StrongLimit RngIntElt Default : 500
Reps [GrpFinElt] Default :

Al MonStg Default :

Construct a set of representatives for the conjugacy classes of G. The classes are
returned as a sequence of triples containing the element order, the class length and
a representative element for the class. The parameters Reps and Al enable the user
to select the algorithm that is to be used when G is a permutation or matrix group.
Reps := Q: Create the classes of G by assuming that Q is a sequence of class
representatives for G. The orders and lengths of the classes will be computed and
checked for consistency.
Al := "Action": Create the classes of G by computing the orbits of the set of
elements of G under the action of conjugation. This option is only feasible for small
groups.
Al := "Random": Construct the conjugacy classes of elements for a permutation or
matrix group G using an algorithm that searches for representatives of all conjugacy
classes of G by examining a random selection of group elements and their powers.
The behaviour of this algorithm is controlled by two associated optional parameters
WeakLimit and StrongLimit, whose values are positive integers n1 and n2, say.
Before describing the effect of these parameters, some definitions are needed: A
mapping f : G → I is called a class invariant if f(g) = f(gh) for all g, h ∈ G. For
permutation groups, the cycle structure of g is a readily computable class invariant.
In matrix groups, the primary invariant factors are used where possible, or the
characteristic or minimal polynomials otherwise. Two elements g and h are said
to be weakly conjugate with respect to the class invariant f if f(g) = f(h). By
definition, conjugacy implies weak conjugacy, but the converse is false. The random
algorithm first examines n1 random elements and their powers, using a test for
weak conjugacy. It then proceeds to examine a further n2 random elements and
their powers, using a test for ordinary conjugacy. The idea behind this strategy
is that the algorithm should attempt to find as many classes as possible using the
very cheap test for weak conjugacy, before employing the more expensive ordinary
conjugacy test to recognize the remaining classes.
Al := "Extend": Construct the conjugacy classes of G by first computing classes
in a quotient G/N and then extending these classes to successively larger quotients
G/H until the classes for G/1 are known. More precisely, a maximal series of
subgroups 1 = G0 < G1 < · · · < Gr = R < G is computed such that R is the
(solvable) radical of G and Gi+1/Gi is elementary abelian. A representation of
G/R is computed using an algorithm of Derek Holt and its classes computed and
represented as elements of G. To extend to the next larger quotient, a group is
computed from each class which acts on the transversal. Each distinct orbit in

1496 FINITE GROUPS Part X

that action gives rise to a new class. To compute the classes of G/R, the default
algorithm (excluding the extension method) is used. The same set of parameters is
passed on, so you can control limits in the random classes method if it is chosen.
The limitations of the algorithm are that R may be trivial, in which case nothing
is done except to call a different algorithm, or one or more of the sections may be
so large as to prohibit computing the action on the transversal. This algorithm is
currently only available for permutation groups.

ClassRepresentative(G, x)

Given a group G for which the conjugacy classes are known and an element x of G,
return the designated representative for the conjugacy class of G containing x.

IsConjugate(G, g, h)

Given a group G and elements g and h belonging to G, return the value true if g
and h are conjugate in G. The function returns a second value if the elements are
conjugate: an element k which conjugates g into h.

IsConjugate(G, H, K)

Given a group G and subgroups H and K belonging to G, return the value true if
G and H are conjugate in G. The function returns a second value if the subgroups
are conjugate: an element z which conjugates H into K.

Exponent(G)

The exponent of the group G.

NumberOfClasses(G)

Nclasses(G)

The number of conjugacy classes of elements for the group G.

PowerMap(G)

Given a group G, construct the power map for G. Suppose that the order of G is m
and that G has r conjugacy classes. When the classes are determined by Magma,
they are numbered from 1 to r. Let C be the set of class indices {1, . . . , r}. The
power map f for G is the mapping

f : C × Z → C

where the value of f(i, j) for i ∈ C and j ∈ Z is the number of the class which
contains xj

i , where xi is a representative of the i-th conjugacy class.

Ch. 57 GROUPS 1497

Example H57E18

The conjugacy classes of the Mathieu group M11 can be constructed as follows:

> M11 := sub<Sym(11) | (1,10)(2,8)(3,11)(5,7), (1,4,7,6)(2,11,10,9)>;

> Classes(M11);

Conjugacy Classes of group M11

[1] Order 1 Length 1

Rep Id(M11)

[2] Order 2 Length 165

Rep (3, 10)(4, 9)(5, 6)(8, 11)

[3] Order 3 Length 440

Rep (1, 2, 4)(3, 5, 10)(6, 8, 11)

[4] Order 4 Length 990

Rep (3, 6, 10, 5)(4, 8, 9, 11)

[5] Order 5 Length 1584

Rep (1, 3, 6, 2, 8)(4, 7, 10, 9, 11)

[6] Order 6 Length 1320

Rep (1, 11, 2, 6, 4, 8)(3, 10, 5)(7, 9)

[7] Order 8 Length 990

Rep (1, 4, 5, 6, 2, 7, 11, 10)(8, 9)

[8] Order 8 Length 990

Rep (1, 7, 5, 10, 2, 4, 11, 6)(8, 9)

[9] Order 11 Length 720

Rep (1, 11, 9, 10, 4, 3, 7, 2, 6, 5, 8)

[10] Order 11 Length 720

Rep (1, 9, 4, 7, 6, 8, 11, 10, 3, 2, 5)

1498 FINITE GROUPS Part X

57.11 Conjugacy Classes of Subgroups
Magma contains a new algorithm for computing representatives of the conjugacy classes
of subgroups. Let R denote the maximal normal soluble subgroup of the finite group G.
The algorithm first constructs representatives for the conjugacy classes of subgroups of
Q = G/R, and then successively extends these to larger and larger quotients of G until
G itself is reached. If G is soluble, then Q is trivial and so its subgroups are known. If
G is non-soluble, we attempt to locate the quotient in a database of groups with trivial
Fitting subgroup. This database contains all such groups of order up to 216 000, and all
such which are perfect of order up to 1 000 000. If Q is found then either all its subgroups,
or its maximal subgroups are read from the database. (In some cases only the maximal
subgroups are stored.) If Q is not found then we attempt to find the maximal subgroups
of Q using a method of Derek Holt. For this to succeed all simple factors of the socle
of Q must be found in a second database which currently contains all simple groups of
order less than 1.6× 107, as well as M24, HS, J3, McL, Sz(32) and L6(2). There are also
special routines to handle numerous other groups. These include: An for n ≤ 999, L2(q),
L3(q), L4(q) and L5(q) for all q, S4(q), U3(q) and U4(q) for all q, Ld(2) for d ≤ 14, and the
following groups: L6(3), L7(3), U6(2), S8(2), S10(2), O±8 (2), O±10(2), S6(3), O7(3), O−8 (3),
G2(4), G2(5), 3D4(2), 2F4(2)′, Co2, Co3, He, Fi22.

If we have only maximal subgroups of Q, and more are required, we apply the algorithm
recursively to the maximal subgroups to determine all subgroups of Q. This may take some
time.

57.11.1 Conjugacy Classes of Subgroups
In this section we describe the functions that allow a user to create representatives of
the conjugacy classes of subgroups, possibly subject to conditions. The main function,
Subgroups, finds representatives for conjugacy classes of subgroups subject to certain user-
supplied conditions on the order. The alternative functions ElementaryAbelianSubgroups
and AbelianSubgroups, CyclicSubgroups, NilpotentSubgroups, SolubleSubgroups,
PerfectSubgroups, NonsolvableSubgroups, SimpleSubgroups and RegularSubgroups
allow the user to construct particular classes of subgroups.

Most of the features described in this section are currently only available for groups in
the category GrpPerm, GrpMat or GrpPC.

SubgroupClasses(G: parameters)

Subgroups(G: parameters)

Representatives for the conjugacy classes of subgroups for the group G. The sub-
groups are returned as a sequence of records where the i-th record contains:
(a)A representative subgroup H for the i-th conjugacy class (field name subgroup).
(b)The order of the subgroup (field name order).
(c) The number of subgroups in the class (field name length).
(d)[Optionally] A presentation for H (field name presentation).

Presentation BoolElt Default : false

Ch. 57 GROUPS 1499

Presentation := true: In the case in which G is a permutation group, construct
a presentation for each subgroup.

OrderEqual RngIntElt Default :

OrderEqual := n: Only construct subgroups having order equal to n.

OrderDividing RngIntElt Default :

OrderDividing := n: Only construct subgroups having order dividing n.

IsNormal BoolElt Default : false

IsNormal := true: Only construct normal subgroups.

IsRegular BoolElt Default : false

IsRegular := true: In the case in which G is a permutation group, only construct
regular subgroups.

LayerSizes SeqEnum Default : see below

LayerSizes := [2, 5, 3, 4, 7, 3, 11, 2, 17, 1] is equivalent to the de-
fault. When constructing an Elementary Abelian series for the group, attempt
to split 2-layers of size gt 25, 3-layers of size gt 34, etc. The implied exponent for
13 is 2 and for all primes greater than 17 the exponent is 1.

ElementaryAbelianSubgroups(G: parameters)

Representatives for the conjugacy classes of elementary abelian subgroups for the
group G. The subgroups are returned as a sequence of records having the same
format as Subgroups. The optional parameters are also the same as for Subgroups.

AbelianSubgroups(G: parameters)

Representatives for the conjugacy classes of abelian subgroups for the group G.
The subgroups are returned as a sequence of records having the same format as
Subgroups. The optional parameters are also the same as for Subgroups.

CyclicSubgroups(G: parameters)

Representatives for the conjugacy classes of cyclic subgroups for the group G.
The subgroups are returned as a sequence of records having the same format as
Subgroups. The optional parameters are also the same as for Subgroups.

NilpotentSubgroups(G: parameters)

Representatives for the conjugacy classes of nilpotent subgroups for the group G.
The subgroups are returned as a sequence of records having the same format as
Subgroups. The optional parameters are also the same as for Subgroups.

1500 FINITE GROUPS Part X

SolubleSubgroups(G: parameters)

SolvableSubgroups(G: parameters)

Representatives for the conjugacy classes of solvable subgroups for the group G.
The subgroups are returned as a sequence of records having the same format as
Subgroups. The optional parameters are also the same as for Subgroups.

NonsolvableSubgroups(G: parameters)

Representatives for the conjugacy classes of nonsolvable subgroups for the group
G. The subgroups are returned as a sequence of records having the same format as
Subgroups. The optional parameters are also the same as for Subgroups.

PerfectSubgroups(G: parameters)

Representatives for the conjugacy classes of perfect subgroups for the group G.
The subgroups are returned as a sequence of records having the same format as
Subgroups. The optional parameters are also the same as for Subgroups.

SimpleSubgroups(G: parameters)

Representatives for the conjugacy classes of non-abelian simple subgroups for the
group G. The subgroups are returned as a sequence of records having the same
format as Subgroups. The optional parameters are also the same as for Subgroups.

RegularSubgroups(G: parameters)

Representatives for the conjugacy classes of regular subgroups for the permutation
group G. The subgroups are returned as a sequence of records having the same
format as Subgroups. The optional parameters are also the same as for Subgroups.

SetVerbose("SubgroupLattice", i)

Turn on verbose printing for the subgroup algorithm. The level i can be 2 for max-
imal printing or 1 for moderate printing. The algorithm works down an elementary
abelian series of the group and at each level, the possible extensions of each subgroup
are listed.

Class(G, H)

Conjugates(G, H)

The G-conjugacy class of subgroups containing the group H.

Ch. 57 GROUPS 1501

Example H57E19

We construct the conjugacy classes of subgroups for the dihedral group of order 12.

> G := DihedralGroup(6);

> S := Subgroups(G);

> S;

Conjugacy classes of subgroups

[1] Order 1 Length 1

Permutation group acting on a set of cardinality 6

Order = 1

Id($)

[2] Order 2 Length 3

Permutation group acting on a set of cardinality 6

(2, 6)(3, 5)

[3] Order 2 Length 3

Permutation group acting on a set of cardinality 6

(1, 4)(2, 3)(5, 6)

[4] Order 2 Length 1

Permutation group acting on a set of cardinality 6

(1, 4)(2, 5)(3, 6)

[5] Order 3 Length 1

Permutation group acting on a set of cardinality 6

(1, 5, 3)(2, 6, 4)

[6] Order 4 Length 3

Permutation group acting on a set of cardinality 6

(2, 6)(3, 5)

(1, 4)(2, 5)(3, 6)

[7] Order 6 Length 1

Permutation group acting on a set of cardinality 6

(1, 5, 3)(2, 6, 4)

(1, 4)(2, 5)(3, 6)

[8] Order 6 Length 1

Permutation group acting on a set of cardinality 6

(2, 6)(3, 5)

(1, 5, 3)(2, 6, 4)

[9] Order 6 Length 1

Permutation group acting on a set of cardinality 6

(1, 4)(2, 3)(5, 6)

(1, 5, 3)(2, 6, 4)

[10] Order 12 Length 1

Permutation group acting on a set of cardinality 6

(2, 6)(3, 5)

(1, 5, 3)(2, 6, 4)

(1, 4)(2, 5)(3, 6)

> // We extract the representative subgroup for class 7

> h := S[7]‘subgroup;

> h;

1502 FINITE GROUPS Part X

Permutation group h acting on a set of cardinality 6

(1, 3, 5)(2, 4, 6)

(1, 4)(2, 5)(3, 6)

57.11.2 The Poset of Subgroup Classes
In addition to finding representatives for conjugacy classes of subgroups, Magma allows
the user to create the poset L of subgroup classes. The elements of the poset correspond
to the conjugacy classes of subgroups. Two lattice elements a and b are joined by an edge
if either some subgroup of the conjugacy class a is a maximal subgroup of some subgroup
of conjugacy class b or vice-versa. The elements of L are called subgroup-poset elements
and are numbered from 1 to n, where n is the cardinality of L. Various functions allow
the user to identify maximal subgroups, normalizers, centralizers and other relatives in the
lattice. Given an element e of L, one can easily create the subgroup H of G corresponding
to e and one can also create the element of L corresponding to a subgroup of G.

The features described in this section are currently only available for groups in the
category GrpPerm or GrpPC.

57.11.2.1 Creating the Poset of Subgroup Classes

SubgroupLattice(G)

Create the poset L of subgroup classes of G.
Properties BoolElt Default : false

Properties := true: As the subgroup classes are put into the poset, record their
abstract type, i.e., elementary abelian, abelian, nilpotent, soluble, simple or perfect.

Centralizers BoolElt Default : false

Centralizers := true: As each subgroup class e is put into the poset, record the
class in which the centralizers of the subgroups of e lie.

Normalizers BoolElt Default : false

Normalizers := true: As each subgroup class e is put into the poset, record the
class in which the normalizers of the subgroups of e lie.

Example H57E20

We create the subgroup poset for the group ASL(2, 3).

> G := ASL(2, 3);

> L := SubgroupLattice(G : Properties := true, Normalizers:= true,

> Centralizers:= true);

> L;

Partially ordered set of subgroup classes

[1] Order 1 Length 1 C = [20] N = [20]

Ch. 57 GROUPS 1503

Maximal Subgroups:

[2] Order 2 Length 9 Cyclic. C = [16] N = [16]

Maximal Subgroups: 1

[3] Order 3 Length 12 Cyclic. C = [14] N = [14]

Maximal Subgroups: 1

[4] Order 3 Length 24 Cyclic. C = [10] N = [10]

Maximal Subgroups: 1

[5] Order 3 Length 4 Cyclic. C = [15] N = [18]

Maximal Subgroups: 1

[6] Order 4 Length 27 Cyclic. C = [6] N = [12]

Maximal Subgroups: 2

[7] Order 6 Length 12 Soluble. C = [3] N = [14]

Maximal Subgroups: 2 5

[8] Order 6 Length 36 Cyclic. C = [8] N = [8]

Maximal Subgroups: 2 3

[9] Order 9 Length 4 Elementary Abelian. C = [9] N = [18]

Maximal Subgroups: 3 5

[10] Order 9 Length 8 Elementary Abelian. C = [10] N = [15]

Maximal Subgroups: 4 5

[11] Order 9 Length 1 Elementary Abelian. C = [11] N = [20]

Maximal Subgroups: 5

[12] Order 8 Length 9 Nilpotent. C = [2] N = [16]

Maximal Subgroups: 6

[13] Order 18 Length 1 Soluble. C = [1] N = [20]

Maximal Subgroups: 7 11

[14] Order 18 Length 12 Soluble. C = [3] N = [14]

Maximal Subgroups: 7 8 9

[15] Order 27 Length 4 Nilpotent. C = [5] N = [18]

Maximal Subgroups: 9 10 11

[16] Order 24 Length 9 Soluble. C = [2] N = [16]

Maximal Subgroups: 8 12

[17] Order 36 Length 3 Soluble. C = [1] N = [19]

Maximal Subgroups: 6 13

[18] Order 54 Length 4 Soluble. C = [1] N = [18]

Maximal Subgroups: 13 14 15

[19] Order 72 Length 1 Soluble. C = [1] N = [20]

Maximal Subgroups: 12 17

[20] Order 216 Length 1 Soluble. C = [1] N = [20]

Maximal Subgroups: 16 18 19

1504 FINITE GROUPS Part X

57.11.2.2 Operations on Subgroup Class Posets
In the following, L is the poset of subgroup classes for a group G.

#L

The cardinality of L, i.e., the number of conjugacy classes of subgroups of G.

L ! i

Create the i-th element of the poset L. The elements of L are sorted so that classes i
and j of groups whose orders oi and oj are the products of ei and ej prime numbers
respectively will be ordered so that i comes before j is ei < ej or ei = ej and oi < oj .

L ! H

Create the element of the poset L corresponding to the subgroup H of the group G.

Bottom(L)

Create the bottom of the poset L, i.e., the element of L corresponding to the trivial
subgroup of G. If the poset was created with restrictions on the type of subgroups
constructed, the bottom of the poset may not be the trivial subgroup.

Top(L)

Create the top of the poset L, i.e., the element of L corresponding to G.

Random(L)

Create a random element of L.

Example H57E21

We create the subgroup lattice of AΓL(1, 8) and locate the Fitting subgroup in the lattice.

> G := AGammaL(1, 8);

> L := SubgroupLattice(G);

> L;

Subgroup Lattice

[1] Order 1 Length 1

Maximal Subgroups:

[2] Order 2 Length 7

Maximal Subgroups: 1

[3] Order 3 Length 28

Maximal Subgroups: 1

[4] Order 7 Length 8

Maximal Subgroups: 1

[5] Order 4 Length 7

Ch. 57 GROUPS 1505

Maximal Subgroups: 2

[6] Order 6 Length 28

Maximal Subgroups: 2 3

[7] Order 21 Length 8

Maximal Subgroups: 3 4

[8] Order 8 Length 1

Maximal Subgroups: 5

[9] Order 12 Length 7

Maximal Subgroups: 3 5

[10] Order 24 Length 7

Maximal Subgroups: 6 8 9

[11] Order 56 Length 1

Maximal Subgroups: 4 8

[12] Order 168 Length 1

Maximal Subgroups: 7 10 11

> F := FittingSubgroup(G);

> F;

Permutation group F acting on a set of cardinality 8

Order = 8 = 2^3

(1, 2)(3, 6)(4, 8)(5, 7)

(1, 6)(2, 3)(4, 7)(5, 8)

(1, 5)(2, 7)(3, 4)(6, 8)

> L!F;

8

We now construct a chain from the bottom to the top of the lattice.

> H := Bottom(L);

> Chain := [H];

> while H ne Top(L) do

> H := Representative(MinimalOvergroups(H));

> Chain := Append(Chain, H);

> end while;

> Chain;

[1, 2, 5, 8, 10, 12]

1506 FINITE GROUPS Part X

57.11.2.3 Operations on Poset Elements
In the following, L is the poset of subgroups for a group G. Elements of L are identified
with the integers [1..#L].

IntegerRing() ! e

The integer corresponding to poset element e.

e eq f

Returns true if and only if poset elements e and f are equal.

e ge f

Returns true if and only if poset element e contains poset element f .

e ge f

Returns true if and only if poset element e strictly contains poset element f .

e le f

e subset f

Returns true if and only if poset element e is contained in poset element f .

e lt f

Returns true if and only if poset element e is strictly contained in poset element f .

57.11.2.4 Class Information from a Conjugacy Class Poset
In the following, L is the poset of subgroups for a group G. Elements of L are identified
with the integers [1..#L].

Group(e)

The subgroup of G that is the chosen class representative corresponding to the
element e of the poset L.

Centraliser(e, f)

Centralizer(e, f)

Given poset elements e and f , return the poset element that corresponds to the
class of subgroups that contains the centralizers of the subgroups of class f (taken
in a subgroup of class e). If no subgroup of class f lies in class e, the construction
fails.

Normaliser(e, f)

Normalizer(e, f)

Given poset elements e and f , return the poset element that corresponds to the
class of subgroups that contain the normalizers of the subgroups of class f (taken
in a subgroup of class e). If no subgroup of class f lies in class e, the construction
fails.

Ch. 57 GROUPS 1507

Length(e)

The number of subgroups in the class corresponding to e.

Order(e)

The order of the subgroup of G corresponding to e.

MaximalSubgroups(e)

The maximal subgroups of e, returned as a set of poset elements.

MinimalOvergroups(e)

The minimal overgroups of e, returned as a set of poset elements.

NumberOfInclusions(e, f)

The number of elements of the conjugacy class of subgroups e that lie in a fixed
representative of the conjugacy class of subgroups f .

57.12 Cohomology

In the following description, G is a group in the category GrpPerm, p is a prime number,
and K is the finite field of order p. Further, F is a finitely presented group having the same
number of generators as G, and is such that its relations are satisfied by the corresponding
generators of G. In other words, the mapping taking the i-th generator of F to the i-th
generator of G must be an epimorphism. Usually this mapping will be an isomorphism,
although this is not mandatory.

pMultiplicator(G, p)

Given the group G and a prime p, return the invariant factors of the p-part of the
Schur multiplicator of G.

pCover(G, F, p)

Given the group G and the finitely presented group F such that G is an epimorphic
image of G in the sense described above, return a presentation for the p-cover of G,
constructed as an extension of the p-multiplier by F .

CohomologicalDimension(G, M, i)

Given the group G, the K[G]-module M and an integer i (equal to 1 or 2), return
the dimension of the i-th cohomology group of G acting on M .

ExtensionProcess(G, M, F)

Create an extension process for the group G by the module M .

1508 FINITE GROUPS Part X

Extension(P, Q)

#NextExtension(P)

Return the next extension of G as defined by the process P .
Assume that F is isomorphic to the permutation group G, and that we wish to
determine presentations for one or more extensions of the K-module M by F ,
where K is the field of p elements. We first create an extension process using
ExtensionProcess(G, M, F). The possible extensions of M by G are in one-one
correspondence with the elements of the second cohomology group H2(G,M) of G
acting on M . Let b1, . . . , bl be a basis of H2(G,M). A general element of H2(G,M)
therefore has the form a1b1 + · · · + albl and so can be defined by a sequence Q
of l integers [a1, . . . , al]. Now, to construct the corresponding extension of M by
G we call the function Extension(P, Q). The required extension is returned as a
finitely presented group. If all the extensions are required then they may be obtained
successively by making pl calls to the function NextExtension.

SplitExtension(G, M, F)

The split extension of the module M by the group G.

57.13 Characters and Representations

A set of functions are provided for computing with the characters and representations of a
group. A full account of the character functions may be found in Chapter 91. Full details
of the functions for constructing and analyzing representations may be found in Chapter
89. For the reader’s convenience we include here a description of the basic functions for
creating characters and representations.

Some functions described in this section may be missing or may have slightly different
calling sequences for some categories of groups. For a complete description of the features
available for a special category of groups, we refer to the chapter devoted to that category.

57.13.1 Character Theory

CharacterDegrees(G)

Given a finite pc-group G, return the sequence [〈d1, c1〉, langled2, c2〉, . . .], where ci
is the number of irreducible characters of G having degree di. For details of the
algorithm see Conlon [Con90b].

CharacterTable(G)

Construct the table of irreducible characters for the group G.

PermutationCharacter(G)

Given a group G represented as a permutation group, construct the character of G
afforded by the defining permutation representation of G.

Ch. 57 GROUPS 1509

PermutationCharacter(G, H)

Given a group G and some subgroup H of G, construct the ordinary character of
G afforded by the permutation representation of G given by the action of G on the
coset space of the subgroup H in G.

57.13.2 Representation Theory
We describe the main functions for creatingK[G]-modules for finite groups. The machinery
for working with these modules is described in Chapter 89.

GModule(G, S)

Let G be a group defined on r generators and let S be a subalgebra of the matrix
algebra Mn(R), also defined by r non-singular matrices. It is assumed that the
mapping from G to S defined by φ : G.i 7→ S.i, for i = 1, . . . , r, extends to a
group homomorphism. Let M be the natural module for the matrix algebra S. The
function GModule gives M the structure of an S[G]-module, where the action of the
i-th generator of G on M is given by the i-th generator of S.

GModule(G, A, B)

Given a finite group G, a normal subgroup A of G and a normal subgroup B of A
such that the section A/B is elementary abelian of order pn, create the K[G]-module
M corresponding to the action of G on A/B, where K is the field Fp. If B is trivial,
it may be omitted. The function returns:
(a) the module M ; and,
(b)the homomorphism φ : A/B →M .

PermutationModule(G, H, R)

Given a finite group G and a ring R, create the R[G]-module for G corresponding
to the permutation action of G on the cosets of H.

PermutationModule(G, R)

Given a finite permutation group G and a ring R, create the natural permutation
module for G over R.

Example H57E22

The permutation module for the group M10 over GF (2) may be created as follows:

> m10 := PermutationGroup< 10 | (1, 3, 9, 10, 2, 8, 7, 6, 4, 5),

> (1, 7)(2, 4, 3, 6, 8, 10, 9, 5) >;

> p := PermutationModule(m10, GF(2));

> p : Maximal;

GModule p of dimension 10 over GF(2)

Generators of acting algebra:

1510 FINITE GROUPS Part X

[0 0 1 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 1 0 0]

[0 0 0 0 0 0 0 0 1 0]

[0 0 0 0 1 0 0 0 0 0]

[1 0 0 0 0 0 0 0 0 0]

[0 0 0 1 0 0 0 0 0 0]

[0 0 0 0 0 1 0 0 0 0]

[0 0 0 0 0 0 1 0 0 0]

[0 0 0 0 0 0 0 0 0 1]

[0 1 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 1 0 0 0]

[0 0 0 1 0 0 0 0 0 0]

[0 0 0 0 0 1 0 0 0 0]

[0 0 1 0 0 0 0 0 0 0]

[0 1 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 1 0 0]

[1 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 1]

[0 0 0 0 1 0 0 0 0 0]

[0 0 0 0 0 0 0 0 1 0]

Example H57E23

The group G defined below is the split extension of an elementary abelian group E of order 16 by
Alt(6). After setting up the group, we construct the module M for G corresponding to its action
on E.

> G := PermutationGroup< 16 |

> (1, 15, 7, 5, 12)(2, 9, 13, 14, 8)(3, 6, 10, 11, 4),

> (1, 4, 5)(2, 8, 10)(3, 12, 15)(6, 13, 11)(7, 9, 14),

> (1, 16)(2, 3)(4, 5)(6, 7)(8, 9)(10, 11)(12, 13)(14, 15) >;

> CS := ChiefSeries(G);

> [Order(H) : H in CS];

[5760, 16, 1]

> M := GModule(G, CS[2]);

> M:Maximal;

GModule M of dimension 4 over GF(2)

Generators of acting algebra:

[0 1 0 0]

[0 1 1 0]

[0 0 1 1]

[1 0 0 1]

[0 0 1 0]

[0 0 0 1]

Ch. 57 GROUPS 1511

[1 0 1 0]

[0 1 0 1]

[1 0 0 0]

[0 1 0 0]

[0 0 1 0]

[0 0 0 1]

57.14 Databases of Groups
Magma contains the following databases of groups:
Small Groups: Contains all groups of order up to 1000, excluding orders 512 and 768.
Perfect Groups: This database contains all perfect groups up to order 50000, and many
classes of perfect groups up to order one million. Each group is defined by means of a
finite presentation. Further information is also provided which allows the construction of
permutation representations.
Rational Maximal Matrix Groups: Contains rational maximal finite matrix groups and
their invariant forms, for small dimensions (up to 31 at V2.9 and above). Each entry can
be accessed either as a matrix group or as a lattice.
Quaternionic Matrix Groups: A database of the finite absolutely irreducible subgroups of
GLn(D) where D is a definite quaternion algebra whose centre has degree d over Q and
nd ≤ 10. Each entry can be accessed either as a matrix group or as a lattice.
Transitive Permutation Groups: Magma has a database containing all transitive permu-
tation groups having degree up to 22.
Primitive Permutation Groups: Magma has a database containing all primitive permuta-
tion groups having degree up to 50.

For a description of these databases, we refer to Chapter 66.

57.15 Bibliography
[Con90] S. B. Conlon. Computing modular and projective character degrees of soluble

groups. J. Symbolic Comp., 9:551–570, 1990.
[LGM02] C. R. Leedham-Green and Scott H. Murray. Variants of product replacement.

Contemp. Math., 298:97–104, 2002.
[Lo98] Eddie H. Lo. Finding intersections and normalizers in finitely generated nilpo-

tent groups. J. Symbolic Comput., 25(1):45–59, 1998.

58 PERMUTATION GROUPS
58.1 Introduction 1519

58.1.1 Terminology 1519

58.1.2 The Category of Permutation Groups1519

58.1.3 The Construction of a Permutation
Group 1519

58.2 Creation of a Permutation Group1520

58.2.1 Construction of the Symmetric
Group 1520

Sym(n) 1520
SymmetricGroup(n) 1520
Sym(X) 1520
SymmetricGroup(X) 1520
StandardGroup(G) 1520

58.2.2 Construction of a Permutation . . 1521

elt< > 1521
! 1521
! 1521
! 1522
! 1522
ElementToSequence(g) 1522
Eltseq(g) 1522
Identity(G) 1522
Id(G) 1522
! 1522
58.2.3 Construction of a General Permuta-

tion Group 1523

PermutationGroup< > 1523
PermutationGroup< > 1523

58.3 Elementary Properties of a
Group 1524

58.3.1 Accessing Group Information . . . 1524

. 1524
Degree(G) 1524
Generators(G) 1524
GeneratorsSequence(G) 1524
NumberOfGenerators(G) 1524
Ngens(G) 1524
FewGenerators(G) 1524
Generic(G) 1524
Parent(g) 1524
GSet(G) 1524

58.3.2 Group Order 1526

Order(G) 1526
1526
FactoredOrder(G) 1526

58.3.3 Abstract Properties of a Group . . 1526

IsAbelian(G) 1526
IsCyclic(G) 1526
IsElementaryAbelian(G) 1526

IsSpecial(G) 1526
IsExtraSpecial(G) 1526
IsNilpotent(G) 1526
IsSoluble(G) 1526
IsSolvable(G) 1526
IsPerfect(G) 1526
IsSimple(G) 1527
IsWreathProduct(G) 1527

58.4 Homomorphisms 1527

hom< > 1528
Domain(f) 1528
Codomain(f) 1528
Image(f) 1528
Kernel(f) 1528
IsHomomorphism(G, H, Q) 1528

58.5 Building Permutation Groups . 1530

58.5.1 Some Standard Permutation Groups 1530

AbelianGroup(GrpPerm, Q) 1530
AlternatingGroup(GrpPerm, n) 1530
AlternatingGroup(n) 1530
Alt(n) 1530
CyclicGroup(GrpPerm, n) 1530
CyclicGroup(n) 1530
DihedralGroup(GrpPerm, n) 1530
DihedralGroup(n) 1530
Sym(GrpPerm, n) 1530
SymmetricGroup(GrpPerm, n) 1530
Sym(n) 1530
SymmetricGroup(n) 1530
ExtraSpecialGroup(GrpPerm, p, n : -) 1531
ExtraSpecialGroup(p, n : -) 1531
YoungSubgroup(L) 1531

58.5.2 Direct Products and Wreath Prod-
ucts 1532

DirectProduct(G, H) 1532
DirectProduct(Q) 1532
PrimitiveWreathProduct(G, H) 1532
PrimitiveWreathProduct(Q) 1532
WreathProduct(G, H) 1533
WreathProduct(Q) 1533
WreathProduct(B) 1533
WreathProduct(G, B) 1533

58.6 Permutations 1534

58.6.1 Coercion 1534

! 1534
!! 1534

58.6.2 Arithmetic with Permutations . . 1534

* 1534
^ 1534
/ 1534

1514 FINITE GROUPS Part X

^ 1535
(g, h) 1535
(g1, ..., gr) 1535

58.6.3 Properties of Permutations 1535

CycleStructure(g) 1535
Degree(g) 1535
IsEven(g) 1535
Sign(g) 1535
Order(g) 1535

58.6.4 Predicates for Permutations . . . 1536

eq 1536
ne 1536
IsId(g) 1536
IsIdentity(g) 1536

58.6.5 Set Operations 1537

* 1537
ElementSet(G, H) 1537
NumberingMap(G) 1537
RandomProcess(G) 1537
Random(G: -) 1537
Random(P) 1538
Representative(G) 1538
Rep(G) 1538

58.7 Conjugacy 1539

Class(H, x) 1539
Conjugates(H, x) 1539
ConjugacyClasses(G: -) 1539
Classes(G: -) 1539
ClassRepresentative(G, x) 1541
ClassCentraliser(G, i) 1542
ClassMap(G: -) 1542
IsConjugate(G, g, h: -) 1542
IsConjugate(G, H, K: -) 1542
Exponent(G) 1543
NumberOfClasses(G) 1543
Nclasses(G) 1543
PowerMap(G) 1543
AssertAttribute(G, "Classes", Q) 1543

58.8 Subgroups 1546

58.8.1 Construction of a Subgroup 1546

sub< > 1546
ncl< > 1547

58.8.2 Membership and Equality 1548

in 1548
notin 1548
subset 1549
notsubset 1549
subset 1549
notsubset 1549
eq 1549
ne 1549

58.8.3 Elementary Properties of a Subgroup1549

Index(G, H) 1549

FactoredIndex(G, H) 1549
IsCentral(G, H) 1549
IsNormal(G, H) 1549
IsSelfNormalizing(G, H) 1550
IsSelfNormalising(G, H) 1550
IsSubnormal(G, H) 1550

58.8.4 Standard Subgroups 1550

^ 1550
Conjugate(H, g) 1550
meet 1550
IntersectionWithNormal

Subgroup(G, N) 1550
CommutatorSubgroup(G, H, K) 1550
CommutatorSubgroup(H, K) 1550
Centralizer(G, g: -) 1551
Centraliser(G, g: -) 1551
Centralizer(G, H) 1551
Centraliser(G, H) 1551
CentralizerOfNormalSubgroup(G, H) 1551
SectionCentraliser(G, H, K) 1551
SectionCentralizer(G, H, K) 1551
Core(G, H) 1551
^ 1551
NormalClosure(G, H) 1551
Normalizer(G, H: -) 1552
Normaliser(G, H: -) 1552
SymmetricNormalizer(G) 1552
SymmetricNormaliser(G) 1552
SylowSubgroup(G, p) 1552
Sylow(G, p) 1552

58.8.5 Maximal Subgroups 1553

IsMaximal(G, H: -) 1553
IsProbablyMaximal(G, H: -) 1554
MaximalSubgroups(G: -) 1554

58.8.6 Conjugacy Classes of Subgroups . . 1555

SubgroupClasses(G: -) 1555
Subgroups(G: -) 1555
SubgroupsLift(G, A, B, Q: -) 1557
LowIndexSubgroups(G, n: -) 1557
LowIndexSubgroups(G, t: -) 1557

58.8.7 Classes of Subgroups Satisfying a
Condition 1560

NormalSubgroups(G: -) 1560
ElementaryAbelianSubgroups(G: -) 1560
CyclicSubgroups(G: -) 1560
AbelianSubgroups(G: -) 1560
NilpotentSubgroups(G: -) 1560
SolvableSubgroups(G: -) 1560
PerfectSubgroups(G: -) 1560
NonsolvableSubgroups(G: -) 1560
SimpleSubgroups(G: -) 1561

58.9 Quotient Groups 1561

58.9.1 Construction of Quotient Groups . 1561

quo< > 1561
/ 1561

Ch. 58 PERMUTATION GROUPS 1515

58.9.2 Abelian, Nilpotent and Soluble Quo-
tients 1562

AbelianQuotient(G) 1562
ElementaryAbelianQuotient(G, p) 1562
pQuotient(G, p, c) 1562
NilpotentQuotient(G, c) 1562
SolvableQuotient(G) 1562
SolubleQuotient(G) 1562

58.10 Permutation Group Actions 1564

58.10.1 G-Sets 1564

58.10.2 Creating a G-Set 1564

GSetFromIndexed(G, Y) 1564
GSet(G, X, Y) 1565
GSet(G, Y) 1565
GSet(G) 1565
GSet(G, Y, f) 1565
Action(Y) 1565
Group(Y) 1565
Labelling(G) 1565
Degree(g, Y) 1565
Degree(g) 1565
Degree(G, Y) 1565
Degree(G) 1565
Support(g, Y) 1566
Support(g) 1566
Support(G, Y) 1566
Support(G) 1566

58.10.3 Images, Orbits and Stabilizers . 1567

^ 1567
Image(g, Y, y) 1567
Image(g, y) 1567
Fix(g, Y) 1567
Fix(g) 1567
Fix(G, Y) 1567
Fix(G) 1567
^ 1567
Cycle(e, x) 1567
CycleDecomposition(e) 1567
Orbit(G, Y, y) 1568
Orbit(G, y) 1568
Orbits(G, Y) 1568
Orbits(G) 1568
OrbitRepresentatives(G) 1568
OrbitClosure(G, Y, S) 1568
OrbitClosure(G, S) 1568
IsConjugate(G, Y, y, z) 1568
IsConjugate(G, y, z) 1568
Stabilizer(G, Y, y) 1569
Stabiliser(G, Y, y) 1569
Stabilizer(G, y) 1569
Stabiliser(G, y) 1569
IsPrimitive(G, Y) 1569
IsPrimitive(G) 1569
IsTransitive(G, Y) 1569
IsTransitive(G) 1569
IsTransitive(G, Y, k) 1569

IsTransitive(G, k) 1569
IsSharplyTransitive(G, Y, k) 1569
IsSharplyTransitive(G, k) 1569
Transitivity(G, Y) 1569
Transitivity(G) 1569
IsRegular(G, Y) 1569
IsRegular(G) 1569
IsSemiregular(G, Y) 1570
IsSemiregular(G) 1570
IsSemiregular(G, Y, S) 1570
IsSemiregular(G, S) 1570
IsFrobenius(G) 1570

58.10.4 Action on a G-Space 1572

Action(G, Y) 1572
ActionImage(G, Y) 1572
ActionKernel(G, Y) 1572
IsFaithful(G, Y) 1572

58.10.5 Action on Orbits 1573

OrbitAction(G, T) 1573
OrbitImage(G, T) 1573
OrbitKernel(G, T) 1573
IsOrbit(G, S) 1573

58.10.6 Action on a G-invariant Partition 1575

IsBlock(G, S) 1575
IsPrimitive(G) 1575
MaximalPartition(G) 1575
MinimalPartition(G: -) 1575
MinimalPartitions(G: -) 1575
AllPartitions(G) 1576
BlocksAction(G, P) 1576
BlocksAction(G, P) 1576
BlocksAction(G, P) 1576
BlocksAction(G, P) 1576
BlocksImage(G, P) 1576
BlocksImage(G, P) 1576
BlocksImage(G, P) 1576
BlocksImage(G, P) 1576
BlocksKernel(G, P) 1576
BlocksKernel(G, P) 1576
BlocksKernel(G, P) 1576
BlocksKernel(G, P) 1576

58.10.7 Action on a Coset Space 1580

CosetAction(G, H: -) 1580
CosetImage(G, H: -) 1580
CosetKernel(G, H) 1580

58.10.8 Reduced Permutation Actions . . 1581

TransitiveQuotient(G) 1581
PrimitiveQuotient(G) 1581
DegreeReduction(G) 1581

58.10.9 The Jellyfish Algorithm 1581

JellyfishConstruction(G: -) 1582
JellyfishImage(G) 1582
JellyfishImage(G, x) 1582
JellyfishPreimage(G, x) 1582

1516 FINITE GROUPS Part X

58.11 Normal and Subnormal
Subgroups 1583

58.11.1 Characteristic Subgroups and Nor-
mal Series 1583

DerivedSeries(G) 1583
CompositionSeries(G) 1583
CommutatorSubgroup(G) 1583
DerivedSubgroup(G) 1583
DerivedGroup(G) 1583
SolubleResidual(G) 1583
SolvableResidual(G) 1583
DerivedLength(G) 1583
LowerCentralSeries(G) 1583
NilpotencyClass(G) 1583
UpperCentralSeries(G) 1583
Centre(G) 1584
Center(G) 1584
Hypercentre(G) 1584
Hypercenter(G) 1584
pCore(G, p) 1584
pCoreQuotient(G, p) 1584
FittingSubgroup(G) 1584
FrattiniSubgroup(G) 1584
JenningsSeries(G) 1584
pCentralSeries(G, p) 1584
SubnormalSeries(G, H) 1584

58.11.2 Maximal and Minimal Normal
Subgroups 1586

MaximalNormalSubgroup(G) 1586
MinimalNormalSubgroups(G) 1586

58.11.3 Lattice of Normal Subgroups . . 1586

NormalSubgroups(G) 1586
NormalLattice(G) 1586

58.11.4 Composition and Chief Series . . 1587

ChiefFactors(G) 1587
ChiefSeries(G) 1587
CompositionFactors(G) 1588

58.11.5 The Socle 1590

Socle(G) 1590
SocleFactor(G) 1590
SocleFactors(G) 1590
SocleSeries(G) 1590
EARNS(G) 1590
IsAffine(G) 1590
AffineAction(G) 1591
AffineImage(G) 1591
AffineKernel(G) 1591
SocleAction(G) 1591
SocleImage(G) 1591
SocleKernel(G) 1591
SocleQuotient(G) 1591
RefineSection(G, M, N) 1592

58.11.6 The Soluble Radical and its Quo-
tient 1593

Radical(G) 1593

SolubleRadical(G) 1593
SolvableRadical(G) 1593
RadicalQuotient(G) 1594
ElementaryAbelianSeries(G: -) 1594
ElementaryAbelianSeries(G, N: -) 1594
ElementaryAbelianSeriesCanonical(G) 1594

58.11.7 Complements and Supplements . 1595

Complements(G, M) 1595
Complements(G, M, N) 1595
HasComplement(G, M) 1596
Supplements(G, M) 1596
Supplements(G, M, N) 1596
HasSupplement(G, M) 1596

58.11.8 Abelian Normal Subgroups . . . 1597

AbelianNormalSubgroup(G) 1597
AbelianNormalQuotient(G, H) 1597
SolubleNormalQuotient(G, H) 1597
ElementaryAbelianNormalSubgroup(G) 1597
pElementaryAbelian

NormalSubgroup(G, p) 1598
MEANS(G) 1598
MEANS(G, N) 1598

58.12 Cosets and Transversals . . 1598

58.12.1 Cosets 1598

* 1598
DoubleCoset(G, H, g, K) 1598
DoubleCosetRepresentatives(G, H, K) 1598
ProcessLadder(L, G, U) 1598
GetRep(p, R) 1598
DeleteData(R) 1599
YoungSubgroupLadder(L) 1599
StabilizerLadder(G, d) 1599
in 1599
notin 1599
eq 1599
ne 1599
1599
CosetTable(G, H) 1599
#CosetTable(G, f) 1599

58.12.2 Transversals 1600

Transversal(G, H) 1600
RightTransversal(G, H) 1600
TransversalProcess(G, H) 1600
TransversalProcessRemaining(P) 1600
TransversalProcessNext(P) 1600
ShortCosets(p, H, G) 1600

58.13 Presentations 1600

58.13.1 Generators and Relations 1601

FPGroup(G) 1601
FPQuotient(G, N) 1601
FPGroupStrong(G: -) 1601

58.13.2 Permutations as Words 1601

WordGroup(G) 1602
InverseWordMap(G) 1602
ActingWord(G, x, y) 1602

Ch. 58 PERMUTATION GROUPS 1517

58.14 Automorphism Groups . . . 1602

AutomorphismGroup(G: -) 1602
IsIsomorphic(G, H: -) 1602

58.15 Cohomology 1604

pMultiplicator(G, p) 1604
pCover(G, F, p) 1604
CohomologicalDimension(G, M, i) 1604
ExtensionProcess(G, M, F) 1604
Extension(P, Q) 1604
#NextExtension(P) 1604
SplitExtension(G, M, F) 1604

58.16 Representation Theory . . . 1606

CharacterTable(G: -) 1606
PermutationCharacter(G) 1607
PermutationCharacter(G, H) 1607
GModule(G, S) 1607
GModule(G, A, B) 1607
PermutationModule(G, H, R) 1607
PermutationModule(G, R) 1607

58.17 Identification 1608
58.17.1 Identification as an Abstract

Group 1608

NameSimple(G) 1608

58.17.2 Identification as a Permutation
Group 1608

IsAlternating(G) 1608
IsSymmetric(G) 1608
IsAltsym(G) 1609
TwoTransitiveGroupIdentification(G) 1609
RecogniseAlternatingOrSymmetric(G, n) 1609
IsEven(G) 1609
RecogniseSymmetric(G, n: -) 1610
SymmetricElementToWord (G, g) 1610
RecogniseAlternating(G, n: -) 1611
AlternatingElementToWord (G, g) 1611
GuessAltsymDegree(G: -) 1611

58.18 Base and Strong Generating
Set 1613

58.18.1 Construction of a Base and Strong
Generating Set 1613

BSGS(G) 1613
SimsSchreier(G: -) 1613
RandomSchreier(G: -) 1614
ToddCoxeterSchreier(G: -) 1614
SolubleSchreier(G: -) 1614
SolvableSchreier(G: -) 1614
Verify(G: -) 1614

58.18.2 Defining Values for Attributes . . 1616

AssertAttribute(G, "Order", n) 1616
AssertAttribute(G, "Order", Q) 1616
#AssertAttribute(G, "BSGS", S) 1616

58.18.3 Accessing the Base and Strong
Generating Set 1617

Base(G) 1617
BasePoint(G, i) 1617
BasicOrbit(G, i) 1617
BasicOrbits(G) 1617
BasicOrbitLength(G, i) 1617
BasicOrbitLengths(G) 1617
BasicStabilizer(G, i) 1617
BasicStabiliser(G, i) 1617
BasicStabilizerChain(G) 1617
BasicStabiliserChain(G) 1617
IsMemberBasicOrbit(G, i, a) 1617
NumberOfStrongGenerators(G) 1618
Nsgens(G) 1618
NumberOfStrongGenerators(G, i) 1618
Nsgens(G, i) 1618
SchreierVectors(G) 1618
SchreierVector(G, i) 1618
StrongGenerators(G) 1618
StrongGenerators(G, i) 1618

58.18.4 Working with a Base and Strong
Generating Set 1618

BaseImage(x) 1618
Permutation(G, Q) 1618
SVPermutation(G, i, a) 1618
SVWord(G, i, a) 1619
Strip(H, x) 1619
WordStrip(H, x) 1619
BaseImageWordStrip(H, x) 1619
WordInStrongGenerators(H, x) 1619

58.18.5 Modifying a Base and Strong Gen-
erating Set 1620

ChangeBase(∼G, Q) 1620
AddNormalizingGenerator(∼H, x) 1620
ReduceGenerators(∼G) 1620

58.19 Permutation Representations
of Linear Groups 1620

AffineGeneralLinearGroup(arg) 1620
AGL(arg) 1620
AffineSpecialLinearGroup(arg) 1621
ASL(arg) 1621
AffineGammaLinearGroup(arg) 1621
AGammaL(arg) 1621
AffineSigmaLinearGroup(arg) 1621
ASigmaL(arg) 1621
ProjectiveGeneralLinearGroup(arg) 1621
PGL(arg) 1621
ProjectiveSpecialLinearGroup(arg) 1621
PSL(arg) 1621
ProjectiveGammaLinearGroup(arg) 1622
PGammaL(arg) 1622
ProjectiveSigmaLinearGroup(arg) 1622
PSigmaL(arg) 1622
ProjectiveGeneralUnitaryGroup(arg) 1622
PGU(arg) 1622
ProjectiveSpecialUnitaryGroup(arg) 1622
PSU(arg) 1623
ProjectiveGammaUnitaryGroup(arg) 1623

1518 FINITE GROUPS Part X

PGammaU(arg) 1623
ProjectiveSigmaUnitaryGroup(arg) 1623
PSigmaU(arg) 1623
ProjectiveSymplecticGroup(arg) 1623
PSp(arg) 1623
ProjectiveSigmaSymplecticGroup(arg) 1623
PSigmaSp(arg) 1623
ProjectiveGeneral

OrthogonalGroup(arg) 1624
PGO(arg) 1624
ProjectiveGeneral

OrthogonalGroupPlus(arg) 1624
PGOPlus(arg) 1624
ProjectiveGeneral

OrthogonalGroupMinus(arg) 1624
PGOMinus(arg) 1624
ProjectiveSpecial

OrthogonalGroup(arg) 1624
PSO(arg) 1624
ProjectiveSpecial

OrthogonalGroupPlus(arg) 1625
PSOPlus(arg) 1625
ProjectiveSpecial

OrthogonalGroupMinus(arg) 1625
PSOMinus(arg) 1625
ProjectiveOmega(arg) 1625
POmega(arg) 1625
ProjectiveOmegaPlus(arg) 1625
POmegaPlus(arg) 1625
ProjectiveOmegaMinus(arg) 1626
POmegaMinus(arg) 1626
ProjectiveSuzukiGroup(arg) 1626
PSz(arg) 1626
AffineGroup(M) 1626

58.20 Permutation Group Databases1626

58.21 Ordered Partition Stacks . . 1627
58.21.1 Construction of Ordered Partition

Stacks 1627

OrderedPartitionStack(n) 1627
OrderedPartitionStackZero(n, h) 1627

58.21.2 Properties of Ordered Partition
Stacks 1627

Degree(P) 1627
Height(P) 1627
NumberOfCells(P, h) 1627
CellNumber(P, h, x) 1627
CellSize(P, h, i) 1628
Cell(P, h, i) 1628
Random(P, i) 1628
Representative(P, i) 1628
Rep(P, i) 1628
ParentCell(P, i) 1628

58.21.3 Operations on Ordered Partition
Stacks 1628

SplitCell(P, i, x) 1628
SplitCell(P, i, Q) 1628
SplitAllByValues(P, V) 1629
SplitCellsByValues(P, C, V) 1629
SplitCellsByValues(P, i, V) 1629
Pop(P) 1629
Pop(P, h) 1629
Advance(X, L, P, h) 1629

58.22 Bibliography 1630

Chapter 58

PERMUTATION GROUPS

58.1 Introduction

58.1.1 Terminology
A permutation group G is a group of bijections X → X, for some set X. The group G is
said to act on X and the elements of G are called permutations (of the set X). A given
permutation group G may have actions on sets other than the one on which it is defined.
Thus, any set upon which G has a legitimate action will be called a G-set. The set X is
called the natural G-set for the group G, and the action of G on X is called the natural
action of G. Note that the group G also has a natural induced action on the G-closure
of any derived set of X (see Section 14.8.1). Magma expects the G-set X to be of finite
cardinality n. Usually, X will be {1, 2, . . . , n}, but, as we shall see below, X may be a set
of strings, or any other legitimate Magma set.

The elements of a G-set are called points. Let Y be a G-set for G. The (possibly empty)
subset of Y whose points are fixed by every permutation of G, is called the fixed-point set
for G, while the subset of Y consisting of points moved by some permutation of G is called
the support of G. Similarly, for an element g of G the fixed-point set and the support of
g are, respectively, the subsets of Y consisting of the points fixed and moved by g. The
degree of G is defined to be the cardinality of the natural G-set of G; whereas the degree
of an element g of G is defined to be the cardinality of the support of g, i.e. the number
of points moved by g.

Permutation groups in Magmaare limited to degree less than 230.

58.1.2 The Category of Permutation Groups
The family of all permutation groups of finite degree forms a category. The objects are
the permutation groups and the morphisms are group homomorphisms. The Magma
designation for this category of permutation groups is GrpPerm.

58.1.3 The Construction of a Permutation Group
Every permutation group acting on a setX is created as a subgroup of the symmetric group
Sym(X). Thus, the construction of a general permutation group is a two-step process:

(i) The appropriate symmetric group, Sym(X), is constructed;

(ii)The required group G is then defined as a subgroup of Sym(X).
For convenience, a constructor PermutationGroup< ... >, which combines these two
steps, is provided.

1520 FINITE GROUPS Part X

58.2 Creation of a Permutation Group

58.2.1 Construction of the Symmetric Group

Sym(n)

SymmetricGroup(n)

Given an integer n ≥ 1, create the generic permutation group acting on the natural
G-set Ω = {1, 2, . . . , n}, i.e. the symmetric group Sym(Ω). Initially, only a structure
table is created for Sym(n), so that, in particular, generators are not defined. This
function is normally used to provide a context for the creation of elements and
subgroups of Sym(n). If structural computation is attempted with the group created
by Sym(n), then generators will be created dynamically.

Sym(X)

SymmetricGroup(X)

Given a finite set X of cardinality n ≥ 1, create the generic group G of permutations
of X – the symmetric group Sym(X). Initially, only a structure table is created
for Sym(X), so that, in particular, generators are not defined. This function is
normally used to provide a context for the creation of elements and subgroups
of Sym(X). If structural computation is attempted with the group created by
Sym(X), then generators will be created dynamically. Although the group G is
defined on the set X, G is represented internally as a group of permutations of the
set Ω = {1, 2, . . . , n}. Translation between X and Ω is done at input/output time.
The precise representation can be found by using the Labelling function. If X is
an indexed set then the indexing of elements of X determines the correspondence.

StandardGroup(G)

Return a group H isomorphic to G, but acting on the standard set { 1, . . . , n}.
This function is useful when the natural G-set for G is not the standard set. If the
natural G-set for G is the standard set, G is returned. The isomorphism from G to
H is also returned.

Example H58E1

We define the symmetric group on the set of strings { “a”“b”“c”“d”}:
> S4 := Sym({ "a", "b", "c", "d" });
> S4;

Symmetric group S4 acting on a set of cardinality 4

Order = 24 = 2^3 * 3

> GSet(S4);

GSet{@ c, b, a, d @}
We define the symmetric group of degree 10 acting on the set {0, 1, . . . , 9}.
> G := Sym({ 0..9 });

Ch. 58 PERMUTATION GROUPS 1521

> G;

Symmetric group G acting on a set of cardinality 10

Order = 3628800 = 2^8 * 3^4 * 5^2 * 7

> GSet(G);

GSet{@ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 @}

58.2.2 Construction of a Permutation
Throughout this subsection we shall assume that the permutation group G has natural
G-set X.

elt< G | L >

Given a permutation group G defined as acting on the set X = {x1, . . . , xn} of
cardinality n ≥ 1, and a list L of distinct elements a1, a2, . . . , an of X, construct
the element g of G defined by xi → ai, for i = 1, . . . , n. Unless G is known to
be the generic permutation group of degree n, the permutation will be tested for
membership of G, and if g is not an element of G, the function will fail. If g does lie in
G, g will have G as its parent. Since the membership test may involve constructing
a base and strong generating set for G, this constructor may occasionally be very
costly. Hence, a permutation g should be defined as an element of a subgroup of
the generic group only when membership of G is required by subsequent operations
involving g.

G ! Q

Given a permutation group G defined as acting on the set X = {x1, . . . , xn} of
cardinality n ≥ 1, and a sequence Q = [a1, a2, . . . , an] of distinct elements of X,
construct the permutation g of X defined by xi → ai, for i = 1, . . . , n. This permu-
tation will have G as its parent structure. As in the case of the elt-constructor, the
operation will fail if g is not an element of G and the same observations concerning
the cost of membership testing apply.

G ! (...)(...)...(...)

Given a permutation group G defined as acting on the set X = {x1, x2, . . . , xn},
construct the permutation g corresponding to the given product of cycles. Adja-
cent letters must be separated by commas. Further, cycles of length one must be
omitted. The coercion operator ! may be omitted only within the context of the
standard constructors sub<>, ncl<> and quo<>. Once the permutation g has been
constructed, it will be tested for membership in G. If it is not a member, the
construction fails.

1522 FINITE GROUPS Part X

G ! \(...)(...)...(...)

Given a permutation group G defined as acting on the set X = {1..n}, construct
the permutation g corresponding to the given product of literal cycles of integers.
Adjacent integers must be separated by commas. Once the permutation g has been
constructed, it will be tested for membership in G. If it is not a member, the
construction fails. This construction is strongly recommended when creating large
permutations to avoid overhead in constructing unnecessarily large parse trees by
Magma.

G ! Q

Given a permutation group G defined as acting on the set X = {1..n}, construct
the permutation g corresponding to the given product of cycles. The indexed sets
in Q must be disjoint subsets of X, which are interpreted as the disjoint cycles of
the permutation being constructed. Cycles of length 1 may be omitted, but do not
have to be omitted. Once the permutation g has been constructed, it will be tested
for membership in G. If it is not a member, the construction fails. Note that the
Cycle function produces results suitable for use as members of Q.

ElementToSequence(g)

Eltseq(g)

The sequence Q of images of the G-set of g. In particular, it has the property that
Parent(g)!Eltseq(g) eq g.

Identity(G)

Id(G)

G ! 1

Construct the identity permutation in the permutation group G.

Example H58E2

The three different constructions are illustrated by the following code, which assigns to each of
the variables x, y and z the permutation (1)(2,3)(4,5,6).

> S6 := Sym(6);

> x := elt<S6 | 1,3,2,5,6,4>;

> x;

(2, 3)(4, 5, 6)

> y := S6![1,3,2,5,6,4];

> y;

(2, 3)(4, 5, 6)

> z := S6!(2,3)(4,5,6);

> z;

(2, 3)(4, 5, 6)

> S6!1;

Id(S6)

Ch. 58 PERMUTATION GROUPS 1523

58.2.3 Construction of a General Permutation Group

PermutationGroup< X | L >

Suppose that the cardinality of the set X is n. Construct the permutation group G
acting on the set X generated by the permutations defined by the list L. A term of
the list L must be an object of one of the following types:

(a)A sequence of n elements of X defining a permutation of X (note that this is
only well-defined when X is an indexed set);

(b)A set or sequence of sequences of type (a);

(c) An element of Sym(X);

(d)A set or sequence of elements of Sym(X);

(e) A subgroup of Sym(X);

(f) A set or sequence of subgroups of Sym(X).

Each element or group specified by the list must belong to the same generic permu-
tation group. The group G will be constructed as a subgroup of some group which
contains each of the elements and groups specified in the list.

The generators of G consist of the elements specified by the terms of the list L
together with the stored generators for groups specified by terms of the list.

The PermutationGroup constructor is shorthand for the two statements:
SX := Sym(X); G := sub< SX | L >;

where sub< ... > is the subgroup constructor described in the next subsection.

PermutationGroup< n | L >

Construct the permutation group G acting on the set X = {1, 2, . . . , n} generated
by the permutations defined by the list L. The possibilities for the terms of the list
L are the same as for the constructor PermutationGroup< X | L >.

Example H58E3

The Hessian group generated by the permutations (1, 2, 4)(5, 6, 8)(3, 9, 7) and (4, 5, 6)(7, 9, 8) may
be created by the statement:

> H := PermutationGroup< 9 | (1,2,4)(5,6,8)(3,9,7), (4,5,6)(7,9,8) >;

> H;

Permutation group H acting on a set of cardinality 9

(1, 2, 4)(3, 9, 7)(5, 6, 8)

(4, 5, 6)(7, 9, 8)

1524 FINITE GROUPS Part X

58.3 Elementary Properties of a Group

58.3.1 Accessing Group Information
The functions in this group provide access to basic information stored for a permutation
group G.

G . i

The i-th defining generator for G. A negative subscript indicates that the inverse
of the generator is to be created. The identity element of G will be created by G.0.

Degree(G)

The degree of the permutation group G.

Generators(G)

A set of elements of G that generate G.

GeneratorsSequence(G)

The sequence of elements used to define the group G. Any occurrences of the
identity element or any repetitions of a generator, as removed by Generators(G),
are retained in this sequence. This function has the same effect as the expression
[G.i : i in [1..Ngens(G)]] .

NumberOfGenerators(G)

Ngens(G)

The number of defining generators for G.

FewGenerators(G)

A typically short sequence of random elements generating the group. Especially
when groups are generated as subgroups, the result of FewGenerators is a much
shorter sequence than returned by GeneratorsSequence.

Generic(G)

The generic group containing G, i.e. the symmetric group in which G is naturally
embedded.

Parent(g)

The parent group G for the permutation g.

GSet(G)

The natural G-set for the permutation group G.

Ch. 58 PERMUTATION GROUPS 1525

Example H58E4

Consider the group G of order 648 generated by the permutations (1,6,7)(2,5,8,3,4,9)(11,12) and
(1,3)(4,9,12)(5,8,10,6,7,11).

> G := PermutationGroup< 12 | (1,6,7)(2,5,8,3,4,9)(11,12),

> (1,3)(4,9,12)(5,8,10,6,7,11) >;

> G;

Permutation group G acting on a set of cardinality 12

(1, 6, 7)(2, 5, 8, 3, 4, 9)(11, 12)

(1, 3)(4, 9, 12)(5, 8, 10, 6, 7, 11)

> G.1;

(1, 6, 7)(2, 5, 8, 3, 4, 9)(11, 12)

> G.1*G.2;

(1, 7, 3, 9, 2, 8)(4, 12, 5, 10, 6, 11)

> Degree(G);

12

> GSet(G);

GSet{@ 1 .. 12 @}
> Generic(G);

Symmetric group acting on a set of cardinality 12

Order = 479001600 = 2^10 * 3^5 * 5^2 * 7 * 11

> Generators(G);

{
(1, 6, 7)(2, 5, 8, 3, 4, 9)(11, 12),

(1, 3)(4, 9, 12)(5, 8, 10, 6, 7, 11)

}
> Ngens(G);

2

> x := G ! (1,6,7)(2,5,8,3,4,9)(11,12);

> x;

(1, 6, 7)(2, 5, 8, 3, 4, 9)(11, 12)

> Parent(x);

Permutation group G acting on a set of cardinality 12

Order = 648 = 2^3 * 3^4

(1, 6, 7)(2, 5, 8, 3, 4, 9)(11, 12)

(1, 3)(4, 9, 12)(5, 8, 10, 6, 7, 11)

]

1526 FINITE GROUPS Part X

58.3.2 Group Order
Unless the order is already known, each of the functions in this family will create a base
and strong generating set for the group if one does not already exist.

Order(G)

#G

The order of the group G as an integer. If the order is not currently known, a base
and strong generating set will be constructed for G.

FactoredOrder(G)

The order of the groupG returned as a factored integer. The factorization is returned
in the form of a sequence Q which is defined as follows: If #G = pe1

1 . . . pen
n , ei 6= 0,

then Q will be the integer sequence [< p1, e1 >, . . . , < pn, en >]. If the order of G is
not known, it will be computed.

58.3.3 Abstract Properties of a Group

IsAbelian(G)

Returns true if the group G is abelian, false otherwise.

IsCyclic(G)

Returns true if the group G is cyclic, false otherwise.

IsElementaryAbelian(G)

Returns true if the group G is elementary abelian, false otherwise.

IsSpecial(G)

Given a p-group G, return true if G is special, false otherwise.

IsExtraSpecial(G)

Given a group G is a p-group G, return true if G is extra-special, false otherwise.

IsNilpotent(G)

Returns true if the group G is nilpotent, false otherwise.

IsSoluble(G)

IsSolvable(G)

Returns true if the group G is soluble, false otherwise. Uses the algorithm of Sims
[Sim90].

IsPerfect(G)

Returns true if the group G is perfect, false otherwise.

Ch. 58 PERMUTATION GROUPS 1527

IsSimple(G)

Returns true if the group G is simple, false otherwise.

IsWreathProduct(G)

Returns true if the group G is isomorphic to a wreath product A o B, where B is
transitive, and false otherwise. If true, then three subgroups of G, call them A,
B, C, are also returned. In this case we have G isomorphic to WreathProduct(A,
CosetImage(B, C)).

Example H58E5

We determine the orders of those subgroups of the Mathieu group M24 which are perfect but
not simple. We use the function PerfectSubgroups which returns a representative from each
conjugacy class of perfect subgroups.

> load m24;

Loading "/home/magma/libs/pergps/m24"

M24 - Mathieu group on 24 letters - degree 24

Order 244 823 040 = 2^10 * 3^3 * 5 * 7 * 11 * 23; Base 1,2,3,4,5,6,7

Group: G

> time S := PerfectSubgroups(G);

Time: 29.460

> [Order(H) : R in S | not IsSimple(H) where H := R‘subgroup];

[120, 120, 120, 180, 180, 240, 240, 336, 336, 336, 336, 504, 720, 1008, 1080,

960, 960, 960, 1344, 1344, 1344, 1920, 2688, 2688, 2688, 2688, 2688, 2880,

3840, 3840, 5760, 10752, 11520, 11520, 40320, 21504, 21504, 32256, 64512,

69120, 322560]

58.4 Homomorphisms

Homomorphisms are a central concept in group theory, and Magma provides extensive
facilities for group homomorphisms. Many useful homomorphisms are returned by con-
structors and intrinsic functions. Examples of these are the quo constructor, the sub
constructor and intrinsic functions such as OrbitAction, BlocksAction, FPGroup and
RadicalQuotient, which are described in more detail elsewhere in this chapter. In this
section we describe how the user may create their own homomorphisms with domain a
permutation group.

1528 FINITE GROUPS Part X

hom< G | L >

Given the permutation group G, construct the homomorphism f : G→ H given by
the generator images in L. H must be a group. The clause L may be any one of
the following types:

(a)A list of elements of H, giving images of the generators of G;

(b)A list of pairs, where the first in the pair is an element of G and the second its
image in H;

(c) A sequence of elements of H, as in (a);

(d)A set or sequence of pairs, as in (b);

Each image element specified by the list must belong to the same group H. In the
cases where pairs are given the given elements of G must generate G.

Domain(f)

The domain of the homomorphism f .

Codomain(f)

The codomain of the homomorphism f .

Image(f)

The image or range of the homomorphism f . This will be a subgroup of the
codomain of f . The algorithm computes the image and kernel simultaneously (see
[LGPS91]).

Kernel(f)

The kernel of the homomorphism f . This will be a normal subgroup of the domain
of f . The algorithm computes the image and kernel simultaneously (see [LGPS91]).

IsHomomorphism(G, H, Q)

Return the value true if the sequence Q defines a homomorphism from the group
G to the group H. The sequence Q must have length Ngens(G) and must contain
elements ofH. The i-th element of Q is interpreted as the image of the i-th generator
of G and the function decides if these images extend to a homomorphism. If so, the
homomorphism is also returned. The algorithm employed is described in [LGPS91].

Ch. 58 PERMUTATION GROUPS 1529

Example H58E6

Consider the group G of order 648 generated by the permutations (1,6,7)(2,5,8,3,4,9)(11,12) and
(1,3)(4,9,12)(5,8,10,6,7,11). We construct a permutation representation of G of degree 8 by con-
sidering the conjugation action of G on one of its elements. We then construct the preimage of a
normal subgroup of the image.

> G := PermutationGroup< 12 | (1,6,7)(2,5,8,3,4,9)(11,12),

> (1,3)(4,9,12)(5,8,10,6,7,11) >;

> #G;

648

> x := G ! (1, 2, 3)(7, 8, 9)(10, 11, 12);

> x_class := {@ x ^ y : y in G @};

> #x_class;

8

> S := SymmetricGroup(8);

> images := [S![Index(x_class, x_class[i]^(G.j)):i in [1..8]] :j in [1..2]];

> f := hom< G -> S | images>;

The map f is the homomorphism of G onto the group induced by the action of the element x.
We computer the images of some elements and then find the image and kernel of f .

> (G.1*G.-2) @ f;

(2, 5, 7)(3, 8, 6)

> ((G.1) @ f) * ((G.2) @ f) ^ -1;

(2, 5, 7)(3, 8, 6)

> H := Image(f);

> H;

Permutation group acting on a set of cardinality 8

Order = 24 = 2^3 * 3

(1, 2, 3, 4, 6, 5)(7, 8)

(1, 2, 8, 4, 6, 7)(3, 5)

> Kernel(f);

Permutation group acting on a set of cardinality 12

Order = 27 = 3^3

(1, 2, 3)(4, 6, 5)(7, 8, 9)(10, 12, 11)

(4, 5, 6)(7, 9, 8)

(7, 9, 8)(10, 11, 12)

We now find the preimage of O2(H) as a subgroup of G.

> pCore(H, 2) @@ f;

Permutation group acting on a set of cardinality 12

Order = 216 = 2^3 * 3^3

(4, 5, 6)(7, 9, 8)

(1, 2, 3)(4, 6, 5)(7, 8, 9)(10, 12, 11)

(1, 4, 2, 5, 3, 6)(7, 12, 9, 11, 8, 10)

(1, 10, 3, 11, 2, 12)(4, 9, 5, 8, 6, 7)

(2, 3)(4, 5)(8, 9)(11, 12)

(7, 9, 8)(10, 11, 12)

1530 FINITE GROUPS Part X

58.5 Building Permutation Groups

Examples of permutation groups are routinely constructed by taking one or more standard
groups and applying some extension procedure to construct a group having the given
groups as subgroups or quotient groups. In the first subsection we describe functions
which construct some well-known groups and in the following subsection we give functions
for constructing direct and wreath products.

58.5.1 Some Standard Permutation Groups
A number of functions are provided which construct various standard groups. The effect of
these functions is to construct the group on some standard set of generating permutations.

AbelianGroup(GrpPerm, Q)

Construct the abelian group defined by the sequence Q = [n1, . . . , nr] of positive
integers. The function constructs the direct product of cyclic groups

Z(n1)× Z(n2)× · · · × Z(nr).

AlternatingGroup(GrpPerm, n)

AlternatingGroup(n)

Alt(n)

Construct the alternating group of degree n on generators (3, 4, . . . , n) and (1, 2, 3),
if n is odd, or (1, 2)(3, 4, . . ., n) and (1, 2, 3), if n is even.

CyclicGroup(GrpPerm, n)

CyclicGroup(n)

Construct the cyclic group of order n with generator (1, 2, . . . , n).

DihedralGroup(GrpPerm, n)

DihedralGroup(n)

Construct the dihedral group of degree n and order 2 ∗ n on generators (1, 2, . . . , n)
and (1, n)(2, n− 1) · · ·.

Sym(GrpPerm, n)

SymmetricGroup(GrpPerm, n)

Sym(n)

SymmetricGroup(n)

Construct the symmetric group of degree n on generators (1, 2, . . . , n) and (1, 2).

Ch. 58 PERMUTATION GROUPS 1531

ExtraSpecialGroup(GrpPerm, p, n : parameters)

ExtraSpecialGroup(p, n : parameters)

Given a small prime p and a small positive integer n, construct an extra-special
group G of order p2n+1 in the category GrpPerm. The isomorphism type of G can
be selected using the parameter Type.

Type MonStgElt Default : “ + ”
Possible values for this parameter are “+” (default) and “−”.
If Type is set to “+”, the function returns for p = 2 the central product of n copies

of the dihedral group of order 8, and for p > 2 it returns the unique extra-special
group of order p2n+1 and exponent p.

If Type is set to “−”, the function returns for p = 2 the central product of a
quaternion group of order 8 and n− 1 copies of the dihedral group of order 8, and
for p > 2 it returns the unique extra-special group of order p2n+1 and exponent p2.

YoungSubgroup(L)

Full RngIntElt Default : false

Given a sequence L of positive integers, compute the Young subgroup parameterized
by L, i.e., the direct product of the symmetric groups on Li points. If the optional
parameter Full is given, construct the group as a subgroup of the symmetric group
on Full elements.

Example H58E7

(1) The abelian group Z2 × Z2 × Z4:

> A := AbelianGroup(GrpPerm, [2, 2, 4]);

> A;

Permutation group A acting on a set of cardinality 8

Order = 16 = 2^4

(1, 2)

(3, 4)

(5, 6, 7, 8)

(2) The alternating group of degree 12:

> A12 := AlternatingGroup(GrpPerm, 12);

> A12;

Permutation group A12 acting on a set of cardinality 12

Order = 239500800 = 2^9 * 3^5 * 5^2 * 7 * 11

(1, 2)(3, 4, 5, 6, 7, 8, 9, 10, 11, 12)

(1, 2, 3)

(3) The cyclic group Z24:

> Z24 := CyclicGroup(GrpPerm, 24);

> Z24;

Permutation group Z24 on a set of cardinality 24

1532 FINITE GROUPS Part X

Order = 24 = 2^3 * 3

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24)

(4) The dihedral group of order 24:

> D12 := DihedralGroup(GrpPerm, 12);

> D12;

Permutation group D12 acting on a set of cardinality 12

Order = 24 = 2^3 * 3

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)

(1, 12)(2, 11)(3, 10)(4, 9)(5, 8)(6, 7)

(5) The symmetric group of degree 8:

> S8 := SymmetricGroup(GrpPerm, 8);

> S8;

Symmetric group S8 acting on a set of cardinality 8

Order = 40320 = 2^7 * 3^2 * 5 * 7

58.5.2 Direct Products and Wreath Products

DirectProduct(G, H)

Given two permutation groups G and H, construct the direct product D of G and
H as an intransitive group having degree equal to the sum of the degrees of G and
H. In addition, the sequences I of inclusions and P of projections are returned,
satisfying I[i] : Ki → D(Ki) and P [i] : D → Ki (where K1 = G,K2 = H and D(K)
is the group K represented naturally as a subgroup of D).

DirectProduct(Q)

Given a sequence Q of n permutation groups, construct the direct product Q[1] ×
Q[2]× . . .×Q[n] as an intransitive group of degree equal to the sum of the degrees
of the groups Q[i], (i = 1, . . . , n). In addition, the sequences I of inclusion and P of
projections are returned, satisfying I[i] : Q[i] → D(Q[i]) and P [i] : D → Q[i] (where
D(K) is the group K represented naturally as a subgroup of D).

PrimitiveWreathProduct(G, H)

Given permutation groups G and H, construct the wreath product G oH of G and
H, where G oH has product action.

PrimitiveWreathProduct(Q)

Given a sequence Q of n permutation groups, construct the iterated wreath product
T = (. . . (Q[1] oQ[2]) o . . . oQ[n]), where T has product action.

Ch. 58 PERMUTATION GROUPS 1533

WreathProduct(G, H)

Given permutation groups G and H, construct the wreath product W = G oH of G
and H, where G oH has imprimitive action. The function also returns the sequence
of Degree(H) inclusions of G into W , the inclusion of H into W and the projection
of W onto H.

WreathProduct(Q)

Given a sequence Q of n permutation groups, construct the iterated wreath product
W = (. . . (Q[1] oQ[2]) o . . . oQ[n]), where W has imprimitive action.

WreathProduct(B)

Given a block system B of some permutation group G, compute the wreath-product
corresponding to B.

WreathProduct(G, B)

Compute the smallest wreath product W to the block system B of G such that
G ⊆ W . Also return the complement as a subgroup of W . The third parameter is
a subgroup which is isomorphic to the action within a block.

Example H58E8

We define G to be the symmetric group of degree 4 and H to be the dihedral group of order 8.
We then proceed to form the direct, primitive-wreath and wreath products of G and H.

> G := SymmetricGroup(GrpPerm, 4);

> H := DihedralGroup(GrpPerm, 3);

> D := DirectProduct(G, H);

> D;

Permutation group D acting on a set of cardinality 7

Order = 144 = 2^4 * 3^2

(1, 2, 3, 4)

(1, 2)

(5, 6, 7)

(5, 6)

> T := PrimitiveWreathProduct(G, H);

> T;

Permutation group T acting on a set of cardinality 64

Order = 82944 = 2^10 * 3^4

(2, 5, 17)(3, 9, 33)(4, 13, 49)(6, 21, 18)(7, 25, 34)(8, 29, 50)

(10, 37, 19) (11, 41, 35)(12, 45, 51) (14, 53, 20)(15, 57, 36)

(16, 61, 52)(23, 26, 38) (24, 30, 54)(27, 42, 39)(28, 46, 55)

(31, 58, 40) (32, 62, 56)(44, 47, 59)(48, 63, 60)

(2, 5)(3, 9)(4, 13)(7, 10)(8, 14)(12, 15)(18, 21)(19 , 25)(20, 29)

(23, 26)(24, 30)(28, 31)(34, 37)(35 , 41)(36, 45)(39, 42)(40, 46)

(44, 47)(50, 53)(51 , 57)(52, 61)(55, 58)(56, 62)(60, 63)

(1, 2, 3, 4)(5, 6, 7, 8)(9, 10, 11, 12)(13, 14, 15, 16)(17, 18, 19, 20)

(21, 22, 23, 24)(25, 26, 27, 28)(29, 30, 31, 32)(33, 34, 35, 36)

1534 FINITE GROUPS Part X

(37, 38, 39, 40)(41, 42, 43, 44)(45, 46, 47, 48)(49, 50, 51, 52)

(53, 54, 55, 56)(57, 58, 59, 60)(61, 62, 63, 64)

(1, 2)(5, 6)(9, 10)(13, 14)(17, 18)(21, 22)(25, 26)(29, 30)(33, 34)

(37, 38)(41, 42)(45, 46)(49, 50)(53, 54)(57, 58)(61, 62)

> W := WreathProduct(G, H);

> W;

Permutation group W acting on a set of cardinality 12

Order = 82944 = 2^10 * 3^4

(1, 5, 9)(2, 6, 10)(3, 7, 11)(4, 8, 12)

(1, 5)(2, 6)(3, 7)(4, 8)

(1, 2, 3, 4)

(1, 2)

58.6 Permutations

58.6.1 Coercion

G ! g

Given a subgroup G of Sym(X) and a permutation g belonging to Sym(X) that is
contained in G, embed g in G. Thus, this operator changes the parent of g to be G.

G !! H

Given a group H whose natural G-set X is a subset of the natural G-set Y for the
group G, embed H as a subgroup of G. The operator fails if the image of H in
Sym(Y) is not a subgroup of G.

58.6.2 Arithmetic with Permutations

g * h

Product of permutation g and permutation h, where g and h belong to the same
generic group U . If g and h both belong to the same proper subgroup G of U , then
the result will be returned as an element of G; if g and h belong to subgroups H
and K of a subgroup G of U , then the product is returned as an element of G.
Otherwise, the product is returned as an element of U .

g ^ n

The n-th power of the permutation g, where n is a positive, negative or zero integer.

g / h

Product of the permutation g by the inverse of the permutation h, i.e. the element
g ∗ h−1. Here g and h must belong to the same generic group U . The rules for
determining the parent group of g/h are the same as for g ∗ h.

Ch. 58 PERMUTATION GROUPS 1535

g ^ h

Conjugate of the permutation g by the permutation h, i.e. the element h−1 ∗ g ∗ h.
Here g and h must belong to the same generic group U . The rules for determining
the parent group of gh are the same as for g ∗ h.

(g, h)

Commutator of the permutations g and h, i.e. the element g−1 ∗ h−1 ∗ g ∗ h. Here
g and h must belong to the same generic group U . The rules for determining the
parent group of (g, h) are the same as those for g ∗ h.

(g1, ..., gr)

Given r permutations g1, . . . , gr belonging to a common group, return their com-
mutator. Commutators are left-normed, so they are evaluated from left to right.

58.6.3 Properties of Permutations

CycleStructure(g)

Given a permutation g belonging to a group of degree n, return the partition of n
corresponding to the cycles of g. This partition is returned in the form of a sequence
Q of pairs, where the terms of Q correspond to the distinct cycle lengths of g. The
value of the term Q[i] is a tuple < li, ni > belonging to Z×Z. Here li is the length
of a cycle of g and ni is the number of cycles of length li.

Degree(g)

Given a permutation g, return the degree of g, i.e. the number of points moved by
g.

IsEven(g)

Returns true if the permutation g is an even permutation, false otherwise.

Sign(g)

Return 1 if the permutation g is even, return -1 if g is odd.

Order(g)

Order of the permutation g.

1536 FINITE GROUPS Part X

58.6.4 Predicates for Permutations

g eq h

Given permutations g and h belonging to the same generic group, return true if g
and h are the same element, false otherwise.

g ne h

Given permutations g and h belonging to the same generic group, return true if g
and h are distinct elements, false otherwise.

IsId(g)

IsIdentity(g)

Returns true if the permutation g is the identity permutation.

Example H58E9

We illustrate the permutation operations by applying them to some elements of Sym(9).

> G := Sym(9);

> x := G ! (1,2,4)(5,6,8)(3,9,7);

> y := G ! (4,5,6)(7,9,8);

> x*y;

(1, 2, 5, 4)(3, 8, 6, 7)

> x^-1;

(1, 4, 2)(3, 7, 9)(5, 8, 6)

> x^2;

(1, 4, 2)(3, 7, 9)(5, 8, 6)

> x / y;

(1, 2, 6, 9, 8, 4)(3, 7)

> x^y;

(1, 2, 5)(3, 8, 9)(4, 7, 6)

> (x, y);

(1, 7, 3, 6)(4, 5, 9, 8)

> x^y eq y^x;

false

> CycleStructure(x^2*y);

[<6, 1>, <2, 1>, <1, 1>]

> Degree(y);

6

> Order(x^2*y);

6

Ch. 58 PERMUTATION GROUPS 1537

58.6.5 Set Operations
The creation of a base and strong generating set (BSGS) for a permutation group G
provides us with a very compact representation of the set of elements of G. A particular
BSGS imposes an order on the elements of G (lexicographic ordering of base images). It
thus makes sense to talk about the ‘number’ of a group element relative to a particular
BSGS.

G * H

Given permutation groups G and H, where G and H both belong to the same
generic group, form the set product {g ∗h|g ∈ G,h ∈ H} as a set of group elements.

ElementSet(G, H)

Given a group G and a subgroup H of G, return the elements of H in the form of
a set of elements of G. This function is only applicable to very small groups.

NumberingMap(G)

A bijective mapping from the group G onto the set of integers {1 . . . |G|}. The actual
mapping depends upon the base and strong generating set chosen for G.

RandomProcess(G)

Slots RngIntElt Default : 10
Scramble RngIntElt Default : 20

Create a process to generate randomly chosen elements from the finite group G. The
process is based on the product-replacement algorithm of [CLGM+95], modified by
the use of an accumulator. At all times, N elements are stored where N is the
maximum of the specified value for Slots and Ngens(G)+1. Initially, these are just
the generators of G. As well, one extra group element is stored, the accumulator.
Initially, this is the identity. Random elements are now produced by successive
calls to Random(P), where P is the process created by this function. Each such call
chooses one of the elements in the slots and multiplies it into the accumulator. The
element in that slot is replaced by the product of it and another randomly chosen
slot. The random value returned is the new accumulator value. Setting Scramble
:= m causes m such operations to be performed before the process is returned.

Random(G: parameters)

Short BoolElt Default : false

A randomly chosen element for the group G. If a BSGS is known for G, then the
distribution will be uniform over G. If no BSGS is known, then the random element
is chosen by multiplying out a random word in the generators. Since it is usually
not practical to choose words long enough to properly sample the elements of G,
the element returned will usually be biased. The boolean-valued parameter Short
is used in this situation to indicate that a short word will suffice. Thus, if Random is
invoked with Short assigned the value true then the element is constructed using
a short word.

1538 FINITE GROUPS Part X

Random(P)

Given a random element process P created by the function RandomProcess(G) for
the finite group G, construct a random element of G by forming a random product
over the expanded generating set constructed when the process was created. For
large degree groups, or groups for which a BSGS is not known, this function should
be used in preference to Random(G).

Representative(G)

Rep(G)

An element chosen from the permutation group G.

Example H58E10

We use the function NumberingMap to construct the multiplication table for the dihedral group of
order 12.

> G := DihedralGroup(GrpPerm, 6);

> f := NumberingMap(G);

> [[f(x*y) : y in G] : x in G];

[

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],

[2, 3, 4, 5, 6, 1, 12, 7, 8, 9, 10, 11],

[3, 4, 5, 6, 1, 2, 11, 12, 7, 8, 9, 10],

[4, 5, 6, 1, 2, 3, 10, 11, 12, 7, 8, 9],

[5, 6, 1, 2, 3, 4, 9, 10, 11, 12, 7, 8],

[6, 1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 7],

[7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6],

[8, 9, 10, 11, 12, 7, 6, 1, 2, 3, 4, 5],

[9, 10, 11, 12, 7, 8, 5, 6, 1, 2, 3, 4],

[10, 11, 12, 7, 8, 9, 4, 5, 6, 1, 2, 3],

[11, 12, 7, 8, 9, 10, 3, 4, 5, 6, 1, 2],

[12, 7, 8, 9, 10, 11, 2, 3, 4, 5, 6, 1]

]

Example H58E11

We illustrate the use of the function Random using the wreath product of the symmetric group of
degree 4 and the cyclic group of order 6.

> G := WreathProduct(Sym(4), CyclicGroup(GrpPerm, 6));

> G;

Permutation group G acting on a set of cardinality 24

(1, 5, 9, 13, 17, 21)(2, 6, 10, 14, 18, 22) (3, 7, 11, 15, 19, 23)

(4, 8, 12, 16, 20, 24)

(1, 2, 3, 4)

(1, 2)

> Order(G);

Ch. 58 PERMUTATION GROUPS 1539

1146617856

> Random(G);

(1, 17, 12, 4, 18, 10, 3, 20, 9, 2, 19, 11)(5, 22, 13, 6, 21, 15)

(7, 24, 16)(8, 23, 14)

We display the cycle structures of 10 random elements of G.

> R := [CycleStructure(Random(G)) : i in [1..10]];

> R;

[

[<6, 1>, <3, 6>],

[<9, 1>, <6, 2>, <3, 1>],

[<9, 2>, <3, 2>],

[<12, 1>, <9, 1>, <3, 1>],

[<18, 1>, <6, 1>],

[<18, 1>, <6, 1>],

[<12, 1>, <6, 2>],

[<6, 3>, <2, 3>],

[<6, 1>, <4, 3>, <2, 3>],

[<6, 3>, <3, 2>]

]

58.7 Conjugacy

Class(H, x)

Conjugates(H, x)

Given a group H and an element x belonging to a group K such that H and K are
subgroups of the same symmetric group, this function returns the set of conjugates
of x under the action of H. If H = K, the function returns the conjugacy class of
x in H.

ConjugacyClasses(G: parameters)

Classes(G: parameters)

Construct a set of representatives for the conjugacy classes of G. The classes are
returned as a sequence of triples containing the element order, the class length and
a representative element for the class. The parameters Reps and Al enable the user
to select the algorithm that is to be used.

Reps [GrpPermElt] Default :

Reps := Q: Create the classes of G by using the random algorithm but using the
group elements inQ as the “random” elements tried. The element orders and lengths
of the classes will be computed and checked for consistency.

Reps [<GrpPermElt, RngIntElt>]

1540 FINITE GROUPS Part X

Reps := Q Create the classes of G assuming that the first elements of the tuples
in Q form a complete set of conjugacy class representatives and the corresponding
integer is the size of the conjugacy class. The only check performed is that the class
sizes sum to the group order.

Al MonStgElt Default : “Default”

WeakLimit RngIntElt Default : 500

StrongLimit RngIntElt Default : 5000

Al := "Action": Create the classes of G by computing the orbits of the set of
elements of G under the action of conjugation. This option is only feasible for small
groups.
Al := "Random": Construct the conjugacy classes of elements for a permutation
group G using an algorithm that searches for representatives of all conjugacy classes
of G by examining a random selection of group elements and their powers. The
behaviour of this algorithm is controlled by two associated optional parameters
WeakLimit and StrongLimit, whose values are positive integers n1 and n2, say.
Before describing the effect of these parameters, some definitions are needed: A
mapping f : G → I is called a class invariant if f(g) = f(gh) for all g, h ∈ G. For
permutation groups, the cycle structure of g is a readily computable class invariant.
Two elements g and h are said to be weakly conjugate with respect to the class
invariant f if f(g) = f(h). By definition, conjugacy implies weak conjugacy, but
the converse is false. The random algorithm first examines n1 random elements and
their powers, using a test for weak conjugacy. It then proceeds to examine a further
n2 random elements and their powers, using a test for ordinary conjugacy. The idea
behind this strategy is that the algorithm should attempt to find as many classes as
possible using the very cheap test for weak conjugacy, before employing the more
expensive ordinary conjugacy test to recognize the remaining classes.
Al := "Inductive": Use G. Butler’s inductive method to compute the classes. See
Butler [But94] for a description of the algorithm. The action and random algorithms
are used by this algorithm to find the classes of any small groups it is called upon
to deal with.
Al := "Extend": Construct the conjugacy classes of G by first computing classes
in a quotient G/N and then extending these classes to successively larger quotients
G/H until the classes for G/1 are known. More precisely, a series of subgroups
1 = G0 < G1 < · · · < Gr = R < G is computed such that R is the (solvable) radical
of G and Gi+1/Gi is elementary abelian. The radical quotient G/R is computed
and its classes and centralizers of their representatives found and pulled back to G.
The parameters TFAl and ASAl control the algorithm used to compute the classes
of G/R.

To extend from G/Gi+1 to the next larger quotient G/Gi, an affine action of
each centralizer on a quotient of the elementary abelian layer Gi+1/Gi is computed.
Each distinct orbit in that action gives rise to a new class of the larger quotient (see
Mecky and Neubuser [MN89]).

Ch. 58 PERMUTATION GROUPS 1541

Al := "Default": First some special cases are checked for: If IsAltsym(G) then
the classes of G are computed from the partitions of Degree(G). If G is solvable, an
isomorphic representation of G as a pc-group is computed and the classes computed
in that representation. In general, the action algorithm will be used if |G| ≤ 5000,
otherwise the extension algorithm will be applied.

TFAl MonStgElt Default : “Default”

This parameter controls the algorithm used to compute the classes of a group with
trivial Fitting subgroup, such as the group G/R in the description of the "Extend"
method. The possible settings are the same as for Al, except that "Extend" is
not a valid choice. The "Action", "Random" and "Inductive settings behave as
described above. The default algorithm is Derek Holt’s generalisation of the Can-
non/Souvignier fusion method to all classes of the group. The original fusion al-
gorithm used fusion only on classes within a direct product normal subgroup, see
[CS97]. Holt has extended the use of fusion to all conjugacy classes, avoiding the
random part of the Cannon/Souvignier method. This algorithm must use another
algorithm to find the classes of almost simple groups arising from the socle of the
TF-group. The algorithm used for this is controlled by the parameter ASAl.

ASAl MonStgElt Default : “Default”

This parameter controls the algorithm used to compute the classes of an almost
simple group from within the default TF-group algorithm. The possibilities for this
parameter are as for TFAl. The default algorithm first determines if Altsym(G)
is true. If so, classes are deduced from the partitions of Degree(G). Next, if the
order of G is ≤ 5000 then the action algorithm is used. If the socle of G has the
correct order to be PSL(2, q), for some q, then the random algorithm is used on G.
Otherwise the inductive algorithm is used.

Centralisers BoolElt Default : false

A flag to force the storing of the centralisers of the class representatives with the
class table. This does not apply to the action algorithm. In the case of the extension
algorithm, this will do extra work to lift the centralisers through the final elementary
abelian layer.

PowerMap BoolElt Default : false

A flag to force the storing of whatever power map information is produced by the
classes algorithm used. In the case of the extension algorithm, this flag forces the
computation of the full power map en-route, and may take considerably longer than
not doing so. However, it is overall faster to set this flag true when the PowerMap is
going to be computed anyway.

ClassRepresentative(G, x)

Given a group G for which the conjugacy classes are known and an element x of G,
return the designated representative for the conjugacy class of G containing x.

1542 FINITE GROUPS Part X

ClassCentraliser(G, i)

The centraliser of the representative element stored for conjugacy class number i in
group G. The group computed is stored with the class table for reference by future
calls to this function.

ClassMap(G: parameters)

Given a group G, construct the conjugacy classes and the class map f for G. For
any element x of G, f(x) will be the index of the conjugacy class of x in the sequence
returned by the Classes function. If the parameter Orbits is set true, the classes
are computed as orbits of elements under conjugation and the class map is stored
as a list of images of the elements of G (a list of length |G|). This option gives
fast evaluation of the class map but is practical only in the case of very small
groups. With Orbits := false, WeakLimit and StrongLimit are used to control
the random classes algorithm (see function Classes).

IsConjugate(G, g, h: parameters)

Given a group G and elements g and h belonging to G, return the value true if
g and h are conjugate in G. The function returns a second value if the elements
are conjugate: an element k which conjugates g into h. The method used is the
backtrack search of Leon [Leo97]. This search may be speeded considerably by
knowledge of (subgroups of) the centralizers of g and h in G. The parameters relate
to these subgroups.

Centralizer MonStgElt Default : “Default”
LeftSubgroup GrpPerm Default : 〈g〉
RightSubgroup GrpPerm Default : 〈h〉

The LeftSubgroup and RightSubgroup parameters enable the user to supply known
subgroups of the centralizers of g and h respectively to the algorithm. By default, the
cyclic subgroups generated by g and h are the known subgroups. The Centralizer
parameter controls whether the algorithm starts by computing one or both central-
izers in full before the conjugacy test. The "Default" behaviour is to compute
the left centralizer, i.e. CG(g), unless either a left or right subgroup is specified, in
which case no centralizer calculation is done. Other possible values are the four pos-
sibilities "Left" which forces computation of CG(g), "Right" which forces CG(h)
to be computed, "Both" which computes both centralizers, and "None" which will
compute no centralizers.

IsConjugate(G, H, K: parameters)

Given a group G and subgroups H and K of G, return the value true if H and K are
conjugate in G. The function returns a second value if the subgroups are conjugate:
an element z which conjugates H into K. The method used is the backtrack search
of Leon [Leo97].

Compute MonStgElt Default : “Default”

Ch. 58 PERMUTATION GROUPS 1543

This parameter may be set to any of “Both”, “Default”, “Left”, “None”, or
“Right”. This controls which normalisers are computed before starting the conju-
gacy test. The default strategy is currently “Left”, which computes the normalizer
of H in G before starting the conjugacy test between H and K. The greater the
difference between H and K and their normalizers in G, the more helpful to the
search it is to compute their normalizers.

LeftSubgroup GrpPerm Default : H

RightSubgroup GrpPerm Default : K

Instead of having the IsConjugate function compute the normalizers of H and
K, the user may supply any known subgroup of G normalizing H (as LeftSubgroup)
or normalizing K (as RightSubgroup) to be used as the normalizing groups to aid
the search.

Exponent(G)

The exponent of the group G. This is computed as the product of the exponents of
the Sylow subgroups fo G.

NumberOfClasses(G)

Nclasses(G)

The number of conjugacy classes of elements for the group G.

PowerMap(G)

Given a group G, construct the power map for G. Suppose that the order of G is m
and that G has r conjugacy classes. When the classes are determined by Magma,
they are numbered from 1 to r. Let C be the set of class indices {1, . . . , r} and let
Z be the set of integers. The power map f for G is the mapping

f : C × Z → C

where the value of f(i, j) for i ∈ C and j ∈ Z is the number of the class which
contains xj

i , where xi is a representative of the i-th conjugacy class.

AssertAttribute(G, "Classes", Q)

Assert the class representatives of G. The action taken is identical to using the
ConjugacyClasses function described above, with the parameter Reps set to Q.
Thus Q may be a sequence of group elements or a sequence of tuples giving class
representatives and class lengths.

1544 FINITE GROUPS Part X

Example H58E12

The conjugacy classes of the Mathieu group M11 can be constructed as follows:

> SetSeed(2);

> M11 := sub<Sym(11) | (1,10)(2,8)(3,11)(5,7), (1,4,7,6)(2,11,10,9)>;

> Classes(M11);

Conjugacy Classes of group M11

[1] Order 1 Length 1

Rep Id(M11)

[2] Order 2 Length 165

Rep (3, 10)(4, 9)(5, 6)(8, 11)

[3] Order 3 Length 440

Rep (1, 2, 4)(3, 5, 10)(6, 8, 11)

[4] Order 4 Length 990

Rep (3, 6, 10, 5)(4, 8, 9, 11)

[5] Order 5 Length 1584

Rep (1, 3, 6, 2, 8)(4, 7, 10, 9, 11)

[6] Order 6 Length 1320

Rep (1, 11, 2, 6, 4, 8)(3, 10, 5)(7, 9)

[7] Order 8 Length 990

Rep (1, 4, 5, 6, 2, 7, 11, 10)(8, 9)

[8] Order 8 Length 990

Rep (1, 7, 5, 10, 2, 4, 11, 6)(8, 9)

[9] Order 11 Length 720

Rep (1, 11, 9, 10, 4, 3, 7, 2, 6, 5, 8)

[10] Order 11 Length 720

Rep (1, 9, 4, 7, 6, 8, 11, 10, 3, 2, 5)

Example H58E13

The default values for the random class algorithm are adequate for a large variety of groups. We
look at what happens when we vary the parameters in the case of the Higman-Sims simple group
represented on 100 letters. In this case the default strategy reduces to a random search. The
first choice of parameters does not look at enough random elements. Increasing the limit on the
number of random elements examined will ensure the algorithm succeeds.

> G := sub<Sym(100) |

Ch. 58 PERMUTATION GROUPS 1545

> (2,8,13,17,20,22,7)(3,9,14,18,21,6,12)(4,10,15,19,5,11,16)

> (24,77,99,72,64,82,40)(25,92,49,88,28,65,90)(26,41,70,98,91,38,75)

> (27,55,43,78,86,87,45)(29,69,59,79,76,35,67)(30,39,42,81,36,57,89)

> (31,93,62,44,73,71,50)(32,53,85,60,51,96,83)(33,37,58,46,84,100,56)

> (34,94,80,61,97,48,68)(47,95,66,74,52,54,63),

> (1,35)(3,81)(4,92)(6,60)(7,59)(8,46)(9,70)(10,91)(11,18)(12,66)(13,55)

> (14,85)(15,90)(17,53)(19,45)(20,68)(21,69)(23,84)(24,34)(25,31)(26,32)

> (37,39)(38,42)(40,41)(43,44)(49,64)(50,63)(51,52)(54,95)(56,96)(57,100)

> (58,97)(61,62)(65,82)(67,83)(71,98)(72,99)(74,77)(76,78)(87,89) >;

> K := Classes(G:WeakLimit := 20, StrongLimit := 50);

Runtime error in ’Classes’: Random classes algorithm failed

> K := Classes(G: WeakLimit := 20, StrongLimit := 100);

> NumberOfClasses(G);

24

As the group has only 24 classes, the first random search could have succeeded by looking at 50
elements. On this occasion it did not, but looking at 100 elements did succeed.
We print the order, length and cycle structure for each conjugacy class.

> [< k[1], k[2], CycleStructure(k[3]) > : k in K];

[

<1, 1, [<1, 100>]>,

<2, 5775, [<2, 40>, <1, 20>]>,

<2, 15400, [<2, 50>]>,

<3, 123200, [<3, 30>, <1, 10>]>,

<4, 11550, [<4, 20>, <2, 10>]>,

<4, 173250, [<4, 20>, <2, 6>, <1, 8>]>,

<4, 693000, [<4, 20>, <2, 8>, <1, 4>]>,

<5, 88704, [<5, 20>]>,

<5, 147840, [<5, 20>]>,

<5, 1774080, [<5, 19>, <1, 5>]>,

<6, 1232000, [<6, 15>, <2, 5>]>,

<6, 1848000, [<6, 12>, <3, 6>, <2, 4>, <1, 2>]>,

<7, 6336000, [<7, 14>, <1, 2>]>,

<8, 2772000, [<8, 10>, <4, 4>, <2, 2>]>,

<8, 2772000, [<8, 10>, <4, 3>, <2, 3>, <1, 2>]>,

<8, 2772000, [<8, 10>, <4, 4>, <2, 2>]>,

<10, 2217600, [<10, 8>, <5, 4>]>,

<10, 2217600, [<10, 10>]>,

<11, 4032000, [<11, 9>, <1, 1>]>,

<11, 4032000, [<11, 9>, <1, 1>]>,

<12, 3696000, [<12, 6>, <6, 3>, <4, 2>, <2, 1>]>,

<15, 2956800, [<15, 6>, <5, 2>]>,

<20, 2217600, [<20, 4>, <10, 2>]>,

<20, 2217600, [<20, 4>, <10, 2>]>

]

We construct the power map and tabulate the second, third and fifth powers of each class.

> p := PowerMap(G);

1546 FINITE GROUPS Part X

> [< i, p(i, 2), p(i, 3), p(i, 5) > : i in [1 .. #K]];

[

<1, 1, 1, 1>,

<2, 1, 2, 2>,

<3, 1, 3, 3>,

<4, 4, 1, 4>,

<5, 2, 5, 5>,

<6, 2, 6, 6>,

<7, 2, 7, 7>,

<8, 8, 8, 1>,

<9, 9, 9, 1>,

<10, 10, 10, 1>,

<11, 4, 3, 11>,

<12, 4, 2, 12>,

<13, 13, 13, 13>,

<14, 7, 14, 14>,

<15, 6, 15, 15>,

<16, 7, 16, 16>,

<17, 8, 17, 2>,

<18, 9, 18, 3>,

<19, 20, 19, 19>,

<20, 19, 20, 20>,

<21, 12, 5, 21>,

<22, 22, 9, 4>,

<23, 17, 23, 5>,

<24, 17, 24, 5>

]

58.8 Subgroups

58.8.1 Construction of a Subgroup

sub< G | L >

Given the permutation group G, construct the subgroup H of G, generated by the
elements specified by the list L, where L is a list of one or more items of the following
types:
(a)A sequence of n integers defining a permutation of G;
(b)A set or sequence of sequences of type (a);
(c) An element of G;
(d)A set or sequence of elements of G;
(e) A subgroup of G;
(f) A set or sequence of subgroups of G.

Ch. 58 PERMUTATION GROUPS 1547

Each element or group specified by the list must belong to the same generic per-
mutation group. The subgroup H will be constructed as a subgroup of some group
which contains each of the elements and groups specified in the list.

The generators of H consist of the elements specified by the terms of the list L
together with the stored generators for groups specified by terms of the list.

ncl< G | L >

Given the permutation group G, construct the subgroup H of G that is the normal
closure of the subgroup H generated by the elements specified by the list L (see
[BC82]), where the possibilities for L are the same as for the sub-constructor.

Example H58E14

The group PGL(2, 7) in its natural action on projective points is generated by the set of permuta-
tions {(1, 2, 3, 4, 5, 6, 7), (2, 4, 3, 7, 5, 6), (1, 8)(2, 7)(3, 4)(5, 6)}. Using the above syntax, the group
may be defined in any of the following ways:
(a) By means of a list of generating permutations written as products of cycles:

> PGL27 := sub< Sym(8) | (1,2,3,4,5,6,7), (2,4,3,7,5,6), (1,8)(2,7)(3,4)(5,6)>;

> PGL27;

Permutation group PGL27 acting on a set of cardinality 8

(1, 2, 3, 4, 5, 6, 7)

(2, 4, 3, 7, 5, 6)

(1, 8)(2, 7)(3, 4)(5, 6)

(b) By means of a list of integer sequences representing generators:

> PGL27 := sub< Sym(8) |

> [2,3,4,5,6,7,1,8], [1,4,7,3,6,2,5,8], [8,7,4,3,6,5,2,1] >;

(c) In terms of preassigned elements of the symmetric group of degree 8:

> S8 := Sym(8);

> a := S8!(1,2,3,4,5,6,7);

> b := S8!(2,4,3,7,5,6);

> c := S8!(1,8)(2,7)(3,4)(5,6);

> PGL27 := sub<S8 | a, b, c>;

(d) By means of a set of generators:

> S8 := Sym(8);

> gens := { S8 | (1,2,3,4,5,6,7), (2,4,3,7,5,6), (1,8)(2,7)(3,4)(5,6) };
> PGL27 := sub<S8 | gens>;

(e) By means of a sequence of generators:

> S8 := Sym(8);

> gens := [S8 | (1,2,3,4,5,6,7), (2,4,3,7,5,6), (1,8)(2,7)(3,4)(5,6)];

> PGL27 := sub<S8 | gens>;

1548 FINITE GROUPS Part X

Example H58E15

A representation H of a 2-generator transitive group G in its action on unordered pairs is con-
structed as follows:

> G := AlternatingGroup(7);

> deg1 := Degree(G);

> pairs := [{ i, j } : j in [i+1..deg1], i in [1..deg1-1]];

> deg2 := #pairs;

> h1 := [Position(pairs, pairs[i] ^ G.1): i in [1..deg2]];

> h2 := [Position(pairs, pairs[i] ^ G.2): i in [1..deg2]];

> H := sub<Sym(deg2) | h1, h2>;

> H;

Permutation group H acting on a set of cardinality 21

(2,3,4,5,6)(7,8,9,10,11)(12,16,19,21,15)(13,17,20,14,18),

(1,7,2)(3,8,12)(4,9,13)(5,10,14)(6,11,15)

Example H58E16

We illustrate the ncl-constructor by using it to construct the derived subgroup of the Hessian
group H. We exploit the fact that the derived subgroup may be obtained as the normal closure
of the subgroup generated by the commutators of the generators of H.

> H := PermutationGroup< 9 | (1,2,4)(5,6,8)(3,9,7), (4,5,6)(7,9,8) >;

> Order(H);

216

> D := ncl< H | (H.1, H.2) >;

> D;

Permutation group D acting on a set of cardinality 9

Order = 72 = 2^3 * 3^2

(1, 7, 3, 6)(4, 5, 9, 8)

(2, 9, 3, 5)(4, 6, 7, 8)

(2, 6, 3, 8)(4, 5, 7, 9)

58.8.2 Membership and Equality

g in G

Given a permutation g and a permutation group G, return true if g is an element
of G, false otherwise.

g notin G

Given a permutation g and a permutation group G, return true if g is not an
element of G, false otherwise.

Ch. 58 PERMUTATION GROUPS 1549

S subset G

Given a permutation group G and a set S of permutations belonging to a group H,
where G and H belong the same generic group, return true if S is a subset of G,
false otherwise.

S notsubset G

Given a permutation group G and a set S of permutations belonging to a group H,
where G and H belong the same generic group, return true if S is not a subset of
G, false otherwise.

H subset G

Given permutation groups G and H belonging to the same generic group, return
true if H is a subgroup of G, false otherwise.

H notsubset G

Given permutation groups G and H belonging to the same generic group, return
true if H is not a subgroup of G, false otherwise.

H eq G

Given permutation groups G and H belonging to the same generic group, return
true if G and H are the same group, false otherwise.

H ne G

Given permutation groups G and H belonging to the same generic group, return
true if G and H are distinct groups, false otherwise.

58.8.3 Elementary Properties of a Subgroup

Index(G, H)

The index of the subgroup H in the group G. The index is returned as an integer.
If the orders of G and H are not known, they will be computed.

FactoredIndex(G, H)

The index of the subgroup H in the group G. The index is returned as a factored
integer. The format is the same as for FactoredOrder. If the orders of G and H
are not known, they will be computed.

IsCentral(G, H)

Returns true if the subgroup H of the group G lies in the centre of G, false
otherwise.

IsNormal(G, H)

Returns true if the subgroup H of the group G is a normal subgroup of G, false
otherwise.

1550 FINITE GROUPS Part X

IsSelfNormalizing(G, H)

IsSelfNormalising(G, H)

Returns true if the subgroup H of the group G is self-normalizing in G, false
otherwise.

IsSubnormal(G, H)

Returns true if the subgroup H of the group G is subnormal in G, false otherwise.

58.8.4 Standard Subgroups

Unless the order is already known, each of the functions in this family will create a base
and strong generating set for the group if one does not already exist.

H ^ g

Conjugate(H, g)

Construct the conjugate g−1 ∗H ∗g of the permutation group H by the permutation
g. The group H and the element g must belong to the same symmetric group.

H meet K

Given groups H and K which belong to the same symmetric group, construct the
intersection of H and K. The intersection is found using the backtrack search of J.
Leon [Leo97].

IntersectionWithNormalSubgroup(G, N)

Check BoolElt Default : true

Given groups G and N which belong to the same symmetric group and so that G
normalises N , construct the intersection of G and N . The algorithm used is that of
Cooperman, Finkelstein and Luks [CFL89], which uses a permutation representation
of double the degree of G and N . Setting Check to false suppresses checking that
G normalises N .

CommutatorSubgroup(G, H, K)

CommutatorSubgroup(H, K)

Given groups H and K, both subgroups of the group G, construct the commutator
subgroup of H and K in the group G. If K is a subgroup of H, then the group G
may be omitted. The algorithm used is described in [BC82].

Ch. 58 PERMUTATION GROUPS 1551

Centralizer(G, g: parameters)

Centraliser(G, g: parameters)

Construct the centralizer of the permutation g in the group G; g and G must belong
to a common symmetric group. A backtrack search through G as described in
[Leo97] is employed.

Subgroup GrpPerm Default :

The parameter Subgroup may be used to supply a known subgroup of the centralizer.
This may speed the search.

Centralizer(G, H)

Centraliser(G, H)

Construct the centralizer of the group H in the group G; G and H must belong to
a common symmetric group. A backtrack search through G as described in [Leo97]
is employed.

CentralizerOfNormalSubgroup(G, H)

Given G and H, belonging to a common symmetric group, with the restriction that
H is a normal subgroup of G, construct the centralizer ofH in G. A polynomial-time
reduction algorithm described in Beals [Bea93] is used.

SectionCentraliser(G, H, K)

SectionCentralizer(G, H, K)

Return the full preimage in G of the centralizer in G/K of H/K. H and K must
be normal subgroups of G with K contained in H. An algorithm of Luks [Luk93] is
employed which involves computing the core of a subgroup in a group having twice
the degree of G.

Core(G, H)

Given a subgroup H of the permutation group G, construct the maximal normal
subgroup of G that is contained in the subgroupH. The algorithm employs repeated
conjugation and intersection using the backtrack search of Leon [Leo97].

H ^ G

NormalClosure(G, H)

Given a subgroup H of the permutation group G, construct the normal closure of
H in G.

1552 FINITE GROUPS Part X

Normalizer(G, H: parameters)

Normaliser(G, H: parameters)

Subgroup GrpPerm Default : H
Bound RngIntElt Default :

Given a subgroupH of the groupG, construct the normalizer ofH inG. A backtrack
search as described in Leon [Leo97] is employed.

The parameter Subgroup may be used to pass the search a known subgroup of
the normalizer. The default value of the starting subgroup is H. If Bound is set, the
search will be terminated once the normalizing group found has order at least equal
to Bound. If this does not happen, the search will complete as normal.

SymmetricNormalizer(G)

Subgroup GrpPerm Default : H
Bound RngIntElt Default :

SymmetricNormaliser(G)

Given a permutation group G acting on the set X, return the normalizer of G in
the symmetric group on X. The parameters are as for Normalizer above.

SylowSubgroup(G, p)

Sylow(G, p)

Given a group G and a prime p, construct a Sylow p-subgroup of G. The algorithm
used is that of Cannon, Cox and Holt [CCH97].

Example H58E17

We illustrate the use of these functions by applying them to a group of degree 30.

> M := PermutationGroup< 30 |

> (1,2,3)(4,14,8)(5,15,9)(6,13,7)(25,27,26),

> (4,20,13)(5,21,14)(6,19,15)(16,17,18)(27,28,29),

> (1, 15)(2, 13)(3, 14)(4, 22)(5, 23)(6, 24)(7, 18)(8, 16)

> (9, 17)(10, 21)(11, 19)(12, 20)(25, 29)(26, 27)(28, 30) >;

> FactoredOrder(M);

[<2, 8>, <3, 10>, <5, 1>]

> S2 := SylowSubgroup(M, 2);

> S2;

Permutation group S2 acting on a set of cardinality 30

Order = 256 = 2^8

(1, 10)(2, 11)(3, 12)(4, 8)(5, 9)(6, 7)(13, 19)(14, 20)(15, 21)

(16, 22)(17, 23)(18, 24)

(1, 24)(2, 22)(3, 23)(4, 14)(5, 15)(6, 13)(7, 19)(8, 20)(9, 21)

(10, 18)(11, 16)(12, 17)

(4, 8)(5, 9)(6, 7)(13, 19)(14, 20)(15, 21)

(4, 14)(5, 15)(6, 13)(7, 19)(8, 20)(9, 21)(25, 26)(29, 30)

Ch. 58 PERMUTATION GROUPS 1553

(1, 4)(2, 5)(3, 6)(7, 12)(8, 10)(9, 11)(13, 23)(14, 24)(15, 22)

(16, 21)(17, 19)(18, 20)(25, 26)

(27, 28)(29, 30)

(27, 29)(28, 30)

(25, 26)(29, 30)

We try to find a second Sylow subgroup S2a that has trivial intersection with S2.

> b := exists(t){ x : x in M | Order(S2 meet S2^x) eq 1 };
> b;

true

> S2a := S2^t;

> N := Normalizer(M, S2);

> N;

Permutation group N acting on a set of cardinality 30

Order = 768 = 2^8 * 3

(4, 8)(5, 9)(6, 7)(13, 19)(14, 20)(15, 21)

(4, 14)(5, 15)(6, 13)(7, 19)(8, 20)(9, 21)

(1, 10)(2, 11)(3, 12)(4, 8)(5, 9)(6, 7)(13, 19)(14, 20)(15, 21)

(16, 22)(17, 23)(18, 24)

(1, 24)(2, 22)(3, 23)(4, 14)(5, 15)(6, 13)(7, 19)(8, 20)(9, 21)

(10, 18)(11, 16)(12, 17)

(1, 22, 12)(2, 23, 10)(3, 24, 11)(4, 21, 13)(5, 19, 14)(6, 20, 15)

(7, 8, 9)(16, 17, 18)

(27, 29)(28, 30)

(1, 14, 24, 4)(2, 15, 22, 5)(3, 13, 23, 6)(7, 12, 19, 17)(8, 10, 20, 18)

(9, 11, 21, 16)(29, 30)

(4, 14)(5, 15)(6, 13)(7, 19)(8, 20)(9, 21)(25, 26)(29, 30)

(27, 28)(29, 30)

Thus the Sylow 2-subgroup is normalized by an element of order 3.

58.8.5 Maximal Subgroups

IsMaximal(G, H: parameters)

Al MonStgElt Default : “Subgroups”

Returns true if the subgroup H of the group G is a maximal subgroup of G.
The algorithm used depends on the value of the parameter Al. The default value
Subgroups computes the maximal subgroups of G if the index of H in G is over
1000 and the maximal subgroups are computable.The subgroup H is then tested
for conjugacy with each class found. In the other cases, or when the Al parameter
is set to CosetImage, the function is evaluated by first calling IsProbablyMaximal
and if that returns true then constructing the permutation representation of G on
the cosets of H and testing this representation for primitivity.

1554 FINITE GROUPS Part X

IsProbablyMaximal(G, H: parameters)

Tries RngIntElt Default : 20

Given a group G and a subgroup H of G, this function performs a probabilistic test
for the maximality of H in G. The test involves adjoining random elements of G to
H and determining if the result G. If not, then false is returned, otherwise true
s returned. The number of random elements used is controlled by the parameter
Tries, which is set to 20 by default.

MaximalSubgroups(G: parameters)

Construct the sequence of maximal subgroup classes of G. This is equivalent
to the command Subgroups(G: Al := "Maximal"). The same parameters as for
Subgroups are available to limit the search. The algorithm is described in [CH04].

Example H58E18

The Subgroups family of commands can deal with fairly large groups. We look at the maximal
subgroups of the group of the 4× 4× 4 Rubik’s cube. This group has order about 1.7× 1055.

> load rubik444;

Loading "/home/magma/libs/pergps/rubik444"

The automorphism group of the 4 x 4 x 4 Rubik cube.

The group is represented as a permutation group of degree 72.

Its order is

2^50 * 3^29 * 5^9 * 7^7 * 11^4 * 13^2 * 17^2 * 19^2 * 23^2.

Group: G

> time max := MaximalSubgroups(G);

Time: 100.559

> #max;

46

> [Index(G, x‘subgroup) : x in max];

[51090942171709440000, 51090942171709440000, 9161680528000,

9161680528000, 4509264634875, 4509264634875, 316234143225,

316234143225, 96197645544, 96197645544, 1577585295,

1577585295, 2496144, 2496144, 1961256, 1961256, 1307504,

1307504, 346104, 346104, 42504, 42504, 2187, 1352078,

1352078, 735471, 735471, 134596, 134596, 10626, 10626, 2024,

2024, 120, 276, 276, 56, 24, 24, 105, 28, 8, 35, 2, 2, 2]

Ch. 58 PERMUTATION GROUPS 1555

58.8.6 Conjugacy Classes of Subgroups

SubgroupClasses(G: parameters)

Subgroups(G: parameters)

Representatives for the conjugacy classes of subgroups for the group G. The sub-
groups are returned as a sequence of records where the i-th record contains:
(a)A representative subgroup H for the i-th conjugacy class (field name subgroup).
(b)The order of the subgroup (field name order).
(c) The number of subgroups in the class (field name length).
(d)[Optional] A presentation for H (field name presentation).

Al MonStgElt Default : “All”
Al := "All": Construct all subgroups of G.
Al := "Maximal": Only construct maximal subgroups ofG. This option reduces the
number of intersections with any elementary abelian layer that need be considered
and eliminates the need to recursively apply the algorithm.
Al := "Normal": Only construct normal subgroups of G. This option does not use
database lookup to find the normal subgroups of the radical quotient of G and also
reduces the number of intersections with any layer that need be considered.

LayerSizes SeqEnum Default : See below
LayerSizes := [2, 5, 3, 4, 7, 3, 11, 2, 17, 1] is equivalent to the de-
fault. When constructing an Elementary Abelian series for the group, attempt
to split 2-layers of size gt 25, 3-layers of size gt 34, etc. The implied exponent for
13 is 2 and for all primes greater than 17 the exponent is 1.

Series SeqEnum Default : See below
Use the given elementary abelian series rather than constructing the default series.
The first subgroup in the series must be the solvable radical of G. The subgroups
must form a descending chain of normal subgroups of G, such that each quotient
is elementary abelian. The last subgroup in the series must be either elementary
abelian or trivial.

Presentation BoolElt Default : false

Presentation := true: Construct a presentation for each subgroup.
OrderEqual RngIntElt Default :

OrderEqual := n: Only construct subgroups having order equal to n.
OrderDividing RngIntElt Default :

OrderDividing := n: Only construct subgroups having order dividing n.
OrderMultipleOf RngIntElt Default :

OrderMultipleOf := n: Only construct subgroups having order a multiple of n.
IndexLimit RngIntElt Default :

1556 FINITE GROUPS Part X

IndexLimit := n: Only construct subgroups having index in G less than or equal
to n.

IsElementaryAbelian BoolElt Default : false

IsElementaryAbelian := true: Only construct elementary abelian subgroups of
G.

IsCyclic BoolElt Default : false

IsCyclic := true: Only construct cyclic subgroups of G.

IsAbelian BoolElt Default : false

IsAbelian := true: Only construct abelian subgroups of G.

IsNilpotent BoolElt Default : false

IsNilpotent := true: Only construct nilpotent subgroups of G.

IsSolvable BoolElt Default : false

IsSolvable := true: Only construct solvable subgroups of G.

IsNotSolvable BoolElt Default : false

IsNotSolvable := true: Only construct insolvable subgroups of G.

IsPerfect BoolElt Default : false

IsPerfect := true: Only construct perfect subgroups of G.

IsRegular BoolElt Default : false

IsRegular := true: Only construct regular subgroups of G.

IsTransitive BoolElt Default : false

IsTransitive := true: Only construct transitive subgroups of G.

The Algorithm: (See Cannon, Cox and Holt [CCH01]) This command proceeds
by first constructing an elementary abelian series for G together with G’s radical
quotient Q. We first attempt to locate the quotient in a database of groups with
trivial Fitting subgroup. This database contains all such groups of order up to
216 000, and all such which are perfect of order up to 1 000 000. If Q is found then
either all its subgroups, or its maximal subgroups are read from the database. (In
some cases only the maximal subgroups are stored.) If Q is not found then we
attempt to find the maximal subgroups of Q using a method of Derek Holt. For this
to succeed all simple factors of the socle of Q must be found in a second database
which currently contains all simple groups of order less than 1.6 × 107, as well as
M24, HS, J3, McL, Sz(32) and L6(2). There are also special routines to handle
numerous other groups. These include: An for n ≤ 999, L2(q), L3(q), L4(q), L5(q),
L6(q) and L7(q) for all q, U3(q) for q prime and q = 8, 9, 16, 25, U4(q) for q = 4, 5, 7,
S4(q) for all odd q and even q ≤ 16, Ld(2) for d ≤ 14, and the following groups:
U6(2), S8(2), S10(2), O±8 (2), O±10(2), S6(3), O7(3), O−8 (3), G2(4), G2(5), 3D4(2),
2F4(2)′, Co2, Co3, He, Fi22.

Ch. 58 PERMUTATION GROUPS 1557

If we have only maximal subgroups of Q, and more are required, we apply the
algorithm recursively to the maximal subgroups to determine all subgroups of Q.
This may take some time.

The subgroups are then extended to the whole group by stepwise extension
through each layer of the elementary abelian series. For each layer this involves
determining all possible intersections of a subgroup with this layer and all exten-
sions with this intersection.

The limitations are that the simple factors of the socle of Q must be in the
database, which is limited as above. Further, it may take some time to construct all
subgroups from the maximal subgroups first found, and, if there is a large elementary
abelian layer, there will be many possible intersections, which could also make the
algorithm prohibitively slow.

There are numerous parameters for this function which allow the user to place
restrictions on which subgroup classes are constructed. Using these restrictions may
help overcome the problems noted above.

SubgroupsLift(G, A, B, Q: parameters)

This function isolates one step of the extension process used by the Subgroups
family of functions. Q is a sequence of records such as returned by Subgroups(G).
A and B are normal subgroups of G with A/B elementary abelian. The records in
Q are interpreted as subgroups of G/A, which are lifted to all possible corresponding
subgroups of G/B, subject to the parameters given.

LowIndexSubgroups(G, n: parameters)

LowIndexSubgroups(G, t: parameters)

Returns a sequence of subgroups of G, each with index at most n. The sequence
will contain one representative from each conjugacy class of G-subgroups satisfying
the index constraint. The algorithm used is described in Cannon, Holt, Slattery &
Steel [CHSS03].

The previous version of the algorithm is available by setting the parameter
Algorithm to the string "Subgroups". In this case the group G is subject to the
same restrictions as the group input to the Subgroups function above.

In the second form t should be a pair of integers 〈a, b〉, and subgroups with index
in the interval [a, b] will be returned.

Other parameters are Presentation which may be set true to return a second
sequence of presentations of the groups found, and Print which may be set to a
positive integer to turn on diagnostic printing of the progress of the algorithms.

Example H58E19

With the Subgroups family of commands we can get the entire collection of (classes of) subgroups
of a group G. We look at the double cover of M12.

> load m12cover;

Loading "/home/magma/libs/pergps/m12cover"

1558 FINITE GROUPS Part X

The two-fold cover of the Mathieu group M12 on 24 letters.

Order is 190080 = 2^7 * 3^3 * 5 * 11.

Group: G

> time s := SubgroupClasses(G);

Time: 4.469

> #s;

293

This may be too many. The parameters allow us to restrict attention to a subset of the subgroups.
We specify that the function is to return only the elementary abelian 2-subgroups of G.

> se := SubgroupClasses(G : IsElementaryAbelian := true,

> OrderMultipleOf := 2);

> #se;

14

> se : Minimal;

Conjugacy classes of subgroups

[1] Order 2 Length 1

GrpPerm: $, Degree 24, Order 2

[2] Order 2 Length 495

GrpPerm: $, Degree 24, Order 2

[3] Order 2 Length 495

GrpPerm: $, Degree 24, Order 2

[4] Order 4 Length 495

GrpPerm: $, Degree 24, Order 2^2

[5] Order 4 Length 495

GrpPerm: $, Degree 24, Order 2^2

[6] Order 4 Length 1485

GrpPerm: $, Degree 24, Order 2^2

[7] Order 4 Length 1980

GrpPerm: $, Degree 24, Order 2^2

[8] Order 4 Length 5940

GrpPerm: $, Degree 24, Order 2^2

[9] Order 8 Length 495

GrpPerm: $, Degree 24, Order 2^3

[10] Order 8 Length 495

GrpPerm: $, Degree 24, Order 2^3

[11] Order 8 Length 1485

GrpPerm: $, Degree 24, Order 2^3

[12] Order 8 Length 1980

GrpPerm: $, Degree 24, Order 2^3

[13] Order 8 Length 1980

GrpPerm: $, Degree 24, Order 2^3

[14] Order 16 Length 495

GrpPerm: $, Degree 24, Order 2^4

Ch. 58 PERMUTATION GROUPS 1559

Example H58E20

Using the SubgroupLattice function we obtain a representative subgroup for each conjugacy class
together with the inclusion relations between subgroups.
WARNING: Computing the inclusions is very time consuming and should only be performed
for small groups.

> G := PSL(2,9);

> time L := SubgroupLattice(G);

Time: 0.20O

> L;

Partially ordered set of subgroup classes

[1] Order 1 Length 1 Maximal Subgroups:

[2] Order 2 Length 45 Maximal Subgroups: 1

[3] Order 3 Length 20 Maximal Subgroups: 1

[4] Order 3 Length 20 Maximal Subgroups: 1

[5] Order 5 Length 36 Maximal Subgroups: 1

[6] Order 4 Length 15 Maximal Subgroups: 2

[7] Order 4 Length 15 Maximal Subgroups: 2

[8] Order 4 Length 45 Maximal Subgroups: 2

[9] Order 6 Length 60 Maximal Subgroups: 2 3

[10] Order 6 Length 60 Maximal Subgroups: 2 4

[11] Order 9 Length 10 Maximal Subgroups: 3 4

[12] Order 10 Length 36 Maximal Subgroups: 2 5

[13] Order 8 Length 45 Maximal Subgroups: 6 7 8

[14] Order 12 Length 15 Maximal Subgroups: 4 6

[15] Order 12 Length 15 Maximal Subgroups: 3 7

[16] Order 18 Length 10 Maximal Subgroups: 9 10 11

[17] Order 24 Length 15 Maximal Subgroups: 10 13 14

[18] Order 24 Length 15 Maximal Subgroups: 9 13 15

[19] Order 36 Length 10 Maximal Subgroups: 8 16

[20] Order 60 Length 6 Maximal Subgroups: 9 12 15

[21] Order 60 Length 6 Maximal Subgroups: 10 12 14

[22] Order 360 Length 1 Maximal Subgroups: 17 18 19 20 21

> NumberOfInclusions(L!5, L!20);

6

> L[5];

Permutation group acting on a set of cardinality 10

Order = 5

(1, 8, 9, 3, 4)(2, 7, 5, 10, 6)

The order and class length of each class of subgroups is listed, along with the information about
where to find the maximal subgroups of a member of this class. Further information about

1560 FINITE GROUPS Part X

inclusions is available from the lattice. We see that 6 members of class 5 are contained in any
fixed member of class 20.

58.8.7 Classes of Subgroups Satisfying a Condition

NormalSubgroups(G: parameters)

Construct the sequence of normal subgroup classes of G. This is equivalent to
Subgroups(G: Al := "Normal"). The same parameters as for Subgroups are avail-
able to limit the search.

ElementaryAbelianSubgroups(G: parameters)

Construct the sequence of elementary abelian subgroups of G. This is equivalent
to Subgroups(G: IsElementaryAbelian := true). The same parameters as for
Subgroups are available to limit the search.

CyclicSubgroups(G: parameters)

Construct the sequence of cyclic subgroups of G. This is equivalent to Subgroups(G:
IsCyclic := true). The same parameters as for Subgroups are available to limit
the search.

AbelianSubgroups(G: parameters)

Construct the sequence of abelian subgroups of G. Equivalent to Subgroups(G:
IsAbelian := true). The same parameters as for Subgroups are available to limit
the search.

NilpotentSubgroups(G: parameters)

Construct the sequence of nilpotent subgroups of G. This is equivalent to
Subgroups(G: IsNilpotent := true). The same parameters as for Subgroups
are available to limit the search.

SolvableSubgroups(G: parameters)

Construct the sequence of solvable subgroups of G. This is equivalent to
Subgroups(G: IsSolvable := true). The same parameters as for Subgroups are
available to limit the search.

PerfectSubgroups(G: parameters)

Construct the sequence of perfect subgroups of G. Equivalent to Subgroups(G:
IsNotSolvable := true). The same parameters as for Subgroups are available to
limit the search.

NonsolvableSubgroups(G: parameters)

Construct the sequence of insolvable subgroups of G. This is equivalent to
Subgroups(G: IsNotSolvable := true). The same parameters as for Subgroups
are available to limit the search.

Ch. 58 PERMUTATION GROUPS 1561

SimpleSubgroups(G: parameters)

Construct the sequence of non-abelian simple subgroup classes of G. This is equiv-
alent to Subgroups(G: Al := "Simple"). The same parameters as for Subgroups
are available to limit the search.

58.9 Quotient Groups

58.9.1 Construction of Quotient Groups

quo< G | L >

Given the permutation group G, construct the quotient group Q = G/N , where N
is the normal closure of the subgroup of G generated by the elements specified by
L. The clause L is a list of one or more items of the following types:

(a)A sequence of n integers defining a permutation of G;

(b)A set or sequence of sequences of type (a);

(c) An element of G;

(d)A set or sequence of elements of G;

(e) A subgroup of G;

(f) A set or sequence of subgroups of G.

Each element or group specified by the list must belong to the same generic permu-
tation group. The function returns

(a) the quotient group Q, and

(b)the natural homomorphism f : G→ Q.

Currently, the quotient group is constructed via the regular representation of the
quotient, so the application of this operator is restricted to the case where the index
of N in G is small. The representation of the quotient group that is returned is the
result of a degree reduction applied to the regular representation, so need not be
regular. The generators of the quotient are images of the generators of G.

The second return value is the epimorphism from G to the resulting quotient
group.

G / N

Given a normal subgroup N of the permutation group G, construct the quotient of
G by N . Currently, the quotient group is constructed via the regular representation
of the quotient, so the application of this operator is restricted to the case where the
index of N in G is small. The representation of the quotient group that is returned
is the result of a degree reduction applied to the regular representation, so need not
be regular. The generators of the quotient are images of the generators of G.

1562 FINITE GROUPS Part X

Example H58E21

The quotient of Sym(4) by the Klein 4-group is constructed by the following statement:

> Q, f := quo< Sym(4) | (1,2)(3,4), (1,3)(2,4) >;

> Q;

Permutation group Q acting on a set of cardinality 3

Order = 6 = 2 * 3

(2, 3)

(1, 2)

58.9.2 Abelian, Nilpotent and Soluble Quotients
A number of standard quotients may be constructed. The method first constructs a pre-
sentation for the permutation group and then applies the appropriate fp-group algorithm.

AbelianQuotient(G)

The maximal abelian quotient G/G′ of the group G as GrpAb (cf. Chapter 69). The
natural epimorphism π : G→ G/G′ is returned as second value.

ElementaryAbelianQuotient(G, p)

The maximal p-elementary abelian quotient Q of the group G as GrpAb (cf. Chapter
69). The natural epimorphism π : G→ Q is returned as second value.

pQuotient(G, p, c)

Given a permutation group G, a prime p and a positive integer c, construct a pc-
presentation for the largest p-quotient P of G having lower exponent-p class at most
c. If c is given as 0, then the limit 127 is placed on the class.

The function also returns the natural homomorphism π from G to P , a sequence
S describing the definitions of the pc-generators of P and a flag indicating whether
P is the maximal p-quotient of G.

The k-th element of S is a sequence of two integers, describing the definition of
the k-th pc-generator P.k of P as follows.
- If S[k] = [0, r], then P.k is defined via the image of G.r under π.
- If S[k] = [r, 0], then P.k is defined via the power relation for P.r.
- If S[k] = [r, s], then P.k is defined via the conjugate relation involving P.rP.s.

NilpotentQuotient(G, c)

This function returns the class c nilpotent quotient of G, together with the epimor-
phism π from G onto this quotient.

SolvableQuotient(G)

SolubleQuotient(G)

The function returns the largest soluble quotient S of the permutation group G
together with the epimorphism π : G→ S.

Ch. 58 PERMUTATION GROUPS 1563

Example H58E22

The soluble quotient of the wreath product of Sym(6) with the dihedral group of order 12 is easily
constructed:

> G := WreathProduct(Sym(6), DihedralGroup(6));

> #G;

1671768834048000000

> SQ, phi := SolubleQuotient(G);

SQ;

GrpPC : SQ of order 768 = 2^8 * 3

PC-Relations:

SQ.1^2 = SQ.5,

SQ.2^2 = Id(SQ),

SQ.3^2 = Id(SQ),

SQ.4^2 = Id(SQ),

SQ.5^3 = Id(SQ),

SQ.6^2 = Id(SQ),

SQ.7^2 = Id(SQ),

SQ.8^2 = Id(SQ),

SQ.9^2 = Id(SQ),

SQ.2^SQ.1 = SQ.2 * SQ.5,

SQ.3^SQ.1 = SQ.3 * SQ.4 * SQ.6 * SQ.8,

SQ.4^SQ.1 = SQ.4 * SQ.9,

SQ.4^SQ.2 = SQ.4 * SQ.6 * SQ.7 * SQ.8,

SQ.5^SQ.2 = SQ.5^2,

SQ.5^SQ.3 = SQ.5 * SQ.7,

SQ.5^SQ.4 = SQ.5 * SQ.6 * SQ.8,

SQ.6^SQ.1 = SQ.6 * SQ.8,

SQ.6^SQ.2 = SQ.7 * SQ.8,

SQ.6^SQ.5 = SQ.6 * SQ.7 * SQ.8 * SQ.9,

SQ.7^SQ.1 = SQ.8,

SQ.7^SQ.2 = SQ.9,

SQ.7^SQ.5 = SQ.7 * SQ.9,

SQ.8^SQ.1 = SQ.7 * SQ.9,

SQ.8^SQ.2 = SQ.6 * SQ.9,

SQ.8^SQ.5 = SQ.6 * SQ.9,

SQ.9^SQ.1 = SQ.6 * SQ.8 * SQ.9,

SQ.9^SQ.2 = SQ.7,

SQ.9^SQ.5 = SQ.7

1564 FINITE GROUPS Part X

58.10 Permutation Group Actions

58.10.1 G-Sets
Let G be a group. A G-set is a pair (Y, f), where Y is a set and f : Y × G → Y is a
mapping such that

(a) f(f(y, g), h) = f(y, gh), for all g, h ∈ G

and

(b) f(y, 1) = y, for all y ∈ Y.

The mapping f defines the action of G on the set Y .
If G is defined as a permutation group acting on the set X and Y is another G-set then

there is a homomorphism of GX into GY .
We distinguish three types of G-set for a permutation group G. The set on which G is

defined will be referred to as the natural G-set and the action of G on X as the natural
action of G.
Let A be a set. A derived set of A is defined (recursively) as follows:
(i) A subset of A is a derived set;

(ii) A set of k-subsets of A is a derived set;
(iii)A set of k-sequences of A is a derived set;
(iv) A set of ordered partitions of A is a derived set;

(v)A subset of a cartesian product of derived sets of A is a derived set.
The natural action of G on X induces a natural action on the G-closure Y of any derived
set of X. Such a set Y is also a G-set. For example, a subset of X is a G-set for G if and
only if it is a union of orbits for G.

Finally, a general G-set is an arbitrary set Y with an action f satisfying the conditions
(a) and (b).

The notion of a G-set enables the user to work with several different actions of G.
Rather than having to always work with the image of G with respect to an action on a set
Y , the user may specify the required operation in terms of G.

58.10.2 Creating a G-Set

GSetFromIndexed(G, Y)

Given a group G and an indexed set Y with the same cardinality as the natural
G-set, return a G-set corresponding to the natural bijection between the labelling
L (= Labelling(G)) of G and Y . Explicitly, the bijection is

φ : L→ Y : l 7→ Y [Position(L, l)].

Ch. 58 PERMUTATION GROUPS 1565

Then the returned G-set is the set Y endowed with the action

f : Y ×G→ Y : (y, p) 7→ φ(p(φ−1(y))).

GSet(G, X, Y)

GSet(G, Y)

Return the smallest derived G-set containing Y as a subset under the action of G
on X. If X is omitted, then the natural action will be assumed. In practice, the
set Y is expanded until for each element y of the expanded Y , the image of y under
each generator of G under the action described by X is also in Y . The action of G
on Y is then the action induced by the action of G on X.

GSet(G)

Given a permutation group G, return the G-set corresponding to the natural action
of G.

GSet(G, Y, f)

Construct the smallest G-set containing Y as a subset with the given action f . The
map f must satisfy the requirements of a G-set action. In particular, the domain of
f must be a superset of Y ×G, the codomain a superset of Y and the two conditions
listed at the beginning of this section must be met.

Action(Y)

The map giving the action of the group on the G-set Y .

Group(Y)

The group associated with the G-set Y .

Labelling(G)

Given a permutation group G of degree n, return an indexed set giving the internal
mapping of the natural G-set of G onto the set {1, . . . , n}, where n is the degree of
G.

Degree(g, Y)

Degree(g)

Given an element g of a permutation group G and a G-set Y , return the cardinality
of the subset of Y consisting of points that are moved by g. If Y is omitted, the
natural G-set X is assumed.

Degree(G, Y)

Degree(G)

Given a G-set Y , return the cardinality of Y . If Y is omitted, the natural G-set X
is assumed.

1566 FINITE GROUPS Part X

Support(g, Y)

Support(g)

Given an element g of a permutation group G and a G-set Y , return the subset of
Y consisting of points that are moved by g. If Y is omitted, the natural G-set X is
assumed.

Support(G, Y)

Support(G)

Given a permutation group G and a G-set Y , return the subset of Y consisting of
points that are moved by at least one element of G. If Y is omitted the natural
G-set for G is assumed.

Example H58E23

We construct a G-set with a user defined action. Our example will take a group G and a normal
subgroup N of index 4. The G-set will be the irreducible characters of N , with the usual G action
obtained from permuting the elements of N by conjugation. As this is not a derived set we will
define the action via a map.

> G := PGammaL(2, 9);

> N := PSL(2, 9);

> CT := CharacterTable(N);

> X := SequenceToSet(CT);

> XxG := CartesianProduct(X, G);

> f := map< XxG -> X | x :-> x[1]^x[2] >;

> Y := GSet(G, X, f);

This defines our G-set Y. The inertia group of a character is its stabilizer in this action. Let us
compute an inertia group.

> chi := CT[2];

> I := Stabilizer(G, Y, chi);

> Index(G, I);

2

> [#o : o in Orbits(G, Y)];

[1, 1, 1, 2, 2]

We find that two of the characters have inertia groups of index 2 in G, while three are G-invariant.

Ch. 58 PERMUTATION GROUPS 1567

58.10.3 Images, Orbits and Stabilizers

x ^ g

Given a permutation group G with natural G-set X and an object x which is an
element of some derived G-set of X, find the image of x under G.

Image(g, Y, y)

Image(g, y)

Given a permutation g belonging to a group G, a G-set Y , and an element y of Y ,
find the image of y under g. If y is an element of some derived G-set of G, the set
Y may be omitted.

Fix(g, Y)

Fix(g)

Given a permutation g belonging to a group G and a G-set Y , construct the fixed-
point set of g in its action on Y . In the case in which Y is the natural G-set, Y may
be omitted. The fixed-point set is returned as a subset of points of Y .

Fix(G, Y)

Fix(G)

The fixed-point set of the permutation group G in its action on the G-set Y (or the
natural G-set for G if Y is omitted).

x ^ G

Given a permutation group G with natural G-set X and an element x belonging to
some derived G-set of X, construct the orbit of x under G. The orbit is returned as
a G-set.

Cycle(e, x)

Let e be an element of a permutation group defined as acting on a set containing
x. Returns the set of images of x under repeated application of e as an indexed
set with x the first element. This gives the cycle containing x in the disjoint cycle
representation of e.

CycleDecomposition(e)

Let e be an element of a permutation group defined as acting on a set X. Returns
a sequence of indexed sets partitioning X, each of which is a cycle of e. This gives
the full disjoint cycle representation of e.

1568 FINITE GROUPS Part X

Orbit(G, Y, y)

Orbit(G, y)

Given a permutation groupG, aG-set Y , and an element y belonging to Y , construct
the orbit of y under G. The orbit is returned as a G-set. If y is an element of some
derived G-set of G, the set Y may be omitted.

Orbits(G, Y)

Orbits(G)

Given a permutation group G and a G-set Y , construct the orbits of G on Y . If the
set Y is omitted, the orbits of G on its natural G-set are constructed. The orbits
are returned as a sequence of G-sets.

OrbitRepresentatives(G)

Given a permutation group G, construct the orbits of G on its natural G-set. The
orbit descriptions are returned as a sequence of tuples 〈l, r〉 giving the length l and
a representative r of each orbit of G on its support.

This function stores only the orbit representatives and so is more space-efficient
than Orbits. However, it should be used only if the user wants to determine just
the orbit representatives; queries about the orbits containing other elements of the
support will cause further computation.

OrbitClosure(G, Y, S)

OrbitClosure(G, S)

Given a subset S of the G-set Y , construct the smallest G-invariant subset of Y
that contains S. If Y is the natural G-set for G it may be omitted.

IsConjugate(G, Y, y, z)

IsConjugate(G, y, z)

Given elements y and z belonging either to a G-set Y or to a (restricted) derived
set of Y , return the value true if there exists an element g ∈ G such that yg = z.
Otherwise, return false. If such an element exists, then it is returned as the second
value of the function. If y and z belong to the natural G-set, then Y may be omitted.
Currently, y and z are restricted to being elements, sets of elements, multisets of
elements, sequences of elements, ordered partitions, or unordered partitions of Y .

Ch. 58 PERMUTATION GROUPS 1569

Stabilizer(G, Y, y)

Stabiliser(G, Y, y)

Stabilizer(G, y)

Stabiliser(G, y)

Given a permutation group G and a G-set Y , and an object y which is either an
element, a sequence of elements, a set of elements, an ordered partition or a tuple
over the G-set Y , find the stabilizer of y in G. The stabilizer is returned as a
subgroup of G. If Y is the natural G-set, it may be omitted.

IsPrimitive(G, Y)

IsPrimitive(G)

Returns true if G acts primitively on the G-set Y . If Y is the natural G-set, the
set Y may be omitted.

IsTransitive(G, Y)

IsTransitive(G)

Returns true if G acts transitively on the G-set Y . If Y is the natural G-set, the
set Y may be omitted.

IsTransitive(G, Y, k)

IsTransitive(G, k)

Returns true if G acts k-transitively on the G-set Y . If Y is the natural G-set, the
set Y may be omitted.

IsSharplyTransitive(G, Y, k)

IsSharplyTransitive(G, k)

Returns true if G acts sharply k-transitively on the G-set Y . If Y is the natural
G-set, the set Y may be omitted.

Transitivity(G, Y)

Transitivity(G)

The degree of transitivity of G acting on the G-set Y . The set Y may be omitted if
it is the same as the natural G-set.

IsRegular(G, Y)

IsRegular(G)

Returns true if G acts regularly on the G-set Y . If Y is the natural G-set, the set
Y may be omitted. The algorithm used is that of Sims, see [CB92].

1570 FINITE GROUPS Part X

IsSemiregular(G, Y)

IsSemiregular(G)

Returns true if G acts semiregularly on the G-set Y . If Y is the natural G-set, the
set Y may be omitted. The algorithm used is a variation of Sims’ regularity test,
see [CB92].

IsSemiregular(G, Y, S)

IsSemiregular(G, S)

Given a permutation group G, a G-set Y for G, and a union of orbits S for G in its
action on Y , return true if G acts semiregularly on S. If Y is the natural G-set,
then Y may be omitted.

IsFrobenius(G)

Returns true if the permutation group G is a Frobenius group with respect to its
natural action, false otherwise. (A group G defined as acting on X is Frobenius
if it acts transitively but non-regularly on X and if the pointwise stabilizer of any
two distinct points of X is the trivial group.)

Example H58E24

We apply some of these functions to the Mathieu group M24, taking as generators the following
three permutations:

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24),

(2, 16, 9, 6, 8)(3, 12, 13, 18, 4)(7, 17, 10, 11, 22)(14, 19, 21, 20, 15),

(1, 22)(2, 11)(3, 15)(4, 17)(5, 9)(6, 19)(7, 13)(8, 20)(10, 16)(12, 21)(14, 18)(23, 24).

> M24 := sub< Sym(24) |

> (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,24),

> (2,16,9,6,8)(3,12,13,18,4)(7,17,10,11,22)(14,19,21,20,15),

> (1,22)(2,11)(3,15)(4,17)(5,9)(6,19)(7,13)(8,20)(10,16)(12,21)(14,18)(23,24)>;

> M24;

Permutation group M24 acting on a set of cardinality 24

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 24)

(2, 16, 9, 6, 8)(3, 12, 13, 18, 4)(7, 17, 10, 11, 22)(14, 19, 21, 20, 15)

(1, 22)(2, 11)(3, 15)(4, 17)(5, 9)(6, 19)(7, 13)(8, 20)(10, 16)(12, 21)

(14, 18)(23, 24)

Choosing a random element x of M24, we use it to compute some images.

> x := Random(M24);

> 1^x;

7

> [1,2,3,4]^x;

Ch. 58 PERMUTATION GROUPS 1571

[7, 9, 8, 17]

> { 1,2,3,4}^x;
{ 17, 7, 8, 9 }
We find the stabilizer of the point 1, which is the group M23.

> S1 := Stabilizer(M24, 1);

> S1;

Permutation group S1 acting on a set of cardinality 24

Order = 10200960 = 2^7 * 3^2 * 5 * 7 * 11 * 23

(2, 16, 9, 6, 8)(3, 12, 13, 18, 4)(7, 17, 10, 11, 22)(14, 19, 21, 20, 15)

(7, 17, 22)(8, 11, 13)(9, 14, 12)(10, 20, 19)(15, 23, 18)(16, 21, 24)

(3, 6, 18)(5, 16, 14)(7, 21, 22)(8, 19, 17)(9, 20, 24)(11, 12, 13)

(6, 18, 15)(7, 19, 16)(8, 13, 11)(9, 10, 22)(12, 21, 20)(14, 17, 24)

(4, 12, 6, 19)(5, 22, 24, 8)(7, 17, 20, 14)(9, 15, 13, 18)(10, 21)(11, 16)

(6, 22, 7)(8, 13, 11)(9, 20, 16)(10, 18, 21)(12, 15, 19)(14, 24, 23)

(5, 12, 21)(6, 15, 18)(7, 22, 8)(9, 16, 17)(10, 14, 13)(11, 24, 19)

We next compute the stabilizer of the sequence [1, 2, 3, 4, 5].

> SQ := Stabilizer(M24, [1,2,3,4,5]);

> SQ;

Permutation group SQ acting on a set of cardinality 24

Order = 48 = 2^4 * 3

(6, 18, 15)(7, 19, 16)(8, 13, 11)(9, 10, 22)(12, 21, 20)(14, 17, 24)

(7, 17, 22)(8, 11, 13)(9, 14, 12)(10, 20, 19)(15, 23, 18)(16, 21, 24)

(6, 22, 7)(8, 13, 11)(9, 20, 16)(10, 18, 21)(12, 15, 19)(14, 24, 23)

> Orbits(SQ);

[

GSet{@ 1 @},
GSet{@ 2 @},
GSet{@ 3 @},
GSet{@ 4 @},
GSet{@ 5 @},
GSet{@ 6,18, 22, 15, 21, 9, 7, 23, 19, 20, 24, 10,

14, 17, 16 12 @},
GSet{@ 8, 13, 11 @}

]

The five fixed points together with the orbit of length 3 form a block of a 5− (24, 8, 1) design. By
computing the orbit of this block under M24, we obtain all the blocks of the design.

> B := { 1,2,3,4,5,8,11,13};
> D := B^M24;

> #D;

759

Finally, we check that the set stabilizer of the block { 1, 2, 3, 4, 5, 8, 11, 13} has index 759 in M24.

> Index(M24, Stabilizer(M24, { 1,2,3,4,5,8,11,13}));
759

1572 FINITE GROUPS Part X

58.10.4 Action on a G-Space

Action(G, Y)

Given a permutation group G defined to be acting on X and a set Y , construct the
homomorphism φ : G → L, where the permutation group L gives the action of G
on the set Y . The function returns:
(a)The natural homomorphism φ : G→ L;
(b)The induced group L;
(c) The kernel of the action (a subgroup of G).

ActionImage(G, Y)

Given a permutation group G defined to be acting on X and a set Y , construct the
permutation group L giving the action of G on the set Y .

ActionKernel(G, Y)

Construct the kernel of the homomorphism φ : G → L, where the permutation
group L gives the action of G on the G-set Y .

IsFaithful(G, Y)

Returns true if the action of G on the G-set Y is faithful.

Example H58E25

We take the group PSL(3, 4) acting on projective points and construct its representation on flags
(point-line pairs). In order to construct the flags, we need to find a line. If H is the stabilizer of
a point α in PSL(3, 4) in its action on projective points, then a line consists of α together with
the points in any non-trivial orbit of O2(G).

> G := ProjectiveSpecialLinearGroup(3, 4);

> O2 := pCore(Stabilizer(G, 1), 2);

> O2;

Permutation group O2 acting on a set of cardinality 21

Order = 16 = 2^4

(3, 4)(5, 7)(9, 16)(10, 17)(11, 15)(13, 18)(14, 19)(20, 21)

(3, 20)(4, 21)(5, 15)(7, 11)(9, 10)(13, 19)(14, 18)(16, 17)

(2, 8)(5, 15)(6, 12)(7, 11)(9, 17)(10, 16)(13, 18)(14, 19)

(2, 12)(5, 11)(6, 8)(7, 15)(9, 16)(10, 17)(13, 19)(14, 18)

> flag := < 1, Orbit(O2, 2) >;

> flag;

<1, GSet{@ 2, 6, 8, 12 @}>
> flags := GSet(G, Orbit(G, flag));

> #flags;

105

> GOnFlags := ActionImage(G, flags);

> GOnFlags;

Permutation group GOnFlags acting on a set of

Ch. 58 PERMUTATION GROUPS 1573

cardinality 105

Order = 20160 = 2^6 * 3^2 * 5 * 7

> Stabilizer(GOnFlags, Rep(flags));

Permutation group acting on a set of cardinality 105

Order = 192 = 2^6 * 3

58.10.5 Action on Orbits
The operations described here are concerned with the class of G-sets consisting of G-
invariant subsets of the natural G-set. Because of the special nature of such G-sets, more
efficient algorithms are available for computing with homomorphisms of G induced by the
action of G on such a G-set. See Butler [But85] for more details.

OrbitAction(G, T)

The homomorphism f : G→ L induced by the action of G on the G-invariant subset
T of X (a union of orbits).

OrbitImage(G, T)

The group L defined by the action of G on the G-invariant subset T of X (a union
of orbits).

OrbitKernel(G, T)

The kernel of the homomorphism f : G→ L, where the group L gives the action of
G on the G-invariant subset T of X (a union of orbits).

IsOrbit(G, S)

Returns true if the subset S of Support(G) is invariant under G.

Example H58E26

We study an intransitive group of degree 36 generated by the permutations

(3, 17, 26)(4, 16, 25)(5, 18, 27)(8, 15, 24),

(1, 32, 10)(2, 31, 11)(3, 35, 12)(6, 30, 15),

(12, 33, 24)(13, 29, 20)(14, 28, 19)(17, 30, 21),

(6, 26, 33)(7, 22, 34)(8, 21, 35)(9, 23, 36).

> G := PermutationGroup< 36 | (3, 17, 26)(4, 16, 25)(5, 18, 27)(8, 15, 24),

> (1, 32, 10)(2, 31, 11)(3, 35, 12)(6, 30, 15),

> (12, 33, 24)(13, 29, 20)(14, 28, 19)(17, 30, 21),

> (6, 26, 33)(7, 22, 34)(8, 21, 35)(9, 23, 36) >;

> IsTransitive(G);

false

> Orbit(G, 1);

1574 FINITE GROUPS Part X

GSet{@ 1, 32, 10 @}
> O := Orbits(G);

> O;

[

GSet{@ 1, 32, 10 @},
GSet{@ 2, 31, 11 @},
GSet{@ 4, 16, 25 @},
GSet{@ 5, 18, 27 @},
GSet{@ 7, 22, 34 @},
GSet{@ 9, 23, 36 @},
GSet{@ 13, 29, 20 @},
GSet{@ 14, 28, 19 @}
GSet{@ 3, 17, 35, 26, 30, 12, 8, 33, 15, 21, 24, 6 @},

]

> Order(G);

933120

We see that the group is intransitive having eight orbits of size 3 and one orbit of size 12. We
consider the action of G on the orbit of size 12.

> f := OrbitAction(G, O[9]);

> f;

Mapping from: GrpPerm: G to GrpPerm: $

> Im := Image(f);

> Im;

Permutation group acting on a set of cardinality 12

Order = 11520 = 2^8 * 3^2 * 5

(1, 6, 9)(3, 5, 8)

(4, 11, 8)(6, 10, 7)

(6, 8)(7, 11)

(2, 8, 10)(4, 12, 6)

(3, 10, 8)(4, 6, 9)

> Ker := Kernel(f);

> Ker;

Permutation group acting on a set of cardinality 36

Order = 81 = 3^4

(4, 16, 25)(5, 18, 27)

(7, 22, 34)(9, 23, 36)

(13, 29, 20)(14, 28, 19)

(1, 32, 10)(2, 31, 11)(4, 25, 16)(5, 27, 18)

> IsElementaryAbelian(Ker);

true

Thus G has an elementary abelian normal subgroup of order 81 which is the kernel of the restriction
of G to the orbit of size 12.

Ch. 58 PERMUTATION GROUPS 1575

58.10.6 Action on a G-invariant Partition
This section describes the functions supplied by Magma for computing with block systems
for a permutation group.

IsBlock(G, S)

Given a transitive permutation group G with natural G-set X, and a subset S of
X, return true if S is a block for G in its action on X.

IsPrimitive(G)

Returns true if the transitive permutation group G is primitive.

MaximalPartition(G)

Construct a G-invariant partition P for the transitive permutation group G with
natural G-set X. The partition P is maximal in the sense that there is no G-
invariant partition P ′ of X such that some block of P ′ properly contains a block of
the partition P . The block system is returned as a partition of X. If G is primitive,
the partition with one block is returned.

MinimalPartition(G: parameters)

Construct a non-trivial G-invariant partition P of the natural G-set X of the tran-
sitive permutation group G. The partition P is minimal in the sense that there is
no G-invariant partition P ′ of X such that some block of P ′ is properly contained
in some block of the partition P . The block system is returned as a partition of
X. If G is primitive, or if no partition satisfying the side-conditions (see below) is
found, then the empty set is returned. The algorithm used is based on Schönert &
Seress [SS94].

Block := S { Elt } Default : []
If S is non-empty, then the partition P must possess a block B such that S is a
subset of B. In this case the algorithm used is that of Atkinson, [Atk75].

MinimalPartitions(G: parameters)

Construct all non-trivial minimal G-invariant partitions of the natural G-set X of
the transitive permutation group G. A partition P is minimal in the sense that
there is no G-invariant partition P ′ of X such that some block of P ′ is properly
contained in some block of the partition P .

The minimal block systems are returned as a sequence of sets of sets. If G is
primitive, the function returns the empty sequence.

The algorithm used is based on Schönert & Seress [SS94].
Limit := n RngIntElt Default : ∞

The function will return after creating at most n block systems. This option is
useful in situations where, say, two distinct minimal blocks systems are required for
a reduction algorithm.

1576 FINITE GROUPS Part X

AllPartitions(G)

Construct all non-trivial G-invariant partitions of the natural G-set X of the tran-
sitive permutation group G. The structure returned is a set containing one block
from each such partition. The block chosen is the block containing the first element
of Labelling(G).

BlocksAction(G, P)

BlocksAction(G, P)

BlocksAction(G, P)

BlocksAction(G, P)

Given a transitive permutation group G with natural G-set X and a G-invariant
partition P of X, construct the group L induced by the action of G on the blocks of
P . In the second form, P is specified by giving a single block of the partition. The
function returns

(a)The natural homomorphism f : G→ L;

(b)The induced group;

(c) The kernel of the action (a subgroup of G).

The relationship between the supports of G and L is given by the returned mapping,
which may also be used as a map from Labelling(G) to Labelling(L). In the
forward direction this takes each element in the support of G to its block number
in the support of L, while in the reverse direction this takes a block number to a
representative of the block.

BlocksImage(G, P)

BlocksImage(G, P)

BlocksImage(G, P)

BlocksImage(G, P)

Given a transitive permutation group G with natural G-set X and a G-invariant
partition P of X, construct the group induced by the action of G on the blocks of
P . In the second form, P is specified by giving a single block of the partition.

BlocksKernel(G, P)

BlocksKernel(G, P)

BlocksKernel(G, P)

BlocksKernel(G, P)

Given a transitive permutation group G with natural G-set X and a G-invariant
partition P of X, construct the kernel of the action of G on the blocks of P . In the
second form, P is specified by giving a single block of the partition.

Ch. 58 PERMUTATION GROUPS 1577

Example H58E27

An imprimitive group of degree 100 constructed by Capel has several different block systems.

> G := sub< Sym(100) |

> (1,21,41,61,81)(2,82,62,42,22)(3,23,43,63,83)(4,84,64,44,24)

> (5,25,45,65,85)(6,86,66,46,26)(7,27,47,67,87)(8,88,68,48,28)

> (9,29,49,69,89)(10,90,70,50,30)(11,31,51,71,91)(12,92,72,52,32)

> (13,33,53,73,93)(14,94,74,54,34)(15,35,55,75,95)(16,96,76,56,36)

> (17,37,57,77,97)(18,98,78,58,38)(19,39,59,79,99)(20,100,80,60,40),

> (1,4,6,7,10)(2,3,5,8,9)(11,19,17,15,14)(12,20,18,16,13)(21,24,26,27,30)

> (22,23,25,28,29)(31,39,37,35,34)(32,40,38,36,33)(41,44,46,47,50)

> (42,43,45,48,49)(51,59,57,55,54)(52,60,58,56,53)(61,64,66,67,70)

> (62,63,65,68,69)(71,79,77,75,74)(72,80,78,76,73)(81,84,86,87,90)

> (82,83,85,88,89)(91,99,97,95,94)(92,100,98,96,93),

> (1,11,2,12)(3,13,4,14)(5,16,6,15)(7,17,8,18)(9,20,10,19)(21,31,22,32)

> (23,33,24,34)(25,36,26,35)(27,37,28,38)(29,40,30,39)(41,51,42,52)

> (43,53,44,54)(45,56,46,55)(47,57,48,58)(49,60,50,59)(61,71,62,72)

> (63,73,64,74)(65,76,66,75)(67,77,68,78)(69,80,70,79)(81,91,82,92)

> (83,93,84,94)(85,96,86,95)(87,97,88,98)(89,100,90,99) >;

> MaxPart := MaximalPartition(G);

> #MaxPart;

2

> MaxPart;

GSet{@
{ 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 31, 32, 33, 34, 35,

36, 37, 38, 39, 40, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 71,

72, 73, 74, 75, 76, 77, 78, 79, 80, 91, 92, 93, 94, 95, 96, 97,

98, 99, 100 },
{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 21, 22, 23, 24, 25, 26, 27, 28,

29, 30, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 61, 62, 63, 64,

65, 66, 67, 68, 69, 70, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90 }
@}
> MinPart := MinimalPartition(G);

> #MinPart;

50

We see that the group has a (maximal) system of imprimitivity consisting of 2 blocks of size 50
and a (minimal) system of imprimitivity consisting of 50 blocks of size 2.

> Parts := MinimalPartitions(G);

> [#p : p in Parts];

[50, 50, 50, 50, 20, 50]

Thus the group has six distinct minimal G-invariant partitions. Of these five have 50 blocks of
size two while the remaining one has 20 blocks of size 5. We examine the action of G on one of
the partitions into 50 blocks of size 2.

> f, Im, Ker := BlocksAction(G, Parts[1]);

> f;

Mapping from: GrpPerm: G to GrpPerm: Im

1578 FINITE GROUPS Part X

> Im;

Permutation group Im acting on a set of cardinality 50

Order = 7812500 = 2^2 * 5^9

(1, 11, 31, 32, 12)(2, 13, 33, 34, 14)(3, 15, 35, 36, 16)

(4, 17, 37, 38, 18) (5, 19, 39, 40, 20)(6, 21, 41, 42, 22)

(7, 23, 43, 44, 24)(8, 25, 45, 46, 26)(9, 27, 47, 48, 28)

(10, 29, 49, 50, 30)

(1, 2, 3, 4, 5)(6, 10, 9, 8, 7)(11, 14, 16, 17, 20)(12, 13, 15, 18, 19)

(21, 29, 27, 25, 24)(22, 30, 28, 26, 23)(31, 34, 36, 37, 40)

(32, 33, 35, 38, 39)(41, 49, 47, 45, 44)(42, 50, 48, 46, 43)

(1, 6)(2, 7)(3, 8)(4, 9)(5, 10)(11, 21, 12, 22)(13, 23, 14, 24)

(15, 26, 16, 25)(17, 27, 18, 28)(19, 30, 20, 29)(31, 41, 32, 42)

(33, 43, 34, 44)(35, 46, 36, 45)(37, 47, 38, 48)(39, 50, 40, 49)

> Ker;

Permutation group Ker acting on a set of cardinality 100

Order = 1

Thus, G acts faithfully on this block system.

Example H58E28

When analyzing a permutation group, it is sometimes necessary to reduce it to its primitive
components. This can be done by using the constituent homomorphism and blocks homomorphism
functions. We illustrate their use by analyzing the group of Rubik’s cube, represented as a
permutation group on 48 letters:

> G := sub<Sym(48) |

> (1,3,8,6)(2,5,7,4)(9,48,15,12)(10,47,16,13)(11,46,17,14),

> (6,15,35,26)(7,22,34,19)(8,30,33,11)(12,14,29,27)(13,21,28,20),

> (1,12,33,41)(4,20,36,44)(6,27,38,46)(9,11,26,24)(10,19,25,18),

> (1,24,40,17)(2,18,39,23)(3,9,38,32)(41,43,48,46)(42,45,47,44),

> (3,43,35,14)(5,45,37,21)(8,48,40,29)(15,17,32,30)(16,23,31,22),

> (24,27,30,43)(25,28,31,42)(26,29,32,41)(33,35,40,38)(34,37,39,36) >;

> O1 := Orbits(G);

> O1;

[

GSet{@ 1, 3, 6, 8, 9, 11, 12, 14, 15, 17, 24, 26, 27, 29,

30, 32, 33, 35, 38, 40, 41, 43, 46, 48 @},
GSet{@ 2, 4, 5, 7, 10, 13, 16, 18, 19, 20, 21, 22, 23, 25, 28,

31, 34, 36, 37, 39, 42, 44, 45, 47 @}
]

Thus, G has two orbits, each of size 24. We consider the restriction of the action of G to the first
of these orbits.

> f1, Im1, Ker1 := OrbitAction(G, O1[1]);

> FactoredOrder(Im1);

[<2, 7>, <3, 9>, <5, 1>, <7, 1>]

> IsPrimitive(Im1);

false

Ch. 58 PERMUTATION GROUPS 1579

> P1 := MinimalPartition(Im1);

> #P1;

8

> f2, Im2, Ker2 := BlocksAction(Im1, P1);

> FactoredOrder(Im2);

[<2, 7>, <3, 2>, <5, 1>, <7, 1>]

> IsPrimitive(Im2);

true

> IsSymmetric(Im2);

true

> FactoredOrder(Ker2);

[<3, 7>]

> IsElementaryAbelian(Ker2);

true

Hence the group obtained by restricting G to its first orbit is isomorphic to Sym(8) acting on
an elementary abelian normal subgroup of order 37. We next investigate the kernel Ker1 of the
restriction of G to the first orbit of length 24. We know that Ker1 must fix all the points in the
first orbit of G so we first take its restriction to the second orbit.

> f3, Im3, Ker3 := OrbitAction(Ker1, O1[2]);

> IsTransitive(Im3);

true

> FactoredOrder(Im3);

[<2, 20>, <3, 5>, <5, 2>, <7, 1>, <11, 1>]

> FactoredOrder(Ker3);

[]

> IsPrimitive(Im3);

false

The kernel acts transitively and faithfully on the second orbit. As it is imprimitive, we look at its
action on a system of imprimitivity.

> P := MinimalPartition(Im3);

> f4, Im4, Ker4 := BlocksAction(Im3, P);

> Im4;

Permutation group Im4 acting on a set of cardinality 12

Order = 239500800 = 2^9 * 3^5 * 5^2 * 7 * 11

(10, 12, 11)

(9, 12, 11)

(8, 12, 9)

(7, 9)(8, 12)

(6, 9, 10)

(5, 6, 9)

(4, 6, 9)

(3, 6, 9)

(2, 6, 9, 5)(4, 10)

(1, 9, 6, 5)(4, 10)

> IsPrimitive(Im4);

true

1580 FINITE GROUPS Part X

> IsAlternating(Im4);

true

> FactoredOrder(Ker4);

[<2, 11>]

> IsElementaryAbelian(Ker4);

true

The kernel of the restriction of G to the first orbit is isomorphic to Alt(12) acting on an elementary
abelian group of order 211. So we now know the composition factors of G together with an
indication of how they fit together.

58.10.7 Action on a Coset Space

CosetAction(G, H: parameters)

Given a subgroup H of the group G, construct the permutation representation of
G given by the action of G on the set of (right) cosets of H in G. The function
returns:
(a)The natural homomorphism f : G→ L;
(b)The induced group L;
(c) The kernel K of the action (a subgroup of G).

Note that G may be any type of group. If G is a finitely presented group, then K
may be returned undefined.

Al MonStgElt Default : “Default”
Al := "Wang": Construct the coset action using Wang da Fang’s algorithm which
builds the action up the stabilizer chains of G and H, using a sequence of induction
and block image operations. This algorithm is particularly efficient when H has
fixed points that are not fixed points of G, and is the default choice when H is
trivial.

Al := "Canonical": Compute the cosets using an orbit algorithm, which de-
scribes each coset found by computing a canonical element of that coset. The canon-
ical element is one with the minimal base image in the group G. The algorithm is
due to Richardson, [Ric73].

Al := "Default": Choose one of the above to use.

CosetImage(G, H: parameters)

Given a subgroup H of the group G, construct the image L of G given by the action
of G on the set of (right) cosets of H in G. L is returned as a permutation group.
Possible parameters are as for the previous function.

CosetKernel(G, H)

Given a subgroup H of the group G, construct the kernel of the action of G on the
set of (right) cosets of H in G.

Ch. 58 PERMUTATION GROUPS 1581

58.10.8 Reduced Permutation Actions
If a permutation group is intransitive or imprimitive, then orbit actions and blocks actions
provide natural permutation representations of lower degree.

TransitiveQuotient(G)

Returns the transitive constituent of G acting on its longest orbit, together with
the action homomorphism and the kernel of the action. If G is transitive then the
return values are G, the identity map on G, and the trivial subgroup of G.

PrimitiveQuotient(G)

For a transitive group G, returns the blocks image of G acting on a maximal block
system, together with the action homomorphism and the kernel of the action. If G
is primitive then the return values are G, the identity map on G, and the trivial
subgroup of G.

DegreeReduction(G)

Use a combination of orbit images and blocks images to attempt to find a faithful
permutation representation of G with lower degree than G. The second return value
is the isomorphism from G to the representation found. If no lower degree faithful
representation is found then G and the identity map on G is returned.

58.10.9 The Jellyfish Algorithm
The Jellyfish reduction algorithm was introduced in [LNPS06]. See this article for an
explanation of the name “Jellyfish”. It attempts to find faithful low degree permutation
representations for a family of large-base primitive permutation groups. We now define
the target family as given in [LNPS06]. Consider the group W = Sn oSr, as a permutation
group in its primitive action on the set of r-tuples of k-subsets of the chosen n-set (see
PrimitiveWreathProduct). Let M be the socle of W , M = Ar

n. Let G be any subgroup
of W , with M ≤ G, such that the conjugation action of G on the r copies of An in M is
transitive. A group T is in the target family of the algorithm if T is permutation isomorphic
to some such G, having n > 2rk2, and rk > 1. The degree of such a T is

(
n
k

)r, and any
such T is primitive. The image sought by the algorithm has degree nk. The utility of
the algorithm is that any primitive group not in the target family is either alternating,
symmetric, or has a short base.

The algorithm is one-sided Monte-Carlo in that, if it reports success, then it has found
a faithful representation of the group. There is a small probability that the algorithm will
find no faithful representation, even when the group given is in the target family.

Note that the Jellyfish algorithm implemented in Magma may succeed even when the
input group is not in the target family. In all cases, success of the algorithm guarantees a
faithful representation of the group.

The Magma implementation offers functions for testing the group for applicability of
the Jellyfish algorithm. If successful, this test constructs data structures as in the cited
article for quick evaluation of the homomorphism to the low-degree representation found
and stores these with the group. There are also functions to compute the image and

1582 FINITE GROUPS Part X

preimage of elements under the representation map. The preimage function is an addition
to the algorithms given in [LNPS06], using an extension of their data structure. The
preimage algorithm is nearly linear in the degree of the large degree primitive group.

JellyfishConstruction(G: parameters)

Limit RngIntElt Default :

Attempt to construct a set of jellyfish for G. If unsuccessful, return false. Otherwise,
construct data structures corresponding to T1 and T5 of [LNPS06], attach them to
G, and return true. The parameter Limit controls how many attempts are made
to find the orbits of the point stabilizer of G, which is the initial step in constructing
a jellyfish. This construction phase terminates after a sequence of Limit random
elements of G fails to change the orbits found. If the orbits found so far are not the
orbits of a point stabilizer in G, the algorithm may fail. The same limit is used in
the next phase, constructing the first jellyfish. The current default is the maximum
of 15 and 2blog2 dc, where d is the degree of G.

JellyfishImage(G)

If the JellyfishConstruction function applied to G has returned true, return the
faithful image of G found by the jellyfish algorithm. Otherwise an error results. If
the JellyfishConstruction has not yet been applied to G, then it is applied first
with default parameters. A failure here results in an error.

JellyfishImage(G, x)

If the JellyfishConstruction function applied to G has returned true, return the
image of x as a permutation of the jellyfish. The function will attempt this for any
x in the same symmetric group as G. The algorithm may fail when x /∈ G, in which
case an error results, and this proves that x is not in G. It is possible for this map
to succeed when x is not in G. In recognition of this, the parent of the result will be
a symmetric group. If the JellyfishConstruction has not yet been applied to G,
then it is applied first with default parameters. A failure here results in an error.

JellyfishPreimage(G, x)

If the JellyfishConstruction function applied to G has returned true, return the
preimage of x as a permutation in the symmetric group of G. The element x is
assumed to be a permutation of the jellyfish for G. The function will attempt this
for any x in the same symmetric group as the JellyfishImage of G. The algorithm
may fail when x is not in the image group, in which case an error results. It is possible
for this map to succeed when x is not in the image group. In recognition of this,
the parent of the result will be a symmetric group. If the JellyfishConstruction
has not yet been applied to G, then it is applied first with default parameters. A
failure here results in an error.

Ch. 58 PERMUTATION GROUPS 1583

58.11 Normal and Subnormal Subgroups

58.11.1 Characteristic Subgroups and Normal Series

DerivedSeries(G)

The derived series of the group G. The series is returned as a sequence of subgroups.
The algorithm used is described in [BC82].

CompositionSeries(G)

A composition series of the group G, ie. a descending chain of normal subgroups,
such that each quotient is a simple group. The series is returned as a sequence of
subgroups.

CommutatorSubgroup(G)

DerivedSubgroup(G)

DerivedGroup(G)

The derived subgroup of the group G.

SolubleResidual(G)

SolvableResidual(G)

The solvable residual (the last term of the derived series) of the group G.

DerivedLength(G)

The derived length of G. If G is non-soluble, the function returns the number of
terms in the series terminating with the soluble residual.

LowerCentralSeries(G)

The lower central series of G. The series is returned as a sequence of subgroups, the
first of which is the group G. The algorithm used is described in [BC82].

NilpotencyClass(G)

The nilpotency class of the group G. If the group is not nilpotent, the value −1 is
returned.

UpperCentralSeries(G)

The upper central series of G. The series is returned as a sequence of subgroups
commencing with the trivial subgroup. The algorithm used is to compute the centre
of G and then section centralisers (see [Luk93]) up the chain. This requires comput-
ing cores of subgroups, so this function is more restricted in its range of application
than DerivedSeries and LowerCentralSeries.

1584 FINITE GROUPS Part X

Centre(G)

Center(G)

Construct the centre of the group G. The centre is found by applying the function
CentralizerOfNormalSubgroup to G in G.

Hypercentre(G)

Hypercenter(G)

Construct the hypercentre of the group G (the stationary term of the upper central
series).

pCore(G, p)

Given a group G and a prime p, construct the maximal normal p-subgroup of G.
The algorithm employed is described in Unger [Ung06b].

pCoreQuotient(G, p)

Given a group G and a prime p, construct the quotient of G by K := pCore(G, p).
The return values are the quotient, Q, represented as a permutation group of the
same degree as G, the quotient map from G onto Q, and K.

FittingSubgroup(G)

The Fitting subgroup of the group G. It is computed as the product of the p-cores
of the radical of G.

FrattiniSubgroup(G)

Given a group G, return the Frattini subgroup. For p-groups this is computed as
the derived group with pth powers of the generators added. Solvable groups are
converted to their GrpPC representation and the problem solved there. Non-solvable
groups are treated by finding their maximal subgroups and forming the intersection,
so are subject to the same restrictions as the MaximalSubgroups command.

JenningsSeries(G)

Given a p-group G, return the Jennings series for G. The series is returned as a
sequence of subgroups.

pCentralSeries(G, p)

Given a soluble group G, and a prime p dividing |G|, return the lower p-central
series for G. The series is returned as a sequence of subgroups.

SubnormalSeries(G, H)

Given a group G and a subnormal subgroup H of G, return a sequence of subgroups
commencing with G and terminating with H, such that each subgroup is normal in
the previous one. If H is not subnormal in G, the empty sequence is returned.

Ch. 58 PERMUTATION GROUPS 1585

Example H58E29

We compute the various series in the wreath product of the symmetric group of degree 4 with the
dihedral group of order 8 (a soluble group).

> G := WreathProduct(Sym(4), DihedralGroup(4));

> G;

Permutation group G acting on a set of cardinality 16

(1, 5, 9, 13)(2, 6, 10, 14)(3, 7, 11, 15)(4, 8, 12, 16)

(1, 13)(2, 14)(3, 15)(4, 16)(5, 9)(6, 10)(7, 11)(8, 12)

(1, 2, 3, 4)

(1, 2)

> [FactoredOrder(H) : H in DerivedSeries(G)];

[

[<2, 15>, <3, 4>],

[<2, 12>, <3, 4>],

[<2, 9>, <3, 4>],

[<2, 8>, <3, 4>],

[<2, 8>],

[]

]

> DerivedLength(G);

5

> [FactoredOrder(H) : H in LowerCentralSeries(G)];

[

[<2, 15>, <3, 4>],

[<2, 12>, <3, 4>],

[<2, 10>, <3, 4>],

[<2, 9>, <3, 4>],

[<2, 8>, <3, 4>]

]

> NilpotencyClass(G);

-1

> Centre(G);

Permutation group acting on a set of cardinality 16

Order = 1

Id($)

> pCentralSeries(G, 2);

[

[<2, 15>, <3, 4>],

[<2, 12>, <3, 4>],

[<2, 10>, <3, 4>],

[<2, 9>, <3, 4>],

[<2, 8>, <3, 4>]

]

> [FactoredOrder(H) : H in pCentralSeries(G, 3)];

[

[<2, 15>, <3, 4>]

1586 FINITE GROUPS Part X

]

58.11.2 Maximal and Minimal Normal Subgroups

MaximalNormalSubgroup(G)

A maximal normal subgroup of G. The trivial subgroup is returned if G is simple.
The algorithm takes homomorphic reductions to a primitive group and then uses
O’Nan-Scott type considerations to get its result.

MinimalNormalSubgroups(G)

The minimal normal subgroups of G. These are obtained by first computing the
socle of G and then splitting off the normal factors.

58.11.3 Lattice of Normal Subgroups

NormalSubgroups(G)

The normal subgroups of G. These are determined by the method of Cannon and
Souvignier [CS].

NormalLattice(G)

The normal subgroup lattice of G. The subgroups are first found using the same
algorithm as the function NormalSubgroups and then inclusions are determined.

Example H58E30

We determine all normal subgroups of the wreath product of Sym(8) and the dihedral group of
order 8.

> G := WreathProduct(Sym(8), DihedralGroup(4));

> Order(G);

21143266346926080000

> time N := NormalSubgroups(G);

Time: 1.050

> #N;

29

> [< Order(H‘subgroup), FactoredOrder(H‘subgroup) > : H in N];

[

<1, []>,

<165181768335360000, [<2, 24>, <3, 8>, <5, 4>, <7, 4>]>,

<330363536670720000, [<2, 25>, <3, 8>, <5, 4>, <7, 4>]>,

<660727073341440000, [<2, 26>, <3, 8>, <5, 4>, <7, 4>]>,

<1321454146682880000, [<2, 27>, <3, 8>, <5, 4>, <7, 4>]>,

<1321454146682880000, [<2, 27>, <3, 8>, <5, 4>, <7, 4>]>,

<1321454146682880000, [<2, 27>, <3, 8>, <5, 4>, <7, 4>]>,

<2642908293365760000, [<2, 28>, <3, 8>, <5, 4>, <7, 4>]>,

Ch. 58 PERMUTATION GROUPS 1587

<2642908293365760000, [<2, 28>, <3, 8>, <5, 4>, <7, 4>]>,

<2642908293365760000, [<2, 28>, <3, 8>, <5, 4>, <7, 4>]>,

<2642908293365760000, [<2, 28>, <3, 8>, <5, 4>, <7, 4>]>,

<2642908293365760000, [<2, 28>, <3, 8>, <5, 4>, <7, 4>]>,

<2642908293365760000, [<2, 28>, <3, 8>, <5, 4>, <7, 4>]>,

<2642908293365760000, [<2, 28>, <3, 8>, <5, 4>, <7, 4>]>,

<5285816586731520000, [<2, 29>, <3, 8>, <5, 4>, <7, 4>]>,

<5285816586731520000, [<2, 29>, <3, 8>, <5, 4>, <7, 4>]>,

<5285816586731520000, [<2, 29>, <3, 8>, <5, 4>, <7, 4>]>,

<5285816586731520000, [<2, 29>, <3, 8>, <5, 4>, <7, 4>]>,

<5285816586731520000, [<2, 29>, <3, 8>, <5, 4>, <7, 4>]>,

<5285816586731520000, [<2, 29>, <3, 8>, <5, 4>, <7, 4>]>,

<5285816586731520000, [<2, 29>, <3, 8>, <5, 4>, <7, 4>]>,

<10571633173463040000, [<2, 30>, <3, 8>, <5, 4>, <7, 4>]>,

<10571633173463040000, [<2, 30>, <3, 8>, <5, 4>, <7, 4>]>,

<10571633173463040000, [<2, 30>, <3, 8>, <5, 4>, <7, 4>]>,

<10571633173463040000, [<2, 30>, <3, 8>, <5, 4>, <7, 4>]>,

<10571633173463040000, [<2, 30>, <3, 8>, <5, 4>, <7, 4>]>,

<10571633173463040000, [<2, 30>, <3, 8>, <5, 4>, <7, 4>]>,

<10571633173463040000, [<2, 30>, <3, 8>, <5, 4>, <7, 4>]>,

<21143266346926080000, [<2, 31>, <3, 8>, <5, 4>, <7, 4>]>

]

58.11.4 Composition and Chief Series

ChiefFactors(G)

Given a group G, return a sequence of the isomorphism types < f, d, q,m > of
the chief factors. An isomorphism type in a chief factor should be understood as
the direct product of m copies of the simple group described by < f, d, q > (see
CompositionFactors below). For the algorithm, see Unger [Ung].

ChiefSeries(G)

Given a group G, return the chief series of G and a sequence of the corresponding
isomorphism types < f, d, q,m > of the chief factors. An isomorphism type in a
chief factor should be understood as the direct product of m copies of the simple
group described by < f, d, q > (see CompositionFactors below). The series will be
organised to include the soluble radical of G, and, if G is insoluble, the socle of the
quotient of G by the soluble radical.

1588 FINITE GROUPS Part X

f Family name
1 A(d, q)
2 B(d, q)
3 C(d, q)
4 D(d, q)
5 G(2, q)
6 F(4, q)
7 E(6, q)
8 E(7, q)
9 E(8, q)
10 2A(d, q)
11 2B(2, q)
12 2D(d, q)
13 3D(4, q)
14 2G(2, q)
15 2F(4, q)
16 2E(6, q)
17 Alternating(d)
18 Sporadic group — see Table 2.
19 Cyclic(q)

d Group name
1 M11

2 M12

3 M22

4 M23

5 M24

6 J1

7 HS
8 J2

9 MCL
10 SUZ
11 J3

12 CO1

13 CO2

14 CO3

15 HE
16 M(22)
17 M(23)
18 M(24)
19 LY
20 RU
21 ON
22 TH
23 HA
24 BM
25 M
26 J4

Table 1: Family numbers and names Table 2: Sporadic groups

CompositionFactors(G)

Given a permutation group G, return a sequence S of tuples that represent the com-
position factors of G, ordered according to some composition series of G. Each tuple
is a triple of integers f , d, q that defines the isomorphism type of the corresponding
composition factor. A triple 〈f, d, q〉 describes a simple group as follows. The integer
f defines the family to which the group belongs, and d and q are the parameters of
the family. The length of the sequence S is the number of composition factors of G.
The algorithm used is the “tabular” algorithm of Kantor [Kan91], extended to be
valid for groups of degree ≤ 107. The families are listed in Tables 1 and 2 on page
1588.

Ch. 58 PERMUTATION GROUPS 1589

Example H58E31

We illustrate the function CompositionFactors by applying it to the group associated with Rubik’s
cube.

> G := sub<Sym(48) |

> (1,3,8,6)(2,5,7,4)(9,48,15,12)(10,47,16,13)(11,46,17,14),

> (6,15,35,26)(7,22,34,19)(8,30,33,11)(12,14,29,27)(13,21,28,20),

> (1,12,33,41)(4,20,36,44)(6,27,38,46)(9,11,26,24)(10,19,25,18),

> (1,24,40,17)(2,18,39,23)(3,9,38,32)(41,43,48,46)(42,45,47,44),

> (3,43,35,14)(5,45,37,21)(8,48,40,29)(15,17,32,30)(16,23,31,22),

> (24,27,30,43)(25,28,31,42)(26,29,32,41)(33,35,40,38)(34,37,39,36)

> >;

> FactoredOrder(G);

[<2, 27>, <3, 14>, <5, 3>, <7, 2>, <11, 1>]

> CompositionFactors(G);

G

| Cyclic(2)

*

| Alternating(12)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Alternating(8)

*

| Cyclic(3)

*

| Cyclic(3)

*

1590 FINITE GROUPS Part X

| Cyclic(3)

*

| Cyclic(3)

*

| Cyclic(3)

*

| Cyclic(3)

*

| Cyclic(3)

1

58.11.5 The Socle

Socle(G)

The socle of the group G. This is computed using the algorithms described in
Cannon and Holt [CH97].

SocleFactor(G)

A simple factor of the socle of the group G.

SocleFactors(G)

The simple factors of the socle of the group G. The index of each factor in
the sequence corresponds to the points of the image group of SocleAction and
SocleImage.

SocleSeries(G)

A chain of subgroups

S1, S1 × S2, . . . , S1 × . . .× Sr,

where S1, ..., Sr are the simple factors of the socle of the primitive group G.

EARNS(G)

The elementary abelian regular normal subgroup (EARNS) of the primitive group
G. If G does not have an EARNS, then the trivial subgroup is returned. The
algorithm used is that of Neumann [Neu86].

IsAffine(G)

Decide if the permutation group G is of primitive affine type. If so, the elementary
abelian regular normal subgroup ofG is returned as second return value. If the group
G is either intransitive or transitive and imprimitive or primitive and not of affine
type, then the result will be false (only). This function combines IsTransitive,
IsPrimitive and EARNS.

Ch. 58 PERMUTATION GROUPS 1591

AffineAction(G)

Given a primitive group G which has a non-trivial elementary abelian regular normal
subgroup A, construct the representation of G given by the action of G on elements
of the elementary abelian group A. The image is realised as a point-stabilizer in G
and the kernel of the action is A. As with the other action functions, AffineAction
returns the homomorphism, the image and the kernel of the action.

AffineImage(G)

Given a primitive group G which has an elementary abelian regular normal subgroup
A, construct the permutation group that results from the action of G on elements
of the elementary abelian group A. This image is realised as a point-stabilizer in G.

AffineKernel(G)

Given a primitive group G which has a non-trivial elementary abelian regular normal
subgroup A, construct the kernel of the action of G on elements of the elementary
abelian group A. This kernel equals A.

SocleAction(G)

Given a non-trivial permutation group G which has trivial Fitting subgroup, con-
struct the permutation representation of G given by the action of G on the simple
factors of N . Note that a primitive group has a perfect socle if and only if it has no
elementary abelian regular normal subgroup. As with the other action functions,
SocleAction returns the homomorphism, the image and the kernel of the action.
The socle factor corresponding to point i in the support of the image group is the
ith element in the sequence SocleFactors(G).

SocleImage(G)

Given a non-trivial permutation group G which has trivial Fitting subgroup, con-
struct the permutation group L induced by the action of G on the simple factors of
N .

SocleKernel(G)

Given a non-trivial permutation group G which has trivial Fitting subgroup, con-
struct the kernel of the action of G on the simple factors of N .

SocleQuotient(G)

Given a permutation group G which has trivial Fitting subgroup, construct a per-
mutation representation of G/N . If Ui denote the simple factors of N , then the
degree of the result is bounded by

∑
i |Out(Ui)| (see Cannon and Souvignier [CS]).

Note that a primitive group has a perfect socle if and only if it has no elemen-
tary abelian regular normal subgroup. SocleQuotient returns G/N , the quotient
homomorphism and the kernel of the map (which is the socle of G).

1592 FINITE GROUPS Part X

RefineSection(G, M, N)

Given M , N normal subgroups of G with N < M , return a sequence of G-normal
subgroups L1, . . . , Lr with N = L0, Li < Li+1 and Lr = M such that each of the
quotients Li+1/Li is either elementary abelian or a direct product of non-abelian
simple groups.

Example H58E32

We examine the normal structure of a primitive group, the primitive-wreath product of Sym(5)
and Sym(3) (with product action).

> G := PrimitiveWreathProduct(Sym(5), Sym(3));

> FactoredOrder(G);

[<2, 10>, <3, 4>, <5, 3>]

> E := EARNS(G);

> E;

Permutation group E acting on a set of cardinality 125

Order = 1

> DerivedSeries(G);

[

Permutation group G acting on a set of cardinality 125

Order = 10368000 = 2^10 * 3^4 * 5^3

Permutation group acting on a set of cardinality 125

Order = 2592000 = 2^8 * 3^4 * 5^3,

Permutation group acting on a set of cardinality 125

Order = 864000 = 2^8 * 3^3 * 5^3,

Permutation group S acting on a set of cardinality 125

Order = 216000 = 2^6 * 3^3 * 5^3

]

> S := Socle(G);

> S;

Permutation group S acting on a set of cardinality 125

Order = 216000 = 2^6 * 3^3 * 5^3

> Q := SocleFactors(G);

> Q;

[

Permutation group acting on a set of cardinality 125

Order = 60 = 2^2 * 3 * 5,

Permutation group acting on a set of cardinality 125

Order = 60 = 2^2 * 3 * 5,

Permutation group acting on a set of cardinality 125

Order = 60 = 2^2 * 3 * 5

]

> R := SocleSeries(G);

> R;

[

Permutation group acting on a set of cardinality 125

Order = 60 = 2^2 * 3 * 5,

Ch. 58 PERMUTATION GROUPS 1593

Permutation group acting on a set of cardinality 125

Order = 3600 = 2^4 * 3^2 * 5^2,

Permutation group acting on a set of cardinality 125

Order = 216000 = 2^6 * 3^3 * 5^3

]

> SQ := SocleQuotient(G);

> SQ;

Permutation group SQ acting on a set of cardinality 6

Order = 48 = 2^4 * 3

(1, 2, 3)(4, 5, 6)

(2, 3)(4, 5)

Id($)

(2, 4)

58.11.6 The Soluble Radical and its Quotient
Very efficient algorithms have been developed for computing invariants such as subgroups,
normal subgroups and conjugacy classes of elements for soluble groups defined by means of
polycyclic presentations. Almost all such algorithms employ a top-down Lifting Strategy.
Let P be a quotient-invariant property for a soluble group. In general, an algorithm that
constructs the set of elements or subgroups XP (G) satisfying property P for the group G,
proceeds as follows: Let G be a non-simple soluble group and let N be a normal subgroup
of G. The set XP (G/N) is constructed and its elements are lifted back into G, thereby
yielding XP (G). This process is usually iterated with successive normal subgroups N being
chosen as the terms of some descending normal series (e.g., an elementary abelian series).

In generalizing this approach to permutation groups, our approach has been to construct
the soluble radical R of G, use special methods to solve the problem for the quotient G/R,
and then proceed (as in the case of a soluble group) to lift the solution down the successive
terms of an elementary abelian series for G using the Lifting Strategy. Derek Holt has
shown that the quotient group G/R has a faithful permutation representation of degree
no greater than that of G.

The functions in this section enable the user to construct the radical, its quotient and
an elementary abelian series.

Radical(G)

SolubleRadical(G)

SolvableRadical(G)

Given a group G, return the maximal normal solvable subgroup of G. The algorithm
used is described in Unger [Ung06b].

1594 FINITE GROUPS Part X

RadicalQuotient(G)

Given a group G, compute a representation of the quotient G/R where R is the
(solvable) radical of G. The resulting representation has the same degree as G. Both
the permutation group Q isomorphic to G/R and a homomorphism φ : G→ Q are
returned. The algorithm proceeds by repeatedly applying AbelianNormalQuotient
up the terms of the derived series of the radical. The third return value is R, the
radical of G and the kernel of the homomorphism.

ElementaryAbelianSeries(G: parameters)

ElementaryAbelianSeries(G, N: parameters)

LayerSizes SeqEnum[RngIntElt] Default : []
An elementary abelian series is a chain of normal subgroups R = N1 > N2 > ... >
Nr = 1 with the property that the quotient of each pair of successive terms in the
series is elementary abelian and that there is no group R < H < G such that H/R
is elementary abelian and H normal in G. The top of the series R is called the
solvable radical and is the maximal normal solvable subgroup of G.

In the second form N must be a normal subgroup of G and the returned series
has the form R = N1 > N2 > ... > Nr = N , so is an elementary abelian series for
G/N .

The parameter LayerSizes controls possible refinement of the series. The default
is no refinement. As an example, take LayerSizes := [2, 5, 3, 4, 7, 3, 11,
2, 17, 1]. When constructing an elementary abelian series for the group, attempt
to split 2-layers of size gt 25, 3-layers of size gt 34, etc. The implied exponent for
13 is 2 and for all primes greater than 17 the exponent is 1. Setting LayerSizes to
[2, 1] will attempt to split all layers, resulting in a portion of a chief series for G.

ElementaryAbelianSeriesCanonical(G)

Gives a similar result to using ElementaryAbelianSeries, except the series
returned depends only on the isomorphism type of the solvable radical, and
consists of characteristic subgroups of G. This function may be slower than
ElementaryAbelianSeries.

Example H58E33

We illustrate these functions by considering the group of degree 16 generated by the following
permutations:

(1, 8, 11, 3, 6, 14, 15, 10)(2, 7, 12, 4, 5, 13, 16, 9),

(1, 2)(3, 16, 9, 14, 8, 12)(4, 15, 10, 13, 7, 11),

(1, 13, 12, 16)(2, 14, 11, 15)(7, 9)(8, 10),

> G := PermutationGroup< 16 |

> (1, 8, 11, 3, 6, 14, 15, 10)(2, 7, 12, 4, 5, 13, 16, 9),

> (1, 2)(3, 16, 9, 14, 8, 12)(4, 15, 10, 13, 7, 11),

Ch. 58 PERMUTATION GROUPS 1595

> (1, 13, 12, 16)(2, 14, 11, 15)(7, 9)(8, 10) >;

> Radical(G);

Permutation group acting on a set of cardinality 16

Order = 256 = 2^8

(3, 4)(5, 6)(7, 8)(13, 14)(15, 16)

(3, 4)(7, 8)(9, 10)(11, 12)

(7, 8)(13, 14)

(1, 2)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16)

(9, 10)

(15, 16)

(11, 12)(15, 16)

(13, 14)(15, 16)

> RadicalQuotient(G);

Permutation group acting on a set of cardinality 16

Order = 40320 = 2^7 * 3^2 * 5 * 7

(1, 7, 11, 3, 5, 13, 15, 9)(2, 8, 12, 4, 6, 14, 16, 10)

(3, 15, 9, 13, 7, 11)(4, 16, 10, 14, 8, 12)

(1, 13, 11, 15)(2, 14, 12, 16)(7, 9)(8, 10)

Mapping from: GrpPerm: g to GrpPerm: $, Degree 16

> ElementaryAbelianSeries(G);

[

Permutation group acting on a set of cardinality 16

Order = 256 = 2^8

(3, 4)(5, 6)(7, 8)(13, 14)(15, 16)

(3, 4)(7, 8)(9, 10)(11, 12)

(7, 8)(13, 14)

(1, 2)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16)

(9, 10)

(15, 16)

(11, 12)(15, 16)

(13, 14)(15, 16),

Permutation group acting on a set of cardinality 16

Order = 1

]

58.11.7 Complements and Supplements

Complements(G, M)

Given a group G and a normal subgroup M , this function returns a sequence con-
taining one representative from each conjugacy class of complements of M in G.

Complements(G, M, N)

Given a group G, a normal subgroup M of G and a normal subgroup N of G, that is
strictly contained in M , the function returns a sequence comprising representatives
for the conjugacy classes of complements of M/N in G/N , as subgroups of G.

1596 FINITE GROUPS Part X

HasComplement(G, M)

The group M must be a normal subgroup of G. Returns whether M has a comple-
ment in G and, if so, one such complement.

Supplements(G, M)

Given a group G and a soluble normal subgroup M of G, the function returns a
sequence containing one representative from each conjugacy class of minimal sup-
plements for M in G.

Supplements(G, M, N)

Given a group G, a normal subgroup M of G and a normal subgroup N of G
such that (a), N is strictly contained in M , and (b), M/N is soluble, the function
returns a sequence comprising representatives for the conjugacy classes of minimal
supplements of M/N in G/N , as subgroups of G.

HasSupplement(G, M)

The group M must be a soluble normal subgroup of G. Returns whether M has a
proper supplement in G and, if so, one such supplement.

Example H58E34

We illustrate these functions by considering a normal subgroup H of the group G of degree 16
generated by the following permutations:

(1, 3, 2, 4)(5, 16, 6, 13)(7, 14, 8, 15)(9, 12, 11, 10),

(1, 16, 9)(2, 15, 12)(3, 14, 11)(4, 13, 10)(6, 8, 7).

> G := PermutationGroup< 16 |

> (1, 3, 2, 4)(5, 16, 6, 13)(7, 14, 8, 15)(9, 12, 11, 10),

> (1, 16, 9)(2, 15, 12)(3, 14, 11)(4, 13, 10)(6, 8, 7) >;

Permutation group G acting on a set of cardinality 16

Order = 165888 = 2^11 * 3^4

(1, 3, 2, 4)(5, 16, 6, 13)(7, 14, 8, 15)(9, 12, 11, 10)

(1, 16, 9)(2, 15, 12)(3, 14, 11)(4, 13, 10)(6, 8, 7)

> H := ncl< G | (6, 7, 8)(14, 16, 15) >;

> H;

Permutation group H acting on a set of cardinality 16

Order = 6912 = 2^8 * 3^3

(6, 7, 8)(14, 16, 15)

(6, 7, 8)(13, 14, 15)

(6, 7, 8)(9, 12, 11)

(5, 8, 7)(13, 14, 15)

(6, 7, 8)(10, 11, 12)

(1, 2, 3)(6, 7, 8)

(2, 4, 3)(6, 7, 8)

Ch. 58 PERMUTATION GROUPS 1597

> C := Complements(G, H);

> C;

[

Permutation group acting on a set of cardinality 16

Order = 24 = 2^3 * 3

(3, 4)(5, 14)(6, 15)(7, 16)(8, 13)(10, 12)

(2, 4)(6, 7)(9, 14)(10, 15)(11, 13)(12, 16)

(1, 14)(2, 15)(3, 16)(4, 13)(7, 8)(10, 11)

(1, 14, 9)(2, 13, 10)(3, 16, 12)(4, 15, 11)(6, 8, 7)

]

So the normal subgroup has one conjugacy class of complements. We check that the representative
subgroup is indeed a complement for H.

> K := C[1];

> IsTrivial(K meet H);

true

> #K * #H eq #G;

true

58.11.8 Abelian Normal Subgroups

AbelianNormalSubgroup(G)

An abelian normal subgroup of G. If none exists, the trivial subgroup is returned.

AbelianNormalQuotient(G, H)

A quotient of G by an abelian normal subgroup that contains the abelian normal
subgroup H. The quotient is represented as a permutation group of the same degree
as G. The other values returned are the quotient epimorphism and its kernel K.
The kernel K will contain H, #K and #H will have the same prime divisors, and
if H is elementary abelian then so is K.

SolubleNormalQuotient(G, H)

A quotient of G by a soluble normal subgroup that contains the soluble normal
subgroup H. The quotient is represented as a permutation group of the same degree
as G. The other values returned are the quotient epimorphism and its kernel K. As
with AbelianNormalQuotient, K will contain H, and #K and #H will have the
same prime divisors.

ElementaryAbelianNormalSubgroup(G)

An elementary abelian normal subgroup of G. If none exists, the trivial subgroup is
returned. The group returned is the last non-trivial group in an elementary abelian
series for the radical of G.

1598 FINITE GROUPS Part X

pElementaryAbelianNormalSubgroup(G, p)

An elementary abelian normal p-subgroup of G. If none exists, the trivial subgroup
is returned. The group returned is the last non-trivial group in an elementary
abelian series for the p-core of G.

MEANS(G)

A minimal elementary abelian normal subgroup of G.

MEANS(G, N)

A minimal elementary abelian normal subgroup of G that lies in the elementary
abelian normal subgroup N of G.

58.12 Cosets and Transversals

58.12.1 Cosets

H * g

Right coset of the subgroup H of the group G, where g is an element of G.

DoubleCoset(G, H, g, K)

The double coset H ∗ g ∗K of the subgroups H and K of the group G, where g is
an element of G.

DoubleCosetRepresentatives(G, H, K)

Given a group G and two subgroups H and K of G, return a sequence S containing
representatives of the H-K-double cosets in G. The first element of S is guaranteed
to be the identity element of G. The second return sequence gives the sizes of the
corresponding double cosets. The algorithm used refines double cosets down a chain
of subgroups from G to one of H or K.

ProcessLadder(L, G, U)

Verbose DoubleCosets Maximum : 3
Given permutation groups U < G and a sequence of permutation groups L such that
L1 = G, compute data for computations with the Ln-U -double cosets in G. The
algorithm relies on the indices (Li : Li+1) (for Li < Li+1) or (Li+1 : Li) otherwise
to be small. In contrast to the method used by DoubleCosetRepresentatives, the
sequence used in the computation is a ladder, not necessarily a descending chain.
For details see [Sch90].

GetRep(p, R)

For R being the result of a call to ProcessLadder and a permutation p ∈ G, return
the canonical double coset representative for p.

Ch. 58 PERMUTATION GROUPS 1599

DeleteData(R)

Deletes the data computed using ProcessLadder.

YoungSubgroupLadder(L)

Full RngIntElt Default : false

Computes a ladder from the full symmetric group down to the Young subgroup
parametrised by the sequence L suitable for double coset enumeration using
ProcessLadder. The optional parameter Full can be used if the Young subgroup
should be considered as a subgroup of the symmetric group on Full points rather
than on &*L.

StabilizerLadder(G, d)

Given a subgroup G of the symmetric group of degree n and a monomial in n inde-
terminates, compute a ladder down from the full symmetric group to the stabilizer
of the monomial, suitable for processing with ProcessLadder.

x in C

Returns true if element g of group G lies in the coset C.

x notin C

Returns true if element g of group G does not lie in the coset C.

C1 eq C2

Returns true if the coset C1 is equal to the coset C2.

C1 ne C2

Returns true if the coset C1 is not equal to the coset C2.

#C

The cardinality of the coset C.

CosetTable(G, H)

The (right) coset table for G over subgroup H relative to its defining generators.

#CosetTable(G, f)

The coset table for G corresponding to the permutation representation f of G, where
f is a homomorphism of G onto a transitive permutation group.

1600 FINITE GROUPS Part X

58.12.2 Transversals

Transversal(G, H)

RightTransversal(G, H)

Given a permutation group G and a subgroup H of G, this function returns

(a)An indexed set of elements T of G forming a right transversal for G over H; and

(b)The corresponding transversal mapping φ : G→ T . If T = [t1, . . . , tr] and g ∈ G,
φ is defined by φ(g) = ti, where g ∈ H ∗ ti.

TransversalProcess(G, H)

Given a permutation group G and H, a subgroup of G, create a process to run
through a left transversal for H in G. The method used is a backtrack search for
a canonical coset representative. TransversalProcess can be used when the index
of H in G is too large to allow a full transversal to be created.

TransversalProcessRemaining(P)

The number of coset representatives the process has yet to produce. Initially this
will be the index of the subgroup in the group.

TransversalProcessNext(P)

Advance the process to the next coset representative and return that representative.
This may only be used when TransversalProcessRemaining(P) is positive. The
first call to TransversalProcessNext will always give the identity element.

ShortCosets(p, H, G)

Computes a set of representatives for the transversal of G modulo H of all cosets
that contain p. This computation does not do a full transversal of G modulo H and
may therefore be used even if the index of (G : H) is very large.

58.13 Presentations

In this section we describe how to compute a presentation in terms of generators and
relations for a permutation group and also how to obtain a representation of a permutation
as word in the defining generators.

Ch. 58 PERMUTATION GROUPS 1601

58.13.1 Generators and Relations

FPGroup(G)

Construct a presentation for the permutation group G on the set of defining gener-
ators and return the presentation in the form of a finitely presented group F that is
isomorphic to G. The presentation is obtained by first computing the regular rep-
resentation of G and then using the Todd-Coxeter Schreier algorithm to construct
a presentation on the strong generators. In this situation the strong generators are
identical to the defining generators.

A group homomorphism φ : F → G, defining G as a permutation representation
of F , is also returned.

FPQuotient(G, N)

Given a normal subgroup N of G, compute an fp-group representation F of the
quotient G/N and the homomorphism φ : G→ F .

FPGroupStrong(G: parameters)

Random BoolElt Default : true

Run RngIntElt Default : 20

Construct a presentation for the permutation group G on a set of strong generators
and return the presentation in the form of a finitely presented group F that is
isomorphic to G. In Magma, a combination of the Schreier Todd-Coxeter Sims
algorithm and the Brownie-Cannon-Sims verification procedure is used to construct
the presentation. See Leon [Leo80] and Gebhardt [Geb00] for more details of the
individual algorithms.

If strong generators are not already known for G, they will be constructed. If
strong generators have to be constructed, the parameters Random and Run may be
used to control the application of the random schreier algorithm to construct a
probable BSGS before commencing the construction of the presentation. If Random
is set to false then no randomising is performed, and the algorithm becomes the
straight STCS algorithm. In the case in which strong generators are already known
for G, the presentation will be on these strong generators.

The presentation will have the property that it includes a presentation for each
group in the stabilizer chain of the BSGS.

The group isomorphism φ : F → G, defining G as a permutation representation
of F , is also returned.

58.13.2 Permutations as Words
Consider a permutation group G defined on d generators. The word group of G is a free
group W of rank d. Then we regard G as a homomorphic image of F with associated
homomorphism φ : W → G. All operations involving words in the generators of G will be
performed in W .

1602 FINITE GROUPS Part X

WordGroup(G)

Given a permutation group G defined on d generators, return (a) a free group W
on d generators represented as a group whose elements are defined by straight-
line programs (SLP group), and (b) the homomorphism φ from W to G such that
W.i → G.i, for i = 1, . . . , d. The group W associated with G by this function will
be referred to as the word group for G.

InverseWordMap(G)

Given a permutation group G and its associated word group W with canonical
homomorphism φ : W → G, construct the inverse mapping ρ. Thus, given a per-
mutation g of G, g@ρ returns an element in the preimage of g under φ. If the word
group W does not already exist, it will be created.

ActingWord(G, x, y)

Given points x and y belonging to the same G-orbit of the natural G-set X, return
a word w in the word group W of G such that xφ(w) = y. Here φ is the canonical
homomorphism from W to G.

58.14 Automorphism Groups
The automorphism group of a permutation group may be computed in Magma, subject
to the same restrictions on the group as when computing maximal subgroups. (That is,
the non-abelian composition factors of the group must appear in a certain database.) The
methods used are those described in Cannon and Holt [CH03]. Isomorphism of permutation
groups may also be determined using the same methods.

AutomorphismGroup(G: parameters)

Compute the full automorphism group of the permutation group G.

IsIsomorphic(G, H: parameters)

Test whether or not the two permutation groups G and H are isomorphic as abstract
groups. If so, both the result true and an isomorphism from G to H is returned. If
not, the result false is returned.

Example H58E35

We take some groups of order 120 and test for isomorphism.

> G1 := PermutationGroup<20 |

> [2, 5, 9, 11, 12, 3, 17, 13, 18, 16, 7, 15, 10, 8, 1,

> 14, 20, 19, 6, 4],

> [3, 6, 1, 10, 14, 2, 18, 17, 15, 4, 16, 13, 12, 5, 9,

> 11, 8, 7, 20, 19] >;

> #G1;

120

> G2 := PermutationGroup<24 |

Ch. 58 PERMUTATION GROUPS 1603

> [2, 4, 6, 5, 1, 7, 8, 3, 13, 15, 14, 16, 11, 9, 12, 10,

> 19, 20, 18, 17, 24, 21, 22, 23],

> [3, 1, 2, 7, 4, 9, 5, 11, 10, 6, 12, 8, 16, 15, 18, 17,

> 13, 14, 21, 23, 22, 19, 24, 20],

> [4, 5, 7, 1, 2, 8, 3, 6, 11, 12, 9, 10, 14, 13, 16, 15,

> 18, 17, 20, 19, 23, 24, 21, 22] >;

> #G2;

120

> IsIsomorphic(G1, G2);

false

> flag, isom := IsIsomorphic(G1, Sym(5));

> flag;

true

> (G1.1)@ isom;

(1, 3, 5, 4, 2)

The reader is invited to check that G2 is perfect while G1 is not, so the false result for their
isomorphism is correct. What is the automorphism group of G2?

> A := AutomorphismGroup(G2);

> #A;

120

> #Centre(G2);

2

> OuterFPGroup(A);

Finitely presented group on 1 generator

Relations

$.1^2 = Id($)

> A.1;

Automorphism of GrpPerm: G2, Degree 24, Order 2^3 * 3 * 5

which maps:

(1, 2, 4, 5)(3, 6, 7, 8)(9, 13, 11, 14)(10, 15, 12,

16)(17, 19, 18, 20)(21, 24, 23, 22) |--> (1, 16, 4,

15)(2, 21, 5, 23)(3, 20, 7, 19)(6, 11, 8, 9)(10, 24, 12,

22)(13, 17, 14, 18)

(1, 3, 2)(4, 7, 5)(6, 9, 10)(8, 11, 12)(13, 16, 17)(14,

15, 18)(19, 21, 22)(20, 23, 24) |--> (1, 11, 16)(2, 18,

19)(3, 23, 6)(4, 9, 15)(5, 17, 20)(7, 21, 8)(10, 22,

13)(12, 24, 14)

(1, 4)(2, 5)(3, 7)(6, 8)(9, 11)(10, 12)(13, 14)(15,

16)(17, 18)(19, 20)(21, 23)(22, 24) |--> (1, 4)(2, 5)(3,

7)(6, 8)(9, 11)(10, 12)(13, 14)(15, 16)(17, 18)(19,

20)(21, 23)(22, 24)

> IsInnerAutomorphism(A.4);

false

So the outer automorphism group of G2 has order 2, and A.4 gives this automorphism.

1604 FINITE GROUPS Part X

58.15 Cohomology

In the following description, G is a finite permutation group, p is a prime number, and
K is the finite field of order p. Further, F is a finitely presented group having the same
number of generators as G, and is such that its relations are satisfied by the corresponding
generators of G. In other words, the mapping taking the i-th generator of F to the i-th
generator of G must be an epimorphism. Usually this mapping will be an isomorphism,
although this is not mandatory. The algorithms used are those of Holt, see [Hol84], [Hol85a]
and [Hol85b].

pMultiplicator(G, p)

Given the group G and a prime p, return the invariant factors of the p-part of the
Schur multiplicator of G.

pCover(G, F, p)

Given the group G and the finitely presented group F such that G is an epimorphic
image of G in the sense described above, return a presentation for the p-cover of G,
constructed as an extension of the p-multiplier by F .

CohomologicalDimension(G, M, i)

Given the group G, the K[G]-module M and an integer i (equal to 1 or 2), return
the dimension of the i-th cohomology group of G acting on M .

ExtensionProcess(G, M, F)

Create an extension process for the group G by the module M .

Extension(P, Q)

#NextExtension(P)

Return the next extension of G as defined by the process P .
Assume that F is isomorphic to the permutation group G, and that we wish

to determine presentations for one or more extensions of the K-module M by F ,
where K is the field of p elements. We first create an extension process using
ExtensionProcess(G, M, F). The possible extensions of M by G are in one-one
correspondence with the elements of the second cohomology group H2(G,M) of G
acting on M . Let b1, . . . , bl be a basis of H2(G,M). A general element of H2(G,M)
therefore has the form a1b1 + · · · + albl and so can be defined by a sequence Q
of l integers [a1, . . . , al]. Now, to construct the corresponding extension of M by
G we call the function Extension(P, Q). The required extension is returned as a
finitely presented group. If all the extensions are required then they may be obtained
successively by making pl calls to the function NextExtension.

SplitExtension(G, M, F)

The split extension of the module M by the group G.

Ch. 58 PERMUTATION GROUPS 1605

Example H58E36

We construct a presentation for A6 over its Schur multiplicator. First we find the size of the
multiplicator by applying the pMultiplicator function to each relevant prime.

> G := Alt(6);

> &cat [pMultiplicator(G, p[1]): p in FactoredOrder(G)];

[2, 3, 1]

The multiplicator has order 2 × 3 = 6. We next construct the two-fold cover of A6. We use the
FPGroup function to get a presentation for A6.

> F := FPGroup(G);

> F2 := pCover(G, F, 2);

Now we construct a three-fold cover of the two-fold cover to get the extension we are after. First
we need a permutation representation of F2, the two-fold covering group.

> G2 := DegreeReduction(CosetImage(F2, sub<F2|>));

> Degree(G2);

144

> #G2;

720

> F6 := pCover(G2, F2, 3);

> F6;

Finitely presented group F6 on 4 generators

Relations

F6.4^3 = Id(F6)

(F6.1, F6.4) = Id(F6)

(F6.2, F6.4) = Id(F6)

(F6.3, F6.4) = Id(F6)

F6.3^2 = Id(F6)

(F6.1, F6.3) = Id(F6)

(F6.2, F6.3) = Id(F6)

F6.1^4 * F6.3 = Id(F6)

F6.2^3 * F6.3 = Id(F6)

F6.1^-1 * F6.2^-1 * F6.1 * F6.2 * F6.1^-1 * F6.2^-1 *

F6.1 * F6.2 * F6.3 * F6.4 = Id(F6)

F6.1^-1 * F6.2 * F6.1^2 * F6.2 * F6.1^2 * F6.2 *

F6.1^-2 * F6.2 * F6.1^-1 * F6.3 * F6.4^-1 = Id(F6)

F6.2 * F6.1 * F6.2 * F6.1 * F6.2 * F6.1 * F6.2 *

F6.1 * F6.2 * F6.1 * F6.3 * F6.4 = Id(F6)

> AbelianQuotientInvariants(F6);

[]

The group F6 is the six-fold cover of A6. We easily see from the presentation that the 3rd and
4th generators generate a central cyclic subgroup of order 6. The sequence of invariants for the
maximal abelian quotient of F6 is empty, so F6 is perfect.

1606 FINITE GROUPS Part X

Example H58E37

We construct an extension of A5. This time the normal subgroup will be elementary abelian of
order 25, with the action of A5 being the natural permutation action.

> G := Alt(5);

> M := PermutationModule(G, GF(2));

> CohomologicalDimension(G, M, 2);

1

The dimension of the 2nd cohomology group is 1 over F2, so there are two possible extensions.
We will construct them both.

> F := FPGroup(G);

> P := ExtensionProcess(G, M, F);

> E0 := Extension(P, [0]);

> E1 := Extension(P, [1]);

> AbelianQuotientInvariants(E0);

[2]

> AbelianQuotientInvariants(E1);

[]

The split extension, E0, is not perfect, but the non-split extension, E1, is a perfect group.

58.16 Representation Theory
A set of functions are provided for computing with the characters of a group. Full details
of these functions may be found in Chapter 91. For convenience we include here two of
the more useful character functions.

Also, functions are provided for computing with the modular representations of a group.
Full details of these functions may be found in Chapter 89. For the reader’s convenience we
include here the functions which may be used to define a R[G]-module for a permutation
group.

CharacterTable(G: parameters)

Construct the table of ordinary irreducible characters for the group G.
Al MonStgElt Default : “Default”
This parameter controls the algorithm used. The string "DS" forces use of

the Dixon-Schneider algorithm. The string "IR" forces the use of Unger’s in-
duction/reduction algorithm [Ung06]. The "Default" algorithm is to use Dixon-
Schneider for groups of order ≤ 5000 and Unger’s algorithm for larger groups. This
may change in future.

DSSizeLimit RngIntElt Default : 0
When the default algorithm is selected, a positive value n for DSSizeLimit means

that before using Unger’s algorithm, the full character space is split by some passes
of Dixon-Schneider, restricted to using class matrices corresponding to conjugacy
classes with size at most n.

Ch. 58 PERMUTATION GROUPS 1607

PermutationCharacter(G)

Given a group G represented as a permutation group, construct the character of G
afforded by the defining permutation representation of G.

PermutationCharacter(G, H)

Given a group G and some subgroup H of G, construct the ordinary character of
G afforded by the permutation representation of G given by the action of G on the
coset space of the subgroup H in G.

GModule(G, S)

Let G be a group defined on r generators and let S be a subalgebra of the matrix
algebra Mn(R), also defined by r non-singular matrices. It is assumed that the
mapping from G to S defined by φ(G.i) → S.i, for i = 1, . . . , r, is a group homo-
morphism. Let M be the natural module for the matrix algebra S. The function
GModule gives M the structure of an S[G]-module, where the action of the i-th
generator of G on M is given by the i-th generator of S.

GModule(G, A, B)

Given a finite group G, a normal subgroup A of G and a normal subgroup B of A
such that the section A/B is elementary abelian of order pn, create the K[G]-module
M corresponding to the action of G on A/B, where K is the field Fp. If B is trivial,
it may be omitted. The function returns
(a) the module M ; and
(b)the homomorphism φ : A/B →M .

PermutationModule(G, H, R)

Given a finite group G and a ring R, create the R[G]-module for G corresponding
to the permutation action of G on the cosets of H.

PermutationModule(G, R)

Given a finite permutation group G and a ring R, create the natural permutation
module for G over R.

Example H58E38

We refine an elementary abelian normal subgroup of a permutation group to a sequence of normal
subgroups.

> G := PermutationGroup<24 |

> [3, 4, 1, 2,23,24, 7, 8, 9,10,12,11,14,13,16,15,18,17,22,21,

> 20,19, 5, 6],

> [7, 8,11,12,13,14,22,21,20,19,15,16,17,18, 6, 5, 4, 3, 1, 2,23,

> 24, 9,10] >;

> N := sub<G |

> [24, 23, 6, 5, 4, 3, 10, 9, 8, 7, 14, 13, 12, 11, 18, 17, 16, 15, 22, 21,

> 20, 19, 2, 1],

1608 FINITE GROUPS Part X

> [23, 24, 5, 6, 3, 4, 8, 7, 10, 9, 12, 11, 14, 13, 15, 16, 17, 18, 19, 20,

> 21, 22, 1, 2],

> [2, 1, 4, 3, 6, 5, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 15, 16, 21, 22, 19,

> 20, 24, 23]>;

> #N;

8

> IsNormal(G, N);

true

> IsElementaryAbelian(N);

true

> M, f := GModule(G, N);

> SM := Submodules(M);

> #SM;

4

> refined := [x @@ f : x in SM];

> forall{x : x in refined | IsNormal(G, x) };

true;

> [#x : x in refined];

[1, 2, 4, 8]

The original elementary abelian normal subgroup of order 8 is the top of a chain of normal
subgroups of length 3.

58.17 Identification

58.17.1 Identification as an Abstract Group

NameSimple(G)

Given a simple group G, determine the isomorphism type of G. The type is returned
in the form of a triple of three integers f, d and q, where the interpretation of these
integers is that given in the description of the function CompositionFactors.

58.17.2 Identification as a Permutation Group
The first functions described in this subsection detect whether or not a permutation group
is alternating or symmetric in its natural representation. They are based on the algorithm
‘Detect Alternating’ outlined in [CB92].

IsAlternating(G)

Returns true if the permutation group G defined as acting on X is the alternating
group Alt(X).

IsSymmetric(G)

Returns true if the permutation group G defined as acting on X is the symmetric
group Sym(X).

Ch. 58 PERMUTATION GROUPS 1609

IsAltsym(G)

Returns true if the permutation group G defined as acting on X contains the
alternating group Alt(X).

TwoTransitiveGroupIdentification(G)

Given a 2-transitive group G, return a tuple giving the abstract isomorphism type
of the group. This is an implementation of the method of Cameron and Cannon
[CC91].

RecogniseAlternatingOrSymmetric(G, n)

Constructive recognition of the group G, which will succeed with probability ≥ 1−e5
if G is isomorphic to either the alternating or symmetric group of degree n > 11.
The method is that of Beals et al [BLGN+03], implemented by Colva Roney-Dougal.

The return values start with a flag indicating success or failure. If the algorithm
was successful, then there are three more return values: a flag which is true whenG is
symmetric and false when alternating, and two programs. The first program takes
an element x of an overgroup of G and produces a boolean to indicate whether
x ∈ G and a permutation representing x in the natural action of Sn (if such a
permutation exists). The second taking a permutation to the corresponding element
of G. The programs define mutually inverse group isomorphisms, implemented as
Magma functions.

IsEven(G)

Given a permutation group G check if G is even, ie. contained in the alternating
group.

Example H58E39

We give an example of RecogniseAlternatingOrSymmetric in use.

> SetSeed(1);

> a:= AlternatingGroup(13);

> h:= Stabiliser(a, {1,2});

> k:= CosetImage(a, h);

> Degree(k);

78

> worked, is_sym, bb_to_perm, perm_to_bb:=

> RecogniseAlternatingOrSymmetric(k, 13);

> worked;

true

> is_sym;

false

> x:= Sym(78)!(1, 35, 16, 28, 14, 26, 69, 5, 74)(2, 54,

> 67, 18, 51, 63, 6, 50, 77)(3, 33, 78, 12, 34, 29, 19, 15, 73)

> (4, 52, 61, 24, 49, 60, 68, 38, 64)(7, 20, 71, 17,

> 32, 11, 72, 8, 36)(9, 76, 47, 31, 56, 62, 13, 53, 59)

1610 FINITE GROUPS Part X

> (10, 70, 57, 23, 37, 22, 21, 27, 25)(30, 45, 46, 43, 42,

> 44, 40, 41, 75)(39, 55, 65)(48, 66, 58);

> x in k;

true;

> in_k, perm_image:= bb_to_perm(x);

> in_k;

true

> perm_image;

(1, 2, 3)(4, 7, 12, 6, 10, 11, 13, 9, 8)

> perm_to_bb(perm_image) eq x;

true

RecogniseSymmetric(G, n: parameters)

maxtries RngIntElt Default : 100n+ 5000

Extension BoolElt Default : false

The group G should be known to be isomorphic to the symmetric group Sn for some
n ≥ 8. The Bratus-Pak algorithm [BP00] (implemented by Derek Holt) is used to
define an isomorphism between G and Sn. If successful, return true, homomorphism
from G to Sn, homomorphism from Sn to G, the map from G to its word group and
the map from the word group to G.

If the optional parameter Extension is set, then the group G should be known
to be isomorphic either to Sn or to a perfect central extension 2.Sn. In that case,
the first two maps returned will be a homomorphism from G to Sn and a map from
Sn to G that induces a homomorphism onto G/Z(G). The sixth value returned will
be true, if G ∼= 2.Sn and false, if G ∼= 2.An.

If unsuccessful, false is returned. This will always occur if the input group is
not isomorphic to Sn (or 2.Sn when Extension is set) with n ≥ 8, and may occur
occasionally even when G is isomorphic to Sn. The optional parameter maxtries
(default 100n+5000) can be used to control the number of random elements chosen
before giving up.

SymmetricElementToWord (G, g)

If g is an element of G which has been constructively recognised to be isomorphic
to Sn (or 2.Sn), then return true and element of word group for G which evaluates
to g. Otherwise return false. This facilitates membership testing in G.

Ch. 58 PERMUTATION GROUPS 1611

RecogniseAlternating(G, n: parameters)

maxtries RngIntElt Default : 100n+ 5000
Extension BoolElt Default : false

The group G should be known to be isomorphic to the alternating group An for some
n ≥ 9. The Bratus-Pak algorithm [BP00] (implemented by Derek Holt) is used to
define an isomorphism betweenG andAn. If successful, return true, homomorphism
from G to An, homomorphism from An to G, the map from G to its word group
and the map from the word group to G.

If the optional parameter Extension is set, then the group G should be known
to be isomorphic either to An or to a perfect central extension 2.An. In that case,
the first two maps returned will be a homomorphism from G to An and a map from
An to G that induces a homomorphism onto G/Z(G). The sixth value returned will
be true, if G ∼= 2.An and false, if G ∼= 2.An.

If unsuccessful, false is returned. This will always occur if the input group is
not isomorphic to An (or 2.An when Extension is set) with n ≥ 9, and may occur
occasionally even when G is isomorphic to An. The optional parameter maxtries
(default 100n+5000) can be used to control the number of random elements chosen
before giving up.

AlternatingElementToWord (G, g)

If g is an element of G which has been constructively recognised to be isomorphic
to An (or 2.An), then return true and element of word group for G which evaluates
to g. Otherwise return false. This facilitates membership testing in G.

GuessAltsymDegree(G: parameters)

maxtries RngIntElt Default : 5000
Extension BoolElt Default : false

The group G should be believed to be isomorphic to Sn or An for some n > 6, or to
2.Sn or 2.An if the optional parameter Extension is set. This function attempts to
determine n and whether G is symmetric or alternating. It does this by sampling
orders of elements. It returns either false, if it is unable to make a decision after
sampling maxtries elements (default 5000), or true, type and n, where type is
“Symmetric” or “Alternating”, and n is the degree. If G is not isomorphic to Sn

or An (or 2.Sn or 2.An when Extension is set) for n > 6, then the output is
meaningless - there is no guarantee that false will be returned. There is also a
small probability of a wrong result or false being returned even when G is Sn or
An with n > 6. This function was written by Derek Holt.

Example H58E40

For a group G which is believed to be isomorphic to Sn or An for some unknown value of n > 6,
the function GuessAltsymDegree can be used to try to guess n, and then RecogniseSymmetric or
RecogniseAlternating can be used to confirm the guess.

> SetSeed(1);

1612 FINITE GROUPS Part X

> G:= sub< GL(10,5) |

> PermutationMatrix(GF(5),Sym(10)![2,3,4,5,6,7,8,9,1,10]),

> PermutationMatrix(GF(5),Sym(10)![1,3,4,5,6,7,8,9,10,2]) >;

> GuessAltsymDegree(G);

true Alternating 10

> flag, m1, m2, m3, m4 := RecogniseAlternating(G,10);

> flag;

true

> x:=Random(G); Order(x);

8

> m1(x);

(1, 2, 4, 9, 10, 8, 6, 3)(5, 7)

> m2(m1(x)) eq x;

true

> m4(m3(x)) eq x;

true

> flag, w := AlternatingElementToWord(G,x);

> flag;

true

> m4(w) eq x;

true

> y := Random(Generic(G));

> flag, w := AlternatingElementToWord(G,y);

> flag;

false

> flag, m1, m2, m3, m4 := RecogniseAlternating(G,11);

> flag;

false

> flag, m1, m2, m3, m4 := RecogniseSymmetric(G,10);

> flag;

false

The nature of the GuessAltsymDegree function is that it assumes that its input is either an
alternating or symmetric group and then tries to guess which one and the degree. As such, it is
almost always correct when the input is an alternating or symmetric group, but will often return
a bad guess when the input group is not of this form, as in the following example.

> GuessAltsymDegree(Sym(50));

true Symmetric 50

> GuessAltsymDegree(Alt(73));

true Alternating 73

> GuessAltsymDegree(PSL(5,5));

true Alternating 82

Ch. 58 PERMUTATION GROUPS 1613

58.18 Base and Strong Generating Set

The key concept for representing a permutation group is that of a base and strong gen-
erating set (BSGS). Given a BSGS for a group, its order may be deduced immediately.
Brownie, Cannon and Sims (1991) showed that it is practical, in some cases at least, to
construct a BSGS for short-base groups having degree up to ten million.

The great majority of functions for computing with permutation groups require a BSGS
to be present. If one is not known, Magma will attempt to automatically compute one.
For large degree groups, the computation of a BSGS may be expensive and in such cases the
user may achieve better performance through directly invoking a function which creates a
BSGS. For example, if the group order is known in advance, it may be supplied to Magma
and then a random method for computing a BSGS is applied which will use the group
order as a termination condition.

In the first part of this section we present the elementary functions that use a BSGS,
while towards the end we describe firstly, functions which allow the user to select and
control the algorithm employed, and secondly, functions which provide access to the BSGS
data structures. The material specific to BSGS should be omitted on a first reading.

58.18.1 Construction of a Base and Strong Generating Set
Computing structural information for a permutation group G requires, in most cases, a
representation of the set of elements of G. Magma represents this set by means of a base
and strong generating set, or BSGS, for G. Suppose the group G acts on the set Ω. A
base B for G is a sequence of distinct points from Ω with the property that the identity is
the only element of G that fixes B pointwise. A base B of length n determines a sequence
of subgroups G(i), 1 ≤ i ≤ n + 1, where G(i) is the stabilizer of the first i − 1 points of
B. (In particular, G(1) = G and G(n+1) is trivial.) Given a base B for G, a subset S of
G is said to be a strong generating set for G (with respect to B) if G(i) = 〈S ∩G(i)〉, for
i = 1, . . . , n.

BSGS(G)

The general procedure for constructing a BSGS. This version uses the default algo-
rithm choices.

SimsSchreier(G: parameters)

SV BoolElt Default : true

Construct a base and strong generating set for the group G using the standard
Schreier-Sims algorithm. If the parameter SV is set true (default) the transversals
are stored in the form of Schreier vectors. If SV is set false, then the transversals
are stored both as lists of permutations and as Schreier vectors. If the base at-
tribute has been previously defined for G, a variant of the Sims-Schreier algorithm
will be employed, in which permutation multiplications are replaced by base image
calculations wherever possible.

1614 FINITE GROUPS Part X

RandomSchreier(G: parameters)

Max RngIntElt Default : 100
Run RngIntElt Default : 20

Construct a probable base and strong generating set for the group G. The strong
generators are constructed from a set of randomly chosen elements of G. The ex-
pectation is that, if sufficient random elements are taken, then, upon termination,
the algorithm will have produced a BSGS for G. If the attribute Order is defined for
G, the random Schreier will continue until a BSGS defining a group of the indicated
order is obtained. In such circumstances this method is the fastest method of con-
structing a base and strong generating set for G. This is particularly so for groups of
large degree. If nothing is known about G, the random Schreier algorithm provides
a cheap way of obtaining lower bounds on the group’s order and, in the case of a
permutation group, on its degree of transitivity. This parameter has two associated
parameters, Max and Run, which take positive integer values. The parameter Max
specifies the number of random elements to be used (default 100). If the value of
Run is n2, then the algorithm terminates after n2 consecutive random elements are
found to lie in the set defined by the current BSGS (default 20). The two limits
are independent of one another. It should be emphasized that unpredictable results
may arise if the programmer uses the base and strong generators produced by this
algorithm when, in fact, it does not constitute a BSGS for G.

ToddCoxeterSchreier(G: parameters)

Construct a BSGS for G using the Todd-Coxeter Schreier algorithm.

SolubleSchreier(G: parameters)

SolvableSchreier(G: parameters)

Depth RngIntElt Default : See below

Construct a base and strong generating set for the soluble permutation group G
using the algorithm of Sims [Sim90]. The algorithm proceeds by recursively con-
structing the terms of the derived series. If G is not soluble then the algorithm will
not terminate. In order to avoid non-termination, a limit on the number of terms in
the normal subgroup chain constructed must be prescribed. The user may set this
limit as the value of the parameter Depth. The default value, d1.6 log2 Degree(G)e,
is based on an upper limit (due to Dixon) on the length of the derived series of a
soluble permutation group. This algorithm is often significantly faster than the
general Schreier-Sims algorithm.

Verify(G: parameters)

Levels RngIntElt Default : 0
OrbitLimit RngIntElt Default : 4, 000

Given a permutation groupG for which a probable BSGS is stored, verify the correct-
ness of the BSGS. If it is not complete, proceed to complete it. The two parameters

Ch. 58 PERMUTATION GROUPS 1615

Levels and OrbitLimit define how many levels the Todd-Coxeter-Schreier-Sims
verifies before switching to the Brownie-Cannon-Sims algorithm. If Levels is set
to n non-zero then n levels are verified by the TCSS algorithm before switching. If
Levels is zero, the switch-over point is determined by the value of the parameter
OrbitLimit. All levels with basic orbit length at most OrbitLimit are verified using
TCSS. When a level is encountered with orbit length greater than this, a decision
based on expected amount of work to do for this level by each algorithm determines
what strategy is used for this level. Once one level uses the BCS method, all levels
from then on will use it.

Example H58E41

The Higman-Sims simple group represented on 100 letters is generated by two permutations. To
create a base and strong generating set for it using the Todd-Coxeter-Schreier algorithm, we can
use the ToddCoxeterSchreier procedure as follows:

> G := sub<Sym(100) |

> (2,8,13,17,20,22,7)(3,9,14,18,21,6,12)(4,10,15,19,5,11,16)

> (24,77,99,72,64,82,40)(25,92,49,88,28,65,90)(26,41,70,98,91,38,75)

> (27,55,43,78,86,87,45)(29,69,59,79,76,35,67)(30,39,42,81,36,57,89)

> (31,93,62,44,73,71,50)(32,53,85,60,51,96,83)(33,37,58,46,84,100,56)

> (34,94,80,61,97,48,68)(47,95,66,74,52,54,63),

> (1,35)(3,81)(4,92)(6,60)(7,59)(8,46)(9,70)(10,91)(11,18)(12,66)(13,55)

> (14,85)(15,90)(17,53)(19,45)(20,68)(21,69)(23,84)(24,34)(25,31)(26,32)

> (37,39)(38,42)(40,41)(43,44)(49,64)(50,63)(51,52)(54,95)(56,96)(57,100)

> (58,97)(61,62)(65,82)(67,83)(71,98)(72,99)(74,77)(76,78)(87,89) >;

> ToddCoxeterSchreier(G);

> Order(G);

44352000

Example H58E42

The simple group of Rudvalis has a permutation representation of degree 4060. A generating set
for the Rudvalis group, Ru, may be found in the standard Magma database pergps, where it is
called ru. We use the random Schreier algorithm followed by the Verify procedure to produce
a base and strong generating set. We increase the limits for RandomSchreier to increase the
probability that a complete base and strong generating set is found. This is done as follows:

> load "ru";

> RandomSchreier(G : Max := 50, Run := 20);

> Order(G);

145926144000

> Verify(G);

> Order(G);

145926144000

> Base(G);

[1, 2, 3, 4]

> BasicOrbitLengths(G);

1616 FINITE GROUPS Part X

[4060, 2304, 780, 20]

58.18.2 Defining Values for Attributes
If the order of a permutation group is known in advance, the construction of a base and
strong generating set can be greatly speeded up by taking advantage of this knowledge.
The AssertAttribute constructor may be used to communicate this and other useful
information to Magma.

AssertAttribute(G, "Order", n)

Define the order attribute for the permutation group G.

AssertAttribute(G, "Order", Q)

Define the (factored) order of the permutation group G to be Q.

#AssertAttribute(G, "BSGS", S)

Define the base and strong generating set structure S to be the BSGS for G.

Example H58E43

The ability to set the order provides a short cut when constructing a BSGS. If the order attribute
is set and the random Schreier-Sims algorithm applied, it will run until a BSGS for a group of
the designated order has been constructed. We illustrate this in the case of the wreath product,
with product action, of Sym(42) with Alt(8).

> G := WreathProduct(Sym(42), Alt(8));

> AssertAttribute(G, "Order", Factorial(42)^8 * (Factorial(8) div 2));

> RandomSchreier(G);

> Order(G);

3061373016723610165203127456307122124535329726578404327\

5428034073188691030999256052666924787022950130890371891\

0525089665194187638747340938406861181340150889944654752\

7025207255845130274434558221633869210079882581975069742\

1672055466250914291002570275499685768646240411055766098\

2370739110690651875215676663235534126138270781440155683\

9906515353600\

00000000000000000000000000000

Ch. 58 PERMUTATION GROUPS 1617

58.18.3 Accessing the Base and Strong Generating Set

Base(G)

A base for the permutation group G. The base is returned as a sequence of points
of its natural G-set. If a base is not known, one will be constructed.

BasePoint(G, i)

The i-th base point for the permutation group G. A base and strong generating set
must be known for G.

BasicOrbit(G, i)

The basic orbit at level i as defined by the current base for the permutation group
G. This function assumes that a BSGS is known for G.

BasicOrbits(G)

The basic orbits as defined by the current base for the permutation group G. This
function assumes that a BSGS is known for G. The orbits are returned as a sequence
of indexed sets.

BasicOrbitLength(G, i)

The length of the basic orbit at level i as defined by the current base for the per-
mutation group G. This function assumes that a BSGS is known for G.

BasicOrbitLengths(G)

The lengths of the basic orbits as defined by the current base for the permutation
group G. This function assumes that a BSGS is known for G. The lengths are
returned as a sequence of integers.

BasicStabilizer(G, i)

BasicStabiliser(G, i)

Given a permutation group G for which a base and strong generating set are known,
and an integer i, where 1 ≤ i ≤ k with k the length of the base, return the subgroup
of G which fixes the first i− 1 points of the base.

BasicStabilizerChain(G)

BasicStabiliserChain(G)

Given a permutation group G, return the stabilizer chain defined by the base as
a sequence of subgroups of G. If a BSGS is not already known for G, it will be
created.

IsMemberBasicOrbit(G, i, a)

Returns true if the point a of Ω lies in the basic orbit at level i. This function
assumes that a BSGS is known for G.

1618 FINITE GROUPS Part X

NumberOfStrongGenerators(G)

Nsgens(G)

The number of elements in the current strong generating set for G.

NumberOfStrongGenerators(G, i)

Nsgens(G, i)

The number of elements in the strong generating set for the i-th term of the stabilizer
chain for G.

SchreierVectors(G)

The Schreier vectors corresponding to the current BSGS for the permutation group
G. The vectors are returned as a sequence of integer sequences.

SchreierVector(G, i)

The Schreier vector corresponding the i-th term of the stabilizer chain defined by the
current BSGS for the permutation group G. The vector is returned as a sequence
of integers.

StrongGenerators(G)

A set of strong generators for the permutation group G. If they are not currently
available, they will be computed.

StrongGenerators(G, i)

A set of strong generators for the i-th term in the stabilizer chain for the permutation
group G. A BSGS must be known for G.

58.18.4 Working with a Base and Strong Generating Set

BaseImage(x)

Given a permutation x belonging to the group G, for which a base and strong
generating set is known, form the base image of x.

Permutation(G, Q)

Given a permutation group G acting on the set Ω, for which a base and strong
generating set are known, and a sequence Q of distinct points of Ω defining an
element x of G, return x as a permutation.

SVPermutation(G, i, a)

The permutation of G defined by the Schreier vector at level i, which takes the point
a of Ω to the base point at level i. This function assumes that a BSGS is known for
G.

Ch. 58 PERMUTATION GROUPS 1619

SVWord(G, i, a)

An element in the word group of G defined by the Schreier vector at level i, which
takes the point a of Ω to the base point at level i. This function assumes that a
BSGS is known for G.

Strip(H, x)

Given an element x of a permutation group G, and given a group H for which a
base and strong generating set is known, returns:

(a) the value of x in H

(b)The residual permutation y resulting from the stripping of x with respect to the
BSGS for H; and

(c) The first level i such that y is not contained in H(i).

WordStrip(H, x)

Given an element x of a permutation group G, and given a group H for which a
base and strong generating set is known, returns:

(a) the value of x in H

(b)the residual word w (an element in the word group of G) resulting from the
stripping of x with respect to the BSGS for H,

(c) The first level i such that y is not contained in H(i).

BaseImageWordStrip(H, x)

Given an element x of a permutation group G, and given a group H for which a
base and strong generating set is known, returns:

(a)Whether the base image strip succeeded at all levels. Note that a true value here
does not, on its own, imply x ∈ H.

(b)the residual word w (an element in the word group of G) resulting from the
stripping of x with respect to the BSGS for H,

(c) The first level i such that the strip could not continue.

WordInStrongGenerators(H, x)

Given an element x of a permutation groupH for which a base and strong generating
set is known, returns a word in the strong generators of H which represents x. This
function uses base images to determine the word for x, so giving x 6∈ H will have
unpredictable results. This function returns the inverse of the second return value
of BaseImageWordStrip, when the latter is successful.

1620 FINITE GROUPS Part X

58.18.5 Modifying a Base and Strong Generating Set

ChangeBase(∼G, Q)

Given a group H with a base and strong generating set, change the base of G, so
that the points in the sequence Q form an initial segment of the new base.

AddNormalizingGenerator(∼H, x)

Given a group H with a base B and strong generating set X, and an element x that
normalizes H belonging to a group that contains H, extend the existing BSGS for
H so that they form a BSGS for the subgroup < H,x >.

ReduceGenerators(∼G)
Given a group G with a base and strong generating set, remove redundant strong
generators.

58.19 Permutation Representations of Linear Groups

Each of the functions in this family returns two values:
(a)A permutation group G corresponding to the action of a designated matrix group M

on a vector space V ; and
(b)An indexed set of affine or projective points on which M acts, such that the indexing

gives the correspondence between this set and the G-set of M .

Furthermore, most of the function in this family are parameterized by two objects: the
degree and the coefficient field of the matrix group. These can be supplied in one of the
following three forms:
(i) Integers n and q corresponding to the degree and the field Fq of M (Fq2 in the case of

the unitary groups).
(ii)An integer n and a finite field K corresponding to the degree and the coefficient field

of M .
(iii)A vector space V = Kn on which M naturally acts.

The Suzuki group, however, is only parametrised by the field, as the degree is always
four. As such, it can be described by the integer q, the field K = Fq, or the vector space
K4.

AffineGeneralLinearGroup(arguments)

AGL(arguments)

Construct the affine general linear group G = AGL(n, q), i.e., the group correspond-
ing to the action of GL(n, q) on the affine points of the n-dimensional vector space
V over K = Fq. The function returns:
(a)The group G;

Ch. 58 PERMUTATION GROUPS 1621

(b)An indexed set giving the correspondence between the affine points and the G-set
of G.

AffineSpecialLinearGroup(arguments)

ASL(arguments)

Construct the affine special linear group G = ASL(n, q), i.e., the group correspond-
ing to the action of SL(n, q) on the affine points of the n-dimensional vector space
V over K = Fq. The function returns:
(a)The group G;
(b)An indexed set giving the correspondence between the affine points and the G-set

of G.

AffineGammaLinearGroup(arguments)

AGammaL(arguments)

Construct the affine gamma linear group G = AΓL(n, q), i.e., the group correspond-
ing to the action of ΓL(n, q) (the automorphism group of GL(n, q)) on the affine
points of the n-dimensional vector space V over K = Fq. The function returns:
(a)The group G;
(b)An indexed set giving the correspondence between the points and the G-set of

G.

AffineSigmaLinearGroup(arguments)

ASigmaL(arguments)

Construct the affine sigma linear group G = AΣL(n, q), i.e., the group corresponding
to the action of ΣL(n, q) (the automorphism group of SL(n, q)) on the affine points
of the n-dimensional vector space V over K = Fq. The function returns:
(a)The group G;
(b)An indexed set giving the correspondence between the points and the G-set of

G.

ProjectiveGeneralLinearGroup(arguments)

PGL(arguments)

Construct the projective general linear group G = PGL(n, q), i.e., the group cor-
responding to the action of GL(n, q) on the projective points of the n-dimensional
vector space V over K = Fq, where n ≥ 2 and q is a prime power. The function
returns:
(a)The group G;
(b)An indexed set of the generators of the 1-dimensional subspaces of K(n), giving

the correspondence between these vectors and the G-set of G.

ProjectiveSpecialLinearGroup(arguments)

1622 FINITE GROUPS Part X

PSL(arguments)

Construct the projective special linear group G = PSL(n, q), i.e., the group cor-
responding to the action of SL(n, q) on the projective points of the n-dimensional
vector space V over K = Fq, where n ≥ 2 and q is a prime power. The function
returns:
(a)The group G;
(b)An indexed set of the generators of the 1-dimensional subspaces of K(n), giving

the correspondence between these vectors and the G-set of G.

ProjectiveGammaLinearGroup(arguments)

PGammaL(arguments)

Construct an automorphism group G = PΓL(n, q) of the projective general linear
group B = PGL(n, q), by adding the field automorphisms of Fq to B. The permu-
tation action corresponds to the natural action on 1-dimensional subspaces of the
n-dimensional vector space V over the field K = Fq, where n ≥ 2 and q is a prime
power. The function returns:
(a)The group G;
(b)An indexed set giving the correspondence between the points and the G-set of

G.

ProjectiveSigmaLinearGroup(arguments)

PSigmaL(arguments)

Construct an automorphism group G = PΣL(n, q) of the projective special linear
group B = PSL(n, q), by adding the field automorphisms of Fq to B. The permu-
tation action corresponds to the natural action on 1-dimensional subspaces of the
n-dimensional vector space V over the field K = Fq, where n ≥ 2 and q is a prime
power. The function returns:
(a)The group G;
(b)An indexed set giving the correspondence between the points and the G-set of

G.

ProjectiveGeneralUnitaryGroup(arguments)

PGU(arguments)

Construct the projective general unitary group G = PGU(n, q) corresponding to the
n-dimensional vector space V over the field K = Fq2 , where n ≥ 2 and q is a prime
power. The function returns:
(a)The group G;
(b)An indexed set of the generators of the 1-dimensional subspaces of K(n), giving

the correspondence between these vectors and the G-set of G.

ProjectiveSpecialUnitaryGroup(arguments)

Ch. 58 PERMUTATION GROUPS 1623

PSU(arguments)

Construct the projective special unitary group G = PSU(n, q) corresponding to the
n-dimensional vector space V over the field K = Fq2 , where n ≥ 2 and q is a prime
power. The function returns:
(a)The group G;
(b)An indexed set of the generators of the 1-dimensional subspaces of V , giving the

correspondence between these vectors and the G-set of G.

ProjectiveGammaUnitaryGroup(arguments)

PGammaU(arguments)

Construct an automorphism group G = PΓU(n, q) of the projective general unitary
group B = PGU(n, q), by adding the field automorphisms of Fq2 to B. The permu-
tation action corresponds to the natural action on 1-dimensional subspaces of the
n-dimensional vector space V over the field K = Fq2 , where n ≥ 2 and q is a prime
power. The function returns:
(a)The group G;
(b)An indexed set giving the correspondence between the points and the G-set of

G.

ProjectiveSigmaUnitaryGroup(arguments)

PSigmaU(arguments)

Construct the automorphism group G = PΣU(n, q) of the projective special unitary
group B = PSU(n, q), by adding the field automorphisms of Fq2 to B. The permu-
tation action corresponds to the natural action on 1-dimensional subspaces of the
n-dimensional vector space V over the field K = Fq2 , where n ≥ 2 and q is a prime
power. The function returns:
(a)The group G;
(b)An indexed set giving the correspondence between the points and the G-set of

G.

ProjectiveSymplecticGroup(arguments)

PSp(arguments)

Construct the projective symplectic group G = PSp(n, q), where K = Fq, V is an
n-dimensional vector space over K, and n is an even integer greater than or equal
to 4. The function returns:
(a)The group G;
(b)An indexed set of the generators of the 1-dimensional subspaces of K(n), giving

the correspondence between these vectors and the G-set of G.

ProjectiveSigmaSymplecticGroup(arguments)

1624 FINITE GROUPS Part X

PSigmaSp(arguments)

Construct the group G = PΣSp(n, q) of the projective symplectic group PSp(n, q)
extended by field automorphisms of K = Fq, where V is an n-dimensional vector
space over K, and n is an even integer greater than or equal to 4. The function
returns:

(a)The group G;

(b)An indexed set giving the correspondence between the points and the G-set of
G.

ProjectiveGeneralOrthogonalGroup(arguments)

PGO(arguments)

Construct the projective general orthogonal group G = PGO(n, q), where K = Fq,
V is an n-dimensional vector space over K, and n is an odd integer greater than or
equal to 3. The function returns:

(a)The group G;

(b)An indexed set of the generators of the 1-dimensional subspaces of K(n), giving
the correspondence between these vectors and the G-set of G.

ProjectiveGeneralOrthogonalGroupPlus(arguments)

PGOPlus(arguments)

Construct the projective general orthogonal group G = PGO+(n, q), where K = Fq,
V is an n-dimensional vector space over K, and n is an even integer greater than or
equal to 2. The function returns:

(a)The group G;

(b)An indexed set of the generators of the 1-dimensional subspaces of K(n), giving
the correspondence between these vectors and the G-set of G.

ProjectiveGeneralOrthogonalGroupMinus(arguments)

PGOMinus(arguments)

Construct the projective general orthogonal group G = PGO−(n, q), where K = Fq,
V is an n-dimensional vector space over K, and n is an even integer greater than or
equal to 2. The function returns:

(a)The group G;

(b)An indexed set of the generators of the 1-dimensional subspaces of K(n), giving
the correspondence between these vectors and the G-set of G.

ProjectiveSpecialOrthogonalGroup(arguments)

PSO(arguments)

Ch. 58 PERMUTATION GROUPS 1625

Construct the projective special orthogonal group G = PSO(n, q), where K = Fq,
V is an n-dimensional vector space over K, and n is an odd integer greater than or
equal to 3. The function returns:
(a)The group G;
(b)An indexed set of the generators of the 1-dimensional subspaces of K(n), giving

the correspondence between these vectors and the G-set of G.

ProjectiveSpecialOrthogonalGroupPlus(arguments)

PSOPlus(arguments)

Construct the projective special orthogonal group G = PSO+(n, q), where K = Fq,
V is an n-dimensional vector space over K, and n is an even integer greater than or
equal to 2. The function returns:
(a)The group G;
(b)An indexed set of the generators of the 1-dimensional subspaces of K(n), giving

the correspondence between these vectors and the G-set of G.

ProjectiveSpecialOrthogonalGroupMinus(arguments)

PSOMinus(arguments)

Construct the projective general orthogonal group G = PSO−(n, q), where K = Fq,
V is an n-dimensional vector space over K, and n is an even integer greater than or
equal to 2. The function returns:
(a)The group G;
(b)An indexed set of the generators of the 1-dimensional subspaces of K(n), giving

the correspondence between these vectors and the G-set of G.

ProjectiveOmega(arguments)

POmega(arguments)

Construct the projective orthogonal group G = PΩ(n, q), where K = Fq, V is an
n-dimensional vector space over K, and n is an odd integer greater than or equal to
3. The function returns:
(a)The group G;
(b)An indexed set of the generators of the 1-dimensional subspaces of K(n), giving

the correspondence between these vectors and the G-set of G.

ProjectiveOmegaPlus(arguments)

POmegaPlus(arguments)

Construct the projective orthogonal group G = PΩ(n, q), where K = Fq, V is an
n-dimensional vector space over K, and n is an even integer greater than or equal
to 2. The function returns:
(a)The group G;

1626 FINITE GROUPS Part X

(b)An indexed set of the generators of the 1-dimensional subspaces of K(n), giving
the correspondence between these vectors and the G-set of G.

ProjectiveOmegaMinus(arguments)

POmegaMinus(arguments)

Construct the projective orthogonal group G = PΩ(n, q), where K = Fq, V is an
n-dimensional vector space over K, and n is an even integer greater than or equal
to 2. The function returns:

(a)The group G;

(b)An indexed set of the generators of the 1-dimensional subspaces of K(n), giving
the correspondence between these vectors and the G-set of G.

ProjectiveSuzukiGroup(arguments)

PSz(arguments)

Construct the permutation representation G = PSz(q) of the Suzuki simple group
Sz(q), given by its action on projective points, where q is of the form 22n+1. If K is
given, its cardinality is q. If V is given, it must be 4-dimensional, and over K. The
function returns:

(a)The group G;

(b)An indexed set of the generators of the 1-dimensional subspaces of K(n), giving
the correspondence between these vectors and the G-set of G.

AffineGroup(M)

Given a matrix group of degree d over a finite field F , construct the semidirect
product V : M , where V = F d is the natural M -module. The result, G, is a
standard permutation group of degree |V | = |F |d, where the second return value
gives the correspondence between the elements of V and the standard G-set.

58.20 Permutation Group Databases

Magma includes databases that contain all transitive permutation groups of degree up
to 32 and all primitive permutation groups of degree up to 4095. Descriptions of these
databases may be found in Chapter 66.

Ch. 58 PERMUTATION GROUPS 1627

58.21 Ordered Partition Stacks

Ordered partition stacks have been implemented with their own type and Magma intrinsics.
They implement the data structure described very briefly in section 2 of Jeff Leon’s 1997
paper [Leo97]. They can be used as an aid to implementing various backtrack searches in
the Magma language.

The domain set of the partitions is always {1..n}, where n is called the degree of the
stack. The basic “push” operation for these stacks involves refining an ordered partition,
and the precise definition of refinement used in the Magma implementation is Definition
2 of [Leo97]. This differs from the definition in Chapter 9 of [Ser03], for instance.

The word “ordered” refers to the cells of the partition being in a fixed order. The order
of points in a cell is not significant, and may vary as the data structure is manipulated.

58.21.1 Construction of Ordered Partition Stacks

OrderedPartitionStack(n)

Create a data structure representing a complete ordered partition stack of degree
n. Initially the stack has one partition on it, which is the partition having a single
block.

OrderedPartitionStackZero(n, h)

Create a data structure representing a zero-based ordered partition stack of degree
n with height limited to h. Initially the stack has one partition on it, which is the
partition having a single block, and has height 0.

58.21.2 Properties of Ordered Partition Stacks

Degree(P)

The degree of the ordered partition stack P .

Height(P)

The height of the ordered partition stack P . For a complete stack, this equals the
number of cells of the finest partition on the stack.

NumberOfCells(P, h)

The number of cells in the partition on stack P at height h. If h is omitted it is
taken to be the height of P , so giving the number of cells in the finest partition on
the stack P .

CellNumber(P, h, x)

The number of the cell of the partition at height h in P that contains the element
x. If h is omitted it is taken to be the height of P .

1628 FINITE GROUPS Part X

CellSize(P, h, i)

The size of cell i of the partition at height h in P . If h is omitted it is taken to be
the height of P .

Cell(P, h, i)

The contents of cell i of the partition at height h in P as a sequence of integers. If h
is omitted it is taken to be the height of P . Note that the order of the points in the
returned sequence may vary, as the order of points in a cell of an ordered partition
is not fixed.

Random(P, i)

A random element of cell i of the finest partition on P .

Representative(P, i)

Rep(P, i)

An element of cell i of the finest partition on P .

ParentCell(P, i)

The number of the cell that was split to first create cell number i.

58.21.3 Operations on Ordered Partition Stacks
Here are listed the basic operations provided for pushing a finer partition onto an ordered
partition stack, called splitting, and for popping ordered partitions off the stack.

If the top partition on the stack has k cells, and one of these cells is split to form
a finer partition, then the new cell will have number k + 1, and the residue of the split
cell will have the same number as the cell that was split. This agrees with the definition
of refinement given in [Leo97], Definition 2, but disagrees with [Ser03], Chapter 9.2, and
[McK81].

SplitCell(P, i, x)

SplitCell(P, i, Q)

Attempt to refine the top partition on stack P by splitting cell i. The new cell
created will be {x} if x is in cell i, or will be the intersection of Q with cell i (in the
second form), if this is not empty and not all of cell i. The new partition, if any, is
pushed onto the stack. The return value is true when P is changed, false otherwise.
This implements the operation in Definition 6 of [Leo97].

Ch. 58 PERMUTATION GROUPS 1629

SplitAllByValues(P, V)

Refine the top partition on stack P by splitting all possible cells using the values in
V . This implements the operation given in Definition 15 of [Leo97]. Cells are split
in increasing order of cell number, and the resulting new cells are in the curious
order given in the cited definition.

The first return value is true when P is changed, false otherwise. The second
is a hash value based on which cells are split, the values from V used in the split,
and the sizes of the resulting cells. It is suitable for use as an indicator function, as
defined in 2-16 of [McK81].

SplitCellsByValues(P, C, V)

SplitCellsByValues(P, i, V)

Refine the top partition on stack P by splitting all cells given in C, or cell i, using
the values in V . Splitting and return values are as for SplitAllByValues, with an
important difference: cells will be split in the order given in C, and, if some cell in
C does not split, the operation will be terminated there, and false returned.

Pop(P)

Pop(P, h)

Reduce the height of the partition stack P to height h, or by one if h is not given.
The method used is the “retract” algorithm of [Leo97], Fig. 7.

Advance(X, L, P, h)

This implements the “advance” algorithm of [Leo97], Fig. 7: X is a zero-based stack
of degree d say, L is a sequence of length n taking values in {1..d}, representing an
unordered partition of {1..n} into d blocks, P is a complete stack of degree n, and
h is a positive integer which is at most the height of P . This is a fundamental
operation in Leon’s unordered partition stabilizer algorithm.

Example H58E44

We set up an ordered partition stack of degree 12, and try out a few basic operations on it. The
printing of a stack shows the top partition of the stack.

> P := OrderedPartitionStack(12);

> P;

Partn stack, degree 12, height 1

[1 2 3 4 5 6 7 8 9 10 11 12]

> SplitCell(P, 1, 4);

true

> P;

Partn stack, degree 12, height 2

1630 FINITE GROUPS Part X

[1 2 3 12 5 6 7 8 9 10 11 | 4]

Note that the order of the points in cell 1 is not significant. Now we will split on the values in a
vector V .

> V := [i mod 5 + 1: i in [0..11]];

> V;

[1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2]

> SplitAllByValues(P, V);

true 119375796

> P;

Partn stack, degree 12, height 6

[1 6 11 | 4 | 10 5 | 9 | 8 3 | 12 2 7]

Only cell 1 has been split. The points corresponding to the minimum value in V remain in cell
1. The new cells are cells 2 to 6. They correspond to the higher values in V , in descending order.
Now pop the stack back to height 4 and try the effect of a different split by values.

> Pop(P, 4);

> P;

Partn stack, degree 12, height 4

[1 6 11 12 2 7 8 3 | 4 | 10 5 | 9]

> V := [i mod 4 + 1: i in [0..11]];

> V;

[1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4]

> SplitAllByValues(P, V);

true 985543242

> P;

Partn stack, degree 12, height 8

[1 | 4 | 5 | 9 | 8 12 | 11 7 3 | 6 2 | 10]

> Pop(P, 3);

> P;

Partn stack, degree 12, height 3

[1 6 2 11 7 3 8 12 9 | 4 | 5 10]

58.22 Bibliography
[Atk75] M.D. Atkinson. An algorithm for finding the blocks of a permutation group.

Math. Comp., 29:911–913, 1975.
[BC82] G. Butler and J.J. Cannon. Computing with permutation and matrix

groups I: Normal closure, commutator subgroups, series. Math. Comp., 39:671–680,
1982.

[Bea93] G. Beals. Algorithms for finite groups. PhD thesis, University of Chicago,
1993.

[BLGN+03] R. Beals, C. R. Leedham-Green, A. C. Niemeyer, C. E. Praeger, and A.
Seress. A black-box algorithm for recognising finite symmetric and alternating groups,
I. Trans. Amer. Math. Soc., 2003. To appear.

Ch. 58 PERMUTATION GROUPS 1631

[BP00] Sergey Bratus and Igor Pak. Fast constructive recognition of a black box
group isomorphic to Sn or An using Goldbach’s conjecture. J. Symbolic Comp., 29:33–
57, 2000.

[But85] Gregory Butler. Effective computation with group homomorphisms. J.
Symbolic Comp., 1:143–157, 1985.

[But94] Greg Butler. An inductive schema for computing conjugacy classes in
permutation groups. Mathematics of Computation, 62(205):363–383, 1994.

[CB92] J.J. Cannon and W. Bosma. Structural computation in finite permutation
groups. CWI Quarterly, 5(2):127–160, 1992.

[CC91] P.J. Cameron and J.J. Cannon. Recognizing doubly transitive groups. J.
Symb. Comp., 12(4/5):459–474, 1991.

[CCH97] J.J. Cannon, B. Cox, and D.F. Holt. Computing Sylow subgroups in
permutation groups. J. Symb. Comp., 24(3/4):303–316, 1997.

[CCH01] J.J. Cannon, B. Cox, and D.F. Holt. Computing the subgroups of a per-
mutation group. J. Symb. Comp., 31:149–161, 2001.

[CFL89] G. Cooperman, L. Finkelstein, and E.M. Luks. Reduction of group con-
structions to point stabilizers. In Proc. of International Symposium on Symbolic and
Algebraic Computation ISSAC ’89, pages 351–356. ACM, 1989.

[CH97] J.J. Cannon and D.F. Holt. Computing chief series, composition series and
socles in large permutation groups. J. Symb. Comp., 24(3/4):285–301, 1997.

[CH03] J.J. Cannon and D.F. Holt. Automorphism group computation and iso-
morphism testing in finite groups. J. Symbolic Comp., 35(3):241–267, 2003.

[CH04] J.J. Cannon and D.F. Holt. Computing maximal subgroups of finite groups.
J. Symbolic Comp., 37(5):589–609, 2004.

[CHSS03] J.J. Cannon, D.F. Holt, M. Slattery, and A.K. Steel. Computing subgroups
of low index in a finite group. 2003.

[CLGM+95] Frank Celler, Charles R. Leedham-Green, Scott H. Murray, Alice C.
Niemeyer, and E. A. O’Brien. Generating random elements of a finite group. Comm.
Algebra, 23(13):4931–4948, 1995.

[CS] J.J. Cannon and B. Souvignier. On the computation of normal subgroups
in permutation groups. to appear, International Journal of Algebra and Computation.

[CS97] J.J. Cannon and B. Souvignier. On the computation of conjugacy classes in
permutation groups. In Proceedings of the 1997 International Symposium on Symbolic
and Algebraic Computation, pages 392–399. Association for Computing Machinery,
1997. Maui, July 21–23, 1997.

[Geb00] Volker Gebhardt. Constructing a short defining set of relations for a finite
group. J. Algebra, 233:526–542, 2000.

[Hol84] D.F. Holt. The calculation of the Schur multiplier of a permutation group.
In Computational group theory (Durham, 1982), pages 307–319. Academic Press, Lon-
don, 1984.

1632 FINITE GROUPS Part X

[Hol85a] D.F. Holt. A computer program for the calculation of a covering group of
a finite group. J. Pure Appl. Algebra, 35(3):287–295, 1985.

[Hol85b] D.F. Holt. The mechanical computation of first and second cohomology
groups. J. Symbolic Comp., 1(4):351–361, 1985.

[Kan91] William M. Kantor. Finding composition factors of permutation groups of
degree n ≤ 106. J. Symbolic Comp., 12(4/5):517–526, 1991.

[Leo80] Jeffrey S. Leon. On an algorithm for finding a base and a strong generating
set for a group given by generating permutations. Math. Comp., 35(151):941–974,
1980.

[Leo97] Jeffrey S. Leon. Partitions, refinements, and permutation group computa-
tion. In Larry Finkelstein and William M. Kantor, editors, Groups and Computation
II, volume 28 of Dimacs series in Discrete Mathematics and Computer Science, pages
123–158, Providence R.I., 1997. Amer. Math. Soc.

[LGPS91] C.R. Leedham-Green, C.E. Praeger, and L.H. Soicher. Computing with
group homomorphisms. J. Symbolic Comp., 12(4/5):527–532, 1991.

[LNPS06] M. Law, A.C. Niemeyer, C.E. Praeger, and A. Seress. A reduction algorithm
for for large-base primitive permutation groups. LMS J. Comput. Math., 9:159173,
2006.

[Luk93] E.M. Luks. Permutation groups and polynomial-time computation. In
Groups and computation (New Brunswick, NJ, 1991), volume 11 of DIMACS Ser.
Discrete Math. Theoret. Comput. Sci., pages 139–175. Amer. Math. Soc., 1993.

[McK81] B. D. McKay. Practical Graph Isomorphism. Congressus Numerantium,
30:45–87, 1981.

[MN89] M. Mecky and J. Neubüser. Some remarks on the computation of conjugacy
classes of soluble groups. Bull. Austral, Math. Soc., 40(2):281–292, 1989.

[Neu86] P.M. Neumann. Some algorithms for computing with finite permutation
groups. In C.M. Campbell E.F. Robertson, editor, Groups - St. Andrews 1985, number
121 in London Math. Soc. Lecture Notes Series, 1986.

[Ric73] J.S. Richardson. Group: a computer system for group-theoretic calculations.
Master’s thesis, Department of Pure Mathematics, University of Sydney, September
1973.

[Sch90] Bernd Schmalz. Verwendung von Untergruppenleitern zur Bestimmung von
Doppelnebenklassen. Bayreuther Mathematische Schriften, 31:109–143, 1990.

[Ser03] Ákos Seress. Permutation group algorithms, volume 152 of Cambridge
Tracts in Mathematics. Cambridge University Press, Cambridge, 2003.

[Sim90] Charles C. Sims. Computing the order of a solvable permutation group. J.
Symb. Comp., 9(5/6):699–705, 1990.

[SS94] M. Schönert and A. Seress. Finding blocks of imprimitivity in small-base
groups in nearly linear time. In Proc. 1994 ACM-SIGSAM Inter. Symp. on Symbolic
and Algebraic Comp., pages 154–157, 1994.

Ch. 58 PERMUTATION GROUPS 1633

[Ung] W.R. Unger. Computing chief series of a large permutation group. In
preparation.

[Ung06a] W.R. Unger. Computing the character table of a finite group. J. Symbolic
Comp., 41(8):847–862, 2006.

[Ung06b] W.R. Unger. Computing the solvable radical of a permutation group. J.
Algebra, 300(1):305–315, 2006.

59 MATRIX GROUPS OVER GENERAL RINGS
59.1 Introduction 1639

59.1.1 Introduction to Matrix Groups . . 1639

59.1.2 The Support 1640

59.1.3 The Category of Matrix Groups . . 1640

59.1.4 The Construction of a Matrix Group1640

59.2 Creation of a Matrix Group . 1640

59.2.1 Construction of the General Linear
Group 1640

GeneralLinearGroup(n, R) 1640
GL(n, R) 1640

59.2.2 Construction of a Matrix Group Ele-
ment 1641

elt< > 1641
! 1641
ElementToSequence(g) 1642
Eltseq(g) 1642
Identity(G) 1642
Id(G) 1642
! 1642
59.2.3 Construction of a General Matrix

Group 1643

MatrixGroup< > 1643

59.2.4 Changing Rings 1644

ChangeRing(G, S) 1644
ChangeRing(G, S, f) 1644
RestrictField(G, S) 1644
ExtendField(G, L) 1644

59.2.5 Coercion between Matrix Structures 1645

! 1645
! 1645
! 1645
! 1645

59.2.6 Accessing Associated Structures . . 1645

. 1645
Degree(G) 1645
Generators(G) 1645
NumberOfGenerators(G) 1645
Ngens(G) 1645
CoefficientRing(G) 1645
BaseRing(G) 1645
RSpace(G) 1646
VectorSpace(G) 1646
GModule(G) 1646
Generic(G) 1646
Parent(G) 1646

59.3 Homomorphisms 1646

hom< > 1646
Domain(f) 1646

Codomain(f) 1647
Image(f) 1647
Kernel(f) 1647
IsHomomorphism(G, H, Q) 1647

59.3.1 Construction of Extensions 1648

DirectProduct(G, H) 1648
DirectProduct(Q) 1648
SemiLinearGroup(G, S) 1648
TensorWreathProduct(G, H) 1648
WreathProduct(G, H) 1648

59.4 Operations on Matrices . . . 1649

59.4.1 Arithmetic with Matrices 1650

* 1650
^ 1650
/ 1650
^ 1650
(g, h) 1650
(g1, ..., gr) 1650

59.4.2 Predicates for Matrices 1652

eq 1652
ne 1652
IsIdentity(g) 1652
IsId(g) 1652
IsScalar(g) 1652

59.4.3 Matrix Invariants 1652

Degree(g) 1652
HasFiniteOrder(g) 1653
Order(g) 1653
FactoredOrder(g) 1653
ProjectiveOrder(g) 1654
FactoredProjectiveOrder(A) 1654
CentralOrder(g : -) 1654
CentralOrder(g) 1654
Determinant(g) 1654
Trace(g) 1654
CharacteristicPolynomial(g: -) 1654
MinimalPolynomial(g) 1655

59.5 Global Properties 1655

59.5.1 Group Order 1656

IsFinite(G) 1656
Order(G) 1656
1656
FactoredOrder(G) 1656

59.5.2 Membership and Equality 1657

in 1657
notin 1657
subset 1657
subset 1657
notsubset 1657
notsubset 1657

1636 FINITE GROUPS Part X

eq 1657
ne 1657

59.5.3 Set Operations 1658

NumberingMap(G) 1658
RandomProcess(G) 1658
Random(G: -) 1658
Random(P) 1658

59.6 Abstract Group Predicates . . 1660

IsAbelian(G) 1660
IsCyclic(G) 1660
IsElementaryAbelian(G) 1660
IsNilpotent(G) 1660
IsSoluble(G) 1660
IsSolvable(G) 1660
IsPerfect(G) 1660
IsSimple(G) 1660

59.7 Conjugacy 1662

Class(H, x) 1662
Conjugates(H, x) 1662
ClassMap(G) 1662
ConjugacyClasses(G: -) 1662
Classes(G: -) 1662
ClassRepresentative(G, x) 1663
ClassCentraliser(G, i) 1663
ClassInvariants(G, g) 1664
ClassInvariants(G, i) 1664
ClassRepresentativeFrom

Invariants(G, p, h, t) 1664
IsConjugate(G, g, h) 1664
IsConjugate(G, H, K) 1664
IsGLConjugate(H, K) 1664
Exponent(G) 1664
NumberOfClasses(G) 1664
Nclasses(G) 1664
PowerMap(G) 1664
AssertAttribute(G, "Classes", Q) 1665

59.8 Subgroups 1666

59.8.1 Construction of Subgroups 1666

sub< > 1666
ncl< > 1666

59.8.2 Elementary Properties of Subgroups 1667

Index(G, H) 1667
FactoredIndex(G, H) 1667
IsCentral(G, H) 1667
IsMaximal(G, H) 1667
IsNormal(G, H) 1667
IsSubnormal(G, H) 1667

59.8.3 Standard Subgroups 1667

^ 1667
Conjugate(H, g) 1667
meet 1667
CommutatorSubgroup(G, H, K) 1668
CommutatorSubgroup(H, K) 1668

Centralizer(G, g) 1668
Centralizer(G, H) 1668
Core(G, H) 1668
^ 1668
NormalClosure(G, H) 1668
Normalizer(G, H) 1668
SylowSubgroup(G, p) 1668
Sylow(G, p) 1668
pCore(G, p) 1668

59.8.4 Low Index Subgroups 1669

LowIndexSubgroups(G, R : -) 1669
LowIndexSubgroups(G, R: -) 1669

59.8.5 Conjugacy Classes of Subgroups . . 1670

SubgroupClasses(G: -) 1670
Subgroups(G: -) 1670
MaximalSubgroups(G: -) 1672
SubgroupsLift(G, A, B, Q: -) 1672

59.9 Quotient Groups 1672

59.9.1 Construction of Quotient Groups . 1673

quo< > 1673
/ 1673

59.9.2 Abelian, Nilpotent and Soluble Quo-
tients 1674

AbelianQuotient(G) 1674
ElementaryAbelianQuotient(G, p) 1674
pQuotient(G, p, c) 1674
NilpotentQuotient(G, c) 1674
SolvableQuotient(G) 1674
SolubleQuotient(G) 1674
PCGroup(G) 1675

59.10 Matrix Group Actions . . . 1675

59.10.1 Orbits and Stabilizers 1676

* 1676
^ 1676
^ 1676
Orbit(G, y) 1676
OrbitBounded(G, y, b) 1676
Orbits(G) 1676
LineOrbits(G) 1676
OrbitClosure(G, S) 1677
Stabilizer(G, y) 1677

59.10.2 Orbit and Stabilizer Functions for
Large Groups 1678

OrbitsOfSpaces(G, k) 1678
NumberOfFixedSpaces(x, s) 1678
NumberOfFixedSpaces(x, s) 1678
EstimateOrbit(G, v: -) 1680
EstimateOrbit(G, U: -) 1680
ApproximateStabiliser(G, A, U: -) 1681
StabiliserOfSpaces(Q) 1681
IsUnipotent(G) 1682
UnipotentStabiliser(G, U: -) 1682

59.10.3 Action on Orbits 1684

Ch. 59 MATRIX GROUPS OVER GENERAL RINGS 1637

OrbitAction(G, T) 1684
OrbitActionBounded(G, T, b) 1684
OrbitImage(G, T) 1684
OrbitImageBounded(G, T, b) 1684
OrbitKernel(G, T) 1684
OrbitKernelBounded(G, T, b) 1685

59.10.4 Action on a Coset Space 1686

CosetAction(G, H) 1686
CosetImage(G, H) 1686
CosetKernel(G, H) 1686

59.10.5 Action on the Natural G-Module 1687

GModule(G) 1687
IsIrreducible(G) 1687
SubmoduleAction(G, S) 1687
SubmoduleImage(G, S) 1687
QuotientModuleAction(G, S) 1687
QuotientModuleImage(G, S) 1687
IsAbsolutelyIrreducible(G) 1687
AbsoluteRepresentation(G) 1687
MinimalField(G) 1687

59.11 Normal and Subnormal
Subgroups 1688

59.11.1 Characteristic Subgroups and Sub-
group Series 1688

Centre(G) 1688
Center(G) 1688
DerivedLength(G) 1688
DerivedSeries(G) 1688
CommutatorSubgroup(G) 1688
DerivedSubgroup(G) 1688
DerivedGroup(G) 1688
#FittingSubgroup(G) 1688
LowerCentralSeries(G) 1688
NilpotencyClass(G) 1688
^ 1688
NormalClosure(G, H) 1688
SolubleResidual(G) 1688
SolvableResidual(G) 1688
SubnormalSeries(G, H) 1689
UpperCentralSeries(G) 1689

59.11.2 The Soluble Radical and its Quo-
tient 1690

Radical(G) 1690
SolubleRadical(G) 1690
SolvableRadical(G) 1690
RadicalQuotient(G) 1690
ElementaryAbelianSeries(G: -) 1690
ElementaryAbelianSeriesCanonical(G) 1690

59.11.3 Composition and Chief Factors . 1691

CompositionFactors(G) 1691
ChiefFactors(G) 1691
ChiefSeries(G) 1691

59.12 Coset Tables and Transversals 1693

CosetTable(G, H) 1693

Transversal(G, H) 1693
RightTransversal(G, H) 1693

59.13 Presentations 1693

59.13.1 Presentations 1693

FPGroup(G) 1693
FPGroupStrong(G) 1693

59.13.2 Matrices as Words 1694

WordGroup(G) 1694
InverseWordMap(G) 1694

59.14 Automorphism Groups . . . 1694

AutomorphismGroup(G: -) 1694
IsIsomorphic(G, H: -) 1696

59.15 Representation Theory . . . 1697

LinearCharacters(G) 1697
CharacterTable(G: -) 1698
PermutationCharacter(G, H) 1698
GModule(G) 1698
GModule(G, A) 1698
GModule(G, Q) 1698
GModule(G, A, B) 1698
PermutationModule(G, H, R) 1699
ChangeOfBasisMatrix(G, S) 1699

59.16 Base and Strong Generating
Set 1700

59.16.1 Introduction 1700

59.16.2 Controlling Selection of a Base . 1700

GoodBasePoints(G: -) 1700
AssertAttribute(G, "Base", B) 1701
HasAttribute(G, "Base") 1701
AssertAttribute(GrpMat,

"FirstBasicOrbitBound", n) 1701
HasAttribute(GrpMat,

"FirstBasicOrbitBound") 1701
59.16.3 Construction of a Base and Strong

Generating Set 1701

BSGS(G) 1701
BSGS(G, str) 1701
RandomSchreier(G: -) 1702
RandomSchreier(G, str : -) 1702
ToddCoxeterSchreier(G) 1702
Verify(G) 1702

59.16.4 Defining Values for Attributes . . 1703

AssertAttribute(G, "Order", n) 1703
AssertAttribute(G, "Order", Q) 1703
AssertAttribute(G, "IsVerified", b) 1703
HasAttribute(G, "Order") 1703
HasAttribute(G, "FactoredOrder") 1703
HasAttribute(G, "IsVerified") 1703
59.16.5 Accessing the Base and Strong

Generating Set 1703

Base(G) 1703
BasePoint(G, i) 1703
BasicOrbit(G, i) 1703

1638 FINITE GROUPS Part X

BasicOrbitLength(G, i) 1703
BasicOrbitLengths(G) 1703
BasicStabilizer(G, i) 1704
BasicStabiliser(G, i) 1704
BasicStabilizerChain(G) 1704
BasicStabiliserChain(G) 1704
NumberOfStrongGenerators(G) 1704
Nsgens(G) 1704
StrongGenerators(G) 1704

59.17 Soluble Matrix Groups . . . 1704

59.17.1 Conversion to a PC-Group . . . 1704

PolycyclicGenerators(G) 1704
PCGroup(G) 1704

59.17.2 Soluble Group Functions 1704

pCentralSeries(G, p) 1704

59.17.3 p-group Functions 1705

IsSpecial(G) 1705
IsExtraSpecial(G) 1705
FrattiniSubgroup(G) 1705
JenningsSeries(G) 1705

59.17.4 Abelian Group Functions 1705

AbelianInvariants(G) 1705
Invariants(G) 1705

59.18 Bibliography 1705

Chapter 59

MATRIX GROUPS OVER GENERAL RINGS

59.1 Introduction

59.1.1 Introduction to Matrix Groups
A matrix group G may be defined over any ring R for which Magma has a method for

computing the inverse of a matrix. However, the availability of machinery for determining
structural information is dependent upon the properties of the base ring R.

We distinguish several different cases.

(i) If the ring R is a finite field then the group must be finite. If the group has moderate
degree and it is possible to find a low dimensional subspace of the natural vector
space for G whose orbit under G has length bounded by a million or so, then it
is possible to construct a stabilizer chain representation for the group similar to
that used for permutation groups (the BSGS representation [But76]). In order to
increase the chances of finding a short orbit the Murray-O’Brien [MO95] strategy
for selecting base points is used. The availability of a BSGS representation allows
the structure of the group to be investigated in detail.

(ii) If the coefficient ring R is a finite field but the degree and size of the group are such
that it is not possible to construct a useful BSGS representation then the group may
be investigated using techniques based on a theorem of Aschbacher that classifies the
maximal subgroups of GL(n, q). This approach is under intensive development by
Leedham-Green, O’Brien and others. Code implementing some parts is documented
in Chapter 65.

(iii) If the ring R is the Euclidean Ring Z/mZ, then the group must be finite. If the
group has moderate degree and it is possible to find a vector in the natural R-module
for G whose orbit has length bounded by a million or so, then again it is possible
to compute structural information using the BSGS representation.

(iv) If the ring R has infinite cardinality and satisfies certain properties, Magma can
sometimes determine whether the group is finite or infinite. In particular, this can
be done when R is the ring of integers, the field of rational numbers, or an algebraic
number field (including cyclotomic and quadratic fields). If G is infinite, and has
not been created as a Lie group, then Magma currently provides little beyond basic
arithmetic on elements.

(v) If the ring R has infinite cardinality but the group G is finite and R is either a field
or an Euclidean Domain then it may be possible to construct a BSGS representation
as above and thereby undertake structural computation.

1640 FINITE GROUPS Part X

(vi) If an (infinite) matrix group can be created as a Lie group then machinery based
on Lie Theory may be used to analyse the group. The facilities for Lie groups are
described in Chapter 103.

Matrix groups over rings of infinite cardinality may be created regardless as to whether
they are finite or not. If the coefficient ring R is either the ring of integers, the rational
field, a quadratic field, a cyclotomic field, or a number field a matrix group may then
be tested for finiteness by use of the function IsFinite. However, most functions that
determine structural properties of a group apply only to finite groups.

59.1.2 The Support
Matrix groups may be defined over any ring for which Magma has a method for computing
matrix inverses. However, the structure algorithms assume that the group is finite and is
defined over either a field, an Euclidean Domain or the Euclidean Ring Z/mZ.

59.1.3 The Category of Matrix Groups
The family of matrix groups over a particular ring R forms a category where the objects
are the matrix groups and the morphisms are group homomorphisms. The collection of all
matrix groups forms a family of categories indexed by the category of rings. The Magma
designation for this family of categories of matrix groups is GrpMat.

59.1.4 The Construction of a Matrix Group
A group of n× n matrices defined over the ring R is created as a subgroup of the general
linear group GL(n,R). Thus the construction of a general matrix group is a two step
process:

(i) The appropriate general linear group, GL(n,R), is constructed;

(ii)The required group G is then defined as a subgroup of GL(n,R).
For convenience, a constructor MatrixGroup< ... >, which combines these two steps, is
provided.

59.2 Creation of a Matrix Group

59.2.1 Construction of the General Linear Group

GeneralLinearGroup(n, R)

GL(n, R)

Given an integer n ≥ 1 and a ring R, create the generic matrix group, i.e. the gen-
eral linear group GL(n,R). Initially, only a structure table is created for GL(n,R),
so that, in particular, generators are not defined. This function is normally used to
provide a context for the creation of elements and subgroups of GL(n,R). If struc-
tural computation is attempted with the group created by GeneralLinearGroup(n,
R), then generators will be created where possible. At present, this is only permitted
in the cases in which R is a finite field.

Ch. 59 MATRIX GROUPS OVER GENERAL RINGS 1641

Example H59E1

We define the general linear group GL(3, K), where K is the finite field F4.

> K<w> := FiniteField(4);

> GL34 := GeneralLinearGroup(3, K);

> GL34;

GL(3, GF(2, 2))

59.2.2 Construction of a Matrix Group Element
Throughout this subsection we shall assume that the matrix group G is defined over the
ring R.

elt< G | L >

Given a matrix group G defined as a subgroup of GL(n,R), and the list L of ex-
pressions aij (1 ≤ i, j ≤ n), defining elements of the ring R, construct the n × n
matrix




a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann




Unless G is known to be the generic matrix group of degree n, the matrix will
be tested for membership of G, and if g is not an element of G, the function will
fail. If g does lie in G, g will have G as its parent. Since the membership test may
involve constructing a base and strong generating set for G, this constructor may
occasionally be very costly. Hence a matrix g should be defined as an element of a
subgroup of the generic group only when membership of G is required by subsequent
operations involving g.

G ! Q

Given the sequence Q of expressions aij (1 ≤ i, j ≤ n), defining elements of the ring
R, construct the n× n matrix




a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann




This matrix will have G as its parent structure. As in the case of the elt-
constructor, the operation will fail if g is not an element of G, and the same obser-
vations concerning the cost of membership testing apply.

1642 FINITE GROUPS Part X

ElementToSequence(g)

Eltseq(g)

Given an n×n matrix g = (aij), 1 ≤ i, j ≤ n, where aij is an element of the ring R,
construct the sequence

[a11, . . . , a1n, a21, . . . , a2n, . . . an1, . . . , ann]

of n2 elements of the ring R.

Identity(G)

Id(G)

G ! 1

Construct the identity matrix in the matrix group G.

Example H59E2

The different constructions are illustrated by the following code, which assigns to each of the
variables x and y an element of GL(3, 4).

> K<w> := FiniteField(4);

> GL34 := GeneralLinearGroup(3, K);

> x := elt<GL34 | w,0,1, 0,1,0, 1,0,1 >;

> x;

[w 0 1]

[0 1 0]

[1 0 1]

> y := GL34 ! [w,0,1, 0,1,0, 1,0,1];

> y;

[w 0 1]

[0 1 0]

[1 0 1]

> GL34 ! 1;

[1 0 0]

[0 1 0]

[0 0 1]

Ch. 59 MATRIX GROUPS OVER GENERAL RINGS 1643

59.2.3 Construction of a General Matrix Group

MatrixGroup< n, R | L >

Construct the matrix group G of degree n over the ring R generated by the matrices
defined by the list L. A term of the list L must be an object of one of the following
types:

(a)A sequence of n2 elements of R defining a matrix of GL(n,R);

(b)A set or sequence of sequences of type (a);

(c) An element of GL(n,R);

(d)A set or sequence of elements of GL(n,R);

(e) A subgroup of GL(n,R);

(f) A set or sequence of subgroups of GL(n,R).

Each element or group specified by the list must belong to the same generic matrix
group. The group G will be constructed as a subgroup of some group which contains
each of the elements and groups specified in the list.

The generators of G consist of the elements specified by the terms of the list
L together with the stored generators for groups specified by terms of the list.
Repetitions of an element and occurrences of the identity element are removed.

The MatrixGroup constructor is shorthand for the two statements:
GL := GeneralLinearGroup(n, R);
G := sub< GL | L >;

where sub< ... > is the subgroup constructor described in the next subsection.

Example H59E3

We use the MatrixGroup constructor to define a small subgroup of GL(3, 4).

> K<w> := FiniteField(4);

> H := MatrixGroup< 3, K | [1,w,0, 0,1,0, 1,w^2,1], [w,0,0, 0,1,0, 0,0,w] >;

> H;

MatrixGroup(3, GF(2, 2))

Generators:

[1 w 0]

[0 1 0]

[1 w^2 1]

[w 0 0]

[0 1 0]

[0 0 w]

> Order(H);

96

1644 FINITE GROUPS Part X

Example H59E4

We present a function which will construct the Sylow p-subgroup of GL(n, K), where K is a finite
field of characteristic p.

> GLSyl := function(n, K)

> R := MatrixRing(K, n);

> e := func< i, j | MatrixUnit(R, i, j) >;

> return MatrixGroup< n, K | { R!1 + a*e(i,j) : a in K, j in [i+1],

> i in [1 .. n - 1] | a ne 0 } >;

> end function;

> T := GLSyl(3, GF(8));

> FactoredOrder(T);

[<2, 9>]

> FactoredOrder(GL(3, GF(8)));

[<2, 9>, <3, 2>, <7, 3>, <73, 1>]

59.2.4 Changing Rings

ChangeRing(G, S)

Given a matrix group G with base ring R, construct a new matrix group H with
base ring S derived from G by coercing entries of the generators of G from R into
S.

ChangeRing(G, S, f)

Given a matrix group G with base ring R, construct a new matrix group H with
base ring S derived from G by applying f to the entries of the generators of G.

RestrictField(G, S)

Given a matrix group G with base ring K, a finite field, and S a subfield of K,
construct the matrix group H with base ring S obtained by restricting the scalars
of the components of elements of G into S, together with the restriction map from
G onto H.

ExtendField(G, L)

Given a matrix group G with base ring K, a finite field, and L an extension of K,
construct the matrix group H with base ring L obtained by lifting the components
of elements of G into L, together with the inclusion homomorphism from G into H.

Ch. 59 MATRIX GROUPS OVER GENERAL RINGS 1645

59.2.5 Coercion between Matrix Structures
A square non-singular matrix may be defined as an element of any of the following struc-
tures:
• A subring of the complete matrix ring Mn(R);
• A subgroup of the general linear group GL(n,R);
• A submodule of the matrix module M (m×n)(R).
The coercion operator may be used to transfer matrices between any two of these three
structures.

R ! g

Transfer the matrix g from a group into a matrix ring R.

G ! r

Transfer the matrix r from a ring into a matrix group G.

M ! g

Transfer the matrix g from a group into a matrix module M .

G ! m

Transfer the matrix m from a module into a matrix group G.

59.2.6 Accessing Associated Structures
The functions in this group provide access to basic information stored for a matrix group
G.

G . i

The i-th defining generator for the matrix group G. A negative subscript indicates
that the inverse of the generator is to be created. G.0 is Identity(G).

Degree(G)

The degree of the matrix group G.

Generators(G)

A set containing the defining generators for the matrix group G.

NumberOfGenerators(G)

Ngens(G)

The number of defining generators for the matrix group G.

CoefficientRing(G)

BaseRing(G)

The coefficient ring for the matrix group G.

1646 FINITE GROUPS Part X

RSpace(G)

Given a matrix group G of degree n defined over a ring R, return the space R(n),
where the action is multiplication by elements of R, i.e. scalar action.

VectorSpace(G)

Given a matrix group G of degree n defined over a field K, return the space K(n),
where the action is multiplication by elements of K, i.e. scalar action.

GModule(G)

The natural R[G]-module for the matrix group G.

Generic(G)

The generic group containing the matrix group G, i.e. the general linear group in
which G is naturally embedded.

Parent(G)

The power structure for the group G (the set consisting of all matrix groups).

59.3 Homomorphisms

Homomorphisms are an important part of group theory, and Magma supports homomor-
phisms between groups. Many useful homomorphisms are returned by constructors and
intrinsic functions. Examples of these are the quo constructor, the sub constructor and
intrinsic functions such as OrbitAction and FPGroup, which are described in more detail
elsewhere in this chapter. In this section we describe how the user may create their own
homomorphisms with domain a matrix group.

hom< G - >

Given the matrix group G, construct the homomorphism f : G → H given by the
generator images in L. H must be a group. The clause L may be any one of the
following types:
(a)A list of elements of H, giving images of the generators of G;
(b)A list of pairs, where the first in the pair is an element of G and the second its

image in H, where pairs may be given in either of the (equivalent) forms <g,h>
or g -> h;

(c) A sequence of elements of H, as in (a);
(d)A set or sequence of pairs, as in (b);
Each image element specified by the list must belong to the same group H. In the
cases where pairs are given the given elements of G must generate G.

Domain(f)

The domain of the homomorphism f .

Ch. 59 MATRIX GROUPS OVER GENERAL RINGS 1647

Codomain(f)

The codomain of the homomorphism f .

Image(f)

The image or range of the homomorphism f . This will be a subgroup of the
codomain of f . The algorithm computes the image and kernel simultaneously (see
[LGPS91]).

Kernel(f)

The kernel of the homomorphism f . This will be a normal subgroup of the domain
of f . The algorithm computes the image and kernel simultaneously (see [LGPS91]).

IsHomomorphism(G, H, Q)

Return the value true if the sequence Q defines a homomorphism from the group
G to the group H. The sequence Q must have length Ngens(G) and must contain
elements ofH. The i-th element of Q is interpreted as the image of the i-th generator
of G and the function decides if these images extend to a homomorphism. If so, the
homomorphism is also returned.

Example H59E5

We construct the usual degree 2 matrix representation of the dihedral group of order 20, and a
homomorphism from it to the symmetric group of degree 5.

> K<z> := CyclotomicField(20);

> zz := RootOfUnity(10, K);

> i := RootOfUnity(4, K);

> cos := (zz+ComplexConjugate(zz))/2;

> sin := (zz-ComplexConjugate(zz))/(2*i);

> gl := GeneralLinearGroup(2, K);

> M := sub< gl | [cos, sin, -sin, cos], [-1,0,0,1]>;

> #M;

20

> S := SymmetricGroup(5);

> f := hom<M->S |[S|(1,2,3,4,5), (1,5)(2,4)]>;

> Codomain(f);

Symmetric group S acting on a set of cardinality 5

Order = 120 = 2^3 * 3 * 5

> Image(f);

Permutation group acting on a set of cardinality 5

Order = 10 = 2 * 5

(1, 2, 3, 4, 5)

(1, 5)(2, 4)

> Kernel(f);

MatrixGroup(2, K) of order 2

Generators:

[-1 0]

1648 FINITE GROUPS Part X

[0 -1]

59.3.1 Construction of Extensions

DirectProduct(G, H)

Given two matrix groups G and H of degrees m and n respectively, construct the
direct product of G and H as a matrix group of degree m+ n.

DirectProduct(Q)

Given a sequence Q of n matrix groups, construct the direct product Q[1]×Q[2]×
. . .×Q[n] as a matrix group of degree equal to the sum of the degrees of the groups
Q[i], (i = 1, . . . , n).

SemiLinearGroup(G, S)

Given a matrix group G over the finite field K and a subfield S of K, construct the
semilinear extension of G over the subfield S.

TensorWreathProduct(G, H)

Given a matrix group G and a permutation group H, construct action of the wreath
product on the tensor power of G by H, which is the (image of) the wreath product
in its action on the tensor power (of the space that G acts on). The degree of the
new group is dk where d is the degree of G and k is the degree of H.

WreathProduct(G, H)

Given a matrix group G and a permutation group H, construct the wreath product
G oH of G and H.

Example H59E6

We define G to be SU(3, 4) and H to be the symmetric group of order 6. We then proceed to
form the direct product of G with itself and the tensor and wreath products of G and H.

> K<w> := FiniteField(4);

> G := SpecialUnitaryGroup(3, K);

> D := DirectProduct(G, G);

> D;

MatrixGroup(6, GF(2, 2))

Generators:

[1 w w 0 0 0]

[0 1 w^2 0 0 0]

[0 0 1 0 0 0]

[0 0 0 1 0 0]

[0 0 0 0 1 0]

[0 0 0 0 0 1]

Ch. 59 MATRIX GROUPS OVER GENERAL RINGS 1649

[w 1 1 0 0 0]

[1 1 0 0 0 0]

[1 0 0 0 0 0]

[0 0 0 1 0 0]

[0 0 0 0 1 0]

[0 0 0 0 0 1]

[1 0 0 0 0 0]

[0 1 0 0 0 0]

[0 0 1 0 0 0]

[0 0 0 1 w w]

[0 0 0 0 1 w^2]

[0 0 0 0 0 1]

[1 0 0 0 0 0]

[0 1 0 0 0 0]

[0 0 1 0 0 0]

[0 0 0 w 1 1]

[0 0 0 1 1 0]

[0 0 0 1 0 0]

> Order(D);

46656

> H := SymmetricGroup(3);

> E := WreathProduct(G, H);

> Degree(E);

9

> Order(E);

60466176

> F := TensorWreathProduct(G, H);

> Degree(F);

27

> Order(F);

6718464

59.4 Operations on Matrices

1650 FINITE GROUPS Part X

59.4.1 Arithmetic with Matrices

g * h

The product of matrix g and matrix h, where g and h belong to the same generic
group U . If g and h both belong to the same proper subgroup G of U , then the
result will be returned as an element of G; if g and h belong to subgroups H and K
of a subgroup G of U then the product is returned as an element of G. Otherwise,
the product is returned as an element of U .

g ^ n

The n-th power of the matrix g, where n is a positive or negative integer.

g / h

The product of the matrix g by the inverse of the matrix h, i.e. the element g ∗h−1.
Here g and h must belong to the same generic group U . The rules for determining
the parent group of g/h are the same as for g ∗ h.

g ^ h

The conjugate of the matrix g by the matrix h, i.e. the element h−1 ∗ g ∗ h. Here
g and h must belong to the same generic group U . The rules for determining the
parent group of gh are the same as for g ∗ h.

(g, h)

The commutator of the matrices g and h, i.e. the element g−1 ∗ h−1 ∗ g ∗ h. Here
g and h must belong to the same generic group U . The rules for determining the
parent group of (g, h) are the same as those for g ∗ h.

(g1, ..., gr)

Given r matrices g1, . . . , gr belonging to a common group, return their commutator.
Commutators are left-normed, so they are evaluated from left to right.

Example H59E7

These operations will be illustrated using the group GL(3, 4).

> K<w> := FiniteField(4);

> GL34 := GeneralLinearGroup(3, K);

> x := GL34 ! [1,w,0, 0,w,1, w^2,0,1];

> y := GL34 ! [1,0,0, 1,w,0, 1,1,w];

> x;

[1 w 0]

[0 w 1]

[w^2 0 1]

> y;

[1 0 0]

[1 w 0]

Ch. 59 MATRIX GROUPS OVER GENERAL RINGS 1651

[1 1 w]

> x*y;

[w^2 w^2 0]

[w^2 w w]

[w 1 w]

> x^10;

[w w 1]

[w 1 1]

[w w^2 w]

> x^-1;

[w^2 w^2 w^2]

[1 w w]

[w w w^2]

> x^y;

[w^2 w^2 0]

[0 w^2 1]

[w^2 w^2 w]

> x/y;

[0 1 0]

[0 w^2 w^2]

[w w w^2]

> (x, y);

[0 w w]

[w w^2 1]

[w^2 w w^2]

> (x,y,y);

[w^2 w w^2]

[w^2 w 0]

[w^2 1 w]

Arithmetic with group elements is not limited to elements of finite groups. We illustrate with a
group of degree 3 over a function field.

> P<a,b,c,m,x,y,z> := FunctionField(RationalField(), 7);

> S := MatrixGroup< 3, P | [1,a,b,0,1,c,0,0,1],

> [1,0,m,0,1,0,0,0,1],

> [1,x,y,0,1,z,0,0,1] >;

>

> t := S.1 * S.2;

> t;

[1 a b + m]

[0 1 c]

[0 0 1]

> t^-1;

[1 -a a*c - b - m]

[0 1 -c]

[0 0 1]

> Determinant(t);

1

1652 FINITE GROUPS Part X

> t^2;

[1 2*a a*c + 2*b + 2*m]

[0 1 2*c]

[0 0 1]

59.4.2 Predicates for Matrices

g eq h

Given matrices g and h belonging to the same generic group, return true if g and
h are the same element, false otherwise.

g ne h

Given matrices g and h belonging to the same generic group, return true if g and
h are distinct elements, false otherwise.

IsIdentity(g)

IsId(g)

Returns true if the matrix g is the identity matrix.

IsScalar(g)

Returns true if the matrix g is a scalar matrix.

59.4.3 Matrix Invariants

All of the functions for computing invariants of a square matrix apply to the elements
of a matrix group. Here only operations of interest in the context of group elements are
described. The reader is referred to chapter 26 for a complete list of functions applicable
to matrices.

Degree(g)

The degree of the matrix g, i.e. the number of rows/columns of g.

Ch. 59 MATRIX GROUPS OVER GENERAL RINGS 1653

HasFiniteOrder(g)

Returns true iff the matrix g has finite order. The second return value is the order if
it is finite. The function rigorously proves its result (i.e., the result is not probable).
Let R be the ring over which g is defined, and let the degree of the group in which
g lies be n. If R is finite, then the first return value is trivially true.

If R is the integer ring then the function works as follows. Suppose first that g
has finite order o. By a theorem of Minkowski (see Theorem 1.4 [KP02]), for any
odd prime p, the reduction mod p of g has order o. Let f(x) ∈ R[x] be the minimal
polynomial of g. The matrix subalgebra generated by g is isomorphic to the quotient
ring R[x]/〈f(x)〉, so the order o of g equals the order of x mod f(x).

For arbitrary g, the algorithm computes the order, ō, of the reduction of g modulo
a small odd prime. If ō is a possible order of an integer matrix of g’s dimensions
(see Theorem 2.7 op. cit.) then this is repeated with a larger prime. If this gives
a different order, or the first attempt gave an impossible order, then g has infinite
order. We now compute xō mod f(x). If this is 1, then ō is the order of g, otherwise
g has infinite order.

If R is the rational field then a necessary condition for g to have finite order is
that f(x) has integer coefficients, thus the above algorithm applies in this case.

If R is an algebraic number field of degree d over Q (including cyclotomic and
quadratic fields), then the standard companion matrix blowup is applied to g to
obtain a (nd)× (nd) matrix over Q, and the above algorithm is then applied to this
matrix.

Order(g)

Proof BoolElt Default : true

Given an element g of finite order belonging to a matrix group, this function returns
the order of g. If g has infinite order, a runtime error results. In the case of a matrix
group over a finite field, the algorithm described in [CLG97] is used. In all other
cases, simple powering of g is used.

The parameter Proof is associated with the case when the coefficient ring for
g is a finite field. In that case, if Proof is set to false, then difficult integer
factorizations will not attempted. In this situation two values are returned of which
the first is a multiple n of the order of g. and the second value indicates whether n
is known to be the exact order of g.

FactoredOrder(g)

Proof BoolElt Default : true

Given an element g of finite order belonging to a matrix group, this function returns
the order of g as a factored integer. If g has infinite order, a runtime error results. If
g has infinite order, the function generates a runtime error. In the case of a matrix
group over a finite field, the algorithm described in [CLG97] is used. In all other
cases, simple powering of g is used. In that case it is more efficient to use this

1654 FINITE GROUPS Part X

function rather than factorizing the integer returned by Order(g). If g has infinite
order, an error ensues.

If the parameter Proof is false, then difficult integer factorizations are not
attempted and the first return value F may contain composite numbers (so that the
factorization expands to a multiple of the order of g); in any case the second return
value indicates whether F is known to be the exact factored order of g.

ProjectiveOrder(g)

Proof BoolElt Default : true

The projective order n of the matrix g, and a scalar s such that gn = sI. The
projective order of g is the smallest n such that gn is a scalar matrix (not just the
identity matrix), and it always divides the true order of A. The parameter Proof is
as for Order.

FactoredProjectiveOrder(A)

Proof BoolElt Default : true

Given a square invertible matrix A over a finite field K, return the projective order
n of A in factored form and a scalar s ∈ K such that An = sI. The parameter
Proof is as for FactoredOrder.

CentralOrder(g : parameters)

CentralOrder(g)

Proof BoolElt Default : true

Return the smallest n such that gn is central in its parent group. If g is a matrix
and the optional parameter Proof is false, then accept a multiple of this value;
the second value returned is true if the answer is exact.

Determinant(g)

The determinant of the matrix g.

Trace(g)

The trace of the matrix g.

CharacteristicPolynomial(g: parameters)

Al MonStgElt Default : “Modular”

Proof BoolElt Default : true

Given a matrix g belonging to a subgroup of GL(n,R), where R is a field or Eu-
clidean Domain, return the characteristic polynomial of g as an element of the
univariate polynomial ring over R. For details on the parameters, see the function
CharacteristicPolynomial in the chapter on matrices.

Ch. 59 MATRIX GROUPS OVER GENERAL RINGS 1655

MinimalPolynomial(g)

Given a matrix g belonging to a subgroup of GL(n,R), where R is a field or Z,
return the minimal polynomial of g as an element of the univariate polynomial ring
over R.

Example H59E8

We illustrate the matrix operations by applying them to some elements of GL(3, 4).

> K<w> := FiniteField(4);

> GL34 := GeneralLinearGroup(3, K);

> x := GL34 ! [w,0,1, 0,1,0, 1,0,1];

> x;

[w 0 1]

[0 1 0]

[1 0 1]

> Degree(x);

3

> Determinant(x);

w^2

> Trace(x);

w

> Order(x);

15

> m<t> := MinimalPolynomial(x);

> m;

t^3 + w*t^2 + w^2

> Factorization(m);

[

<t + 1, 1>,

<t^2 + w^2*t + w^2, 1>

]

> c<t> := CharacteristicPolynomial(x);

> c;

t^3 + w*t^2 + w^2

59.5 Global Properties
Unless otherwise noted, the functions in this section assume that a BSGS-representation

for the group can be constructed.

1656 FINITE GROUPS Part X

59.5.1 Group Order
Unless the order is already known, each of the functions in this family will create a base
and strong generating set for the group if one does not already exist.

IsFinite(G)

Given a matrix group G, return whether G is finite together with the order of G if
G is finite. The function rigorously proves its result (i.e., the result is not probable).
Let R be the ring over which G is defined, and let the degree of G be n. If R is
finite, then the first return value is trivially true.

If R is the integer ring or rational field, then the function works as follows. The
function successively generates random elements ofG and tests whether each element
has infinite order via the function HasFiniteOrder; if so, then the non-finiteness of
G is proven. Otherwise, at regular intervals, the function attempts to construct a
positive definite form fixed by G (see the function PositiveDefiniteForm in the
chapter on matrix groups over Q and Z), using a finite number of steps; if one is
successively constructed, then the finiteness of G is proven. The number of steps
attempted for the positive definite form constructed is increased as the algorithm
progresses; if G is finite, such a form must exist and will be found when enough steps
are tried, while if G is infinite, an element of infinite order is found very quickly in
practice.

If R is an algebraic number field of degree d over Q (including cyclotomic and
quadratic fields), then the standard companion matrix blowup is applied to the
generators of G to obtain an isomorphic matrix group of (nd) over Q, and the
above algorithm is then applied to this matrix group.

Order(G)

#G

The order of the group G as an integer. If the order is not currently known, a base
and strong generating set will be constructed for G. If G has infinite order, an error
ensues.

FactoredOrder(G)

The order of the group G returned as a factored integer. The format is the same as
for FactoredIndex. If the order of G is not known, it will be computed. If G has
infinite order, an error ensues.

Example H59E9

> G := MatrixGroup<2,Integers()|[1,1,0,1],[0,1,-1,0]>;

> IsFinite(G);

false

> G24, e := ChangeRing(G, Integers(24));

> Order(G24);

9216

Ch. 59 MATRIX GROUPS OVER GENERAL RINGS 1657

> G.-1*G.2;

[1 1]

[-1 0]

> (G.-1*G.2) @ e;

[1 1]

[23 0]

> (G24.2^2) @@ e;

[23 0]

[0 23]

59.5.2 Membership and Equality

g in G

Given a matrix g and a matrix group G, return true if g is an element of G, false
otherwise.

g notin G

Given a matrix g and a matrix group G, return true if g is not an element of G,
false otherwise.

S subset G

Given a matrix group G and a set S of matrices belonging to a group H, where G
and H belong to the same generic group, return true if S is a subset of G, false
otherwise.

H subset G

Given matrix groups G and H belonging to the same generic group, return true if
H is a subgroup of G, false otherwise.

S notsubset G

Given a matrix group G and a set S of matrices belonging to a group H, where
G and H belong to the same generic group, return true if S is not a subset of G,
false otherwise.

H notsubset G

Given matrix groups G and H belonging to the same generic group, return true if
H is not a subgroup of G, false otherwise.

H eq G

Given matrix groups G and H belonging to the same generic group, return true if
G and H are the same group, false otherwise.

H ne G

Given matrix groups G and H belonging to the same generic group, return true if
G and H are distinct groups, false otherwise.

1658 FINITE GROUPS Part X

59.5.3 Set Operations
The creation of a base and strong generating set for a matrix group G provides us with a
very compact representation of the set of elements of G. A particular BSGS imposes an
order on the elements of G (lexicographic ordering of base images). It thus makes sense
to talk about the ‘number’ of a group element relative to a particular BSGS.

NumberingMap(G)

A bijective mapping from the group G onto the set of integers {1 . . . |G|}. The actual
mapping depends upon the base and strong generating set chosen for G.

RandomProcess(G)

Slots RngIntElt Default : 10
Scramble RngIntElt Default : 20

Create a process to generate randomly chosen elements from the finite group G. The
process is based on the product-replacement algorithm of [CLGM+95], modified by
the use of an accumulator. At all times, N elements are stored where N is the
maximum of the specified value for Slots and Ngens(G)+1. Initially, these are just
the generators of G. As well, one extra group element is stored, the accumulator.
Initially, this is the identity. Random elements are now produced by successive
calls to Random(P), where P is the process created by this function. Each such call
chooses one of the elements in the slots and multiplies it into the accumulator. The
element in that slot is replaced by the product of it and another randomly chosen
slot. The random value returned is the new accumulator value. Setting Scramble
:= m causes m such operations to be performed before the process is returned.

Random(G: parameters)

Short BoolElt Default : false

A randomly chosen element for the group G. If a BSGS is known for G, then the
element chosen will be genuinely random. If no BSGS is known, then the random
element is chosen by multiplying out a random word in the generators. Since it is not
usually practical to choose words long enough to properly sample the elements of G,
the element returned will usually be biased. The boolean-valued parameter Short
is used in this situation to indicate that a short word will suffice. Thus, if Random is
invoked with Short assigned the value true then the element is constructed using
a short word.

Random(P)

Given a random element process P created by the function RandomProcess(G) for
the finite group G, construct a random element of G by forming a random product
over the expanded generating set constructed when the process was created. For
large degree groups, or groups for which a BSGS is not known, this function should
be used in preference to Random(G).

Ch. 59 MATRIX GROUPS OVER GENERAL RINGS 1659

Example H59E10

We use the random function to sample the orders of elements in the group GL(20, 16).

> G := GeneralLinearGroup(20, GF(16));

> RP := RandomProcess(G);

> [FactoredOrder(Random(RP)) : i in [1..20]];

[

[<3, 1>, <5, 1>],

[<3, 2>, <5, 1>, <7, 1>, <11, 1>, <13, 1>, <17, 1>, <31, 1>, <41, 1>,

<61681, 1>],

[<3, 1>, <5, 1>, <17, 1>, <23, 1>, <89, 1>, <257, 1>, <397, 1>, <683, 1>,

<2113, 1>],

[<3, 1>, <5, 1>],

[<3, 2>, <5, 1>, <7, 1>, <11, 1>, <13, 1>, <17, 1>, <31, 1>, <41, 1>,

<61681, 1>],

[<3, 1>, <31, 1>, <8191, 1>],

[<3, 2>, <5, 1>, <7, 1>, <11, 1>, <13, 1>, <17, 1>, <31, 1>, <41, 1>,

<61681, 1>],

[<3, 3>, <5, 1>, <7, 1>, <13, 1>, <17, 1>, <19, 1>, <29, 1>, <37, 1>,

<43, 1>, <73, 1>, <109, 1>, <113, 1>, <127, 1>, <257, 1>],

[<5, 1>],

[<3, 1>, <5, 1>],

[<3, 1>, <5, 2>, <11, 1>, <17, 1>, <31, 1>, <41, 1>, <53, 1>, <157, 1>,

<1613, 1>, <2731, 1>, <8191, 1>],

[<3, 2>, <5, 1>, <7, 1>, <13, 1>, <17, 1>, <97, 1>, <241, 1>, <257, 1>,

<673, 1>],

[<3, 1>, <5, 1>, <17, 1>, <29, 1>, <43, 1>, <113, 1>, <127, 1>, <257, 1>,

<65537, 1>],

[<3, 1>, <5, 2>, <11, 1>, <29, 1>, <31, 1>, <41, 1>, <43, 1>, <113, 1>,

<127, 1>],

[<3, 1>, <5, 2>, <11, 1>, <17, 1>, <31, 1>, <41, 1>, <53, 1>, <157, 1>,

<1613, 1>, <2731, 1>, <8191, 1>],

[<3, 2>, <5, 2>, <11, 1>, <13, 1>, <17, 1>, <31, 1>, <41, 1>, <61, 1>,

<151, 1>, <257, 1>, <331, 1>, <1321, 1>],

[<3, 1>, <5, 1>, <11, 1>, <31, 1>, <41, 1>, <257, 1>, <61681, 1>,

<4278255361, 1>],

[<3, 2>, <5, 1>, <7, 1>, <11, 1>, <13, 1>, <17, 1>, <31, 1>, <41, 1>,

<61681, 1>],

[<3, 1>, <5, 1>, <17, 1>, <23, 1>, <89, 1>, <257, 1>, <397, 1>, <683, 1>,

<2113, 1>], [<3, 2>, <5, 1>, <7, 1>, <11, 1>, <13, 1>, <23, 1>, <31, 1>,

<41, 1>, <89, 1>, <397, 1>, <683, 1>, <2113, 1>]

]

1660 FINITE GROUPS Part X

59.6 Abstract Group Predicates

IsAbelian(G)

Returns true if the group G is abelian, false otherwise.

IsCyclic(G)

Returns true if the group G is cyclic, false otherwise.

IsElementaryAbelian(G)

Returns true if the group G is elementary abelian, false otherwise.

IsNilpotent(G)

Returns true if the group G is nilpotent, false otherwise.

IsSoluble(G)

IsSolvable(G)

Returns true if the group G is soluble, false otherwise.

IsPerfect(G)

Returns true if the group G is perfect, false otherwise.

IsSimple(G)

Returns true if the group G is simple, false otherwise.

Example H59E11

We illustrate the functions of the last two section by applying them to a group of degree 6 over
the field F9.

> F9<w> := GF(9);

> y := w^6; z := w^2;

> J2A2 := MatrixGroup< 6, F9 | [y, 1-y, z,0,0,0, 1-y ,z, -1,0,0,0, z, -1,1+y,

> 0,0,0,0,0,0, z, 1+y, y, 0,0,0,1+y, y, -1, 0,

> 0,0, y ,-1,1-y],

> [1+y, z, y, 0,0,0, z, 1+y, z, 0,0,0, y, z, 1+y,

> 0,0,0, z, 0,0,1-y, y, z, 0, z, 0, y, 1-y, y,

> 0,0, z, z, y, 1-y],

> [0,0,0,y, 0,0, 0,0,0,0,y, 0, 0,0,0,0,0,y,

> y, 0,0,0,0,0, 0,y, 0,0,0,0, 0,0,y, 0,0,0] >;

> J2A2;

MatrixGroup(6, GF(3, 2))

Generators:

[w^6 w^3 w^2 0 0 0]

[w^3 w^2 2 0 0 0]

[w^2 2 w 0 0 0]

[0 0 0 w^2 w w^6]

[0 0 0 w w^6 2]

Ch. 59 MATRIX GROUPS OVER GENERAL RINGS 1661

[0 0 0 w^6 2 w^3]

[w w^2 w^6 0 0 0]

[w^2 w w^2 0 0 0]

[w^6 w^2 w 0 0 0]

[w^2 0 0 w^3 w^6 w^2]

[0 w^2 0 w^6 w^3 w^6]

[0 0 w^2 w^2 w^6 w^3]

[0 0 0 w^6 0 0]

[0 0 0 0 w^6 0]

[0 0 0 0 0 w^6]

[w^6 0 0 0 0 0]

[0 w^6 0 0 0 0]

[0 0 w^6 0 0 0]

> Order(J2A2);

1209600

> FactoredOrder(J2A2);

[<2, 8>, <3, 3>, <5, 2>, <7, 1>]

> IsSoluble(J2A2);

false

> IsPerfect(J2A2);

true

> IsSimple(J2A2);

false

Thus the group is non-soluble and perfect but it is not a simple group. We examine its Sylow2-
subgroup.

> S2 := SylowSubgroup(J2A2, 2);

> IsAbelian(S2);

false

> IsNilpotent(S2);

true

> IsSpecial(S2);

false

1662 FINITE GROUPS Part X

59.7 Conjugacy

Class(H, x)

Conjugates(H, x)

Given a group H and an element x belonging to a group K such that H and
K are subgroups of the same general linear group, this function returns the set of
conjugates of x under the action of H. If H = K, the function returns the conjugacy
class of x in H.

ClassMap(G)

Given a group G, construct the conjugacy classes and the class map f for G. For
any element x of G, f(x) will be the conjugacy class representative chosen by the
Classes function.

ConjugacyClasses(G: parameters)

Classes(G: parameters)

WeakLimit RngIntElt Default : 500
StrongLimit RngIntElt Default : 5000
Al MonStgElt Default :

Construct a set of representatives for the conjugacy classes of the matrix group G.
The classes are returned as a sequence of triples containing the element order, the
class length and a representative element for the class. The parameter Al enables
the user to select the algorithm that is to be used.
Al := "Action": Create the classes of G by computing the orbits of the set of
elements of G under the action of conjugation. This option is only feasible for small
groups.
Al := "Random": Construct the conjugacy classes of elements for a matrix group
G using an algorithm that searches for representatives of all conjugacy of G by
examining a random selection of group elements and their powers. The behaviour
of this algorithm is controlled by two associated optional parameters WeakLimit and
StrongLimit, whose values are positive integers n1 and n2, say. Before describing
the effect of these parameters, some definitions are needed: A mapping f : G → I
is called a class invariant if f(g) = f(gh) for all g, h ∈ G. In matrix groups, the
primary invariant factors are used where possible, or the characteristic or minimal
polynomials otherwise. Two matrices g and h are said to be weakly conjugate with
respect to the class invariant f if f(g) = f(h). By definition, conjugacy implies
weak conjugacy, but the converse is false. The random algorithm first examines n1

random elements and their powers, using a test for weak conjugacy. It then proceeds
to examine a further n2 random elements and their powers, using a test for ordinary
conjugacy. The idea behind this strategy is that the algorithm should attempt to
find as many classes as possible using the very cheap test for weak conjugacy, before
employing the more expensive ordinary conjugacy test to recognize the remaining
classes.

Ch. 59 MATRIX GROUPS OVER GENERAL RINGS 1663

Al := "Extend": Construct the conjugacy classes of G by first computing classes
in a quotient G/N and then extending these classes to successively larger quotients
G/H until the classes for G/1 are known. More precisely, a series of subgroups
1 = G0 < G1 < · · · < Gr = R < G is computed such that R is the (solvable) radical
of G and Gi+1/Gi is elementary abelian. The radical quotient G/R is computed
and its classes and centralizers of their representatives found using the permutation
group algorithm, and pulled back to G. The parameters TFAl and ASAl control the
algorithm used to compute the classes of G/R. See the GrpPerm chapter for more
information on these parameters.

To extend from G/Gi+1 to the next larger quotient G/Gi, an affine action of
each centralizer on a quotient of the elementary abelian layer Gi+1/Gi is computed.
Each distinct orbit in that action gives rise to a new class of the larger quotient (see
Mecky and Neubuser [MN89]).
Al := "Lifting": Construct a permutation representation for G, compute the
classes of the representation, and lift them back to G through the kernel of the
representation. Successful when the kernel is small. Currently uses the permutation
action of G on its first basic orbit as the permutation representation.
Al := "Classic": Construct the conjugacy classes by enumeration of class invari-
ants. This algorithm is only available for classical groups. It has only been imple-
mented for groups containing the special linear group and for the conformal unitary
group.
Default: The classic algorithm will be used if G is recognised to contain the
special linear group (using IsLinearGroup), or if G is known to be conformal
unitary group in the standard representation (that is, if G was constructed by
ConformalUnitaryGroup). The action algorithm will be used if |G| ≤ 2000. If G is
soluble then classes are computed in a PC-representation of G. When |G| > 2000
and the base ring of G is a finite field then the Extension algorithm is used. Oth-
erwise the Lifting algorithm is used, unless the kernel size exceeds 10000. If there
is a big kernel and the base ring of the group can be embedded in a field then the
extension algorithm is used. Otherwise the random algorithm will be applied with
the limits given by the parameters WeakLimit and StrongLimit. If that fails to
compute all the classes and |G| ≤ 100000, then the action algorithm will be used.

ClassRepresentative(G, x)

Given a group G for which the conjugacy classes are known and an element x of G,
return the designated representative for the conjugacy class of G containing x.

ClassCentraliser(G, i)

The centraliser of the representative element stored for conjugacy class number i in
group G. The group computed is stored with the class table for reference by future
calls to this function.

1664 FINITE GROUPS Part X

ClassInvariants(G, g)

ClassInvariants(G, i)

The invariants for the conjugacy class of g in G or the conjugacy class number i in G.
The type of invariants may vary depending on the group. This is only available for
groups, for which the classic algorithm for computing conjugacy classes is available.

ClassRepresentativeFromInvariants(G, p, h, t)

Given a group G, for which the classic algorithm for computing conjugacy classes is
available, and the class invariants p, h and t, return the standard class representative
for the conjugacy class in G with the given invariants.

IsConjugate(G, g, h)

Given a group G and elements g and h belonging to G, return the value true if g
and h are conjugate in G. The function returns a second value in the event that the
elements are conjugate: an element k which conjugates g into h.

IsConjugate(G, H, K)

Given a group G and subgroups H and K belonging to G, return the value true if
H and K are conjugate in G. The function returns a second value in the event that
the subgroups are conjugate: an element z which conjugates H into K.

IsGLConjugate(H, K)

Given H and K, both subgroups of the same general linear group G = GLn(q),
return the value true if H and K are conjugate in G. The function returns a
second value in the event that the subgroups are conjugate: an element z which
conjugates H into K. The algorithm is described in Roney-Dougal [RD04].

Exponent(G)

The exponent of the group G.

NumberOfClasses(G)

Nclasses(G)

The number of conjugacy classes of elements for the group G.

PowerMap(G)

Given a group G, construct the power map for G. Suppose that the order of G is m
and that G has r conjugacy classes. When the classes are determined by Magma,
they are numbered from 1 to r. Let C be the set of class indices {1, . . . , r} and let
P be the set of integers {1, . . . ,m}. The power map f for G is the mapping,

f : C × P → C

where the value of f(i, j) for i ∈ C and j ∈ P is the number of the class which
contains xj

i , where xi is a representative of the i-th conjugacy class.

Ch. 59 MATRIX GROUPS OVER GENERAL RINGS 1665

AssertAttribute(G, "Classes", Q)

Given a group G, and a sequence Q of k distinct elements of G, one from each
conjugacy class, use Q to define the classes attribute of G. The sequence Q may be
either a sequence of elements of G or, preferably, a sequence of pairs <GrpMatElt,
RngIntElt> giving class representatives and their class length. In this latter case,
no backtrack searches are performed.

Example H59E12

We take a group from the database of rational matrix groups and compute its conjugacy classes.
The group has degree 12 and is written over the integers.

> DB := RationalMatrixGroupDatabase();

> G := Group(DB, 12, 3);

> FactoredOrder(G);

[<2, 17>, <3, 8>, <5, 2>]

> CompositionFactors(G);

G

| Cyclic(2)

*

| Cyclic(2)

*

| C(2, 3) = S(4, 3)

*

| Cyclic(2)

*

| Cyclic(2)

*

| C(2, 3) = S(4, 3)

*

| Cyclic(2)

1

The conjugacy classes of G are computed as follows:

> time cl := Classes(G);

Time: 18.580

> #cl;

1325

The group has 1325 conjugacy classes of elements.

1666 FINITE GROUPS Part X

59.8 Subgroups

59.8.1 Construction of Subgroups

sub< G | L >

Given the matrix group G, construct the subgroup H of G generated by the elements
specified by the list L, where L is a list of one or more items of the following types:
(a)A sequence of n integers defining a matrix of G;
(b)A set or sequence of sequences of type (a);
(c) An element of G;
(d)A set or sequence of elements of G;
(e) A subgroup of G;
(f) A set or sequence of subgroups of G.
Each element or group specified by the list must belong to the same generic matrix
group. The subgroup H will be constructed as a subgroup of some group which
contains each of the elements and groups specified in the list.

The generators of H consist of the elements specified by the terms of the list
L together with the stored generators for groups specified by terms of the list.
Repetitions of an element and occurrences of the identity element are removed.

ncl< G | L >

Given the matrix group G, construct the subgroup H of G that is the normal
closure of the subgroup H generated by the elements specified by the list L, where
the possibilities for L are the same as for the sub-constructor.

Example H59E13

We define O−(4, 2) as a subgroup of GL(4, 2). Recall that O−(4, 2) is isomorphic to S5. We then
locate a subset of its generators that lie within the subgroup isomorphic to A5.

> GL42 := GeneralLinearGroup(4, GF(2));

> Ominus42 := sub< GL42 | [1,0,0,0, 1,1,0,1, 1,0,1,0, 0,0,0,1],

> [0,1,0,0, 1,0,0,0, 0,0,1,0, 0,0,0,1],

> [0,1,0,0, 1,0,0,0, 0,0,1,0, 0,0,1,1] >;

> Order(Ominus42);

120

> H := sub< Ominus42 | $.1, $.3 >;

print Order(H);

10

> N := ncl< Ominus42 | $.1, $.3 >;

> Order(N);

60

Ch. 59 MATRIX GROUPS OVER GENERAL RINGS 1667

59.8.2 Elementary Properties of Subgroups

Index(G, H)

The index of the subgroup H in the group G. The index is returned as an integer.
If the orders of G and H are not known, they will be computed.

FactoredIndex(G, H)

The index of the subgroup H in the group G. The index is returned as a factored
integer. The factorization is returned in the form of a sequence Q which is defined
as follows: If [G : H] = pe1

1 . . . pen
n , ei 6= 0, then Q will be the integer sequence

[< p1, e1 >, . . . , < pn, en >]. If the orders of G and H are not known, they will be
computed.

IsCentral(G, H)

Returns true if the subgroup H of the group G lies in the centre of G, false
otherwise.

IsMaximal(G, H)

Returns true if the subgroup H of the group G is a maximal subgroup of G. This
function is evaluated by constructing the permutation representation of G on the
cosets of H and testing this representation for primitivity. For this reason, the use
of IsMaximal should be avoided if the index of H in G exceeds a few thousand.

IsNormal(G, H)

Returns true if the subgroup H of the group G is a normal subgroup of G, false
otherwise.

IsSubnormal(G, H)

Returns true if the subgroup H of the group G is subnormal in G, false otherwise.

59.8.3 Standard Subgroups

H ^ g

Conjugate(H, g)

Construct the conjugate g−1 ∗H ∗ g of the matrix group H by the matrix g. The
group H and the element g must belong to a common matrix group.

H meet K

Given groups H and K which belong to the same matrix group, construct the
intersection of H and K.

1668 FINITE GROUPS Part X

CommutatorSubgroup(G, H, K)

CommutatorSubgroup(H, K)

Given subgroups H and K of the group G, construct the commutator subgroup of
H and K as a subgroup of G. If K is a subgroup of H, then G may be omitted.

Centralizer(G, g)

Construct the centralizer of the matrix g in the group G; g and G must belong to a
common matrix group.

Centralizer(G, H)

Construct the centralizer of the group H in the group G; G and H must belong to
a common matrix group.

Core(G, H)

Given a subgroup H of the matrix group G, construct the maximal normal subgroup
of G that is contained in the subgroup H.

H ^ G

NormalClosure(G, H)

Given a subgroup H of the matrix group G, construct the normal closure of H in
G.

Normalizer(G, H)

Given a subgroup H of the group G, construct the normalizer of H in G.

SylowSubgroup(G, p)

Sylow(G, p)

Given a group G and a prime p, construct the Sylow p-subgroup of G.

pCore(G, p)

Given a group G and a prime p dividing the order of G, construct the maximal
normal p-subgroup of G.

Ch. 59 MATRIX GROUPS OVER GENERAL RINGS 1669

59.8.4 Low Index Subgroups

LowIndexSubgroups(G, R : parameters)

LowIndexSubgroups(G, R: parameters)

Given a matrix group G, and an expression R defining a positive integer range (see
below), determine the conjugacy classes of subgroups of G whose indices lie in the
range specified by R. The subgroups are returned as a sequence of subgroups of G.
The argument R is one of the following:
(a)An integer n representing the range [1, n];
(b)A tuple < a, b > representing the range [a, b].
The subgroups are constructed using an algorithm due to Leedham-Green & O’Brien
[LGO02]. In practice, the algorithm is most useful for small values of n, say up to
8.

The algorithm proceeds by iteratively constructing better approximations to fi-
nite presentations for G/K, where K is the intersection of kernels of all homomor-
phisms from G into Sn, and applying LowIndexSubgroups to the resulting finitely-
presented group. The output information displayed for various values of the Print
parameter about the number and existence of putative subgroups of index at most
n refers to the current finite presentation only, may change as this presentation is
further refined, and need not be reflected in the final answer.

Limit RngIntElt Default : ∞
Terminate after finding n conjugacy classes of subgroups satisfying the designated
conditions.

Print RngIntElt Default : 0
The Print parameter takes values from 0 to 3. The information displayed

Example H59E14

> G := GL (4, 5);

> L := LowIndexSubgroups (G, 4);

> #L;

3

> L[3];

MatrixGroup(4, GF(5))

Generators:

[4 0 0 4]

[1 0 0 0]

[0 4 0 0]

[0 0 4 0]

[4 0 0 3]

[3 0 0 0]

[0 4 0 0]

1670 FINITE GROUPS Part X

[0 0 4 0]

[4 0 0 1]

[4 0 0 0]

[0 4 0 0]

[0 0 4 0]

[4 0 0 2]

[2 0 0 0]

[0 4 0 0]

[0 0 4 0]

59.8.5 Conjugacy Classes of Subgroups

SubgroupClasses(G: parameters)

Subgroups(G: parameters)

Representatives for the conjugacy classes of subgroups for the group G. The sub-
groups are returned as a sequence of records where the i-th record contains:
(a)A representative subgroup H for the i-th conjugacy class (field name subgroup).
(b)The order of the subgroup (field name order).
(c) The number of subgroups in the class (field name length).
(d)[Optional] A presentation for H (field name presentation).

Al MonStgElt Default : “All”
Al := "All": Construct all subgroups of G.
Al := "Maximal": Only construct maximal subgroups ofG. This option reduces the
number of intersections with any elementary abelian layer that need be considered
and eliminates the need to recursively apply the algorithm.
Al := "Normal": Only construct normal subgroups of G. This option does not use
database lookup to find the normal subgroups of the radical quotient of G and also
reduces the number of intersections with any layer that need be considered.

LayerSizes SeqEnum Default : See below
LayerSizes := [2, 5, 3, 4, 7, 3, 11, 2, 17, 1] is equivalent to the de-
fault. When constructing an Elementary Abelian series for the group, attempt
to split 2-layers of size gt 25, 3-layers of size gt 34, etc. The implied exponent for
13 is 2 and for all primes greater than 17 the exponent is 1.

Series SeqEnum Default : See below
Use the given elementary abelian series rather than constructing the default series.
The first subgroup in the series must be the solvable radical of G. The subgroups
must form a descending chain of normal subgroups of G, such that each quotient

Ch. 59 MATRIX GROUPS OVER GENERAL RINGS 1671

is elementary abelian. The last subgroup in the series must be either elementary
abelian or trivial.

Presentation BoolElt Default : false

Presentation := true: Construct a presentation for each subgroup.
OrderEqual RngIntElt Default :

OrderEqual := n: Only construct subgroups having order equal to n.
OrderDividing RngIntElt Default :

OrderDividing := n: Only construct subgroups having order dividing n.
OrderMultipleOf RngIntElt Default :

OrderMultipleOf := n: Only construct subgroups having order a multiple of n.
IndexLimit RngIntElt Default :

IndexLimit := n: Only construct subgroups having index in G less than or equal
to n.

IsElementaryAbelian BoolElt Default : false

IsElementaryAbelian := true: Only construct elementary abelian subgroups of
G.

IsCyclic BoolElt Default : false

IsCyclic := true: Only construct cyclic subgroups of G.
IsAbelian BoolElt Default : false

IsAbelian := true: Only construct abelian subgroups of G.
IsNilpotent BoolElt Default : false

IsNilpotent := true: Only construct nilpotent subgroups of G.
IsSolvable BoolElt Default : false

IsSolvable := true: Only construct solvable subgroups of G.
IsNotSolvable BoolElt Default : false

IsNotSolvable := true: Only construct insolvable subgroups of G.
IsPerfect BoolElt Default : false

IsPerfect := true: Only construct perfect subgroups of G.

The Algorithm: (See Cannon, Cox and Holt [CCH01]) This command proceeds
by first constructing an elementary abelian series for G together with G’s radical
quotient Q as a permutation group. (Thus this function is limited to matrix groups
over fields, where the group has a BSGS.) The required subgroups of Q are then
found as for permutation groups. We first attempt to locate the quotient in a
database of groups with trivial Fitting subgroup. This database contains all such
groups of order up to 216 000, and all such which are perfect of order up to 1 000 000.
If Q is found then either all its subgroups, or its maximal subgroups are read from
the database. (In some cases only the maximal subgroups are stored.) If Q is

1672 FINITE GROUPS Part X

not found then we attempt to find the maximal subgroups of Q using a method of
Derek Holt. For this to succeed all simple factors of the socle of Q must be found
in a second database which currently contains all simple groups of order less than
1.6 × 107, as well as M24, HS, J3, McL, Sz(32) and L6(2). There are also special
routines to handle numerous other groups. These include: An for n ≤ 999, L2(q),
L3(q), L4(q) and L5(q) for all q, U3(q) for q prime and q = 8, 9, 16, 25, U4(q) for
q = 4, 5, 7, S4(q) for all odd q and even q ≤ 16, Ld(2) for d ≤ 14, and the following
groups: L6(3), L7(3), U6(2), S8(2), S10(2), O±8 (2), O±10(2), S6(3), O7(3), O−8 (3),
G2(4), G2(5), 3D4(2), 2F4(2)′, Co2, Co3, He, Fi22.

If we have only maximal subgroups of Q, and more are required, we apply the
algorithm recursively to the maximal subgroups to determine all subgroups of Q.
This may take some time.

The subgroups of Q are then pulled back to G and extended to the whole group
by stepwise extension through each layer of the elementary abelian series. For each
layer this involves determining all possible intersections of a subgroup with this layer
and all extensions with this intersection.

The limitations are that the simple factors of the socle of Q must be in the list
above. Further, it may take some time to construct all subgroups from the maximal
subgroups first found, and, if there is a large elementary abelian layer, there will
be many possible intersections, which could also make the algorithm prohibitively
slow.

There are numerous parameters for this function which allow the user to place
restrictions on which subgroup classes are constructed. Using these restrictions may
help overcome the problems noted above.

MaximalSubgroups(G: parameters)

Construct the sequence of maximal subgroup classes of the matrix group G. This is
equivalent to the command Subgroups(G: Al := "Maximal"). The same parame-
ters as for Subgroups are available to limit the search.

SubgroupsLift(G, A, B, Q: parameters)

This function isolates one step of the extension process used by the Subgroups
family of functions. Q is a sequence of records such as returned by Subgroups(G).
A and B are normal subgroups of G with A/B elementary abelian. The records in
Q are interpreted as subgroups of G/A, which are lifted to all possible corresponding
subgroups of G/B, subject to the parameters given.

59.9 Quotient Groups

The functions described in this section apply only to finite groups for which a base and
strong generating set may be constructed.

Ch. 59 MATRIX GROUPS OVER GENERAL RINGS 1673

59.9.1 Construction of Quotient Groups

quo< G | L >

Given the matrix group G, construct the quotient group Q = G/N , where N is the
normal closure of the subgroup of G generated by the elements specified by L. The
clause L is a list of one or more items of the following types:
(a)A sequence of n integers defining a matrix of G;
(b)A set or sequence of sequences of type (a);
(c) An element of G;
(d)A set or sequence of elements of G;
(e) A subgroup of G;
(f) A set or sequence of subgroups of G.
Each element or group specified by the list must belong to the same generic matrix
group. The function returns
(a) the quotient group Q, and
(b)the natural homomorphism f : G→ Q.
Currently in Magma, the quotient group is constructed via the regular represen-
tation of the quotient, so that the application of this operator is restricted to the
case where the index of N in G is small. The representation of the quotient that is
returned is the result of applying degree reduction to the regular representation, so
need not be regular.

The generators of the quotient group correspond to the generators of G.

G / N

Given a normal subgroup N of the matrix group G, construct the quotient of G
by N . Currently in Magma, the quotient group is constructed via the regular
representation of the quotient, so the application of this operator is restricted to the
case where the index of N in G is small. The representation of the quotient that is
returned is the result of applying degree reduction to the regular representation, so
need not be regular.

Example H59E15

We determine the structure of a quotient in a soluble subgroup of GL(3, 5).

> G := MatrixGroup< 3, GF(5) | [0,1,0, 1,0,0, 0,0,1], [0,1,0, 0,0,1, 1,0,0],

> [2,0,0, 0,1,0, 0,0,1] >;

> Order(G);

384

> Q, f := quo< G | G.2 >;

> Q;

Permutation group Q of degree 8

(1, 2)(3, 4)(5, 6)(7, 8)

1674 FINITE GROUPS Part X

Id(Q)

(1, 3, 5, 7)(2, 4, 6, 8)

> IsAbelian(Q);

true

> AbelianInvariants(Q);

[4, 2]

59.9.2 Abelian, Nilpotent and Soluble Quotients
A number of standard quotients may be constructed. The method first constructs a pre-
sentation for the matrix group and then applies the appropriate fp-group algorithm.

AbelianQuotient(G)

The maximal abelian quotient G/G′ of the group G as GrpAb (cf. chapter 69). The
natural epimorphism π : G→ G/G′ is returned as second value.

ElementaryAbelianQuotient(G, p)

The maximal p-elementary abelian quotient Q of the group G as GrpAb (cf. chapter
69). The natural epimorphism π : G→ Q is returned as second value.

pQuotient(G, p, c)

Given a matrix group G, a prime p and a positive integer c, construct a pc-
presentation for the largest p-quotient P of G having lower exponent-p class at
most c. If c is given as 0, then the limit 127 is placed on the class.

The function also returns the natural homomorphism π from G to P , a sequence
S describing the definitions of the pc-generators of P and a flag indicating whether
P is the maximal p-quotient of G.

The k-th element of S is a sequence of two integers, describing the definition of
the k-th pc-generator P.k of P as follows.
- If S[k] = [0, r], then P.k is defined via the image of G.r under π.
- If S[k] = [r, 0], then P.k is defined via the power relation for P.r.
- If S[k] = [r, s], then P.k is defined via the conjugate relation involving P.rP.s.

NilpotentQuotient(G, c)

This function returns the class c nilpotent quotient of the matrix group G, together
with the epimorphism π from G onto this quotient.

SolvableQuotient(G)

SolubleQuotient(G)

The function returns the largest soluble quotient S of the matrix group G together
with the epimorphism π : G→ S.

Ch. 59 MATRIX GROUPS OVER GENERAL RINGS 1675

PCGroup(G)

For a solvable group G, the function returns an isomorphic group of type GrpPC
together with an isomorphism from G to the new group. If G is not solvable, then
the call to PCGroup will result in an error.

Example H59E16

We take a degree 10 matrix group over the integers and compute its maximal abelian and soluble
quotients. The epimorphisms supplied by these two functions may be used to pass between the
group and its quotients.

> DB := RationalMatrixGroupDatabase();

> G := Group(DB, 10, 2);

> G : Minimal;

MatrixGroup(10, Integer Ring) of order 4147200

> A := AbelianQuotient(G); A;

Abelian Group isomorphic to Z/2 + Z/2 + Z/2

Defined on 3 generators

Relations:

2*A.1 = 0

2*A.2 = 0

2*A.3 = 0

> S, f := SolubleQuotient(G); S;

GrpPC : S of order 32 = 2^5

PC-Relations:

S.2^2 = S.4,

S.2^S.1 = S.2 * S.4,

S.3^S.2 = S.3 * S.4 * S.5

> G.1 @ f;

S.1 * S.4 * S.5

> S.5 @@ f in DerivedGroup(G);

true

59.10 Matrix Group Actions

The functions described in this section apply only to finite groups for which a base and
strong generating set may be constructed.

1676 FINITE GROUPS Part X

59.10.1 Orbits and Stabilizers
Let G be a matrix group and let M be its natural module. Now G has an action on the
elements and submodules of M . A derived G-set for G consists of the closure under the
natural action of G of one of the following:

• A set of vectors of M ;

• A set of k element subsets of vectors of M ;

• A set of k element sequences of vectors of M ;

• A set of submodules of M , each of which has fixed dimension k;

• A cartesian product of G-sets.

u * g

Given an element g belonging to the matrix group G with natural module M and
an element u of this module, return the vector u ∗ g.

y ^ g

Given an element g belonging to the matrix group G with natural module M and
an object y which is an element of some derived G-set of M , find the image of y
under g.

y ^ G

Orbit(G, y)

Given a matrix group G with natural module M and an object y which is either a
vector of M , a submodule of M , or a tuple whose components are either vectors or
submodules, find the orbit of y under G.

OrbitBounded(G, y, b)

Given a matrix group G with natural module M and an object y which is either a
vector of M , a submodule of M , or a tuple whose components are either vectors or
submodules, return true if the orbit of y under G has length less than or equal to
b. Otherwise the function returns false. If it returns true, then the orbit of y is
returned as the second value.

Orbits(G)

Given a matrix group G with natural R-module M , construct the orbits of G on
the vectors of M . The orbits are returned as a sequence of sets.

LineOrbits(G)

Given a matrix group G with natural R-module M , construct the orbits of G on
the rank-1 submodules of M . The orbits are returned as a sequence of sets.

Ch. 59 MATRIX GROUPS OVER GENERAL RINGS 1677

OrbitClosure(G, S)

Given a matrix group G with natural module M and a set S of vectors or subspaces
of M , return the union of orbits of the elements of S under the natural action of G
on M .

Stabilizer(G, y)

Given a matrix group G with natural module M and an object y which is either a
vector of M , a submodule of M , or a tuple whose components are either vectors or
submodules, determine the stabilizer of y in G.

Example H59E17

We continue with the group J2A2 introduced above.

> V := RSpace(G);

> u := V![1,0,0,0,0,0];

> U := sub< V | u >;

> x := < u, U >;

> W := sub< V | u, u*G.1 >;

> u^G.1;

(w^6 w^3 w^2 0 0 0)

> U^G.1;

Vector space of degree 6, dimension 1 over GF(3, 2)

Echelonized basis:

(1 w^5 2 0 0 0)

> W^G.1;

Vector space of degree 6, dimension 2 over GF(3, 2)

Echelonized basis:

(1 w^5 0 0 0 0)

(0 0 1 0 0 0)

> x^G.1;

<(w^6 w^3 w^2 0 0 0), Vector space of degree 6,

dimension 1 over GF(3, 2)

Echelonized basis:

(1 w^5 2 0 0 0)>

> H := sub< G | G.1, G.2 >;

> #Orbit(H, u);

252

> #Orbit(H, U);

63

> #Orbit(G, U);

3150

> Stabilizer(G, U);

MatrixGroup(6, GF(3^2)) of order 384 = 2^7 * 3

Generators:

[2 0 0 0 0 0]

[w^3 w w 0 2 w^2]

[w^5 w^7 w^7 0 1 w^2]

1678 FINITE GROUPS Part X

[0 0 1 2 1 0]

[w^7 w^5 0 0 0 w^6]

[w w^3 0 0 0 w^6]

[w^2 0 0 0 0 0]

[w^5 w^5 w^5 0 w 0]

[w^7 w^3 w^3 0 0 w^7]

[w^2 w^3 w w^6 w w^3]

[w^3 1 w^6 0 w w^7]

[w w^6 2 0 w w^7]

[w^6 0 0 0 0 0]

[0 2 0 0 0 0]

[0 0 w^6 0 0 0]

[w^2 w^7 w^6 w^2 0 0]

[w 0 w 0 2 0]

[w^6 w^7 w^2 0 0 w^2]

[2 0 0 0 0 0]

[0 2 0 0 0 0]

[0 0 2 0 0 0]

[0 0 0 2 0 0]

[0 0 0 0 2 0]

[0 0 0 0 0 2]

> #Orbit(H, x);

252

> #Orbit(H, W);

28

59.10.2 Orbit and Stabilizer Functions for Large Groups
In this section we describe a number of constructions for orbits and stabilizers which in
certain circumstances may be applicable to much larger groups than the functions described
above.

OrbitsOfSpaces(G, k)

Determine representatives and lengths for the orbits of all k-dimensional subspaces
of the natural vector space under action of a matrix group defined over a prime
field; return a sequence of tuples each containing an orbit length and representative.
This function is very space-efficient and hence has a significantly larger range than
the general-purpose Orbits; however, only representatives and lengths are stored.
Theoretical details of the algorithm used may be found in O’Brien [O’B90].

NumberOfFixedSpaces(x, s)

NumberOfFixedSpaces(x, s)

Return number of subspaces of dimension s fixed by matrix x.

Ch. 59 MATRIX GROUPS OVER GENERAL RINGS 1679

Example H59E18

> G := GL (4, 5);

> H := ExteriorSquare (G);

> H;

MatrixGroup(6, GF(5))

Generators:

[2 0 0 0 0 0]

[0 2 0 0 0 0]

[0 0 1 0 0 0]

[0 0 0 2 0 0]

[0 0 0 0 1 0]

[0 0 0 0 0 1]

[0 0 0 1 0 0]

[1 0 0 0 1 0]

[1 0 0 0 0 0]

[0 1 0 0 0 1]

[0 1 0 0 0 0]

[0 0 1 0 0 0]

> O := OrbitsOfSpaces (H, 2);

We see that there are four orbits:

> O;

[

<

4836,

Vector space of degree 6, dimension 2 over GF(5)

Generators:

(1 0 0 0 0 0)

(0 1 0 0 0 0)

Echelonized basis:

(1 0 0 0 0 0)

(0 1 0 0 0 0)

>,

<

96720,

Vector space of degree 6, dimension 2 over GF(5)

Generators:

(1 0 1 1 0 0)

(0 1 0 0 0 0)

Echelonized basis:

(1 0 1 1 0 0)

(0 1 0 0 0 0)

>,

<

251875,

Vector space of degree 6, dimension 2 over GF(5)

1680 FINITE GROUPS Part X

Generators:

(1 0 0 0 1 0)

(0 1 0 0 0 0)

Echelonized basis:

(1 0 0 0 1 0)

(0 1 0 0 0 0)

>,

<

155000,

Vector space of degree 6, dimension 2 over GF(5)

Generators:

(1 0 1 1 1 0)

(0 1 1 1 0 0)

Echelonized basis:

(1 0 1 1 1 0)

(0 1 1 1 0 0)

>

]

We compute the number of spaces of dimension 2 fixed by H.1 and the number of spaces of
dimension 3 fixed by H.2.

> NumberOfFixedSpaces(H.1, 2);

1023

> NumberOfFixedSpaces(H.2, 3);

2

EstimateOrbit(G, v: parameters)

EstimateOrbit(G, U: parameters)

MaxSize RngIntElt Default : 10000

NumberCoincidences RngIntElt Default : 15

Estimate the size of the orbit of the vector v or subspace U of natural vector space
under the action of matrix group G by constructing at most MaxSize random ele-
ments of the orbit and counting at most NumberCoincidences coincidences. The
function returns a lower bound, upper bound, and estimate of size; if insufficient
coincidences are found to estimate the orbit size, the function returns 0. Theoretical
details of the algorithm used may be found in Eick, Leedham-Green and O’Brien
[ELGO02].

Ch. 59 MATRIX GROUPS OVER GENERAL RINGS 1681

ApproximateStabiliser(G, A, U: parameters)

ImageGenerators SeqEnum Default : []
MaxSize RngIntElt Default : 10000
NumberCoincidences RngIntElt Default : 15
OrderCheck BoolElt Default : false

A is image of representation of G and A acts on U , a subspace or vector. Approx-
imate the stabiliser of U under A. We assume either a 1−1 correspondence between
generators of G and those of A, or between generators of G and those elements of A
supplied as ImageGenerators. Elements of G whose images in A fix U are obtained
by constructing at most MaxSize elements of the orbit of U under A or until we
find Numbercoincidences repetitions in this orbit; if OrderCheck is true, report
the order of the subgroup S of A which is found. Return preimage of S in G and S,
together with a lower bound, upper bound, and estimate of the size of orbit of U .
If insufficient coincidences are found to estimate the orbit size, the function returns
these last values as 0.

Example H59E19

> G := GL (4, 5);

> A := ExteriorSquare (G);

> V := VectorSpace (GF (5), 6);

> U := sub < V | [Random (V): i in [1..2]]>;

> U;

Vector space of degree 6, dimension 2 over GF(5)

Generators:

(4 3 2 1 0 2)

(3 2 2 4 4 1)

Echelonized basis:

(1 0 2 0 2 4)

(0 1 3 2 4 2)

> EstimateOrbit (A, U);

209316 594421 324272

> H, B, lb, ub, estimate := ApproximateStabiliser (G, A, U);

> #H, #B;

460800 230400

StabiliserOfSpaces(Q)

Determine the subgroup of GL(d, F), for F a finite field, which stabilises the se-
quence Q of subspaces of the natural vector space. The function also returns gener-
ators for the largest unipotent subgroup of the stabiliser. For a description of this
algorithm, see Schwingel [Sch00]; this implementation was prepared by Eamonn
O’Brien.

1682 FINITE GROUPS Part X

Example H59E20

> V := VectorSpace(GF (3), 4);

> Spaces := [sub< V | [1,1,0,2]>, sub < V | [1, 0, 2, 0], [0, 1, 0, 0]>];

> S, P := StabiliserOfSpaces(Spaces);

> #S;

5184

> P;

[

[1 1 0 0]

[0 1 0 0]

[0 1 1 0]

[0 1 0 1],

[2 0 2 0]

[0 1 0 0]

[1 0 0 0]

[1 0 2 1],

[1 0 1 2]

[0 1 0 0]

[0 0 2 2]

[0 0 1 0]

]

Thus, the unipotent subgroup generated by P has order 33.

IsUnipotent(G)

If G is a p-subgroup of GL(d, F), where F is a finite field of characteristic p, then
return true, else return false.

UnipotentStabiliser(G, U: parameters)

Given a unipotent subgroup G of GL(d, F), for F a finite field, U a subspace of the
natural vector space, determine the stabiliser in G of U . The function returns the
stabiliser in G of U , the canonical element C of the orbit of U under G, an element
x of G such that Ux = C, and an SLP for x as an element of WordGroup(G).
This function does not compute the orbit of U under G, but instead constructs the
canonical element of the orbit. Hence it can be used to decide whether or not two
subspaces belong to the same orbit. For a description of this algorithm, see [Sch00];
this implementation was prepared by Elliot Costi.

Ch. 59 MATRIX GROUPS OVER GENERAL RINGS 1683

Example H59E21

> V := VectorSpace(GF (3), 4);

> G := sub< GL (4, 3) |

> [1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1],

> [2, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 2, 1],

> [1, 0, 1, 2, 0, 1, 0, 0, 0, 0, 2, 2, 0, 0, 1, 0] >;

> U := sub < V | [1, 2, 0, 1],[2, 2, 1, 0]>;

> S, C, x, w := UnipotentStabiliser(G, U);

> S;

MatrixGroup(4, GF(3))

Generators:

[2 1 2 0]

[0 1 0 0]

[1 1 0 0]

[1 1 2 1]

> #S;

3

> Index(G, S);

9

So the stabiliser of U has order 3 and U lies in an orbit of size 9. We print the canonical element
of the orbit of U under G. The element x maps U to C and w evaluates to x.

> C;

Vector space of degree 4, dimension 2 over GF(3)

Echelonized basis:

(1 0 0 0)

(0 1 2 0)

> U^x;

Vector space of degree 4, dimension 2 over GF(3)

Echelonized basis:

(1 0 0 0)

(0 1 2 0)

> W, phi := WordGroup (G);

> phi (w);

[1 0 2 1]

[0 1 0 0]

[0 0 0 1]

[0 0 2 2]

1684 FINITE GROUPS Part X

59.10.3 Action on Orbits

OrbitAction(G, T)

Given a matrix group G with natural module M , and a set T consisting of either
(a) elements of M , (b) submodules of M or (c) tuples, form the G-closure Y of T
and construct the homomorphism φ : G→ L, where the permutation group L gives
the action of G on the set Y . The function returns:

(a)The natural homomorphism φ : G→ L;

(b)The induced group L;

(c) The kernel of the action (a subgroup of G).

OrbitActionBounded(G, T, b)

Given a matrix group G with natural module M , and a set T consisting of either (a)
elements of M , (b) submodules of M or (c) tuples, form the G-closure Y of T . If the
cardinality of Y does not exceed b, then construct the homomorphism φ : G → L,
where the permutation group L gives the action of G on the set Y . In this case the
function returns:

(a)The boolean value true.

(b)The natural homomorphism φ : G→ L;

(c) The induced group L;

(d)The kernel of the action (a subgroup of G). If the cardinality of Y exceeds b,
simply return false. (The action of G on Y is not constructed in this case).

OrbitImage(G, T)

Given a matrix group G with natural module M , and a set T consisting of either
(a) elements of M , (b) submodules of M or (c) tuples, form the G-closure Y of T
and return the permutation group L giving the action of G on Y .

OrbitImageBounded(G, T, b)

Given a matrix group G with natural module M , and set T consisting of either (a)
elements of M , (b) submodules of M or (c) tuples, form the G-closure Y of T . If
the cardinality of Y does not exceed b, return true together with the permutation
group L giving the action of G on Y . If the cardinality of Y does exceed b, the
action is not constructed and the single value false is returned.

OrbitKernel(G, T)

Given a matrix group G with natural module M , and a set T consisting of either
(a) elements of M , (b) submodules of M or (c) tuples, form the G-closure Y of T
and return the the kernel of the action of G on Y .

Ch. 59 MATRIX GROUPS OVER GENERAL RINGS 1685

OrbitKernelBounded(G, T, b)

Given a matrix group G with natural module M , and set T consisting of either (a)
elements of M , (b) submodules of M or (c) tuples, form the G-closure Y of T . If
the cardinality of Y does not exceed b, return the boolean value true together with
the kernel of the action of G on Y . If the cardinality of Y does exceed b, the kernel
is not constructed and the single value false is returned.

Example H59E22

We look for a small G-set for the group J2A2 (defined above) by examining eigenspaces of its
generators. Having found a reasonably sized set, we then construct a permutation representation
for G on this set.

> [Factorization(CharacteristicPolynomial(G.i)) : i in [1..3]];

[

[

<x^3 + w^5*x^2 + w^3*x + 2, 1>,

<x^3 + w^7*x^2 + w*x + 2, 1>

],

[

<x + 2, 6>

],

[

<x + w^2, 3>,

<x + w^6, 3>

]

]

> y := Eigenspace(G.2, -2);

> y;

Vector space of degree 6, dimension 3 over GF(3, 2)

Echelonized basis:

(1 0 0 1 2 1)

(0 1 0 2 1 2)

(0 0 1 1 2 1)

> #Orbit(G, y);

280

> P := OrbitImage(G, y);

> P;

Permutation group P of degree 280

> Order(P);

604800

> CompositionFactors(P);

G

| J2

1

Thus, our group has the simple group J2 of Janko as a composition factor.

> Order(G);

1686 FINITE GROUPS Part X

1209600

Hence the kernel of this action has order 2.

59.10.4 Action on a Coset Space

CosetAction(G, H)

Given a subgroup H of the group G, construct the permutation representation of
G given by the action of G on the set of (right) cosets of H in G. The function
returns:
(a)The natural homomorphism f : G→ L;
(b)The induced permutation group L;
(c) The kernel K of the action (a subgroup of G).

CosetImage(G, H)

Given a subgroup H of the group G, construct the image L of G given by the action
of G on the set of (right) cosets of H in G. L is returned as a permutation group.

CosetKernel(G, H)

Given a subgroup H of the group G, construct the kernel of the action of G on the
set of (right) cosets of H in G.

Example H59E23

We construct G = SL(3, 3), a subgroup H of G, and the permutation representation of G given
by its action on the cosets of H.

> G := MatrixGroup< 3, GF(3) | [0,2,0, 1,1,0, 0,0,1], [0,1,0, 0,0,1, 1,0,0] >;

> Order(G);

5616

> H := sub< G | G.1^2, G.2 >;

> Order(H);

216

> P := CosetImage(G, H);

> P;

Permutation group P of degree 26

(1, 2)(3, 4, 6, 5, 7, 9)(8, 11)(10, 13, 15, 20, 18, 17)

(12, 16, 21, 14, 19, 24)(23, 26)

(2, 3, 5)(4, 6, 8)(7, 10, 14)(9, 12, 17)(11, 15, 20)(13, 18, 23)

(16, 22, 21)(19, 25, 24)

Ch. 59 MATRIX GROUPS OVER GENERAL RINGS 1687

59.10.5 Action on the Natural G-Module
A set of functions is provided for working with the action of G on the natural G-module
M , for a matrix group G defined over a finite field. Many of these functions are similar to
those presented in the general module chapter.

GModule(G)

The natural R[G]-module M for the matrix group G.

IsIrreducible(G)

Given a matrix group G, return true iff G acts irreducibly on its natural module
M . If G acts reducibly on M , a proper submodule S of M is also returned.

SubmoduleAction(G, S)

Given a matrix group G and a submodule S of the natural module M of G, return
the action homomorphism f of G on S, together with the image of f .

SubmoduleImage(G, S)

Given a matrix group G and a submodule S of the natural module M of G, return
the image of the action homomorphism of G on S.

QuotientModuleAction(G, S)

Given a matrix group G and a submodule S of the natural module M of G, return
the quotient action homomorphism f of G on S, together with the image of f .

QuotientModuleImage(G, S)

Given a matrix group G and a submodule S of the natural module M of G, return
the quotient image of the action homomorphism of G on S.

IsAbsolutelyIrreducible(G)

Given a matrix group G, return true if and only if G acts absolutely irreducibly
on its natural module M . In addition, if G is absolutely irreducible, the function
returns the (matrix algebra) generator of the endomorphism algebra E of M (which
is always a field), and the dimension of E.

AbsoluteRepresentation(G)

Given an irreducible matrix group G, return the isomorphic reduced-degree absolute
representation A of G, which is over the absolute field of the natural module M of
G and is absolutely irreducible, together with the corresponding isomorphism.

MinimalField(G)

Given a matrix group G defined over a finite field K, return the minimal subfield of
K over which G can be realised.

1688 FINITE GROUPS Part X

59.11 Normal and Subnormal Subgroups

The functions described in this section apply only to finite groups for which a base and
strong generating set may be constructed.

59.11.1 Characteristic Subgroups and Subgroup Series

Centre(G)

Center(G)

Construct the centre of the group G.

DerivedLength(G)

The derived length of the matrix group G. If G is non-soluble, the function returns
the number of terms in the series terminating with the soluble residual.

DerivedSeries(G)

The derived series of the group G. The series is returned as a sequence of subgroups.

CommutatorSubgroup(G)

DerivedSubgroup(G)

DerivedGroup(G)

The derived subgroup of the group G.

#FittingSubgroup(G)

The Fitting subgroup of the group G.

LowerCentralSeries(G)

The lower central series of the matrix group G. The series is returned as a sequence
of subgroups.

NilpotencyClass(G)

The nilpotency class of the group G.

H ^ G

NormalClosure(G, H)

The normal closure of the subgroup H of group G.

SolubleResidual(G)

SolvableResidual(G)

The solvable residual of the group G.

Ch. 59 MATRIX GROUPS OVER GENERAL RINGS 1689

SubnormalSeries(G, H)

Given a group G and a subnormal subgroup H of G, return a sequence of subgroups
commencing with G and terminating with H, such that each subgroup is normal in
the previous one. If H is not subnormal in G, the empty sequence is returned.

UpperCentralSeries(G)

The upper central series of the matrix group G. The series is returned as a sequence
of subgroups. As the algorithm used requires the conjugacy classes of G, this func-
tion is much more restricted in its range of application than DerivedSeries and
LowerCentralSeries.

Example H59E24

We demonstrate some of the series functions by applying them to a soluble subgroup of GL(3, 5).

> G := MatrixGroup< 3, GF(5) | [0,1,0, 1,0,0, 0,0,1],

> [0,1,0, 0,0,1, 1,0,0],

> [2,0,0, 0,1,0, 0,0,1] >;

> Order(G);

384

> DerivedGroup(G);

MatrixGroup(3, GF(5, 1))

Generators:

[0 0 1]

[1 0 0]

[0 1 0]

[2 0 0]

[0 3 0]

[0 0 1]

> D := DerivedSeries(G);

> [Order(d) : d in D];

[384, 48, 16, 1]

> L := LowerCentralSeries(G);

> [Order(l) : l in L];

[384, 48]

> K := sub< G | [2,0,0, 0,3,0, 0,0,2] >;

> S := SubnormalSeries(G, K);

> [Order(s) : s in S];

[384, 16, 4]

1690 FINITE GROUPS Part X

59.11.2 The Soluble Radical and its Quotient
The functions in this section enable the user to construct the radical, its quotient and an
elementary abelian series. They are currently restricted to matrix groups where a base
and strong generating set can be constructed and the base ring is either a field or can be
embedded into a field.

Radical(G)

SolubleRadical(G)

SolvableRadical(G)

Given a group G, return the maximal normal solvable subgroup of G. The algorithm
is to compute the radical quotient map, and then compute its kernel. The algorithm
used is described in Unger [Ung06b].

RadicalQuotient(G)

Given a group G, compute a permutation representation of the quotient G/R where
R is the (solvable) radical of G. Both the permutation group Q isomorphic to G/R
and a homomorphism φ : G → Q are returned. The third return value is R, the
radical of G and the kernel of the homomorphism. The algorithm used is described
in Unger [Ung06b].

ElementaryAbelianSeries(G: parameters)

LayerSizes SeqEnum[RngIntElt] Default : []

An elementary abelian series is a chain of normal subgroups R = N1 > N2 > ... >
Nr = 1 with the property that the quotient of each pair of successive terms in the
series is elementary abelian and that there is no group R < H < G such that H/R
is elementary abelian and H normal in G. The top of the series R is called the
solvable radical and is the maximal normal solvable subgroup of G.

The parameter LayerSizes controls possible refinement of the series. As an
example, take LayerSizes := [2, 5, 3, 4, 7, 3, 11, 2, 17, 1]. When con-
structing an elementary abelian series for the group, attempt to split 2-layers of size
gt 25, 3-layers of size gt 34, etc. The implied exponent for 13 is 2 and for all primes
greater than 17 the exponent is 1. Setting LayerSizes to [2, 1] will attempt to
split all layers, resulting in a portion of a chief series for G.

ElementaryAbelianSeriesCanonical(G)

Gives a similar result to using ElementaryAbelianSeries, except the series
returned depends only on the isomorphism type of the solvable radical, and
consists of characteristic subgroups of G. This function may be slower than
ElementaryAbelianSeries.

Ch. 59 MATRIX GROUPS OVER GENERAL RINGS 1691

59.11.3 Composition and Chief Factors
The functions in this section enable the user to find the composition factors of a matrix
group. They are restricted to matrix groups where a base and strong generating set can be
constructed. The chief series and factors functions are further restricted to groups where
the base ring is either a field or can be embedded into a field.

CompositionFactors(G)

Given a matrix group G, return a sequence S of tuples that represent the composi-
tion factors of G, ordered according to some composition series of G. Each tuple is
a triple of integers f , d, q that defines the isomorphism type of the corresponding
composition factor. A triple < f, d, q > describes a simple group as follows. The
integer f defines the family to which the group belongs, and d and q are the pa-
rameters of the family. The length of the sequence S is the number of composition
factors of G. The numbering of the simple group families is given in Tables 1 and 2
of the chapter on permutation groups on page 1588.

ChiefFactors(G)

Given a group G, return a sequence of the isomorphism types < f, d, q,m > of
the chief factors. An isomorphism type in a chief factor should be understood as
the direct product of m copies of the simple group described by < f, d, q > (see
CompositionFactors above). For the algorithm, see Unger [Ung].

ChiefSeries(G)

Given a group G, return the chief series of G and a sequence of the corresponding
isomorphism types < f, d, q,m > of the chief factors. An isomorphism type in a
chief factor should be understood as the direct product of m copies of the simple
group described by < f, d, q > (see CompositionFactors above). The series will be
organised to contain the soluble radical of G, and, if G is insoluble, the socle of the
quotient of G by the soluble radical.

Example H59E25

We get the chief factors of a group of degree 4 defined over the cyclotomic field of order 8.

> L<zeta_8> := CyclotomicField(8);

> w := -(- zeta_8^3 - zeta_8^2 + zeta_8);

> // Define sqrt(q)

> rt2 := -1/6*w^3 + 5/6*w;

> // Define sqrt(-1)

> ii := -1/6*w^3 - 1/6*w;

> f := rt2;

> t := f/2 + (f/2)*ii;

> GL4L := GeneralLinearGroup(4, L);

>

> A := GL4L ! [1/2, 1/2, 1/2, 1/2,

> 1/2,-1/2, 1/2,-1/2,

1692 FINITE GROUPS Part X

> 1/2, 1/2,-1/2,-1/2,

> 1/2,-1/2,-1/2, 1/2];

>

> B := GL4L ! [1/f, 0, 1/f, 0,

> 0, 1/f, 0, 1/f,

> 1/f, 0,-1/f, 0,

> 0, 1/f, 0,-1/f];

>

> g4 := GL4L ! [1, 0, 0, 0,

> 0, 1, 0, 0,

> 0, 0, 1, 0,

> 0, 0, 0,-1];

>

> D1 := GL4L ! [1, 0, 0, 0,

> 0,ii, 0, 0,

> 0, 0, 1, 0,

> 0, 0, 0,ii];

>

> D3 := GL4L ! [t, 0, 0, 0,

> 0, t, 0, 0,

> 0, 0, t, 0,

> 0, 0, 0, t];

>

> G3 := sub< GL4L | A, B, g4, D1, D3 >;

> Order(G3);

92160

> ChiefFactors(G3);

G

| Cyclic(2)

*

| Alternating(6)

*

| Cyclic(2) (4 copies)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

1

Ch. 59 MATRIX GROUPS OVER GENERAL RINGS 1693

59.12 Coset Tables and Transversals
The functions described in this section apply only to finite groups for which a base and
strong generating set may be constructed.

CosetTable(G, H)

The (right) coset table for the group G over subgroup H relative to its defining
generators.

Transversal(G, H)

RightTransversal(G, H)

Given a matrix group G and a subgroup H of G, this function returns
(a)A set of elements T of G forming a right transversal for G over H; and
(b)The corresponding transversal mapping φ : G→ T . If T = [t1, . . . , tr] and g ∈ G,

φ is defined by φ(g) = ti, where g ∈ H ∗ ti.

59.13 Presentations
The functions described in this section apply only to finite groups for which a base and
strong generating set may be constructed.

59.13.1 Presentations

FPGroup(G)

Construct a presentation for the matrix groupG on the set of defining generators and
return the presentation in the form of a finitely presented group F that is isomorphic
to G. The presentation is obtained by first computing the regular representation of
G and then using the Todd-Coxeter Schreier algorithm to construct a presentation
on the strong generators. In this situation the strong generators are identical to the
defining generators.

A group homomorphism φ : F → G, defining G as a matrix representation of F ,
is also returned.

FPGroupStrong(G)

Construct a presentation for the matrix group G on a set of strong generators and
return the presentation in the form of a finitely presented group F that is isomor-
phic to G. In Magma, the Todd-Coxeter Schreier algorithm is used to construct
the presentation. If strong generators are not already known for G, they will be
constructed. In the case in which strong generators are already known for G, the
presentation will be on these strong generators.

The presentation will have the property that it contains presentations for all
stabilizer subgroups defined by the BSGS.

The group homomorphism f : F → G, defining G as a matrix representation of
F , is also returned.

1694 FINITE GROUPS Part X

59.13.2 Matrices as Words
Consider a matrix group G defined on d generators. The word group of G is a free group W
of rank d. Then we regard G as a homomorphic image of F with associated homomorphism
φ : W → G. All operations involving words in the generators of G will be performed in W .

WordGroup(G)

Given a matrix group G defined on d generators, return (a) a free group W on d
generators as an SLP-group, and (b) the homomorphism φ from W to G such that
W.i → G.i, for i = 1, . . . , d. The group W associated with G by this function will
be referred to as the word group for G.

InverseWordMap(G)

Given a matrix group G and its associated word group W with canonical homomor-
phism φ : W → G, construct the inverse mapping ρ. Thus, given a matrix g of G,
g@ρ returns an element in the preimage of g under φ. If the word group W does
not already exist, it will be created.

59.14 Automorphism Groups
The automorphism group of a finite matrix group may be computed in Magma, subject
to the same restrictions on the group as when computing maximal subgroups. (That is, all
of the non-abelian composition factors of the group must appear in a certain database.)
The methods used are those described in Cannon and Holt [CH03]. The existence of an
isomorphism between a given matrix group and any other type of finite group (GrpPerm
or GrpPC) may also be determined using similar methods.

AutomorphismGroup(G: parameters)

Given a finite matrix group G, construct the full automorphism group F of G. The
function returns the full automorphism group of G as a group of mappings (i.e.,
as a group of type GrpAuto). The automorphism group F is also computed as a
finitely presented group and can be accessed via the function FPGroup(F). A func-
tion PermutationRepresentation is provided that when applied to F , attempts to
construct a faithful permutation representation of reasonable degree. The algorithm
described in Cannon and Holt [CH03] is used.

SmallOuterAutGroup RngIntElt Default : 20000
SmallOuterAutGroup := t: Specify the strategy for the backtrack search when
testing an automorphism for lifting to the next layer. If the outer automorphism
group O at the previous level has order at most t, then the regular representation
of O is used, otherwise the program tries to find a smaller degree permutation
representation of O.

Print RngIntElt Default : 0
The level of verbose printing. The possible values are 0, 1, 2 or 3.

PrintSearchCount RngIntElt Default : 1000

Ch. 59 MATRIX GROUPS OVER GENERAL RINGS 1695

PrintSearchCount := s: If Print := 3, then a message is printed at each s-th
iteration during the backtrack search for lifting automorphisms.

Further information about the construction of the automorphism group and a
description of machinery for computing with group automorphisms may be found
in Chapter 67.

Example H59E26

We construct a 3-dimensional matrix group over GF (4) and determine the order of its automor-
phism group.

> k<w> := GF(4);

> G := MatrixGroup< 3, k |

> [w^2, 0, 0, 0, w^2, 0, 0, 0, w^2],

> [w^2, 0, w^2, 0, w^2, w^2, 0, 0, w^2],

> [1, 0, 0, 1, 0, w, w^2, w^2, 0],

> [w, 0, 0, w^2, 1, w^2, w, w, 0],

> [w, 0, 0, 0, w, 0, 0, 0, w] >;

> G;

MatrixGroup(3, GF(2^2))

Generators:

[w^2 0 0]

[0 w^2 0]

[0 0 w^2]

[w^2 0 w^2]

[0 w^2 w^2]

[0 0 w^2]

[1 0 0]

[1 0 w]

[w^2 w^2 0]

[w 0 0]

[w^2 1 w^2]

[w w 0]

[w 0 0]

[0 w 0]

[0 0 w]

> #G;

576

> A := AutomorphismGroup(G);

> #A;

3456

> OuterOrder(A);

72

> F := FPGroup(A);

1696 FINITE GROUPS Part X

> P := DegreeReduction(CosetImage(F, sub<F|>));

> P;

Permutation group P acting on a set of cardinality 48

Thus, we see that G has an automorphism group of order 3456 and the quotient group of A
consisting of outer automorphisms, has order 72. The automorphism group may be realised as a
permutation group of degree 48.

IsIsomorphic(G, H: parameters)

Test whether or not the two finite groups G and H are isomorphic as abstract
groups. If so, both the result true and an isomorphism from G to H is returned.
If not, the result false is returned. The algorithm described in Cannon and Holt
[CH03] is used.

SmallOuterAutGroup RngIntElt Default : 20000
SmallOuterAutGroup := t: Specify the strategy for the backtrack search when
testing an automorphism for lifting to the next layer. If the outer automorphism
group O at the previous level has order at most t, then the regular representation
of O is used, otherwise the program tries to find a smaller degree permutation
representation of O.

Print RngIntElt Default : 0
The level of verbose printing. The possible values are 0, 1, 2 or 3.

PrintSearchCount RngIntElt Default : 1000
PrintSearchCount := s: If Print := 3, then a message is printed at each s-th
iteration during the backtrack search for lifting automorphisms.

Example H59E27

We construct a 3-dimensional point group of order 8 and test it for isomorphism with the dihedral
group of order 8 given as a permutation group.

> n := 4;

> N := 4*n;

> K<z> := CyclotomicField(N);

> zz := z^4;

> i := z^n;

> cos := (zz+ComplexConjugate(zz))/2;

> sin := (zz-ComplexConjugate(zz))/(2*i);

> GL := GeneralLinearGroup(3, K);

> G := sub< GL | [cos, sin, 0,

> -sin, cos, 0,

> 0, 0, 1],

>

> [-1, 0, 0,

> 0, 1, 0,

> 0, 0, 1] >;

Ch. 59 MATRIX GROUPS OVER GENERAL RINGS 1697

>

> #G;

8

> D8 := DihedralGroup(4);

> D8;

Permutation group G acting on a set of cardinality 4

Order = 8 = 2^3

(1, 2, 3, 4)

(1, 4)(2, 3)

> #D8;

8

> bool, iso := IsIsomorphic(G, D8);

> bool;

true

> iso;

Homomorphism of MatrixGroup(3, K) of order 2^3 into

GrpPerm: D8, Degree 4, Order 2^3 induced by

[0 1 0]

[-1 0 0]

[0 0 1] |--> (1, 2, 3, 4)

[-1 0 0]

[0 1 0]

[0 0 1] |--> (1, 3)

59.15 Representation Theory

A set of functions are provided for computing with the characters of a group. Full details
of these functions may be found in Chapter 91. For convenience we include here two of
the more useful character functions.

Also, functions are provided for computing with the modular representations of a group.
Full details of these functions may be found in Chapter 89. For the reader’s convenience
we include here the functions which may be used to define a K[G]-module for a matrix
group.

The functions described in this section apply only to finite groups for which a base and
strong generating set may be constructed.

LinearCharacters(G)

A sequence containing the linear characters for the group G.

1698 FINITE GROUPS Part X

CharacterTable(G: parameters)

Construct the table of ordinary irreducible characters for the group G.
Al MonStgElt Default : "Default"

This parameter controls the algorithm used. The string "DS" forces use of
the Dixon-Schneider algorithm. The string "IR" forces the use of Unger’s in-
duction/reduction algorithm [Ung06]. The "Default" algorithm is to use Dixon-
Schneider for groups of order ≤ 5000 and Unger’s algorithm for larger groups. This
may change in future.

DSSizeLimit RngIntElt Default : 0
When the default algorithm is selected, a positive value n for DSSizeLimit means

that before using Unger’s algorithm, the full character space is split by some passes
of Dixon-Schneider, restricted to using class matrices corresponding to conjugacy
classes with size at most n.

PermutationCharacter(G, H)

Given a group G and a subgroup H of G, construct the ordinary character afforded
by the representation of G given by its action on the coset space of the subgroup H.

GModule(G)

The natural R[G]-module for the matrix group G.

GModule(G, A)

Let A be a matrix ring defined over the ring R and let G be a finite group defined on
m generators. Let M denote the underlying module of A. Suppose there is a one-
to-one correspondence between the generators of G and the generators [A1, . . . , Am]
of A. The function GModule creates the R[G]-module corresponding to an action of
G on M defined by A, where the action of the i-th generator of G on M is given by
Ai.

GModule(G, Q)

Let A be a matrix ring defined over the ring R and let G be a finite group defined
on m generators. Let M denote the underlying module of A. Given a sequence Q
of m elements of A, the function GModule creates the R[G]-module corresponding
to an action of G on M defined by Q, where the action of the i-th generator of G
on M is given by Q[i].

GModule(G, A, B)

Let A and B be normal subgroups of G such that B is contained in A. Further,
assume that A/B is elementary abelian of order pn, p a prime. Let K denote the
field of p elements. This function constructs a K[G]-module corresponding to the
action of the group G on the elementary abelian section A/B of G. The map from
A to the K[G]-module’s underlying vector space is also returned.

Ch. 59 MATRIX GROUPS OVER GENERAL RINGS 1699

PermutationModule(G, H, R)

The permutation module for the matrix group G over the ring R defined by its
action on the cosets of the subgroup H.

ChangeOfBasisMatrix(G, S)

Given a matrix group G and a submodule S of its natural module, return an in-
vertible matrix with topmost rows a basis for S. Conjugating by the inverse of this
matrix puts the generators of G into a block form that exhibits their action on S
and the quotient module.

Example H59E28

We use the module machinery to refine an elementary abelian normal subgroup by finding a
normal subgroup contained in it.

> G := MatrixGroup<4, IntegerRing(4) |

> [3, 3, 1, 3, 0, 2, 2, 3, 3, 0, 1, 3, 3, 2, 2, 1],

> [2, 2, 3, 3, 0, 3, 1, 1, 3, 0, 1, 1, 2, 0, 1, 2] >;

> #G;

660602880

> H := pCore(G, 2);

> FactoredOrder(H);

[<2, 15>]

> IsElementaryAbelian(H);

true

> M, f := GModule(G, H, sub<H|>);

> SM := Submodules(M);

> #SM;

3

One of these submodules is 0, one is all M, we are interested in the one in the middle. Note that
the result returned by Submodules is sorted by dimension.

> N := SM[2] @@ f;

> N;

MatrixGroup(4, IntegerRing(4))

Generators:

[3 0 0 0]

[0 3 0 0]

[0 0 3 0]

[0 0 0 3]

We have found N, a normal subgroup of G, contained in the 2-core, with order 2.

1700 FINITE GROUPS Part X

59.16 Base and Strong Generating Set

59.16.1 Introduction
Computing structural information for a matrix group G requires, in most cases, a repre-
sentation of the set of elements of G. Magma represents this set by means of a base and
strong generating set, or BSGS for G. Suppose the group G has the natural module M .
A base B for G is a sequence of distinct elements and submodules of M with the property
that the identity is the only element of G that fixes B pointwise. A base B of length n
determines a sequence of subgroups G(i), 1 ≤ i ≤ n + 1, where G(i) is the stabilizer of
the first i − 1 points of B. Given a base B for G, a subset S of G is said to be a strong
generating set for G if G(i) = 〈S ∩G(i)〉, for i = 1, . . . , n.

Unlike permutation groups, however, the orbits of the i-th base point under the sta-
bilizer G(i) are not bounded by the degree, but rather, by (where the base point is a
1-dimensional subspace) (qn − 1)/(q − 1) where q is the cardinality of the coefficient field
and n is the degree of G. Clearly, it is essential to find small orbits if one is to compute with
matrix groups in this manner. Unfortunately, there are no methods which are guaranteed
to find short orbits. There are, however, some heuristics developed by Scott Murray and
Eamonn O’Brien which often find good base points. These heuristics are used in Magma
if the most likely standard base point would generate an orbit longer than 10000 (this
bound may be changed).

59.16.2 Controlling Selection of a Base
Given the difficulties in automatically finding a good base for a matrix group, it is possible
to apply the Murray-O’Brien base point selection procedure and preset a suitable base
manually.

GoodBasePoints(G: parameters)

Apply the Murray–O’Brien base point selection procedure and return a sequence
of vectors or subspaces according to the parameters. The procedure computes and
sorts a collection of eigenspaces [V1, . . . , Vm] for a generating set for the matrix group
G. The default action is then to return [V1.1, . . . , Vm.1, V1.2, . . .] where each new
vector is only added if it is not in the span of the preceding vectors.

Slots RngIntElt Default : 10
Expand the number of generators to work with to Slots matrices by adding random
words in the generators of G.

NoCycle RngIntElt Default : false

If NoCycle := true, instead of cycling through the eigenspaces, return the sequence
[V1.1, . . . , V1.(dimV1), V2.1, . . .], with the addition of each vector subject to the same
condition above.

Eigenspaces RngIntElt Default : false

If Eigenspaces := true, then return the subsequence of the eigenspaces where all
the eigenspaces have dimension d ≤ 10. If there are no such eigenspaces, all the
eigenspaces are returned.

Ch. 59 MATRIX GROUPS OVER GENERAL RINGS 1701

AssertAttribute(G, "Base", B)

Set the base of the matrix group G to be [B[1], . . . , B[n]] where the tuple B has n
components. An error will be reported if the matrix group G already has a base set.

HasAttribute(G, "Base")

Return whether the matrix group G has a base set, and if so, the base.

AssertAttribute(GrpMat, "FirstBasicOrbitBound", n)

Set the limit for the size of the first basic orbit to be n. If n is non-zero and the
orbit of the first base point (a 1-dimensional subspace generated by a standard
basis vector) has length exceeding n, then the Murray-O’Brien base point selection
procedure is used to find a point more likely to have a short orbit. This assertion
will affect all matrix groups. If n = 1 then use of the Murray-O’Brien procedure is
guaranteed.

HasAttribute(GrpMat, "FirstBasicOrbitBound")

Get the limit for the size of the first basic orbit. This will always return true and
the limit.

59.16.3 Construction of a Base and Strong Generating Set
The functions described below give user control of the construction of a base and strong
generating set (BSGS) of a finite matrix group.

Many functions described in this chapter require a group to have a BSGS. In case
the given group does not have a BSGS, then one will be constructed using the default
algorithm, which is equivalent to using the BSGS procedure described below.

It should be noted that if the user constructs a BSGS for a group G using the
RandomSchreier procedure, then other functions that require a BSGS will assume that the
random BSGS is a complete BSGS. If this is not the case then results will be unpredictable.

BSGS(G)

BSGS(G, str)

The general procedure for constructing a base and strong generating set for the
matrix group G. This version uses the default algorithm choices. Currently this
is as follows: if the order of the group is known to the program then a BSGS
is constructed using the random Schreier algorithm, if not then the Sims-Todd-
Coxeter-Schreier procedure is used. If str is the name of a sporadic group, we
assume that G is a representation for this group and choose base points specific to
this group. This should ensure better performance. Information on the progress of
these algorithms may be obtained by setting the verbose flags RandomSchreier and
STCS true.

1702 FINITE GROUPS Part X

RandomSchreier(G: parameters)

RandomSchreier(G, str : parameters)

Run RngIntElt Default : 40

Construct a probable base and strong generating set for the group G. The strong
generators are constructed from a set of randomly chosen elements of G. The expec-
tation is that if sufficiently many random elements are taken then, upon termination,
the algorithm will have produced a BSGS for G. If the attribute Order is defined for
G, the random Schreier will continue until a BSGS defining a group of the indicated
order is obtained. In such circumstances this method is the fastest method of con-
structing a base and strong generating set for G. This is particularly so for groups of
large degree. If nothing is known about G, the random Schreier algorithm provides
a cheap way of obtaining lower bounds on the group’s order. This procedure has one
associated parameter Run, which takes a positive integer value. If the value of Run
is n, then the algorithm terminates after n consecutive random elements are found
to lie in the set defined by the current BSGS (default 40). This will happen even
if the Order attribute is defined for G. It should be emphasized that unpredictable
results may arise if the user uses the base and strong generators produced by this
algorithm, when, in fact, it does not constitute a complete BSGS for G. The Verify
procedure, described below, may be used to check the completeness of the BSGS
constructed by this function.

If str is the name of a sporadic group, we assume that G is a representation for
this group and choose base points specific to this group. This should ensure better
performance.

Information on the progress of this algorithm may be obtained by setting the
verbose flag RandomSchreier to true.

ToddCoxeterSchreier(G)

Construct a BSGS for the matrix group G using the Sims-Todd-Coxeter-Schreier
algorithm. Information on the progress of this algorithm may be obtained by setting
the verbose flag STCS to true.

Verify(G)

Given a matrix group G for which a possible BSGS is stored, verify the correctness
of the BSGS. If it is not complete, proceed to complete it. The Sims-Todd-Coxeter-
Schreier method is used.

If G has no BSGS stored, then use of Verify is equivalent to using the BSGS
procedure described above.

Information on the progress of these algorithms may be obtained by setting the
verbose flags RandomSchreier and STCS true.

Ch. 59 MATRIX GROUPS OVER GENERAL RINGS 1703

59.16.4 Defining Values for Attributes

AssertAttribute(G, "Order", n)

AssertAttribute(G, "Order", Q)

Define the order of the matrix group G to be the integer n (factored integer Q).

AssertAttribute(G, "IsVerified", b)

If the boolean variable b is true, the existing pseudo strong generators for the matrix
group G (possibly created by RandomSchreier) are to be taken as correct.

HasAttribute(G, "Order")

HasAttribute(G, "FactoredOrder")

Returns true iff the order of the group G is known. In that case, the order is also
returned as the second value of the function.

HasAttribute(G, "IsVerified")

Returns true iff the matrix group G has a verified set of strong generators.

59.16.5 Accessing the Base and Strong Generating Set

Base(G)

A base for the matrix group G. The base is returned as a sequence of points of Ω.
If a base is not known, one will be constructed.

BasePoint(G, i)

The i-th base point for the matrix group G. A base and strong generating set must
be known for G.

BasicOrbit(G, i)

The basic orbit at level i as defined by the current base for the matrix group G.
This function assumes that a BSGS is known for G.

BasicOrbitLength(G, i)

The length of the basic orbit at level i as defined by the current base for the matrix
group G. This function assumes that a BSGS is known for G.

BasicOrbitLengths(G)

The lengths of the basic orbits as defined by the current base for the matrix group
G. This function assumes that a BSGS is known for G. The lengths are returned
as a sequence of integers.

1704 FINITE GROUPS Part X

BasicStabilizer(G, i)

BasicStabiliser(G, i)

Given a matrix group G for which a base and strong generating set are known, and
an integer i, where 1 ≤ i ≤ k with k the length of the base, return the subgroup of
G which fixes the first i− 1 points of the base.

BasicStabilizerChain(G)

BasicStabiliserChain(G)

Given a matrix group G, return the stabilizer chain defined by the base as a sequence
of subgroups of G. If a BSGS is not already known for G, it will be created.

NumberOfStrongGenerators(G)

Nsgens(G)

The number of elements in the current strong generating set for the matrix group
G.

StrongGenerators(G)

A set of strong generators for the matrix group G. If they are not currently available,
they will be computed.

59.17 Soluble Matrix Groups

The functions described in this section apply only to finite groups for which a base and
strong generating set may be constructed.

59.17.1 Conversion to a PC-Group

PolycyclicGenerators(G)

Construct a polycyclic generating sequence for the soluble group G.

PCGroup(G)

Given a soluble group G, construct a group S in category GrpPC, isomorphic to G.
In addition to returning S, the function returns an isomorphism φ : G→ S.

59.17.2 Soluble Group Functions

pCentralSeries(G, p)

Given a soluble group G, and a prime p dividing |G|, return the lower p-central
series for G. The series is returned as a sequence of subgroups.

Ch. 59 MATRIX GROUPS OVER GENERAL RINGS 1705

59.17.3 p-group Functions

IsSpecial(G)

Given a p-group G, return true if G is special, false otherwise.

IsExtraSpecial(G)

Given a p-group G, return true if G is extraspecial, false otherwise.

FrattiniSubgroup(G)

Given a p-group G, return the Frattini subgroup.

JenningsSeries(G)

Given a p-group G, return the Jennings series for G. The series is returned as a
sequence of subgroups.

59.17.4 Abelian Group Functions

AbelianInvariants(G)

Invariants(G)

Given an abelian group G, return a sequence Q containing the types of each p-
primary component of G.

59.18 Bibliography

[But76] Gregory Butler. The Schreier Algorithm for Matrix Groups. In Proceedings
of SYMSAC ’76, pages 167–170, 1976.

[CCH01] J.J. Cannon, B. Cox, and D.F. Holt. Computing the subgroups of a per-
mutation group. J. Symb. Comp., 31:149–161, 2001.

[CH03] J.J. Cannon and D.F. Holt. Automorphism group computation and iso-
morphism testing in finite groups. J. Symbolic Comp., 35(3):241–267, 2003.

[CLG97] Frank Celler and Charles R. Leedham-Green. Calculating the Order of an
Invertible Matrix. In Larry Finkelstein and William M. Kantor, editors, Groups and
Computation II, volume 28 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, pages 55–60. AMS, 1997.

[CLGM+95] Frank Celler, Charles R. Leedham-Green, Scott H. Murray, Alice C.
Niemeyer, and E. A. O’Brien. Generating random elements of a finite group. Comm.
Algebra, 23(13):4931–4948, 1995.

[ELGO02] Bettina Eick, C.R. Leedham-Green, and E.A. O’Brien. Constructing auto-
morphism groups of a p-groups. Comm. Algebra, 30:2271–2295, 2002.

[KP02] J. Kuzmanovich and A. Pavlichenkov. Finite groups of matrices whose
entries are integers. Amer. Math. Monthly, 109(2):173–186, 2002.

1706 FINITE GROUPS Part X

[LGO02] C.R. Leedham-Green and E.A. O’Brien. Recognising tensor-induced matrix
groups. J. Algebra, 253:14–30, 2002.

[LGPS91] C.R. Leedham-Green, C.E. Praeger, and L.H. Soicher. Computing with
group homomorphisms. J. Symbolic Comp., 12(4/5):527–532, 1991.

[MN89] M. Mecky and J. Neubüser. Some remarks on the computation of conjugacy
classes of soluble groups. Bull. Austral, Math. Soc., 40(2):281–292, 1989.

[MO95] Scott H. Murray and E. A. O’Brien. Selecting base points for the Schreier-
Sims algorithm for matrix groups. J. Symbolic Comp., 6:577–584, 1995.

[O’B90] E.A. O’Brien. The p-group generation algorithm. J. Symbolic Comput.,
9:677–698, 1990.

[RD04] Colva M. Roney-Dougal. Conjugacy of subgroups of the general linear
group. Experiment. Math., 13:151–163, 2004.

[Sch00] Ruth Schwingel. Two matrix group algorithms with applications to comput-
ing the automorphism group of a finite p-group. PhD thesis, Queen Mary and Westfield
College, University of London, 2000.

[Ung] W.R. Unger. Computing chief series of a large permutation group. In
preparation.

[Ung06a] W.R. Unger. Computing the character table of a finite group. J. Symbolic
Comp., 41(8):847–862, 2006.

[Ung06b] W.R. Unger. Computing the solvable radical of a permutation group. J.
Algebra, 300(1):305–315, 2006.

60 MATRIX GROUPS OVER FINITE FIELDS
60.1 Introduction 1709

60.2 Finding Elements with
Prescribed Properties 1709

RandomElementOfOrder(G, n : -) 1709
RandomElementOfNormalClosure(G, N) 1710
InvolutionClassicalGroupEven (G : -) 1710

60.3 Monte Carlo Algorithms for
Subgroups 1710

CentraliserOfInvolution(G, g : -) 1710
CentraliserOfInvolution(G, g, w : -) 1711
AreInvolutionsConjugate(G, x, wx, y,

wy : -) 1711
NormalClosureMonteCarlo (G, H) 1711
NormalClosureMonteCarlo (G, H : -) 1711
DerivedGroupMonteCarlo (G : -) 1712
IsProbablyPerfect(G : -) 1712

60.4 Aschbacher Reduction 1713

60.4.1 Introduction 1713

60.4.2 Primitivity 1714

IsPrimitive(G: -) 1714
ImprimitiveBasis (G) 1714
Blocks(G) 1714
BlocksImage(G) 1714
ImprimitiveAction(G, g) 1714

60.4.3 Semilinearity 1716

IsSemiLinear(G) 1716
DegreeOfFieldExtension(G) 1716
CentralisingMatrix(G) 1716
FrobeniusAutomorphisms(G) 1716
WriteOverLargerField(G) 1716

60.4.4 Tensor Products 1718

IsTensor(G: -) 1718
TensorBasis(G) 1718
TensorFactors(G) 1718
IsProportional(X, k) 1718

60.4.5 Tensor-induced Groups 1720

IsTensorInduced(G : -) 1720
TensorInducedBasis(G) 1720
TensorInducedPermutations(G) 1720
TensorInducedAction(G, g) 1720

60.4.6 Normalisers of Extraspecial r-groups
and Symplectic 2-groups 1722

IsExtraSpecialNormaliser(G) 1722
ExtraSpecialParameters(G) 1722
ExtraSpecialGroup(G) 1722
ExtraSpecialNormaliser(G) 1722
ExtraSpecialAction(G, g) 1722
ExtraSpecialBasis(G) 1723

60.4.7 Writing Representations over
Subfields 1724

IsOverSmallerField (G : -) 1724
IsOverSmallerField(G, k : -) 1724
SmallerField(G) 1724
SmallerFieldBasis(G) 1724
SmallerFieldImage(G, g) 1724
WriteOverSmallerField(G, F) 1726

60.4.8 Decompositions with Respect to a
Normal Subgroup 1727

SearchForDecomposition(G, S) 1727

60.5 Constructive Recognition for
Simple Groups 1731

ClassicalStandard
Generators(type, d, q) 1731

ClassicalConstructive
Recognition (G : -) 1731

ClassicalElementToWord(G, g) 1732
ClassicalStandard

Presentation(type, d, q : -) 1732

60.6 Composition Trees for Matrix
Groups 1735

CompositionTree(G : -) 1736
CompositionTreeFastVerification(G) 1737
CompositionTreeVerify(G) 1737
CompositionTreeNiceGroup(G) 1737
CompositionTreeSLPGroup(G) 1737
DisplayCompTreeNodes(G : -) 1737
CompositionTreeNiceToUser(G) 1737
CompositionTreeOrder(G) 1738
CompositionTreeElementToWord(G, g) 1738
CompositionTreeCBM(G) 1738
CompositionTreeReductionInfo(G, t) 1738
CompositionTreeSeries(G) 1738
CompositionTreeFactorNumber(G, g) 1738
HasCompositionTree(G) 1739
CleanCompositionTree(G) 1739

60.7 The LMG functions 1744

SetLMGSchreierBound(n) 1745
LMGInitialize(G : -) 1745
LMGInitialise(G : -) 1745
LMGOrder(G) 1745
LMGFactoredOrder(G) 1745
LMGIsIn(G, x) 1745
LMGIsSubgroup(G, H) 1745
LMGEqual(G, H) 1746
LMGIndex(G, H) 1746
LMGIsNormal(G, H) 1746
LMGNormalClosure(G, H) 1746
LMGDerivedGroup(G) 1746
LMGCommutatorSubgroup(G, H) 1746
LMGIsSoluble(G) 1746

1708 FINITE GROUPS Part X

LMGIsSolvable(G) 1746
LMGIsNilpotent(G) 1746
LMGCompositionSeries(G) 1746
LMGCompositionFactors(G) 1746
LMGChiefSeries(G) 1747
LMGChiefFactors(G) 1747
LMGUnipotentRadical(G) 1747
LMGSolubleRadical(G) 1747
LMGSolvableRadical(G) 1747
LMGFittingSubgroup(G) 1747
LMGCentre(G) 1747
LMGCenter(G) 1747
LMGSylow(G,p) 1747
LMGSocleStar(G) 1747
LMGSocleStarFactors(G) 1747
LMGSocleStarAction(G) 1748
LMGSocleStarActionKernel(G) 1748
LMGSocleStarQuotient(G) 1748
LMGRadicalQuotient(G) 1751
LMGCentraliser(G, g) 1751

LMGCentralizer(G, g) 1751
LMGIsConjugate(G, g, h) 1751
LMGClasses(G) 1751
LMGConjugacyClasses(G) 1751
LMGNormaliser(G, H) 1751
LMGNormalizer(G, H) 1751
LMGIsConjugate(G, H, K) 1751
LMGMaximalSubgroups(G) 1751

60.8 Unipotent Matrix Groups . . 1752

UnipotentMatrixGroup(G) 1752
WordMap(G) 1752
PCPresentation(G) 1753
Order(G) 1753
1753
FactoredOrder(G) 1753
in 1753

60.9 Bibliography 1754

Chapter 60

MATRIX GROUPS OVER FINITE FIELDS

60.1 Introduction
If a matrix group G is defined over a finite field then, provided that the group is not too
large, we can construct a BSGS-representation for G and consequently apply the standard
algorithms for group structure as described in Chapter 59. However, there are many
examples of groups having moderately small dimension where we cannot find a BSGS-
representation.

In this chapter we describe techniques for computing with matrix groups that do not
assume that a BSGS-representation is available. Thus, the techniques described here apply
to matrix groups possibly having much larger order or much larger dimension than those
that can be handled with the techniques of Chapter 59.

The CompositionTree package introduced in Section 60.6, which includes the collection
of LMG (large matrix group) functions described in Section 60.7, provides a framework
for such investigations. The package was prepared by Henrik Bäärnhielm, Derek Holt,
C.R. Leedham-Green and E.A. O’Brien, and includes code prepared by Peter Brooksbank,
Elliot Costi, Heiko Dietrich, and Alice Niemeyer.

For recent surveys of work in this area, we refer the reader to [O’B06, O’B11].
The techniques described in this chapter fall roughly into two categories.

(a) Functions based on Aschbacher’s theorem classifying maximal subgroups of the gen-
eral linear group. The main thrust of this work is to devise a framework for com-
puting arbitrary structural information for a matrix group without the use of a
BSGS-representation.

(b) Functions which employ Monte Carlo and Las Vegas algorithms to determine some
property of the group.

60.2 Finding Elements with Prescribed Properties

RandomElementOfOrder(G, n : parameters)

Central BoolElt Default : false

Proof BoolElt Default : true

Randomiser GrpRandProc Default :

MaxTries RngIntElt Default : 100
Given a finite matrix group G, this intrinsic attempts to locate an element x of
order n in G by random search. If such an element is found, then the return values
are the boolean value true, the element x, and an SLP for this element.

1710 FINITE GROUPS Part X

If Central is true, then an element is sought which has order n modulo the
centre of G. If Proof is false, then the element returned may have order a multiple
of n. In either case, the final return value indicates whether the element returned is
known to have the precise order. The parameter MaxTries specifies the maximum
number of random elements that are chosen. The parameter Randomiser specifies
the random process that is to be used to construct the element and the SLP returned
for the element is in the word group associated with this process. The default value
of Randomiser is the process RandomProcessWithWords(G).

RandomElementOfNormalClosure(G, N)

Given a group G and a subgroup N of G, this intrinsic returns a random element of
the normal closure of N in G. Note that G may be a permutation or matrix group.
The algorithm is due to Leedham-Green and O’Brien [LGO02].

InvolutionClassicalGroupEven (G : parameters)

SmallCorank BoolElt Default : false

Case MonStgElt Default : “unknown”
Let G be a quasisimple classical group in its natural representation and in even
characteristic. If G is of type Ω+ or Ω− then it must have even degree at least 4
and be defined over a field with at least 4 elements. The corank of an involution
I is the rank of I−Identity(G). This function returns an involution I of corank
in [d/4, . . . , d/2], the SLP for I in WordGroup(G), and the corank of the involution.
The parameter Case should be one of "SL", "Sp", "SU", "Omega-", or "Omega+". If
SmallCorank is true, then accept involution of small corank. The algorithm used
to construct the involution is described in [DLLGO]; it was implemented by Heiko
Dietrich.

60.3 Monte Carlo Algorithms for Subgroups

CentraliserOfInvolution(G, g : parameters)

Central BoolElt Default : false

NumberRandom RngIntElt Default : 100
CompletionCheck UserProgram Default :

Given an involution g in G, this function returns the centraliser C of g in G using
an algorithm of John Bray [Bra00]. Since it is Monte Carlo, it may return only a
subgroup of the centraliser. If Central is true, the projective centraliser of g will
be constructed: its elements commute with g modulo the centre of G.

The optional argument CompletionCheck is a function which can be used to de-
termine when we have constructed the centraliser. It takes the following arguments:
the parent group G; the proposed centraliser C; the involution g. By default, the
algorithm completes when 20 generators have been found for the centraliser or when
NumberRandom elements have been considered.

Ch. 60 MATRIX GROUPS OVER FINITE FIELDS 1711

CentraliserOfInvolution(G, g, w : parameters)

Randomiser GrpRandProc Default :

Central BoolElt Default : false

NumberRandom RngIntElt Default : 100
CompletionCheck UserProgram Default :

Given an involution g in a matrix group G together with a SLP w corresponding
to g, this function returns the centraliser C of g in G and SLPs for the generators
of C. The algorithm used is due to John Bray [Bra00]. Since it is Monte Carlo, it
may return a proper subgroup of the centraliser. If Central is true, the projective
centraliser of g is constructed: its elements commute with g modulo the centre of
G.

The parameter Randomiser specifies the random process that is to be used
to construct the centraliser. By default Randomiser is the value returned by
RandomProcessWithWords (G). The SLP for g must lie in the word group of this
process. The optional argument CompletionCheck is a function which can be used
to determine when we have constructed the centraliser. It takes four arguments:
the parent group G; the proposed centraliser C; the involution g; and the list of the
SLPs for the generators of C. By default, the algorithm completes when 20 genera-
tors have been found for the centraliser or when NumberRandom elements have been
considered.

AreInvolutionsConjugate(G, x, wx, y, wy : parameters)

Randomiser GrpRandProc Default :

MaxTries RngIntElt Default : 100
This Monte Carlo algorithm attempts to construct an element c of the group G
which conjugates the involution x to the involution y. The corresponding SLPs for
x and y are wx and wy respectively. If such an element c is found, then three values
are returned: true, c and the SLP for c. Otherwise, the boolean value false is
returned. At most MaxTries random elements are considered.

The parameter Randomiser specifies the random process to be used. By default
Randomiser is the value returned by RandomProcessWithWords (G). The SLPs for
x and y must lie in the word group of this process and the SLP for c will also lie in
this word group.

NormalClosureMonteCarlo (G, H)

NormalClosureMonteCarlo (G, H : parameters)

slpsH [] Default : []
ErrorProb FltRatElt Default : 9/10
SubgroupChainLength RngIntElt Default : Degree(H)

This Monte Carlo algorithm constructs the normal closure N of H in G. If SLPs
of the generators of H in the generators of G are supplied via the parameter

1712 FINITE GROUPS Part X

slpsH, then the function also returns SLPs for the generators of N . The parame-
ter SubgroupChainLength is used to specify an upper bound on the length of any
subgroup chain in H. The probability that N is a proper subgroup of the normal
closure is bounded above by ErrorProb, assuming that SubgroupChainLength is
correctly set.

DerivedGroupMonteCarlo (G : parameters)

Randomiser GrpRandProc Default :

NumberGenerators RngIntElt Default : 10
MaxGenerators RngIntElt Default : 100

Given a matrix group G defined over a finite field, this intrinsic returns the derived
group of G, and a list of SLPs of its generators in the generators of G. The SLPs
are elements of the word group of the random process. The algorithm is Monte
Carlo and may return a proper subgroup of the derived group. The parameter
Randomiser specifies the random process to be used. By default Randomiser is the
value returned by RandomProcessWithWords (G). At least NumberGenerators and
at most MaxGenerators will be constructed for the derived group.

IsProbablyPerfect(G : parameters)

NumberRandom RngIntElt Default : 100
This intrinsic attempts to prove that a matrix or permutation group G is perfect by
establishing that its generators are in G′. Since it is Monte-Carlo, there is a small
probability of error. If the function returns true, then G is perfect; if it returns
false, then G might still be perfect. Each call considers NumberRandom random
elements.

The algorithm is due to Leedham-Green and O’Brien [LGO02] and it uses
NormalSubgroupRandomElement.

Example H60E1

We illustrate IsProbablyPerfect with a subgroup of GU(4, 9).

> G := GU(4, 9);

> N := sub<G | (G.1, G.2)>;

The generators of N have been chosen to be a normal generating set for the derived group of G.

> IsProbablyPerfect(N);

false

> x := NormalSubgroupRandomElement(G, N);

> x;

[$.1^68 $.1^34 $.1^26 $.1^55]

[$.1^23 $.1^78 $.1^16 $.1^72]

[$.1^42 $.1^2 $.1^24 2]

[$.1^11 $.1^66 $.1^13 $.1^29]

> L := sub< G | N, x>;

Ch. 60 MATRIX GROUPS OVER FINITE FIELDS 1713

> IsProbablyPerfect(L);

true

We now consider SO(7, 5) and Ω(7, 5).

> G := SO(7, 5);

> IsProbablyPerfect(G);

false

> G := Omega(7, 5);

> IsProbablyPerfect(G);

true

60.4 Aschbacher Reduction

60.4.1 Introduction
An on-going international research project seeks to develop algorithms to explore the
structure of groups having either large order or large degree. The approach relies on the
following theorem of Aschbacher [Asc84]:

A matrix group G acting on the finite dimensional K[G]-module V over a finite field
K satisfies at least one of the following conditions (which we have simplified slightly for
brevity):
(i) G acts reducibly on V ;
(ii) G acts semilinearly over an extension field of K;
(iii) G acts imprimitively on V ;
(iv) G preserves a nontrivial tensor-product decomposition of V ;
(v) G has a normal subgroup N , acting absolutely irreducibly on V , which is an ex-

traspecial p-group or 2-group of symplectic type;
(vi) G preserves a tensor-induced decomposition of V ;
(vii) G acts (modulo scalars) linearly over a proper subfield of K;
(viii) G contains a classical group in its natural action over K;
(ix) G is almost simple modulo scalars.

The philosophy underpinning the research program is to attempt to decide that G lies
in at least one of the above categories, and to calculate the associated isomorphism or
decomposition explicitly.

Groups in Category (i) can be recognised easily by means of the Meataxe functions
described in the chapter on R-modules.

Groups which act irreducibly but not absolutely irreducibly on V fall theoretically into
Category (ii), and furthermore act linearly over an extension field of K. In fact, absolute
irreducibility can be tested using the built-in Magma functions and, by redefining their

1714 FINITE GROUPS Part X

field to be an extension field L of K and reducing, they can be rewritten as absolutely irre-
ducible groups of smaller dimension, but over L instead of K. We can therefore concentrate
on absolutely irreducible matrix groups.

The CompositionTree package currently includes functions which seek to decide mem-
bership in all categories.

60.4.2 Primitivity
Let G be a subgroup of GL(d, q) and assume that G acts irreducibly on the underlying
vector space V . Then G acts imprimitively on V if there is a non-trivial direct sum
decomposition

V = V1 ⊕ V2 ⊕ . . .⊕ Vr

where V1, . . . , Vr are permuted by G. In such a case, each block Vi has the same dimension
or size, and we have the block system {V1, . . . , Vr}. If no such system exists, then G is
primitive.

Theoretical details of the algorithm used may be found in Holt, Leedham-Green,
O’Brien, and Rees [HLGOR96b].

SetVerbose ("Smash", 1) will provide information on the progress of the algorithm.

IsPrimitive(G: parameters)

BlockSizes [RngIntElt] Default : []
Given a matrix group G defined over a finite field, this intrinsic returns true if G is
primitive, false if G is not primitive, or "unknown" if no decision can be reached.

If BlockSizes is supplied, then the search is restricted to systems of imprimi-
tivity whose block sizes are given in the sequence BlockSizes only. Otherwise all
valid sizes will be considered.

ImprimitiveBasis (G)

Given a matrix group G defined over a finite field which is primitive, this intrinsic
returns the change-of-basis matrix which exhibits the block structure for G.

Blocks(G)

Given a matrix group G defined over a finite field which is imprimitive, this intrinsic
returns the blocks of imprimitivity of G.

BlocksImage(G)

Given a matrix group G defined over a finite field which is imprimitive, this intrinsic
returns the group induced by the action of G on the system of imprimitivity.

ImprimitiveAction(G, g)

Given a matrix group G defined over a finite field which is imprimitive and an
element g of G, this intrinsic returns action of g on blocks of imprimitivity as a
permutation.

Ch. 60 MATRIX GROUPS OVER FINITE FIELDS 1715

Example H60E2

We construct an imprimitive group by taking the wreath product of GL(4, 7) with S3.

> MG := GL (4, 7);

> PG := Sym (3);

> G := WreathProduct (MG, PG);

>

> IsPrimitive (G);

false

We investigate the block system for G.

> B := Blocks (G);

> B;

> #B;

4

> B[1];

Vector space of degree 12, dimension 4 over GF(7)

Generators:

(0 0 0 0 1 0 0 0 0 0 0 0)

(0 0 0 0 0 1 0 0 0 0 0 0)

(0 0 0 0 0 0 1 0 0 0 0 0)

(0 0 0 0 0 0 0 1 0 0 0 0)

Echelonized basis:

(0 0 0 0 1 0 0 0 0 0 0 0)

(0 0 0 0 0 1 0 0 0 0 0 0)

(0 0 0 0 0 0 1 0 0 0 0 0)

(0 0 0 0 0 0 0 1 0 0 0 0)

Now we obtain a permutation representation of G in its action on the blocks.

> P := BlocksImage (G);

> P;

Permutation group P acting on a set of cardinality 3

(1, 2, 3)

(2, 3)

> g := G.4 * G.3;

> ImprimitiveAction (G, g);

(1, 2)

1716 FINITE GROUPS Part X

60.4.3 Semilinearity
Let G be a subgroup of GL(d, q) and assume that G acts absolutely irreducibly on the
underlying vector space V . Assume that a normal subgroup N of G embeds in GL(d/e, qe),
for e > 1, and a d × d matrix C acts as multiplication by a scalar λ (a field generator of
Fqe) for that embedding.

We say that G acts as a semilinear group of automorphisms on the d/e-dimensional
space if and only if, for each generator g of G, there is an integer i = i(g) such that
Cg = gCi, that is, g corresponds to the field automorphism λ→ λi. If so, we have a map
from G to the (cyclic) group Aut(GF (qe)), and C centralises the kernel of this map, which
thus lies in GL(d, qe).

Theoretical details of the algorithm used may be found in Holt, Leedham-Green,
O’Brien and Rees [HLGOR96a].

SetVerbose ("SemiLinear", 1) will provide information on the progress of the algo-
rithm.

IsSemiLinear(G)

Given a matrix group G defined over a finite field, this intrinsic returns true if G is
semilinear, false if G is not semilinear, or "unknown" if no decision can be reached.

DegreeOfFieldExtension(G)

Let G be a subgroup of K = GL(d, q). The intrinsic returns the degree e of the
extension field of Fq over which G is semilinear.

CentralisingMatrix(G)

Let G be a semilinear subgroup of K = GL(d, q). The intrinsic returns the matrix
C which centralises the normal subgroup of G which acts linearly over the extension
field of Fq.

FrobeniusAutomorphisms(G)

Let G be a semilinear subgroup of K = GL(d, q) and let C be the corresponding
centralising matrix. The intrinsic returns a sequence S of positive integers, one for
each generator gi of G. The element S[i] is the least positive integer such that
g−1

i Cgi = CS[i].

WriteOverLargerField(G)

Let G be a semilinear subgroup of GL(d, q) with extension degree e. This intrinsic
returns:
(i) The normal subgroup N of the matrix group G which is the kernel of the

map from G to Ce; this subgroup acts linearly over the extension field of K
and is precisely the centraliser of C in G.

(ii) A cyclic group E of order e which is isomorphic to G/N .
(iii) A sequence of images of the generators of G in E.

Ch. 60 MATRIX GROUPS OVER FINITE FIELDS 1717

Example H60E3

We analyse a semilinear group.

> P := GL(6,3);

> g1 := P![0,1,0,0,0,0,-1,0,0,0,0,0,

> 0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1];

> g2 := P![-1,0,0,0,1,0,0,-1,0,0,0,1,

> -1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0];

> g3 := P![1,0,0,0,0,0,0,-1,0,0,0,0,

> 0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1];

> G := sub <P | g1, g2, g3 >;

>

> IsSemiLinear (G);

true

> DegreeOfFieldExtension (G);

2

> CentralisingMatrix (G);

[2 2 0 0 0 0]

[1 2 0 0 0 0]

[0 0 2 2 0 0]

[0 0 1 2 0 0]

[0 0 0 0 2 2]

[0 0 0 0 1 2]

> FrobeniusAutomorphisms (G);

[1, 1, 3]

> K, E, phi := WriteOverLargerField (G);

The group K is the kernel of the homomorphism from G into E.

> K.1;

[0 1 0 0 0 0]

[2 0 0 0 0 0]

[0 0 1 0 0 0]

[0 0 0 1 0 0]

[0 0 0 0 1 0]

[0 0 0 0 0 1]

The return value E is the cyclic group of order e while phi gives the sequence of images of G.i in
E.

> E;

Abelian Group isomorphic to Z/2

Defined on 1 generator

Relations:

2*E.1 = 0

>

> phi;

[0, 0, E.1]

1718 FINITE GROUPS Part X

60.4.4 Tensor Products
Let G be a subgroup of GL(d,K), where K = GF (q), and let V be the natural K[G]-
module. We say that G preserves a tensor decomposition of V as U ⊗W if there is an
isomorphism of V onto U ⊗W such that the induced image of G in GL(U ⊗W) lies in
GL(U) ◦GL(W).

Theoretical details of the algorithm used may be found in Leedham-Green and O’Brien
[LGO97b, LGO97a].

The verbose flag SetVerbose ("Tensor", 1) will provide information on the progress
of the algorithm.

IsTensor(G: parameters)

Factors [SeqEnum] Default : []
Given a matrix group G defined over a finite field, this intrinsic returns true if
G preserves a non-trivial tensor decomposition, false if G is does not preserve a
tensor decomposition, or "unknown" if no decision can be reached.

A sequence of valid dimensions for potential factors may be supplied using the
parameter Factors. Then for each element [u,w] of the sequence Factors, the algo-
rithm will search for decompositions of V as U ⊗W , where U must have dimension
u and W must have dimension w only. If this parameter is not set, then all valid
factorisations will be considered.

TensorBasis(G)

Given a matrix group G defined over a finite field that admits a tensor decom-
posion, this intrinsic returns the change-of-basis matrix which exhibits the tensor
decomposition of G.

TensorFactors(G)

Given a matrix group G defined over a finite field that admits a tensor decomposion,
this intrinsic returns two groups which are the tensor factors of G.

IsProportional(X, k)

Given a matrix group G defined over a finite field that admits a tensor decomposi-
tion, this intrinsic returns true if and only if the matrixX is composed of k×k blocks
which differ only by scalars. If this is indeed the case, the tensor decomposition of
X is also returned.

Example H60E4

We define a subgroup of GL(6, 3) which admits a non-trivial tensor decomposition.

> P := GL(6, 3);

>

> g := P![0, 1, 1, 2, 1, 0, 2, 2, 1, 2, 1, 1, 1, 0, 2, 1, 2, 2, 1, 2, 2,

> 2, 2, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 2, 2];

>

> h := P![1, 0, 2, 1, 1, 2, 0, 0, 2, 0, 0, 2, 2, 0, 1, 0, 2, 1, 2, 1, 2,

Ch. 60 MATRIX GROUPS OVER FINITE FIELDS 1719

> 2, 1, 1, 0, 2, 0, 1, 0, 0, 0, 0, 0, 2, 1, 2];

>

> G := sub< P | g, h >;

> IsTensor(G);

true

> C := TensorBasis(G);

So C is the change-of-basis matrix. If we conjugate G.1 by C, we obtain a visible Kronecker
product.

> G.1^C;

[0 0 2 0 2 0]

[0 0 2 2 2 2]

[2 0 0 0 2 0]

[2 2 0 0 2 2]

[0 0 0 0 1 0]

[0 0 0 0 1 1]

>

We use the function IsProportional to verify that G.1C is a Kronecker product.

> IsProportional(G.1^C, 2);

true

<

[2 0]

[2 2],

[0 1 1]

[1 0 1]

[0 0 2]

>

Finally, we display the tensor factors.

> A := TensorFactors(G);

> A[1];

MatrixGroup(2, GF(3))

Generators:

[1 2]

[2 2]

[2 0]

[2 2]

> A[2];

MatrixGroup(3, GF(3))

Generators:

[0 1 0]

[1 2 1]

[1 2 0]

[0 1 1]

[1 0 1]

1720 FINITE GROUPS Part X

[0 0 2]

60.4.5 Tensor-induced Groups
Let G be a subgroup of GL(d,K), where K = Fq and q = pe for some prime p, and let
V be the natural K[G]-module. Assume that d has a proper factorisation as ur. We say
that G is tensor-induced if G preserves a decomposition of V as

U1 ⊗ U2 ⊗ · · · ⊗ Ur

where each Ui has dimension u > 1, r > 1, and the set of Ui is permuted by G. If G is
tensor-induced, then there is a homomorphism of G into the symmetric group Sr.

Theoretical details of the algorithm used may be found in Leedham-Green and O’Brien
[LGO02].

SetVerbose ("TensorInduced", 1) will provide information on the progress of the
algorithm.

IsTensorInduced(G : parameters)

InducedDegree RngIntElt Default : “All”

Given a matrix group G defined over a finite field, return true if G is tensor-induced,
false if G is not tensor-induced, and "unknown" if no decision can be reached.

If the value of the parameter InducedDegree is set to r, then the algorithm will
search for homomorphisms into the symmetric group of degree r only. Otherwise is
will consider all valid degrees.

TensorInducedBasis(G)

Given a matrix groupG defined over a finite field that is tensor-induced, this intrinsic
returns the change-of-basis matrix which exhibits that G is tensor-induced.

TensorInducedPermutations(G)

Given a matrix groupG defined over a finite field that is tensor-induced, this intrinsic
returns a sequence whose i-th entry is the homomorphic image of G.i in Sr.

TensorInducedAction(G, g)

Given a matrix groupG defined over a finite field that is tensor-induced, this intrinsic
returns the tensor-induced action of the element g ∈ G.

Ch. 60 MATRIX GROUPS OVER FINITE FIELDS 1721

Example H60E5

We illustrate the use of the functions for determining if a matrix group is tensor-induced.

> G := GL(2, 3);

> S := Sym(3);

> G := TensorWreathProduct(G, S);

> IsTensorInduced(G);

true

We next recover the permutations.

> TensorInducedPermutations(G);

[

Id(S),

Id(S),

(1, 2, 3),

(1, 2)

]

Hence G.1 and G.2 are in the kernel of the homomorphism from G to S. We extract the change-
of-basis matrix C and then conjugate G.1 by C, thereby obtaining a visible Kronecker product.

> C := TensorInducedBasis(G);

> x := G.1^C;

> x;

[2 0 0 0 0 0 0 0]

[0 2 0 0 0 0 0 0]

[0 0 2 0 0 0 0 0]

[0 0 0 2 0 0 0 0]

[1 0 0 0 1 0 0 0]

[0 1 0 0 0 1 0 0]

[0 0 1 0 0 0 1 0]

[0 0 0 1 0 0 0 1]

Finally, we verify that x = G.1C is a Kronecker product for each of 2 and 4.

> IsProportional(x, 2);

true

<[2 0]

[0 2], [1 0 0 0]

[0 1 0 0]

[2 0 2 0]

[0 2 0 2]>

> IsProportional(x, 4);

true

<[2 0 0 0]

[0 2 0 0]

[0 0 2 0]

[0 0 0 2], [1 0]

[2 2]>

1722 FINITE GROUPS Part X

60.4.6 Normalisers of Extraspecial r-groups and Symplectic 2-groups

Let G ≤ GL(d, q), where d = rm for some prime r. If G is contained in the normaliser
of an r-group R, of order either r2m+1 or 22m+2, then either R is extraspecial (in the first
case), or R is a 2-group of symplectic type (that is, a central product of an extraspecial
2-group with the cyclic group of order 4).

If d = r is an odd prime, we use the Monte Carlo algorithm of Niemeyer [Nie05]
to decide whether or not G normalises such a subgroup. Otherwise, the corresponding
intrinsic IsExtraSpecialNormaliser searches for elements of the normal subgroup, and
can only reach a negative conclusion in certain limited cases. If it cannot reach a conclusion
it returns "unknown".

IsExtraSpecialNormaliser(G)

Given a matrix group G defined over a finite field, the intrinsic returns true if
G normalises an extraspecial r-group or 2-group of symplectic type, false if G is
known not to normalise an extraspecial r-group or a 2-group of symplectic type, or
"unknown" if it cannot reach a conclusion.

ExtraSpecialParameters(G)

Given a matrix group G defined over a finite field that is known to normalise an
extraspecial r-group or 2-group of symplectic type, this intrinsic returns a sequence
of two integers, r and n, where the extraspecial or symplectic subgroup R normalised
by G has order rn.

ExtraSpecialGroup(G)

Given a matrix group G defined over a finite field that is known to normalise an
extraspecial r-group or 2-group of symplectic type, this intrinsic returns the ex-
traspecial or symplectic subgroup normalised by G.

ExtraSpecialNormaliser(G)

Given a matrix group G defined over a finite field that is known to normalise an
extraspecial r-group or 2-group of symplectic type, this intrinsic returns the action of
the generators of G on its normal extraspecial or symplectic subgroup as a sequence
of matrices, each of degree 2r, one for each generator of G.

ExtraSpecialAction(G, g)

Given a matrix group G defined over a finite field that is known to normalise an
extraspecial r-group or 2-group of symplectic type, this intrinsic returns a matrix of
degree 2r describing the action of element g on the extraspecial or symplectic group
normalised by G.

Ch. 60 MATRIX GROUPS OVER FINITE FIELDS 1723

ExtraSpecialBasis(G)

Given a matrix group G defined over a finite field, which is the odd prime degree
case of G normalising an extraspecial r-group or 2-group of symplectic type, this
intrinsic returns the change-of-basis matrix which conjugates the normal extraspecial
subgroup into a “nice” representation, generated by a diagonal and a permutation
matrix.

Example H60E6

For this example we construct a subgroup G of GL(7, 8) that normalises an extraspecial r-group
or 2-group of symplectic type.

> F:=GF(8);

> P:=GL(7,F);

> w := PrimitiveElement(F);

> g1:=P![

> w,0,w^2,w^5,0,w^3,w,w,1,w^6,w^3,0,w^4,w,w^2,w^6,w^4,1,w^3,w^3,w^5,

> w^6,w,w^3,1,w^5,0,w^4,1,w^6,w^3,w^6,w^3,w^2,w^2,w^3,w^6,w^6,w^4,1,w^2,w^4,

> w^5,w^4,w^2,w^6,1,w^5,w];

> g2:=P![w^3,w^4,w^2,w^6,w,w,w^3,w^3,w^4,w,w,w^2,w^3,w^3,w,w^3,w^5,w,1,w^3,w,

> 0,w^2,w^6,w,w^5,1,w,w^6,0,w^3,0,w^4,w,w^5,w^3,w^3,1,w^3,w^5,w^5,w^3,

> w^4,w^6,w,w^6,w^4,w^4,0];

> g3:=P![w^5,w^6,w^2,w,w,w^4,w^6,w^6,w^6,w,w^6,w,1,w^3,w,w^6,w^2,w,w^6,w^3,w^6,

> w^2,w^6,w^6,w^3,w,w^6,w^5,0,w^4,w^6,w^6,w,w^2,0,w,w^3,w^5,w^2,w^3,w^4,w^6,

> 0,w^3,w,w^3,w^4,w^3,1];

> gens := [g1,g2,g3];

> G := sub< P | gens >;

> IsExtraSpecialNormaliser(G);

true

So G has the desired normaliser property.

> ExtraSpecialParameters (G);

[7, 3]

> N:=ExtraSpecialNormaliser(G);

> N;

[

[3 4]

[1 4],

[4 3]

[0 2],

[1 0]

[0 1]

]

1724 FINITE GROUPS Part X

60.4.7 Writing Representations over Subfields
The algorithm implemented by these functions is due to Glasby, Leedham-Green and
O’Brien [GLGO05]. We also provide access to an earlier algorithm for the non-scalar case
developed by Glasby and Howlett [GH97].

IsOverSmallerField (G : parameters)

Scalars BoolElt Default : false

Algorithm MonStgElt Default : “GLO”
Given an absolutely irreducible matrix group G defined over a finite field K, this
intrinsic decides whether or not G has an equivalent representation over a subfield of
K. If so, it returns true and the representation over the smallest possible subfield,
otherwise it returns false. If the optional argument Scalars is true then decide
whether or G modulo scalars has an equivalent representation over a subfield of K.
If the optional argument Algorithm is set to "GH", then the non-scalar case uses the
original Glasby and Howlett algorithm. The default is the Glasby, Leedham-Green
and O’Brien algorithm, specified by GLO.

IsOverSmallerField(G, k : parameters)

Scalars BoolElt Default : false

Algorithm MonStgElt Default : “GLO”
Given an absolutely irreducible matrix group G defined over a finite field K, and a
positive integer k which is a proper divisor of the degree of K, this intrinsic decides
whether or not G has an equivalent representation over a proper subfield ofK having
degree k over the prime field. If so, it returns true and the representation over this
subfield, else it returns false. If the optional argument Scalars is true then it
decides whether or not G modulo scalars has an equivalent representation over a
degree k subfield of K. If the optional argument Algorithm is set to "GH", then the
non-scalar case uses the original Glasby and Howlett algorithm. The default is the
Glasby, Leedham-Green and O’Brien algorithm, specified by GLO.

SmallerField(G)

Given an absolutely irreducible matrix group G defined over a finite field K, which
can be written over a proper subfield of K (possibly modulo scalars), return the
subfield.

SmallerFieldBasis(G)

Given an absolutely irreducible matrix group G defined over a finite field K, which
can be written over a proper subfield of K (possibly modulo scalars), return the
change of basis matrix for G which rewrites G over the smaller field.

SmallerFieldImage(G, g)

Given an absolutely irreducible matrix group G defined over a finite field K, which
can be written over a proper subfield of K (possibly modulo scalars), return the
image of g ∈ G in the group defined over the subfield.

Ch. 60 MATRIX GROUPS OVER FINITE FIELDS 1725

Example H60E7

We define a subgroup of GL(3, 8) which can be written over F2.

> G := GL (2, GF (3, 2));

> H := GL (2, GF (3, 8));

> K := sub < H | G.1, G.2 >;

> K;

MatrixGroup(2, GF(3^8))

Generators:

[$.1^820 0]

[0 1]

[2 1]

[2 0]

> flag, M := IsOverSmallerField (K);

> flag;

true

> M;

MatrixGroup(2, GF(3^2))

Generators:

[$.1^7 $.1^2]

[1 2]

[$.1^7 $.1^6]

[$.1^2 $.1^5]

> F := GF(3, 4);

> G := MatrixGroup<2, F | [F.1^52, F.1^72, F.1^32, 0],

> [1, 0, F.1^20, 2] >;

> flag, X := IsOverSmallerField (G);

> flag;

false

We now see if G has an equivalent representation modulo scalars.

> flag, X := IsOverSmallerField (G: Scalars := true);

> flag;

true

> X;

MatrixGroup(2, GF(3))

Generators:

[2 1]

[1 0]

[2 1]

[1 1]

> SmallerField (G);

Finite field of size 3

> SmallerFieldBasis (G);

[F.1^33 F.1^23]

[F.1^43 F.1^63]

1726 FINITE GROUPS Part X

> g := G.1 * G.2^2; g;

[F.1^52 F.1^72]

[F.1^32 0]

> SmallerFieldImage (G, g);

[1 2]

[2 0]

WriteOverSmallerField(G, F)

Given a group G of d×d matrices over a finite field E having degree e and a subfield
F of E having degree f , write the matrices of G as de/f by de/f matrices over F
and return the group and the isomorphism.

Example H60E8

We define the group GL(2, 4) and then rewrite in over F2 as a degree 4 matrix group.

> G := GL(2, 4);

> H := WriteOverSmallerField(G, GF(2));

> H;

MatrixGroup(4, GF(2))

Generators:

[0 1 0 0]

[1 1 0 0]

[0 0 1 0]

[0 0 0 1]

[1 0 1 0]

[0 1 0 1]

[1 0 0 0]

[0 1 0 0]

Ch. 60 MATRIX GROUPS OVER FINITE FIELDS 1727

60.4.8 Decompositions with Respect to a Normal Subgroup

SearchForDecomposition(G, S)

Given a matrix group G defined over a finite field and a sequence S of elements of
G, this intrinsic first constructs the normal closure N of S in G. It then seeks to
decide whether or not G, with respect to N , has a decomposition corresponding to
one of the categories (ii)–(vi) in the theorem of Aschbacher stated at the beginning
of this section. Theoretical details of the algorithms used may be found in Holt,
Leedham-Green, O’Brien, and Rees [HLGOR96a].

In summary, it tests for one of the following possibilities:

(ii)G acts semilinearly over an extension field L of K, and N acts linearly over L;

(iii)G acts imprimitively on V and N fixes each block of imprimitivity;

(iv)G preserves a tensor product decomposition U⊗W of V , where N acts as scalar
matrices on U ;

(v)N acts absolutely irreducibly on V and is an extraspecial p-group for some prime
p, or a 2-group of symplectic type;

(vi)G preserves a tensor-induced decomposition V = ⊗mU of V for some m > 1,
where N acts absolutely irreducibly on V and fixes each of the m factors.
If one of the listed decompositions is found, then the function reports the type

found and returns true; if no decomposition is found with respect to N , then the
function returns false. The answer provided by the function is conclusive for
decompositions of types (ii)–(v), but a negative answer for (vi) is not necessarily
conclusive.

Each test involves a decomposition of G with respect to the normal subgroup N
(which may sometimes be trivial or scalar). In (ii), N is the subgroup of G acting
linearly over the extension field irreducibly on V . In (iii), N is the subgroup which
fixes each of the subspaces in the imprimitive decomposition of V . In (iv), it is
the subgroup acting as scalar matrices on one of the factors in the tensor-product
decomposition. In (v), N is already described, and in (vi), it is the subgroup fixing
each of the factors in the tensor-induced decomposition (so N itself falls in Category
(iv)).

If any one of these decompositions can be found, then it may be possible to
obtain an explicit representation of G/N and hence reduce the study of G to a
smaller problem. For example, in Category (iii), G/N acts as a permutation group
on the subspaces in the imprimitive decomposition of V . Currently only limited
facilities are provided to construct G/N .

Information about the progress of the algorithm can be output by setting the
verbose flag SetVerbose ("Smash", 1).

1728 FINITE GROUPS Part X

60.4.8.1 Accessing the Decomposition Information
The access functions described in the sections on Primitivity Testing, Semilinearity, Tensor
Products, Tensor Induction, and Normalisers of extraspecial groups may be used to extract
information about decompositions of type (ii), (iii), (iv), (v) and (vi). We illustrate such
decompositions below.

Example H60E9

We begin with an example where no decomposition exists.

> G := GL(4, 5);

> SearchForDecomposition (G, [G.1]);

Smash: No decomposition found

false

The second example is of an imprimitive decomposition.

> M := GL (4, 7);

> P := Sym (3);

> G := WreathProduct (M, P);

> SearchForDecomposition (G, [G.1, G.2]);

Smash: G is imprimitive

true

> IsPrimitive (G);

false

> BlocksImage (G);

Permutation group acting on a set of cardinality 3

Id($)

Id($)

(1, 2, 3)

(1, 2)

The third example admits a semilinear decomposition.

> P := GL(6,3);

> g1 := P![0,1,0,0,0,0,-1,0,0,0,0,0,

> 0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1];

> g2 := P![-1,0,0,0,1,0,0,-1,0,0,0,1,

> -1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0];

> g3 := P![1,0,0,0,0,0,0,-1,0,0,0,0,

> 0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1];

> G := sub <P | g1, g2, g3 >;

>

> SearchForDecomposition (G, [g1]);

Smash: G is semilinear

true

> IsSemiLinear (G);

true

> DegreeOfFieldExtension (G);

2

Ch. 60 MATRIX GROUPS OVER FINITE FIELDS 1729

> CentralisingMatrix (G);

[2 2 0 0 0 0]

[1 2 0 0 0 0]

[0 0 2 2 0 0]

[0 0 1 2 0 0]

[0 0 0 0 2 2]

[0 0 0 0 1 2]

> FrobeniusAutomorphisms (G);

[1, 1, 3]

The fourth example admits a tensor product decomposition.

> F := GF(5);

> G := GL(5, F);

> H := GL(3, F);

> P := GL(15, F);

> A := MatrixAlgebra (F, 5);

> B := MatrixAlgebra (F, 3);

> g1 := A!G.1; g2 := A!G.2; g3 := A!Identity(G);

> h1 := B!H.1; h2 := B!H.2; h3 := B!Identity(H);

> w := TensorProduct (g1, h3);

> x := TensorProduct (g2, h3);

> y := TensorProduct (g3, h1);

> z := TensorProduct (g3, h2);

> G := sub < P | w, x, y, z>;

> SearchForDecomposition (G, [G.1, G.2]);

Smash: G is a tensor product

true

> IsTensor (G);

true

> TensorBasis (G);

[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 1 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 1 0 0]

[0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]

[4 0 1 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 4 0 1 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 4 0 1 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 4 0 1]

[0 0 0 0 0 0 0 0 0 4 0 1 0 0 0]

[1 4 4 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 1 4 4 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 1 4 4 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 1 4 4]

[0 0 0 0 0 0 0 0 0 1 4 4 0 0 0]

Our fifth example is of a tensor-induced decomposition.

> M := GL (3, GF(2));

1730 FINITE GROUPS Part X

> P := Sym (3);

> G := TensorWreathProduct (M, P);

> SearchForDecomposition (G, [G.1]);

Smash: G is tensor induced

true

>

> IsTensorInduced (G);

true

> TensorInducedPermutations (G);

[Id(P), Id(P), (1, 3, 2), (1, 3)]

Our final example is of a normaliser of a symplectic group.

> F := GF(5);

> P := GL(4,F);

> g1 := P![1,0,0,0,0,4,0,0,2,0,2,3,3,0,4,3];

> g2 := P![4,0,0,1,2,4,4,0,1,0,1,2,0,0,0,1];

> g3 := P![4,0,1,1,0,1,0,0,0,1,3,4,0,4,3,2];

> g4 := P![2,0,4,3,4,4,2,4,0,1,3,4,4,2,0,1];

> g5 := P![1,1,3,4,0,0,3,4,2,0,0,4,3,1,3,4];

> g6 := P![2,0,0,0,0,2,0,0,0,0,2,0,0,0,0,2];

> G := sub < P | g1, g2, g3, g4, g5, g6 >;

> SearchForDecomposition (G, [G.4]);

Smash: G is normaliser of symplectic 2-group

true

> IsExtraSpecialNormaliser (G);

true

> ExtraSpecialParameters (G);

[2, 6]

> g := G.1 * G.2;

> ExtraSpecialAction(G, g);

[0 1 0 0]

[1 1 0 0]

[0 1 1 1]

[1 1 1 0]

Ch. 60 MATRIX GROUPS OVER FINITE FIELDS 1731

60.5 Constructive Recognition for Simple Groups

For each finite non-abelian simple group S, we designate a specific standard copy of S.
The standard copy has a designated set of standard generators. For example, the standard
copy of Alt(n) is on n points; its standard generators are (1, 2, 3) and either of (3, . . . , n) or
(1, 2)(3, . . . , n) according to the parity of n. For a projective representation, the standard
copy is the quotient of a matrix group by its scalar subgroup. For example, the standard
copy of PSL(n, q) is the quotient of SL(n, q) by its scalar subgroup.

To compute in a copy G of S, we first construct effective isomorphisms between G and
its standard copy. We do this by finding generators in G that correspond to the standard
generators of S under an isomorphism. More formally, a constructive recognition algorithm
for a non-abelian simple group G (possibly with decorations) solves the following problem:
construct an isomorphism φ from G to a standard copy S of G, such that φ(g) can be
computed efficiently for every g ∈ G. This is done by constructing standard generators in
both G and its standard copy S.

A rewriting algorithm for G solves the constructive membership problem: given g ∈ U ≥
G = 〈X〉, decide whether or not g ∈ G, and if so express g as an SLP in X. (Here U is the
generic overgroup of G, such as GL(d, q) or Sym(n).) The rewriting algorithm is used to
make the isomorphism between S and G effective. To compute the image of an arbitrary
element s of S in G, we first write s as an SLP in the standard generators of S and then
evaluate the SLP in the copy of the standard generators in G.

To verify that the homomorphism from S to G is an isomorphism, we can evaluate in
G a standard presentation for S on its standard generators. If the copy of the standard
generators in G satisfy the presentation, then we have proved that we have an isomorphism.

For a detailed discussion of these topics, see [O’B11, LGO09].

ClassicalStandardGenerators(type, d, q)

This intrinsic produces the standard generators of Leedham-Green and O’Brien for
the quasisimple classical group of specified type in dimension d over field of size q.
The type is designated by the argument “type” which must be one of the strings
“SL”, “Sp”, “SU”, “Omega”, “Omega-”, or “Omega+”. The standard generators
defined a specific copy of a classical group and are defined in [LGO09] and [DLLGO].

ClassicalConstructiveRecognition (G : parameters)

Case MonStgElt Default : “unknown”
Randomiser GrpRandProc Default :

The argument G must be a matrix group defined over a finite field such that G =
〈X〉 is conjugate to a quasisimple classical group in its natural representation in
dimension at least 2. The intrinsic constructs a copy S in G of the generators defined
by StandardGenerators. If G is quasisimple and classical, then the function returns
true, the standard generators S, and SLPs for these in X; otherwise it returns
false.

1732 FINITE GROUPS Part X

If the user has available the information returned by the intrinsic ClassicalType
(G), this can be supplied using the optional parameter Case.

The parameter Randomiser allows the user to specify the random process that
is be used to construct random elements and the SLPs returned for the standard
generators are in the word group of this process. The default value of Randomiser
is RandomProcessWithWords(G).

The implementations for even and odd characteristic were developed by Heiko
Dietrich and Eamonn O’Brien respectively.

ClassicalElementToWord(G, g)

The argument G must be a matrix group defined over a finite field and G is assumed
to be conjugate to a classical group in its natural representation. It is also assumed
that the intrinsic ClassicalConstructiveRecognition has been applied to G. For
g ∈ G, the intrinsic writes g as an SLP in the standard generators S of G, and
returns true and the SLP; otherwise it returns false.

ClassicalStandardPresentation(type, d, q : parameters)

Projective BoolElt Default : false

Given the specification type, d, q of a quasisimple group G, this intrinsic con-
structs a presentation on the standard generators for G. The string type must be
one of “SL”, “Sp”, “SU”, “Omega”, “Omega-”, or “Omega+” while d is the dimen-
sion and q is the cardinality of the finite field. The presentations are described in
[LGO]. The relations are returned as SLPs together with the parent SLPGroup.

If the parameter Projective is set to true, the intrinsic constructs a presentation
for the corresponding projective group.

Example H60E10

As our first illustration, we produce standard generators for SL(4, 52):

> S := ClassicalStandardGenerators ("SL", 4, 5^2);

> S;

[

[0 1 0 0]

[4 0 0 0]

[0 0 1 0]

[0 0 0 1],

[0 0 0 1]

[4 0 0 0]

[0 4 0 0]

[0 0 4 0],

[1 1 0 0]

[0 1 0 0]

[0 0 1 0]

[0 0 0 1],

[$.1 0 0 0]

Ch. 60 MATRIX GROUPS OVER FINITE FIELDS 1733

[0 $.1^23 0 0]

[0 0 1 0]

[0 0 0 1]

]

We now perform constructive recognition on SL(6, 53):

> G := SL (6, 5^3);

> f, S, W := ClassicalConstructiveRecognition (G);

> f;

true

> S;

[

[$.1^26 $.1^49 $.1^46 $.1^3 $.1^103 $.1^107]

[$.1^39 $.1^7 $.1^5 $.1^53 $.1^89 $.1^63]

[$.1^20 $.1^103 $.1^68 $.1^22 $.1^23 $.1^60]

[3 $.1^32 $.1^28 $.1^60 3 4]

[$.1^61 $.1^32 $.1^95 0 $.1^65 $.1]

[$.1^21 $.1 $.1^50 $.1^40 $.1^22 $.1^49],

[$.1^40 $.1^111 $.1^122 $.1^72 $.1^48 $.1^87]

[$.1^59 $.1^72 $.1^42 $.1^65 $.1^59 $.1^17]

[$.1^114 $.1^4 $.1^109 $.1^24 $.1^73 $.1^60]

[$.1^49 $.1^87 $.1^122 $.1^51 $.1^19 4]

[$.1^18 $.1^27 $.1^43 $.1^51 $.1^103 $.1^82]

[$.1^66 $.1^28 $.1^16 $.1^38 4 $.1^88],

[1 $.1^90 $.1^111 $.1^20 $.1^67 $.1^12]

[0 $.1^86 $.1^25 $.1^58 $.1^105 $.1^50]

[0 $.1^73 $.1^45 $.1^3 $.1^50 $.1^119]

[0 $.1^96 $.1^117 $.1^3 $.1^73 $.1^18]

[0 $.1^29 $.1^50 $.1^83 $.1^15 $.1^75]

[0 $.1^18 $.1^39 $.1^72 $.1^119 $.1^13],

[$.1^59 $.1^28 $.1^2 $.1^71 $.1^72 $.1^109]

[$.1^107 $.1^63 $.1^113 $.1^51 $.1^32 $.1^5]

[$.1^52 $.1^107 $.1^104 $.1^19 $.1^73 $.1^121]

[$.1^75 $.1^81 $.1^66 $.1^121 $.1^29 0]

[$.1^8 $.1^33 $.1^121 4 $.1^43 $.1^35]

[$.1^121 $.1^6 0 $.1^2 $.1^65 $.1^2]

]

Note that W is list of SLPs expressing S in terms of defining generators of G.

> S eq Evaluate (W, [G.i: i in [1..Ngens (G)]]);

true

We next express a random element of G as a SLP in S and then check that the standard generators
satisfy the standard presentation,

> g := Random (G);

> f, w := ClassicalElementToWord (G, g);

> Evaluate (w, S) eq g;

true

1734 FINITE GROUPS Part X

>

> P, R := ClassicalStandardPresentation ("SL", 6, 5^3);

> Set (Evaluate (R, S));

{

[1 0 0 0 0 0]

[0 1 0 0 0 0]

[0 0 1 0 0 0]

[0 0 0 1 0 0]

[0 0 0 0 1 0]

[0 0 0 0 0 1]

}

We perform constructive recognition on a random conjugate of Sp(10, 36) and again check that
the standard generators satisfy the standard presentation.

> G := RandomConjugate (Sp (10, 3^6));

> f, S, W := ClassicalConstructiveRecognition (G);

> f;

true

The return variable W is list of SLPs expressing S in terms of defining generators of G.

> S eq Evaluate (W, [G.i: i in [1..Ngens (G)]]);

true

>

> g := Random (G);

> f, w := ClassicalElementToWord (G, g);

> Evaluate (w, S) eq g;

true

>

> P, R := ClassicalStandardPresentation ("Sp", 10, 3^6);

> Set (Evaluate (R, S));

{

[1 0 0 0 0 0 0 0 0 0]

[0 1 0 0 0 0 0 0 0 0]

[0 0 1 0 0 0 0 0 0 0]

[0 0 0 1 0 0 0 0 0 0]

[0 0 0 0 1 0 0 0 0 0]

[0 0 0 0 0 1 0 0 0 0]

[0 0 0 0 0 0 1 0 0 0]

[0 0 0 0 0 0 0 1 0 0]

[0 0 0 0 0 0 0 0 1 0]

[0 0 0 0 0 0 0 0 0 1]

}

As our final demonstration we perform constructive recognition with Ω−(16, 26).

> G := RandomConjugate (OmegaMinus (16, 2^6));

> f, S, W := ClassicalConstructiveRecognition (G);

> f;

Ch. 60 MATRIX GROUPS OVER FINITE FIELDS 1735

true

A random element of G is expressed as an SLP in S:

> g := Random (G);

> f, w := ClassicalElementToWord (G, g);

> Evaluate (w, S) eq g;

true

60.6 Composition Trees for Matrix Groups
A composition tree for a group G can be viewed as a data structure that present a group in
terms of its composition factors. The tree is constructed recursively and the data structure
facilitates the rewriting of elements of G in terms of different generating sets.

The basic strategy for computing a composition tree of a matrix group employs a com-
bination of a constructive version of Aschbacher’s theorem [Asc84] and constructive recog-
nition algorithms for finite simple groups. The basic algorithms are described in [LG01,
O’B06, O’B11] while some new ideas introduced in [NS06] are incorporated. A detailed
account of the entire CompositionTree procedure appears in [BHLGO11].

The algorithm to construct a composition tree proceeds as follows. Given a group G,
either:
(i) Construct an effective homomorphism φ : G → G1, for some group G1. We call φ a

reduction since G1 is “smaller” than G in some respect – for example, its degree or field
of definition.

(ii)Or deduce that G is cyclic, elementary abelian, or “close” to being non-abelian simple.
Now G becomes a leaf in the tree.

Assume that Case (i) applies.
1. Now construct a composition tree for G1.
2. Construct generators for G0 := Ker(φ). This requires a rewriting algorithm for G1.
3. Construct a composition tree for G0.
4. Combine the composition trees for G1 and G0 into a tree for G.

If G ≤ GL(d, q), then we exploit Aschbacher’s theorem [Asc84] in Step (1). This
requires algorithms to decide if G lies in a certain Aschbacher class, and to construct the
corresponding φ. Other homomorphisms, such as the determinant map, may also be used.

The group associated with a leaf need not be simple. It may be cyclic or elementary
abelian, a soluble or non-abelian simple primitive permutation group, or an absolutely
irreducible matrix group that is simple modulo its centre. The decisions on just which
groups are treated as a leaves are partly dictated by complexity considerations, and partly
based on the quality of available algorithms to process a leaf. For example, we observe no
practical advantage flowing from refining a cyclic group to its composition factors.

1736 FINITE GROUPS Part X

Once a composition tree for G = 〈X〉 has been constructed, then a second list Y of nice
generators are stored with G. We call 〈Y 〉 the nice group. The intrinsic CompositionTree
constructs the nice generators Y as SLPs in X. The rewriting algorithm solves rewriting
problems on Y and the resulting SLPs can then be rewritten to provide SLPs on X.

The verbose flag SetVerbose("CompositionTree", n) with n = 1, . . . , 10 may be used
to print increasing levels of information on the progress of the functions.

CompositionTree(G : parameters)

Verify BoolElt Default : false

Scalar FldFinElt Default : 1
KernelBatchSize RngIntElt Default : 5
MandarinBatchSize RngIntElt Default : 100
MaxHomFinderFails RngIntElt Default : 1
MaxQuotientOrder RngIntElt Default : 106

FastTensorTest BoolElt Default : true

MaxBSGSVerifyOrder RngIntElt Default : 2000
AnalysePermGroups BoolElt Default : false

KnownLeaf BoolElt Default : false

NamingElements RngIntElt Default : 200
UnipotentBatchSize RngIntElt Default : 100
PresentationKernel BoolElt Default : true

Given a matrix group G defined over a finite field, this intrinsic constructs a com-
position tree for G and returns the tree.

Verify: If true, then verify correctness of the tree during construction.
KernelBatchSize: The number of normal generators used to construct the kernel

of homomorphism.
MandarinBatchSize: The number of random elements used to check correctness

of the outcome of Monte-Carlo algorithms.
MaxHomFinderFails: Assume a negative answer after this many failures of cer-

tain Monte Carlo algorithms.
AnalysePermGroups: If false, then always treat the permutation group as a

leaf, and do not analyse its structure.
NamingElements: The number of random elements used in calls to LieType and

RecogniseClassical.
MaxQuotientOrder: A leaf with larger order will not be fully refined to its com-

position factors.
FastTensorTest: Use only the fast tensor product test.
MaxBSGSVerifyOrder: If RandomSchreier is used on a leaf and it has order less

than MaxBSGSVerifyOrder, then Verify the calculation.
PresentationKernel: Use presentations to obtain kernels, where possible.
UnipotentBatchSize: Batch size for the unipotent kernels.

Ch. 60 MATRIX GROUPS OVER FINITE FIELDS 1737

CompositionTreeFastVerification(G)

The argument G must be a matrix group over a finite field for which a composi-
tion tree datastructure has previously been constructed. The intrinsic determines
if correctness of the composition tree can be verified at modest cost using presen-
tations. In effect, the intrinsic determines whether presentations on nice generators
are known for all the leaves.

CompositionTreeVerify(G)

The argument G must be a matrix group over a finite field for which a composi-
tion tree datastructure has previously been constructed. The intrinsic verifies the
correctness of the composition tree by using it to construct a presentation for G. If
G satisfies the presentation, then return true, and the relators of the presentation
as SLPs; otherwise return false. The presentation is on the group returned by
CompositionTreeNiceGroup(G).

CompositionTreeNiceGroup(G)

The argument G must be a matrix group over a finite field for which a composition
tree datastructure has previously been constructed. The intrinsic returns the nice
group for G.

CompositionTreeSLPGroup(G)

The argument G must be a matrix group over a finite field for which a composition
tree datastructure and the associated nice group H has previously been constructed.
The intrinsic returns the word group W for H, and the map from W to H.

DisplayCompTreeNodes(G : parameters)

NonTrivial BoolElt Default : true

Leaves BoolElt Default : false

The argument G must be a matrix group over a finite field for which a composition
tree datastructure has previously been constructed. This intrinsic displays informa-
tion about the nodes in the composition tree for G. The tree is traversed in-order.
If parameter NonTrivial is true, then only non-trivial nodes will be displayed. If
parameter Leaves is true then only leaves will be displayed.

CompositionTreeNiceToUser(G)

The argument G must be a matrix group over a finite field for which a composition
tree datastructure has previously been constructed. This intrinsic returns the coer-
cion map from SLPs in nice generators of G to SLPs in input user generators of G,
as well as the SLPs of the nice generators given in terms the user generators.

1738 FINITE GROUPS Part X

CompositionTreeOrder(G)

The argument G must be a matrix group over a finite field for which a composition
tree datastructure has previously been constructed. This intrinsic returns the order
of G.

CompositionTreeElementToWord(G, g)

The argument G must be a matrix group over a finite field for which a composition
tree datastructure has previously been constructed. Given an element g ∈ G, return
true and an SLP for g in the nice generators of G, otherwise return false.

CompositionTreeCBM(G)

The argument G must be a matrix group over a finite field for which a composi-
tion tree datastructure has previously been constructed. This intrinsic returns a
change-of-basis matrix that exhibits the Aschbacher reductions of G given by the
composition tree.

CompositionTreeReductionInfo(G, t)

The argument G must be a matrix group over a finite field for which a composition
tree datastructure has previously been constructed. This intrinsic returns a string
description of the reduction at the internal node t in the composition tree for G, as
well as the image and kernel of this reduction.

CompositionTreeSeries(G)

The argument G must be a matrix group over a finite field for which a composition
tree datastructure has previously been constructed. This intrinsic returns:
1. A normal series of subgroups 1 = G0 < G1 < ... < Gk = G.
2. Maps Gi 7→ Si, where Si is the standard copy of Gi/Gi−1, where i ≥ 1. The

kernel of this map is Gi−1. Observe that Si may be the standard copy plus
scalars Z, and the map is then a homomorphism modulo scalars, so that the
kernel is (Gi−1.Z)/Z.

3. Maps Si 7→ Gi.
4. Maps Si 7→ WordGroup(Si).
5. Boolean flag true or false to indicate if the series is a true composition series.
6. A sequence of the leaf nodes in the composition tree corresponding to each

composition factor. All maps are defined by rules, so Function can be applied
on them to avoid built-in membership testing.

CompositionTreeFactorNumber(G, g)

The argument G must be a matrix group over a finite field for which a composi-
tion tree datastructure has previously been constructed. This intrinsic returns the
minimal integer i such that g lies in the ith-term of the normal series returned by
CompositionTreeSeries for G.

Ch. 60 MATRIX GROUPS OVER FINITE FIELDS 1739

HasCompositionTree(G)

Given a matrix group G defined over a finite field, this intrinsic returns true if G
has a composition tree and false otherwise.

CleanCompositionTree(G)

The argument G must be a matrix group over a finite field for which a composition
tree datastructure has previously been constructed. This intrinsic removes all data
related to the composition tree datastructure for G.

Example H60E11

We construct a composition tree for the conformal orthogonal group G of plus type of degree 4
over F52 .

> G := CGOPlus(4, 5^2);

>

> T := CompositionTree(G);

>

> DisplayCompTreeNodes (G: Leaves:=true);

node = 2

parent = 1

depth = 1

scalar = 1

info = leaf, GrpAb, cyclic group, order 12

fast verify = true

node = 4

parent = 3

depth = 2

scalar = 1

info = leaf, GrpAb, cyclic group, order 4

fast verify = true

node = 7

parent = 6

depth = 4

scalar = 12

info = leaf, GrpAb, cyclic group, order 24

fast verify = true

node = 8

parent = 6

depth = 4

scalar = 2

info = leaf, GrpMat, almost simple, <"A", 1, 25>

fast verify = true

node = 9

1740 FINITE GROUPS Part X

parent = 5

depth = 3

scalar = 1

info = leaf, GrpMat, almost simple, <"A", 1, 25>

fast verify = true

We now verify correctness of the composition tree. In order to show what is going on we illustrate
various pieces of the verification process. We begin by setting up the nice group H for G and its
associated SLP group; observe that H = G. After checking that verification can be done quickly,
we perform the verification.

> H := CompositionTreeNiceGroup(G);

> W := CompositionTreeSLPGroup(G);

>

> CompositionTreeFastVerification(G);

true

>

> f, R := CompositionTreeVerify(G);

> #R;

73

At this point we have verified correctness. However, we now explicitly evaluate the relations R
on the generators of H. This step has already been performed by CompositionTreeVerify so it
is shown here just for demonstration purposes.

> Set(Evaluate(R, [H.i:i in [1..Ngens(H)]]));

{

[1 0 0 0]

[0 1 0 0]

[0 0 1 0]

[0 0 0 1]

}

Now that we know that the composition tree is correct, we ask for the order of G.

> CompositionTreeOrder(G);

11681280000

Express the element g of G as a SLP on the generators of the nice group H.

> g := Random(G);

> f, w := CompositionTreeElementToWord(G, g);

> Evaluate(w, [H.i:i in [1..Ngens(H)]]) eq g;

true

Rewrite the SLP in terms of the user-supplied generators for G.

> tau := CompositionTreeNiceToUser(G);

> tau;

Ch. 60 MATRIX GROUPS OVER FINITE FIELDS 1741

Mapping from: GrpSLP: W to SLPGroup(5)

Images of elements of W under tau lie in WordGroup(G).

> v := tau(w);

> Evaluate (v, [G.i : i in [1..Ngens(G)]]) eq g;

true

Test a random element of the generic group for G for membership. (The generic group will be
the general linear group GL(4, 52).)

> x := Random(Generic(G));

> f, w := CompositionTreeElementToWord(G, x);

> f;

false

Finally, we construct a normal series for G and locate a random element within this series.

> CS, _, _, _, flag := CompositionTreeSeries(G);

> "Series is composition series? ", flag;

Series is composition series? true

> "Length is ", #CS;

Length is 10

>

> g := Random(G);

> CompositionTreeFactorNumber(G, g);

10

Example H60E12

In this example, we choose a maximal subgroup of the linear group SL(10, 28) and compute its
composition tree.

> X := ClassicalMaximals ("L", 10, 2^8);

> G := X[1];

>

> T := CompositionTree (G);

>

> DisplayCompTreeNodes (G: Leaves:=true, NonTrivial:=true);

node = 6

parent = 5

depth = 5

scalar = 1

info = leaf, GrpAb, cyclic group, order 255

fast verify = true

node = 9

parent = 8

depth = 5

scalar = 1

info = leaf, GrpMat, almost simple, <"A", 8, 256>

1742 FINITE GROUPS Part X

fast verify = true

node = 13

parent = 12

depth = 3

scalar = 1

info = leaf, GrpPC, abelian group, order 256

fast verify = true

node = 15

parent = 14

depth = 4

scalar = 1

info = leaf, GrpPC, abelian group, order 256

fast verify = true

node = 17

parent = 16

depth = 5

scalar = 1

info = leaf, GrpPC, abelian group, order 256

fast verify = true

node = 19

parent = 18

depth = 6

scalar = 1

info = leaf, GrpPC, abelian group, order 256

fast verify = true

node = 21

parent = 20

depth = 7

scalar = 1

info = leaf, GrpPC, abelian group, order 256

fast verify = true

node = 23

parent = 22

depth = 8

scalar = 1

info = leaf, GrpPC, abelian group, order 256

fast verify = true

node = 25

parent = 24

depth = 9

scalar = 1

Ch. 60 MATRIX GROUPS OVER FINITE FIELDS 1743

info = leaf, GrpPC, abelian group, order 256

fast verify = true

node = 27

parent = 26

depth = 10

scalar = 1

info = leaf, GrpPC, abelian group, order 256

fast verify = true

node = 29

parent = 28

depth = 11

scalar = 1

info = leaf, GrpPC, abelian group, order 256

fast verify = true

We now set up the nice group H for G and its associated SLP group; observe that H = G.

> H := CompositionTreeNiceGroup(G);

> "# of generators of H is ", Ngens(H);

of generators of H is 77

> W := CompositionTreeSLPGroup(G);

After checking that correctness of the composition tree can be verified quickly, we perform verifi-
cation.

> CompositionTreeFastVerification(G);

true

> f, R := CompositionTreeVerify(G);

> #R;

3028

Evaluate the relations on the generators of H.

> Set (Evaluate (R, [H.i:i in [1..Ngens (H)]]));

{

[1 0 0 0 0 0 0 0 0 0]

[0 1 0 0 0 0 0 0 0 0]

[0 0 1 0 0 0 0 0 0 0]

[0 0 0 1 0 0 0 0 0 0]

[0 0 0 0 1 0 0 0 0 0]

[0 0 0 0 0 1 0 0 0 0]

[0 0 0 0 0 0 1 0 0 0]

[0 0 0 0 0 0 0 1 0 0]

[0 0 0 0 0 0 0 0 1 0]

[0 0 0 0 0 0 0 0 0 1]

1744 FINITE GROUPS Part X

}

Express the element g of G as a SLP on the generators of the nice group H. Then rewrite the
SLP in terms of user generators for G.

> g := Random (G);

> f, w := CompositionTreeElementToWord (G, g);

> Evaluate (w, [H.i:i in [1..Ngens (H)]]) eq g;

true

>

> tau := CompositionTreeNiceToUser (G);

> tau;

Mapping from: GrpSLP: W to SLPGroup(4)

>

> v := tau (w);

> Evaluate (v, [G.i : i in [1..Ngens (G)]]) eq g;

true

Next test a random element of the generic group of G for membership of G.

> x := Random (Generic (G));

> f, w := CompositionTreeElementToWord (G, x);

> f;

false

Finally, we construct a normal series for G.

> CS, _, _, _, flag := CompositionTreeSeries (G);

> "Series is composition series? ", flag;

Series is composition series? true

> "Length is ", #CS;

Length is 78

60.7 The LMG functions
The LMG (large matrix group) functions are designed to provide a user-friendly interface
to the CompositionTree package, and thereby enable the user to carry out a limited range
of structural calculations in a matrix group that is too large for the use of BSGS methods.

By default, these methods have a small probability of failing or even of returning
incorrect results. For most examples, at the cost of some extra time, the user can ensure
that the computed results are verified as correct by calling LMGInitialise with the Verify
flag on the group G before calling any of the other functions. (Once CompositionTree or
any of the LMG functions has been called on a group, further calls of LMGInitialise will
have no effect.)

Let G be a matrix group over a finite field. On the first call of any of the LMG
functions on G, Magma decides whether it will use BSGS or Composition Tree based
methods on G. It does this by carrying out a quick calculation to decide whether any
of the basic orbit lengths would be larger than a constant LMGSchreierBound, which is

Ch. 60 MATRIX GROUPS OVER FINITE FIELDS 1745

set to 40000 by default, but can be changed by the user. If all basic orbit lengths are at
most LMGSchreierBound, then BSGS methods are used on G, and the LMG functions are
executed using the corresponding standard Magma functions. Otherwise, Composition
Tree methods are used, starting with a call of CompositionTree(G).

Composition Tree methods are also used if the user calls CompositionTree on the group
before using th LMG functions, or if the user calls LMGInitialize with the Al option set
to "CompositionTree".

SetVerbose("LMG", n) with n = 1, 2 or 3 will provide increasing levels of information
on the progress of the functions.

SetLMGSchreierBound(n)

Set the constant LMGSchreierBound to n.

LMGInitialize(G : parameters)

LMGInitialise(G : parameters)

Al MonStgElt Default : “”
Verify BoolElt Default : false

RandomSchreierBound RngIntElt Default : LMGSchreierBound

It is not normally necessary to call this function but, by setting the optional pa-
rameters, it can be used to initialise G for LMG computations with a different
value of LMGSchreierBound or, by setting Al to be "CompositionTree" (or "CT" or
"RandomSchreier" (or "RS"), to force the use of either Composition Tree or BSGS
methods on G.

If the Verify flag is set, then an attempt will be made to verify the correct-
ness of the computed BSGS or Composition Tree. This will make the initialisation
process slower, and for some groups the increased memory requirements will make
verification impractical. In that case, a warning message is displayed.

LMGOrder(G)

Given a matrix group G defined over a finite field, this intrinsic returns the order of
G.

LMGFactoredOrder(G)

Given a matrix group G defined over a finite field, this intrinsic returns the factored
order of G.

LMGIsIn(G, x)

Given a matrix group G defined over a finite field Fn,q of G, the intrinsic returns
true if x is in G and false otherwise.

LMGIsSubgroup(G, H)

Given a matrix group G defined over a finite field Fn,q of G, the intrinsic returns
true if H ≤ G and false otherwise.

1746 FINITE GROUPS Part X

LMGEqual(G, H)

Given a matrix groups G and H belonging to a common overgroup GL(n, q), the
intrinsic returns true if G and H are equal and false otherwise.

LMGIndex(G, H)

Given a matrix group G defined over a finite field, and a subgroup H of G, the
intrinsic returns the index of H in G.

LMGIsNormal(G, H)

Given a matrix group G defined over a finite field, and a subgroup H of G, the
intrinsic returns true if H is normal in G and false otherwise.

LMGNormalClosure(G, H)

Given a matrix group G defined over a finite field, and a subgroup H of G, the
intrinsic returns the normal closure of H in G.

LMGDerivedGroup(G)

Given a matrix group G defined over a finite field, the intrinsic returns the derived
subgroup of G.

LMGCommutatorSubgroup(G, H)

Let g and H be subgroups of GL(n, q). This intrinsic returns the commutator
subgroup of G and H as a subgroup of GL(n, q).

LMGIsSoluble(G)

LMGIsSolvable(G)

Given a matrix group G defined over a finite field, the intrinsic returns true if G is
soluble and false otherwise.

LMGIsNilpotent(G)

Given a matrix group G defined over a finite field, the intrinsic returns true if G is
nilpotent and false otherwise.

LMGCompositionSeries(G)

Given a matrix group G defined over a finite field, the intrinsic returns a composition
series for G.

LMGCompositionFactors(G)

Given a matrix group G defined over a finite field, the intrinsic returns the com-
position factors of G. The Handbook entry for CompositionFactors(G) of a finite
group gives a detailed description of how to interpret the returned sequence.

Ch. 60 MATRIX GROUPS OVER FINITE FIELDS 1747

LMGChiefSeries(G)

Given a matrix group G defined over a finite field, the intrinsic returns a chief series
for G.

LMGChiefFactors(G)

Given a matrix group G defined over a finite field, the intrinsic returns the chief
factors G. The Handbook entry for ChiefFactors(G) of a finite group gives a
detailed description of how to interpret the returned sequence.

LMGUnipotentRadical(G)

Given a matrix group G defined over a finite field, the intrinsic returns the unipotent
radical U of the matrix group G. A group P of type GrpPC and an isomorphism
U → P are also returned.

LMGSolubleRadical(G)

LMGSolvableRadical(G)

Given a matrix group G defined over a finite field, the intrinsic returns the soluble
radical S of G. A group P of type GrpPC and an isomorphism S → P are also
returned.

LMGFittingSubgroup(G)

Given a matrix group G defined over a finite field, the intrinsic returns the Fitting
subgroup S of G. A group P of type GrpPC and an isomorphism S → P are also
returned.

LMGCentre(G)

LMGCenter(G)

Given a matrix group G defined over a finite field, the intrinsic returns the centre
of G.

LMGSylow(G,p)

Given a matrix group G defined over a finite field, the intrinsic returns a Sylow
p-subgroup of G.

LMGSocleStar(G)

Given a matrix group G defined over a finite field, the intrinsic returns the inverse
image in G of the socle of G/S, where S is the soluble radical of G.

LMGSocleStarFactors(G)

Given a matrix group G defined over a finite field, the intrinsic returns the simple
direct factors of LMGSocleStar(G)/LMGSolubleRadical(G), which may be repre-
sented projectively for large classical groups. A list of maps from the factors to G
is also returned.

1748 FINITE GROUPS Part X

LMGSocleStarAction(G)

Given a matrix group G defined over a finite field, the intrinsic returns the
map φ representing the conjugation action of G on the simple direct factors of
LMGSocleStar(G)/LMGSolubleRadical(G). The image and kernel of φ are also re-
turned.

LMGSocleStarActionKernel(G)

Given a matrix group G defined over a finite field, this intrinsic returns three values.
The first is the kernel of the conjugation action of G on the simple direct factors of
LMGSocleStar(G)/LMGSolubleRadical(G). A group P of type GrpPC isomorphic to
LMGSocleStarActionKernel(G)/LMGSocleStar(G) and the epimorphism G → P
are also returned.

LMGSocleStarQuotient(G)

Given a matrix group G defined over a finite field, the intrinsic returns the quotient
group G/LMGSocleStar(G) represented as a permutation group, with associated
epimorphism and kernel.

Example H60E13

We apply the LMG functions to a maximal subgroup of SL(12, 5).

> SetVerbose("LMG", 1);

> C := ClassicalMaximals("L", 12, 5);

> G := C[4];

> LMGFactoredOrder(G);

RandomSchreierBound is 40000

Using CompositionTree on this group

Composition tree computed

Composition series has length 40

Order of group is: 27845944957511377275508129969239234924316406250000000000000\

0000000000000000000

[<2, 32>, <3, 7>, <5, 66>, <7, 1>, <11, 1>, <13, 3>, <31, 3>, <71, 1>, <313,

1>, <19531, 1>]

> LMGChiefFactors(G);

Classifying composition factors

Defined PCGroup of solvable radical

Computed PCGroup of SocleKernel/SocleStar

G

| Cyclic(2)

*

| Cyclic(2)

*

| A(3, 5) = L(4, 5)

*

| A(7, 5) = L(8, 5)

*

Ch. 60 MATRIX GROUPS OVER FINITE FIELDS 1749

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(5) (32 copies)

1

> D := LMGDerivedGroup(G);

RandomSchreierBound is 40000

Using CompositionTree on this group

Composition tree computed

Composition series has length 38

Order of group is: 69614862393778443188770324923098087310791015625000000000000\

000000000000000000

> LMGIndex(G, D);

4

> SetVerbose("LMG", 0);

> LMGEqual(LMGDerivedGroup(D), D);

true

> S := LMGSolubleRadical(G);

> LMGFactoredOrder(S);

[<2, 4>, <5, 32>]

> LMGIsSoluble(G);

false

> LMGIsSoluble(S);

true

> LMGIsNilpotent(S);

false

> #LMGCentre(G);

4

> #LMGCentre(S);

4

We carelessly used the standard Magma Order function in the above two commands, but it did
not matter, because it was small. We will be more careful next time!

> F := LMGFittingSubgroup(G);

> LMGFactoredOrder(LMGCentre(F));

[<2, 2>, <5, 32>]

> P := LMGSylow(G, 5);

> LMGFactoredOrder(P);

[<5, 66>]

> LMGEqual(D, LMGNormalClosure(G,P));

true

> facs, maps := LMGSocleStarFactors(G);

> #facs;

1750 FINITE GROUPS Part X

2

> LMGChiefFactors(facs[1]);

G

| A(7, 5) = L(8, 5)

*

| Cyclic(2)

*

| Cyclic(2)

1

Note that, for large classical groups, the socle-star factors are represented projectively.

> I := sub< Generic(G) | [facs[2].i @ maps[2] : i in [1..Ngens(facs[2])]] >;

> LMGChiefFactors(LMGNormalClosure(G, I));

G

| A(3, 5) = L(4, 5)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(5) (4 copies)

*

| Cyclic(5) (4 copies)

*

| Cyclic(5) (4 copies)

*

| Cyclic(5) (4 copies)

*

| Cyclic(5) (4 copies)

*

| Cyclic(5) (4 copies)

*

| Cyclic(5) (4 copies)

*

| Cyclic(5) (4 copies)

1

The remaining functions in this section will work only if a permutation represen-
tation can be computed for G/L, where L is the soluble radical of G. Apart from
LMGRadicalQuotient itself, they all operate by solving the problem first in G/L and then
lifting the solution through elementary abelian layers of L. Results are returned using the
same formats as for other types of finite groups.

Ch. 60 MATRIX GROUPS OVER FINITE FIELDS 1751

LMGRadicalQuotient(G)

Given a matrix group G defined over a finite field, the intrinsic returns a permutation
group P isomorphic to G/L, where L is the soluble radical of G. An epimorphism
G→ P and its kernel L are also returned.

Of course, this will only work if G/L has such a representation of sufficiently
small degree. This function is called implicitly as a first step in all of the remaining
functions in this section.

LMGCentraliser(G, g)

LMGCentralizer(G, g)

Given a matrix group G defined over a finite field, the intrinsic returns the centraliser
in the matrix group G of g ∈ G.

LMGIsConjugate(G, g, h)

Given a matrix group G defined over a finite field, the intrinsic returns true if the
elements g, h in G are conjugate. If so, a conjugating element will also be returned.

LMGClasses(G)

LMGConjugacyClasses(G)

Given a matrix group G defined over a finite field, the intrinsic returns the conjugacy
classes of G.

LMGNormaliser(G, H)

LMGNormalizer(G, H)

Given a matrix group G defined over a finite field, and a subgroup H of G, the
intrinsic returns the normaliser of H in G.

LMGIsConjugate(G, H, K)

Given a matrix group G defined over a finite field, and subgroups H and K of G,
the intrinsic returns true if the subgroups H and K are conjugate in G. If so, a
conjugating element will also be returned.

LMGMaximalSubgroups(G)

Given a matrix group G defined over a finite field, the intrinsic returns the maximal
subgroups of G.

1752 FINITE GROUPS Part X

60.8 Unipotent Matrix Groups

The power-conjugate presentation is a very efficient way of representing a unipotent group;
see Chapter 63 for more information. In this section we describe a number of functions for
finding such a PC-presentation for a unipotent matrix group defined over a finite field.

The algorithm used is a straightforward echelonisation-like procedure.

UnipotentMatrixGroup(G)

Given a matrix group G defined over a finite field, the intrinsic constructs a known
unipotent matrix group from G. Note that Magma does not at this stage check
that G is in fact unipotent.

WordMap(G)

Given a unipotent matrix group G defined over a finite field, the intrinsic constructs
the word map for G. The word map is a map from G to the group of straight-
line programs on n generators, where n is the number of generators of G. More
information on SLP-groups may be found in Chapter 76.

Example H60E14

We construct a unipotent matrix group, and use the word map.

> G := MatrixGroup<4, GF(5) | [1,1,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1],

> [1,-1,0,0, 0,1,1,0, 0,0,1,0, 0,0,0,1]>;

> G;

MatrixGroup(4, GF(5))

Generators:

[1 1 0 0]

[0 1 0 0]

[0 0 1 0]

[0 0 0 1]

[1 4 0 0]

[0 1 1 0]

[0 0 1 0]

[0 0 0 1]

> IsUnipotent(G);

true

>

> G := UnipotentMatrixGroup(G);

> g := GL(4,5)![1,4,4,0, 0,1,3,0, 0,0,1,0, 0,0,0,1];

> g in G;

true

> phi := WordMap(G);

> phi;

Mapping from: GL(4, GF(5)) to SLPGroup(2) given by a rule [no inverse]

>

> assert g in G;

Ch. 60 MATRIX GROUPS OVER FINITE FIELDS 1753

> wg := phi(g); wg;

function(G)

w6 := G.1^4; w1 := G.1^-4; w2 := G.2 * w1; w7 := w2^3; w8 := w6 *

w7; w3 := G.1^-1; w4 := G.1^w2; w5 := w3 * w4; w9 := w5^2; w10 :=

w8 * w9; return w10;

end function

> Evaluate(wg, G);

[1 4 4 0]

[0 1 3 0]

[0 0 1 0]

[0 0 0 1]

> Evaluate(wg, G) eq g;

true

PCPresentation(G)

Given a unipotent matrix group G defined over a finite field, the intrinsic constructs
a PC-presentation for G. It returns a finite soluble group H as first return value, a
map from G to H as the second value, and a map from H to G as the third.

Order(G)

#G

FactoredOrder(G)

Given a unipotent matrix group G defined over a finite field, this intrinsic returns
the order of G as an integer or as a factored integer (depending upon the choice of
intrinsic). It is faster than the standard matrix group order intrinsic because of the
use of the PC-presentation of G.

g in G

Given a matrix g and a unipotent matrix group G defined over a finite field, the
intrinsic returns true if g is an element of G, and false otherwise. It is faster
than the standard matrix group membership intrinsic because of the use of the
PC-presentation of G.

Example H60E15

We construct the PC-presentation of some Sylow subgroup and demonstrate the use of the
FactoredOrder function.

> G := UnipotentMatrixGroup(ClassicalSylow(GL(9,7), 7));

> H,phi,psi := PCPresentation(G);

> phi;

Mapping from: GrpMatUnip: G to GrpPC: H given by a rule [no inverse]

> psi;

Mapping from: GrpPC: H to GrpMatUnip: G

> phi(G.2);

1754 FINITE GROUPS Part X

H.9

> psi(H.3);

[1 0 0 0 0 0 0 0 0]

[0 1 0 0 0 0 0 0 0]

[0 0 1 1 0 0 0 0 0]

[0 0 0 1 0 0 0 0 0]

[0 0 0 0 1 0 0 0 0]

[0 0 0 0 0 1 0 0 0]

[0 0 0 0 0 0 1 0 0]

[0 0 0 0 0 0 0 1 0]

[0 0 0 0 0 0 0 0 1]

> FactoredOrder(G);

[<7, 36>]

60.9 Bibliography

[Asc84] M. Aschbacher. On the maximal subgroups of the finite classical groups.
Invent. Math, 76:469–514, 1984.

[BHLGO11] H. Bäärnhielm, Derek Holt, C.R. Leedham-Green, and E.A. O’Brien. A
new model for computation with matrix groups. preprint, 2011.

[Bra00] J.N. Bray. An improved method of finding the centralizer of an involution.
Arch. Math. (Basel), 74(1):241–245, 2000.

[DLLGO] Heiko Dietrich, Frank Lübeck, C.R. Leedham-Green, and E.A. O’Brien.
Constructive recognition of classical groups in even characteristic. preprint.

[GH97] S.P. Glasby and R.B. Howlett. Writing representations over minimal
fields. Comm. Algebra, 25(6):1703–1711, 1997.

[GLGO05] S.P. Glasby, C.R. Leedham-Green, and E.A. O’Brien. Writing projective
representations over subfields. J. Algebra, 295:51–61, 2005.

[HLGOR96a] Derek F. Holt, C.R. Leedham-Green, E.A. O’Brien, and Sarah Rees. Com-
puting decompositions for modules with respect to a normal subgroup. J. Algebra,
184:818–838, 1996.

[HLGOR96b] Derek F. Holt, C.R. Leedham-Green, E.A. O’Brien, and Sarah Rees. Test-
ing matrix groups for primitivity. J. Algebra, 184:795–817, 1996.

[LG01] Charles R. Leedham-Green. The computational matrix group project.
In Groups and computation, III (Columbus, OH, 1999), volume 8 of Ohio State Univ.
Math. Res. Inst. Publ., pages 229–247. de Gruyter, Berlin, 2001.

[LGO] C.R. Leedham-Green and E.A. O’Brien. Short presentations for classical
groups. preprint.

[LGO97a] C.R. Leedham-Green and E.A. O’Brien. Recognising tensor products of
matrix groups. Internat. J. Algebra Comput., 7:541–559, 1997.

Ch. 60 MATRIX GROUPS OVER FINITE FIELDS 1755

[LGO97b] C.R. Leedham-Green and E.A. O’Brien. Tensor Products are Projective
Geometries. J. Algebra, 189:514–528, 1997.

[LGO02] C.R. Leedham-Green and E.A. O’Brien. Recognising tensor-induced ma-
trix groups. J. Algebra, 253:14–30, 2002.

[LGO09] C.R. Leedham-Green and E.A. O’Brien. Constructive recognition of clas-
sical groups in odd characteristic. J. Algebra, 322:833–881, 2009.

[Nie05] Alice C. Niemeyer. Constructive recognition of normalisers of small extra-
special matrix groups. Internat. J. Algebra Comput., 15:367–394, 2005.

[NS06] Max Neunhöffer and Ákos Seress. A data structure for a uniform approach
to computations with finite groups. In ISSAC 2006, pages 254–261. ACM, New York,
2006.

[O’B06] E.A. O’Brien. Towards effective algorithms for linear groups. In Finite
Geometries, Groups and Computation, pages 163–190. De Gruyer, 2006.

[O’B11] E.A. O’Brien. Algorithms for matrix groups. In Groups St Andrews
(Bath), volume 388 of LMS Lecture Notes, pages 297–323. Cambridge University Press,
2011.

61 MATRIX GROUPS OVER INFINITE FIELDS
61.1 Overview 1759

61.2 Construction of Congruence Ho-
momorphisms 1760

CongruenceImage(G : -) 1760

61.3 Testing Finiteness 1761

IsFinite(G : -) 1761
IsomorphicCopy(G : -) 1762
Order(G : -) 1763

61.4 Deciding Virtual Properties of
Linear Groups 1763

IsSolubleByFinite(G : -) 1763
IsPolycyclicByFinite(G : -) 1764
IsNilpotentByFinite(G : -) 1764
IsAbelianByFinite(G : -) 1765
IsCentralByFinite(G : -) 1765

61.5 Other Properties of Linear
Groups 1766

IsCompletelyReducible(G : -) 1766
IsUnipotent(G) 1766
IsNilpotent(G) 1767
IsSoluble(G : -) 1767
IsPolycyclic(G : -) 1767
HasFiniteOrder (g : -) 1767

61.6 Other Functions for Nilpotent
Matrix Groups 1768

SylowSystem(G : -) 1768
IsIrreducibleFiniteNilpotent(G : -) 1768
IsPrimitiveFiniteNilpotent(G : -) 1768

61.7 Examples 1768

61.8 Bibliography 1775

Chapter 61

MATRIX GROUPS OVER INFINITE FIELDS

61.1 Overview
In this chapter we provide algorithms for computing with a group G given by a finite

set S = {g1, . . . , gr} of invertible n × n matrices over an infinite field K. The algorithms
are based on special techniques developed for computing in this class of groups ([DF08,
DF09, DFO09, DEF09, DFO12, DFO11]), which rely on properties of finitely generated
linear groups.

The group G is defined over the subring R of K generated by the entries of the matrices
gi, gi

−1 , 1 ≤ i ≤ r. If ρ is an ideal of R, then it induces a congruence homomorphism from
GL(n,R) onto GL(n,R/ρ), which replaces every entry of an element in S by its image
in R/ρ. Our techniques depend on the construction of a congruence homomorphism with
the property that all torsion elements of its kernel Gρ (called a congruence subgroup) are
unipotent. The existence of a normal subgroup of finite index in G with such a property
was proved by Selberg and Wehrfritz. One advantage of the congruence homomorphism
techniques is that they replace the ground domain by a domain that is more convenient
for computing. In particular, if the ideal ρ is maximal, then we get a reduction to a finite
field R/ρ. For more details on the method see [DF08, Section 3].

In this chapter we provide three sets of functions based on the above techniques.
(a) Functions which test finiteness of matrix groups over a wide range of infinite do-

mains. These functions are an implementation of algorithms developed in [DF09, DFO09,
DFO12]. Together with other currently available algorithms for deciding finiteness, they
enable testing finiteness of a finitely generated linear group over an arbitrary field (subject
to special representation of input data). Additionally, if a group is found to be finite, then
we can construct an isomorphic copy over a finite field, and use that for further structural
investigation of the group.

(b) Functions for testing various properties of infinite matrix groups. These functions
test whether G is soluble-by-finite or soluble, nilpotent-by-finite or nilpotent, abelian-by-
finite, or central-by-finite. In effect, they provide access to the first publicly available
implementations of algorithms to decide the “Tits alternative” for a linear group. If G is
soluble-by-finite we can test whether it is completely reducible. These functions are an
implementation of algorithms developed in [DFO11].

(c) Functions for testing nilpotency and computing with nilpotent matrix groups. These
functions are an implementation of algorithms developed in [DF08], which in turn are
based on an implementation of algorithms in [DF06] for computing with nilpotent matrix
groups over finite fields. The functions may also be used for investigating the structure of
nilpotent matrix groups. In particular, special algorithms have been developed for deciding
finiteness of nilpotent matrix groups. Functions are also available to decide irreducibility
and primitivity for finite nilpotent matrix groups over number fields and function fields

1760 FINITE GROUPS Part X

in zero characteristic; these algorithms, developed and implemented by Tobias Rossmann,
are described in [Ros10, Ros11].

Since G is finitely generated, it is defined over a finitely generated subfield of K. Hence,
the main fields to be considered are finite degree extensions of F (x1, . . . , xm), where the
x1, . . . , xm are algebraically independent indeterminates, m ≥ 0, and the coefficient field
F is an number field or a finite field.

For a recent survey of work in the area of computing with matrix groups over infinite
fields, we refer to [DEF09].

Verbose output for these functions can be obtained with SetVerbose ("Infinite",
1);

61.2 Construction of Congruence Homomorphisms
In this section, K is a finite degree extension of F (x1, . . . , xm), where F is Q, a number

field, or a finite field. Also m ≥ 0 if charF = 0, and m > 0 otherwise.

CongruenceImage(G : parameters)

Virtual BoolElt Default : false

Prime RngIntElt Default : 3
Limit RngIntElt Default : 10
ExtDegree RngIntElt Default : 1

If G is a finitely generated subgroup of GL(n,K), then G has a normal subgroup N
whose torsion elements are unipotent; so N is torsion-free if K has characteristic 0.

This function constructs a congruence homomorphism from G into GL(n,Fq) for
some prime power q; its kernel is N . If charK is positive, then Fq has the same
characteristic.

For a detailed description of the congruence homomorphisms see [DFO12, Section
3]. The function returns the congruence image H, the congruence homomorphism,
and the list of images of generators of G.

If the optional parameter Virtual is set to true then the congruence homomor-
phism satisfies additional properties [DFO11]. In particular it can be used to test
whether G satisfies the “virtual” properties described in Section 61.4.

The optional parameter Prime applies if K has characteristic 0: if Prime is
positive, then it is a lower bound for the characteristic of the congruence image; if it
is 0 then the function returns a congruence image defined over a field of characteristic
0.

The optional parameter Limit applies to groups defined over (rational) function
fields. If charK > 0, then we consider extensions of F to degree Limit only;
otherwise we examine tuples in the ring of integers mod Limit.

The optional parameter ExtDegree applies to groups defined over (algebraic)
function fields of positive characteristic: we construct a congruence image over an
extension of (at least) this degree of coefficient field.

Ch. 61 MATRIX GROUPS OVER INFINITE FIELDS 1761

61.3 Testing Finiteness
In this section, K is a finite degree extension of the field F (x1, . . . , xm), where F is Q,

a number field, or a finite field. Also m ≥ 0 if charF = 0, and m > 0 otherwise.

IsFinite(G : parameters)

NumberRandom RngIntElt Default : 10

Presentation MonStgElt Default : “CT”

Small RngIntElt Default : 105

OrderLimit RngIntElt Default : 1012

Algebra BoolElt Default : true

Nilpotent BoolElt Default : false

UseCongruence BoolElt Default : false

DetermineOrder BoolElt Default : false

Prime RngintElt Default : 3

Let G be a finitely generated subgroup of GL(n,K). If G is finite then the function
returns true, otherwise false. The function is an implementation of algorithms
from [DFO12, DF09, DFO09, DF08].

The algorithm first tests whether NumberRandom random elements of G have
finite order.

If the optional parameter Algebra is true and K is a function field of charac-
teristic zero (resp. positive characteristic), then we use the “algebra algorithm” of
[DF09] (resp. [DFO09]) to decide finiteness.

Otherwise, we prove that G is finite by first constructing a congruence homo-
morphism, then a presentation for the congruence image, and finally evaluates its
relations to obtain normal generators for the congruence kernel. If charK = 0, then
the kernel should be trivial, otherwise the kernel is unipotent.

The optional parameter Presentation is used to dictate how the presentation
is constructed. If its value is “CT”, then we use the presentation provided by
CompositionTreeVerify. If its value is “PC” and the image is soluble, then we use
a PC-presentation provided by LMGSolubleRadical. If its value is “FP” then we
use the presentation provided by FPGroup or FPGroupStrong. If the order of the
congruence image is less than the value of the optional argument Small, then we
use FPGroup to construct the presentation; if it is less than the value of the optional
argument OrderLimit, then we use FPGroupStrong to construct the presentation;
otherwise we use the presentation provided by CompositionTreeVerify.

If K is Q or a number field and UseCongruence is true, then use congruence
homomorphism machinery to decide; otherwise use default algorithm.

If G is known to be nilpotent then by setting the optional parameter Nilpotent
to true, the function will call a special procedure for testing finiteness of nilpotent
groups (see [DF08, Section 4.3]).

1762 FINITE GROUPS Part X

If the optional parameter DetermineOrder is set to true, and G is finite, then
the function returns the order of G. This may sometimes be more expensive than
deciding finiteness.

The optional parameter Prime applies if K has characteristic 0: if Prime is
positive, then it is a lower bound for the characteristic of the congruence image;
if it is 0 then the function constructs a congruence image defined over a field of
characteristic 0.

IsomorphicCopy(G : parameters)

Presentation MonStgElt Default : “CT”

Small RngIntElt Default : 105

OrderLimit RngIntElt Default : 1012

Verify BoolElt Default : false

Algebra BoolElt Default : false

StartDegree RngIntElt Default : 1

EndDegree RngIntElt Default : 5

CompletelyReducible BoolElt Default : false

The input is a finite subgroup G of GL(n,K). If the function succeeds, then it
returns true and an isomorphic copy of G in GL(n,Fq) where q is a prime power;
otherwise it returns false. A description of the method used is in [DFO12, Section
4.3]. If charK is positive, then Fq has the same characteristic. Note that the
function always succeeds if K has zero characteristic.

If the optional parameter Algebra is true and K is a function field of charac-
teristic zero (resp. positive characteristic), then we use the “algebra algorithm” of
[DF09] (resp. [DFO09]) to construct an isomorphic copy.

Otherwise we prove that a congruence homomorphism is an isomorphism by
constructing a presentation for the congruence image and evaluating its relations to
obtain normal generators for the congruence kernel.

The optional parameter Presentation is used to dictate how the presentation
is constructed. If its value is “CT”, then we use the presentation provided by
CompositionTreeVerify. If its value is “PC” and the image is soluble, then we use
a PC-presentation provided by LMGSolubleRadical. If its value is “FP” then we
use the presentation provided by FPGroup or FPGroupStrong. If the order of the
congruence image is less than the value of the optional argument Small, then we
use FPGroup to construct the presentation; if it is less than the value of the optional
argument OrderLimit, then we use FPGroupStrong to construct the presentation;
otherwise we use the presentation provided by CompositionTreeVerify.

If the optional parameter Verify is set to true then we first check whether G is
finite.

If the characteristic of the coefficient field F is positive, then we investigate
extensions of F in the range StartDegree . . . EndDegree.

Ch. 61 MATRIX GROUPS OVER INFINITE FIELDS 1763

If the optional parameter CompletelyReducible is set to true then we use a
more efficient algorithm to construct the isomorphic copy.

Order(G : parameters)

Verify BoolElt Default : false

UseCongruence BoolElt Default : false

Given a finite subgroup G of GL(n,K), the function returns the order of G by
applying IsomorphicCopy to G.

If the optional parameter Verify is set to true, then we first check that G is
finite.

If K is Q or a number field and UseCongruence is true, then use congruence
homomorphism machinery to decide; otherwise use default algorithm.

61.4 Deciding Virtual Properties of Linear Groups
In this section, K is a finite degree extension of F (x1, . . . , xm), where F is Q, a number

field, or a finite field. Also m ≥ 0 if charF = 0, and m > 0 otherwise.
We describe algorithms to decide various “virtual” properties of a finitely generated

linear group over an infinite field. Details of the algorithms can be found in [DFO11].

IsSolubleByFinite(G : parameters)

Presentation MonStgElt Default : “CT”

OrderLimit RngIntElt Default : 1012

Small RngIntElt Default : 105

This function takes as input a finitely generated matrix group G over K, and tests
whether G is soluble-by-finite. If so, it returns true, otherwise false. Note that
currently the function is valid only for p > n if K has characteristic p > 0.

The algorithm first constructs a congruence homomorphism, then a presenta-
tion for the congruence image, and finally evaluates its relations to obtain normal
generators for the congruence kernel. For further details, see [DFO11, Section 3.2].

The optional parameter Presentation is used to dictate how the presentation
is constructed. If its value is “CT”, then we use the presentation provided by
CompositionTreeVerify. If its value is “PC” and the image is soluble, then we use
a PC-presentation provided by LMGSolubleRadical. If its value is “FP” then we
use the presentation provided by FPGroup or FPGroupStrong. If the order of the
congruence image is less than the value of the optional argument Small, then we
use FPGroup to construct the presentation; if it is less than the value of the optional
argument OrderLimit, then we use FPGroupStrong to construct the presentation;
otherwise we use the presentation provided by CompositionTreeVerify.

1764 FINITE GROUPS Part X

IsPolycyclicByFinite(G : parameters)

Presentation MonStgElt Default : “CT”

OrderLimit RngIntElt Default : 1012

Small RngIntElt Default : 105

This function takes as input a finitely generated matrix group G over Z, and tests
whether G is polycyclic-by-finite. If so, it returns true, otherwise false. See
[DFO11, Section 3.2] for details.

The optional parameter Presentation is used to dictate how the presentation
is constructed. If its value is “CT”, then we use the presentation provided by
CompositionTreeVerify. If its value is “PC” and the image is soluble, then we use
a PC-presentation provided by LMGSolubleRadical. If its value is “FP” then we
use the presentation provided by FPGroup or FPGroupStrong. If the order of the
congruence image is less than the value of the optional argument Small, then we
use FPGroup to construct the presentation; if it is less than the value of the optional
argument OrderLimit, then we use FPGroupStrong to construct the presentation;
otherwise we use the presentation provided by CompositionTreeVerify.

IsNilpotentByFinite(G : parameters)

Presentation MonStgElt Default : “CT”

OrderLimit RngIntElt Default : 1012

Small RngIntElt Default : 105

This function takes as input a finitely generated matrix group G over K, and tests
whether G is nilpotent-by-finite. If so, it returns true, otherwise false. Here K
must currently be Q, a number field, or an (algebraic) function field with a single
indeterminate.

The algorithm first constructs a congruence homomorphism, then a presentation
for the congruence image, and finally evaluates its relations to obtain normal gen-
erators for the congruence kernel. Further details of the algorithm can be found in
[DFO11, Section 5.2].

The optional parameter Presentation is used to dictate how the presentation
is constructed. If its value is “CT”, then we use the presentation provided by
CompositionTreeVerify. If its value is “PC” and the image is soluble, then we use
a PC-presentation provided by LMGSolubleRadical. If its value is “FP” then we
use the presentation provided by FPGroup or FPGroupStrong. If the order of the
congruence image is less than the value of the optional argument Small, then we
use FPGroup to construct the presentation; if it is less than the value of the optional
argument OrderLimit, then we use FPGroupStrong to construct the presentation;
otherwise we use the presentation provided by CompositionTreeVerify.

Ch. 61 MATRIX GROUPS OVER INFINITE FIELDS 1765

IsAbelianByFinite(G : parameters)

Presentation MonStgElt Default : “CT”
OrderLimit RngIntElt Default : 1012

Small RngIntElt Default : 105

This function takes as input a finitely generated matrix group G over K, and tests
whether G is abelian-by-finite. If so, it returns true, otherwise false. As before,
K must currently be Q, a number field, or an (algebraic) function field with a single
indeterminate.

The algorithm first constructs a congruence homomorphism, then a presentation
for the congruence image, and finally evaluates its relations to obtain normal gen-
erators for the congruence kernel. Further details of the algorithm can be found in
[DFO11, Section 5.2].

The optional parameter Presentation is used to dictate how the presentation
is constructed. If its value is “CT”, then we use the presentation provided by
CompositionTreeVerify. If its value is “PC” and the image is soluble, then we use
a PC-presentation provided by LMGSolubleRadical. If its value is “FP” then we
use the presentation provided by FPGroup or FPGroupStrong. If the order of the
congruence image is less than the value of the optional argument Small, then we
use FPGroup to construct the presentation; if it is less than the value of the optional
argument OrderLimit, then we use FPGroupStrong to construct the presentation;
otherwise we use the presentation provided by CompositionTreeVerify.

IsCentralByFinite(G : parameters)

Presentation MonStgElt Default : “CT”
OrderLimit RngIntElt Default : 1012

Small RngIntElt Default : 105

CompletelyReducible BoolElt Default : false

This function takes as input a finitely generated matrix group G over a field K, and
tests whether G is central-by-finite. If so, it returns true, otherwise false. Here K
is (a finite degree extension of) F (x1, . . . , xm), where F is Q or a number field.

The algorithm first constructs a congruence homomorphism, then a presentation
for the congruence image, and finally evaluates its relations to obtain normal gen-
erators for the congruence kernel. Further details of the algorithm can be found in
[DFO11, Section 5.3].

The optional parameter Presentation is used to dictate how the presentation
is constructed. If its value is “CT”, then we use the presentation provided by
CompositionTreeVerify. If its value is “PC” and the image is soluble, then we use
a PC-presentation provided by LMGSolubleRadical. If its value is “FP” then we
use the presentation provided by FPGroup or FPGroupStrong. If the order of the
congruence image is less than the value of the optional argument Small, then we
use FPGroup to construct the presentation; if it is less than the value of the optional

1766 FINITE GROUPS Part X

argument OrderLimit, then we use FPGroupStrong to construct the presentation;
otherwise we use the presentation provided by CompositionTreeVerify.

If the optional parameter CompletelyReducible is set to true then we use a
more efficient algorithm to test whether G is central-by-finite.

61.5 Other Properties of Linear Groups
In this section, K is a finite degree extension of F (x1, . . . , xm), where F is Q, a number

field, or a finite field, and m ≥ 0.

IsCompletelyReducible(G : parameters)

SolubleByFinite BoolElt Default : false

NilpotentByFinite BoolElt Default : false

AbelianByFinite BoolElt Default : false

Nilpotent BoolElt Default : false

Presentation MonStgElt Default : “CT”
OrderLimit RngIntElt Default : 1012

Small RngIntElt Default : 105

This function takes as input a finitely generated matrix group G over K, and tests
whether G is completely reducible. If so, it returns true, otherwise false.

The algorithm used is described in [DFO11, Section 4]. It applies only if
G is soluble-by-finite, nilpotent-by-finite, or abelian-by-finite. Hence one (and
only one) of the four optional arguments SolubleByFinite, NilpotentByFinite,
AbelianByFinite, Nilpotent must be true. In particular, if Nilpotent is set to
be true, then a more efficient algorithm (from [DF08]) is used.

In positive characteristic p, if p divides the order of the congruence image of G
then currently the algorithm cannot decide complete reducibility of G.

The optional parameter Presentation is used to dictate how the presentation
is constructed. If its value is “CT”, then we use the presentation provided by
CompositionTreeVerify. If its value is “PC” and the image is soluble, then we use
a PC-presentation provided by LMGSolubleRadical. If its value is “FP” then we
use the presentation provided by FPGroup or FPGroupStrong. If the order of the
congruence image is less than the value of the optional argument Small, then we
use FPGroup to construct the presentation; if it is less than the value of the optional
argument OrderLimit, then we use FPGroupStrong to construct the presentation;
otherwise we use the presentation provided by CompositionTreeVerify.

IsUnipotent(G)

This function takes as input a finitely generated matrix group G defined over an
exact field F , and tests whether G is unipotent, i.e., whether it is conjugate in
GL(n, F) to a group of upper unitriangular matrices. If G is unipotent then the
function returns true and a change-of-basis matrix c ∈ GL(n, F) such that Gc is
upper unitriangular, otherwise false. See [DF06, Section 2.1] for details of the
algorithm.

Ch. 61 MATRIX GROUPS OVER INFINITE FIELDS 1767

IsNilpotent(G)

Let G be a finitely generated subgroup of GL(n,K). This function returns true
if G is nilpotent; otherwise it returns false. If K is finite then the function is an
implementation of the algorithm of [DF06]. If K is infinite then the function is sim-
ilar to the algorithm in [DF08], and is based on the construction of a homomorphic
image H of G via CongruenceImage.

IsSoluble(G : parameters)

Presentation MonStgElt Default : “CT”

OrderLimit RngIntElt Default : 1012

Small RngIntElt Default : 105

UseCongruence BoolElt Default : false

Let G be a finitely generated subgroup of GL(n,K). This function returns true if
G is soluble; otherwise it returns false. If K is infinite and has characteristic p > 0,
then the algorithm is applicable only for p > n. For details see [DFO11, Section
3.2].

If K is Q or a number field and UseCongruence is true, then use congruence
homomorphism machinery to decide; otherwise use default algorithm.

The other optional arguments are those described above for IsSolubleByFinite.

IsPolycyclic(G : parameters)

Presentation MonStgElt Default : “CT”

OrderLimit RngIntElt Default : 1012

Small RngIntElt Default : 105

This function takes as input a finite matrix group G over Z, and tests whether G is
polycyclic. If so, it returns true, otherwise false.

The optional arguments are those described above for IsSolubleByFinite.

HasFiniteOrder (g : parameters)

UseCongruence BoolElt Default : false

Let g be an invertible matrix defined over Z, Q, a number field, a function field, or
an algebraic function field.

If g has finite order, then return true and, if known, a multiplicative upper
bound for the order of g; else return false.

If g is defined over Z, Q, or a number field and UseCongruence is true, then use
congruence homomorphism machinery to decide; otherwise use default algorithm.

1768 FINITE GROUPS Part X

61.6 Other Functions for Nilpotent Matrix Groups

SylowSystem(G : parameters)

Verify BoolElt Default : false

Given a nilpotent matrix group G over a finite field, this function constructs one
Sylow p-subgroup for each prime p dividing |G| using the algorithm of [DF06]. If the
optional parameter Verify is set to true, then we first verify that G is nilpotent.

The next two functions were developed and implemented by Tobias Rossmann.

IsIrreducibleFiniteNilpotent(G : parameters)

DecideOnly BoolElt Default : false

Verify BoolElt Default : false

Let G be a finite nilpotent matrix group over K, where K is a number field or
a rational function field over a number field. The function returns true if G is
irreducible or false and a proper submodule of GModule(G). The construction of
a submodule can be suppressed by setting DecideOnly to true. If the optional
parameter Verify is set to true, then the function checks if G is nilpotent and
finite. The algorithm used for irreducibility testing is described in [Ros10a].

IsPrimitiveFiniteNilpotent(G : parameters)

DecideOnly BoolElt Default : false

Verify BoolElt Default : false

Let G be an irreducible finite nilpotent matrix group over K, where K is a number
field or a rational function field over a number field. The function returns true if
G is primitive, or false and a system of imprimitivity for G given as a sequence
of subspaces of RSpace(G). The construction of a system of imprimitivity can be
suppressed by setting DecideOnly to true. If the optional parameter Verify is set
to true, then the function checks if G is nilpotent and finite. The algorithm used
for primitivity testing is described in [Ros10b].

61.7 Examples

Example H61E1

> Q := Rationals ();

> F<t>:= RationalFunctionField (Q);

> M:= MatrixAlgebra (F, 3);

> a:= M![-1, 2*t^2, -2*t^4 - 2*t^3 - 2*t^2, 0, 1, 0, 0, 0, 1];

> b:= M![1, 0, 0, 1/t^2, -1, (2*t^3 - 1)/(t - 1), 0, 0, 1];

> c:= M![t, -t^3 + t^2, t^5 - t^2 - t, t^2, -t^4, (t^8 - t^5 + 1)/

> (t^2 - t), (t - 1)/t, -t^2 + t, t^4 - t];

> G:= sub<GL(3,F)|a,b,c>;

> IsFinite(G);

Ch. 61 MATRIX GROUPS OVER INFINITE FIELDS 1769

true

> flag, H := IsomorphicCopy(G);

> H;

MatrixGroup(3, GF(3))

Generators:

[2 2 1]

[0 1 0]

[0 0 1]

[1 0 0]

[1 2 0]

[0 0 1]

[2 2 2]

[1 2 0]

[2 1 2]

> #H;

48

Example H61E2

> F<t>:= RationalFunctionField (GF(5));

> M:= MatrixAlgebra (F, 6);

> a:= M![2, 2*t^2, 4, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0,

> 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1];

> b:= M![(4*t + 4)/t, 4*t, (t + 1)/t, 0, t, t^2 + t, 0, 4, 0, 0, 0,

> 1/t, 4/t, t^2 + 4*t, 1/t, 0, 0, 0, 0, 4*t, 0, 0, 0, 0, 0, 0, 4, 4,

> 0, 0, 0, 0, 0, 4, 0, 0];

> G:= sub<GL(6,F)|a,b>;

> IsFinite(G);

true

> flag, H := IsomorphicCopy (G);

> flag;

true

> H;

MatrixGroup(6, GF(5)) of order 2^7 * 3 * 5^4 * 31

Generators:

[2 2 4 1 0 0]

[0 2 0 0 0 0]

[0 0 1 1 0 0]

[0 0 0 1 0 0]

[0 0 0 0 1 1]

[0 0 0 0 0 1]

[3 4 2 0 1 2]

[0 4 0 0 0 1]

[4 0 1 0 0 0]

1770 FINITE GROUPS Part X

[0 4 0 0 0 0]

[0 0 4 4 0 0]

[0 0 0 4 0 0]

> #H;

7440000

Example H61E3

> L<t> := RationalFunctionField (GF (5^2));

> G := GL (2, L);

> a := G![t,1,0,-1];

> b:= G![t/(t + 1), 1, 0, 1/t];

> H := sub <GL(2, L) | a, b>;

> f :=IsFinite(H);

> f;

false

> IsSolubleByFinite (H);

true

> IsCompletelyReducible (H);

false

Example H61E4

> G := MatrixGroup<3, IntegerRing() |

> [5608, 711, -711, 6048, 766, -765, 1071, 135, -134],

> [1, -2415, 5475, 0, 4471, -10140, 0, 780, -1769],

> [5743, -5742, 639, -576, 577, -72, -711, 711, -80],

> [526168, -618507, 729315, 621984, -731138, 862125,

> 274455, -322620, 380419] ,

> [648226, -4621455, 9226791, 660687, -4710305, 9404184,

> 85626, -610473, 1218820],

> [32581, -39465, 46350, 53100, -64319, 75540, 24210,

> -29325, 34441]>;

> IsFinite (G);

false

> IsSolubleByFinite (G);

false

> IsNilpotentByFinite (G);

false

> time IsCentralByFinite (G);

false

> IsAbelianByFinite (G);

false

Ch. 61 MATRIX GROUPS OVER INFINITE FIELDS 1771

Example H61E5

> Q<z> := QuadraticField(5);

> O<w> := sub< MaximalOrder(Q) | 7 >;

> G := GL(2, Q);

> x := G![1,1+w,0,w];

> y := G![-1/2, 2, 2 + w, 5 + w^2];

> H:=sub<G | x, y>;

> IsFinite (H);

false

> IsSolubleByFinite (H);

false

Example H61E6

> R<x> := PolynomialRing(Integers());

> K<y> := NumberField(x^4-420*x^2+40000);

> G := GL (2, K);

> a := G![y,1,0,-1];

> b:= G![y/(y + 1), 1, 0, 1/y];

> H := sub <GL(2, K) | a, b>;

> time IsFinite(H);

false

Example H61E7

> /* example over algebraic extension of a function field */

>

> R<u> := FunctionField (Rationals ());

> v := u; w := -2 * v;

> Px<X> := PolynomialRing (R);

> Py<Y> := PolynomialRing (R);

> f := Y^2- 3 * u * X * Y^2 + v * X^3;

> facs := Factorisation (f);

> F:=ext <R | facs[2][1]>;

> F;

Algebraic function field defined over Univariate rational function

field over Rational Field by Y - 1/2/u

>

> n := 3;

> G:= GL(n,F);

> Z := 4 * X * Y;

> MA:= MatrixAlgebra(F,n);

> h1:= Id(MA);

> h1[n][n]:= (X^2+Y+Z+1);

> h1[1][n]:= X+1;

1772 FINITE GROUPS Part X

> h1[1][n]:= X+1;

> h1[1][1]:=(Z^5-X^2*Z+Z*X*Y);

> h1[2][1]:=1-X*Y*Z;

> h1[2][n]:= X^20+X*Y^15+Y^10+Z^4*Y*X^5+1;

> h2:= Id(MA);

> h2[n][n]:= (X^7+Z^6+1);

> h2[1][n]:= X^2+X+1;

> h2[1][1]:=(Y^3+X^2+X+1);

> h2[1][1]:=(Y^3+X^2+X+1);

> h2[2][1]:=1-X^2;

> h2[2][n]:= X^50+Y^35+X^20+X^13+Y^2+1;

> G := sub< GL(n, F) | h1, h2>;

> G;

MatrixGroup(3, F)

Generators:

[1/u^10 0 (u + 1/2)/u]

[(u^4 - 1/4)/u^4 1 (u^20 + 1/1024*u^10 + 1/64*u^6 + 1/65536*u^4 +

1/1048576)/u^20]

[0 0 (u^2 + 1/2*u + 5/4)/u^2]

[(u^3 + 1/2*u^2 + 1/4*u + 1/8)/u^3 0 (u^2 + 1/2*u + 1/4)/u^2]

[(u^2 - 1/4)/u^2 1 (u^50 + 1/4*u^48 + 1/8192*u^37 + 1/1048576*u^30 +

1/34359738368*u^15 + 1/1125899906842624)/u^50]

[0 0 (u^12 + 1/128*u^5 + 1)/u^12]

> time IsFinite(G);

false

Time: 0.010

> time IsSolubleByFinite (G);

true

Example H61E8

> F := GF(2);

> P := PolynomialRing (F);

> P<t> := PolynomialRing (F);

> F := ext < F | t^2+t+1>;

> G := GL (2, FunctionField (F));

> a := G![1,1/t, 0, 1];

> b := [1,1/(t + 1), 0, 1];

> c := [1,1/(t^2 + t + 1), 0, 1];

> d := [1,1/(t^2 + t), 0, 1];

> G := sub < G | a,b,c,d>;

> time IsFinite (G);

true

> f, I, tau := IsomorphicCopy (G);

> f;

Ch. 61 MATRIX GROUPS OVER INFINITE FIELDS 1773

true

Example H61E9

> // irreducible but (evidently) imprimitive

> K<w> := QuadraticField (2);

> G := MatrixGroup< 8, K |

> [1/2*w,1/2*w,0,0,0,0,0,0,-1/2*w,1/2*w,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,

> 0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,

> 0,0,0,1],

> [1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,

> 0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],

> [0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,

> 0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0] >;

> G;

MatrixGroup(8, K)

Generators:

[1/2*w 1/2*w 0 0 0 0 0 0]

[-1/2*w 1/2*w 0 0 0 0 0 0]

[0 0 1 0 0 0 0 0]

[0 0 0 1 0 0 0 0]

[0 0 0 0 1 0 0 0]

[0 0 0 0 0 1 0 0]

[0 0 0 0 0 0 1 0]

[0 0 0 0 0 0 0 1]

[1 0 0 0 0 0 0 0]

[0 -1 0 0 0 0 0 0]

[0 0 1 0 0 0 0 0]

[0 0 0 1 0 0 0 0]

[0 0 0 0 1 0 0 0]

[0 0 0 0 0 1 0 0]

[0 0 0 0 0 0 1 0]

[0 0 0 0 0 0 0 1]

[0 0 1 0 0 0 0 0]

[0 0 0 1 0 0 0 0]

[0 0 0 0 1 0 0 0]

[0 0 0 0 0 1 0 0]

[0 0 0 0 0 0 1 0]

[0 0 0 0 0 0 0 1]

[1 0 0 0 0 0 0 0]

[0 1 0 0 0 0 0 0]

> IsIrreducibleFiniteNilpotent(G);

true

> r, B := IsPrimitiveFiniteNilpotent(G);

> r;

1774 FINITE GROUPS Part X

false

> #B;

2

Example H61E10

> M:= MatrixAlgebra (GF(17), 4);

> a:= M![5, 5, 3, 3, 0, 5, 0, 3, 16, 16, 14, 14, 0, 16, 0, 14];

> b:= M![9, 9, 0, 0, 0, 9, 0, 0, 10, 10, 8, 8, 0, 10, 0, 8];

> G:= sub<GL(4,17)|a,b>;

> IsNilpotent(G);

true

> SylowSystem (G);

[

MatrixGroup(4, GF(17))

Generators:

[5 0 3 0]

[0 5 0 3]

[16 0 14 0]

[0 16 0 14]

[9 0 0 0]

[0 9 0 0]

[10 0 8 0]

[0 10 0 8],

MatrixGroup(4, GF(17))

Generators:

[1 1 0 0]

[0 1 0 0]

[0 0 1 1]

[0 0 0 1]

]

> Order(G);

8704

Example H61E11

> R<s>:= QuadraticField(-1);

> F<t>:= FunctionField(R);

> M:= MatrixAlgebra (F, 2);

> a:= M![-s*t^2 + 1, s*t^3, -s*t, s*t^2 + 1];

> b:= M![t^2 - 3*t + 1, 0, 0, t^2 - 3*t + 1];

> G:= sub<GL(2,F)|a,b>;

> IsNilpotent(G);

true

Ch. 61 MATRIX GROUPS OVER INFINITE FIELDS 1775

> IsFinite(G);

false

61.8 Bibliography
[DEF09] A. S. Detinko, B. Eick, and D. L. Flannery. Computing with matrix groups

over infinite fields. preprint (15pp.), 2009.
[DF06] A. S. Detinko and D. L. Flannery. Computing in nilpotent matrix groups. LMS

J. Comput. Math., 9:104–134 (electronic), 2006.
[DF08] A. S. Detinko and D. L. Flannery. Algorithms for computing with nilpotent

matrix groups over infinite domains. J. Symbolic Comput., 43:8–26, 2008.
[DF09] A. S. Detinko and D. L. Flannery. On deciding finiteness of matrix groups. J.

Symbolic Comput., 44:1037–1043, 2009.
[DFO09] A. S. Detinko, D. L. Flannery, and E. A. O’Brien. Deciding finiteness of matrix

groups in positive characteristic. J. Algebra, 322:4151–4160, 2009.
[DFO11] A. S. Detinko, D. L. Flannery, and E. A. O’Brien. Algorithms for the Tits

alternative and related problems. J. Algebra, 344:397–406, 2011.
[DFO12] A. S. Detinko, D. L. Flannery, and E. A. O’Brien. Recognition of finite matrix

groups over infinite fields. J. Symbolic Comput., 2012.
[Ros10] T. Rossmann. Irreducibility testing of finite nilpotent linear groups. J. Algebra,

324:1114–1124, 2010.
[Ros11] T. Rossmann. Primitivity testing of finite nilpotent linear groups. LMS JCM,

14:87–98, 2011.

62 MATRIX GROUPS OVER Q AND Z

62.1 Overview 1779

62.2 Invariant Forms 1779

PositiveDefiniteForm(G) 1779
InvariantForms(G) 1779
SymmetricForms(G) 1779
AntisymmetricForms(G) 1779
InvariantForms(G, n) 1779
SymmetricForms(G, n) 1779
AntisymmetricForms(G, n) 1779
NumberOfInvariantForms(G) 1780
NumberOfSymmetricForms(G) 1780
NumberOfAntisymmetricForms(G) 1780

62.3 Endomorphisms 1780

EndomorphismRing(G) 1780
CentreOfEndomorphismRing(G) 1780
CentreOfEndomorphismAlgebra(G) 1780
DimensionOfEndomorphismRing(G) 1780
DimensionOfCentreOf

EndomorphismRing(G) 1780
Endomorphisms(G, n) 1780
CentralEndomorphisms(G, n) 1780

62.4 New Groups From Others . . 1781

BravaisGroup(G) 1781
IntegralGroup(G) 1781

62.5 Perfect Forms and Normalizers 1781

PerfectForms(G) 1781
NormalizerGLZ(G) 1781
CentralizerGLZ(G) 1781

62.6 Conjugacy 1782

ZClasses(G) 1782
IsGLZConjugate(G, H) 1782
IsBravaisEquivalent(G, H) 1782
IsGLQConjugate(G, H) 1783

62.7 Conjugacy Tests for Matrices . 1783

IsGLZConjugate(A, B) 1783
IsSLZConjugate(A, B) 1783
CentralizerGLZ(A) 1783

62.8 Examples 1783

62.9 Bibliography 1785

Chapter 62

MATRIX GROUPS OVER Q AND Z

62.1 Overview

In addition to the functionality explained in Chapter 61 and the functions that are available
for all finite (matrix) groups, Magma can also compute normalizers and centralizers of
a finite integral matrix group G in GLn(Z) as well as decide conjugacy in GLn(Z) and
GLn(Q).

These algorithms are based on the sublattice machinery (see Section 31.3.5) and the
enumeration of G-perfect forms. They are explained in [OPS98, Opg01]. The algorithms
perform very well, as long as the space of G-invariant symmetric forms has small dimension
(say less than 15) and the index of the groups in their Bravais groups is not too large.

The databases of maximal finite irreducible rational, integral, symplectic and quater-
nionic matrix groups are explained in Chapter 66.

62.2 Invariant Forms

Let G be a finite matrix group G < GLn(Q). A matrix F ∈ Mn(Q) is G-invariant if
gFgtr = F for all g ∈ G.

PositiveDefiniteForm(G)

For a finite integral or rational matrix group G, return a positive definite symmetric
G-invariant form.

InvariantForms(G)

SymmetricForms(G)

AntisymmetricForms(G)

For an integral or rational matrix group G, return a basis for the space of G-linear
forms or for the subspace of (anti-) symmetric forms respectively.

The first form returned by InvariantForms and SymmetricForms will be positive
definite.

InvariantForms(G, n)

SymmetricForms(G, n)

AntisymmetricForms(G, n)

For an integral or rational matrix group G, return a sequence consisting of n ≥ 0
G-invariant (symmetric or antisymmetric) bilinear forms for G.

1780 FINITE GROUPS Part X

NumberOfInvariantForms(G)

NumberOfSymmetricForms(G)

NumberOfAntisymmetricForms(G)

For an integral or rational matrix group G or a G-lattice L, return the dimension
of the space of (symmetric or anti-symmetric) invariant bilinear forms for G.

The algorithm uses a modular method which is much faster than the actual
computation of the forms.

62.3 Endomorphisms

EndomorphismRing(G)

For an integral or rational matrix group G, return the endomorphism ring (i.e. the
commuting algebra) of G as a subalgebra of Mn(Z) or Mn(Q) respectively.

CentreOfEndomorphismRing(G)

CentreOfEndomorphismAlgebra(G)

For an integral or rational matrix group G, return the center of the endomorphism
ring (i.e. the commuting algebra) of G as a subalgebra of Mn(Z) or Mn(Q) respec-
tively.

DimensionOfEndomorphismRing(G)

Return the dimension of the endomorphism ring of an integral or rational matrix
group G by a modular method.

DimensionOfCentreOfEndomorphismRing(G)

Return the dimension of the centre of the endomorphism ring of an integral or
rational matrix group G by a modular method.

Endomorphisms(G, n)

For an integral or rational matrix group G, return a sequence containing n indepen-
dent endomorphisms of G. n must be in the range [0..d], where d is the dimension
of the endomorphism ring of G.

CentralEndomorphisms(G, n)

For an integral or rational matrix group G, return a sequence containing n inde-
pendent central endomorphisms of G. n must be in the range [0..d], where d is the
dimension of the centre of the endomorphism ring of G.

Ch. 62 MATRIX GROUPS OVER Q AND Z 1781

62.4 New Groups From Others

BravaisGroup(G)

For a finite integral matrix group G, compute its Bravais group which is the integral
group fixing all symmetric bilinear forms fixed by G.

IntegralGroup(G)

Return the action of the finite rational matrix group G on an invariant lattice as
an integral matrix group, thus giving an equivalent integral group H, together with
the transformation matrix T from the standard lattice to the invariant lattice. Thus
H = T ·G · T−1.

62.5 Perfect Forms and Normalizers

PerfectForms(G)

Limit RngIntElt Default : ∞
A positive definite symmetric G-invariant form F is called G-perfect if for every
nonzero symmetric G-invariant form F ′ there exists some shortest vector x of F
such that F ′xtrx has nonzero trace.

The normalizer of the Bravais group of G in GLn(Z) acts on the set of integral
G-perfect forms whose entries have GCD 1 and the number of orbits is finite. This
function returns a sequence of representatives of these orbits.

If Limit is set to a positive integer m, then the algorithm stops after m orbits
have been enumerated.

NormalizerGLZ(G)

CentralizerGLZ(G)

IsBravais BoolElt Default : false

Given a finite subgroup G of GLn(Z), returns the normalizer or centralizer of G in
GLn(Z).

If G is know to be equal to its Bravais group, one can set IsBravais to true to
speed up the computation.

The algorithm employed is a variation of Opgenorth’s normalizer algorithm
[Opg01].

1782 FINITE GROUPS Part X

62.6 Conjugacy

ZClasses(G)

Homogeneously BoolElt Default : false

Given a finite integral or rational matrix group G, its GLn(Q)-conjugacy class splits
into finitely many GL(n,Z)-conjugacy classes. Representatives of these classes are
constructed as the action of G on some G-invariant sublattices. More precisely, the
GL(n,Z)-conjugacy classes are in bijection with the orbits of G-invariant lattices
under the normalizer N of G in GL(n,Q).

A G-lattice L′ belongs to a G-lattice L if L =
∑

i L
′ei where e1, . . . , er denote

the central idempotents of the endomorphism ring of G. Further, L is called homo-
geneously decomposable if L belongs to itself.

The algorithm will first compute representatives L1, . . . , Lk of the orbits of ho-
mogeneously decomposable G-lattices under the action of N .

In a second step, it will then compute the G-lattices Li,j belonging to Li up to
the action of N .

The second return value will then consist of a sequence of k sequences T1, . . . , Tk.
The first element Ti[1] is the basis matrix of Li, the following entries are basis
matrices of the lattices Li,j .

The first return value is a sequence of integral matrix groups describing the
action of G on the lattices L1,1, L1,2, Hence these groups correspond to the
GLn(Z)-conjugacy classes of G.

If Homogeneously is set to true, the function will only compute the homoge-
neously decomposable lattices L1, . . . , Lk and the corresponding matrix groups. (If
G is reducible, this option is much faster, but will not yield all conjugacy classes /
orbits of lattices.)

IsGLZConjugate(G, H)

Tests whether the finite integral matrix groups G and H are conjugate in GLn(Z).
If so, a matrix x such that Gx = H is also returned.

IsBravaisEquivalent(G, H)

Given two finite integral matrix groups G and H, tests whether their Bravais groups
B(G) and B(H) are conjugate in GLn(Z). If so, a matrix x such that B(G)x = B(H)
is also returned.

Note that this function does not need to compute the Bravais groups and hence
it is faster than calling IsGLZConjugate on the Bravais groups directly.

If G and H are known to be Bravais groups, this function is usually more efficient
than calling IsGLZConjugate.

Ch. 62 MATRIX GROUPS OVER Q AND Z 1783

IsGLQConjugate(G, H)

Al MonStgElt Default :

Tests whether the finite rational matrix groups G and H are conjugate in GLn(Q).
If so, a matrix x such that Gx = H is also returned.

There are currently two algorithms available. If the optional parameter Al equals
"Aut", Magma will use the GModule-machinery together with the outer automor-
phism group ofH. If Al is set to "ZClasses", Magma splits the GL(n,Q)-conjugacy
class of H into GLn(Z)-conjugacy classes and then decides whether an integral copy
of G lies in one of these classes by several calls to IsGLZConjugate.

If Al is not provided, a sensible choice is made by the system.

62.7 Conjugacy Tests for Matrices

Given two n × n matrices A and B with rational or integral entries, Magma can test
whether A is conjugate to B in GLn(Z).

Currently, the implementation is limited to the cases where A,B have finite order or
where n = 2. This limitation will be removed in future versions.

IsGLZConjugate(A, B)

IsSLZConjugate(A, B)

Tests whether two rational or integral matrices A and B are conjugate in GLn(Z)
or SLn(Z). If so, a matrix x such that Ax = B is also returned.

CentralizerGLZ(A)

Given a rational or integral matrix A, this function returns its centralizer in GLn(Z).
The current implementation is limited to the cases where either A has finite order
or A is a 2× 2 matrix.

62.8 Examples

Example H62E1

We split the GL3(Q)-conjugacy class of the following faithful representation of the dihedral group
with 12 elements.

> G := MatrixGroup< 3, Integers() |

> [1, -1, 0, 0, -1, 0, 0, 0, 1],

> [1, -1, 0, 1, 0, 0, 0, 0, -1] >;

> Z, T:= ZClasses(G);

> #Z;

3

> < #t : t in T >;

1784 FINITE GROUPS Part X

<1, 2>

So there are 2 classes of homogeneously decomposable lattices represented by T[1,1] and T[2,1].
The third lattice T[2,2] belongs to T[2,1] as we check.

> Q := Rationals();

> GQ := ChangeRing(G, Q);

> Ids := CentralIdempotents(EndomorphismRing(GQ));

> L := VerticalJoin([Matrix(Integers(), T[2,2] * i) : i in Ids]);

> Image(L) eq Image(Matrix(Integers(), T[2,1]));

true

Finally, we check that the 3 GL3(Z)-conjugacy classes stored in Z correspond to the 3 lattices in
T.

> TT := &cat T;

> [GQ eq ChangeRing(Z[i], Q)^(GL(3, Q) ! TT[i]) : i in [1..#Z]];

[true, true, true]

Example H62E2

We test that the automorphism groups of the lattices B8 and D8 are conjugate in GL8(Q) but
not in GL8(Z).

> G := AutomorphismGroup(Lattice("B", 8));

> H := AutomorphismGroup(Lattice("D", 8));

> ok, x := IsGLQConjugate(G, H); ok, x;

true

[1 -1 0 0 0 0 0 0]

[1 -1 -2 0 0 0 0 0]

[-1 1 2 2 2 2 2 2]

[1 1 0 0 0 0 0 0]

[-1 1 2 2 2 2 2 0]

[1 -1 -2 -2 -2 0 0 0]

[-1 1 2 2 2 2 0 0]

[-1 1 2 2 0 0 0 0]

> Determinant(x);

-128

> IsGLZConjugate(G,H);

false

Example H62E3

Let C be the companion matrix of the fifth cyclotomic polyomial. We find a unimodular matrix
that induces the automorphism C− > C2.

> C:= CompanionMatrix(CyclotomicPolynomial(5));

> ok, h:= IsGLZConjugate(C, C^2); ok;

true

> C^2 eq h^-1 * C * h;

Ch. 62 MATRIX GROUPS OVER Q AND Z 1785

true

We now check by hand that this automorphism cannot be realized by a matrix of determiant 1.

> Determinant(h);

-1

> G:= CentralizerGLZ(C);

> [Determinant(g) : g in Generators(G)];

[1, 1, 1]

Of course, we could also just ask:

> IsSLZConjugate(C, C^2);

false

62.9 Bibliography
[Opg01] J. Opgenorth. Dual Cones and the Voronoi Algorithm. Exp. Math., 10(4):599–

608, 2001.
[OPS98] J. Opgenorth, W. Plesken, and T. Schulz. Crystallographic Algorithms and

Tables. Acta Crystallographica, A54:517–531, 1998.

63 FINITE SOLUBLE GROUPS
63.1 Introduction 1791

63.1.1 Power-Conjugate Presentations . . 1791

63.2 Creation of a Group 1792

63.2.1 Construction Functions 1792

CyclicGroup(GrpPC, n) 1792
AbelianGroup(GrpPC, Q) 1792
DihedralGroup(GrpPC, n) 1792
ExtraSpecialGroup(GrpPC, p, n : -) 1792

63.2.2 Definition by Presentation 1793

PolycyclicGroup< > 1794
quo< > 1795

63.2.3 Possibly Inconsistent Presentations 1796

IsConsistent(G) 1796

63.3 Basic Group Properties . . . 1797

63.3.1 Infrastructure 1797

. 1797
Generators(G) 1797
NumberOfGenerators(G) 1797
Ngens(G) 1797
PCGenerators(G) 1797
NumberOfPCGenerators(G) 1797
NPCGenerators(G) 1797
NPCgens(G) 1797
PCPrimes(G) 1797

63.3.2 Numerical Invariants 1798

Order(G) 1798
1798
FactoredOrder(G) 1798
Exponent(G) 1798

63.3.3 Predicates 1798

IsAbelian(G) 1798
IsCyclic(G) 1798
IsElementaryAbelian(G) 1798
IsNilpotent(G) 1798
IsPerfect(G) 1798
IsSimple(G) 1798
IsSoluble(G) 1798
IsSolvable(G) 1798
IsTrivial(G) 1798
IsSpecial(G) 1799
IsExtraSpecial(G) 1799

63.4 Homomorphisms 1799

hom< > 1799
IsHomomorphism(G, H, L) 1800
IdentityHomomorphism(G) 1800
Kernel(f) 1800
Homomorphisms(G, H) 1800

63.5 New Groups from Existing . . 1802

DirectProduct(G, H) 1802
DirectProduct(Q) 1802
Extension(G, H, f) 1802
Extension(M, H) 1802
Extension(G, H, f, t) 1802
Extension(M, H, t) 1803
IsExtension(G, H, f) 1803
IsExtension(M, H) 1803
IsExtension(G, H, f, t) 1803
IsExtension(M, H, t) 1803
WreathProduct(G, H) 1803
WreathProduct(G, H, f) 1803

63.6 Elements 1806

63.6.1 Definition of Elements 1806

! 1806
ElementToSequence(x) 1806
Eltseq(x) 1806
Identity(G) 1807
Id(G) 1807
! 1807

63.6.2 Arithmetic Operations on Elements 1808

* 1808
*:= 1808
^ 1808
^:= 1808
/ 1808
/:= 1808
^ 1808
^:= 1808
(g1, ..., gn) 1808

63.6.3 Properties of Elements 1809

Order(x) 1809
Parent(x) 1809

63.6.4 Predicates for Elements 1809

eq 1809
ne 1809
IsIdentity(g) 1809
IsId(g) 1809
IsConjugate(G, g, h) 1809

63.6.5 Set Operations 1810

NumberingMap(G) 1810
Random(G) 1810
RandomProcess(G) 1810
Random(P) 1811
Representative(G) 1811
Rep(G) 1811

63.7 Conjugacy 1813

Class(H, g) 1813
Conjugates(H, g) 1813
^ 1813

1788 FINITE GROUPS Part X

ConjugacyClasses(G) 1813
Classes(G) 1813
ClassMap(G) 1813
ClassRepresentative(G, x) 1813
IsConjugate(G, g, h) 1813
NumberOfClasses(G) 1813
Nclasses(G) 1813
PowerMap(G) 1813

63.8 Subgroups 1815

63.8.1 Definition of Subgroups by Genera-
tors 1815

sub< > 1815
ncl< > 1816

63.8.2 Membership and Coercion 1816

in 1816
notin 1817
! 1817
! 1817
! 1817

63.8.3 Inclusion and Equality 1818

subset 1818
notsubset 1818
subset 1818
notsubset 1818
eq 1818
ne 1818
InclusionMap(G, H) 1818

63.8.4 Standard Subgroup Constructions . 1819

^ 1819
Conjugate(H, g) 1819
meet 1819
meet:= 1819
CommutatorSubgroup(G, H, K) 1819
CommutatorSubgroup(H, K) 1819
Centralizer(G, g) 1819
Centraliser(G, g) 1819
Centralizer(G, H) 1819
Centraliser(G, H) 1819
Core(G, H) 1819
^ 1819
NormalClosure(G, H) 1819
Normalizer(G, H) 1819
Normaliser(G, H) 1819

63.8.5 Properties of Subgroups 1820

Index(G, H) 1820
FactoredIndex(G, H) 1820

63.8.6 Predicates for Subgroups 1821

IsCentral(G, H) 1821
IsConjugate(G, H, K) 1821
IsMaximal(G, H) 1821
IsNormal(G, H) 1821
IsSelfNormalizing(G, H) 1821
IsSubnormal(G, H) 1821

63.8.7 Hall π-Subgroups and Sylow Systems1823

ComplementBasis(G) 1823
HallSubgroup(G, S) 1823
pCore(G, S) 1823
SylowBasis(G) 1823
SylowSubgroup(G, p) 1823
Sylow(G, p) 1823
SystemNormalizer(G) 1823
SystemNormaliser(G) 1823

63.8.8 Conjugacy Classes of Subgroups . . 1824

SubgroupClasses(G) 1824
Subgroups(G) 1824
AbelianSubgroups(G) 1824
CyclicSubgroups(G) 1824
ElementaryAbelianSubgroups(G) 1824
NilpotentSubgroups(G) 1824
MaximalSubgroups(G) 1824
SubgroupLattice(G) 1825
BurnsideMatrix(G) 1825
DisplayBurnsideMatrix(G) 1825

63.9 Quotient Groups 1828

63.9.1 Construction of Quotient Groups . 1828

quo< > 1828
/ 1828

63.9.2 Abelian and p-Quotients 1829

AbelianQuotient(G) 1829
AbelianQuotientInvariants(G) 1829
AQInvariants(G) 1829
ElementaryAbelianQuotient(G, p) 1829
pQuotient(G, p, c : -) 1829

63.10 Normal Subgroups and
Subgroup Series 1830

63.10.1 Characteristic Subgroups 1830

Centre(G) 1830
Center(G) 1830
CommutatorSubgroup(G) 1830
DerivedSubgroup(G) 1830
DerivedGroup(G) 1830
FittingSubgroup(G) 1830
FittingGroup(G) 1830
FrattiniSubgroup(G) 1830
Hypercentre(G) 1830
Hypercenter(G) 1830
MinimalNormalSubgroups(G) 1830
pCore(G, S) 1830
Socle(G) 1830

63.10.2 Subgroup Series 1831

AbelianBasis(G) 1831
AbelianInvariants(G) 1831
Invariants(G) 1831
ChiefSeries(G) 1831
CompositionSeries(G) 1831
CompositionFactors(G) 1831

Ch. 63 FINITE SOLUBLE GROUPS 1789

CompositionSeries(G, i) 1831
DerivedSeries(G) 1831
DerivedLength(G) 1831
ElementaryAbelianSeries(G) 1831
ElementaryAbelianSeriesCanonical(G) 1832
LowerCentralSeries(G) 1832
NilpotencyClass(G) 1832
pCentralSeries(G, p) 1832
SubnormalSeries(G, H) 1832
UpperCentralSeries(G) 1832

63.10.3 Series for p-groups 1833

Agemo(G, i) 1833
Omega(G, i) 1833
JenningsSeries(G) 1833
pClass(G) 1833
pRanks(G) 1833

63.10.4 Normal Subgroups and
Complements 1833

NormalSubgroups(G) 1833
NormalLattice(G) 1833
MinimalNormalSubgroup(G) 1833
MinimalNormalSubgroup(G, N) 1833
Complements(G, N) 1834
NormalComplements(G, N) 1834
NormalComplements(G, H, N) 1834

63.11 Cosets 1835

63.11.1 Coset Tables and Transversals . 1835

Transversal(G, H) 1835
RightTransversal(G, H) 1835
CosetTable(G, H) 1835
Transversal(G, H, K) 1835
ShortCosets(p, H, G) 1835

63.11.2 Action on a Coset Space 1835

CosetAction(G, H) 1835
CosetImage(G, H) 1835
CosetKernel(G, H) 1835

63.12 Automorphism Group . . . 1836

63.12.1 General Soluble Group 1836

AutomorphismGroup(G) 1836
HasAttribute(A, "GenWeights") 1836
HasAttribute(A,

"WeightSubgroupOrders") 1837
AutomorphismGroupSolubleGroup(G: -) 1839
IsIsomorphicSolubleGroup(G, H: -) 1840

63.12.2 p-group 1840

AutomorphismGroup(G: -) 1841
OrderAutomorphismGroup

AbelianPGroup(A) 1841

63.12.3 Isomorphism and
Standard Presentations 1842

StandardPresentation(G) 1842
StandardPresentation(G: -) 1842
IsIdenticalPresentation(G, H) 1842

IsIsomorphic(G, H) 1842

63.13 Generating p-groups 1845

GeneratepGroups (p, d, c : -) 1845
Descendants(G : -) 1846
Descendants(G, c : -) 1846
ClassTwo(p, d : -) 1848
ClassTwo(p, d, Step : -) 1848
ClassTwo(p, d, s : -) 1848

63.14 Representation Theory . . . 1849

CharacterDegrees(G) 1849
CharacterDegrees(G, z, p) 1849
CharacterDegrees(G) 1849
CharacterDegreesPGroup(G) 1849
CharacterTable(G: -) 1849
CharacterTableConlon(G) 1849
GModule(G, M) 1850
GModule(G, A) 1850
GModule(G, A, B) 1850
AbsolutelyIrreducible

RepresentationsSchur(G, k: -) 1850
AbsolutelyIrreducible

ModulesSchur(G, k: -) 1850
Irreducible

RepresentationsSchur(G, k: -) 1851
IrreducibleModulesSchur(G, k: -) 1851

63.15 Central Extensions 1852

ExtGenerators(G, U) 1853
HomGenerators(G, U) 1853
ElementSequence(G) 1853
Representative

Cocycles(G, U, Ext, Hom) 1853
CentralExtension(G, U, A) 1853
CentralExtensions(G, U, Q) 1853
CentralExtensionProcess(G, U) 1853
NextExtension(∼P) 1854
IsEmpty(P) 1854

63.16 Transfer Between Group Cate-
gories 1855

63.16.1 Transfer to GrpPC 1855

PCGroup(G) 1855
pQuotient(F, p, c : -) 1856
SolubleQuotient(G) 1856
SolvableQuotient(G) 1856

63.16.2 Transfer from GrpPC 1856

AbelianGroup(G) 1856
FPGroup(G) 1857
GPCGroup(G) 1857

63.17 More About Presentations . 1858

63.17.1 Conditioned Presentations . . . 1858

ConditionedGroup(G) 1858
IsConditioned(G) 1858
LeadingTerm(x) 1858
LeadingGenerator(x) 1859
LeadingExponent(x) 1859

1790 FINITE GROUPS Part X

Depth(x) 1859
PCClass(x) 1859
WeightClass(x) 1859

63.17.2 Special Presentations 1859

SpecialPresentation(G) 1860
SpecialWeights(G) 1860
NilpotentLength(G) 1860
NilpotentBoundary(G,i) 1860
MinorLength(G,i) 1860
MinorBoundary(G,i,j) 1860

LayerLength(G,i,j) 1860
LayerBoundary(G,i,j,k) 1860

63.17.3 CompactPresentation 1862

CompactPresentation(G) 1862
PCGroup(Q : -) 1863

63.18 Optimizing Magma Code . . 1863

63.18.1 PowerGroup 1863

63.19 Bibliography 1864

Chapter 63

FINITE SOLUBLE GROUPS

63.1 Introduction
Any finite soluble group has a subnormal series with cyclic factors. Such a series gives rise
to various polycyclic presentations. These polycyclic presentations are useful because the
word problem in such presentations can be solved in an algorithmic fashion. In Magma,
we use the specific form called a power-conjugate presentation (pc-presentation), which
is described below. The Magma category of groups represented by a power-conjugate
presentation (pc-groups for short) is called GrpPC.

This chapter describes how to use polycyclic presentations to compute with p-groups
and other finite soluble groups in Magma. While most functions apply to any soluble
group, a small number of functions specific to p-groups are identified in the text.

Over the past two decades a considerable body of efficient algorithms has been de-
veloped for computing with soluble groups defined in terms of pc-presentations. It is
recommended that the GrpPC representation of a soluble group be used whenever intensive
calculation with that group is necessary.

63.1.1 Power-Conjugate Presentations
Let G be a finite soluble group. A presentation for G of the form

< a1, . . . , an | apj

j = wjj , 1 ≤ j ≤ n, aai
j = wij , 1 ≤ i < j ≤ n >

where
(i) pj is the least prime such that apj

j ∈< aj+1, . . . , an > for j < n, and apj

j is the identity
for j = n, and

(ii)wij is a word in the generators ai+1, . . . , an, will be called a power-conjugate presenta-
tion (pc-presentation) for G. The generators of G corresponding to a1, . . . , an in this
presentation are known as a power-conjugate generating sequence (pc-generators) for
G.

It is easy to show that every finite soluble group possesses a pc-presentation. If such a
presentation satisfies a certain additional condition (the consistency condition) then every
element a of G can be written uniquely in the normal form

aα1
1 . . . aαn

n , 0 ≤ αi < pi for i = 1, . . . , n.

Given such a pc-presentation for G there exists an algorithm (the collection algorithm),
which given an arbitrary word in the pc-generators a1, . . . , an, will determine the corre-
sponding normal word. In particular, collection can be used to compute the normal word
which is equal to the product of two given normal words, thus implementing the group
multiplication.

1792 FINITE GROUPS Part X

63.2 Creation of a Group

A user can create a GrpPC representation of a finite soluble group in a variety of ways.
There are several built-in construction functions for creating standard examples such as
cyclic or dihedral groups. For greater flexibility, it is possible to define a group directly
from a power-commutator presentation. One can also build new groups out of old groups
using standard constructions such as direct product. Finally, there are several conversion
functions which will automatically compute a pc-presentation for an existing soluble group
in some other category (such as permutation group or matrix group). We will start with
the first two styles of construction and describe the remaining two in later sections.

In each case, regardless of how the group was originally defined, Magma will store the
group internally as a pc-presentation and will display the pc-presentation whenever the
group is printed. Normally when printing a pc-presentation, trivial conjugate relations are
omitted. In the case of a p-group, then trivial power relations (those indicating that a
generator has order p) are also omitted. The one exception to this policy is in the case
of elementary abelian p-groups (which would have no relations displayed under the above
policies). In the elementary abelian case, Magma will display the power relations, even
though they are trivial.

63.2.1 Construction Functions
The simplest method of producing a pc-presentation for a group is to use one of the built-in
construction functions. By specifying the category GrpPC as the first parameter of each
function, we produce the desired representation.

It is also possible to obtain a pc-presentation for many small soluble groups by using
the function SmallGroup described in Chapter 66.

CyclicGroup(GrpPC, n)

The cyclic group of order n as a pc-group.

AbelianGroup(GrpPC, Q)

Construct the abelian group defined by the sequence Q = [n1, . . . , nr] of positive
integers as a pc-group. The function returns the abelian group which is the direct
product of the cyclic groups Cn1 × Cn2 × · · · × Cnr .

DihedralGroup(GrpPC, n)

The dihedral group of order 2 ∗ n as a pc-group.

ExtraSpecialGroup(GrpPC, p, n : parameters)

Given a small prime p and a small positive integer n, construct an extra-special
group G of order p2n+1 in the category GrpPC. The isomorphism type of G may be
selected using the parameter Type.

Type MonStgElt Default : “+”
Possible values for this parameter are “+” (default) and “−”.

Ch. 63 FINITE SOLUBLE GROUPS 1793

If Type is set to “+”, the function returns, for p = 2, the central product of
n copies of the dihedral group of order 8, and for p > 2 it returns the unique
extra-special group of order p2n+1 and exponent p.

If Type is set to “−”, the function returns for p = 2 the central product of a
quaternion group of order 8 and n− 1 copies of the dihedral group of order 8, and
for p > 2 it returns the unique extra-special group of order p2n+1 and exponent p2.

Example H63E1

A pc-representation for the cyclic group C12 can be computed as follows.

> G := CyclicGroup(GrpPC, 12);

We can then check various properties of G.

> Order(G);

12

> IsAbelian(G);

true

> IsSimple(G);

false

If we simply print G, we will see the presentation which Magma has generated for this group.

> G;

GrpPC : G of order 12 = 2^2 * 3

PC-Relations:

G.1^2 = G.2,

G.2^2 = G.3,

G.3^3 = Id(G)

Or, we could build a slightly different group.

> H := AbelianGroup(GrpPC, [2,2,3]);

> Order(H);

12

> IsCyclic(H);

false

63.2.2 Definition by Presentation
While the standard construction functions are convenient, most groups cannot be defined
in that way. Complete flexibility in defining a soluble group can be obtained by directly
specifying the group’s pc-presentation.

One uses a power-conjugate presentation to define a soluble group by means of the
PolycyclicGroup constructor, or the quo constructor for finitely presented groups.

1794 FINITE GROUPS Part X

PolycyclicGroup< x1, ..., xn | R : parameters >

Check BoolElt Default : true

ExponentLimit RngIntElt Default : 20
Class MonStgElt Default :

Construct the soluble group G defined by the power-conjugate presentation
< x1, . . . , xn | R >.

The construct x1, . . . , xn defines names for the generators of G that are local
to the constructor, i.e. they are used when writing down the relations to the right
of the bar. However, no assignment of values to these variables is made. If the
user wants to refer to the generators by these (or other) names, then the generators
assignment construct must be used on the left hand side of an assignment statement.

The construct R denotes a list of pc-relations. Thus, an element of R must be
one of:
(a)A power relation a

pj

j = wjj , 1 ≤ j ≤ n, where wjj is 1 or a word in generators
aj+1, . . . , an for j < n, and wjj = 1 for j = n, and pj a prime.

(b)A conjugate relation aai
j = wij , 1 ≤ i < j ≤ n, where wij is a word in the

generators ai+1, . . . , an.
(c) A power a

pj

j , 1 ≤ j ≤ n and pj a prime, which is treated as the power relation

a
pj

j = Id(F).
(d)A set of (a) – (c).
(e) A sequence of (a) – (c).
Note the following points:
(i) A power relation must be present for each generator ai, i = 1, . . . , n;
(ii)Conjugate relations involving commuting generators (i.e. of the form yx = y)

may be omitted;
(iii)The words wij must be in normal form.
In addition, one can alternatively specify a power-commutator presentation using
commutator relations rather than conjugate relations.
(b’)A commutator relation (aj , ai) = wij , 1 ≤ i < j ≤ n, where wij is a word in the

generators ai+1, . . . , an. However, commutators and conjugates cannot be mixed
in a single presentation.
A map f from the free group of rank n to G is returned as well.
The parameters Check and ExponentLimit may be used. Check indicates

whether or not the presentation is checked for consistency. ExponentLimit de-
termines the amount of space that will be used by the group to speed calculations.
Given ExponentLimit := e, the group will precompute and store normal words for
appropriate products ai ∗ bj where a and b are generators and i and j are in the
range 1 to e.

If the construction of an object in the category GrpPC fails because R is not a
valid power-conjugate presentation, an attempt is made to construct a group in the

Ch. 63 FINITE SOLUBLE GROUPS 1795

category GrpGPC (cf. Chapter 72). This feature can be turned off by setting the
parameter Class to "GrpPC"; an invalid power-conjugate presentation then causes
a runtime error. Since, by default, the constructor always returns a group in the
category GrpPC if possible, this is the only effect of setting the parameter Class to
"GrpPC".

quo< GrpPC : F | R : parameters >

Check BoolElt Default : true

ExponentLimit RngIntElt Default : 20
Given a free group F of rank n with generating set X, and a collection R of pc-
relations on X, construct the soluble group G defined by the power-conjugate pre-
sentation < X|R >.

The construct R denotes a list of pc-relations. The syntax and semantics for the
relations clause is identical to that appearing in the PolycyclicGroup-construct.

This constructor returns a pc-group because the category GrpPC is stated. If no
category were stated, it would return an fp-group.

The parameters Check and ExponentLimit may be used as described in the
PolycyclicGroup-construct.

The natural homomorphism, F → G, is also returned.

Example H63E2

Consider the group of order 80 defined by the presentation

< a, b, c, d, e | a2 = c, b2, c2 = e, d5, e2, ba = b ∗ e, ca = c, cb = c,

da = d2, db = d, dc = d4, ea = e, eb = e, ec = e, ed = e > .

Giving the relations in the form of a list, this presentation would be specified as follows:

> G<a,b,c,d,e> := PolycyclicGroup<a, b, c, d, e |

> a^2 = c, b^2, c^2 = e, d^5, e^2,

> b^a = b*e, d^a = d^2, d^c = d^4 >;

Starting from a free group and giving the relations in the form of a set of relations, this presentation
would be specified as follows:

> F<a,b,c,d,e> := FreeGroup(5);

> rels := { a^2 = c, b^2 = Id(F), c^2 = e, d^5 = Id(F), e^2 = Id(F),

> b^a = b*e, d^a = d^2, d^c = d^4 };
> G<a,b,c,d,e> := quo< GrpPC : F | rels >;

Notice that here we have redefined the variables a, . . . , e to be the pc-generators in G. Thus, when
G is printed, Magma displays the following presentation:

> G;

GrpPC : G of order 80 = 2^4 * 5

PC-Relations:

a^2 = c,

1796 FINITE GROUPS Part X

b^2 = Id(G),

c^2 = e,

d^5 = Id(G),

e^2 = Id(G),

b^a = b * e,

d^a = d^2,

d^c = d^4

> Order(G);

80

> IsAbelian(G);

false

63.2.3 Possibly Inconsistent Presentations
The PolycyclicGroup and quo constructors accept a parameter Check which enables
the user to suppress the automatic consistency checking for input presentations. This is
primarily intended to be used when it is certain that the input presentation is consistent,
in order to save time. For instance, the presentation may have been generated from some
other reliable program, or even from an earlier Magma session. This parameter should
be used with care, since all of the Magma functions assume that every GrpPC group is
consistent. The user will encounter numerous bizarre results if an attempt is made to
compute with an inconsistent presentation.

On occasion, a user may wish to “try out” a series of pc-presentations, some of which
may not be consistent. The Check parameter can be used, along with the function
IsConsistent, to test a presentation for consistency.

IsConsistent(G)

Returns true if G has a consistent presentation, false otherwise.

Example H63E3

The following example demonstrates generating a family of presentations, and then checking
consistency. Of course, it is easy to predict the outcome in this simple example.

> F := FreeGroup(2);

> for p in [n: n in [3..10] | IsPrime(n)] do

> r := [F.1^3=Id(F), F.2^p=Id(F), F.2^F.1=F.2^2];

> G := quo<GrpPC: F | r: Check:=false>;

> if IsConsistent(G) then

> print "For p=",p," the group is consistent.";

> else

> print "For p=",p," the group is inconsistent.";

> end if;

> end for;

For p= 3 the group is inconsistent.

For p= 5 the group is inconsistent.

Ch. 63 FINITE SOLUBLE GROUPS 1797

For p= 7 the group is consistent.

63.3 Basic Group Properties

63.3.1 Infrastructure
The functions described here provide access to basic information stored for a pc-group G.

G . i

The i-th pc-generator for G. A negative subscript indicates that the inverse of the
generator is to be created. G.0 is Identity(G).

Generators(G)

A set containing the defining generators for G. If G is a p-group, this is guaranteed
to be a minimal set of generators. For non-p-groups, this will be the set of pc-
generators.

NumberOfGenerators(G)

Ngens(G)

The number of defining generators for G.

PCGenerators(G)

An indexed set containing the pc-generators for G.

NumberOfPCGenerators(G)

NPCGenerators(G)

NPCgens(G)

The number of pc-generators for G.

PCPrimes(G)

A sequence [p1, . . . , pn] containing the primes associated with the pc-generators of
G. The i-th term of the sequence contains the prime associated with generator ai

of G for i = 1, . . . , n.

1798 FINITE GROUPS Part X

63.3.2 Numerical Invariants
Magma has built-in functions to compute the order and exponent of a group.

Order(G)

#G

The order of the group G, returned as an ordinary integer.

FactoredOrder(G)

The factored order of the group G.

Exponent(G)

The exponent of the group G.

63.3.3 Predicates
Magma has built-in functions to check standard group properties.

IsAbelian(G)

Returns true if the group G is abelian, false otherwise.

IsCyclic(G)

Returns true if the group G is cyclic, false otherwise.

IsElementaryAbelian(G)

Returns true if the group G is elementary abelian, false otherwise.

IsNilpotent(G)

Returns true if the group G is nilpotent, false otherwise.

IsPerfect(G)

Returns true if the group G is perfect, false otherwise. A soluble group G is
perfect only if it is trivial.

IsSimple(G)

Returns true if the group G is simple, false otherwise.

IsSoluble(G)

IsSolvable(G)

Returns true if the group G is soluble, false otherwise. It always returns the value
true for a pc-group.

IsTrivial(G)

Returns true if the group G has order 1, false otherwise.

Ch. 63 FINITE SOLUBLE GROUPS 1799

IsSpecial(G)

Given a p-group G, return true if G is special, false otherwise.

IsExtraSpecial(G)

Given a p-group G, return true if G is extra-special, false otherwise e.

Example H63E4

We use a presentation to define an extraspecial 3-group of exponent 9.

> E := PolycyclicGroup<a1,a2,b1,b2,z|a1^3,a2^3,b1^3=z,b2^3=z,

> z^3,b1^a1=b1*z,b2^a2=b2*z>;

The sequence of base, exponent pairs from FactoredOrder shows us that the group has order 35.

> FactoredOrder(E);

[<3, 5>]

> Exponent(E);

9

As well as with the Order function, one can get the size of a group by using the # shorthand.

> D3 := DihedralGroup(GrpPC, 3);

> #D3;

6

> IsNilpotent(D3);

false

63.4 Homomorphisms
Arbitrary homomorphisms can be defined between pc-groups by using the hom<> construc-
tor. For pc-groups, this constructor has features not generally available for user-defined
homomorphisms. In addition to defining the map by giving images for the pc-generators,
a homomorphism can be defined by giving images for any generating set of the domain.
Magma will verify that the specified images define a homomorphism and will compute the
kernel and inverse images for the defined map. Note that the value returned for an inverse
image of an element is simply one element from the preimage, not the complete coset.

hom< G -> H | L >

Check BoolElt Default : true

Construct a homomorphism φ : G → H defined by the images specified by the list
L.
The list L must be one of the following:
(a) a list, set, or sequence of 2-tuples < gi, hi > (order not important);
(b)a list, set, or sequence of arrow pairs gi− > hi (order not important);
(c) a list or sequence of images h1, . . . , hn (order is important).

1800 FINITE GROUPS Part X

The elements gi and hi must be elements of G and H, respectively, in each case.
For the cases (a) and (b), the elements gi must generate G and the homomorphism
will satisfy φ(gi) = hi. For case (c), n must be the number of pc-generators of G
and the gi are implicitly defined to be the pc-generators.

The parameter Check can be set to false in order to turn off the check that the
map defined is a homomorphism. This should only be done when one is certain that
the map is a homomorphism, since later results will most likely be incorrect if it is
not.

IsHomomorphism(G, H, L)

This is a conditional form of the hom-constructor. The argument L must be a set or
sequence of pairs (as in case (a) of the hom-constructor), or a sequence of images in
H for the pc-generators of G (as in case (c) of the hom-constructor). If the specified
images define a homomorphism, the value true and the resulting map are returned.
Otherwise, false is returned.

IdentityHomomorphism(G)

The identity map from G to G.

Kernel(f)

Given a homomorphism f from one pc-group to another, return the kernel of f .
This will be a pc-group which is a subgroup of the domain of f .

Homomorphisms(G, H)

Given finite abelian groups G and H, return a sequence containing all elements of
Hom(G,H). The elements are returned as actual (Magma map type) homomor-
phisms. Note that this function simply uses Hom, transferring each element of the
returned group to the actual Magma map type homomorphism.

Example H63E5

Let G be a pc-representation of the symmetric group S4, and N be O2(G).

> G := PCGroup(Sym(4));

> G;

GrpPC : G of order 24 = 2^3 * 3

PC-Relations:

G.1^2 = Id(G),

G.2^3 = Id(G),

G.3^2 = Id(G),

G.4^2 = Id(G),

G.2^G.1 = G.2^2,

G.3^G.1 = G.3 * G.4,

G.3^G.2 = G.4,

G.4^G.2 = G.3 * G.4

> N := pCore(G,2);

> Order(N);

Ch. 63 FINITE SOLUBLE GROUPS 1801

4

Let us define H to be a complement of N in G.

> H := sub<G|G.1*G.4,G.2*G.4>;

> Order(H);

6

> H meet N;

GrpPC of order 1

PC-Relations:

We now wish to define the projection homomorphism from G to H. This will map each element
of N to the identity and each element of H to itself. We can define the map directly using these
properties.

> pairs := [];

> for n in Generators(N) do

> pairs cat:= [<G!n,Id(H)>];

> end for;

> for h in Generators(H) do

> pairs cat:= [<G!h, h>];

> end for;

> proj := hom<G -> H|pairs>;

> proj;

Mapping from: GrpPC: G to GrpPC: H

> proj(G.1);

H.1

> proj(N);

GrpPC of order 1

PC-Relations:

We can also compute inverse images and can verify that N is the kernel of the map. Note that
the preimage of a single element is just one element from the preimage, not the complete coset.
Of course, one can use the kernel to compute the full coset if desired.

> y := (H.1)@@proj;

> y;

G.1

> Kernel(proj) eq N;

true

> {y*k: k in Kernel(proj)};

{ G.1 * G.3 * G.4, G.1 * G.4, G.1, G.1 * G.3 }

1802 FINITE GROUPS Part X

63.5 New Groups from Existing

DirectProduct(G, H)

The direct product K of the pc-groups G and H. The second argument returned
is a sequence containing the inclusion maps IG : G → K and IH : H → K. The
third argument returned is a sequence containing the projection maps PG : K → G
and PH : K → H. Furthermore, the (user-) presentation of K is arranged so
that the first pc-generators correspond to those of G and the remaining generators
correspond to those of H.

DirectProduct(Q)

The direct product of pc-groups in the non-empty sequence Q, and the inclusion
and projection maps.

Extension(G, H, f)

The split extension K of the pc-group G by the pc-group H, where the action of H
on G is given by the homomorphism φ : H → Aut(G) specified by f . The extension
K will have a normal subgroup G˜ isomorphic to G, while the quotient group K/G˜
is isomorphic to H.

The homomorphism φ is given by the sequence of maps f . Suppose that the
pc-generators for H are h1, . . . , hs. The i-th entry of f defines the action of hi on
G. That is, f [i](x) = h−1

i · x · hi, for x ∈ G.

Extension(M, H)

The split extension K of the G-module M by the pc-group H. We use the action
of H on M to define the action of H on an elementary abelian p-group of order pd

where M is a d-dimensional module over GF (p), p prime.

Extension(G, H, f, t)

The non-split extension K of the pc-group G by the pc-group H, where the action
of H on G is given by the homomorphism φ : H → Aut(G) and the tails for H
are given as the set of tuples t. The extension K will have a normal subgroup G˜
isomorphic to G, while the quotient group K/G˜ is isomorphic to H.

The homomorphism φ is given by the sequence of maps f . Suppose that the
pc-generators for H are h1, . . . , hs. The i-th entry of f defines the action of hi on
G. That is, f [i](x) = h−1

i · x · hi, for x ∈ G.
The specification of t involves giving the relations h−1

j hihj = wij , where wij is a
word in K for 1 ≤ j < i ≤ s. For i = j, we need the relation hi

pi = wii, where wii is
a word in K for 1 ≤ i ≤ s. Each wij is the RHS of the relation from H with the tail
xij . The tails are given by the sequence t in the order t = [x11, x21, x22, x31, . . . , xss].
Alternatively, t can be given as a set of tuples < i, j, xij > for non-trivial xij .

Note that if xij =Id(G), for 1 ≤ i ≤ s and 1 ≤ j ≤ i, then K will just be the
split extension of G and H.

Ch. 63 FINITE SOLUBLE GROUPS 1803

Extension(M, H, t)

The non-split extension K of the G-module M by the pc-group H. We use the
action of H on M to define the action of H on an elementary abelian p-group of
order pd where M is a d-dimensional module over GF (p), p prime.

The specification of t is similar to that for t in the preceding description.

IsExtension(G, H, f)

IsExtension(M, H)

IsExtension(G, H, f, t)

IsExtension(M, H, t)

For each Extension variation, there is a corresponding function IsExtension which
attempts to construct the specified group and returns a boolean value indicating
whether or not the construction succeeded. If the construction succeeds, the exten-
sion group is also returned.

The Extension functions will generate a runtime error if the specified construc-
tion is not legal. The IsExtension function allows the user to detect this error
condition and continue.

WreathProduct(G, H)

The wreath product of the pc-groups G and H, where the regular permutation
representation of H is used to define the action.

WreathProduct(G, H, f)

The wreath product of the pc-groups G and H where the action of H is given by
f , which may be either a homomorphism from H into a permutation group P or
a sequence of permutations defining a homomorphism from H into P . If f is a
sequence, the homomorphism φ : H → P is defined by H.i→ f [i] for i = 1, . . . , s.

Example H63E6

To demonstrate some of the versions of Extension we first build a split extension of a cyclic group
of order 4 acting on an elementary abelian group of order 9.

> C4 := CyclicGroup(GrpPC,4);

> E9 := AbelianGroup(GrpPC,[3,3]);

> f1 := hom<E9->E9|[E9.1*E9.2^2, E9.1^2*E9.2^2]>;

> f2 := hom<E9->E9|[E9.1^2,E9.2^2]>;

> G := Extension(E9,C4,[f1,f2]);

> G;

GrpPC : G of order 36 = 2^2 * 3^2

PC-Relations:

G.1^2 = G.2,

G.2^2 = Id(G),

G.3^3 = Id(G),

G.4^3 = Id(G),

1804 FINITE GROUPS Part X

G.3^G.1 = G.3 * G.4^2,

G.3^G.2 = G.3^2,

G.4^G.1 = G.3^2 * G.4^2,

G.4^G.2 = G.4^2

Then, we define a module for this group and use it to build a nonsplit extension.

> MR := MatrixRing(GF(3),2);

> m1 := MR![1,1,1,2];

> m2 := MR![2,0,0,2];

> V := GModule(G,[m1,m2,Id(MR),Id(MR)]);

> IsIrreducible(V);

true

> v0 := V!0;

> tails := [v0,v0,v0,v0,V![1,0],V![2,0],V![1,2],V![0,2],v0,V![0,1]];

> H := Extension(V,G,tails);

> H;

GrpPC : H of order 324 = 2^2 * 3^4

PC-Relations:

H.1^2 = H.2,

H.2^2 = Id(H),

H.3^3 = H.5^2,

H.4^3 = H.6,

H.5^3 = Id(H),

H.6^3 = Id(H),

H.3^H.1 = H.3 * H.4^2,

H.3^H.2 = H.3^2 * H.5,

H.4^H.1 = H.3^2 * H.4^2 * H.5 * H.6^2,

H.4^H.2 = H.4^2 * H.6^2,

H.5^H.1 = H.5 * H.6,

H.5^H.2 = H.5^2,

H.6^H.1 = H.5 * H.6^2,

H.6^H.2 = H.6^2

Notice that the relations of H involving the first four generators are those of G with the specified
tails appended. We are then ready to compute various properties of H.

> [N‘order:N in NormalSubgroups(H)];

[1, 9, 81, 162, 324]

Example H63E7

In this example we verify an example of Cossey and Hawkes in [CH00]. The paper shows that the
largest size of a conjugacy class in an abelian by nilpotent finite group is at least as large as the
product of the largest class sizes for the Sylow subgroups. The example is a group having derived
length 3 in which this fails.
We start with a dihedral group of order 10 acting on a cyclic group of order 8.

> E := DihedralGroup(GrpPC,5);

Ch. 63 FINITE SOLUBLE GROUPS 1805

> A := CyclicGroup(GrpPC,8);

Define an action of E on A and create the split extension.

> f1 := hom<A->A|A.1->(A.1)^-1>;

> f2 := hom<A->A|A.1->A.1>;

> H := Extension(A, E, [f1, f2]);

Then construct a certain H-module...

> QH := SylowSubgroup(H,2);

> t := TrivialModule(QH, FiniteField(5));

> B := Induction(t, H);

...and form the split extension of H acting on that module.

> G := Extension(B, H);

> print G;

GrpPC : G of order 250000 = 2^4 * 5^6

PC-Relations:

G.1^2 = Id(G),

G.2^5 = Id(G),

G.3^2 = G.4,

G.4^2 = G.5,

G.5^2 = Id(G),

G.6^5 = Id(G),

G.7^5 = Id(G),

G.8^5 = Id(G),

G.9^5 = Id(G),

G.10^5 = Id(G),

G.2^G.1 = G.2^4,

G.3^G.1 = G.3 * G.4 * G.5,

G.4^G.1 = G.4 * G.5,

G.6^G.2 = G.10,

G.7^G.1 = G.10,

G.7^G.2 = G.6,

G.8^G.1 = G.9,

G.8^G.2 = G.7,

G.9^G.1 = G.8,

G.9^G.2 = G.8,

G.10^G.1 = G.7,

G.10^G.2 = G.9

> print DerivedLength(G);

3

Now check the relevant class sizes.

> P := SylowSubgroup(G,5);

> Q := SylowSubgroup(G,2);

> print Maximum({x[2]:x in Classes(G)});

1250

1806 FINITE GROUPS Part X

> print Maximum({x[2]:x in Classes(P)});

625

> print Maximum({x[2]:x in Classes(Q)});

4

Note that 1250 is less than the product 625*4.

63.6 Elements
Elements of a pc-group are written in terms of the generators. The pc-generators of a group
G can always be written as G.1, G.2, Any variables naming the generators, either
assigned during the definition of the group, or later using standard assignment statements,
can also be used to express the generators. An arbitrary element can be written as a word
in the generators using the various element operations.

63.6.1 Definition of Elements
A word is defined inductively as follows:
(i) A generator is a word;
(ii)The expression (u) is a word, where u is a word;
(iii)The product u ∗ v of the words u and v is a word;
(iv) The conjugate uv of the word u by the word v is a word (uv expands into the word

v−1 ∗ u ∗ v);
(v)The power of a word un, where u is a word and n is an integer, is a word;
(vi) The commutator (u, v) of the words u and v is a word ((u, v) expands into the word

u−1 ∗ v−1 ∗ u ∗ v).
A group element is always printed by Magma as a normal word in the pc-generators of
its parent group.

It is also possible to create an element of a group G from its exponent vector. That
is, the sequence [e1, e2, . . . , en] corresponds to the element G.1e1 ∗G.2e2 ∗ · · · ∗G.nen . The
coercion operator ! is used to convert the sequence to the element.

G ! Q

Given the pc-group G and a sequence Q of length n, containing the distinct positive
integers αi, 0 ≤ αi < pi for i = 1, . . . , n, construct the element x of G given by

x = aα1
1 . . . aαn

n , 0 ≤ αi < pi for i = 1, . . . , n.

ElementToSequence(x)

Eltseq(x)

Given an element x belonging to the pc-group G, where

x = aα1
1 . . . aαn

n , 0 ≤ αi < pi for i = 1, . . . , n,

return the sequence Q of n integers defined by Q[i] = αi, for i = 1, . . . , n.

Ch. 63 FINITE SOLUBLE GROUPS 1807

Identity(G)

Id(G)

G ! 1

Construct the identity element of the pc-group G.

Example H63E8

Given a pc-group, we can define elements as words in the generators or as more general expressions.

> G := PolycyclicGroup<a,b,c|a^3,b^2,c^2,b^a=c,c^a=b*c>;

> G;

GrpPC : G of order 12 = 2^2 * 3

PC-Relations:

G.1^3 = Id(G),

G.2^2 = Id(G),

G.3^2 = Id(G),

G.2^G.1 = G.3,

G.3^G.1 = G.2 * G.3

> x := G.1^2*G.3;

> x;

G.1^2 * G.3

> x^2;

G.1 * G.2 * G.3

> x^3;

Id(G)

Magma will print the element in normal form even if it is not entered that way.

> G.2*G.1;

G.1 * G.3

When coercing a sequence into a group element, the sequence is always interpreted as an exponent
vector for a normal word.

> y := G![0,1,1];

> y;

G.2 * G.3

> x*y;

G.1^2 * G.2

> y*x;

G.1^2

> (x,y);

G.2

An element can also be converted into a sequence.

> x^y;

G.1^2 * G.2 * G.3

> Eltseq(x^y);

[2, 1, 1]

1808 FINITE GROUPS Part X

63.6.2 Arithmetic Operations on Elements
New elements can be computed from existing elements using standard operations.

g * h

Product of the element g and the element h, where g and h belong to some common
subgroup G of a pc-group U . If g and h are given as elements belonging to the same
proper subgroup G of U , then the result will be returned as an element of G; if g
and h are given as elements belonging to distinct subgroups H and K of U , then
the product is returned as an element of G, where G is the smallest subgroup of U
known to contain both elements.

g *:= h

Replace g with the product of element g and element h.

g ^ n

The n-th power of the element g, where n is a positive or negative integer.

g ^:= n

Replace g with the n-th power of the element g.

g / h

Quotient of the element g by the element h, i.e. the element g ∗ h−1. Here g
and h must belong to some common subgroup G of a pc-group U . The rules for
determining the parent group of g/h are the same as for g ∗ h.

g /:= h

Replace g with the quotient of the element g by the element h.

g ^ h

Conjugate of the element g by the element h, i.e. the element h−1 ∗ g ∗ h. Here g
and h must belong to some common subgroup G of a pc-group U . The rules for
determining the parent group of gh are the same as for g ∗ h.

g ^:= h

Replace g with the conjugate of the element g by the element h.

(g1, ..., gn)

Given the n words g1, . . . , gn belonging to some common subgroup G of a pc-group
U , return the commutator. If g1, . . . , gn are given as elements belonging to the
same proper subgroup G of U , then the result will be returned as an element of
G; if g1, . . . , gn are given as elements belonging to distinct subgroups of U , then
the product is returned as an element of G, where G is the smallest subgroup of
U known to contain all elements. Commutators are left-normed, so that they are
evaluated from left to right.

Ch. 63 FINITE SOLUBLE GROUPS 1809

63.6.3 Properties of Elements

Order(x)

Order of the element x.

Parent(x)

The parent group G of the element x.

63.6.4 Predicates for Elements
Elements in the same group can be compared using eq and ne.

g eq h

Given elements g and h belonging to a common pc-group, return true if g and h
are the same element, false otherwise.

g ne h

Given elements g and h belonging to a common pc-group, return true if g and h
are distinct elements, false otherwise.

IsIdentity(g)

IsId(g)

Returns true if g is the identity element, false otherwise.

IsConjugate(G, g, h)

Given a group G and elements g and h belonging to G, return the value true if g
and h are conjugate in G. The function also returns a second value in the event
that the elements are conjugate: an element z such that gz = h.

Example H63E9

We check if one element commutes with another.

> G<a,b,c> := PolycyclicGroup<a,b,c|a^3,b^2,c^2,b^a=c,c^a=b*c>;

> b^a eq b;

false

The same information can also be obtained by checking the commutator.

> IsIdentity((b,a));

false

If we assign the result of IsConjugate to a single variable, it will store the boolean result.

> r := IsConjugate(G, c, b);

> r;

1810 FINITE GROUPS Part X

true

If we simply print IsConjugate, the boolean value and the conjugating element (if any) are
displayed. On the other hand, using the multiple assignment, we can capture both of those
values.

> IsConjugate(G, c, b);

true a^2

> r, x := IsConjugate(G, c, b);

> x, r;

a^2 true

> c^x;

b

63.6.5 Set Operations
These functions allow one to work with the set of elements of G, possibly without much
knowledge of the structure of G.

NumberingMap(G)

A bijective mapping from the group G onto the set of integers {1...|G|}. The actual
mapping depends upon the current presentation for G.

Random(G)

An element, randomly chosen, from the group G. This function uses an entirely
different procedure than that used by RandomProcess (see below). A group element
is chosen with uniform probability by generating (pseudo-)random integers in the
proper range to form a legal exponent vector for G. The corresponding element is
returned. This is an extremely efficient process and is the recommended method for
producing random elements of a pc-group.

RandomProcess(G)

Slots RngIntElt Default : 10
Scramble RngIntElt Default : 20

Create a process to generate randomly chosen elements from the group G. The
process uses an ‘expansion’ procedure to construct a set of elements corresponding
to fairly long words in the generators of G. At all times, N elements are stored where
N is the maximum of the specified value for Slots and Ngens(G) + 1. Initially,
these are simply the generators of G and products of pairs of generators of G.
Random elements are now produced by successive calls to Random(P), where P is
the process created by this function. Each such call chooses an element x stored by
the process and returns it, replacing x with the product of x and another random
element (multiplied on the left or the right). Setting Scramble := m causes m such
operations to be performed initially.

Ch. 63 FINITE SOLUBLE GROUPS 1811

Random(P)

Given a random element process P created by the function RandomProcess(G) for
the finite group G, construct a random element of G by forming a random product
over the expanded generating set constructed when the process was created.

Representative(G)

Rep(G)

A representative element of G. For a pc-group, this always returns the identity
element.

Example H63E10

The NumberingMap function assigns a number to each group element.

> G := DihedralGroup(GrpPC,4);

> num_map := NumberingMap(G);

> for x in G do

> print x,"->",num_map(x);

> end for;

Id(G) -> 1

G.3 -> 2

G.2 -> 3

G.2 * G.3 -> 4

G.1 -> 5

G.1 * G.3 -> 6

G.1 * G.2 -> 7

G.1 * G.2 * G.3 -> 8

The inverse map can be used to obtain the group element corresponding to a particular number.

> 6 @@ num_map;

G.1 * G.3

The Random function is sometimes useful to create a statistical profile of a group. To demonstrate,
we take two groups of order 36 from the SmallGroup database.

> G1 := SmallGroup(3^6, 60);

> G2 := SmallGroup(3^6, 392);

We want to build a histogram of element orders for each group. Since these are 3-groups, each
order will be a power of 3 and we use Ilog to get the exponent of the order. First, we define a
short function to compute the histogram.

> function hist(G, trials)

> // Given a 3-group G, of exponent <= 3^5,

> // return a sequence whose ith term is the

> // number of elements of order p^(i-1) out

> // of trials randomly chosen elements.

> table := [0,0,0,0,0,0];

> for i := 1 to trials do

1812 FINITE GROUPS Part X

> x := Random(G);

> n := Ilog(3, Order(x));

> table[n+1] +:= 1;

> end for;

> return table;

> end function;

Now, we use this function to compute order distributions for 100 elements in each group.

> t1 := hist(G1,100);

> t1;

[0, 0, 5, 28, 67, 0]

> t2 := hist(G2,100);

> t2;

[0, 5, 5, 25, 65, 0]

We can even display them with simple character graphics.

> for e in t1 do print ":","@"^e; end for;

:

:

: @@@@@

: @@@@@@@@@@@@@@@@@@@@@@@@@@@@

: @@@

:

> for e in t1 do print ":","@"^e; end for;

:

: @@@@@

: @@@@@

: @@@@@@@@@@@@@@@@@@@@@@@@@

: @@@

:

Example H63E11

Given the subgroups H and K of G, construct the set product of the groups H and K.

> set_product := func<G, H, K | { G | x * y : x in H, y in K }>;
Given a subgroup H of the pc-group G, construct H as a set of elements of G.

> elements := func<G, H | { G | x : x in H }>;

Ch. 63 FINITE SOLUBLE GROUPS 1813

63.7 Conjugacy

Class(H, g)

Conjugates(H, g)

g ^ H

Given a group H and an element g belonging to a group K such that H and K are
subgroups of some covering group, this function returns the set of conjugates of g
under the action of H. If H = K, the function returns the conjugacy class of g in
H.

ConjugacyClasses(G)

Classes(G)

Construct a set of representatives for the conjugacy classes of G. The classes are
returned as a sequence of tuples containing the order of the elements in the class, the
class length and a representative element for the class. For non-p-groups, the classes
are computed using the homomorphism principle down a series with elementary
abelian factors and orbit-stabilizer in each quotient. See [MN89] for details. For p-
groups an algorithm based on linear algebra developed by Charles Leedham-Green
is used.

ClassMap(G)

The class map M : G → {1, . . . , n} for the group G, where n is the number of
conjugacy classes of G.

ClassRepresentative(G, x)

The designated representative for the conjugacy class of G containing the element
x (relative to existing conjugacy classes).

IsConjugate(G, g, h)

Given a group G and elements g and h belonging to G, return the value true if g
and h are conjugate in G. The function also returns a second value in the event
that the elements are conjugate: an element z which conjugates g into h.

NumberOfClasses(G)

Nclasses(G)

The number of conjugacy classes of elements of the group G.

PowerMap(G)

The power mapM associated with the conjugacy classes of G. The mapM describes
where the elements of the conjugacy classes of G move under powers. That is, < c,
n >@M returns the class number where class c moves under the power n. The value
of c must be in the range [1 . . .Nclasses(G)].

M : {1 . . . n} × Z → {1 . . . n}

1814 FINITE GROUPS Part X

Example H63E12

Let G be a pc-representation of SL(2,3). We can compute the conjugacy classes of G. Notice
that the conjugacy class object has a special printing routine, but you can still access individual
entries.

> G := PCGroup(SpecialLinearGroup(2,GF(3)));

> G;

GrpPC : G of order 24 = 2^3 * 3

PC-Relations:

G.1^3 = Id(G),

G.2^2 = G.4,

G.3^2 = G.4,

G.4^2 = Id(G),

G.2^G.1 = G.3 * G.4,

G.3^G.1 = G.2 * G.3 * G.4,

G.3^G.2 = G.3 * G.4

> Nclasses(G);

7

> cc := Classes(G);

> cc;

Conjugacy Classes of group G

[1] Order 1 Length 1

Rep Id(G)

[2] Order 2 Length 1

Rep G.4

[3] Order 3 Length 4

Rep G.1

[4] Order 3 Length 4

Rep G.1^2

[5] Order 4 Length 6

Rep G.2

[6] Order 6 Length 4

Rep G.1 * G.4

[7] Order 6 Length 4

Rep G.1^2 * G.4

> cc[3];

<3, 4, G.1>

> x := cc[3][3];

> Class(G,x);

{ G.1 * G.2 * G.3 * G.4, G.1 * G.2 * G.4, G.1, G.1 * G.3 }

7

>

We can use the ClassMap function to compute class multiplication constants (structure constants
for the center of the group algebra). For example, we compute the decomposition of class 3 times
class 5.

> cm := ClassMap(G);

Ch. 63 FINITE SOLUBLE GROUPS 1815

> cm(G.1);

3

> i := 3; j := 5;

> t := [0: c in cc];

> for x in Class(G,cc[i][3]), y in Class(G,cc[j][3]) do

> t[cm(x*y)] +:= 1;

> end for;

> t;

[0, 0, 12, 0, 0, 12, 0]

To get the actual structure constants, we need to divide each entry in t by the corresponding class
size.

> [t[i]/cc[i][2]: i in [1..#t]];

[0, 0, 3, 0, 0, 3, 0]

63.8 Subgroups

Subgroups of pc-groups are treated as independent pc-groups in their own right, with the
subgroup relationship maintained in internal data structures. Thus, a subgroup has gen-
erators and a pc-presentation and one can apply any of the functions described earlier for
groups. Furthermore, there are a variety of functions and operations specifically involving
subgroups.

63.8.1 Definition of Subgroups by Generators
The most flexible method of defining a subgroup is to list generators or normal generators
for the subgroup.

sub< G | L >

Construct the subgroup H of the pc-group G generated by the elements specified
by the terms of the generator list L.

A term L[i] of the generator list may consist of any of the following objects:
(a)An element liftable to G (in particular, any element of G);
(b)A subgroup of G;
(c) A set or sequence of (a), or (b).
The collection of words and groups specified by the list must all belong to the group
G and H will be constructed as a subgroup of G.

The subgroup H is defined to be generated by the words specified directly by
terms L[i] together with the stored generating words for any groups specified by
terms of L[i]. Magma will compute a set of pc-generators for H and, if H is a
p-group, a minimal generating set.

The inclusion map from H to G is returned as well.

1816 FINITE GROUPS Part X

ncl< G | L >

Construct the subgroup N of the pc-group G as the normal closure of the subgroup
generated by the elements specified by the terms of the generator list L.

The possible forms of a term L[i] of the generator list are the same as for the
sub-constructor.

The inclusion map from N to G is returned as well.

Example H63E13

We define G to be Z5 wr Z3 and then create two subgroups. Notice that the ncl-constructor
builds a larger subgroup in this case.

> G<a,b,c,d> := PolycyclicGroup<a,b,c,d| a^3, b^5, c^5, d^5,

> b^a = c, c^a = d, d^a = b>;

> H := sub<G| b,c>;

> Order(H);

25

> IsAbelian(H);

true

> IsNormal(G, H);

false

> N := ncl<G| b,c>;

> IsNormal(G, N);

true

> Order(N);

125

63.8.2 Membership and Coercion
There are several functions and operators which allow one to take advantage of the sub-
group relationship to rewrite elements from one presentation to another. That is, if x is an
element of H which is a subgroup of G, then x has a representation as a normal word in
the pc-generators of H, but also has a representation as a (different) normal word in the
pc-generators of G. The coercion operator and inclusion map allow one to compute one of
these words based on the other, thus shifting where we view the element in question.

Magma keeps track of the various relationships between subgroups in a group. Thus, if
H is a subgroup of K which is a subgroup of G, then H can also be considered a subgroup
G. Similarly, in situations involving elements of two groups, A and B, Magma will often
try to find a covering group C which contains both of A and B. In this case, the elements
may be automatically coerced into the covering group.

g in G

Given an element g and a group G, return true if g is an element of G, false
otherwise. In order for this comparison to make sense, both g and G must be
contained in some covering group.

Ch. 63 FINITE SOLUBLE GROUPS 1817

g notin G

Given an element g and a group G, return true if g is not an element of G, false
otherwise. In order for this comparison to make sense, both g and G must be
contained in some covering group.

G ! g

Given an element g belonging to some subgroup H of the group G, rewrite g as an
element of G.

H ! g

Given an element g belonging to the group G, and given a subgroup H of G con-
taining g, rewrite g as an element of H.

K ! g

Given an element g belonging to the group H, and a group K, such that H and K
are subgroups of a covering group G, and both H and K contain g, rewrite g as an
element of K.

Example H63E14

We create two subgroups of a dihedral group.

> G := DihedralGroup(GrpPC, 10);

> C := sub<G| G.2>;

> H := sub<G| G.1, G.3>;

> H.1 in C;

false

> H.2 in C;

true

> Parent(H.1);

GrpPC : H of order 10 = 2 * 5

PC-Relations:

H.1^2 = Id(H),

H.2^5 = Id(H),

H.2^H.1 = H.2^4

> G!(H.1);

G.1

Magma will compute appropriate covering groups as needed.

> H.1*C.1;

G.1 * G.2 * G.3^2

> x := (H.1, C.2);

> x;

G.3^2

> H!x;

H.2^2

> C!x;

1818 FINITE GROUPS Part X

C.2^2

> C!(H.2);

C.2

63.8.3 Inclusion and Equality

S subset G

Given an group G and a set S of elements belonging to a group H, where G and H
have some covering group, return true if S is a subset of G, false otherwise.

S notsubset G

Given a group G and a set S of elements belonging to a group H, where G and H
have some covering group, return true if S is not a subset of G, false otherwise.

H subset G

Given groups G and H, subgroups of some covering group, return true if H is a
subgroup of G, false otherwise.

H notsubset G

Given groups G and H, subgroups of some covering group, return true if H is not
a subgroup of G, false otherwise.

G eq H

Given groups G and H, subgroups of some covering group, return true if G and H
are the same group, false otherwise.

G ne H

Given groups G and H, subgroups of some covering group, return true if G and H
are distinct groups, false otherwise.

InclusionMap(G, H)

The map from the subgroup H of G to G.

Ch. 63 FINITE SOLUBLE GROUPS 1819

63.8.4 Standard Subgroup Constructions
The operators and functions which construct a subgroup of a pc-group always return the
subgroup as a pc-group.

H ^ g

Conjugate(H, g)

Construct the conjugate g−1 ∗H ∗ g of the group H under the action of the element
g. The group H and the element g must belong to a common group.

H meet K

The intersection of groups H and K. The algorithm used for non-p-groups is de-
scribed in [GS90].

H meet:= K

Replace H with the intersection of groups H and K.

CommutatorSubgroup(G, H, K)

CommutatorSubgroup(H, K)

Construct the commutator subgroup of groups H and K, where H and K are
subgroups of a common group G.

Centralizer(G, g)

Centraliser(G, g)

The centralizer of the element g in the group G.

Centralizer(G, H)

Centraliser(G, H)

The centralizer of the subgroup H in the group G.

Core(G, H)

The maximal normal subgroup of G that is contained in the subgroup H of G.

H ^ G

NormalClosure(G, H)

The normal closure of the subgroup H in the group G.

Normalizer(G, H)

Normaliser(G, H)

The normalizer of the subgroup H of the group G. The algorithm used for non-p-
groups is described in [GS90].

1820 FINITE GROUPS Part X

Example H63E15

We’ll consider various subgroups of a direct product of a cyclic group of order 6 and dihedral
group of order 10.

> G := DirectProduct(CyclicGroup(GrpPC,6), DihedralGroup(GrpPC,5));

> x := G.3;

> C := Centralizer(G,x);

> C;

GrpPC : C of order 12 = 2^2 * 3

PC-Relations:

C.1^2 = Id(C),

C.2^2 = Id(C),

C.3^3 = Id(C)

> H := sub<G|G.2,G.4>;

> Order(H);

15

We can compute the intersection using the meet operator.

> K := H meet C;

> K;

GrpPC : K of order 3

PC-Relations:

K.1^3 = Id(K)

To get the join of two subgroups, we simply use the sub-constructor.

> J := sub<G|H, C>;

> J eq G;

true

63.8.5 Properties of Subgroups

Index(G, H)

The index of the subgroup H in the group G, returned as an ordinary integer.

FactoredIndex(G, H)

The factored index of the subgroup H in the group G.

Ch. 63 FINITE SOLUBLE GROUPS 1821

63.8.6 Predicates for Subgroups

IsCentral(G, H)

Returns true if the subgroup H of the group G lies in the centre of G, false
otherwise.

IsConjugate(G, H, K)

Given a group G and subgroups H and K belonging to G, return the value true if
H and K are conjugate in G. The function returns a second value in the event that
the subgroups are conjugate: an element z which conjugates H into K.

IsMaximal(G, H)

Returns true if the subgroup H of the group G is a maximal subgroup of G, false
otherwise.

IsNormal(G, H)

Returns true if the subgroup H of the group G is a normal subgroup of G, false
otherwise.

IsSelfNormalizing(G, H)

Returns true if the subgroup H of the group G is self-normalizing in G, false
otherwise.

IsSubnormal(G, H)

Returns true if the subgroup H of the group G is subnormal in G, false otherwise.

Example H63E16

> G := PCGroup(Sym(4));

> G;

GrpPC : G of order 24 = 2^3 * 3

PC-Relations:

G.1^2 = Id(G),

G.2^3 = Id(G),

G.3^2 = Id(G),

G.4^2 = Id(G),

G.2^G.1 = G.2^2,

G.3^G.1 = G.3 * G.4,

G.3^G.2 = G.4,

G.4^G.2 = G.3 * G.4

> U := sub<G|G.4>;

> IsNormal(G,U);

false

> IsSubnormal(G,U);

1822 FINITE GROUPS Part X

true

Now, we try to construct a subnormal chain by taking normalizers.

> N1 := Normalizer(G,U);

> Index(G,N1);

3

> N2 := Normalizer(G,N1);

> Index(G,N2);

3

> N1 eq N2;

true

We’re stuck. However, we can work our way down with NormalClosure.

> M1 := NormalClosure(G,U);

> U subset M1;

true

> M1 subset U;

false

> M2 := NormalClosure(M1,U);

> M2 eq U;

true

Now, we work inside the Sylow 2-subgroup and look for complements of the cyclic group of order
4 by brute force.

> S := Sylow(G,2);

> S;

GrpPC : S of order 8 = 2^3

PC-Relations:

S.2^S.1 = S.2 * S.3

> T := sub<S|S.1*S.2>;

> list := [];

> for x in S do

> if (Order(x) ne 2) or (x in T) then

> continue;

> end if;

> Append(~list, sub<S|x>);

> end for;

> #list;

4

> for i in [1..3], j in [i+1..4] do

> print i,j,IsConjugate(S,list[i],list[j]);

> end for;

1 2 true S.1

1 3 false

1 4 false

2 3 false

2 4 false

Ch. 63 FINITE SOLUBLE GROUPS 1823

3 4 true S.2

We see that T has two conjugacy classes of complements.

63.8.7 Hall π-Subgroups and Sylow Systems
The functions given here all assume that G is a soluble group having order pe1

1 p
e2
2 · · · pek

k .

ComplementBasis(G)

A complement basis of the soluble group G. This is a sequence of k subgroups of
G, where the i-th subgroup has order pe1

1 . . . p
ei−1
i−1 p

ei+1
i+1 . . . p

ek

k , i.e. the complements
of the k Sylow subgroups of G.

HallSubgroup(G, S)

The Hall π-subgroup of G, where π is defined by S. The argument S may be a set
of primes, a single prime, or the negation of a single prime. If S = −p, then the
Hall p′-subgroup of G is returned.

pCore(G, S)

The core of the Hall π-subgroup, where π is defined by the argument S, which has
the same interpretation as for HallSubgroup.

SylowBasis(G)

A Sylow basis for the soluble group G. This is a sequence of k subgroups of G,
having orders pe1

1 , . . . , p
ek

k , i.e. the k Sylow subgroups of G.

SylowSubgroup(G, p)

Sylow(G, p)

A Sylow p-subgroup for the group G.

SystemNormalizer(G)

SystemNormaliser(G)

The system normalizer for the group G. The system normalizer of the complement
basis Σ = {H1, ..., Hk} is defined to be the intersection of the normalizers in G of
each Hi, ie. N(Σ) = ∩k

i=1NG(Hi). The algorithm used is derived directly from the
definition.

1824 FINITE GROUPS Part X

Example H63E17

Given the group D3 oD5, we can construct the Hall 2-subgroup as follows:

> H := DihedralGroup(GrpPerm, 5);

> G := WreathProduct(DihedralGroup(GrpPC, 3), DihedralGroup(GrpPC, 5),

> [H.2, H.1]);

> H2 := HallSubgroup(G, 2);

> Order(H2);

64

The Hall 2′-subgroup of the same group is constructed as follows:

> H35 := HallSubgroup(G, -2);

> Order(H35);

1215

63.8.8 Conjugacy Classes of Subgroups
Magma has functions for computing the subgroups of a group that return the subgroups
either as a list of conjugacy class representatives as or as a poset. Details of these functions
may be found in Chapter 57. Here we mention the basic functions for convenience.

SubgroupClasses(G)

Subgroups(G)

Conjugacy class representatives for all subgroups of G. The algorithm was devel-
oped by M. Slattery and is essentially that of [Hul99] without the action of auto-
morphisms.

AbelianSubgroups(G)

CyclicSubgroups(G)

ElementaryAbelianSubgroups(G)

NilpotentSubgroups(G)

Conjugacy class representatives for all subgroups of the indicated type in G. The
algorithm used is essentially that of [Hul99] without the action of automorphisms.
Appropriate filters are applied to select the desired groups at each successive quotient
in the computation.

MaximalSubgroups(G)

A sequence of conjugacy class representatives for the maximal subgroups of G.
The algorithm, developed by Charles Leedham-Green, relies on computing a special
presentation for G.

Ch. 63 FINITE SOLUBLE GROUPS 1825

SubgroupLattice(G)

The lattice of conjugacy classes of subgroups of G.

BurnsideMatrix(G)

The Burnside matrix corresponding to the lattice of subgroups of G.

DisplayBurnsideMatrix(G)

Pretty-print the Burnside matrix corresponding to the lattice of subgroups of G.

Example H63E18

To show a bit about subgroup classes, we look at the direct product of C3 and D3. First we list
out the normal subgroups of G.

> G := DirectProduct(CyclicGroup(GrpPC,3),

> DihedralGroup(GrpPC,3));

> ns := NormalSubgroups(G);

> ns;

Conjugacy classes of subgroups

[1] Order 1 Length 1

GrpPC of order 1

PC-Relations:

[2] Order 3 Length 1

GrpPC of order 3

PC-Relations:

$.1^3 = Id($)

[3] Order 3 Length 1

GrpPC of order 3

PC-Relations:

$.1^3 = Id($)

[4] Order 6 Length 1

GrpPC of order 6 = 2 * 3

PC-Relations:

$.1^2 = Id($),

$.2^3 = Id($),

$.2^$.1 = $.2^2

[5] Order 9 Length 1

GrpPC of order 9 = 3^2

PC-Relations:

$.1^3 = Id($),

$.2^3 = Id($)

[6] Order 18 Length 1

GrpPC of order 18 = 2 * 3^2

PC-Relations:

$.1^2 = Id($),

$.2^3 = Id($),

$.3^3 = Id($),

1826 FINITE GROUPS Part X

$.3^$.1 = $.3^2

The normal subgroups sequence has a special printing routine. Each entry in the sequence is
actually a record.

> ns[2];

rec<recformat<order, length, subgroup, presentation> |

order := 3, length := 1, subgroup := GrpPC of order 3

PC-Relations:

$.1^3 = Id($)>

We extract the two normal subgroups of order 3. Each of them turn out to have one conjugacy
class of complements in G. However, one of the complements is normal and the other is not.

> N1 := ns[2]‘subgroup;

> N2 := ns[3]‘subgroup;

> c1 := Complements(G,N1);

> c1;

[

GrpPC of order 6 = 2 * 3

PC-Relations:

$.1^2 = Id($),

$.2^3 = Id($),

$.2^$.1 = $.2^2

]

> c2 := Complements(G,N2);

> c2;

[

GrpPC of order 6 = 2 * 3

PC-Relations:

$.1^2 = Id($),

$.2^3 = Id($)

]

> Index(G,Normalizer(G,c1[1]));

1

> Index(G,Normalizer(G,c2[1]));

3

We can look at the full list of classes of subgroups of G to see that there are three classes of
non-normal subgroups as well as the normal subgroups. There are two non-normal subgroups of
order 3 in addition to N1 and N2.

> Subgroups(G);

Conjugacy classes of subgroups

[1] Order 1 Length 1

GrpPC of order 1

PC-Relations:

[2] Order 2 Length 3

GrpPC of order 2

PC-Relations:

Ch. 63 FINITE SOLUBLE GROUPS 1827

$.1^2 = Id($)

[3] Order 3 Length 1

GrpPC of order 3

PC-Relations:

$.1^3 = Id($)

[4] Order 3 Length 1

GrpPC of order 3

PC-Relations:

$.1^3 = Id($)

[5] Order 3 Length 2

GrpPC of order 3

PC-Relations:

$.1^3 = Id($)

[6] Order 6 Length 1

GrpPC of order 6 = 2 * 3

PC-Relations:

$.1^2 = Id($),

$.2^3 = Id($),

$.2^$.1 = $.2^2

[7] Order 6 Length 3

GrpPC of order 6 = 2 * 3

PC-Relations:

$.1^2 = Id($),

$.2^3 = Id($)

[8] Order 9 Length 1

GrpPC of order 9 = 3^2

PC-Relations:

$.1^3 = Id($),

$.2^3 = Id($)

[9] Order 18 Length 1

GrpPC of order 18 = 2 * 3^2

PC-Relations:

$.1^2 = Id($),

$.2^3 = Id($),

$.3^3 = Id($),

$.3^$.1 = $.3^2

1828 FINITE GROUPS Part X

63.9 Quotient Groups

63.9.1 Construction of Quotient Groups
One of the strengths of representing groups with polycyclic or power-conjugate presenta-
tions is that arbitrary quotient groups can be computed. Given (generators for) a normal
subgroup of a pc-group, Magma will compute a pc-presentation for the quotient and the
corresponding canonical homomorphism.

The pQuotient function, which can be used to find a prime-power quotient of a finitely-
presented group, can also be used to compute quotients of pc-groups.

quo< G | L >

Construct the quotient Q of the pc-group G by the normal subgroup N , where N is
the smallest normal subgroup of G containing the elements specified by the terms
of the generator list L.

The possible forms of a term L[i] of the generator list are the same as for the
sub-constructor.

The quotient group Q and the corresponding natural homomorphism f : G→ Q
are returned.

G / N

Given a normal subgroup N of the pc-group G, construct the quotient of G by N .

Example H63E19

We will compute O3′,3(G), where G is a pc-representation of the symmetric group S4. The
subgroup is defined by O3′,3(G)/O3′(G) = O3(G/O3′(G)).

> G := PCGroup(Sym(4));

> N := pCore(G,-3);

> Q,f := quo<G|N>;

> Q;

GrpPC : Q of order 6 = 2 * 3

PC-Relations:

Q.1^2 = Id(Q),

Q.2^3 = Id(Q),

Q.2^Q.1 = Q.2^2

> S := pCore(Q,3);

> H := S @@ f;

> H;

GrpPC : H of order 12 = 2^2 * 3

PC-Relations:

H.1^3 = Id(H),

H.2^2 = Id(H),

H.3^2 = Id(H),

H.2^H.1 = H.2 * H.3,

H.3^H.1 = H.2

Ch. 63 FINITE SOLUBLE GROUPS 1829

63.9.2 Abelian and p-Quotients
A number of standard quotients may be constructed.

AbelianQuotient(G)

The maximal abelian quotient G/G′ of the group G as GrpAb (cf. Chapter 69). The
natural epimorphism π : G→ G/G′ is returned as second value.

AbelianQuotientInvariants(G)

AQInvariants(G)

A sequence of integers giving the abelian invariants of the maximal abelian quotient
of G.

ElementaryAbelianQuotient(G, p)

The maximal p-elementary abelian quotient Q of the group G as GrpAb (cf. Chap-
ter 69). The natural epimorphism π : G→ Q is returned as second value.

pQuotient(G, p, c : parameters)

Workspace RngIntElt Default : 5000000

Metabelian BoolElt Default : false

Exponent RngIntElt Default : 0

Print RngIntElt Default : 0

Given a pc-group G, a prime p, and a positive integer c, this function constructs
a consistent power-conjugate presentation for the largest p-quotient P of G having
lower exponent-p class at most c. If c is given as zero, then the limit 127 is placed
on the class.

The function also returns the natural homomorphism π from G to P , a sequence
S describing the definitions of the pc-generators of P and a flag indicating whether
P is the maximal p-quotient of G.

The k-th element of S is a sequence of two integers, describing the definition of
the k-th pc-generator P.k of P as follows.

- If S[k] = [0, r], then P.k is defined via the image of G.r under π.

- If S[k] = [r, 0], then P.k is defined via the power relation for P.r.

- If S[k] = [r, s], then P.k is defined via the conjugate relation involving P.rP.s.

1830 FINITE GROUPS Part X

63.10 Normal Subgroups and Subgroup Series

63.10.1 Characteristic Subgroups

Centre(G)

Center(G)

The centre of the group G.

CommutatorSubgroup(G)

DerivedSubgroup(G)

DerivedGroup(G)

The derived subgroup of the group G.

FittingSubgroup(G)

FittingGroup(G)

The Fitting subgroup of the group G.

FrattiniSubgroup(G)

The Frattini subgroup of the group G.

Hypercentre(G)

Hypercenter(G)

The hypercentre of the group G, i.e. the stationary term in the upper central series
for G.

MinimalNormalSubgroups(G)

A sequence containing all minimal normal subgroups of G.

pCore(G, S)

The maximal normal π-subgroup of G, Oπ(G), where π is defined by S. The argu-
ment S may be a set of primes, a single prime, or the negation of a single prime. If
S = −p, then Op′(G) is returned.

Socle(G)

The socle of G.

Ch. 63 FINITE SOLUBLE GROUPS 1831

63.10.2 Subgroup Series

AbelianBasis(G)

Given an abelian group G, return sequences B and I such that order(B[i]) = I[i]
and 〈B〉 = G and the terms of I give the types of each p-primary component of G.

AbelianInvariants(G)

Invariants(G)

The abelian invariants of the abelian group G as a sequence of integers.

ChiefSeries(G)

A chief series for the group G. The series is returned as a sequence of subgroups of
G.

CompositionSeries(G)

A composition series for the group G. The series is returned as a sequence of
subgroups of G. The i-th term of the composition series has a presentation given by
the generators G.i through G.NPCgens(G) and relations involving those generators
only.

CompositionFactors(G)

A sequence of integer tuples that describe the composition factors, ordered according
to some composition series for the group G. Since each factor will be a cyclic group
of prime order, the tuples will each be of the form < 19, 0, q > representing the
cyclic group of order q. The sequence has a custom print routine.

CompositionSeries(G, i)

The i+1-th entry of the composition series for the group G. Its presentation is given
by the generators G.(i + 1) through G.m, where m is the number of pc-generators
of G and relations involving these generators only.

DerivedSeries(G)

The derived series of the group G. The series is returned as a sequence of subgroups.

DerivedLength(G)

The derived length of the group G.

ElementaryAbelianSeries(G)

An elementary abelian series is a chain of normal subgroups with the property that
the quotient of each pair of successive terms in the series is elementary abelian. The
elementary abelian series for the group G is returned as a sequence of subgroups.

1832 FINITE GROUPS Part X

ElementaryAbelianSeriesCanonical(G)

Gives a similar result to using ElementaryAbelianSeries, except the series re-
turned depends only on the isomorphism type of the group, and consists of charac-
teristic subgroups. This function may be slower than ElementaryAbelianSeries.

LowerCentralSeries(G)

The lower central series for the group G. The series is returned as a sequence of
subgroups.

NilpotencyClass(G)

If G is nilpotent, return the nilpotence class of G. Otherwise, -1 is returned.

pCentralSeries(G, p)

The p-central series for G, where p is a prime dividing |G|. The series is returned
as a sequence of subgroups. The p-central series P1 . P2 . · · · . Pi of a soluble group
G is defined inductively as follows:

P1 = G,
Pi+1 = (G,Pi)P

p
i , for i > 0.

SubnormalSeries(G, H)

Given a groupG and a subgroupH ofG, return a sequence of subgroups commencing
with G and terminating with H, such that each subgroup is normal in the previous
one. If H is not subnormal in G, the empty sequence is returned.

UpperCentralSeries(G)

The upper central series of G. The series is returned as a sequence of subgroups.

Example H63E20

The elementary abelian series of the group D3 oD5 has terms of the following orders:

> H := DihedralGroup(GrpPerm, 5);

> G := WreathProduct(DihedralGroup(GrpPC, 3), DihedralGroup(GrpPC, 5),

> [H.2, H.1]);

> EAS := ElementaryAbelianSeries(G);

> for i := 1 to #EAS do

> print FactoredOrder(EAS[i]);

> end for;

[<2, 6>, <3, 5>, <5, 1>]

[<2, 4>, <3, 5>, <5, 1>]

[<2, 4>, <3, 5>]

[<3, 5>]

[]

Hence the elementary abelian factors can be seen to have sizes 22, 5, 24, and 35, reading from top
to bottom.

Ch. 63 FINITE SOLUBLE GROUPS 1833

63.10.3 Series for p-groups
The following functions are only defined for a pc-group which is a p-group.

Agemo(G, i)

Given a p-group G, return the characteristic subgroup of G generated by the ele-
ments xpi

, x ∈ G, where i is a positive integer.

Omega(G, i)

Given a p-group G, return the characteristic subgroup of G generated by the ele-
ments of order dividing pi, where i is a positive integer.

JenningsSeries(G)

Given a p-group G, return the Jennings series for G. The series is returned as a
sequence of subgroups. The Jennings series J1 . J2 . · · · . Ji · · · of a p-group G is
defined inductively as follows:

J1 = G,

Ji+1 =< (Ji, G), Jp
k >, with k = d(i+ 1)/pe, i > 0.

pClass(G)

The lower exponent-p class of the p-group G.

pRanks(G)

A sequence whose i-th entry is the number of pc-generators for the lower exponent-p
class i quotient of the p-group G.

63.10.4 Normal Subgroups and Complements

NormalSubgroups(G)

The collection of all normal subgroups of G returned as a sequence.

NormalLattice(G)

The lattice of normal subgroups of G.

MinimalNormalSubgroup(G)

An elementary abelian minimal normal subgroup of the soluble group G.

MinimalNormalSubgroup(G, N)

Given a non-trivial, normal subgroup N of G, return an elementary abelian minimal
normal subgroup of G contained in N .

1834 FINITE GROUPS Part X

Complements(G, N)

Given a normal subgroup N of G, return conjugacy class representatives of all
complements ofN in G. This function implements the first cohomology computation
described in [CNW90].

NormalComplements(G, N)

Given a normal subgroup N of G, return all normal complements of N in G. This
function implements the first cohomology computation described in [CNW90].

NormalComplements(G, H, N)

Given a normal subgroup N of G, and a normal subgroup H of G containing N ,
return all complements of N in H which are normal in G. This function implements
the first cohomology computation described in [CNW90].

Example H63E21

We define the direct product of an extraspecial group of order 33 and D3 and let N be the first
factor of this product. Inside the Sylow 3-subgroup, we see that N has 11 classes of complements,
three of which are normal.

> A := ExtraSpecialGroup(GrpPC,3,1);

> B := DihedralGroup(GrpPC,3);

> G,f,p := DirectProduct(A,B);

> N := f[1](A);

> S3 := Sylow(G,3);

> cS := Complements(S3,N);

> [Index(S3,Normalizer(S3,t)):t in cS];

[1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3]

We can compute only the normal complements by using NormalComplements.

> ncS := NormalComplements(S3,N);

> #ncS;

3

We can check that precisely one of these three complements is actually normal in G.

> [IsNormal(G,t):t in ncS];

[true, false, false]

Since N has a G-normal complement in S3, we must have S3 normal in G. We can verify this.
Using the three-parameter version of NormalComplements we can directly compute the G-normal
complements of N in S3.

> IsNormal(G,S3);

true

> ncG := NormalComplements(G,S3,N);

> #ncG;

1

> #NormalComplements(G,N);

Ch. 63 FINITE SOLUBLE GROUPS 1835

1

63.11 Cosets

63.11.1 Coset Tables and Transversals

Transversal(G, H)

RightTransversal(G, H)

Given a group G and a subgroup H of G, this function returns
(a)An indexed set of elements T of G forming a right transversal for G over H; and
(b)The corresponding transversal mapping φ : G → T . If T = [t1, . . . , tr] and g in

G, φ is defined by φ(g) = ti, where g ∈ H ∗ ti.
CosetTable(G, H)

Given a group G and a subgroup H of G of index r, return a mapping M :
〈{1..r}, G〉 → {1..r} describing the action of G on the (right) cosets of H.

Transversal(G, H, K)

An indexed set of representatives for the double cosets HuK in G, and the corre-
sponding transversal mapping. The algorithm used is described in [Sla01].

ShortCosets(p, H, G)

Computes a set of representatives for the transversal of G modulo H of all cosets
that contain p. This computation does not do a full transversal of G modulo H and
may therefore be used even if the index of (G : H) is very large.

63.11.2 Action on a Coset Space

CosetAction(G, H)

Given a subgroup H of the group G, construct the permutation representation of
G given by the action of G on the set of (right) cosets of H in G. The function
returns:
(a)The natural homomorphism f : G→ L;
(b)The induced group L;
(c) The kernel K of the action (a subgroup of G).

CosetImage(G, H)

Given a subgroup H of the group G, construct the image L of G given by the action
of G on the set of (right) cosets of H in G. L is returned as a permutation group.

CosetKernel(G, H)

Given a subgroup H of the group G, construct the kernel of the action of G on the
set of (right) cosets of H in G.

1836 FINITE GROUPS Part X

63.12 Automorphism Group

63.12.1 General Soluble Group
In the case of a soluble non-p-group there are two algorithms available. By default, a lifting-
based algorithm developed by M. Smith [Smi94] and extended by Smith and Slattery to
use second cohomology is used. Alternatively, there is also an algorithm developed by
D. Howden [How12], which uses the automorphism group of a Sylow p-subgroup of G to
construct the automorphism group of G.

63.12.1.1 Lifting Algorithm
The automorphism group is computed step-by-step considering a series of factors of G by
terms of a characteristic series

G = G1 > G2 > · · · > Gk > 1

such that Gi/Gi+1 is elementary abelian for each i. We compute the automorphism group
Aut(G/G2) ∼= GL(d, p) for some integer d and prime p, and then lift through each of the
elementary abelian layers G/G3, . . . , G/Gk−1, finally arriving at Aut(G/Gk) = Aut(G).

A group of type GrpAuto is returned. Details of the computation can be seen by setting
the verbose flag AutomorphismGroup to true, and the characteristic series is available as
the attribute CharacteristicSeries on the returned group.

In addition to the usual properties of GrpAuto (such as Order, Ngens, etc.), two special
fields, GenWeights and WeightSubgroupOrders, are provided for automorphism groups
of (non p-group) pc-groups. These each relate to weight subgroups of the automorphism
group. Let i be the largest subscript such that the automorphism acts trivially on G/Gi.
Then the automorphism is said to have weight 2i + 1 if it acts non-trivially on Gi/Gi+1,
and weight 2i + 2 if it acts trivially on Gi/Gi+1. Note that there are no automorphisms
of weight 2. The automorphisms of weight greater than or equal to a given value form a
normal subgroup of A.

AutomorphismGroup(G)

Given a soluble group G presented by a pc-presentation, this function returns the
automorphism group of G as a group of type GrpAuto.

HasAttribute(A, "GenWeights")

If the attribute GenWeights is defined for A then the function returns true, and a
sequence of integers. This integer sequence indicates where each generator lies in the
normal series of A corresponding to the action of the group on G (as described at the
beginning of the section). If the attribute is not set then the sequence is unassigned.
The function call AutomorphismGroup(G), where G has type GrpPC, always returns
an automorphism group with this attribute set. In this case the sequence may also
be obtained by the short form A‘GenWeights.

Ch. 63 FINITE SOLUBLE GROUPS 1837

HasAttribute(A, "WeightSubgroupOrders")

If the attribute WeightSubgroupOrders is defined for A then the function returns
true, and a sequence of integers. This sequence of integers gives the orders for
the normal series of weight subgroups described at the beginning of the section.
If the attribute is not set then the sequence is unassigned. The function call
AutomorphismGroup(G), where G has type GrpPC, always returns an automorphism
group with this attribute set. In this case the sequence may also be obtained by the
short form A‘WeightSubgroupOrders.

Example H63E22

An example using AutomorphismGroup and some related features. We build a group based on the
structure of a finite field (multiplicative group acting on the additive group) and then compute
its automorphism group. First, we set up the field.

> E := GF(2);

> F := GF(8);

> V,phi := VectorSpace(F,E);

> d := Dimension(V);

> x := PrimitiveElement(F);

Then, define a pc-group to act and define the action based on the multiplication in the field.
Compute the matrix by mapping the vectors back to the field, multiplying by x, and then recording
the result.

> C := CyclicGroup(GrpPC,Order(x));

> MR := MatrixRing(E, d);

> s := [];

> for i := 1 to d do

> y := ((V.i)@@phi)*x;

> s cat:= Eltseq(y);

> end for;

Turn the sequence of image components into a matrix and use the matrix to create a C-module.
Then use that module to create the split extension.

> t := MR!s;

> M := GModule(C,[t]);

> G := Extension(M,C);

> G;

GrpPC : G of order 56 = 2^3 * 7

PC-Relations:

G.1^7 = Id(G),

G.2^2 = Id(G),

G.3^2 = Id(G),

G.4^2 = Id(G),

G.2^G.1 = G.3,

G.3^G.1 = G.4,

1838 FINITE GROUPS Part X

G.4^G.1 = G.2 * G.3

Then we can compute the automorphism group of G.

> A := AutomorphismGroup(G);

> A;

A group of automorphisms of GrpPC : G

Generators:

Automorphism of GrpPC : G which maps:

G.1 |--> G.1^2

G.2 |--> G.3 * G.4

G.3 |--> G.2 * G.4

G.4 |--> G.3

Automorphism of GrpPC : G which maps:

G.1 |--> G.1

G.2 |--> G.2 * G.3

G.3 |--> G.3 * G.4

G.4 |--> G.2 * G.3 * G.4

Automorphism of GrpPC : G which maps:

G.1 |--> G.1 * G.2 * G.3

G.2 |--> G.2

G.3 |--> G.3

G.4 |--> G.4

Automorphism of GrpPC : G which maps:

G.1 |--> G.1 * G.3 * G.4

G.2 |--> G.2

G.3 |--> G.3

G.4 |--> G.4

Automorphism of GrpPC : G which maps:

G.1 |--> G.1 * G.4

G.2 |--> G.2

G.3 |--> G.3

G.4 |--> G.4

> [Order(x):x in Generators(A)];

[3, 2, 7, 2, 2]

Next, we can use the automorphisms to create an extension of G.

> b := A.1;

> Order(b);

3

> tau := hom<G->G|[b(G.i):i in [1..NPCgens(G)]]>;

> D := CyclicGroup(GrpPC,Order(b));

> K := Extension(G,D,[tau]);

> K;

GrpPC : K of order 168 = 2^3 * 3 * 7

PC-Relations:

K.1^3 = Id(K),

K.2^7 = Id(K),

K.3^2 = Id(K),

Ch. 63 FINITE SOLUBLE GROUPS 1839

K.4^2 = Id(K),

K.5^2 = Id(K),

K.2^K.1 = K.2^2,

K.3^K.1 = K.4 * K.5,

K.3^K.2 = K.4,

K.4^K.1 = K.3 * K.5,

K.4^K.2 = K.5,

K.5^K.1 = K.4,

K.5^K.2 = K.3 * K.4

> #Classes(K);

8

Finally, we examine information about the weight subgroups. We list only the orders of the terms
of the characteristic series in G in order to save space.

> [Order(H): H in A‘CharacteristicSeries];

[56, 8, 1]

> A‘GenWeights;

[1, 3, 4, 4, 4]

> A‘WeightSubgroupOrders;

[168, 56, 56, 8]

63.12.1.2 Lifting from the Automorphism Group of a Sylow p-
subgroup
The algorithm developed by D. Howden [How12] follows a different strategy to the Smith-
Slattery lifting approach. Given a soluble group G, the algorithm determines a suitable
Sylow p-subgroup P of G, and uses the automorphism group of P (using the algorithm for
p-groups detailed below) to construct the automorphism group of G.

In cases where the automorphism group is soluble, the algorithm automatically con-
structs a pc-representation for it. Solublility of the returned group can then be tested via
the IsSoluble intrinsic. The pc-representation obtained using the PCGroup intrinsic, and
pc-generators (as automorphism maps) via the PCGenerators intrinsic.

In some cases where the automorphism group is not soluble, the algorithm will construct
a permutation representation during its construction.

A group of type GrpAuto is returned. Details of the computation can be seen by setting
the verbose flag AutomorphismGroupSolubleGroup to 1.

A variation of this algorithm can be used for isomorphism testing.

AutomorphismGroupSolubleGroup(G: parameters)

Given a soluble group G presented by a pc-presentation, this function returns the
automorphism group of G as a group of type GrpAuto.

p [RngIntElt] Default : 1;
A prime p dividing the order ofG. The automorphism group of the Sylow p-subgroup
is then used to construct the automorphism group of G. If the p-core of G is trivial

1840 FINITE GROUPS Part X

then an error is given. The default value of p = 1 indicates that the algorithm
should take p to be the prime giving the largest Sylow p-subgroup of G.

IsIsomorphicSolubleGroup(G, H: parameters)

Returns true if the soluble groups G, H presented by pc-presentations, are isomor-
phic, and false otherwise. Where the groups are isomorphic, a mapping G→ H is
also returned.

p [RngIntElt] Default : 1;

A prime p dividing the order of G (assuming that the orders of G and H are the
same). The algorithm then tests Sylow p-subgroups of G and H for isomorphism
and attempts to extend these isomorphisms to an isomorphism G → H. If the
p-cores of G and H are trivial then an error is given. The default value of p = 1
indicates that the algorithm should take p to be the prime giving the largest Sylow
p-subgroup of G.

Example H63E23

An example using AutomorphismGroupSolubleGroup and some related features. We use a group
from the solgps library.

> load solgps;

> G := G10();

> FactoredOrder(G);

[<2, 18>, <7, 4>]

> time A := AutomorphismGroupSolubleGroup(G);

Time: 18.220

> time R_A, phi_A := PCGroup(A);

Time: 0.000

> FactoredOrder(R_A);

[<2, 20>, <3, 2>, <7, 6>]

63.12.2 p-group
For a description of the algorithm used to construct the automorphism group of a p-group,
see [ELGO02].

While it is difficult to state very firm guidelines for the performance of the algorithm,
our experience suggests that it has most difficulty in constructing automorphism groups
of p-groups of “large” Frattini rank (say rank larger than about 6) and p-class 2. If the
group has larger p-class, then it usually has more characteristic structure and the algorithm
exploits this. The order of a group is not a useful guide to the difficulty of the computation.

SetVerbose ("AutomorphismGroup", 1) provides information on the progress of the
algorithm.

Ch. 63 FINITE SOLUBLE GROUPS 1841

AutomorphismGroup(G: parameters)

The group G is a p-group described by a pc-presentation. The function returns the
automorphism group of G as a group of type GrpAuto.

CharacteristicSubgroups

[GrpPC] Default : [];
A list of known characteristic subgroups of G; these may improve the efficiency of the
construction. Note that the algorithm simply accepts that the supplied subgroups
are fixed under the action of the automorphism group; it does not verify that they
are in fact characteristic.

Example H63E24

> G := SmallGroup (64, 78);

> A := AutomorphismGroup (G);

> #A;

1024

> A.1;

Automorphism of GrpPC : G which maps:

G.1 |--> G.1

G.2 |--> G.2

G.3 |--> G.1 * G.3

G.4 |--> G.4

G.5 |--> G.5

G.6 |--> G.4 * G.6

> Order (A.1);

4

> a := A.1^2; [a (G.i): i in [1..6]];

[G.1, G.2, G.3 * G.5, G.4, G.5, G.6]

OrderAutomorphismGroupAbelianPGroup(A)

Order of automorphism group of abelian p-group G where A = [a1, a2, . . .] and
G = Ca1 × Ca2 ×

Example H63E25

Subgroups of C4 × C8 × C64.

> NumberOfSubgroupsAbelianPGroup ([4, 8, 64]);

[7, 35, 91, 139, 171, 171, 139, 91, 35, 7, 1]

Hence, for example, there are 7 subgroups of order 2 and 139 subgroups of order 24.

> OrderAutomorphismGroupAbelianPGroup ([4, 8, 64]);

4194304

1842 FINITE GROUPS Part X

63.12.3 Isomorphism and Standard Presentations
The pQuotient command returns a power-conjugate presentation for a given p-group but
this presentation depends on the user-supplied description of the group. The Standard
Presentation algorithm computes a “canonical” presentation for the p-group, which is
independent of the user-supplied description. For a description of this algorithm, see
[O’B94].

The canonical or standard presentation of a given p-group is the power-conjugate pre-
sentation obtained when a description of the group is computed using the default imple-
mentation of the p-group generation algorithm.

Hence, two groups in the same isomorphism class have identical standard presentations.
Given two p-groups, if their standard presentations are identical, then the groups are iso-
morphic, otherwise they are not. Hence to decide whether two groups are isomorphic,
we can first construct the standard presentation of each using the StandardPresentation
function and then compare these presentations using the IsIdenticalPresentation func-
tion.

While it is difficult to state very firm guidelines for the performance of the algorithm,
our experience suggests that the difficulty of deciding isomorphism between p-groups is
governed by their Frattini rank and is most practical for p-groups of rank at most 5. The
order of a group is not a useful guide to the difficulty of the computation.

SetVerbose ("Standard", 1) will provide information on the progress of the algo-
rithm.

StandardPresentation(G)

StandardPresentation(G: parameters)

The group G is a p-group presented by an arbitrary pc-presentation. The group H
defined by its standard presentation is returned together with a map from G to H.

StartClass RngIntElt Default : 1
If StartClass is k, then use pQuotient to construct the class k − 1 p-quotient of
G and standardize the presentation only from class k onwards.

IsIdenticalPresentation(G, H)

Returns true if G and H have identical presentations, false otherwise.

IsIsomorphic(G, H)

The function returns true if the p-groups G and H are isomorphic, false otherwise.
It constructs their standard presentations class by class, and checks for equality. If
they are isomorphic, it also returns an isomorphism from G to H.

Example H63E26

In the next two examples, we investigate whether particular p-quotients of fp-groups are isomor-
phic.

> F<x, y, t> := FreeGroup(3);

Ch. 63 FINITE SOLUBLE GROUPS 1843

> G := quo< F | x*y^2*x^-1=y^-2, y*x^2*y^-1=x^-2, x^2=t^2, y^2=(t^-1*x)^2,

> t*(x*y)^2=(x*y)^2*t >;

> Q1 := pQuotient(G, 2, 3: Print := 1);

Lower exponent-2 central series for G

Group: G to lower exponent-2 central class 1 has order 2^3

Group: G to lower exponent-2 central class 2 has order 2^7

Group: G to lower exponent-2 central class 3 has order 2^11

> H := quo< F | x*y^2*x^-1=y^-2, y*x^2*y^-1=x^-2, x^2=t^2*(x*y)^2,

> y^2=(t^-1*x)^2, t*(x*y)^2=(x*y)^2*t >;

> Q2 := pQuotient(H, 2, 3: Print := 1);

Lower exponent-2 central series for H

Group: H to lower exponent-2 central class 1 has order 2^3

Group: H to lower exponent-2 central class 2 has order 2^7

Group: H to lower exponent-2 central class 3 has order 2^11

Now check whether the class 3 2-quotients are isomorphic.

> IsIsomorphic(Q1, Q2);

false

In the next example, we construct an explicit isomorphism between two 5-groups.

> F<a, b> := Group<a, b | a^5, b^5, (a * b * a)^5 = (b, a, b) >;

> G := pQuotient (F, 5, 6 : Print := 1);

Lower exponent-5 central series for F

Group: F to lower exponent-5 central class 1 has order 5^2

Group: F to lower exponent-5 central class 2 has order 5^3

Group: F to lower exponent-5 central class 3 has order 5^4

Group: F to lower exponent-5 central class 4 has order 5^5

Group: F to lower exponent-5 central class 5 has order 5^7

Group: F to lower exponent-5 central class 6 has order 5^8

> G;

GrpPC : G of order 390625 = 5^8

PC-Relations:

G.2^G.1 = G.2 * G.3,

G.3^G.1 = G.3 * G.4,

G.3^G.2 = G.3 * G.6 * G.7^4 * G.8^4,

G.4^G.1 = G.4 * G.5,

G.4^G.2 = G.4 * G.7 * G.8,

G.4^G.3 = G.4 * G.7^4 * G.8,

G.5^G.1 = G.5 * G.6,

G.5^G.2 = G.5 * G.7,

G.5^G.3 = G.5 * G.8^2,

G.6^G.2 = G.6 * G.8,

G.7^G.1 = G.7 * G.8^3

> K<a, b> := Group<a, b | a^5, b^5, (b * a * b)^5 = (b, a, b) >;

> H := pQuotient (K, 5, 6 : Print := 1);

Lower exponent-5 central series for K

Group: K to lower exponent-5 central class 1 has order 5^2

Group: K to lower exponent-5 central class 2 has order 5^3

1844 FINITE GROUPS Part X

Group: K to lower exponent-5 central class 3 has order 5^4

Group: K to lower exponent-5 central class 4 has order 5^5

Group: K to lower exponent-5 central class 5 has order 5^7

Group: K to lower exponent-5 central class 6 has order 5^8

> H;

GrpPC : H of order 390625 = 5^8

PC-Relations:

H.2^H.1 = H.2 * H.3,

H.3^H.1 = H.3 * H.4,

H.3^H.2 = H.3 * H.6^2 * H.7^2 * H.8^2,

H.4^H.1 = H.4 * H.5,

H.4^H.2 = H.4 * H.7,

H.4^H.3 = H.4 * H.7^4 * H.8,

H.5^H.1 = H.5 * H.6,

H.5^H.2 = H.5 * H.7,

H.5^H.3 = H.5 * H.8^2,

H.6^H.2 = H.6 * H.8,

H.7^H.1 = H.7 * H.8^3

> flag, phi := IsIsomorphic (G, H);

> flag;

true

> for g in PCGenerators (G) do print g, "--->", phi (g); end for;

G.1 ---> H.1

G.2 ---> H.2^3 * H.4^3 * H.5^3 * H.6^2 * H.7^4 * H.8^3

G.3 ---> H.3^3 * H.5^3 * H.6^4 * H.8^3

G.4 ---> H.4^3 * H.6^3 * H.7^2 * H.8^3

G.5 ---> H.5^3 * H.8

G.6 ---> H.6^3

G.7 ---> H.7^4

G.8 ---> H.8^4

The functions IsIsomorphic and StandardPresentation are expensive. Here we have a list of
groups and we want to find any isomorphisms among the collection. Rather than repeatedly
applying IsIsomorphic, we first construct and store standard presentations for each group in the
sequence, and then quickly compare these using IsIdenticalPresentation.

> F<a, b> := FreeGroup (2);

> p := 7;

> Q := [];

> for k := 1 to p - 1 do

> G := quo< F | a^p = (b, a, a), b^p = a^(k*p), (b, a, b)>;

> H := pQuotient (G, p, 10);

> Q[k] := StandardPresentation (H);

> end for;

Now run over the list of standard presentations and check for equality.

> for i in [2..p - 1] do

> for j in [1.. i - 1] do

> if IsIdenticalPresentation (Q[i], Q[j]) then

Ch. 63 FINITE SOLUBLE GROUPS 1845

> print "Standard Presentations ", i, " and ", j, " are identical";

> end if;

> end for;

> end for;

Standard Presentations 2 and 1 are identical

Standard Presentations 4 and 1 are identical

Standard Presentations 4 and 2 are identical

Standard Presentations 5 and 3 are identical

Standard Presentations 6 and 3 are identical

Standard Presentations 6 and 5 are identical

63.13 Generating p-groups

The p-central series of a group G is the descending sequence of subgroups

G = P0(G) ≥ . . . ≥ Pi−1(G) ≥ Pi(G) ≥ . . . ≥

where Pi(G) = [Pi−1(G), G]Pi−1(G)p for i ≥ 1.
If Pc(G) = 1 and c is the smallest such integer then G has p-class c. A group with

p-class c is nilpotent and has nilpotency class at most c.
Let G be a finite p-group with Frattini rank d and class c. A group H is a descendant

of G if H has Frattini rank d and the quotient H/Pc(H) is isomorphic to G. A group is
an immediate descendant of G if it is a descendant of G and has class c+ 1.

The p-group generation algorithm allows the construction of (immediate) descendants
of a p-group. For a description of this algorithm, see [New77, O’B90].

SetVerbose ("GeneratepGroups", 1) will provide information on the progress of the
algorithm.

GeneratepGroups (p, d, c : parameters)

Generate all d-generator p-class at most c p-groups.

Exponent RngIntElt Default : 0

All groups constructed satisfy the supplied exponent.

OrderBound RngIntElt Default : 0

Given OrderBound := n, all groups constructed have order at most pn.

StepSizes [RngIntElt] Default : []

Construct descendants of order p(n+s) of a group of order pn only for s in StepSizes.

All BoolElt Default : true

If true, return all groups. Otherwise, return only the capable groups (those which
have descendants).

1846 FINITE GROUPS Part X

Descendants(G : parameters)

Descendants(G, c : parameters)

Construct descendants of G having p-class at most c; if c is not supplied, it is
assumed to be one larger than the p-class of G. This function supports the same
variable arguments as GeneratepGroups.

Example H63E27

> G := DihedralGroup(GrpPC, 16);

> T := Descendants (G, 8);

> #T;

12

> H := T[5];

> H;

GrpPC : H of order 128 = 2^7

PC-Relations:

H.1^2 = H.7,

H.2^2 = H.3 * H.4,

H.3^2 = H.4 * H.5,

H.4^2 = H.5 * H.6,

H.5^2 = H.6 * H.7,

H.6^2 = H.7,

H.2^H.1 = H.2 * H.3,

H.3^H.1 = H.3 * H.4,

H.4^H.1 = H.4 * H.5,

H.5^H.1 = H.5 * H.6,

H.6^H.1 = H.6 * H.7

Example H63E28

What is the soluble length of a 2-generator group of exponent 4? We construct the 2-generator
2-groups having exponent 4.

> T := GeneratepGroups(2, 2, 10: Exponent := 4);

> "The number of 2-generator exponent 4 groups is ", # T;

The number of 2-generator exponent 4 groups is 26

What are their soluble lengths?

> for i := 1 to #T do

> "Group ", i, " has soluble length ", DerivedLength (T[i]);

> end for;

Group 1 has soluble length 1

Group 2 has soluble length 2

Group 3 has soluble length 2

Group 4 has soluble length 1

Group 5 has soluble length 2

Group 6 has soluble length 2

Ch. 63 FINITE SOLUBLE GROUPS 1847

Group 7 has soluble length 2

Group 8 has soluble length 2

Group 9 has soluble length 2

Group 10 has soluble length 2

Group 11 has soluble length 2

Group 12 has soluble length 2

Group 13 has soluble length 2

Group 14 has soluble length 2

Group 15 has soluble length 2

Group 16 has soluble length 2

Group 17 has soluble length 2

Group 18 has soluble length 2

Group 19 has soluble length 2

Group 20 has soluble length 2

Group 21 has soluble length 3

Group 22 has soluble length 3

Group 23 has soluble length 3

Group 24 has soluble length 3

Group 25 has soluble length 3

Group 26 has soluble length 3

Example H63E29

Can we find all 2-generator 3-groups of abundance zero? Such groups have order at most 35.
First, we define a function which checks the number of conjugacy classes of a group (to determine
abundance).

> IsGoodGroup := function(G, k)

>

> ncl := # Classes(G);

>

> O := FactoredOrder(G);

> p := O[1][1];

> m := O[1][2];

> n := Floor(m / 2);

> e := m - n * 2;

> Desired := n * (p^2 - 1) + p^e + k * (p - 1) * (p^2 - 1);

>

> return (Desired eq ncl);

>

> end function;

Then, we generate the potential candidates and check each.

> a := GeneratepGroups (3, 2, 4 : OrderBound := 5);

> #a;

42

>

> for i := 1 to #a do

1848 FINITE GROUPS Part X

> G := a[i];

> if IsGoodGroup(G, 0) then

> "Group ", i, " of order ", Order(G), " has abundance 0";

> end if;

> end for;

Group 1 of order 9 has abundance 0

Group 3 of order 27 has abundance 0

Group 4 of order 27 has abundance 0

Group 11 of order 81 has abundance 0

Group 12 of order 81 has abundance 0

Group 13 of order 81 has abundance 0

Group 14 of order 81 has abundance 0

Group 40 of order 243 has abundance 0

Group 41 of order 243 has abundance 0

Group 42 of order 243 has abundance 0

ClassTwo(p, d : parameters)

ClassTwo(p, d, Step : parameters)

ClassTwo(p, d, s : parameters)

Count the d-generator p-groups of p-class 2. If s or Step is supplied, then count
only those of order p(d+s) or p(d+m) for m ∈ Step. In the first two invocations, the
sequence returns a sequence of length

(
d
2

)
, whose m-th entry is the number of groups

of p(d+m). (Some additional entries may be deduced on the basis of duality.) The
last invocation returns the number of groups of p(d+s). For details of the algorithm
used see [EO99].

Exponent RngIntElt Default : 0
If Exponent is true, count those groups which have exponent p. The directive
SetVerbose ("ClassTwo", 1) will provide information on the progress of the al-
gorithm.

Example H63E30

Count the number of 3-generator p-class 2 5-groups.

> ClassTwo(5, 3);

[4, 19, 42, 19, 4, 1]

For example, the number of 3-generator 5-groups of order 56 and p-class 2 is precisely 42.
Count the number of 4-generator p-class 2 5-groups of order 57.

> ClassTwo(5, 4, 3);

6598

Ch. 63 FINITE SOLUBLE GROUPS 1849

63.14 Representation Theory

Chapter 91 on characters describes many functions for computing with partial character
tables or individual characters.

CharacterDegrees(G)

CharacterDegrees(G, z, p)

Given a finite pc-group G, return the sequence [〈d1, c1〉, 〈d2, c2〉, . . .], where ci is the
number of irreducible characters of G having degree di. For details of the algorithm
see Conlon [Con90b].

The second form requires z to be a central element of G and p to be a prime
or zero. The sequence returned enumerates the number of absolutely irreducible
characters of G in characteristic p, lying over some faithful linear character of 〈z〉.

CharacterDegrees(G)

Given a finite p-group G, return the sequence [〈d1, c1〉, 〈d2, c2〉, . . .], where ci is the
number of irreducible characters of G having degree di. For details of the algorithm
see [Sla86].

CharacterDegreesPGroup(G)

Given a finite p-group G, return the sequence [C0, C1, . . .], where Ci is the number
of irreducible characters of G having degree pi. For details of the algorithm see
[Sla86].

CharacterTable(G: parameters)

Construct the table of ordinary irreducible characters for the group G.

Al MonStgElt Default : “Default”

This parameter controls the algorithm used. The string "DS" forces use of
the Dixon-Schneider algorithm. The string "IR" forces the use of Unger’s in-
duction/reduction algorithm [Ung06]. The "Default" algorithm is to use Dixon-
Schneider for groups of order ≤ 5000 and Unger’s algorithm for larger groups. This
may change in future.

DSSizeLimit RngIntElt Default : 104

When the default algorithm is selected, a positive value n for DSSizeLimit means
that before using Unger’s algorithm, the full character space is split by some passes
of Dixon-Schneider, restricted to using class matrices corresponding to conjugacy
classes with size at most n.

CharacterTableConlon(G)

Given a finite p-group G, return the character table of G. The algorithm is due to
Conlon, as described in [Con90].

1850 FINITE GROUPS Part X

GModule(G, M)

The G-module for the action of G on the vector space defined by the matrix ring
M .

GModule(G, A)

A KG-module M corresponding to the action of the group G on the elementary
abelian subgroup A of G is constructed. The map from A to the vector space
underlying M is also returned.

GModule(G, A, B)

A KG-module M corresponding to the action of the group G on the elementary
abelian section A/B of G is constructed. The map from A to the vector space
underlying M is also returned.

AbsolutelyIrreducibleRepresentationsSchur(G, k: parameters)

AbsolutelyIrreducibleModulesSchur(G, k: parameters)

Compute the absolutely irreducible representations of the group G over appropri-
ate extensions or sub-fields of the given field k. The representations returned are
inequivalent and consist of all distinct representations, subject to the conditions
imposed. The field k may be a finite field, the rationals or a cyclotomic field. In the
case when k is a finite field, the Glasby-Howlett algorithm is used to determine the
minimal field over which a representation may be realised. If k has characteristic 0,
the field over which a representation is realised may not be minimal.

The representations are found using Schur’s method of climbing the composition
series for G defined by the pc-presentation. If the argument i is given then the
algorithm will calculate only representations of the ith subgroup of the composition
series.

The “Representations” function returns a list of homomorphisms ρ : G →
GL(n,K), where K is a field compatible with k. The “Modules” version returns an
equivalent list of G-modules.

Process BoolElt Default : true

If the parameter Process is set true then the list is a list of pairs comprising an
integer and a representation. This list or any sublist of it is a suitable value for
the argument L in the last versions of the function, and in this case only the repre-
sentations in L will be extended up the series. This allows the user to inspect the
representations produced along the way and cull any that are uninteresting.

GaloisAction MonStgElt Default : “Y es”
Possible values are "Yes", "No" and "Relative" The default is "Yes" for interme-
diate levels and "No" for the whole group. The value "Yes" means that it only
lists one representation from each orbit of the action of the absolute Galois group
Gal(K/primefield(K)). Setting this parameter to "No" turns this reduction off (thus
listing all inequivalent representations), while setting it to "Relative" uses the
group Gal(K/k).

Ch. 63 FINITE SOLUBLE GROUPS 1851

MaxDimension RngIntElt Default :

Restrict the representations to those of dimension ≤ MaxDimension. Default is no
restriction.

ExactDimension SetEnum Default :

If ExactDimension is assigned a set S of positive integers, attention is restricted to
representations having dimensions lying in the set S. The default is equivalent to
taking the set of all positive integers.

If both MaxDimension and ExactDimension are assigned values, then represen-
tations having dimensions that are either bounded by MaxDimension or contained
in ExactDimension are produced.

IrreducibleRepresentationsSchur(G, k: parameters)

IrreducibleModulesSchur(G, k: parameters)

Compute irreducible representations of G over the given field k. All arguments and
parameters are as for the absolutely irreducible case.

The computation proceeds by first computing the absolutely irreducible repre-
sentations subject to the given parameters, then rewriting over the field k, with a
consequent change of dimension of the representation.

Example H63E31

We compute representations of the dihedral group of order 20.

> G := DihedralGroup(GrpPC, 10);

> FactoredOrder(G);

[<2, 2>, <5, 1>]

First some modular representations with characteristic 2.

> r := IrreducibleModulesSchur(G, GF(2));

> r;

[*

GModule of dimension 1 over GF(2),

GModule of dimension 4 over GF(2)

*]

> r := AbsolutelyIrreducibleModulesSchur(G, GF(2));

> r;

[*

GModule of dimension 1 over GF(2),

GModule of dimension 2 over GF(2^2),

GModule of dimension 2 over GF(2^2)

*]

> r := AbsolutelyIrreducibleModulesSchur(G, GF(2) : GaloisAction:="Yes");

> r;

[*

GModule of dimension 1 over GF(2),

GModule of dimension 2 over GF(2^2)

1852 FINITE GROUPS Part X

*]

The irreducible representation of dimension 4 is not absolutely irreducible, as over GF (4) it splits
into two Galois-equivalent representations.
Getting irreducible representations over the complex field presents no problem, despite not being
able to use the complex field as an argument to the function call. We could specify the field to be
the cyclotomic field with degree equal to Exponent(G), but it is preferable to ask for absolutely
irreducible representations over the rationals.

> r := AbsolutelyIrreducibleRepresentationsSchur(G, Rationals());

> r;

[*

Mapping from: GrpPC: G to GL(1, RationalField()),

Mapping from: GrpPC: G to GL(1, RationalField()),

Mapping from: GrpPC: G to GL(1, RationalField()),

Mapping from: GrpPC: G to GL(1, RationalField()),

Mapping from: GrpPC: G to GL(2, CyclotomicField(5)),

Mapping from: GrpPC: G to GL(2, CyclotomicField(5)),

Mapping from: GrpPC: G to GL(2, CyclotomicField(5)),

Mapping from: GrpPC: G to GL(2, CyclotomicField(5))

*]

> r[6](G.2);

[zeta_5^3 0]

[0 zeta_5^2]

63.15 Central Extensions

We now describe functions to construct H2(G,U) for a finite soluble group G and finite
abelian group U (a trivial G-module). We also present functions to construct central
extensions of U by G.

Denote by Z2(G,U) the abelian group of all cocycles from G to U , under pointwise
multiplication. The values ψ(g, h) of ψ ∈ Z2(G,U) may be represented as a “cocyclic
matrix” with entries in U .

If φ : G→ U is a set map with φ(1G) = 1U , then there is a coboundary ∂φ ∈ Z2(G,U)
defined by ∂φ(g, h) = φ(g)φ(h)φ(gh)−1. The group of all coboundaries from G to U is
denoted B2(G,U), and we have H2(G,U) = Z2(G,U)/B2(G,U). Then H2(G,U) = I×T ,
where I is the (faithful) image of Ext(G/G′, U) ≤ H2(G/G′, U) under inflation, and T is
the (faithful) image of Hom(H2(G), U) under a certain transgression homomorphism. Here
we provide functions which construct representatives for the elements in a generating set
for each of these two factors.

For details of the theory and the algorithm used, see [FO00].
SetVerbose ("Cocycle", 1) will provide additional information on the calculations

in the functions.

Ch. 63 FINITE SOLUBLE GROUPS 1853

ExtGenerators(G, U)

Given a soluble group G and an abelian group U (both defined by pc-presentations)
the function returns a sequence of tuples describing generators for Ext(G/G′, U) as
cocyclic matrices; the first entry in each tuple is a representative of a generator, the
second is the order of the coset of the representative in H2(G,U).

HomGenerators(G, U)

Given a soluble group G and an abelian group U (both defined by pc-presentations)
the function returns a sequence of tuples describing generators for Hom(H2(G), U)
as cocyclic matrices; the first entry in each tuple is a representative of a generator,
the second is the order of the coset of the representative in H2(G,U).

ElementSequence(G)

For a soluble group G, the function returns an indexed set of elements of G listed
in the order used by ExtGenerators and HomGenerators.

RepresentativeCocycles(G, U, Ext, Hom)

Let G be a soluble group G and U be an abelian group both defined by pc-
presentations. Let Ext and Hom be the values returned by calling ExtGenerators
and HomGenerators respectively. The function RepresentativeCocycles returns
a complete and irredundant set of representatives for the elements of H2(G,U) as
cocyclic matrices.

CentralExtension(G, U, A)

Let G be a soluble group G and U be an abelian group, both defined by pc-
presentations. Further, let A be a cocyclic matrix (as determined by the function
RepresentativeCocycles). Then, this function returns the central extension of U
by G determined by the cocyclic matrix A.

CentralExtensions(G, U, Q)

If G is a soluble group G and U is an abelian group, both defined by pc-
presentations, and Q is a sequence of cocyclic matrices (as determined by the func-
tion RepresentativeCocycles), this function returns the corresponding sequence
of central extension of U by G determined by the sequence of cocyclic matrices A.
Note that the central extensions thereby constructed need not be mutually non-
isomorphic.

CentralExtensionProcess(G, U)

Given a soluble group G and an abelian group U (both defined by pc-presentations)
the function creates a process P for central extensions of U by G. Note that the list
of central extensions constructed by this process will contain all isomorphism types
but the extensions need not be mutually non-isomorphic.

1854 FINITE GROUPS Part X

NextExtension(∼P)
Given a central extension process P , construct the next central extension determined
by P .

IsEmpty(P)

Return true if all central extensions determined by the process P have been con-
structed; otherwise return false.

Example H63E32

We compute the abelian invariants of H2(D4, C2).

> G := DihedralGroup(GrpPC, 4);

> U := AbelianGroup(GrpPC, [2]);

>

> Ext := ExtGenerators(G, U);

> Ext[1];

<[Id(U) Id(U) Id(U) Id(U) Id(U) Id(U) Id(U) Id(U)]

[Id(U) Id(U) Id(U) Id(U) Id(U) Id(U) Id(U) Id(U)]

[Id(U) Id(U) Id(U) Id(U) Id(U) Id(U) Id(U) Id(U)]

[Id(U) Id(U) Id(U) Id(U) Id(U) Id(U) Id(U) Id(U)]

[Id(U) Id(U) Id(U) Id(U) U.1 U.1 U.1 U.1]

[Id(U) Id(U) Id(U) Id(U) U.1 U.1 U.1 U.1]

[Id(U) Id(U) Id(U) Id(U) U.1 U.1 U.1 U.1]

[Id(U) Id(U) Id(U) Id(U) U.1 U.1 U.1 U.1], 2>,

>

> Hom := HomGenerators(G, U);

> Hom;

[

<[Id(U) Id(U) Id(U) Id(U) Id(U) Id(U) Id(U) Id(U)]

[Id(U) U.1 U.1 Id(U) Id(U) U.1 U.1 Id(U)]

[Id(U) Id(U) Id(U) Id(U) Id(U) Id(U) Id(U) Id(U)]

[Id(U) U.1 U.1 Id(U) Id(U) U.1 U.1 Id(U)]

[Id(U) Id(U) Id(U) U.1 Id(U) U.1 U.1 U.1]

[Id(U) U.1 Id(U) Id(U) U.1 U.1 Id(U) U.1]

[Id(U) Id(U) Id(U) U.1 Id(U) U.1 U.1 U.1]

[Id(U) U.1 Id(U) Id(U) U.1 U.1 Id(U) U.1], 2>

]

>

> AbelianInvariants(Ext, Hom);

[2, 2, 2]

We now compute the central extension of U by G determined by a single cocyclic matrix.

> A := RepresentativeCocycles(G, U, Ext, Hom);

> E := CentralExtension(G, U, A[2]);

> E;

GrpPC : E of order 16 = 2^4

PC-Relations:

Ch. 63 FINITE SOLUBLE GROUPS 1855

E.1^2 = E.4,

E.2^2 = E.3 * E.4,

E.2^E.1 = E.2 * E.3

Alternatively we can build all central extensions of U by G.

> E := CentralExtensions(G, U, A);

> "Number of extensions is ", #E;

Number of extensions is 8

Next, we provide an example of using the central extension process. Firstly, we create the groups
and initialize the process.

> G := SmallGroup(12, 5);

> U := AbelianGroup(GrpPC, [2, 3]);

> P := CentralExtensionProcess(G, U);

Now we run over the central extensions and count conjugacy classes.

> C := [];

> while IsEmpty(P) eq false do

> NextExtension(~P, ~E);

> Append(~C, #Classes (E));

> end while;

> "# conjugacy classes is ", C;

conjugacy classes is [45, 72, 45, 72, 45, 72, 45, 72, 45, 72, 45,

72, 45, 72, 45, 72, 45, 72, 45, 72, 45, 72, 45, 72]

63.16 Transfer Between Group Categories

63.16.1 Transfer to GrpPC
The PolycyclicGroup-constructor allows complete flexibility in defining a pc-group. How-
ever, it is often more convenient to have Magma compute a pc-presentation based on some
other description of the group. The PCGroup function will produce a pc-presentation for a
finite group in various categories such as GrpPerm and GrpMat. Converting from a GrpFP
group is trickier, since the original group need not be finite. There are two functions pro-
vided to produce pc-presentations for certain quotients of finitely-presented groups. The
pQuotient function constructs a pc-presentation for the largest p-group quotient having
specified lower exponent-p class. Similarly, SolubleQuotient will compute the largest
soluble quotient subject to certain restrictions. Each of these functions also provides a
homomorphism (isomorphism in the case of PCGroup) from the original group to the new
pc-group. More information on each of the two quotient functions can be found in Chap-
ter 71.

PCGroup(G)

A GrpPC representation of the group G and the isomorphism.

1856 FINITE GROUPS Part X

pQuotient(F, p, c : parameters)

Workspace RngIntElt Default : 1000000
Metabelian BoolElt Default : false

Exponent RngIntElt Default : 0
Print RngIntElt Default : 0

Given a finitely presented group F , a prime p, and a positive integer c, this function
constructs a consistent power-conjugate presentation for the largest p-quotient H
of F having lower exponent-p class at most c). If c is given as zero, then the limit
127 is placed on the class. The function returns both the p-quotient H defined by a
pc-presentation and the homomorphism from F to H.

SolubleQuotient(G)

SolvableQuotient(G)

A GrpPC representation P of the largest solvable quotient of G and the homomor-
phism φ : G→ P .

Example H63E33

We use PCGroup to produce a pc-presentation for a matrix group.

> GL := GeneralLinearGroup(4,GF(3));

> S3 := Sylow(GL,3);

> P := PCGroup(S3);

> P;

GrpPC : P of order 729 = 3^6

PC-Relations:

P.2^P.1 = P.2 * P.4^2,

P.3^P.1 = P.3 * P.5^2,

P.3^P.2 = P.3 * P.6^2,

P.5^P.2 = P.4 * P.5,

P.6^P.1 = P.4 * P.6

63.16.2 Transfer from GrpPC
Given a pc-group, it is straight-forward to convert it to a GrpFP or GrpGPC representation by
using the appropriate transfer function. If one wishes to have a permutation representation
of the group, this requires more cleverness. The CosetAction function can be used to
compute the permutation representation of a group on a subgroup. If the subgroup is
chosen to have trivial core, then the permutation group obtained will be isomorphic to the
original group.

AbelianGroup(G)

Given an abelian pc-group G, return a GrpAb group H isomorphic to G and an
isomorphism φ : G→ H.

Ch. 63 FINITE SOLUBLE GROUPS 1857

FPGroup(G)

A GrpFP representation F of G and the isomorphism from G to F .

GPCGroup(G)

A GrpGPC representation F of G and the isomorphism from G to F .

Example H63E34

Take one of the groups of order 26 ∗ 32.

> G := SmallGroup(576, 4123);

> G;

GrpPC : G of order 576 = 2^6 * 3^2

PC-Relations:

G.1^2 = Id(G),

G.2^2 = Id(G),

G.3^2 = G.5,

G.4^3 = Id(G),

G.5^2 = G.7,

G.6^2 = G.7,

G.7^2 = Id(G),

G.8^3 = Id(G),

G.2^G.1 = G.2 * G.6,

G.6^G.1 = G.6 * G.7,

G.6^G.2 = G.6 * G.7,

G.8^G.1 = G.8^2

Since G is small, we can search for a minimum degree permutation presentation by brute force.
First we build a set containing all the subgroups.

> SL := Subgroups(G);

> T := {X‘subgroup: X in SL};

> #T;

243

Then, we select those subgroups with trivial core, and find one with the smallest index.

> TrivCore := {H:H in T| #Core(G,H) eq 1};

> mdeg := Min({Index(G,H):H in TrivCore});

> Good := {H: H in TrivCore| Index(G,H) eq mdeg};

> #Good;

3

> H := Rep(Good);

We then use CosetAction to construct the permutation representation on the cosets of H.

> f,P,K := CosetAction(G,H);

> #K;

1

> IsPrimitive(P);

false

1858 FINITE GROUPS Part X

63.17 More About Presentations

Each pc-group can have up to three pc-presentations associated with it. If the user specifies
a consistent presentation in the PolycyclicGroup-constructor, then this presentation (the
“user” presentation) will be used for all printing and interpretation of element input. If
the specified presentation is inconsistent, a runtime error is generated.

Internally, Magma uses a “conditioned” presentation for computation. The composi-
tion series associated with this presentation is guaranteed to refine a normal series with
elementary abelian factors. If G is a p-group, then the composition series is guaranteed
to be a central series and the first d pc-generators are a minimal set of generators for the
group. Hence, their images generate the Frattini factor group. If the user presentation
satisfies these conditions, then it is used as the conditioned presentation. Otherwise, a
separate presentation is computed automatically.

Several algorithms rely on a “special” presentation for the group. This presentation
exhibits Hall π-subgroups and a characteristic series with elementary abelian factors. When
needed, such a presentation is computed and elements are automatically translated between
presentations.

The “compact” presentation is not a presentation used in computation. Rather it
provides an efficient means to input and output large pc-groups. This is especially useful
for stored collections of groups (libraries or databases).

63.17.1 Conditioned Presentations
Magma will compute a pc-presentation which will be used for internal computation, but
the user’s presentation will be used for all input and output. The recommended way to
access the conditioned internal presentation is via the intrinsic ConditionedGroup.

63.17.1.1 Structure Operations

ConditionedGroup(G)

The internally used, conditioned presentation of the pc-group G. The returned
group is recorded as a subgroup of G in the relationship tables, so coercion can be
used to move between presentations.

IsConditioned(G)

Reutrns true if G uses the user presentation as the internal presentation, false
otherwise.

63.17.1.2 Element Operations

LeadingTerm(x)

Given an element x of a pc-group G with n pc-generators and a conditioned pre-
sentation, where x is of the form aα1

1 . . . aαn
n , return aαi

i for the smallest i such that
αi > 0. If x is the identity of G, then the identity is returned.

Ch. 63 FINITE SOLUBLE GROUPS 1859

LeadingGenerator(x)

Given an element x of a pc-group G with n pc-generators and a conditioned pre-
sentation, where x is of the form aα1

1 . . . aαn
n , return ai for the smallest i such that

αi > 0. If x is the identity of G, then the identity is returned.

LeadingExponent(x)

Given an element x of a pc-group G with n pc-generators and a conditioned pre-
sentation, where x is of the form aα1

1 . . . aαn
n , return αi for the smallest i such that

αi > 0. If x is the identity of G, then 0 is returned.

Depth(x)

Given an element x of a pc-group G with n pc-generators and a conditioned pre-
sentation, where x is of the form aα1

1 . . . aαn
n , return the smallest i such that αi > 0.

If x is the identity of G, then 0 is returned.

PCClass(x)

WeightClass(x)

The weight class of the element x. The WeightClass of an arbitrary element of a
pc-group G is defined to be k if x ∈ Gδk−1 and x /∈ Gδk

. If x is the identity of G,
then WeightClass returns n+ 1.

63.17.2 Special Presentations
A special presentation is one which has several properties described by C. R. Leedham-
Green:
(1)The composition series defined by the pc-generators refines the LG-series. The LG-

series is a characteristic series which refines the nilpotent series. Within each nilpotent
section, it refines the series of successive Frattini factors. Factors of successive terms in
the LG-series are elementary abelian p-groups, with p increasing through each Frattini
factor.

(2)The presentation exhibits a Sylow system. By this we mean that if π is a set of
primes, then the pc-generators whose corresponding prime lies in π will generate a Hall
π-subgroup.

(3)The presentation exhibits “head splittings”. These are certain complements in factors
of the group as follows: If N is a term of the nilpotent series of G, M the next term
(so N/M is a maximal nilpotent factor of N), and F/M is the Frattini subgroup of
N/M , then it is possible to show that N/F has a complement in G/F . We say the
presentation exhibits this complement (or “splitting”) if the pc-generators of G which
are not in N generate a complement for N mod F .

Several algorithms rely on having a special presentation for the given group. In these
cases, Magma will automatically compute a special presentation. However, if the user
wishes to have a special presentation as the user presentation for a group, the function

1860 FINITE GROUPS Part X

SpecialPresentation can be used. This is typically used when implementing new algo-
rithms which rely on the properties of a special presentation. The other functions allow
one to identify specific characteristics of a special presentation. They are not defined for
arbitrary presentations.

SpecialPresentation(G)

Returns a new group H which is defined by a special presentation. H is in fact
a subgroup of G (equal to G) and so one can use the coercion operator (!) to
translate elements between the two presentations. Furthermore, any subgroup of H
is automatically a subgroup of G. For instance, if one computed the center Z of H
(using some algorithm relying on the special presentation), Z would be a subgroup
of G, and would be the center of G.

SpecialWeights(G)

A sequence of triples of integers is returned, with one triple corresponding to each
pc-generator. The first integer in a triple gives the number of the nilpotent section
containing the generator, the second gives the number of the square-free exponent
abelian section of that nilpotent section containing it, and the third gives the number
of the elementary abelian p-group layer that contains the generator. The prime for
the generator is not included in the triple (see PCPrimes).

NilpotentLength(G)

The number of nilpotent factors in the nilpotent series.

NilpotentBoundary(G,i)

The subscript of the last generator in the ith nilpotent section, where i lies between
1 and NilpotentLength(G).

MinorLength(G,i)

The number of minor sections (Frattini factors) in the ith nilpotent section of G.

MinorBoundary(G,i,j)

The subscript of the last generator in the jth minor section of the ith nilpotent
section, where j lies between 1 and MinorLength(G,i).

LayerLength(G,i,j)

The number of elementary abelian p-group layers in the jth minor section of the ith
nilpotent section of G.

LayerBoundary(G,i,j,k)

The subscript of the last generator in the kth elementary abelian p-group layer
of the jth minor section of the ith nilpotent section, where k lies between 1 and
LayerLength(G,i,j).

Ch. 63 FINITE SOLUBLE GROUPS 1861

Example H63E35

We show how user presentations and special presentations can differ. If we define a wreath product
using PolycyclicGroup, the given presentation becomes the user presentation, but this is not a
special presentation for the group.

> T := PolycyclicGroup<a,b,c,d|a^3,b^3,c^3,d^3,

> b^a=c, c^a=d, d^a=b>;

> T;

GrpPC : T of order 81 = 3^4

PC-Relations:

T.2^T.1 = T.3,

T.3^T.1 = T.4,

T.4^T.1 = T.2

> S := SpecialPresentation(T);

> S;

GrpPC : S of order 81 = 3^4

PC-Relations:

S.2^S.1 = S.2 * S.3^2 * S.4,

S.3^S.1 = S.3 * S.4^2

Here we build another wreath product and construct a special presentation.

> C6 := CyclicGroup(GrpPC,6);

> C2 := CyclicGroup(GrpPC,2);

> G := WreathProduct(C2,C6);

> G;

GrpPC : G of order 384 = 2^7 * 3

PC-Relations:

G.1^2 = G.2,

G.2^3 = Id(G),

G.3^2 = Id(G),

G.4^2 = Id(G),

G.5^2 = Id(G),

G.6^2 = Id(G),

G.7^2 = Id(G),

G.8^2 = Id(G),

G.3^G.1 = G.8,

G.3^G.2 = G.5,

G.4^G.1 = G.6,

G.4^G.2 = G.3,

G.5^G.1 = G.7,

G.5^G.2 = G.4,

G.6^G.1 = G.3,

G.6^G.2 = G.8,

G.7^G.1 = G.4,

G.7^G.2 = G.6,

G.8^G.1 = G.5,

G.8^G.2 = G.7

> H := SpecialPresentation(G);

1862 FINITE GROUPS Part X

> H;

GrpPC : H of order 384 = 2^7 * 3

PC-Relations:

H.1^2 = Id(H),

H.2^2 = Id(H),

H.3^3 = Id(H),

H.4^2 = Id(H),

H.5^2 = Id(H),

H.6^2 = Id(H),

H.7^2 = Id(H),

H.8^2 = Id(H),

H.2^H.1 = H.2 * H.4,

H.5^H.3 = H.6,

H.6^H.3 = H.5 * H.6,

H.7^H.1 = H.6 * H.7,

H.7^H.3 = H.8,

H.8^H.1 = H.5 * H.6 * H.8,

H.8^H.3 = H.7 * H.8

We can coerce between the presentations.

> G!(H.2), H!(G.2);

G.6 * G.7 * G.8 H.3

Look at some specific features of the presentation.

> SpecialWeights(H);

[<1, 1, 1>, <1, 1, 1>, <1, 1, 2>, <1, 2, 1>, <2, 1, 1>, <2, 1, 1>, <2, 1, 1>,

<2, 1, 1>]

> MinorLength(H,1);

2

> MinorBoundary(H,1,1);

3

63.17.3 CompactPresentation
When the Magma parser reads in large group presentations of the form

S4 := PolycyclicGroup< a, b, c, d | a^2 = 1, b^3 = 1, c^2 = 1,
d^2 = 1, b^a = b^2, c^a = c * d, c^b = c * d, d^b = c >;

a large amount of memory and time is used to build all of the expressions involved in the
statement. This time is most noticeable when loading in large libraries of Magma code
containing many large presentations. The following intrinsics provide a way to avoid this
overhead.

CompactPresentation(G)

Given a pc-group G, return a sequence of integers that contains the information
needed to define the group’s presentation.

Ch. 63 FINITE SOLUBLE GROUPS 1863

PCGroup(Q : parameters)

Check BoolElt Default : false

ExponentLimit RngIntElt Default : 20

Return a group G in category GrpPC, whose presentation is provided by the integer
sequenceQ. Constructing the group from the integer sequence has very low overhead
in the parser. The time taken to construct the group is less when the presentation
is conditioned.

The parameter Check indicates whether or not the presentation is checked for
consistency. Leaving the Check parameter set to false speeds the construction of
the group, but will be disastrous if the sequence Q does not represent a consistent
pc-presentation.

Parameter ExponentLimit determines the amount of space that will be used by
the group to speed calculations. Given ExponentLimit := e, the group will store
the products ai ∗ bj where a and b are generators and i and j are in the range 1 to
e.

Example H63E36

If the user wants to store the definition of a group in a library, the following may be done.

> S4 := PolycyclicGroup< a, b, c, d | a^2 = 1, b^3 = 1, c^2 = 1, d^2 = 1,

> b^a = b^2, c^a = c * d, c^b = c * d, d^b = c >;

> Q := CompactPresentation(S4);

> Q;

[4, -2, -3, -2, 2, 33, 218, 114, 55]

The library code would then be

> Make:=func< | PCGroup(\[4, 2, 3, 2, 2, 33, 218, 114, 55] : Check := false) >;

Note the use of a literal sequence here — see Chapter 10.

63.18 Optimizing Magma Code

63.18.1 PowerGroup
If the user is working with enumerated sets of pc-groups that are all subgroups of a common
over-group G, then the following optimization is strongly recommended. Define the set
to have the universe PowerGroup(G). For any subgroup H of G, we can find a canonical
form for the generators of H. This allows us to have a very good hashing function for the
subgroups.

1864 FINITE GROUPS Part X

Example H63E37

The following example illustrates the optimization.

> G := ExtraSpecialGroup(GrpPC, 3, 3);

> P := PowerGroup(G);

> time s1 := { P | sub< G | Random(G), Random(G) > : x in { 1..500} };
Time: 1.140

> time s2 := { Parent(G) | sub< G | Random(G), Random(G) > : x in { 1..500} };
Time: 9.769

63.19 Bibliography

[CH00] John Cossey and Trevor Hawkes. On the largest conjugacy class size in a
finite group. Rend. Sem. Mat. Univ. Padova, 103:171–179, 2000.

[CNW90] F. Celler, J. Neubüser, and C.R.B. Wright. Some remarks on the computation
of complements and normalizers in soluble groups. Acta Appl. Math., 21:57–76, 1990.

[Con90a] S. B. Conlon. Calculating characters of p-groups. J. Symbolic Comp., 9:535–
550, 1990.

[Con90b] S. B. Conlon. Computing modular and projective character degrees of soluble
groups. J. Symbolic Comp., 9:551–570, 1990.

[ELGO02] Bettina Eick, C.R. Leedham-Green, and E.A. O’Brien. Constructing auto-
morphism groups of a p-groups. Comm. Algebra, 30:2271–2295, 2002.

[EO99] Bettina Eick and E.A. O’Brien. Enumerating p-groups. J. Austral. Math.
Soc., 67:191–205, 1999.

[FO00] D.L. Flannery and E.A. O’Brien. Computing 2-cocycles for central extensions
and relative difference sets. Comm. Algebra, 28:1935–1955, 2000.

[GS90] S.P. Glasby and Michael C. Slattery. Computing intersections and normalizers
in soluble groups. J. Symbolic Comp., 9:637–651, 1990. Computational group theory,
Part 1.

[How12] David J. A. Howden. Computing automorphism groups and isomorphism
testing in finite groups. PhD thesis, University of Warwick, 2012.

[Hul99] Alexander Hulpke. Computing subgroups invariant under a set of automor-
phisms. J. Symbolic Comp., 27:415–427, 1999.

[MN89] M. Mecky and J. Neubüser. Some remarks on the computation of conjugacy
classes of soluble groups. Bull. Austral, Math. Soc., 40(2):281–292, 1989.

[New77] M.F. Newman. Determination of groups of prime-power order. In Group
Theory (Canberra, 1975), volume 573 of Lecture Notes in Mathematics, pages 73–84.
Springer-Verlag, Berlin-Heidelberg-New York, 1977.

[O’B90] E.A. O’Brien. The p-group generation algorithm. J. Symbolic Comput.,
9:677–698, 1990.

Ch. 63 FINITE SOLUBLE GROUPS 1865

[O’B94] E.A. O’Brien. Isomorphism testing for p-groups. J. Symbolic Comp., 17:133–
147, 1994.

[Sla86] Michael C. Slattery. Computing character degrees in p-groups. J. Symbolic
Comp., 2:51–58, 1986.

[Sla01] Michael C. Slattery. Computing double cosets in soluble groups. J. Symbolic
Comp., 31:179–192, 2001. Computational algebra and number theory (Milwaukee, WI,
1996).

[Smi94] Michael J. Smith. Computing automorphisms of finite soluble groups. PhD
thesis, Australian National University, 1994.

[Ung06] W.R. Unger. Computing the character table of a finite group. J. Symbolic
Comp., 41(8):847–862, 2006.

64 BLACK-BOX GROUPS
64.1 Introduction 1869

64.2 Construction of an SLP-Group
and its Elements 1869

64.2.1 Structure Constructors 1869

NaturalBlackBoxGroup(H) 1869

64.2.2 Construction of an Element 1869

Identity(G) 1869
Id(G) 1869
! 1869

64.3 Arithmetic with Elements . . 1869

* 1869
^ 1869
^ 1869
(u, v) 1869

64.3.1 Accessing the Defining Generators . 1870

. 1870
Generators(G) 1870
NumberOfGenerators(G) 1870

Ngens(G) 1870

64.4 Operations on Elements . . . 1870

64.4.1 Equality and Comparison 1870

eq 1870
ne 1870

64.4.2 Attributes of Elements 1870

Parent(u) 1870
UnderlyingElement(u) 1870
Order(u) 1870

64.5 Set-Theoretic Operations . . . 1871

64.5.1 Membership and Equality 1871

in 1871

64.5.2 Set Operations 1872

PseudoRandom(G) 1872
Rep(G) 1872

64.5.3 Coercions Between Related Groups 1872

! 1872

Chapter 64

BLACK-BOX GROUPS

64.1 Introduction
This Chapter describes the category of black-box groups (BB-groups). The name in
Magma for the category of BB-groups is GrpBB.

64.2 Construction of an SLP-Group and its Elements

64.2.1 Structure Constructors
Magma’s black-box groups are built on Magma’s other group types. The basic constructor
takes a group and returns a corresponding black-box group. The element set of the black-
box group is essentially the same as the element set of the original group, and the group
operations are inherited from the original group.

NaturalBlackBoxGroup(H)

Construct the natural black-box group from the concrete group H.

64.2.2 Construction of an Element

Identity(G)

Id(G)

G ! 1

Construct the identity element for the BB-group G.

64.3 Arithmetic with Elements

u * v

Construct the product of elements u and v of the BB-group G.

u ^ m

Given an integer m and u, an element of BB-group G, return the element of G
corresponding to the m-th power of u.

u ^ v

Given u and v, elements of BB-group G, return the element of G corresponding to
the conjugate of u by v, i.e. v−1 ∗ u ∗ v.

(u, v)

Commutator of the elements u and v, i.e. the element u−1 ∗ v−1 ∗ u ∗ v. Here u and
v must belong to the same BB-group G.

1870 FINITE GROUPS Part X

64.3.1 Accessing the Defining Generators
The functions described here provide access to basic information stored for a BB-group G.

G . i

The i-th generator for G.

Generators(G)

A set containing the generators for G.

NumberOfGenerators(G)

Ngens(G)

The number of generators for B.

64.4 Operations on Elements

64.4.1 Equality and Comparison

u eq v

Returns true if and only if the underlying concrete group elements for u and v are
equal.

u ne v

Returns true if and only if the underlying concrete group elements for u and v are
not equal.

64.4.2 Attributes of Elements

Parent(u)

The parent group G of the element u.

UnderlyingElement(u)

The concrete group element corresponding to the BB-group element u.

Order(u)

The order of the underlying concrete group element of u.

Ch. 64 BLACK-BOX GROUPS 1871

Example H64E1

The following function takes a black box group isomorphic to M24 and finds standard generators.
It is taken from the ATLAS of Finite Group Representations page on M24.

> m24_standard := function(B)

> repeat a := PseudoRandom(B); until Order(a) eq 10;

> a := a ^ 5;

> repeat b := PseudoRandom(B); until Order(b) eq 15;

> b := b ^ 5;

> repeat b := b ^ PseudoRandom(B); ab := a*b;

> until Order(ab) eq 23;

> x := ab*(ab^2*b)^2*ab*b;

> if Order(x) eq 5 then b := b^-1; end if;

> return a,b;

> end function;

We take a group which must be M24 and find these generators.

> G := PermutationGroup<24 |

> [20, 4, 10, 3, 15, 9, 7, 1, 11, 22, 21, 19, 8, 2, 24, 5,

> 12, 18, 13, 16, 14, 23, 6, 17],

> [12, 18, 3, 2, 7, 11, 5, 21, 19, 22, 23, 1, 14, 17, 10,

> 8, 4, 13, 24, 20, 9, 15, 6, 16]>;

> #G;

244823040

> Transitivity(G);

5

> B := NaturalBlackBoxGroup(G);

> a,b := m24_standard(B); a,b;

GrpBBElt (1, 16)(2, 22)(3, 14)(4, 15)(5, 11)(6, 24)(7,

10)(8, 18)(9, 19)(12, 17)(13, 20)(21, 23)

GrpBBElt (1, 14, 17)(2, 18, 13)(5, 16, 20)(7, 22, 9)(8, 24,

15)(19, 23, 21)

The printing of the GrpBBElts shows the underlying concrete group elements. These may be
extracted using the UnderlyingElement intrinsic for use within G.

64.5 Set-Theoretic Operations

64.5.1 Membership and Equality

g in G

Return true if and only if G is the parent group of g or the parent group of g is a
subgroup of G.

1872 FINITE GROUPS Part X

64.5.2 Set Operations

PseudoRandom(G)

Return a pseudo-random element of the BB-group G. The method used is product-
replacement with accumulator.

Rep(G)

A representative element of G.

64.5.3 Coercions Between Related Groups

G ! g

Given an element g belonging to a subgroup of the BB-group G, rewrite g as an
element of G.

65 ALMOST SIMPLE GROUPS
65.1 Introduction 1877

65.1.1 Overview 1877

65.2 Creating Finite Groups of Lie
Type 1878

65.2.1 Generic Creation Function 1878

ChevalleyGroup(X, n, K: -) 1878
ChevalleyGroup(X, n, q: -) 1878

65.2.2 The Orders of the Chevalley Groups 1879

ChevalleyOrderPolynomial(type, n: -) 1879
FactoredChevalleyGroup

Order(type, n, F: -) 1879
FactoredChevalleyGroup

Order(type, n, q: -) 1879
ChevalleyGroupOrder(type, n, F: -) 1880
ChevalleyGroupOrder(type, n, q: -) 1880

65.2.3 Classical Groups 1880

GeneralLinearGroup(n, q) 1880
GeneralLinearGroup(n, K) 1880
GeneralLinearGroup(V) 1880
GL(n, q) 1880
GL(n, K) 1880
GL(V) 1880
SpecialLinearGroup(n, q) 1880
SpecialLinearGroup(n, K) 1880
SpecialLinearGroup(V) 1880
SL(n, q) 1880
SL(n, K) 1880
SL(V) 1880
AffineGeneralLinear

Group(GrpMat, n, q) 1881
AffineGeneralLinear

Group(GrpMat, n, K) 1881
AffineGeneralLinearGroup(GrpMat, V) 1881
AGL(GrpMat, V) 1881
AffineSpecialLinear

Group(GrpMat, n, q) 1881
AffineSpecialLinear

Group(GrpMat, n, K) 1881
AffineSpecialLinearGroup(GrpMat, V) 1881
ASL(GrpMat, V) 1881
ConformalUnitaryGroup(n, q) 1881
ConformalUnitaryGroup(n, K) 1881
ConformalUnitaryGroup(V) 1881
CU(n, q) 1881
CU(n, K) 1881
CU(V) 1881
GeneralUnitaryGroup(n, q) 1882
GeneralUnitaryGroup(n, K) 1882
GeneralUnitaryGroup(V) 1882
GU(n, q) 1882
GU(n, K) 1882
GU(V) 1882

SpecialUnitaryGroup(n, q) 1882
SpecialUnitaryGroup(n, K) 1882
SpecialUnitaryGroup(V) 1882
SU(n, q) 1882
SU(n, K) 1882
SU(V) 1882
ConformalSymplecticGroup(n, q) 1882
ConformalSymplecticGroup(n, K) 1882
ConformalSymplecticGroup(V) 1882
CSp(n, q) 1882
CSp(n, K) 1882
CSp(V) 1882
SymplecticGroup(n, q) 1883
SymplecticGroup(n, K) 1883
SymplecticGroup(V) 1883
Sp(n, q) 1883
Sp(n, K) 1883
Sp(V) 1883
ConformalOrthogonalGroup(n, q) 1883
ConformalOrthogonalGroup(n, K) 1883
ConformalOrthogonalGroup(V) 1883
CO(n, q) 1883
CO(n, K) 1883
CO(V) 1883
GeneralOrthogonalGroup(n, q) 1883
GeneralOrthogonalGroup(n, K) 1883
GeneralOrthogonalGroup(V) 1883
GO(n, q) 1883
GO(n, K) 1883
GO(V) 1883
SpecialOrthogonalGroup(n, q) 1883
SpecialOrthogonalGroup(n, K) 1883
SpecialOrthogonalGroup(V) 1884
SO(n, q) 1884
SO(n, K) 1884
SO(V) 1884
ConformalOrthogonalGroupPlus(n, q) 1884
ConformalOrthogonalGroupPlus(n, K) 1884
ConformalOrthogonalGroupPlus(V) 1884
COPlus(n, q) 1884
COPlus(n, K) 1884
COPlus(V) 1884
GeneralOrthogonalGroupPlus(n, q) 1884
GeneralOrthogonalGroupPlus(n, K) 1884
GeneralOrthogonalGroupPlus(V) 1884
GOPlus(n, q) 1884
GOPlus(n, K) 1884
GOPlus(V) 1884
SpecialOrthogonalGroupPlus(n, q) 1884
SpecialOrthogonalGroupPlus(n, K) 1884
SpecialOrthogonalGroupPlus(V) 1884
SOPlus(n, q) 1884
SOPlus(n, K) 1884
SOPlus(V) 1884
ConformalOrthogonalGroupMinus(n, q) 1885

1874 FINITE GROUPS Part X

ConformalOrthogonalGroupMinus(n, K) 1885
ConformalOrthogonalGroupMinus(V) 1885
COMinus(n, q) 1885
COMinus(n, K) 1885
COMinus(V) 1885
GeneralOrthogonalGroupMinus(n, q) 1885
GeneralOrthogonalGroupMinus(n, K) 1885
GeneralOrthogonalGroupMinus(V) 1885
GOMinus(n, q) 1885
GOMinus(n, K) 1885
GOMinus(V) 1885
SpecialOrthogonalGroupMinus(n, q) 1885
SpecialOrthogonalGroupMinus(n, K) 1885
SpecialOrthogonalGroupMinus(V) 1885
SOMinus(n, q) 1885
SOMinus(n, K) 1885
SOMinus(V) 1885
Omega(n, q) 1885
Omega(n, K) 1886
Omega(V) 1886
OmegaPlus(n, q) 1886
OmegaPlus(n, K) 1886
OmegaPlus(V) 1886
OmegaMinus(n, q) 1886
OmegaMinus(n, K) 1886
OmegaMinus(V) 1886
Spin(n, q) 1886
Spin(n, K) 1886
Spin(V) 1886
SpinPlus(n, q) 1886
SpinPlus(n, K) 1886
SpinPlus(V) 1886
SpinMinus(n, q) 1887
SpinMinus(n, K) 1887
SpinMinus(V) 1887

65.2.4 Exceptional Groups 1887

SuzukiGroup(q) 1887
SuzukiGroup(K) 1887
SuzukiGroup(V) 1887
ReeGroup(q) 1889
ReeGroup(K) 1889
ReeGroup(V) 1889
LargeReeGroup(q) 1889
LargeReeGroup(K) 1889
LargeReeGroup(V) 1889

65.3 Group Recognition 1889

65.3.1 Constructive Recognition
of Alternating Groups 1890

RecogniseAlternatingOrSymmetric(G, n) 1890
RecogniseSymmetric(G, n: -) 1891
SymmetricElementToWord (G, g) 1891
RecogniseAlternating(G, n: -) 1891
AlternatingElementToWord (G, g) 1892
GuessAltsymDegree(G: -) 1892

65.3.2 Determining the Type of a Finite
Group of Lie Type 1893

LieCharacteristic(G : -) 1893
LieType(G, p : -) 1894
LieType(G, p : -) 1894
SimpleGroupName(G : -) 1894
SimpleGroupName(G : -) 1894

65.3.3 Classical Forms 1896

ClassicalForms(G: -) 1897
SymplecticForm(G: -) 1897
SymmetricBilinearForm(G: -) 1898
QuadraticForm(G) 1898
UnitaryForm(G) 1898
FormType(G) 1898
TransformForm(form, type) 1899
TransformForm(G) 1900
SpinorNorm(g, form) 1900

65.3.4 Recognizing Classical Groups in their
Natural Representation 1900

RecognizeClassical(G : -) 1900
IsLinearGroup(G) 1901
IsSymplecticGroup(G) 1901
IsOrthogonalGroup(G) 1901
IsUnitaryGroup(G) 1901
ClassicalType(G) 1902

65.3.5 Constructive Recognition of Linear
Groups 1902

RecognizeSL2(G) 1902
RecognizeSL2(G) 1902
RecognizeSL2(G, q) 1902
RecognizeSL2(G, q) 1902
SL2ElementToWord(G, g) 1903
SL2ElementToWord(G, g) 1903
SL2Characteristic(G : -) 1903
SL2Characteristic(G : -) 1903
RecogniseSL3(G) 1904
RecogniseSL3(G, q : -) 1904
SL3ElementToWord (G, g) 1905
RecogniseSL(G, d, q) 1906
RecognizeSL(G, d, q) 1906

65.3.6 Constructive Recognition of Symplec-
tic Groups 1906

RecogniseSpOdd(G, d, q) 1906
RecognizeSpOdd(G, d, q) 1906
RecogniseSp4Even(G, q) 1906
RecognizeSp4Even(G, q) 1906

65.3.7 Constructive Recognition of Unitary
Groups 1906

RecogniseSU3(G, d, q) 1906
RecognizeSU3(G, d, q) 1906
RecogniseSU4(G, d, q) 1907
RecognizeSU4(G, d, q) 1907

65.3.8 Constructive Recognition of SL(d, q)
in Low Degree 1907

RecogniseSymmetricSquare (G) 1907
SymmetricSquarePreimage (G, g) 1907
RecogniseAlternatingSquare (G) 1907
AlternatingSquarePreimage (G, g) 1907

Ch. 65 ALMOST SIMPLE GROUPS 1875

RecogniseAdjoint (G) 1907
AdjointPreimage (G, g) 1907
RecogniseDelta (G) 1908
DeltaPreimage (G, g) 1908

65.3.9 Constructive Recognition of Suzuki
Groups 1908

IsSuzukiGroup(G) 1909
RecogniseSz(G : -) 1909
RecognizeSz(G : -) 1909
SzElementToWord(G, g) 1910
SzPresentation(q) 1910
SatisfiesSzPresentation(G) 1910
SuzukiIrreducible

Representation(F, twists : -) 1910

65.3.10 Constructive Recognition of Small
Ree Groups 1914

RecogniseRee(G : parameters) 1915
RecognizeRee(G : parameters) 1915
ReeElementToWord(G, g) 1915
IsReeGroup(G) 1915
ReeIrreducible

Representation(F, twists : -) 1916

65.3.11 Constructive Recognition of Large
Ree Groups 1917

RecogniseLargeRee(G : parameters) 1918
RecognizeLargeRee(G : parameters) 1918
LargeReeElementToWord(G, g) 1918
IsLargeReeGroup(G) 1918

65.4 Properties of Finite Groups Of
Lie Type 1919

65.4.1 Maximal Subgroups of the Classical
Groups 1919

ClassicalMaximals(type, d, q : -) 1919

65.4.2 Maximal Subgroups of the Excep-
tional Groups 1920

SuzukiMaximalSubgroups(G) 1920
SuzukiMaximalSubgroups

Conjugacy(G, R, S) 1920
ReeMaximalSubgroups(G) 1920
ReeMaximalSubgroupsConjugacy(G, R, S) 1920

65.4.3 Sylow Subgroups of the Classical
Groups 1921

ClassicalSylow(G,p) 1921
ClassicalSylowConjugation(G,P,S) 1921
ClassicalSylowNormaliser(G,P) 1921
ClassicalSylowToPC(G,P) 1921

65.4.4 Sylow Subgroups of Exceptional
Groups 1922

SuzukiSylow(G, p) 1922
SuzukiSylowConjugacy(G, R, S, p) 1923
ReeSylow(G, p) 1924
ReeSylowConjugacy(G, R, S, p) 1924
LargeReeSylow(G, p) 1924

65.4.5 Conjugacy of Subgroups of the
Classical Groups 1925

IsGLConjugate(H, K) 1925

65.4.6 Conjugacy of Elements of the
Exceptional Groups 1926

SzConjugacyClasses(G) 1926
SzClassRepresentative(G, g) 1926
SzIsConjugate(G, g, h) 1926
SzClassMap(G) 1926
ReeConjugacyClasses(G) 1926

65.4.7 Irreducible Subgroups of the
General Linear Group 1926

IrreducibleSubgroups(n, q) 1926
IrreducibleSolubleSubgroups(n, q) 1926

65.5 Atlas Data for the Sporadic
Groups 1927

StandardGenerators(G, str : -) 1927
IsomorphismToStandardCopy(G, str : -) 1928
StandardPresentation(G, str : -) 1928
MaximalSubgroups(G, str : -) 1928
Subgroups(G, str : -) 1928
GoodBasePoints(G, str : -) 1929
SubgroupsData(str) 1929
MaximalSubgroupsData (str : -) 1929

65.6 Bibliography 1930

Chapter 65

ALMOST SIMPLE GROUPS

65.1 Introduction

65.1.1 Overview

This chapter describes a set of tools for working with finite almost-simple groups (AS-
groups). In the program for computing with non-soluble finite groups, the goal is to
reduce the solution of many problems concerning a non-soluble group G to that of solving
the same problem for the non-abelian simple composition factors of G. We are concerned
with very specific types of computation with AS-groups.

The techniques described in this chapter are under development and are very incomplete
in their coverage. The material falls roughly into two main categories.

(a) Functions which try to identify a particular group S known to be almost simple with
a standard copy T of that AS-group. In addition, if such an isomorphism is found,
it is often desirable to explicitly construct it so that questions concerning S can be
answered by mapping them into the “standard” group T . Hence the recognition
functions are divided into those which perform non-constructive recognition (they
assert the existence of an isomorphism between S and T) and those that perform
constructive recognition (an explicit isomorphism between S and T is returned).

(b) Functions which allow the user to determine information about an AS-group. These
functions are usually implemented separately for each family of simple groups. Thus,
for each family of simple groups our goal is to provide machinery for constructing key
properties of any group T in that family in the context of a standard representation
of the group. Using the isomorphism constructed in (a), this information can then
be transferred back to the user’s group S. Examples of such information include,
information about element conjugacy, maximal subgroups, and Sylow p-subgroups.

The functions described in this chapter do not assume that a BSGS-representation can
be constructed available. Thus, the techniques described here apply to groups possibly
having both much larger order and/or much larger dimension than those that can be
handled with the techniques of Chapters 58 and 59.

1878 FINITE GROUPS Part X

65.2 Creating Finite Groups of Lie Type

Several functions are provided which construct various classical groups and other groups of
Lie type. The effect of these functions is to define the group in terms of a set of generating
matrices.

As shown by Chevalley, for each simple Lie algebra L over the complex field and for
each finite field Fq there is an associated matrix group L(q). In general, these groups are
perfect but not simple. To obtain the simple group, it is necessary to form the quotient by
the centre. Similarly, as Steinberg, Ree and others have shown, if the associated Coxeter
graph has an automorphism, of order t say, then there will be a ‘twisted’ version tL(q)
of L(q).

Generators for the series A, C, 2A and 2B are described in [Tay87]. Generators for the
series B, D and 2D are as given by Rylands and Taylor [RT98]. Generators for the other
series were also provided by Rylands and Taylor.

65.2.1 Generic Creation Function

ChevalleyGroup(X, n, K: parameters)

ChevalleyGroup(X, n, q: parameters)

Irreducible BoolElt Default : false

Construct a matrix group over the field K (or over Fq) which has the adjoint Cheval-
ley group of Lie series X and Lie rank n as the quotient modulo scalar matrices. In
most cases the group returned is the universal Chevalley group Xn(q); however,
for series B, D and 2D the universal group is the spin group and the matrix group
returned by ChevalleyGroup is Ω(2n+ 1, q), Ω+(2n, q) or Ω−(2n, q).

For the twisted groups the meaning of the parameter q is consistent with the
(abbreviated) notation in the ‘Atlas of Finite Groups’ and in the monograph series
‘The Classification of the Finite Simple Groups’ by Gorenstein, Lyons and Solomon.
For a Chevalley group of rank n and type X with an automorphism of order t the
Atlas defines the twisted Chevalley group tXn(q, qt) to be the set of elements of
Xn(qt) fixed by the quotient of the twisting automorphism and the field automor-
phism induced by x 7→ xq of Fqt . In the Atlas the abbreviated notation for the
twisted group is tXn(q) but in Carter [Car72] it is tXn(qt). The first signature of
the intrinsic expects the field Fqt but the second signature expects the parameter q.

For example, for the series "2A", the group 2An(q) is SU(n + 1, q) but, in the
first form of the signature, K must be the field Fq2 . Similarly the first form of
the signature for the groups 3D4(q) and 2E6(q) requires the fields Fq3 and Fq2 ,
respectively.

The possible series and the groups returned are:
"A" : n ≥ 0, An(q), the special linear group SL(n+ 1, q).
"B" : n ≥ 1, Bn(q), the orthogonal group Ω(2n+ 1, q).
"C" : n ≥ 1, Cn(q), the symplectic group Sp(2n, q).

Ch. 65 ALMOST SIMPLE GROUPS 1879

"D" : n ≥ 1, Dn(q), the orthogonal group Ω+(2n, q).

"E" : n ∈ {6, 7, 8}, the exceptional groups En(q). E6(q) is represented as a matrix
group of degree 27. It is simple unless q ≡ 1 mod 3, in which case its centre
has order 3. E7(q) is represented as a matrix group of degree 56. It is simple
unless q ≡ 1 mod 2, in which case its centre has order 2. E8(q) is represented
as a matrix group of degree 248.

"F" : n = 4, the exceptional group F4(q) represented as a matrix group of degree
26. If q = 3k then this representation is reducible. An irreducible represen-
tation is not yet available.

"G" : n = 2, the exceptional group G2(q) represented as a matrix group of degree
7. If q = 2k then this representation is reducible. An irreducible representa-
tion of degree 6 can be obtained by setting the parameter Irreducible :=
true.

"2A" : n ≥ 1, K = Fq2 , the special unitary group 2An(q) = SU(n+ 1, q).

"2B" : n = 2, K = Fq, q = 22k+1, the Suzuki group 2B2(q) = Sz(q).

"2D" : n ≥ 1, K = Fq, 2Dn(q), the orthogonal group Ω−(2n, q).

"3D" : n = 4, K = Fq3 , the exceptional group 3D4(q).

"2E" : n = 6, K = Fq2 , the exceptional group 2E6(q).

"2F" : n = 4, K = Fq, q = 22k+1, the Ree group 2F4(q), simple except when q = 2
when the derived group is simple and is returned by the function TitsGroup.

"2G" : n = 2, K = Fq, q = 32k+1, the Ree group 2G2(q), simple except when
q = 3.

65.2.2 The Orders of the Chevalley Groups

ChevalleyOrderPolynomial(type, n: parameters)

The orders of the universal Chevalley groups Xn(q) and tXn(q) are polynomials in
q. For the twisted groups of types 2An, 3D4 and 2E6 the parameter q is the order
of the fixed field of the Frobenius automorphism.

Other versions of Chevalley groups are quotients of universal Chevalley groups
modulo a subgroup of the centre.

FactoredChevalleyGroupOrder(type, n, F: parameters)

FactoredChevalleyGroupOrder(type, n, q: parameters)

Proof BoolElt Default : true

Version MonStgElt Default : “Default”

1880 FINITE GROUPS Part X

ChevalleyGroupOrder(type, n, F: parameters)

ChevalleyGroupOrder(type, n, q: parameters)

Version MonStgElt Default : “Default”
The (factored) order of the Chevalley group of a given type and rank over the field F
(or Fq). The default is the order of the group returned by ChevalleyGroup, which
except for types Bn, Dn and 2Dn is the universal group. The orders of the universal
and adjoint Chevalley group can be obtained by setting the parameter Version to
Universal or Adjoint. In the factored version the value of Proof is passed to the
Magma’s factorisation function (q.v.).

65.2.3 Classical Groups
Magma offers several functions to construct the classical groups. For most of these func-
tions, it is possible to specify the particular group by giving one of the following combina-
tions of arguments:
(i) The degree n and the coefficient field K of the desired matrix group;
(ii) The degree n of the desired matrix group and a prime power q which relates the

group to the appropriate Lie algebra. With the exception of the unitary groups
(which will be defined over Fq2), the resulting group will be defined over Fq; or,

(iii) A full vector space V = Kn on which the desired matrix group should act naturally.

65.2.3.1 Linear Groups

GeneralLinearGroup(n, q)

GeneralLinearGroup(n, K)

GeneralLinearGroup(V)

GL(n, q)

GL(n, K)

GL(V)

Here n is a positive integer, q is the power of a prime, K is a finite field Fq, and
V is an n-dimensional vector space over K. This function constructs the general
linear group GL(n, q) (resp. GL(n,K), GL(V)) in terms of generating matrices.
The intrinsic name may be abbreviated to GL.

SpecialLinearGroup(n, q)

SpecialLinearGroup(n, K)

SpecialLinearGroup(V)

SL(n, q)

SL(n, K)

SL(V)

Ch. 65 ALMOST SIMPLE GROUPS 1881

Here n is a positive integer, q is the power of a prime, K is a finite field Fq, and
V is an n-dimensional vector space over K. This function constructs the special
linear group GL(n, q) (resp. GL(n,K), GL(V)) in terms of generating matrices.
The intrinsic name may be abbreviated to SL.

AffineGeneralLinearGroup(GrpMat, n, q)

AffineGeneralLinearGroup(GrpMat, n, K)

AffineGeneralLinearGroup(GrpMat, V)

AGL(GrpMat, V)

Here n is a positive integer greater than or equal to 2, q is the power of a prime, K
is a finite field Fq, and V is an n-dimensional vector space over K. This function
constructs the affine general linear group AGL(n, q) (resp. AGL(n,K), AGL(V)) as
a subgroup of GL(n+1,K). If the category name GrpMat is omitted the affine group
will be returned as a permutation group. The intrinsic name may be abbreviated
to AGL.

AffineSpecialLinearGroup(GrpMat, n, q)

AffineSpecialLinearGroup(GrpMat, n, K)

AffineSpecialLinearGroup(GrpMat, V)

ASL(GrpMat, V)

Here n is a positive integer greater than or equal to 2, q is the power of a prime, K
is a finite field Fq, and V is an n-dimensional vector space over K. This function
constructs the affine special linear group ASL(n, q) (resp. ASL(n,K), ASL(V)) as a
subgroup of SL(n+ 1,K). If the category name GrpMat is omitted, the affine group
will be returned as a permutation group. The intrinsic name may be abbreviated
to ASL.

65.2.3.2 Unitary Groups

ConformalUnitaryGroup(n, q)

ConformalUnitaryGroup(n, K)

ConformalUnitaryGroup(V)

CU(n, q)

CU(n, K)

CU(V)

Here n ≥ 2 is a positive integer, q is the power of a prime, K is the finite field
Fq2 , and V is the n-dimensional vector space over K. This function constructs the
conformal unitary group CU(n, q) (resp. CU(n,K), CU(V)) in terms of generating
matrices. The intrinsic name may be abbreviated to CU. A conformal unitary group
is the group that preserves a unitary form up to a constant.

1882 FINITE GROUPS Part X

GeneralUnitaryGroup(n, q)

GeneralUnitaryGroup(n, K)

GeneralUnitaryGroup(V)

GU(n, q)

GU(n, K)

GU(V)

Here n ≥ 2 is a positive integer, q is the power of a prime, K is the finite field
Fq2 , and V is the n-dimensional vector space over K. This function constructs the
general unitary group GU(n, q) (resp. GU(n,K), GU(V)) in terms of generating
matrices. The intrinsic name may be abbreviated to GU.

SpecialUnitaryGroup(n, q)

SpecialUnitaryGroup(n, K)

SpecialUnitaryGroup(V)

SU(n, q)

SU(n, K)

SU(V)

Here n is an integer greater than or equal to 2, q is the power of a prime, K is
the finite field Fq2 , and V is the n-dimensional vector space over K. This function
constructs the special unitary group SU(n, q) (resp. SU(n,K), SU(V)) in terms of
generating matrices. The intrinsic name may be abbreviated to SU.

65.2.3.3 Symplectic Groups

ConformalSymplecticGroup(n, q)

ConformalSymplecticGroup(n, K)

ConformalSymplecticGroup(V)

CSp(n, q)

CSp(n, K)

CSp(V)

Here n is an even integer greater than or equal to 4, q is the power of a prime, K is
the finite field Fq, and V is the n-dimensional vector space over K. This function
constructs the conformal symplectic group CSp(n, q) (resp. CSp(n,K), CSp(V)) in
terms of generating matrices. The intrinsic name may be abbreviated to CSp. A
conformal symplectic group is the group that preserves a symplectic form up to a
constant.

Ch. 65 ALMOST SIMPLE GROUPS 1883

SymplecticGroup(n, q)

SymplecticGroup(n, K)

SymplecticGroup(V)

Sp(n, q)

Sp(n, K)

Sp(V)

Here n is an even integer greater than or equal to 4, q is the power of a prime, K is
the finite field Fq, and V is the n-dimensional vector space over K. This function
constructs the symplectic group Sp(n, q) (resp. Sp(n,K), Sp(V)) in terms of two
generating matrices. The intrinsic name may be abbreviated to Sp.

65.2.3.4 Orthogonal and Spin Groups

ConformalOrthogonalGroup(n, q)

ConformalOrthogonalGroup(n, K)

ConformalOrthogonalGroup(V)

CO(n, q)

CO(n, K)

CO(V)

Here n is an odd integer greater than or equal to 3, q is the power of a prime, K is
the finite field Fq, and V is the n-dimensional vector space over K. This function
constructs the conformal orthogonal group CO(n, q) (resp. CO(n,K), CO(V)) in
terms of generating matrices. The intrinsic name may be abbreviated to CO.

GeneralOrthogonalGroup(n, q)

GeneralOrthogonalGroup(n, K)

GeneralOrthogonalGroup(V)

GO(n, q)

GO(n, K)

GO(V)

Here n is an odd integer greater than or equal to 3, q is the power of a prime, K is
the finite field Fq, and V is the n-dimensional vector space over K. This function
constructs the general orthogonal group GO(n, q) (resp. GO(n,K), GO(V)) in
terms of generating matrices. The intrinsic name may be abbreviated to GO.

SpecialOrthogonalGroup(n, q)

SpecialOrthogonalGroup(n, K)

1884 FINITE GROUPS Part X

SpecialOrthogonalGroup(V)

SO(n, q)

SO(n, K)

SO(V)

Here n is an odd integer greater than or equal to 3, q is the power of a prime, K is
the finite field Fq, and V is the n-dimensional vector space over K. This function
constructs the special orthogonal group SO(n, q) (resp. SO(n,K), SO(V)) in terms
of generating matrices. The intrinsic name may be abbreviated to SO.

ConformalOrthogonalGroupPlus(n, q)

ConformalOrthogonalGroupPlus(n, K)

ConformalOrthogonalGroupPlus(V)

COPlus(n, q)

COPlus(n, K)

COPlus(V)

Here n is an even integer greater than or equal to 2, q is the power of a prime, K is
the finite field Fq, and V is the n-dimensional vector space over K. This function
constructs the conformal orthogonal group CO+(n, q) (resp. CO+(n,K), CO+(V))
in terms of generating matrices. The intrinsic name may be abbreviated to COPlus.

GeneralOrthogonalGroupPlus(n, q)

GeneralOrthogonalGroupPlus(n, K)

GeneralOrthogonalGroupPlus(V)

GOPlus(n, q)

GOPlus(n, K)

GOPlus(V)

Here n is an even integer greater than or equal to 2, q is the power of a prime, K is
the finite field Fq, and V is the n-dimensional vector space over K. This function
constructs the general orthogonal group GO+(n, q) (resp. GO+(n,K), GO+(V)) in
terms of generating matrices. The intrinsic name may be abbreviated to GOPlus.

SpecialOrthogonalGroupPlus(n, q)

SpecialOrthogonalGroupPlus(n, K)

SpecialOrthogonalGroupPlus(V)

SOPlus(n, q)

SOPlus(n, K)

SOPlus(V)

Ch. 65 ALMOST SIMPLE GROUPS 1885

Here n is an even integer greater than or equal to 2, q is the power of a prime, K is
the finite field Fq, and V is the n-dimensional vector space over K. This function
constructs the special orthogonal group SO+(n, q) (resp. SO+(n,K), SO+(V)) in
terms of generating matrices. The intrinsic name may be abbreviated to SOPlus.

ConformalOrthogonalGroupMinus(n, q)

ConformalOrthogonalGroupMinus(n, K)

ConformalOrthogonalGroupMinus(V)

COMinus(n, q)

COMinus(n, K)

COMinus(V)

Here n is an even integer greater than or equal to 2, q is the power of a prime, K is
the finite field Fq, and V is the n-dimensional vector space over K. This function
constructs the conformal orthogonal group CO−(n, q) (resp. CO−(n,K), CO−(V))
in terms of generating matrices. The intrinsic name may be abbreviated to COMinus.

GeneralOrthogonalGroupMinus(n, q)

GeneralOrthogonalGroupMinus(n, K)

GeneralOrthogonalGroupMinus(V)

GOMinus(n, q)

GOMinus(n, K)

GOMinus(V)

Here n is an even integer greater than or equal to 2, q is the power of a prime, K is
the finite field Fq, and V is the n-dimensional vector space over K. This function
constructs the general orthogonal group GO−(n, q) (resp. GO−(n,K), GO−(V)) in
terms of generating matrices. The intrinsic name may be abbreviated to GOMinus.

SpecialOrthogonalGroupMinus(n, q)

SpecialOrthogonalGroupMinus(n, K)

SpecialOrthogonalGroupMinus(V)

SOMinus(n, q)

SOMinus(n, K)

SOMinus(V)

Here n is an even integer greater than or equal to 2, q is the power of a prime, K is
the finite field Fq, and V is the n-dimensional vector space over K. This function
constructs the special orthogonal group SO−(n, q) (resp. SO−(n,K), SO−(V)) in
terms of generating matrices. The intrinsic name may be abbreviated to SOMinus.

Omega(n, q)

1886 FINITE GROUPS Part X

Omega(n, K)

Omega(V)

Here n is an odd integer greater than or equal to 3, q is the power of a prime, K is
the finite field Fq, and V is the n-dimensional vector space over K. This function
constructs the orthogonal group Ω(n,K) (resp. Ω(n,K), Ω(V)) in terms of two
generating matrices. The group Ω(n,K) is the kernel of the spinor norm map on
SO(n,K)).

OmegaPlus(n, q)

OmegaPlus(n, K)

OmegaPlus(V)

Here n is an even integer greater than or equal to 2, q is the power of a prime, K is
the finite field Fq, and V is the n-dimensional vector space over K. This function
constructs the orthogonal group Ω+(n, q) (resp. Ω+(n,K), Ω+(V)) in terms of two
generating matrices. The group Ω+(n,K) is the kernel of the spinor norm map on
SO+(n,K).

OmegaMinus(n, q)

OmegaMinus(n, K)

OmegaMinus(V)

Here n is an even integer greater than or equal to 2, q is the power of a prime, K is
the finite field Fq, and V is the n-dimensional vector space over K. This function
constructs the orthogonal group Ω−(n, q) (resp. Ω−(n,K), Ω−(V)) in terms of two
generating matrices. The group Ω−(n,K) is the kernel of the spinor norm map on
SO−(n,K).

Spin(n, q)

Spin(n, K)

Spin(V)

Here n is an odd integer greater than or equal to 1, q is the power of a prime, K is
the finite field Fq, and V is the n-dimensional vector space over K. This function
constructs the spin group Spin(n,K) (resp. Spin(n,K), Spin(V)).

SpinPlus(n, q)

SpinPlus(n, K)

SpinPlus(V)

Here n is an even integer greater than or equal to 2, q is the power of a prime, K is
the finite field Fq, and V is the n-dimensional vector space over K. This function
constructs the spin group Spin+(n,K) (resp. Spin+(n,K), Spin+(V)).

Ch. 65 ALMOST SIMPLE GROUPS 1887

SpinMinus(n, q)

SpinMinus(n, K)

SpinMinus(V)

Here n is an even integer greater than or equal to 4, q is the power of a prime, K is
the finite field Fq, and V is the n-dimensional vector space over K. This function
constructs the spin group Spin−(n,K) (resp. Spin−(n,K), Spin−(V)).

65.2.4 Exceptional Groups

65.2.4.1 Suzuki Groups
The Suzuki groups are specified slightly differently, as the degree of the group is always
four. Thus for this family of groups, the possible combinations of arguments are:
(i) A finite field K = F22m+1 , over which the resulting matrix group is defined;
(ii)An integer q = 22m+1, corresponding to the field K = Fq over which the resulting

matrix group is defined; or,
(iii)A vector space V = K4 where K = F22m+1 on which the resulting matrix group acts

naturally. which the resulting

SuzukiGroup(q)

SuzukiGroup(K)

SuzukiGroup(V)

Here q is a prime power of the form 22n+1, K is the finite field Fq, and V is the 4-
dimensional vector space over K. This function constructs the Suzuki simple group
Sz(q) (resp. Sz(K), Sz(V)) in terms of two generating matrices. The intrinsic name
may be abbreviated to Sz.

Example H65E1

We create the 10-dimensional symplectic group over F8:

> F<u> := FiniteField(8);

> G := SymplecticGroup(10, F);

> G;

MatrixGroup(10, GF(2, 3))

Generators:

[u 0 0 0 0 0 0 0 0 0]

[0 1 0 0 0 0 0 0 0 0]

[0 0 1 0 0 0 0 0 0 0]

[0 0 0 1 0 0 0 0 0 0]

[0 0 0 0 u 0 0 0 0 0]

[0 0 0 0 0 u 0 0 0 0]

[0 0 0 0 0 0 1 0 0 0]

[0 0 0 0 0 0 0 1 0 0]

1888 FINITE GROUPS Part X

[0 0 0 0 0 0 0 0 1 0]

[0 0 0 0 0 0 0 0 0 u^6]

[0 0 0 1 1 1 0 0 0 0]

[1 0 0 0 0 0 0 0 0 0]

[0 1 0 0 0 0 0 0 0 0]

[0 0 1 0 0 0 0 0 0 0]

[0 0 0 1 0 0 0 0 0 0]

[0 0 0 0 1 0 1 0 0 0]

[0 0 0 0 0 0 0 1 0 0]

[0 0 0 0 0 0 0 0 1 0]

[0 0 0 0 0 0 0 0 0 1]

[0 0 0 0 1 0 0 0 0 0]

Example H65E2

We create the Suzuki group over F128:

> F<w> := FiniteField(128);

> V := VectorSpace(F, 4);

> S := SuzukiGroup(V);

> S;

MatrixGroup(4, GF(2, 7))

Generators:

[0 0 0 1]

[0 0 1 0]

[0 1 0 0]

[1 0 0 0]

[w^8 0 0 0]

[0 w^120 0 0]

[0 0 w^7 0]

[0 0 0 w^119]

[1 0 0 0]

[w^8 1 0 0]

[0 w 1 0]

[w^17 w^9 w^8 1]

> Order(S);

34093383680

> FactoredOrder(S);

[<2, 14>, <5, 1>, <29, 1>, <113, 1>, <127, 1>]

Ch. 65 ALMOST SIMPLE GROUPS 1889

65.2.4.2 Small Ree Groups
The Ree groups (2G2(q)) are given in an irreducible matrix representation of degree seven.
The possible combinations of arguments are:

(i) A finite field K = F32m+1 with m > 0, over which the matrix group is defined.

(ii)An integer q = 32m+1 with m > 0, corresponding to the field K = Fq over which the
group is defined; or,

(iii) A vector space V = K7 where K = F32m+1 with m > 0, on which the matrix group
acts naturally.

ReeGroup(q)

ReeGroup(K)

ReeGroup(V)

Here q is a prime power of the form q = 32m+1 with m > 0, K is the finite field Fq,
and V is the 7-dimensional vector space over K. This function constructs the Ree
group 2G2(q) (resp. 2G2(K), 2G2(V)) in terms of standard generating matrices.
The intrinsic name may be abbreviated to Ree.

65.2.4.3 Large Ree Groups
The Ree groups (2F4(q)) are given in an irreducible matrix representation of degree twenty-
six. The possible combinations of arguments are:

(i) A finite field K = F22m+1 with m > 0, over which the matrix group is defined.

(ii)An integer q = 22m+1 with m > 0, corresponding to the field K = Fq over which the
group is defined; or,

(iii) A vector space V = K26 where K = F22m+1 with m > 0, on which the matrix group
acts naturally.

LargeReeGroup(q)

LargeReeGroup(K)

LargeReeGroup(V)

Here q is a prime power of the form q = 22m+1 with m > 0, K is the finite field
Fq, and V is the 26-dimensional vector space over K. This function constructs the
Ree group 2F4(q) (resp. 2F4(K), 2F4(V)) in terms of standard generating matrices.
The intrinsic name may be abbreviated to LargeRee.

65.3 Group Recognition

1890 FINITE GROUPS Part X

65.3.1 Constructive Recognition of Alternating Groups

RecogniseAlternatingOrSymmetric(G, n)

Constructive recognition of the group G, which will succeed with probability ≥ 1−e5
if G is isomorphic to either the alternating or symmetric group of degree n > 11.
The method is that of Beals et al [BLGN+03], implemented by Colva Roney-Dougal.

The return values start with a flag indicating success or failure. If the algorithm
was successful, then there are three more return values: a flag which is true whenG is
symmetric and false when alternating, and two programs. The first program takes
an element x of an overgroup of G and produces a boolean to indicate whether
x ∈ G and a permutation representing x in the natural action of Sn (if such a
permutation exists). The second taking a permutation to the corresponding element
of G. The programs define mutually inverse group isomorphisms, implemented as
Magma functions.

Example H65E3

We give an example of RecogniseAlternatingOrSymmetric in use.

> a:= AlternatingGroup(13);

> h:= Stabiliser(a, {1,2});

> k:= CosetImage(a, h);

> Degree(k);

78

> worked, is_sym, bb_to_perm, perm_to_bb:=

> RecogniseAlternatingOrSymmetric(k, 13);

> worked;

true

> is_sym;

false

> x:= Sym(78)!(1, 35, 16, 28, 14, 26, 69, 5, 74)(2, 54,

> 67, 18, 51, 63, 6, 50, 77)(3, 33, 78, 12, 34, 29, 19, 15, 73)

> (4, 52, 61, 24, 49, 60, 68, 38, 64)(7, 20, 71, 17,

> 32, 11, 72, 8, 36)(9, 76, 47, 31, 56, 62, 13, 53, 59)

> (10, 70, 57, 23, 37, 22, 21, 27, 25)(30, 45, 46, 43, 42,

> 44, 40, 41, 75)(39, 55, 65)(48, 66, 58);

> x in k;

true;

> in_k, perm_image:= bb_to_perm(x);

> in_k;

true

> perm_image;

(1, 2, 3)(4, 7, 12, 6, 10, 11, 13, 9, 8)

> perm_to_bb(perm_image) eq x;

true

Ch. 65 ALMOST SIMPLE GROUPS 1891

RecogniseSymmetric(G, n: parameters)

maxtries RngIntElt Default : 100n+ 5000
Extension BoolElt Default : false

The group G should be known to be isomorphic to the symmetric group Sn for some
n ≥ 8. The Bratus-Pak algorithm [BP00] (implemented by Derek Holt) is used to
define an isomorphism between G and Sn. If successful, return true, homomorphism
from G to Sn, homomorphism from Sn to G, the map from G to its word group and
the map from the word group to G.

If the optional parameter Extension is set, then the group G should be known
to be isomorphic either to Sn or to a perfect central extension 2.Sn. In that case,
the first two maps returned will be a homomorphism from G to Sn and a map from
Sn to G that induces a homomorphism onto G/Z(G). The sixth value returned will
be true, if G ∼= 2.Sn and false, if G ∼= 2.An.

If unsuccessful, false is returned. This will always occur if the input group is
not isomorphic to Sn (or 2.Sn when Extension is set) with n ≥ 8, and may occur
occasionally even when G is isomorphic to Sn. The optional parameter maxtries
(default 100n+5000) can be used to control the number of random elements chosen
before giving up.

SymmetricElementToWord (G, g)

If g is an element of G which has been constructively recognised to be isomorphic
to Sn (or 2.Sn), then return true and element of word group for G which evaluates
to g. Otherwise return false. This facilitates membership testing in G.

RecogniseAlternating(G, n: parameters)

maxtries RngIntElt Default : 100n+ 5000
Extension BoolElt Default : false

The group G should be known to be isomorphic to the alternating group An for some
n ≥ 9. The Bratus-Pak algorithm [BP00] (implemented by Derek Holt) is used to
define an isomorphism betweenG andAn. If successful, return true, homomorphism
from G to An, homomorphism from An to G, the map from G to its word group
and the map from the word group to G.

If the optional parameter Extension is set, then the group G should be known
to be isomorphic either to An or to a perfect central extension 2.An. In that case,
the first two maps returned will be a homomorphism from G to An and a map from
An to G that induces a homomorphism onto G/Z(G). The sixth value returned will
be true, if G ∼= 2.An and false, if G ∼= 2.An.

If unsuccessful, false is returned. This will always occur if the input group is
not isomorphic to An (or 2.An when Extension is set) with n ≥ 9, and may occur
occasionally even when G is isomorphic to An. The optional parameter tt maxtries
(default 100n+5000) can be used to control the number of random elements chosen
before giving up.

1892 FINITE GROUPS Part X

AlternatingElementToWord (G, g)

If g is an element of G which has been constructively recognised to be isomorphic
to An (or 2.An), then return true and element of word group for G which evaluates
to g. Otherwise return false. This facilitates membership testing in G.

GuessAltsymDegree(G: parameters)

maxtries RngIntElt Default : 5000
Extension BoolElt Default : false

The group G should be believed to be isomorphic to Sn or An for some n > 6, or to
2.Sn or 2.An if the optional parameter Extension is set. This function attempts to
determine n and whether G is symmetric or alternating. It does this by sampling
orders of elements. It returns either false, if it is unable to make a decision after
sampling maxtries elements (default 5000), or true, type and n, where type is
“Symmetric” or “Alternating”, and n is the degree. If G is not isomorphic to Sn

or An (or 2.Sn or 2.An when Extension is set) for n > 6, then the output is
meaningless - there is no guarantee that false will be returned. There is also a
small probability of a wrong result or false being returned even when G is Sn or
An with n > 6. This function was written by Derek Holt.

Example H65E4

For a group G which is believed to be isomorphic to Sn or An for some unknown value of n > 6,
the function GuessAltsymDegree can be used to try to guess n, and then RecogniseSymmetric or
RecogniseAlternating can be used to confirm the guess.

> G:= sub< GL(10,5) |

> PermutationMatrix(GF(5),Sym(10)![2,3,4,5,6,7,8,9,1,10]),

> PermutationMatrix(GF(5),Sym(10)![1,3,4,5,6,7,8,9,10,2]) >;

> GuessAltsymDegree(G);

true Alternating 10

> flag, m1, m2, m3, m4 := RecogniseAlternating(G,10);

> flag;

true

> x:=Random(G); Order(x);

8

> m1(x);

(1, 2, 4, 9, 10, 8, 6, 3)(5, 7)

> m2(m1(x)) eq x;

true

> m4(m3(x)) eq x;

true

> flag, w := AlternatingElementToWord(G,x);

> flag;

true

> m4(w) eq x;

true

Ch. 65 ALMOST SIMPLE GROUPS 1893

> y := Random(Generic(G));

> flag, w := AlternatingElementToWord(G,y);

> flag;

false

> flag, m1, m2, m3, m4 := RecogniseAlternating(G,11);

> flag;

false

> flag, m1, m2, m3, m4 := RecogniseSymmetric(G,10);

> flag;

false

The nature of the GuessAltsymDegree function is that it assumes that its input is either an
alternating or symmetric group and then tries to guess which one and the degree. As such, it is
almost always correct when the input is an alternating or symmetric group, but will often return
a bad guess when the input group is not of this form, as in the following example.

> GuessAltsymDegree(Sym(50));

true Symmetric 50

> GuessAltsymDegree(Alt(73));

true Alternating 73

> GuessAltsymDegree(PSL(5,5));

true Alternating 82

65.3.2 Determining the Type of a Finite Group of Lie Type
Given a finite quasisimple group of Lie type in any representation, the functions in this
section apply probabilistic algorithms to determine its defining characteristic and type as
a Lie group.

LieCharacteristic(G : parameters)

NumberRandom RngIntElt Default : 100
Verify BoolElt Default : true

Given a finite quasisimple permutation or matrix group G which is of Lie type, de-
termine its defining characteristic. The Monte Carlo algorithm implemented by
this function is that of Liebeck and O’Brien [LO07]. Since it is Monte Carlo,
there is a small probability of error. The number of random elements considered is
NumberRandom. If Verify is true, then we first verify that G is perfect by applying
IsProbablyPerfect.

Example H65E5

> F := GF (4);

> w := PrimitiveElement (F);

> a := [

> 0,w^3,0,0,0,

> w^3,0,0,0,0,

1894 FINITE GROUPS Part X

> 0,0,0,w^3,0,

> 0,0,w^3,0,0,

> w^2,w^2,w^3,w^3,w^3];

> b := [

> 0,0,w^3,0,0,

> w^1,w^2,w^2,0,0,

> w^2,w^1,w^2,0,0,

> 0,0,0,0,w^3,

> w^2,w^2,w^2,w^3,w^3];

> G := sub <GL(5, F) | a, b>;

> LieCharacteristic(G);

11

LieType(G, p : parameters)

LieType(G, p : parameters)

NumberRandom RngIntElt Default : 100
If the matrix or permutation group G is nearly simple, and its non-abelian composi-
tion factor is isomorphic to a group of Lie type in characteristic p, then this function
returns true and its standard Chevalley name. Otherwise it returns false.

The algorithm is that of Babai, Kantor, Pálfy and Seress [BKPS02]; this imple-
mentation was developed by Malle and O’Brien. Since it is Monte Carlo, there
is a small probability of error. The number of random elements considered is
NumberRandom.

The standard name is a tuple that defines the isomorphism type of the compo-
sition factor. It is similar to that employed by CompositionFactors, described in
the Permutation Groups chapter.

If the composition factor is a group of Lie type, then the tuple is < s, n, q > and
it defines the adjoint Chevalley group of Lie series s and Lie rank n over GF (q).
The tuple entries are valid arguments for ChevalleyGroup.

If the composition factor is an alternating group, and so lies in family 17, then
the tuple is < 17, n, 0 > and it defines the alternating group of degree n.

If the composition factor is a sporadic group and so lies in family 18, then the
tuple is < 18, n, s >; the string s is its standard Atlas name and n is the number of
the group in family 18.

SimpleGroupName(G : parameters)

SimpleGroupName(G : parameters)

NumberRandom RngIntElt Default : 100
If the matrix or permutation group G is nearly simple, this function returns true
and a list of possible names for its non-abelian simple composition factor; otherwise
it returns false. Since it is Monte Carlo, there is a small probability of error.

Ch. 65 ALMOST SIMPLE GROUPS 1895

The number of random elements considered is NumberRandom. The list of standard
names follows the convention described above.

The algorithm and implementation were developed by Malle and O’Brien; it uses
LieType and LieCharacteristic.

Example H65E6

We create the classical group Ω(7, 5) in its natural representation and apply SimpleGroupName to
it.

> SetSeed(1);

> G := Omega(7, 5);

> flag, name := SimpleGroupName(G);

> name;

[* <B, 3, 5> *]

We create a certain 5-dimensional matrix group over GF (3) and determine which simple group it
is.

> F := GF(3);

> P := GL(5,F);

> gens := [

> P![2,1,2,1,2,2,0,0,0,2,0,2,0,0,0,0,1,2,0,1,1,0,2,2,1],

> P![2,1,0,2,1,1,2,0,2,2,1,1,2,1,1,0,2,0,1,1,1,1,2,2,2]];

> G := sub <P | gens>;

> flag, name := SimpleGroupName(G);

> flag;

true

> name;

[* <18, 1, M11> *]

¿ /* naming an alternating group */

> G := MatrixGroup<4, GF(2) |

> [0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0],

> [0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0] >;

> flag, name := SimpleGroupName(G);

> flag;

true

> /* this is A5 */

> name;

[* <17, 5, 0> *]

> /* naming a classical group */

> F := GF(7^2);

> P := GL (6,F);

> w := PrimitiveElement (F);

> gens := [

> P![w^12,w^36, 0, 5, 2, 0,w^44,w^36, 0, 6, 2, 0,

> w^42,w^42,w^28,w^22,w^22, 3, 4, 3, 0,w^36,w^12, 0,

> 2, 3, 0,w^20,w^12, 0,w^14,w^14, 1,w^18,w^18, w^4],

1896 FINITE GROUPS Part X

>

> P![w^38,w^26,w^25,w^21, w^9, 3,w^21,w^45,w^33, w^4,w^28,

> 2, 6, 4, w^1, w^7,w^15, 4, 1,w^36,w^35, w^5,w^41, 5,

> w^31, w^7,w^43,w^36,w^12, 1,w^34,w^42,w^11,w^39,w^47, 2]

>];

> G := sub <P | gens>;

> flag, name := LieType(G, 5);

> flag;

true

> name;

<A, 1, 5>

> /* so this is SL(2, 5) */

65.3.3 Classical Forms
Let G be an absolutely irreducible subgroup of GL(d, q). The following functions compute
symplectic, unitary and orthogonal forms of the underlying vector space V left invariant
by the action of G.

A bilinear form is a bilinear function κ from V × V → F . It is G-invariant modulo
scalars if for each g ∈ G there is a µg ∈ F such that κ(vg, wg) = µgκ(v, w) for all v, w ∈ V.

Now suppose that a 7→ ā is an automorphism of F of order 2. A sesquilinear form is
a biadditive function κ from V × V → F such that κ(au, bv) = ab̄κ(u, v) for all u, v ∈ V
and a, b ∈ F. It is G-invariant modulo scalars if for each g ∈ G there is a µg ∈ F such that
κ(vg, wg) = µgκ(v, w) for all v, w ∈ V .

A quadratic form is a function χ : V → F such that

(1)χ(av) = a2χ(v) for all a ∈ F , v ∈ V ; and

(2) the form κ, defined by κ(u, v) = χ(u+ v)− χ(u)− χ(v) for all u, v ∈ V , is bilinear.

It is G-invariant if for each g ∈ G, χ(vg) = χ(v) for all v ∈ V. It is G-invariant modulo
scalars if for each g ∈ G there is a µg ∈ F such that χ(vg) = µgχ(v) for all v ∈ V.

A bilinear form which is G-invariant (modulo scalars) is represented by a matrix B
such that g ∗B ∗ gtr = µgB for all g ∈ G and is unique up to multiplication by an element
of F . Assume F has an automorphism a 7→ ā of order 2; a sesquilinear form is a matrix B
such that g ∗B ∗ ḡtr = µgB for all g ∈ G and is unique up to multiplication by an element
of F (where ḡ denotes the matrix obtained from g by replacing each entry gij by ḡij).
A quadratic form is represented by an upper triangular matrix Q such that the matrix
g ∗Q ∗ gtr, normalized into an upper triangular matrix, equals µgQ.

The functions below will exit with an error message if the input group G is reducible.
They may also exit with error if G is not absolutely irreducible, or if Scalars is true and
the derived subgroup [G,G] of G is not absolutely irreducible. They may however some-
times succeed in finding a fixed form when G is irreducible but not absolutely irreducible.

Ch. 65 ALMOST SIMPLE GROUPS 1897

ClassicalForms(G: parameters)

Scalars BoolElt Default : false

Given as input a matrix group G acting absolutely irreducibly on the underlying
vector space V over the field F , ClassicalForms will try to find a classical form
which is G-invariant or prove that no such form exists. If the optional argument
Scalars is true then it will look for a form which is G-invariant modulo scalars.
When Scalars is true, it is only guaranteed to succeed when [G,G] acts absolutely
irreducibly on V . If it finds a fixed form, then it will stop and will not look for
alternative fixed forms of different types.

The classical forms are: symplectic (non-degenerate, alternating bilinear), uni-
tary (non-degenerate sesquilinear) or orthogonal (a symmetric bilinear form and a
quadratic form).

The function ClassicalForms returns a record forms which contains the com-
ponents formType, sign, bilinearForm, sesquilinearForm, quadraticForm and
scalars. Depending on the entry formType the record components are set to indi-
cate:
"unknown" : it is not known whether G fixes a classical form.
"linear" : it is known that G does not fix a classical form modulo

scalars.
"symplectic" : G fixes a symplectic form modulo scalars. The matrix

of the form is stored in bilinearForm and the scalars for
each generator of G are stored in scalars. In character-
istic two this also implies that no quadratic form is fixed.

"unitary" : G fixes a unitary form (modulo scalars). The matrix of
the form is stored in sesquilinearForm. The scalars for
each generator of G are stored in scalars.

"orthogonalcircle" :
"orthogonalplus" :
"orthogonalminus" : G fixes an orthogonal form modulo scalars. The matrix

of the bilinear form is stored in bilinearForm and the
corresponding quadratic form in quadraticForm. The
scalars for each generator of G are stored in scalars.
In the orthogonal case, sign is set to 0, 1, or -1 when
formType is "orthogonalcircle", "orthogonalplus",
or "orthogonalminus", respectively.

SymplecticForm(G: parameters)

Scalars BoolElt Default : false

If the absolutely irreducible group G preserves a symplectic form (modulo scalars if
the optional argument Scalars is true), this function returns true and the matrix
of the form. If it is known that G does not preserve such a form it returns false.

1898 FINITE GROUPS Part X

If it cannot decide (perhaps because the group does not act absolutely irreducibly),
then it exits with an error message. If Scalars is true, then the list of scalars for
the generators of G is also returned.

SymmetricBilinearForm(G: parameters)

Scalars BoolElt Default : false

If the absolutely irreducible group G preserves an orthogonal form (modulo scalars if
the optional argument Scalars is true), then this function returns true, the matrix
of the symmetric bilinear form, and the type of the form (as in ClassicalForms).
If it is known that G does not preserve such a form, it returns false. If it cannot
decide, then it exits with an error message. If Scalars is true, then the list of
scalars for the generators of G is also returned.

QuadraticForm(G)

Scalars BoolElt Default : false

If the absolutely irreducible group G preserves a quadratic form (modulo scalars if
the optional argument Scalars is true), this function returns true, the matrix of
the form in upper triangular form, and the type of the form (as in ClassicalForms).
If it is known that G does not preserve such a form it returns false. If it cannot
decide, then it exits with an error message. If Scalars is true, then the list of
scalars for the generators of G is also returned.

UnitaryForm(G)

Scalars BoolElt Default : false

If the absolutely irreducible group G preserves a unitary form (non-degenerate
sesquilinear) (modulo scalars if the optional argument Scalars is true), then this
function returns true and the matrix of the form. If it is known that G does not
preserve such a form, it returns false. If it cannot decide, then it exits with an error
message. If Scalars is true, then the list of scalars for the generators of G is also
returned.

FormType(G)

Scalars BoolElt Default : false

If the absolutely irreducible group G preserves a classical form (modulo scalars
if the optional argument Scalars is true), this function returns its type (see
ClassicalForms). Otherwise it returns "unknown".

Ch. 65 ALMOST SIMPLE GROUPS 1899

Example H65E7

> G := Omega(9, 11);

> ClassicalForms(G);

rec<recformat<bilinearForm, quadraticForm, sesquilinearForm, bilinFlag,

sesquiFlag, scalars, formType, bc, n> | bilinearForm :=

[0 0 0 0 0 0 0 0 1]

[0 0 0 0 0 0 0 1 0]

[0 0 0 0 0 0 1 0 0]

[0 0 0 0 0 1 0 0 0]

[0 0 0 0 6 0 0 0 0]

[0 0 0 1 0 0 0 0 0]

[0 0 1 0 0 0 0 0 0]

[0 1 0 0 0 0 0 0 0]

[1 0 0 0 0 0 0 0 0],

quadraticForm :=

[0 0 0 0 0 0 0 0 1]

[0 0 0 0 0 0 0 1 0]

[0 0 0 0 0 0 1 0 0]

[0 0 0 0 0 1 0 0 0]

[0 0 0 0 3 0 0 0 0]

[0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0],

sesquilinearForm := false, bilinFlag := true, sesquiFlag := false,

scalars := [1, 1], formType := orthogonalcircle, sign := 0>

> FormType(G);

orthogonalcircle

> SymplecticForm(G);

false

TransformForm(form, type)

Return a matrix m such that Gm lies in the classical group returned by the Magma
function GU, Sp, or GO(Plus/Minus). The argument form should be a classical form
of type type fixed by an absolutely irreducible subgroup G of GL(d, q). It should
be the bilinear or sesquilinear form fixed by G, except when G is orthogonal in
characteristic 2, in which case it should be the quadratic form. The argument type
should be as in the formType component of the record returned by ClassicalForms;
i.e. one of "symplectic", "unitary", "orthogonalcircle", "orthogonalplus",
or "orthogonalminus".

1900 FINITE GROUPS Part X

TransformForm(G)

Scalars BoolElt Default : false

This function calls ClassicalForms to find a form fixed by the absolutely irreducible
subgroup G of GL(d, q). If Scalars is true, then ClassicalForms is called with
Scalars set to true, so that a form fixed module scalars is found. If a form form
of type type is fixed, then it returns TransformForm(form, type). Otherwise it
returns false.

SpinorNorm(g, form)

The spinor norm of g with respect to the given form . form must be the matrix of
an orthogonal form (ie, it must be symmetric and nonsingular), and g an element
of the general orthogonal group GO(Plus/Minus) fixing that form. Note that the
form is ignored in even characteristic, since the spinor norm of g is just equal to the
rank modulo 2 of g − I in that case.

65.3.4 Recognizing Classical Groups in their Natural Representation

Let G be an irreducible subgroup of GL(d, q). The following algorithm is designed to test
whether G contains the corresponding classical group Ω and is contained in ∆. Here Ω and
∆ are defined as follows:

Case “linear”: ∆ = GL(d, q), Ω = SL(d, q)
Case “symplectic”: ∆ = GSp(d, q), Ω = Sp(d, q)
Case “orthogonalplus”: ∆ = GO+(d, q), Ω = Ω+(d, q)
Case “orthogonalminus”: ∆ = GO−(d, q), Ω = Ω−(d, q)
Case “orthogonalcircle”:∆ = GO◦(d, q), Ω = Ω◦(d, q)
Case “unitary”: ∆ = GU(d, q), Ω = SU(d, q)

RecognizeClassical(G : parameters)

Case MonStgElt Default : “unknown”
NumberOfElements RngIntElt Default : 25
Verbose Classical Maximum : 3

RecognizeClassical takes as input a group G, which is a subgroup of GL(d, q).
The parameter Case is one of "linear", "symplectic", "orthogonalplus",

"orthogonalminus", "orthogonalcircle", "unitary" or "unknown"; if Case is
supplied, then the algorithm seeks to decide for this case only.

The parameter NumberOfElements is the number of random elements selected
from G during the execution of the algorithm.

The output of RecognizeClassical is either true, false or "Does not apply".
If the algorithm returns true, then we know with certainty that G contains Ω and is
contained in ∆. Note that the proof of correctness of the algorithm depends on the
finite simple group classification. If it returns false then either G does not contain

Ch. 65 ALMOST SIMPLE GROUPS 1901

Ω, or G is not contained in ∆, or G is not irreducible, or there is a small chance
that G is contained in ∆ and contains Ω. More precisely, if the irreducible group
G is contained in ∆ and really does contain Ω then the probability with which the
algorithm returns false is less than ε, where ε is a real number between 0 and 1.
The smaller the value of ε, the larger NumberOfElements must be. If the algorithm
returns "Does not apply" then it is not applicable to the given group.

If "Classical" is set to verbose then, where RecognizeClassical returns true,
it also prints the statement “Proved that the group contains a classical group of
type case in n random selections”, where n is the number of selections needed. If
it returns false, it prints a statement giving some indication of why the algorithm
reached this conclusion.

Theoretical details of the algorithms used may be found in Niemeyer & Praeger
[NP97][NP98][NP99] and Praeger [Pra99]. Its approach is based on the SL-
recognition algorithm (Neumann & Praeger, [NP92]).This implementation also uses
algorithms described in Celler & Leedham-Green [CLG97][CLG97b] and Celler et
al. [CLGM+95].

For small fields (q < 216), the cost of this implementation for a given value of
NumberOfElements is O(d3 log d) bit operations.

IsLinearGroup(G)

This function tests whether the subgroup G of GL(d, q) contains SL(d, q). If the
function can establish this fact, it returns true and otherwise false. Hence, if
IsLinearGroup returns false, there is a small chance that G nevertheless contains
SL(d, q). See RecognizeClassical for more details.

IsSymplecticGroup(G)

This function tests whether the subgroup G of GSp(d, q) contains Sp(d, q). If the
function can establish this fact, it returns true and otherwise false. Hence, if
IsSymplecticGroup returns false, there is a small chance that G nevertheless
contains Sp(d, q). See RecognizeClassical for more details.

IsOrthogonalGroup(G)

This function tests whether the subgroup G of GOε(d, q) contains Ωε(d, q). If the
function can establish this fact, it returns true and otherwise false. Hence, if
IsOrthogonalGroup returns false, there is a small chance that G nevertheless
contains Ωε(d, q). See RecognizeClassical for more details.

IsUnitaryGroup(G)

This function tests whether the subgroup G of GU(d, q) contains SU(d, q). If the
function can establish this fact, it returns true and otherwise false.

1902 FINITE GROUPS Part X

ClassicalType(G)

If G is known to be a classical subgroup of GL(d, q) this function returns the appro-
priate classical type as a string, i.e. "linear", "symplectic", "orthogonalplus",
"orthogonalminus", "orthogonalcircle", or "unitary". Otherwise the function
returns false.

Example H65E8

> G := SU (60, 9);

> SetVerbose("Classical", true);

> RecognizeClassical(G);

true

> IsLinearGroup(G);

false

> IsUnitaryGroup(G);

true

> IsSymplecticGroup(G);

false

> IsOrthogonalGroup(G);

false

> ClassicalType(G);

unitary

> G := Sp (462, 3);

> time RecognizeClassical(G);

true

Time: 7.630

65.3.5 Constructive Recognition of Linear Groups
The functions in this section recognise whether of not a given group G is a specified linear
group T . If it is, then an isomorphism between G and T is returned.

RecognizeSL2(G)

RecognizeSL2(G)

RecognizeSL2(G, q)

RecognizeSL2(G, q)

If G, a matrix or permutation group, is isomorphic, possibly modulo scalars, to
(P)SL(2, q), then homomorphisms between G and (P)SL(2, q) are constructed. The
function returns a homomorphism from G to (P)SL(2, q), a homomorphism from
(P)SL(2, q) to G, the map from G to its word group, and the map from the word
group to G.

If q, the cardinality of the defining field for G, is known, it should be supplied.
Otherwise, the function SL2Characteristic is used to determine q; if q is large,
this calculation may be expensive.

Ch. 65 ALMOST SIMPLE GROUPS 1903

SL2ElementToWord(G, g)

SL2ElementToWord(G, g)

If g is an element of the matrix or permutation group G which has been construc-
tively recognised to have central quotient isomorphic to PSL(2, q), then return true
and element of word group for G which evaluates to g, else false. This facilitates
membership testing in G.

SL2Characteristic(G : parameters)

SL2Characteristic(G : parameters)

NumberRandom RngIntElt Default : 100
Verify BoolElt Default : true

Subject to the assumption that the group G has central quotient (P)SL(2, q), de-
termine its characteristic and field size. The Monte Carlo algorithm implemented
by this function is that of Liebeck and O’Brien [LO07]. Since it is Monte Carlo,
there is a small probability of error. The number of random elements considered is
NumberRandom. If Verify is true, then we first verify that G is perfect by applying
IsProbablyPerfect.

The constructive recognition algorithms for SL(2, q) were developed by Conder,
Leedham-Green and O’Brien [CLGO06]. The algorithm used for other representa-
tions was developed by Brooksbank and O’Brien.

Example H65E9

Our first example uses G = SL(2, 32) in its natural representation. We first recognise the group
and then express a random matrix of G as a word in the generators of G.

> G := SL(2, 3^2);

> flag, phi, tau, gamma, delta := RecogniseSL2(G, 3^2);

> g := G![1, 2, 0, 1];

> w := gamma(g);

> delta(w) eq g;

true

Example H65E10

We now consider a representation of a 2-dimensional linear group inside GL(6,F57).

> K<w> := GF(5, 7);

> G :=

> MatrixGroup<6, GF(5, 7) |

> [w^19035, w^14713, w^50617, w^14957, w^51504, w^48397, w^16317, w^3829,

> w^35189, w^2473, w^19497, w^77192, w^46480, w^6772, w^29577, w^61815,

> w^54313, w^16757, w^43765, w^64406, w^58788, w^30789, w^13579, w^66728,

> w^7733, w^45434, w^42411, w^61613, w^12905, w^6889, w^50116, w^16117,

> w^56717, w^25226, w^49940, w^36836],

1904 FINITE GROUPS Part X

> [w^63955, w^40568, w^45004, w^11642, w^39536, w^11836, w^52594, w^71166,

> w^47015, w^74450, w^32373, w^37021, w^76381, w^18155, w^57943, w^31194,

> w^62524, w^65864, w^11868, w^76867, w^26483, w^41335, w^64856, w^41125,

> w^43990, w^40104, w^24842, w^3153, w^23777, w^60024, w^14454, w^68648,

> w^43403, w^26710, w^39779, w^22074] >;

>

> flag, phi, tau, gamma, delta := RecogniseSL2(G, 5^7);

> phi;

Mapping from: GrpMat: G to SL(2, GF(5, 7)) given by a rule [no inverse]

> g := Random(G);

> h := phi (g);

> h;

[w^40430 w^970]

[w^5607 w^11606]

> k := tau(h);

> w := gamma(k);

> m := delta(w);

Recall that we are working modulo scalars.

> IsScalar(m * g^-1);

true

> H := SL(2, 5^7);

> h := H![1,1,0,1];

> g := tau(h);

> Order(g);

5

We now test a random element of GL(6,F57) for membership of our group.

> g := Random(GL(6, 5^7));

> SL2ElementToWord(G, g);

false

RecogniseSL3(G)

RecogniseSL3(G, q : parameters)

Verify BoolElt Default : true

If G ≤ GL(d, F), is isomorphic, possibly modulo scalars, to (P)SL(3, q), then con-
struct homomorphisms between G and (P)SL(3, q). Return homomorphism from G
to (P)SL(3, q), homomorphism from (P)SL(3, q) to G, the map from G to its word
group and the map from the word group to G.

If q, the cardinality of the defining field for G, is known, it should be supplied.
Otherwise, it is computed using the functions LieCharacteristic and LieType.

If Verify is false, then assume G is isomorphic, possibly modulo scalars, to
(P)SL(3, q).

Ch. 65 ALMOST SIMPLE GROUPS 1905

SL3ElementToWord (G, g)

If g is an element of G which has been constructively recognised to have central
quotient isomorphic to PSL(3, q), then return true and element of word group for
G which evaluates to g, else false. This facilitates membership testing in G.

The constructive recognition algorithms for SL(3, q) were developed by Lübeck,
Magaard, and O’Brien [LMO07]. Its current implementation, which is part of the
CompositionTree package, was developed by Bäärnhielm and O’Brien.

Example H65E11

We create SL(3, 54) in its natural representation and recognise it. We then form its symmetric
square and apply the recognition machinery to that.

> G := SL(3, 5^4);

> flag, phi, tau, gamma, delta := RecogniseSL3(G);

> w := PrimitiveElement (GF(5^4));

> g := GL(3, 5^4)! [1,2,1,0,w,1,0,0,w^-1];

> w := gamma (g);

> delta (w) eq g;

true

> G := ActionGroup(SymmetricSquare(GModule(G)));

> flag, phi, tau, gamma, delta := RecogniseSL3(G);

> phi;

Mapping from: GL(6, GF(5, 4)) to SL(3, GF(5, 4)) given by a rule [no inverse]

> g := Random(G);

> h := phi(g);

> h;

[$.1^40430 $.1^970]

[$.1^5607 $.1^11606]

> k := tau(h);

> w := gamma(k);

> m := delta(w);

Recall that we are working modulo scalars. We conclude by testing whether a random element of
GL(6, 54) is contained in our group.

> IsScalar(m * g^-1);

true

> g := Random(GL(6, 5^4));

> SL3ElementToWord(G, g);

false

1906 FINITE GROUPS Part X

RecogniseSL(G, d, q)

RecognizeSL(G, d, q)

Use the Kantor-Seress algorithm to try to find an isomorphism between the finite
group G (regarded as a black-box group) and SL(d, q) or PSL(d, q). The first return
value indicates whether the attempt was successful. If so, then the second and
third return values are mutually inverse homomorphisms (modulo scalars if G ∼=
PSL(d, q)) from G to SL(d, q) and from SL(d, q) to G.
Warning: This function often returns false even when G is isomorphic to SL(d, q)
or PSL(d, q), so it should be called repeatedly until it returns true!

65.3.6 Constructive Recognition of Symplectic Groups

RecogniseSpOdd(G, d, q)

RecognizeSpOdd(G, d, q)

Use the Kantor-Seress algorithm to try to find an isomorphism between the finite
group G (regarded as a black-box group) and Sp(d, q) or PSp(d, q) for odd q. The
first return value indicates whether the attempt was successful. If so, then the
second and third return values are mutually inverse homomorphisms (modulo scalars
if G ∼= PSp(d, q)) from G to Sp(d, q) and from Sp(d, q) to G.
Warning: This function often returns false even when G is isomorphic to Sp(d, q)
or PSp(d, q), so it should be called repeatedly until it returns true!

RecogniseSp4Even(G, q)

RecognizeSp4Even(G, q)

Use an algorithm of Peter Brooksbank to try to find an isomorphism between the
finite group G (regarded as a black-box group) and Sp(4, q) for even q. The first
return value indicates whether the attempt was successful. If so, then the second
and third return values are mutually inverse homomorphisms from G to Sp(d, q)
and from Sp(d, q) to G. The third and fourth return values are mutually inverse
homomorphisms from G to the word group W of G and from W to G.

65.3.7 Constructive Recognition of Unitary Groups

RecogniseSU3(G, d, q)

RecognizeSU3(G, d, q)

Use an algorithm of Peter Brooksbank to try to find an isomorphism between the
finite group G (regarded as a black-box group) and SU(3, q) or PSU(3, q) for q > 2.
The first return value indicates whether the attempt was successful. If so, then
the second and third return values are mutually inverse homomorphisms (modulo
scalars if G ∼= PSU(3, q)) from G to SU(3, q) and from SU(3, q) to G. The third
and fourth return values are mutually inverse homomorphisms from G to the word
group W of G and from W to G.

Ch. 65 ALMOST SIMPLE GROUPS 1907

RecogniseSU4(G, d, q)

RecognizeSU4(G, d, q)

Use an algorithm of Peter Brooksbank to try to find an isomorphism between the
finite group G (regarded as a black-box group) and SU(4, q) or PSU(4, q). The first
return value indicates whether the attempt was successful. If so, then the second
and third return values are mutually inverse homomorphisms (modulo scalars if
G ∼= PSU(4, q)) from G to SU(4, q) and from SU(4, q) to G. The third and fourth
return values are mutually inverse homomorphisms from G to the word group W of
G and from W to G.

65.3.8 Constructive Recognition of SL(d, q) in Low Degree
Let SL(d, q) ≤ H ≤ GL(d, q) with q = pf , where V is the natural H-module. Let H
act on an irreducible Fq-module W of dimension at most d2. Magaard, O’Brien & Seress
[MOAS08] describe algorithms which, given as input the irreducible representation of H
on W , construct a d-dimensional projective representation of H. Their implementations,
prepared by Eamonn O’Brien, are described below.

RecogniseSymmetricSquare (G)

G is symmetric square representation of H, where SL(d, q) ≤ H ≤ GL(d, q) and
d ≥ 4. Reconstruct H; if successful, then return true and H, otherwise false.

SymmetricSquarePreimage (G, g)

G is symmetric square representation of H, where SL(d, q) ≤ H ≤ GL(d, q); return
preimage of g in H.

RecogniseAlternatingSquare (G)

G is alternating square representation of H, where SL(d, q) ≤ H ≤ GL(d, q) and
d ≥ 3. Reconstruct H; if successful, then return true and H, otherwise false.

AlternatingSquarePreimage (G, g)

G is alternating square representation of H, where SL(d, q) ≤ H ≤ GL(d, q); return
preimage of g in H.

RecogniseAdjoint (G)

G is adjoint representation of H, where SL(d, q) ≤ H ≤ GL(d, q) and d ≥ 3.
Reconstruct H; if successful, then return true and H, otherwise false.

AdjointPreimage (G, g)

G is adjoint representation of H, where SL(d, q) ≤ H ≤ GL(d, q); return preimage
of g in H.

1908 FINITE GROUPS Part X

RecogniseDelta (G)

G is absolutely irreducible representation ofH⊗Hpe

, where SL(d, q) ≤ H ≤ GL(d, q)
and d ≥ 4. Reconstruct H; if successful, then return true and H, otherwise false.

DeltaPreimage (G, g)

G is absolutely irreducible representation of H ⊗ H(pe), where SL(d, q) ≤ H ≤
GL(d, q); return preimage of g in H.

Example H65E12

> G := SL(4, 3^2);

> G := SL(4, 9);

> M := GModule (G);

> M := SymmetricPower (M, 2);

> G := MatrixGroup (M);

> G := RandomConjugate (G);

> f, H := RecogniseSymmetricSquare (G);

> f;

true

> H;

MatrixGroup(4, GF(3^2))

Generators:

[0 1 0 0]

[0 0 0 1]

[$.1^6 2 2 $.1]

[2 $.1 0 $.1]

[0 0 1 0]

[$.1^2 $.1^7 1 $.1^6]

[1 2 $.1^6 $.1^6]

[$.1 0 $.1^7 0]

> g := Random (G);

> h := SymmetricSquarePreimage (G, g);

> h;

[$.1^6 0 0 $.1^2]

[$.1^6 0 $.1^3 0]

[$.1^2 $.1^5 2 $.1]

[0 $.1^3 $.1^5 $.1]

65.3.9 Constructive Recognition of Suzuki Groups

Ch. 65 ALMOST SIMPLE GROUPS 1909

65.3.9.1 Introduction
A description of the functionality for constructive recognition and constructive membership
testing of the Suzuki groups Sz(q), with q = 22m+1 for some m > 0 follows.

The main intrinsics of the package are RecogniseSz(G) which performs constructive
recognition of G ∼= Sz(q), SzElementToWord(G, g) which returns a GrpSLPElt for g in the
generators of G, and IsSuzukiGroup(G) which is a non-constructive test for isomorphism
between G and Sz(q).

Informative printing can be obtained using one of a number of verbose flags:

SuzukiGeneral, for the general routines.
SuzukiStandard, for the routines related to the standard copy.
SuzukiConjugate, for the routines related to conjugation.
SuzukiTensor, for the routines related to tensor decomposition.
SuzukiMembership, for the routines related to membership testing.
SuzukiCrossChar, for the routines related to cross-characteristic representations.
SuzukiTrick, for the routines related to the double coset trick.
SuzukiNewTrick, for the routines related to the stabiliser trick.

For each of the flags, the verbose level takes any value up to 10, with higher values
resulting in more output.

65.3.9.2 Recognition Functions

IsSuzukiGroup(G)

Given a matrix group G, this function determines (non-constructively) whether or
not G is isomorphic to Sz(q). The corresponding finite field cardinality q is also
returned.

If the group G is defined over a field of odd characteristic or has degree greater
than 4, the Monte Carlo algorithm of LieType is used. If G has degree 4 and is
over a field of characteristic 2, then a fast Las Vegas algorithm is used, described in
[Bää06a].

RecogniseSz(G : parameters)

RecognizeSz(G : parameters)

Verify BoolElt Default : true

FieldSize RngIntElt Default :

Optimise BoolElt Default : false

Let G be a group that is absolutely irreducible and is defined over a minimal field.
This function constructively recognises G as a Suzuki group. If G is isomorphic to
Sz(q), where q is the size of the defining field of G, then return:

Isomorphism from G to Sz(q).
Isomorphism from Sz(q) to G.

1910 FINITE GROUPS Part X

Map from G to the word group of G.

Map from the word group of G to G.
The isomorphisms are composed of maps that are defined by rules, so Function

should be used on each component to avoid unnecessary built-in membership testing.
The word group is the GrpSLP group which is the parent of the elements returned by
SzElementToWord. In general this is not the same as WordGroup(G), but is created
from it using AddRedundantGenerators.

If Verify is true, then it is checked if G is isomorphic to Sz(q), using
IsSuzukiGroup. In that case, FieldSize must be set to the correct value of q.
Constructive recognition of 2.Sz(8) is also handled.

If Optimise is true, then the third map returns element in an optimised word
group (using AddRedundantGenerators). Then each invocation of the map will be
faster, but the initialisation will take longer.

The algorithms used for constructive recognition are described in [Bää06a] and
[Bää05].

SzElementToWord(G, g)

If G has been constructively recognised as a Suzuki group, and if g is an element of
G, then return true and a GrpSLPElt from the word group of G which evaluates to
g, else return false.

This facilitates membership testing in G.

SzPresentation(q)

If q = 22m+1 for some m > 0, return a short presentation of Sz(q) on the Magma
standard generators, i.e. the generators returned by the Sz intrinsic.

SatisfiesSzPresentation(G)

G is constructively recognised as Sz(q) for some q. Verify that it satisfies a presen-
tation for this group.

SuzukiIrreducibleRepresentation(F, twists : parameters)

CheckInput BoolElt Default : true

Let F be a finite field of cardinality q = 22m+1 for some m > 0, and let twists be
a sequence of n distinct integers in the range [0 . . . 2m]. The function returns an
absolutely irreducible representation of Sz(q) having dimension 4n, being a tensor
product of twisted powers of the copy returned by the Sz intrinsic, where the twists
are given by the input sequence.

If CheckInput is true, then it is verified that F and twists satisfy the above
requirements. Otherwise this is not checked.

Ch. 65 ALMOST SIMPLE GROUPS 1911

Example H65E13

We illustrate the basic facilities starting with a random conjugate of the standard version of the
Suzuki group Sz(32). We first perform non-constructive recognition.

> G := Sz(32);

> G ^:= Random(Generic(G));

> flag, q := SuzukiRecognition(G);

> flag, q eq 32;

true true

The next step is to perform constructive recognition. The explicit isomorphisms will be the values
of iso and inv.

> flag, iso, inv, g2slp, slp2g := RecognizeSz(G);

> flag;

true

> iso, inv;

Mapping from: GrpMat: G to MatrixGroup(4, GF(2^5)) given by a rule [no inverse]

Mapping from: MatrixGroup(4, GF(2^5)) to GrpMat: G given by a rule [no inverse]

We now experiment with membership testing. We use Function to avoid Magma’s built-in mem-
bership testing but in doing so, we may not obtain the shortest possible SLP.

> w := Function(g2slp)(G.1);

> #w;

284

The algorithm is probabilistic, so different executions will most likely give different results.

> ww := Function(g2slp)(G.1);

> w eq ww;

false

Note that the resulting SLPs are from a word group that is not the word group W corresponding
to the defining generators of G. However, they can be coerced into W .

> W := WordGroup(G);

> NumberOfGenerators(Parent(w)), NumberOfGenerators(W);

7 3

> flag, ww := IsCoercible(W, w);

> flag;

true

> slp2g(w) eq Evaluate(ww, UserGenerators(G));

true

So there are two ways to get the element back. An alternative is to use the intrinsic
SzElementToWord, which is better if the elements are not known to lie in the group.

> flag, ww := SzElementToWord(G, G.1);

> flag, slp2g(w) eq slp2g(ww);

1912 FINITE GROUPS Part X

true true

We take an element just outside the group.

> H := Sp(4, 32);

> flag, ww := SzElementToWord(G, H.1);

> flag;

false

> // in this case we will not get an SLP

> ww := Function(g2slp)(H.1);

> ww;

false

> SatisfiesSzPresentation(G);

true

Example H65E14

As a variation we apply the machinery to 2.Sz(8). We demonstrate constructive recognition and
constructive membership testing.

> A := ATLASGroup("2Sz8");

> reps := MatRepKeys(A);

> G := MatrixGroup(reps[3]);

> Degree(G), CoefficientRing(G);

40 Finite field of size 7

> flag, iso, inv, g2slp, slp2g := RecognizeSz(G);

> flag;

true

> R := RandomProcess(G);

> g := Random(R);

> w := Function(g2slp)(g);

> slp2g(w) eq g;

true

Example H65E15

For the next example we consider a case where the dimension is large. We construct the Suzuki
group in a 64-dimensional matrix representation and then take a random conjugate and also
rewrite is over a smaller field.

> F := GF(2, 9);

> twists := [0, 3, 6];

> G := SuzukiIrreducibleRepresentation(F, twists);

> Degree(G), IsAbsolutelyIrreducible(G);

64 true

> G ^:= Random(Generic(G));

> flag, GG := IsOverSmallerField(G);

> flag, CoefficientRing(GG);

Ch. 65 ALMOST SIMPLE GROUPS 1913

true Finite field of size 2^3

Non-constructive recognition is harder in this case and will give us the defining field size. Con-
structive recognition will decompose the tensor product.

> time SuzukiRecognition(GG);

true 512

Time: 2.330

> time flag, iso, inv, g2slp, slp2g := RecogniseSz(GG);

Time: 4.800

> iso;

Mapping from: GrpMat: GG to MatrixGroup(4, GF(2^9)) given by a rule [no inverse]

Constructive membership is again easy

> R := RandomProcess(GG);

> g := Random(R);

> time w := Function(g2slp)(g);

Time: 0.020

> // but SLP evaluation is harder in large dimensions

> time slp2g(w) eq g;

true

Time: 0.370

> time SatisfiesSzPresentation(GG);

true

Time: 10.930

Example H65E16

The final example will be in cross characteristic. We build a representation of Sz(8) in cross
characteristic.

> G := Sz(8);

> _, P := SuzukiPermutationRepresentation(G);

> // for example over GF(9)

> M := PermutationModule(P, GF(3, 2));

> factors := CompositionFactors(M);

> exists(m64){f : f in factors | Dimension(f) eq 64};

true

> m64;

GModule m64 of dimension 64 over GF(3^2)

> H := ActionGroup(m64);

> IsAbsolutelyIrreducible(H);

true

> flag, G := IsOverSmallerField(H);

> Degree(G), CoefficientRing(G);

64 Finite field of size 3

We actually end up with a group in characteristic 3.

> time flag, iso, inv, g2slp, slp2g := RecogniseSz(G);

1914 FINITE GROUPS Part X

Time: 3.490

> iso;

Mapping from: GrpMat: G to MatrixGroup(4, GF(2^3)) given by a rule [no inverse]

> R := RandomProcess(G);

> g := Random(R);

> time w := Function(g2slp)(g);

Time: 0.010

> time slp2g(w) eq g;

true

Time: 0.110

> time SatisfiesSzPresentation(G);

true

Time: 0.330

65.3.10 Constructive Recognition of Small Ree Groups

65.3.10.1 Introduction
This machinery provides functionality for constructive recognition and constructive mem-
bership testing of the small Ree groups 2G2(q) = Ree(q), with q = 32m+1 for some m > 0.

The important intrinsics are RecogniseRee which performs constructive recognition of
G ∼= Ree(q), ReeElementToWord which returns a GrpSLPElt for g in the generators of G,
and IsReeGroup which is a non-constructive test for isomorphism between G and Ree(q).

There are a few verbose flags used in the package.

ReeGeneral, for the general routines.

ReeStandard, for the routines related to the standard copy.

ReeConjugate, for the routines related to conjugation.

ReeTensor, for the routines related to tensor decomposition.

ReeMembership, for the routines related to membership testing.

ReeCrossChar, for the routines related to cross-characteristic representations.

ReeTrick, for the routines related to the stabiliser trick.

ReeInvolution, for the routines related to involution centralisers.

ReeSymSquare, for the routines related to symmetric square decomposition.

All the flags can be set to values up to 10, with higher values resulting in more output.

Ch. 65 ALMOST SIMPLE GROUPS 1915

65.3.10.2 Recognition Functions

RecogniseRee(G : parameters)

RecognizeRee(G : parameters)

Verify BoolElt Default : true

FieldSize RngIntElt Default :

Optimise BoolElt Default : false

G is absolutely irreducible and defined over minimal field. Constructively recognise
G as a Ree group. If G is isomorphic to Ree(q) where q is the size of the defining
field of G, then return:

Isomorphism from G to Ree(q).

Isomorphism from Ree(q) to G.

Map from G to the word group of G.

Map from the word group of G to G.
The isomorphisms are composed of maps that are defined by rules, so Function

should be used on each component to avoid unnecessary built-in membership testing.
The word group is the GrpSLP which is the parent of the elements returned by

ReeElementToWord. In general this is not the same as WordGroup(G), but is created
from it using AddRedundantGenerators.

If Verify is true, then it is checked that G is isomorphic to Ree(q), using
IsReeGroup, otherwise this is not checked. In that case, FieldSize must be set
to the correct value of q.

If Optimise is true, then the third map returns element in an optimised word
group (using AddRedundantGenerators). Then each invocation of the map will be
faster, but the initialisation will take longer.

The algorithms for constructive recognition are those of [Bää06b].

ReeElementToWord(G, g)

If G has been constructively recognised as a Ree group, and if g is an element of G,
then return true and a GrpSLPElt from the word group of G which evaluates to g,
else return false.

This facilitates membership testing in G.

IsReeGroup(G)

Determine (non-constructively) if G is isomorphic to Ree(q). The corresponding q
is also returned.

If G is over a field of characteristic not 3 or has degree greater than 7, the
Monte Carlo algorithm of LieType is used. If G has degree 7 and is over a field of
characteristic 3, then a fast Las Vegas algorithm is used.

1916 FINITE GROUPS Part X

ReeIrreducibleRepresentation(F, twists : parameters)

CheckInput BoolElt Default : true

The finite field F must have size q = 32m+1 for some m > 0, and twists should be
a sequence of n distinct pairs of integers (i, j) where i is 7 or 27 and j in the range
[0 . . . 2m].

Return an absolutely irreducible representation of Ree(q), a tensor product of
twisted powers of the representation of dimension 7 or 27, where the twists are given
by the input sequence.

If CheckInput is true, then it is verified that F and twists satisfy the above
requirements. Otherwise this is not checked.

Example H65E17

Our first example shows off the recognition machinery for the Ree group defined over F27.

> SetSeed(1);

> F := GF(3, 3);

> G := ReeGroup(F);

> G ^:= Random(Generic(G));

> flag, q := ReeRecognition(G);

> flag, q eq #F;

true true

> flag, iso, inv, g2slp, slp2g := RecognizeRee(G);

> flag;

true

> iso, inv;

Mapping from: GrpMat: G to MatrixGroup(7, GF(3^3)) given by a rule [no inverse]

Mapping from: MatrixGroup(7, GF(3^3)) to GrpMat: G given by a rule [no inverse]

We now experiment with membership testing. As the algorithm is probabilistic, different execu-
tions will most likely give different results.

> w := Function(g2slp)(G.1);

> #w;

342

> ww := Function(g2slp)(G.1);

> w eq ww;

false

The resulting SLPs are from another word group but can be coerced into W .

> W := WordGroup(G);

> NumberOfGenerators(Parent(w)), NumberOfGenerators(W);

7 3

> flag, ww := IsCoercible(W, w);

> flag;

true

> // so there are two ways to get the element back

> slp2g(w) eq Evaluate(ww, UserGenerators(G));

Ch. 65 ALMOST SIMPLE GROUPS 1917

true

If the elements are not known to lie in the group, a better alternative is to use the intrinsic
ReeElementToWord. We take a generator of Ω(7, F) as an example of an element not lying in
G2(27).

> flag, ww := ReeElementToWord(G, G.1);

> flag, slp2g(w) eq slp2g(ww);

true true

> H := Omega(7, #F);

> flag, ww := ReeElementToWord(G, H.1);

> flag;

false

> ww := Function(g2slp)(H.1);

> ww;

false

65.3.11 Constructive Recognition of Large Ree Groups

65.3.11.1 Introduction
This machinery provides functionality for constructive recognition and constructive mem-
bership testing of the large Ree groups 2F4(q) = LargeRee(q), with q = 22m+1 for some
m > 0.

The important intrinsics are RecogniseLargeRee which performs constructive recogni-
tion of G ∼= LargeRee(q), LargeReeElementToWord which returns a GrpSLPElt for g in the
generators of G, and IsLargeReeGroup which is a non-constructive test for isomorphism
between G and LargeRee(q).

There are a few verbose flags used in the package.

LargeReeGeneral, for the general routines.

LargeReeStandard, for the routines related to the standard copy.

LargeReeConjugate, for the routines related to conjugation.

LargeReeRyba, for the routines related to membership testing.

LargeReeTrick, for the routines related to the stabiliser trick.

LargeReeInvolution, for the routines related to involution centralisers.

All the flags can be set to values up to 10, with higher values resulting in more output.

1918 FINITE GROUPS Part X

65.3.11.2 Recognition Functions

RecogniseLargeRee(G : parameters)

RecognizeLargeRee(G : parameters)

Verify BoolElt Default : true

FieldSize RngIntElt Default :

Optimise BoolElt Default : false

G is absolutely irreducible and defined over minimal field. Constructively recognise
G as a Large Ree group. If G is isomorphic to LargeRee(q) where q is the size of
the defining field of G, then return:

Isomorphism from G to LargeRee(q).

Isomorphism from LargeRee(q) to G.

Map from G to the word group of G.

Map from the word group of G to G.
The isomorphisms are composed of maps that are defined by rules, so Function

should be used on each component to avoid unnecessary built-in membership testing.
The word group is the GrpSLP which is the parent of the elements returned by

LargeReeElementToWord. In general this is not the same as WordGroup(G), but is
created from it using AddRedundantGenerators.

If Verify is true, then it is checked that G is isomorphic to LargeRee(q), using
IsLargeRee, otherwise this is not checked. In that case, FieldSize must be set to
the correct value of q.

If Optimise is true, then the third map returns element in an optimised word
group (using AddRedundantGenerators). Then each invocation of the map will be
faster, but the initialisation will take longer.

LargeReeElementToWord(G, g)

If G has been constructively recognised as a Large Ree group, and if g is an element
of G, then return true and a GrpSLPElt from the word group of G which evaluates
to g, else return false.

This facilitates membership testing in G.

IsLargeReeGroup(G)

Determine (non-constructively) if G is isomorphic to LargeRee(q). The correspond-
ing q is also returned.

If G is over a field of characteristic not 2 or has degree greater than 26, the
Monte Carlo algorithm of LieType is used. If G has degree 26 and is over a field of
characteristic 2, then a fast Las Vegas algorithm is used.

Ch. 65 ALMOST SIMPLE GROUPS 1919

65.4 Properties of Finite Groups Of Lie Type

65.4.1 Maximal Subgroups of the Classical Groups
The ClassicalMaximals function, written by Derek Holt and Colva Roney-Dougal, re-
turns a list of the maximal subgroups of the classical quasisimple groups in their natural
representations, as returned by the Magma functions SL, Sp, SU, Omega, OmegaPlus,
OmegaMinus. The list should be complete for dimensions up to 12 apart from a few omis-
sions in Ω+(8, q) which will be rectified in the near future.

There are also options to return the normalisers of these subgroups in various groups,
such as GL(n, q), GU(n, q), that lie between the quasisimple group and its normaliser in the
general linear group. These should be sufficient to enable the skilled user to determine the
maximal subgroups of any group lying between the quasisimple groups and its normaliser.

According to the theorem of Aschbacher [Asc84] discussed earlier in this chapter, the
maximal subgroups of a quasisimple classical group over a finite field lie in (at least) one
of nine categories, which were listed in the Aschbacher Reduction section.

The subgroups in the first eight of these categories are said to be of geometric type and
can be described in a uniform fashion. This description is the topic of the book [KL90].
They are returned in all dimensions by ClassicalMaximals. There is no such uniform
description of the subgroups in the ninth class, which have to be classified separately
in each dimension. The lists in the papers [HM01], [HM02] and [L0̈1] contain sufficient
information in theory to compute these subgroups up to dimension 250, but currently this
has been carried out only up to dimension 12.

ClassicalMaximals(type, d, q : parameters)

classes SetEnum Default : {1 . . . 9}
all BoolElt Default : true

special BoolElt Default : true

general BoolElt Default : true

normaliser BoolElt Default : true

novelties BoolElt Default : false

Return a list of representatives of the conjugacy classes of maximal subgroups of
the quasisimple group of the specified type in dimension d over the field of order q.
The string type must be one of L, S, U, O, O+, O-.

If the optional parameter classes is set to a proper subset of {1 . . . 9}, then only
the subgroups lying in the corresponding Aschbacher categories will be returned.

If the option all is set false, then representatives of the conjugacy classes
under the action of the full automorphism group of the simple classical group will
be returned: so this option will usually result in fewer subgroups in the returned
list!

The option special only has effect for types O, O+, O-. When this is set to
true, the normalisers of the subgroups in the appropriate group SO(d, q), SO+(d, q)
or SO−(d, q) will be returned.

1920 FINITE GROUPS Part X

If the option general is set to true, then the normalisers of the subgroups in
the appropriate group GL(d, q), GU(d, q), GO(d, q), GO+(d, q) or GO−(d, q) will be
returned. (This option has not effect for type S.)

If the option normaliser is set to true, then the normalisers of the subgroups
in the full normaliser of the quasisimple group in the general linear group (i.e. the
group preserving the relevant form modulo scalars) will be returned. (For type L
this has the same effect as setting general to true.)

If the option novelties is set true, then the intersections with the quasisimple
group of any novelty maximal subgroups of any groups lying between the simple
group and its full automorphism group will be returned. Use this option with
caution, because the results are not guaranteed to be reliable!

65.4.2 Maximal Subgroups of the Exceptional Groups

Here follows some intrinsics for creating and conjugating maximal subgroups of Suzuki
and Ree groups. The flags SuzukiMaximals and ReeMaximals may be used to produce
verbose output.

SuzukiMaximalSubgroups(G)

If G has been constructively recognised as a Suzuki group, return a sequence of
representatives of the maximal subgroups of G. Also returns sequences of GrpSLPElt
of the generators of the subgroups, from the word group of G.

SuzukiMaximalSubgroupsConjugacy(G, R, S)

If G has been constructively recognised as a Suzuki group and if R and S are
conjugate maximal subgroups of G, then return an element g of G that conjugates
R to S. A GrpSLPElt from the word group of G, that evaluates to g, is also returned.

ReeMaximalSubgroups(G)

If G has been constructively recognised as a Ree group, return a sequence of
representatives of the maximal subgroups of G. Also returns sequences of GrpSLPElt
of the generators of the subgroups, from the word group of G.

ReeMaximalSubgroupsConjugacy(G, R, S)

If G has been constructively recognised as a Ree group and if R and S are
conjugate maximal subgroups of G, then return an element g of G that conjugates
R to S. A GrpSLPElt from the word group of G, that evaluates to g, is also returned.
This is not implemented if R,S are Frobenius groups.

Ch. 65 ALMOST SIMPLE GROUPS 1921

65.4.3 Sylow Subgroups of the Classical Groups
The Magma ClassicalSylow package written by Mark Stather provides functionality for
constructing and conjugating the Sylow p-subgroups of the classical groups over finite
fields in their natural representation, for any prime p. The classical groups may be cre-
ated in Magma using the GL, SL, Sp, GO, GOPlus, GOMinus, SO, SOPlus, SOMinus,
Omega, OmegaPlus, OmegaMinus, GU, SU intrinsics.

This package makes use of code to compute the classical form fixed by a group written
by Derek Holt, and code to conjugate classical forms written by Colva Roney-Dougal.

The algorithms in this package are described in [Sta], which in turn makes use of the
descriptions of the Sylow subgroups of the classical groups given in [Wei55], [CF64], [R.
R57] and [Car72]. The conjugation algorithms make use of only the Meataxe, Smash, basic
linear algebra and the solution of norm equations over finite fields.

ClassicalSylow(G,p)

The argument G must be a classical group in its natural representation, up to conju-
gation, with the exception of GO(2m+1, 2e). More precisely, it must be a conjugate
of a group returned by one of the intrinsics GL, SL, Sp, GO, GOPlus, GOMinus,
SO, SOPlus, SOMinus, Omega, OmegaPlus, OmegaMinus, GU, SU. p must be a
prime number. The intrinsic returns a Sylow p-subgroup of G as a matrix group.

ClassicalSylowConjugation(G,P,S)

The argument G must be a classical group in its natural representation, up to conju-
gation, with the exception of GO(2m+1, 2e). More precisely, it must be a conjugate
of a group returned by one of the intrinsics GL, SL, Sp, GO, GOPlus, GOMinus,
SO, SOPlus, SOMinus, Omega, OmegaPlus, OmegaMinus, GU, SU. The groups P
and S must be Sylow p-subgroups of G. The intrinsic returns an element g ∈ G
with P g = S.

ClassicalSylowNormaliser(G,P)

In this case G must the full classical group in its natural representation, up to
conjugation, with the exception of GO(2m + 1, 2e). More precisely, it must be
a conjugate of a group returned by one of the intrinsics GL, Sp, GO, GOPlus,
GOMinus, GU. The subgroup P must be a Sylow p-subgroup of G. The intrinsic
returns the normaliser of P in G.

ClassicalSylowToPC(G,P)

The argument G must be a classical group in its natural representation, up to conju-
gation, with the exception of GO(2m+1, 2e). More precisely, it must be a conjugate
of a group returned by one of the intrinsics GL, SL, Sp, GO, GOPlus, GOMinus,
SO, SOPlus, SOMinus, Omega, OmegaPlus, OmegaMinus, GU, SU. The group P
must be a Sylow p-subgroup of G. The intrinsic returns a PC group Q isomorphic
to P , and also an isomorphism from P to Q and an isomorphism from Q to P .

1922 FINITE GROUPS Part X

Example H65E18

We construct a Sylow 7-subgroup P of G = Sp(28, 172), take a random conjugate S of P and
then find a conjugating element g that takes P to S.

> SetSeed(1);

> G := Sp(28,17^2);

> time P := ClassicalSylow(G,7);

Time: 0.080

> S := P^Random(G);

> time g := ClassicalSylowConjugation(G,P,S);

Time: 0.400

We next compute the normaliser of P in G.

> time N := ClassicalSylowNormaliser(G,P);

Time: 0.310

> // and a PC presentation of P

> time Pc, PtoPc, PctoP := ClassicalSylowToPC(G,P);

Time: 0.200

> Pc;

GrpPC : Pc of order 2401 = 7^4

PC-Relations:

Pc.1^7 = Id(Pc),

Pc.2^7 = Id(Pc),

Pc.3^7 = Id(Pc),

Pc.4^7 = Id(Pc)

> // We get inverse isomorphisms PtoPc and PctoP

> g := Random(P);

> PctoP(PtoPc(g)) eq g;

true

> x := Random(Pc);

> PtoPc(PctoP(x)) eq x;

true

65.4.4 Sylow Subgroups of Exceptional Groups
The flags SuzukiSylow and ReeSylow may be used to produce verbose output.

SuzukiSylow(G, p)

If G has been constructively recognised as a Suzuki group, and if p is a prime
number, return a random Sylow p-subgroup S of G.

Also returns a list of GrpSLPElt from the word group of G, of the generators of
S. If p does not divide |G|, then the trivial subgroup is returned.

Ch. 65 ALMOST SIMPLE GROUPS 1923

SuzukiSylowConjugacy(G, R, S, p)

If G has been constructively recognised as a Suzuki group, if p is a prime number
and if R and S are Sylow p-subgroups of G, then return an element g of G that
conjugates R to S. A GrpSLPElt from the word group of G, that evaluates to g, is
also returned.

Example H65E19

We demonstrate finding a conjugating element for Sylow subgroup in an example over a large
field.

> q := 2^121;

> G := Sz(q);

> G ^:= Random(Generic(G));

> G := DerivedGroupMonteCarlo(G);

> NumberOfGenerators(G);

19

Non-constructive recognition is now a bit harder.

> time SuzukiRecognition(G);

true 2658455991569831745807614120560689152

Time: 0.190

> time flag, iso, inv, g2slp, slp2g := RecogniseSz(G);

Time: 22.810

However, after this, each call to constructive membership testing is then easy.

> R := RandomProcess(G);

> g := Random(R);

> time w := Function(g2slp)(g);

Time: 0.060

> // evaluating SLPs always takes some time

> time slp2g(w) eq g;

true

Time: 1.250

We now create some Sylow subgroups and find conjugating elements.

> p := Random([x[1] : x in Factorization(q - 1)]);

> time R := SuzukiSylow(G, p);

Time: 1.370

> time S := SuzukiSylow(G, p);

Time: 1.310

> // that was easy, as is conjugating them

> time g, slp := SuzukiSylowConjugacy(G, R, S, p);

Time: 1.340

> slp2g(slp) eq g;

true

> #R, NumberOfGenerators(R);

23 1

1924 FINITE GROUPS Part X

> time R := SuzukiSylow(G, 2);

Time: 164.020

> time S := SuzukiSylow(G, 2);

Time: 171.740

> NumberOfGenerators(R), #R;

121 7067388259113537318333190002971674063309935587502475832486424805170479104

> time g, slp := SuzukiSylowConjugacy(G, R, S, 2);

Time: 1.650

Creating the Sylow 2-subgroup is hard since they have so many generators. One the other hand,
finding a conjugating element is relatively easy.

ReeSylow(G, p)

If G has been constructively recognised as a Ree group, and if p is a prime number,
return a random Sylow p-subgroup S of G.

Also returns a list of GrpSLPElt from the word group of G, of the generators of
S. If p does not divide |G|, then the trivial subgroup is returned.

ReeSylowConjugacy(G, R, S, p)

If G has been constructively recognised as Ree(q), if p is a prime number and if R
and S are Sylow p-subgroups of G, then return an element g of G that conjugates
R to S, and a GrpSLPElt from the word group of G, that evaluates to g, is also
returned.

Currently, this is not implemented for odd p that divide q3 + 1.

LargeReeSylow(G, p)

If G has been constructively recognised as a Large Ree group, and if p is a prime
number, return a random Sylow p-subgroup S of G.

Also returns a list of GrpSLPElt from the word group of G, of the generators of
S. If p does not divide |G|, then the trivial subgroup is returned.

Currently, this is not implemented for p that divide q + 1.

Example H65E20

Starting with the Ree group over the field F331, we construct Sylow p-subgroups for different
primes p.

> m := 7;

> F := GF(3, 2 * m + 1);

> q := #F;

> q;

14348907

> G := ReeGroup(F);

> G ^:= Random(Generic(G));

> G := DerivedGroupMonteCarlo(G);

> NumberOfGenerators(G);

Ch. 65 ALMOST SIMPLE GROUPS 1925

19

> ReeRecognition(G);

true 14348907

> flag, iso, inv, g2slp, slp2g := RecogniseRee(G);

> R := RandomProcess(G);

> g := Random(R);

> w := Function(g2slp)(g);

> slp2g(w) eq g;

true

We first create two Sylow p-subgroups of prime order and find a conjugating element. Note that
4561 divides the order of G exactly once and also divides q − 1.

> p := 4561;

> R := ReeSylow(G, p);

> S := ReeSylow(G, p);

> g, slp := ReeSylowConjugacy(G, R, S, p);

Thus Rg = S. In this case we also automatically get an SLP for the conjugating element.

> slp2g(slp) eq g;

true

> #R, NumberOfGenerators(R);

4561 1

Sylow 3-subgroups are harder: they have order 345 and hence a considerable number of generators.

> time R := ReeSylow(G, 3);

Time: 3.730

> S := ReeSylow(G, 3);

> NumberOfGenerators(R), #R;

15 2954312706550833698643

> time g, slp := ReeSylowConjugacy(G, R, S, 3);

Time: 0.300

65.4.5 Conjugacy of Subgroups of the Classical Groups

IsGLConjugate(H, K)

Given H and K, both subgroups of the same general linear group G = GL(n, q),
return the value true if H and K are conjugate in G. The function returns a second
value in the event that the subgroups are conjugate: an element z which conjugates
H into K. The algorithm is described in Roney-Dougal [RD04].

1926 FINITE GROUPS Part X

65.4.6 Conjugacy of Elements of the Exceptional Groups
The flags SuzukiElements and ReeElements may be used to produce verbose output.

SzConjugacyClasses(G)

If G has been constructively recognised as a Suzuki group, return a list of con-
jugacy classes, using the same format as the ConjugacyClasses intrinsic.

SzClassRepresentative(G, g)

If G has been constructively recognised as a Suzuki group, and g is an element
of G, return the conjugacy class representative h of g, such that h is in the list
returned by SzConjugacyClasses. Also returns c in G such that gc = h.

SzIsConjugate(G, g, h)

If G has been constructively recognised as a Suzuki group, and g and h are
elements of G, determine if g is conjugate to h. If so, return true and an element c
such that gc = h, otherwise return false.

SzClassMap(G)

If G has been constructively recognised as a Suzuki group, return its class map,
as in the ClassMap intrinsic.

ReeConjugacyClasses(G)

If G has been constructively recognised as a Ree group, return a list of conjugacy
classes, using the same format as the ConjugacyClasses intrinsic.

65.4.7 Irreducible Subgroups of the General Linear Group

IrreducibleSubgroups(n, q)

Return the list of conjugacy classes of irreducible subgroups of GL(n, q) where q is
a prime power. At present, the dimension n is restricted to 2. The list is complete
for characteristic at least 5. The algorithm is based on the classification of Flannery
and O’Brien [FO05].

IrreducibleSolubleSubgroups(n, q)

Return the list of conjugacy classes of soluble irreducible subgroups of GL(n, q)
where q is a prime power. At present, the dimension n is restricted to 2 or 3.
The list is complete for characteristic at least 5. The algorithm is based on the
classification of Flannery and O’Brien [FO05].

Example H65E21

> L := IrreducibleSubgroups(2, 19^5);

> #[x : x in L | IsAbelian (x)];

552

Ch. 65 ALMOST SIMPLE GROUPS 1927

> L := IrreducibleSolubleSubgroups(2, 97^2);

> #L;

10617

> L[7];

MatrixGroup(3, GF(97^2))

Generators:

[$.1^8775 $.1^2037 $.1^6016]

[$.1^6017 $.1^6705 $.1^7812]

[$.1^7813 $.1^2817 $.1^33]

65.5 Atlas Data for the Sporadic Groups

Most of the functions described here use data derived from the Web Atlas. The data
has been prepared for inclusion in Magma by Michael Downward and Eamonn O’Brien.
It maintains Atlas names, conventions and orderings.

All of these functions, except GoodBasePoints, accept as input matrix or permutation
groups. The algorithm underpinning GoodBasePoints due to O’Brien & Wilson [OW05].

StandardGenerators(G, str : parameters)

Projective BoolElt Default : false

AutomorphismGroup BoolElt Default : false

Construct standard generators for small quasisimple or sporadic group G having
name str; words in SLP group defined on the defining generators of G are also
obtained for the standard generators.

If G is sporadic and AutomorphismGroup is true, assume G is automorphism
group of group having name str.

If standard generators found, return true and sequences of generators and cor-
responding words, else false.

Note: A return value of false only means that the algorithm’s random search
for standard generators did not succeed within the number of tries allowed. If the
user is sure the group G matches the name str, then they should try the function
again.

If G is absolutely irreducible matrix group and Projective is true, then con-
struct standard generators possibly modulo centre of G.

This function currently works for all sporadic simple groups and all quasisimple
groups for which the simple quotient has order at most 2× 108. If you call it with
an invalid value of str, then it will print out a list of all valid values.

1928 FINITE GROUPS Part X

IsomorphismToStandardCopy(G, str : parameters)

Projective BoolElt Default : false

AutomorphismGroup BoolElt Default : false

Use the StandardGenerators function to construct a (possibly projective) isomor-
phism from G to a standard copy of G. Options as for StandardGenerators. The
first returned value indicates whether the call of StandardGenerators was successful.

StandardPresentation(G, str : parameters)

Projective BoolElt Default : false

Generators SeqEnum Default : []
AutomorphismGroup BoolElt Default : false

Return true if standard presentation is satisfied by generators of sporadic group G
having name str, else false.

If AutomorphismGroup is true, assume G is automorphism group of sporadic
group having name str.

Standard generators may be supplied as Generators, otherwise defining gener-
ators are assumed to be standard.

If G is absolutely irreducible matrix group and Projective is true, then verify
presentation modulo centre of G.

MaximalSubgroups(G, str : parameters)

Projective BoolElt Default : false

Generators SeqEnum Default : []
AutomorphismGroup BoolElt Default : false

Construct some maximal subgroups for sporadic group G having name str. If
AutomorphismGroup is true, assume G is automorphism group of sporadic group
having name str and construct some of its maximal subgroups.

If standard generators supplied as Generators or found for G then return true
and list of subgroups, else return false.

If G is absolutely irreducible matrix group and Projective is true, then con-
struct standard generators and so subgroups possibly modulo centre of G.

Subgroups(G, str : parameters)

Projective BoolElt Default : false

Generators SeqEnum Default : []
Construct certain subgroups for sporadic group G having name str. If standard
generators supplied as Generators or found for G then return true and list of
subgroups, else return false.

If G is absolutely irreducible matrix group and Projective is true, then con-
struct standard generators possibly modulo centre of G.

Ch. 65 ALMOST SIMPLE GROUPS 1929

GoodBasePoints(G, str : parameters)

Projective BoolElt Default : false

Generators SeqEnum Default : []
If standard generators supplied as Generators or found for sporadic group G having
name str, then return true and list of base points for G, else return false.

If G is absolutely irreducible and Projective is true, then standard generators
are possibly modulo centre of G, and base points are correspondingly adjusted.

SubgroupsData(str)

Display stored subgroup data for sporadic group having name str.

MaximalSubgroupsData (str : parameters)

AutomorphismGroup BoolElt Default : false

Display stored data for some maximal subgroups of sporadic group having name
str. If AutomorphismGroup is true, then display stored data for some maximal
subgroups of automorphism group of sporadic group.

Example H65E22

The machinery is illustrated in the case of the sporadic Janko group J1.

> G :=

> MatrixGroup<7, GF(11) |

> [9, 1, 1, 3, 1, 3, 3, 1, 1, 3, 1, 3, 3, 9, 1, 3, 1, 3, 3, 9, 1, 3, 1, 3,

> 3, 9, 1, 1, 1, 3, 3, 9, 1, 1, 3, 3, 3, 9, 1, 1, 3, 1, 3, 9, 1, 1, 3, 1, 3],

> [0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0,

> 0, 1, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 10, 10, 0, 0, 0, 0, 0,0] >;

> flag, S := StandardGenerators (G, "J1");

> flag;

true

> StandardPresentation (G, "J1": Generators := S);

true

> flag, M:= MaximalSubgroups (G, "J1": Generators := S);

> #M;

7

> M[4];

rec<recformat<name: MonStgElt, parent: MonStgElt, generators: SeqEnum,

group: Grp, order: RngIntElt, index: RngIntElt> |

name := 19:6,

parent := J1,

group := MatrixGroup(7, GF(11))

Generators:

[0 1 4 3 3 4 7]

[1 2 8 3 6 2 9]

[4 8 10 1 6 0 9]

[3 3 1 8 9 1 10]

1930 FINITE GROUPS Part X

[3 6 6 9 1 3 7]

[4 2 0 1 3 0 9]

[7 9 9 10 7 9 0]

[4 6 2 3 8 1 6]

[8 1 3 10 2 7 4]

[3 6 1 0 6 9 6]

[2 3 6 9 0 3 7]

[7 8 5 2 4 6 4]

[10 4 5 2 8 6 8]

[10 9 0 1 9 8 9],

order := 114,

index := 1540

>

65.6 Bibliography

[Asc84] M. Aschbacher. On the maximal subgroups of the finite classical groups.
Invent. Math, 76:469–514, 1984.

[Bää05] H. Bäärnhielm. Tensor decomposition of the Suzuki groups. submitted,
2005.

[Bää06a] H. Bäärnhielm. Recognising the Suzuki groups in their natural representa-
tions. J. Algebra, 300(1):171–198, 2006.

[Bää06b] Henrik Bäärnhielm. Constructive recognition of the Ree groups. preprint,
2006.

[BKPS02] L. Babai, W. M. Kantor, P. P. Pálfy, and Á. Seress. Black-box recognition
of finite simple groups of Lie type by statistics of element orders. J. Group Theory,
5:383–401, 2002.

[BLGN+03] R. Beals, C. R. Leedham-Green, A. C. Niemeyer, C. E. Praeger, and A.
Seress. A black-box algorithm for recognising finite symmetric and alternating groups,
I. Trans. Amer. Math. Soc., 2003. To appear.

[BP00] Sergey Bratus and Igor Pak. Fast constructive recognition of a black box
group isomorphic to Sn or An using Goldbach’s conjecture. J. Symbolic Comp., 29:33–
57, 2000.

[Car72] R. Carter. Simple Groups of Lie Type. John Wiley & Sons, London, New
York, Sydney, Toronto, 1972.

[CF64] R. Carter and P. Fong. The Sylow 2-subgroups of the finite classical groups.
Journal of Algebra, 1:139–151, 1964.

[CLG97a] Frank Celler and Charles R. Leedham-Green. Calculating the Order of an
Invertible Matrix. In Larry Finkelstein and William M. Kantor, editors, Groups and
Computation II, volume 28 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, pages 55–60. AMS, 1997.

Ch. 65 ALMOST SIMPLE GROUPS 1931

[CLG97b] Frank Celler and C.R. Leedham-Green. A non-constructive recognition
algorithm for the special linear and other classical groups. In Groups and computation
II (New Brunswick, NJ, 1995), volume 28 of DIMACS Ser. Discrete Math. Theoret.
Comput. Sci., pages 61–67. Amer. Math. Soc., 1997.

[CLGM+95] Frank Celler, Charles R. Leedham-Green, Scott H. Murray, Alice C.
Niemeyer, and E. A. O’Brien. Generating random elements of a finite group. Comm.
Algebra, 23(13):4931–4948, 1995.

[CLGO06] M.D.E. Conder, C.R. Leedham-Green, and E.A. O’Brien. Constructive
recognition for PSL(2, q). Trans. Amer. Math. Soc., 358:1203–1221, 2006.

[FO05] D.L. Flannery and E.A. O’Brien. Linear groups of small degree over finite
fields. Internat. J. Algebra and Comput., 15:467–502, 2005.

[HM01] G. Hiß and G. Malle. Low-dimensional representations of quasi-simple
groups. LMS J. Comput. Math., 4:22–63, 2001.

[HM02] G. Hiß and G. Malle. Corrigenda: Low-dimensional representations of
quasi-simple groups. LMS J. Comput. Math., 5:95–126, 2002.

[KL90] Peter Kleidman and Martin Liebeck. The Subgroup Structure of the Finite
Classical Groups, volume 129 of London Math. Soc. Lecture Note Ser. CUP, Cambridge,
1990.

[L0̈1] F. Lübeck. Small degree representations of finite Chevalley groups in
defining ch aracteristic. LMS J. Comput. Math., 4:135–169, 2001.

[LMO07] F Lübeck, K Magaard, and E.A. O’Brien. Constructive recognition of
SL3(q). J. Algebra, 2007:617–633, 2007.

[LO07] Martin Liebeck and E.A. O’Brien. Finding the characteristic of a group of
Lie type. J. London Math. Soc., 2007.

[MOAS08] Kay Magaard, E. A. O’Brien, and Ákos Seress. Recognition of small
dimensional representations of general linear groups. J. Austral. Math. Soc., 85:
229–250, 2008.

[NP92] Peter M. Neumann and Cheryl E. Praeger. A Recognition Algorithm for
Classical Groups. Proc. London Math. Soc., 65(3):555–603, 1992.

[NP97] Alice C. Niemeyer and Cheryl E. Praeger. Implementing a Recognition
Algorithm for Classical Groups. In Groups and computation II (New Brunswick, NJ,
1995), volume 28 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages
273–296. Amer. Math. Soc., 1997.

[NP98] Alice C. Niemeyer and Cheryl E. Praeger. A Recognition Algorithm for
Classical Groups over Finite Fields. Proc. London Math. Soc., 77(3):117–169, 1998.

[NP99] Alice C. Niemeyer and Cheryl E. Praeger. A Recognition Algorithm for
Non-Generic Classical Groups over Finite Fields. J. Austral. Math. Soc. Ser. A,
67:223–253, 1999.

[OW05] E.A. O’Brien and R.A. Wilson. Subgroup chains in matrix groups. preprint,
2005.

1932 FINITE GROUPS Part X

[Pra99] Cheryl E. Praeger. Primitive prime divisor elements in finite classical
groups. In Proc. of Groups St. Andrews 1997 in Bath II, number 261 in London Math.
Soc. Lecture Notes Series, pages 605–623. Cambridge Univ. Press, 1999.

[RD04] Colva M. Roney-Dougal. Conjugacy of subgroups of the general linear
group. Experiment. Math., 13:151–163, 2004.

[R.R57] R.Ree. On some simple groups defined by Chevalley. Trans. Am. Math.
Soc., 84:392–400, 1957.

[RT98] L.J. Rylands and D.E. Taylor. Matrix generators for the orthogonal groups.
J. Symbolic Comp., 25:351–360, 1998.

[Sta] M. Stather. Constructive Sylow Theorems for the Classical Groups. to
appear in Journal of Algebra.

[Tay87] Don Taylor. Pairs of Generators for Matrix Groups. I. Cayley Bulletin 3,
1987.

[Wei55] A. Weir. Sylow p-subgroups of the classical groups over finite fields with
characteristic prime to p. Proc. Am. Math. Soc, 6:529–533, 1955.

66 DATABASES OF GROUPS
66.1 Introduction 1937

66.2 Database of Small Groups . . 1938

66.2.1 Basic Small Group Functions . . . 1939

SmallGroupDatabase() 1939
OpenSmallGroupDatabase() 1939
delete 1939
SmallGroupDatabaseLimit() 1939
SmallGroupDatabaseLimit(D) 1939
IsInSmallGroupDatabase(o) 1939
IsInSmallGroupDatabase(D, o) 1939
NumberOfSmallGroups(o) 1939
NumberOfSmallGroups(D, o) 1939
SmallGroup(o, n) 1940
SmallGroup(D, o, n) 1940
Group(D, o, n) 1940
SmallGroup(o: -) 1940
SmallGroup(D, o: -) 1940
SmallGroup(o, f: -) 1940
SmallGroup(D, o, f: -) 1940
IsSoluble(D, o, n) 1940
IsSolvable(D, o, n) 1940
SmallGroupIsSoluble(o, n) 1940
SmallGroupIsSoluble(D, o, n) 1940
SmallGroupIsSolvable(o, n) 1940
SmallGroupIsSolvable(D, o, n) 1940
SmallGroupIsInsoluble(o, n) 1941
SmallGroupIsInsoluble(D, o, n) 1941
SmallGroupIsInsolvable(o, n) 1941
SmallGroupIsInsolvable(D, o, n) 1941
SmallGroup(o, f: -) 1941
SmallGroup(S, f: -) 1941
SmallGroup(D, o, f: -) 1941
SmallGroup(D, S, f: -) 1941
SmallGroups(o: -) 1941
SmallGroups(D, o: -) 1941
SmallGroups(S: -) 1941
SmallGroups(D, S: -) 1941
SmallGroups(o, f: -) 1942
SmallGroups(D, o, f: -) 1942
SmallGroups(S, f: -) 1942
SmallGroups(D, S, f: -) 1942

66.2.2 Processes 1943

SmallGroupProcess(o: -) 1944
SmallGroupProcess(S: -) 1944
SmallGroupProcess(o, f: -) 1944
SmallGroupProcess(S, f: -) 1944
IsEmpty(p) 1944
Current(p) 1944
CurrentLabel(p) 1944
Advance(∼p) 1944

66.2.3 Small Group Identification 1945

IdentifyGroup(G) 1945

CanIdentifyGroup(o) 1945

66.2.4 Accessing Internal Data 1946

Data(D, o, n) 1946
SmallGroupEncoding(G) 1946
SmallGroupDecoding(c, o) 1946

66.3 The p-groups of Order Dividing
p7 1948

SearchPGroups(p, n: -) 1948
CountPGroups(p, n: -) 1948

66.4 Metacyclic p-groups 1949

MetacyclicPGroups(p, n: -) 1949
IsMetacyclicPGroup (P) 1950
InvariantsMetacyclicPGroup (P) 1950
StandardMetacyclicPGroup (P) 1950
NumberOfMetacyclicPGroups (p, n) 1950
HasAllPQuotientsMetacyclic (G) 1950
HasAllPQuotientsMetacyclic (G, p) 1950

66.5 Database of Perfect Groups . . 1951

66.5.1 Specifying an Entry of the Database 1952

66.5.2 Creating the Database 1952

PerfectGroupDatabase() 1952

66.5.3 Accessing the Database 1952

Group(D, i) 1953
Group(D, o, i) 1953
Group(D, Q) 1953
Group(D, Q, p, r, n: -) 1953
IdentificationNumber(D, i) 1953
IdentificationNumber(D, o, i) 1953
IdentificationNumber(D, Q) 1953
IdentificationNumber(D, Q, p, r,

n: -) 1953
NumberOfRepresentations(D, i) 1953
NumberOfRepresentations(D, o, i) 1953
NumberOfRepresentations(D, Q) 1953
NumberOfRepresentations(D, Q, p,

r, n: -) 1953
PermutationRepresentation(D, i: -) 1953
PermutationRepresentation(D, o,

i: -) 1953
PermutationRepresentation(D, Q: -) 1953
PermutationRepresentation(D, Q,

p, r, n: -) 1953
PermutationGroup(D, i: -) 1954
PermutationGroup(D, o, i: -) 1954
PermutationGroup(D, Q: -) 1954
PermutationGroup(D, Q, p, r, n: -) 1954

66.5.4 Finding Legal Keys 1954

1954
NumberOfGroups(D) 1954

1934 FINITE GROUPS Part X

NumberOfGroups(D, o) 1954
TopQuotients(D) 1954
ExtensionPrimes(D, Q) 1954
ExtensionExponents(D, Q, p) 1954
ExtensionNumbers(D, Q, p, r) 1954
ExtensionClasses(D, Q) 1955

66.6 Database of Almost-Simple
Groups 1956

66.6.1 The Record Fields 1956

66.6.2 Creating the Database 1957

AlmostSimpleGroupDatabase() 1957

66.6.3 Accessing the Database 1958

1958
GroupData(D, i) 1958
GroupData(D, o1, o2, k) 1958
ExistsGroupData(D, o1, o2) 1958
ExistsGroupData(D, o1, o2, i) 1958
NumberOfGroups(D, o1, o2) 1958
IdentifyAlmostSimpleGroup(G) 1958
IdentifyAlmostSimpleGroup(G) 1958

66.7 Database of Transitive Groups 1960

66.7.1 Accessing the Databases 1960

TransitiveGroupDatabaseLimit() 1960
NumberOfTransitiveGroups(d) 1960
TransitiveGroup(d, n) 1960
TransitiveGroupDescription(d, n) 1960
TransitiveGroupDescription(G) 1960
TransitiveGroup(d) 1961
TransitiveGroup(d, f) 1961
TransitiveGroup(S, f) 1961
TransitiveGroups(d: -) 1961
TransitiveGroups(S: -) 1961
TransitiveGroups(d, f) 1961
TransitiveGroups(S, f) 1961

66.7.2 Processes 1963

TransitiveGroupProcess(d) 1963
TransitiveGroupProcess(S) 1963
TransitiveGroupProcess(d, f) 1963
TransitiveGroupProcess(S, f) 1963
IsEmpty(p) 1963
Current(p) 1963
CurrentLabel(p) 1963
Advance(∼p) 1963

66.7.3 Transitive Group Identification . . 1964

TransitiveGroupIdentification(G) 1964

66.8 Database of Primitive Groups . 1965

66.8.1 Accessing the Databases 1965

PrimitiveGroupDatabaseLimit() 1965
NumberOfPrimitiveGroups(d) 1965
NumberOfPrimitiveSolubleGroups(d) 1965
NumberOfPrimitiveAffineGroups(d) 1965
NumberOfPrimitiveDiagonalGroups(d) 1965

NumberOfPrimitiveProductGroups(d) 1965
NumberOfPrimitiveAlmost

SimpleGroups(d) 1965
PrimitiveGroup(d, n) 1965
PrimitiveGroupDescription(d, n) 1965
PrimitiveGroup(d) 1966
PrimitiveGroup(d, f) 1966
PrimitiveGroup(S, f) 1966
PrimitiveGroups(d: -) 1966
PrimitiveGroups(S: -) 1966
PrimitiveGroups(: -) 1966
PrimitiveGroups(d, f: -) 1966
PrimitiveGroups(S, f) 1966
PrimitiveGroups(f) 1966

66.8.2 Processes 1967

PrimitiveGroupProcess(d: -) 1967
PrimitiveGroupProcess(S: -) 1967
PrimitiveGroupProcess(: -) 1967
PrimitiveGroupProcess(d, f: -) 1968
PrimitiveGroupProcess(S, f: -) 1968
PrimitiveGroupProcess(f: -) 1968
IsEmpty(p) 1968
Current(p) 1968
CurrentLabel(p) 1968
Advance(∼p) 1968

66.8.3 Primitive Group Identification . . 1969

PrimitiveGroupIdentification(G) 1969

66.9 Database of Rational Maximal
Finite Matrix Groups 1969

RationalMatrixGroupDatabase() 1969
LargestDimension(D) 1969
1970
NumberOfGroups(D) 1970
NumberOfLattices(D) 1970
NumberOfGroups(D, d) 1970
NumberOfLattices(D, d) 1970
Group(D, i) 1970
Lattice(D, i) 1970
Group(D, d, i) 1970
Lattice(D, d, i) 1970

66.10 Database of Integral Maximal
Finite Matrix Groups . . . 1971

IntegralMatrixGroupDatabase() 1971
LargestDimension(D) 1971
1971
NumberOfGroups(D) 1971
NumberOfLattices(D) 1971
NumberOfGroups(D, d) 1971
NumberOfLattices(D, d) 1971
Group(D, i) 1971
Lattice(D, i) 1971
Construction(D, i) 1972
Group(D, d, i) 1972
Lattice(D, d, i) 1972
Construction(D, d, i) 1972

Ch. 66 DATABASES OF GROUPS 1935

66.11 Database of Finite
Quaternionic Matrix Groups 1973

QuaternionicMatrixGroupDatabase() 1973
LargestDimension(D) 1973
1973
NumberOfGroups(D) 1973
NumberOfLattices(D) 1973
NumberOfGroups(D, d) 1973
NumberOfLattices(D, d) 1973
Group(D, i) 1973
Lattice(D, i) 1973
Construction(D, i) 1973
Group(D, d, i) 1973
Lattice(D, d, i) 1974
Construction(D, d, i) 1974

66.12 Database of Finite Symplectic
Matrix Groups 1974

SymplecticMatrixGroupDatabase() 1975
LargestDimension(D) 1975
1975
NumberOfGroups(D) 1975
NumberOfLattices(D) 1975
NumberOfGroups(D, d) 1975
NumberOfLattices(D, d) 1975
Group(D, i) 1975
Lattice(D, i) 1975
Construction(D, i) 1975
Group(D, d, i) 1975
Lattice(D, d, i) 1975
Construction(D, d, i) 1975

66.13 Database of Irreducible Matrix
Groups 1976

66.13.1 Accessing the Database 1976

NumberOfIrreducibleMatrixGroups(k, p) 1976
NumberOfSolubleIrreducibleMatrix

Groups(k, p) 1976
IrreducibleMatrixGroup(k, p, n) 1976

66.14 Database of Quasisimple Ma-
trix Groups 1977

QuasisimpleMatrixGroup(N, d, p : -) 1977
QuasisimpleMatrixGroups() 1978

66.15 Database of Soluble
Irreducible Groups 1978

66.15.1 Basic Functions 1978

IsolGroupDatabase() 1978
IsolGroup(n, p, i) 1978
Group(D, n, p, i) 1978
IsolNumberOfDegreeField(n, p) 1978
IsolInfo(n, p, i) 1979
IsolOrder(n, p, i) 1979
IsolMinBlockSize(n, p, i) 1979
IsolIsPrimitive(n, p, i) 1979

IsolGuardian(n, p, i) 1979

66.15.2 Searching with Predicates . . . 1980

IsolGroupSatisfying(f) 1980
IsolGroupOfDegreeSatisfying(d, f) 1980
IsolGroupOfDegreeField

Satisfying(d, p, f) 1980
IsolGroupsSatisfying(f) 1980
IsolGroupsOfDegreeSatisfying(d, f) 1980
IsolGroupsOfDegreeField

Satisfying(d, p, f) 1980

66.15.3 Associated Functions 1981

Getvecs(G) 1981
Semidir(G, Q) 1981

66.15.4 Processes 1981

IsolProcess() 1981
IsolProcessOfDegree(d) 1981
IsolProcessOfField(p) 1981
IsolProcessOfDegreeField(d, p) 1982
IsEmpty(p) 1982
Current(p) 1982
CurrentLabel(p) 1982
Advance(∼p) 1982

66.16 Database of ATLAS Groups 1983

66.16.1 Accessing the Database 1984

ATLASGroupNames() 1984
ATLASGroup(N) 1984

66.16.2 Accessing the ATLAS Groups . . 1984

Order(A) 1984
1984
Multiplier(A) 1984
MatRepKeys(A) 1984
MatRepDegrees(A) 1984
MatRepFieldSizes(A) 1984
MatRepCharacteristics(A) 1984
PermRepKeys(A) 1985
PermRepDegrees(A) 1985

66.16.3 Representations of the ATLAS
Groups 1985

MatrixGroup(K) 1985
MatRep(K) 1985
PermutationGroup(K) 1985
PermRep(K) 1985

66.17 Fundamental Groups of
3-Manifolds 1986

66.17.1 Basic Functions 1986

ManifoldDatabase() 1987
Manifold(D, i) 1987

66.17.2 Accessing the Data 1987

66.18 Bibliography 1988

Chapter 66

DATABASES OF GROUPS

66.1 Introduction

This chapter describes the use of the various databases of groups that form part of Magma.
The available databases are as follows:

Small Groups: This database is constructed by Hans Ulrich Besche, Bettina Eick and
Eamonn O’Brien [BE99a, BEO01, BE99b, O’B90, BE01, O’B91, MNVL04, OVL05, DE05],
contains the following groups:
- All groups of order up to 2000, excluding the groups of order 1024.
- The groups whose order is the product of at most 3 primes.
- The groups of order dividing p6 for p a prime.
- The groups of order qnp, where qn is a prime-power dividing 28, 36, 55 or 74 and p is

a prime different to q.
- The groups of square-free order. For a different mechanism for accessing the p-

groups in this collection, see Section 66.3, specifically the functions SearchPGroups
and CountPGroups. These functions also access groups of order p7.

p-groups: Magma contains the means to construct all p-groups of order pn where n ≤ 7.
The data used in the constructions was supplied by Hans Ulrich Besche, Bettina Eick, Ea-
monn O’Brien, Mike Newman and Michael Vaughan-Lee [BE99a, BEO01, BE99b, O’B90,
BE01, O’B91, MNVL04, OVL05].

Metacyclic p-groups: Magma is able to construct all metacyclic groups of order pn. This
machinery was developed by Mike Newman, Eamonn O’Brien, and Michael Vaughan-Lee.

Perfect Groups: This database contains all perfect groups up to order 50000, and many
classes of perfect groups up to order one million. Each group is defined by means of a
finite presentation. Further information is also provided which allows the construction of
permutation representations. This database was constructed by Derek Holt and Willem
Plesken [HP89].

Almost Simple Groups: This database contains information about every group G, where
S ≤ G ≤ Aut(S) and S is a simple group of order less than 16000000, or S is one of M24,
HS, J3, McL, Sz(32) or L6(2).

Transitive Permutation Groups: This database is a Magma version of the database of
transitive permutation groups constructed by Alexander Hulpke [Hul05] (for degree up to
30) and Cannon and Holt [CH08]. It contains all transitive permutation groups having
degree up to 32.

1938 FINITE GROUPS Part X

Primitive Permutation Groups: This is a database containing all primitive permutation
groups having degree less than 4095 as determined by Sims (for degree ≤ 50), Roney-
Dougal and Unger [RDU03] (for degree< 1000), Roney-Dougal [RD05] (for degree< 2500),
and Coutts, Quick and Roney-Dougal [CQRD11] (for degree < 4096).

Rational Maximal Matrix Groups: This contains the rational maximal finite matrix groups
and their invariant forms, for small dimensions (up to 31) as determined by Gabi Nebe
and Willem Plesken [NP95, Neb96]. Each entry can be accessed either as a matrix group
or as a lattice.

Quaternionic Matrix Groups: A database of the finite absolutely irreducible subgroups of
GLn(D) where D is a definite quaternion algebra whose centre has degree d over Q and
nd ≤ 10. Each entry can be accessed either as a matrix group or as a lattice. The database
was constructed by Gabi Nebe [Neb98].

Irreducible Matrix Groups: A database of the irreducible subgroups of GLn(p), p prime,
n ≥ 1 and pn < 2500. The groups were determined by Colva Roney-Dougal and William
Unger [RDU03] (for pn < 1000) and Roney-Dougal [RD05].

Soluble Irreducible Groups: This database contains one representative of each conjugacy
class of irreducible soluble subgroups of GL(n, p), p prime, for n > 1 and pn < 256. It was
constructed by Mark Short [Sho92].

ATLAS Groups: This database contains representations of nearly simple groups, as in the
Birmingham ATLAS of Finite Group Representations. The data was supplied by Rob
Wilson.

66.2 Database of Small Groups
Magma includes the Small Groups Library prepared by Besche, Eick and O’Brien. For a
description of the algorithms used to generate these groups, details on the data structures
used and applications we refer to [BE99a, BEO01, BE99b, O’B90, BE01, O’B91, MNVL04]
and the references therein.

The Small Groups Library contains the following groups.
- All groups of order up to 2000, excluding the groups of order 1024.
- The groups whose order is a product of at most 3 primes.
- The groups of order dividing p6 for p a prime.
- The groups of order qnp, where qn is a prime-power dividing 28, 36, 55 or 74 and p is

a prime different to q.
The descriptions of the groups of order p4, p5, p6 for p > 3 were contributed by Boris

Girnat, Robert McKibbin, M.F. Newman, E.A. O’Brien, and M.R. Vaughan-Lee.
The Magma version of this library uses the same internal data format as the imple-

mentation available in GAP. In particular, the numbering of the groups of a given order
in both packages is the same.

For a different mechanism for accessing the p-groups in this collection, see the 66.3
section, specifically the functions SearchPGroups and CountPGroups. These functions
also access the groups of order p7 (contributed by O’Brien and Vaughan-Lee).

Ch. 66 DATABASES OF GROUPS 1939

66.2.1 Basic Small Group Functions
Many of the functions in this section have an optional parameter Search. It can be used
to limit the small group search to soluble (Search := "Soluble") or insoluble (Search
:= "Insoluble") groups. The default is Search := "All", which allows all groups to be
considered.

When a group is extracted from the database, it is returned as a GrpPC if it is soluble,
or as a GrpPerm if it is insoluble.

When using the small groups database for an extended search, it is advisable to open the
database using the function SmallGroupDatabase, which opens the database and returns a
reference to it. This reference can then be passed as first argument to most of the functions
described below, and will save that function from opening and closing the database for
itself. Doing so will reduce the number of file operations when a lot of use is made of
the database. When the database is no longer needed, it can be closed using the delete
statement.

SmallGroupDatabase()

OpenSmallGroupDatabase()

Open the small groups database (for extended search) and return a reference to it.
This reference may be passed to other functions so that they do fewer file operations.

delete D

Close the small groups database D and free the resources associated with its use.

SmallGroupDatabaseLimit()

SmallGroupDatabaseLimit(D)

The limiting order up to which all groups (except those of order 1024) are stored in
the database of small groups, that is, currently 2000.

IsInSmallGroupDatabase(o)

IsInSmallGroupDatabase(D, o)

Return true if the groups of order o are contained in the database and false
otherwise. This function can be used to check whether o is a legitimate argument
for other functions described in this section, avoiding runtime errors in user written
loops or functions.

NumberOfSmallGroups(o)

NumberOfSmallGroups(D, o)

Given a positive integer o, return the number of groups of order o in the database. If
the groups of order o are not contained in the database, 0 is returned. This function
can be used to check whether a pair o, n defines a group contained in the small
groups database, that is, whether it is a legitimate argument for other functions
described in this section, avoiding runtime errors in user written loops or functions.

1940 FINITE GROUPS Part X

SmallGroup(o, n)

SmallGroup(D, o, n)

Group(D, o, n)

Given a positive integer o, such that the groups of order o are contained in the small
groups library, and a positive integer n, return the n-th group of order o in the
database. If the groups of order o are not contained in the database or if n exceeds
the number of groups of order o in the database, an error is reported. The function
NumberOfSmallGroups can be used to check whether the arguments are valid.

SmallGroup(o: parameters)

SmallGroup(D, o: parameters)

Search MonStgElt Default : “All”

Given a positive integer o, such that the groups of order o are contained in the small
groups library, return the first group of order o in the database meeting the search
criterion set by the parameter Search. If the groups of order o are not contained in
the database, an error is reported. The function IsInSmallGroupDatabase can be
used to check whether o is a valid argument for this function.

SmallGroup(o, f: parameters)

SmallGroup(D, o, f: parameters)

Search MonStgElt Default : “All”

Given a positive integer o such that the groups of order o are contained in the small
groups library and a predicate f (as a function or intrinsic), return the first group
of order o in the database meeting the search criterion set by the parameter Search,
which satisfies f .

IsSoluble(D, o, n)

IsSolvable(D, o, n)

SmallGroupIsSoluble(o, n)

SmallGroupIsSoluble(D, o, n)

SmallGroupIsSolvable(o, n)

SmallGroupIsSolvable(D, o, n)

Return true iff SmallGroup(o, n) is soluble. This function does not load the group.
If the group specified by the arguments does not exist in the database, an error is
reported. The function NumberOfSmallGroups can be used to check whether the
arguments are valid.

Ch. 66 DATABASES OF GROUPS 1941

SmallGroupIsInsoluble(o, n)

SmallGroupIsInsoluble(D, o, n)

SmallGroupIsInsolvable(o, n)

SmallGroupIsInsolvable(D, o, n)

Return true iff SmallGroup(o, n) is insoluble. This function does not load the
group. If the group specified by the arguments does not exist in the database, an
error is reported. The function NumberOfSmallGroups can be used to check whether
the arguments are valid.

SmallGroup(o, f: parameters)

SmallGroup(S, f: parameters)

SmallGroup(D, o, f: parameters)

SmallGroup(D, S, f: parameters)

Search MonStgElt Default : “All”

Given a sequence S of orders or a single order o contained in the database and
a predicate f (as a function or intrinsic), return the first group with order in S
or equal to o, respectively, which meets the search criterion set by the parameter
Search and satisfies f .

SmallGroups(o: parameters)

SmallGroups(D, o: parameters)

Search MonStgElt Default : “All”

Warning BoolElt Default : true

Given an order o contained in the database, return a list of all groups of order o,
meeting the search criterion set by the parameter Search. Some orders will produce
a very large sequence of groups – in such cases a warning will be printed unless the
user specifies Warning := false.

SmallGroups(S: parameters)

SmallGroups(D, S: parameters)

Search MonStgElt Default : “All”

Warning BoolElt Default : true

Given a sequence S of orders contained in the database, return a list of all groups
with order in S, meeting the search criterion set by the parameter Search. The
resulting sequence may be very long – in such cases a warning will be printed unless
the user specifies Warning := false.

1942 FINITE GROUPS Part X

SmallGroups(o, f: parameters)

SmallGroups(D, o, f: parameters)

Search MonStgElt Default : “All”

Given an order o contained in the database and a predicate (function or intrinsic)
f , return a list containing all groups G of order o, meeting the search criterion set
by the parameter Search and satisfying f(G) eq true.

SmallGroups(S, f: parameters)

SmallGroups(D, S, f: parameters)

Search MonStgElt Default : “All”

Given a sequence S of orders contained in the database and a predicate (function
or intrinsic) f , return a list containing all groups G with order in S, meeting the
search criterion set by the parameter Search and satisfying f(G) eq true.

Example H66E1

(1) We find the non-abelian groups of order 27.

> list := SmallGroups(27, func<x|not IsAbelian(x)>);

> list;

[*

GrpPC of order 27 = 3^3

PC-Relations:

$.2^$.1 = $.2 * $.3,

GrpPC of order 27 = 3^3

PC-Relations:

$.1^3 = $.3,

$.2^$.1 = $.2 * $.3

*]

(2) We get the first group in the database with derived length greater than 2.

> G := SmallGroup([1..100], func<x|DerivedLength(x) gt 2>);

> G;

GrpPC of order 24 = 2^3 * 3

PC-Relations:

G.1^3 = Id(G),

G.2^2 = G.4,

G.3^2 = G.4,

G.4^2 = Id(G),

G.2^G.1 = G.3,

G.3^G.1 = G.2 * G.3,

Ch. 66 DATABASES OF GROUPS 1943

G.3^G.2 = G.3 * G.4

(3) Now for a list of the insoluble groups of order 240. The insoluble groups in the database are
returned as permutation groups.

> list := SmallGroups(240:Search:="Insoluble");

> #list;

8

> list[7];

Permutation group acting on a set of cardinality 7

(1, 2, 3, 4)

(1, 5, 2, 4, 3)(6, 7)

(4) The groups of order 2432 = 27 · 19 should be contained in the small groups database. We
check this using the function IsInSmallGroupDatabase. . .

> IsInSmallGroupDatabase(2432);

true

. . . and determine the number of groups of order 2432.

> NumberOfSmallGroups(2432);

19324

(5) We find all groups of order 76 with cyclic centre of order 72.

> f := function (G)

> Z := Centre (G);

> return IsCyclic (Z) and #Z eq 7^2;

> end function;

> P := SmallGroups(7^6, f);

> #P;

30

> NumberOfSmallGroups(7^6);

860

66.2.2 Processes
A small group process enables iteration over all groups of specified orders satisfying a given
predicate, without having to create and store all such groups together.

A small group process is created via the function SmallGroupProcess (in various
forms). The standard process functions IsEmpty, Current, CurrentLabel and Advance
can then be applied to the process.

The functions used to create a small group process all have a parameter Search attached
to them. It can be used to limit the small group search to soluble (Search := "Soluble")
or insoluble (Search := "Insoluble") groups. The default is Search := "All", which
allows all groups to be considered.

The Process functions described below do not have a variant with the database as first
argument, as each process opens the database for an extended search automatically.

1944 FINITE GROUPS Part X

SmallGroupProcess(o: parameters)

Search MonStgElt Default : “All”

Given an order o contained in the small groups database, return a small group
process which will iterate though all groups of order o meeting the search criterion
set by the parameter Search.

SmallGroupProcess(S: parameters)

Search MonStgElt Default : “All”

Given a sequence S of orders contained in the small groups database, return a small
group process which will iterate though all groups with order in the sequence S
meeting the search criterion set by the parameter Search.

SmallGroupProcess(o, f: parameters)

Search MonStgElt Default : “All”

Given an order o contained in the small groups database and a predicate f (as
function or intrinsic), return a small group process which will iterate though all
groups of order o, which meet the search criterion set by the parameter Search and
satisfy the predicate f .

SmallGroupProcess(S, f: parameters)

Search MonStgElt Default : “All”

Given a sequence S of orders contained in the small groups database and a predicate
f (as function or intrinsic), return a small group process which will iterate though
all groups with order in the sequence S, which meet the search criterion set by the
parameter Search and satisfy the predicate f .

IsEmpty(p)

Returns true if the process p has passed its last group.

Current(p)

Return the current group of the process p.

CurrentLabel(p)

Return the label of the current group of the process p. That is, return o and n such
that the current group is SmallGroup(o, n).

Advance(∼p)
Move the process p to its next group.

Ch. 66 DATABASES OF GROUPS 1945

Example H66E2

We use a small group process to look at all the groups of order 128. We find the nilpotency class
of each of them.

> P := SmallGroupProcess(128);

> count := {* *};

> repeat

> G := Current(P);

> Include(~count, NilpotencyClass(G));

> Advance(~P);

> until IsEmpty(P);

> count;

{* 1^^15, 2^^947, 3^^1137, 4^^197, 5^^29, 6^^3 *}

66.2.3 Small Group Identification

The following functions perform the inverse operation to the small group functions de-
scribed earlier. Given a group G such that a group isomorphic to G is in the database and
identification of groups of order |G| is supported, the identification functions return a pair
〈o, n〉 so that SmallGroup(o, n) is isomorphic to G.

Note that identifying a finitely presented group involves the construction of a per-
mutation representation of this group, which may fail. We refer to the description of
IdentifyGroup in Chapter 70 for details.

IdentifyGroup(G)

Locate the pair of integers 〈o, n〉 so that SmallGroup(o, n) is isomorphic to G. If
there is no such group in the database or if identification of groups of order |G| is
not supported, then an error will result. The function CanIdentifyGroup can be
used to test whether groups of a certain order can be identified; this may be useful
for avoiding runtime errors in user written loops or functions.

CanIdentifyGroup(o)

Return true if identification of groups of order o in the database is supported. This
function can be used to check whether a group is a legitimate argument for the
functions IdentifyGroup described above, avoiding runtime errors in user written
loops or functions.

1946 FINITE GROUPS Part X

Example H66E3

We identify a permutation group in the small group database, and get an isomorphic group from
the database.

> G := DihedralGroup(10);

> G;

Permutation group G acting on a set of cardinality 10

Order = 20 = 2^2 * 5

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

(1, 10)(2, 9)(3, 8)(4, 7)(5, 6)

> IdentifyGroup(G);

<20, 4>

> H := SmallGroup(20, 4);

> H;

GrpPC : H of order 20 = 2^2 * 5

PC-Relations:

H.1^2 = Id(H),

H.2^2 = Id(H),

H.3^5 = Id(H),

H.3^H.1 = H.3^4

66.2.4 Accessing Internal Data
The following functions provide access to data used internally by the Small Groups Library
for representing groups. They are included just for completeness and are intended to
be used by experts only. In particular, we do not give a detailed explanation of the
(complicated) data format in this manual.

Data(D, o, n)

Returns the data from which the group number n of order o in D is constructed.
The format and the meaning of the items in the returned list depends on the group
indicated by the pair (o, n).

SmallGroupEncoding(G)

Given a finite solvable group G in the category GrpPC, return two integers c and o
encoding the power conjugate presentation of G.

The second return value is the order of G. The first return value is an integer
specifying the power conjugate relations in the presentation of G.

SmallGroupDecoding(c, o)

Given two integers c and o encoding a power conjugate presentation G, return G as
a group in the category GrpPC.

The second argument is the order of G. The first return value is an integer
specifying the power conjugate relations in the presentation G.

Ch. 66 DATABASES OF GROUPS 1947

Example H66E4

(1) We extract a power conjugate presentation from the database and compute its encoding.

> D := SmallGroupDatabase();

> G := SmallGroup(D,1053,51);

> Category(G);

GrpPC

> SmallGroupEncoding(G);

100286712487397165939678173 1053

(2) The second group of order 525 in the small groups database is stored as encoded power
conjugate presentation.

> Data(D,525,2);

[* code, 666501 *]

We can create the corresponding group by decoding this information.

> G := SmallGroupDecoding(666501, 525);

> G;

GrpPC : G of order 525 = 3 * 5^2 * 7

PC-Relations:

G.1^3 = Id(G),

G.2^5 = G.4,

G.3^7 = Id(G),

G.4^5 = Id(G)

This gives the same presentation as accessing the database in the ”usual” way.

> SmallGroup(D,525,2);

GrpPC of order 525 = 3 * 5^2 * 7

PC-Relations:

$.1^3 = Id($),

$.2^5 = $.4,

$.3^7 = Id($),

$.4^5 = Id($)

1948 FINITE GROUPS Part X

66.3 The p-groups of Order Dividing p7

Magma contains the means to construct all p-groups of order pn where n ≤ 7. This section
describes the functions for accessing these constructions. The data used in the construc-
tions was supplied by Hans Ulrich Besche, Bettina Eick, Eamonn O’Brien, Mike New-
man and Michael Vaughan-Lee [BE99a, BEO01, BE99b, O’B90, BE01, O’B91, MNVL04,
OVL05].

SearchPGroups(p, n: parameters)

Produce a sequence of groups of order pn satisfying the conditions specified by the
following parameters. The restrictions on the order are n ≤ 7 or p = 2 and n ≤ 9.

Rank SetEnum Default : {1, . . . n}
All groups returned will have Frattini quotient rank in Rank. This parameter may
also be set to a single integer.

Class SetEnum Default : {1, . . . n}
All groups returned will have p-class in Class. This parameter may also be set to
a single integer.

Select Program Default : true

The parameter must be set to a program returning either true or false when given
a p-group satisfying the above conditions. All groups G returned will then satisfy
Select(G) eq true.

Limit RngIntElt Default : 0
If Limit is set to a positive number n, then the program may end its search and
return when there are at least n groups found.

CountPGroups(p, n: parameters)

Count the number of groups of order pn satisfying the conditions specified by the
parameters. The parameters are the same as for SearchPGroups, except that the
Limit parameter is ignored.

Example H66E5

We search the groups of order 197 for specific examples. There are, in total, 9380741 groups with
this order. We start with a search for those of rank 5, class 3, and exponent 19. Since we do not
set the Limit parameter, we will get a sequence containing all the examples.

> time Q := SearchPGroups(19, 7:Rank := 5, Class := 3,

> Select := func<G|IsPrime(Exponent(G))>);

Time: 0.050

> #Q;

4

> Q[1];

GrpPC of order 893871739 = 19^7

PC-Relations:

$.2^$.1 = $.2 * $.6,

Ch. 66 DATABASES OF GROUPS 1949

$.6^$.1 = $.6 * $.7

This time we limit the number returned.

> time Q := SearchPGroups(19, 7:Rank := 4, Class := {3,4},

> Select := func<G|IsPrime(Exponent(G))>, Limit := 5);

Time: 13.090

> #Q;

5

> [pClass(G):G in Q];

[3, 3, 3, 3, 3]

> time Q4 := SearchPGroups(19, 7:Rank := 4, Class := 4,

> Select := func<G|IsPrime(Exponent(G))>, Limit := 5);

Time: 0.150

> #Q4;

6

Note that the limit is not always adhered to exactly. We can also count the number of groups
with our property.

> time CountPGroups(19, 7:Rank := 4, Class := {3,4},

> Select := func<G|IsPrime(Exponent(G))>);

Time: 334.720

43

> time CountPGroups(19, 7:Rank := 4, Class := 4,

> Select := func<G|IsPrime(Exponent(G))>);

10

Time: 0.310

66.4 Metacyclic p-groups

Magma contains functions for constructing all metacyclic groups of order pn. It can also
decide if a given p-group is metacyclic, construct invariants which distinguish this meta-
cyclic group from all others of this order, and construct a standard presentation for the
group.

This section describes the functions for accessing these algorithms. The functions were
developed by Mike Newman, Eamonn O’Brien, and Michael Vaughan-Lee.

MetacyclicPGroups(p, n: parameters)

Return a list of the metacyclic groups of order pm, where p is a prime and n is a
positive integer.

PCGroups BoolElt Default : true

If true, the groups returned are in category GrpPC, otherwise they are in category
GrpFP – this will be faster if the groups have large class.

1950 FINITE GROUPS Part X

IsMetacyclicPGroup (P)

P is a p-group, either pc- or matrix or permutation group; if P is metacyclic, then
return true, else false.

InvariantsMetacyclicPGroup (P)

P is a metacyclic p-group, either pc- or matrix or permutation group; return tuple of
invariants which uniquely identify metacyclic p-group P . This tuple which contains
at least four terms, 〈r, s, t, n〉 has the following meaning: P has order pn+s; its
derived quotient is Cpr × Cps ; its derived group is cyclic of order pn−r; it has
exponent pn+s−t.

If p = 2, then additional invariants are needed to distinguish among the groups.
We record the abelian invariants of the centre of P . If s = 1 and the centre of P
has order 2, then the 2-group is maximal class and we record whether it is dihedral,
quaternion or semidihedral. If s > 1 then the group has two cyclic central normal
subgroups of order 2s−1 whose central quotients are both semidihedral, or dihedral
and quaternion. The invariant tuple has length at most 6.

StandardMetacyclicPGroup (P)

P is a metacyclic p-group, either pc- or matrix or permutation group; return meta-
cyclic p-group having a canonical pc-presentation which is isomorphic to P . If two
metacyclic p-groups have the same canonical presentation, then they are isomorphic.

NumberOfMetacyclicPGroups (p, n)

Return number of metacyclic groups of order pn.

HasAllPQuotientsMetacyclic (G)

HasAllPQuotientsMetacyclic (G, p)

Return true if for all primes p all p-quotients of the finitely-presented group G are
metacyclic; otherwise return false and a description of the set of primes for which
G has non-metacyclic p-quotient.

If a prime p is supplied as a second argument, then the function returns true if
all p-quotients of G are metacyclic; otherwise it returns false.

Example H66E6

> X := MetacyclicPGroups (3, 6);

> #X;

11

> X[4];

GrpPC of order 729 = 3^6

PC-Relations:

$.1^3 = $.3,

$.2^3 = $.4,

$.3^3 = $.6,

Ch. 66 DATABASES OF GROUPS 1951

$.4^3 = $.5,

$.5^3 = $.6,

$.2^$.1 = $.2 * $.6^2

> H := SmallGroup (729, 59);

> IsMetacyclicPGroup (H);

true

> I := InvariantsMetacyclicPGroup(H);

> I;

<2, 2, 2, 4, [], , >

> S := StandardMetacyclicPGroup (H);

GrpPC : S of order 729 = 3^6

PC-Relations:

S.1^3 = S.3,

S.2^3 = S.4,

S.3^3 = S.6,

S.4^3 = S.5,

S.5^3 = S.6,

S.2^S.1 = S.2 * S.6^2

> /* find this group in list */

> [IsIdenticalPresentation (S, X[i]): i in [1..#X]];

[false, false, false, true, false, false, false, false, false, false, false]

> /* so this group is #4 in list */

> NumberOfMetacyclicPGroups (19, 7);

14

> Q := FreeGroup (4);

> G := quo < Q | Q.2^2, Q.4^3, Q.2 * Q.3 * Q.2 * Q.3^-1, Q.1^9>;

> /* are all p-quotients of G metacyclic? */

> HasAllPQuotientsMetacyclic (G);

false [3]

> /* the 3-quotient is not metacyclic */

66.5 Database of Perfect Groups

Magma includes a database of finite perfect groups. This database includes all perfect
groups up to order 50000, and many classes of perfect groups up to order one million. Each
group is defined by means of a finite presentation. Further information is also provided
which allows the construction of permutation representations.

1952 FINITE GROUPS Part X

66.5.1 Specifying an Entry of the Database
There are three ways to key a particular entry of the database. Firstly, a single integer
i simply denotes the i-th entry of the database. There is no particular ordering in the
correspondence.

Secondly, the database stores information to quickly locate perfect groups of a particular
order; thus the pair o, i represents the i-th entry of order o.

The third method corresponds to the notation used in Chapter 5.3 of [HP89]. In
this book, the expression Q#p denotes the class of groups that are isomorphic to perfect
extensions of p-groups by Q, where p is a prime and Q is a fixed finite perfect group in
which the largest normal p-subgroup is assumed to be trivial. Within a class Q#p, an
isomorphism type of groups is denoted by an ordered pair of integers 〈r, n〉, where r ≥ 0
and n ≥ 0.

To specify a particular group Q without extension, a (somewhat descriptive) string
is given. The set of possible values can be accessed using the function TopQuotients.
Among these strings, full or partial covering groups of G are named GCn where n is the
index of G in GCn. Also, there are five classes of 3-extensions of groups which are also
defined in the database. The names of these base groups are A5#2<r, n> where (r, n)
are (4, 2), (5, 5), (5, 6), (5, 7) or (6, 7). Furthermore, there are some extensions of direct
products: these have names of the form GxH. The remainder are names of simple groups.
The convention with these names is that if they are elements of a family of simple groups
with two parameters then the name will be fam(p1, p2), while one parameter families
will just be the concatenation of the family name and the parameter.

To illustrate the naming conventions, here are some examples: A5, A5C2, A5#2<5, 5>,
L(2, 59)C2, A5xL(2, 11). Notice that there is never a space before the C denoting a
covering group or on either side of the x denoting direct product. However, there is always
a space after a comma.

To specify a particular group Q#p〈r, n〉 the four values Q, p, r and n should be given.
However, it should be noted that in three cases (A5#2< 5, 1>, L(3, 2)#2<3, 1>, L(3,
2)#2<3, 2>), there are two versions of Q#p<r, n> stored in the database. Strictly speaking,
then, there is a fifth key value v required in this third method. However, it can be specified
by an optional parameter Variant := v (if necessary), and can normally be ignored. The
variant forms are isomorphic to the original forms, and are included for compatibility with
Holt & Plesken’s tables.

66.5.2 Creating the Database

PerfectGroupDatabase()

This function returns a database object which contains information about the
database. It is required as first argument to the other access functions.

66.5.3 Accessing the Database

Ch. 66 DATABASES OF GROUPS 1953

Group(D, i)

Group(D, o, i)

Group(D, Q)

Group(D, Q, p, r, n: parameters)

Variant RngIntElt Default : 1
Returns the specified entry from the database D as a finitely presented group. In
addition, it returns a sequence of pairs 〈[i1, . . . , in], [H1, . . . , Hn]〉, each of which
affords an isomorphism onto a permutation group of degree

∑n
j=1 ij . The subgroup

Hj has index ij in the defined group, and the sum of the permutation representations
of the group on the cosets of the Hj ’s is faithful. For the meanings of the arguments,
see Subsection 66.5.1 above.

IdentificationNumber(D, i)

IdentificationNumber(D, o, i)

IdentificationNumber(D, Q)

IdentificationNumber(D, Q, p, r, n: parameters)

Variant RngIntElt Default : 1
Returns a number which can be used to access the specified entry from the database
D using method one. (See Subsection 66.5.1 above).

NumberOfRepresentations(D, i)

NumberOfRepresentations(D, o, i)

NumberOfRepresentations(D, Q)

NumberOfRepresentations(D, Q, p, r, n: parameters)

Variant RngIntElt Default : 1
Returns the number of ways stored in the database for building a permutation group
representation of the specified entry. (See Subsection 66.5.1 above).

PermutationRepresentation(D, i: parameters)

PermutationRepresentation(D, o, i: parameters)

PermutationRepresentation(D, Q: parameters)

PermutationRepresentation(D, Q, p, r, n: parameters)

Variant RngIntElt Default : 1
Returns the isomorphism from the finitely presented group G specified to a permu-
tation group representation H as well as the groups G and H. (See Subsection 66.5.1
above).

Representation RngIntElt Default : 1

1954 FINITE GROUPS Part X

Selects which of the stored methods of constructing the permutation representation
should be used.

PermutationGroup(D, i: parameters)

PermutationGroup(D, o, i: parameters)

PermutationGroup(D, Q: parameters)

PermutationGroup(D, Q, p, r, n: parameters)

Variant RngIntElt Default : 1
Returns the specified entry from the database D as a permutation group. (See
Subsection 66.5.1 above).

Representation RngIntElt Default : 1
Selects which of the stored methods of constructing the permutation representation
should be used.

66.5.4 Finding Legal Keys

#D

NumberOfGroups(D)

Returns the number of entries stored in the database. (See Subsection 66.5.1,
method 1, above).

NumberOfGroups(D, o)

Returns the number of entries stored in the database of order o. (See Subsec-
tion 66.5.1, method 2, above).

TopQuotients(D)

Returns the set of strings denoting the fixed perfect groups Q. (See Subsec-
tion 66.5.1, method 3, above).

ExtensionPrimes(D, Q)

Returns the set of primes p for which a non-trivial p-extension of the group denoted
by Q lies in the database. (See Subsection 66.5.1, method 3, above).

ExtensionExponents(D, Q, p)

Returns the set of exponents r such that a non-trivial extension of the group denoted
by Q by pr lies in the database. (See Subsection 66.5.1, method 3, above).

ExtensionNumbers(D, Q, p, r)

Returns the set of numbers n such that there is a group Q#p〈r, n〉 in the database.
(See Subsection 66.5.1, method 3, above).

Ch. 66 DATABASES OF GROUPS 1955

ExtensionClasses(D, Q)

Returns the set of triples 〈p, r, n〉 such that there is a group Q#p〈r, n〉 in the
database. (See Subsection 66.5.1, method 3, above).

Example H66E7

We hunt through the various levels of key-finding functions available to find an extension of L(3,4)
in the database.

> DB := PerfectGroupDatabase();

> "L(3, 4)" in TopQuotients(DB);

true

> ExtensionPrimes(DB, "L(3, 4)");

{ 2 }

> ExtensionExponents(DB, "L(3, 4)", 2);

{ 1, 2, 3, 4 }

> ExtensionNumbers(DB, "L(3, 4)", 2, 2);

{ 1, 2, 3 }

The database contains extensions of L(3,4) by groups of order 21, 22, 23 and 24. We will look at
one of the 3 extensions by a group of order 4.

> G := Group(DB, "L(3, 4)", 2, 2, 3);

> G;

Finitely presented group G on 3 generators

Relations

a^2 = Id(G)

b^4 * e^-2 = Id(G)

a * b * a * b * a * b * a * b * a * b * a * b * a * b * e

= Id(G)

a * b^2 * a * b^2 * a * b^2 * a * b^2 * a * b^2 * e^-1 =

Id(G)

a^-1 * b^-1 * a * b * a^-1 * b^-1 * a * b * a^-1 * b^-1 *

a * b * a^-1 * b^-1 * a * b * a^-1 * b^-1 * a * b * e^-2 =

Id(G)

a * b * a * b * a * b^3 * a * b * a * b * a * b^3 * a * b

* a * b * a * b^3 * a * b * a * b * a * b^3 * a * b * a *

b * a * b^3 * e^-2 = Id(G)

(a * b * a * b * a * b^2 * a * b^-1)^5 = Id(G)

(a, e^-1) = Id(G)

(b, e^-1) = Id(G)

> P := PermutationGroup(DB, "L(3, 4)", 2, 2, 3);

> P;

Permutation group P acting on a set of cardinality 224

Order = 80640 = 2^8 * 3^2 * 5 * 7

> ChiefFactors(P);

G

| A(2, 4) = L(3, 4)

*

1956 FINITE GROUPS Part X

| Cyclic(2)

*

| Cyclic(2)

1

> #Radical(P);

4

> IsCyclic(Radical(P));

true

> IsCentral(P, Radical(P));

true

66.6 Database of Almost-Simple Groups

Magma includes a database containing information about almost simple groups G, where
S ≤ G ≤ Aut(S) and S is a simple group of small order. The G that are included in the
database are those associated with S such that |S| is less than 16000000, as well as M24,
HS, J3, McL, Sz(32) and L6(2).

The information stored here is primarily for use in computing maximal subgroups and
automorphism groups. The database was originally conceived by Derek Holt, with a major
extension by Volker Gebhardt and sporadic additions by Bill Unger. The implementation
is by Bruce Cox.

It is possible to request the i-th entry of the database. Alternatively, and more use-
fully, one can supply three integers: the order o1 of S, the order o2 of G and the sum k
of the orders of the class representatives of G. The last of these can be expensive to com-
pute; however, knowledge of the classes is helpful to benefit from the information stored
in the entry. Of course, if the entry is beyond the range of the database, then it is a
wasted computation—the intrinsics ExistsGroupData and NumberOfGroups are provided
to determine from the orders whether this is the case.

66.6.1 The Record Fields
The result returned by the GroupData function is a record with a number of fields contain-
ing information about the almost simple group and its socle. This information includes
information used to compute automorphisms and maximal subgroups of the almost simple
group by these Magma functions. The following describes these fields. The groups G and
S are as above the almost simple group G and its socle, the simple group S. Let A be the
full automorphism group of S, and let F 〈x, y〉 be a free group on two generators, called x
and y.

First comes information about S. Each S is two generated, by x and y as above, say.

Field resname: A string giving a name to the simple group S. (S is the soluble residual
of G).

Field resorder: The order of S as an integer.

Ch. 66 DATABASES OF GROUPS 1957

Field geninfo: Information on where to find x and y in S. This is a sequence of two
tuples, each with 3 entries. The first gives a generator order, the second the length of
its conjugacy class, and the third the probability of picking the right generator given the
previous information. The first tuple’s order/length information always uniquely defines
one conjugacy class of the group S and has probability 1, so x is easy to find.

Field rels: A sequence of words in F which, taken together with the generator orders
from geninfo, form a presentation for S on x and y.

Field permrep: A permutation representation of the full automorphism group of S. The
first two generators are x and y, followed by outer generators. In what follows the outer
generators are called t, u, v.

Field outimages A sequence of sequences of words in F . These give the images of x and
y under the generators of the outer automorphism group of S.

Field order: An integer, the order of G.

Field inv: The invariant used to separate non-isomorphic 〈|S|, |G|〉 possibilities. An inte-
ger, it is the sum over the classes of G of the order of the elements in each class.

Field name: A name for G as a string.

Field conjelts: If G is not normal in the automorphism group, these words are coset
representatives of the normaliser of G in A as words in t, u, v.

Field subgens: Words in t, u, v that, together with x and y, generate G.

Field subpres: A presentation of G/S on subgens. Note: If G = S then subgens will be
the empty sequence, but subpres will be the trivial FP-group with one generator.

Field normgens: Words in t, u, v that generate the outer automorphism group of G.

Field normpres: A presentation of the outer automorphism group of G on normgens.
Again, if A = G then normgens will be the empty sequence, but normpres will be the
trivial FP-group with one generator.

Field maxsubints: A sequence of records describing the intersections of the maximal sub-
groups of G that do not contain S with S. Each record gives the order of the intersection,
its class length in S, generators as words in x and y, and a presentation on these generators.

66.6.2 Creating the Database

AlmostSimpleGroupDatabase()

This function returns a database object which contains information about the
database.

1958 FINITE GROUPS Part X

66.6.3 Accessing the Database

#D

Returns the number of entries stored in the database.

GroupData(D, i)

GroupData(D, o1, o2, k)

Returns the specified entry from the database D as a record. The first form gives the
ith entry of the database. The second form gives information on an almost simple
group of order o2, with socle of order o1. The value of k should be as explained in
inv above.

ExistsGroupData(D, o1, o2)

ExistsGroupData(D, o1, o2, i)

Returns whether any record exists for a simple group of order o1 and a supergroup
G of order o2 lying within its automorphism group. In the second form an invariant,
i as described above, is also supplied, and the result is true if there is a record in the
database with the given orders and invariant, and false otherwise. When the result
is true, the corresponding record is also returned.

NumberOfGroups(D, o1, o2)

Returns the number of records in the database D corresponding to a simple group of
order o1 and a supergroup G of order o2 lying within its automorphism group. The
second return value gives the index of the first such record, if there is one. (This is
most useful when the first return value is 1.) If the return values are d and f , with
d > 0, then the corresponding database entries are numbered f, f +1, . . . , f + d− 1.

IdentifyAlmostSimpleGroup(G)

IdentifyAlmostSimpleGroup(G)

Use the information in the database to construct a monomorphism f from the almost
simple group G into A, the permutation representation of the full automorphism
group of its socle stored in the database. This function will also cope with groups
isomorphic to the alternating and symmetric groups of degree up to 50, which are
not actually in the database. Note that the conjugacy class of the image of f in A
determines G up to isomorphism. The algorithms used to deal with the alternating
and symmetric groups not in the database are by Derek Holt, starting from the
paper of Bratus & Pak [BP00].

Ch. 66 DATABASES OF GROUPS 1959

Example H66E8

We query the database on about an almost simple group of order 720.

> G := PermutationGroup<10 |

> [7, 9, 5, 2, 1, 8, 10, 4, 6, 3],

> [6, 3, 10, 7, 2, 4, 1, 8, 9, 5]>;

> #G;

720

> CompositionFactors(G);

G

| Cyclic(2)

*

| Alternating(6)

1

> #Radical(G);

1

There are 3 such groups, so we really do need k to tell them apart.

> S := SolubleResidual(G);

> k := &+[c[1]: c in Classes(G)];

> D := AlmostSimpleGroupDatabase();

> R := GroupData(D, #S, #G, k);

> R‘name;

M_10

The group is identified. Let’s see some of the other information in R.

> P := R‘permrep;

> P;

Permutation group P acting on a set of cardinality 10

(1, 6)(2, 9)(3, 10)(4, 8)

(1, 7, 9, 4)(2, 8, 5, 10)

(3, 5, 9, 6, 7, 4, 8, 10)

(3, 7)(4, 6)(5, 10)

> #P;

1440

> R‘subgens;

[t * u]

> SS := sub<P|P.1, P.2>;

> #SS;

360

> GG := sub<P|SS, P.3*P.4>;

> #GG;

720

>R‘normgens;

[t]

The full automorphism group of S has order 1440. The group P is a representation of this
automorphism group with first two generators generating a faithful image of S. The image of S,

1960 FINITE GROUPS Part X

together with the product of P.3 and P.4, generate a faithful image of G. The outer automorphism
group of G is generated by P.3 modulo GG. We can also get a constructive identification as follows.

> f, A := IdentifyAlmostSimpleGroup(G);

> f;

Homomorphism of GrpPerm: $, Degree 10, Order 2^4 * 3^2 * 5

into GrpPerm: A, Degree 10 induced by

(1, 10)(3, 8)(5, 9)(6, 7) |--> (1, 6)(2, 9)(3, 10)(4, 8)

(1, 7, 2, 8)(3, 10, 4, 5) |--> (1, 7, 9, 4)(2, 8, 5, 10)

(1, 10, 4, 8)(2, 6, 9, 5) |--> (3, 10, 7, 6)(4, 8, 5, 9)

> A;

Permutation group A acting on a set of cardinality 10

(1, 6)(2, 9)(3, 10)(4, 8)

(1, 7, 9, 4)(2, 8, 5, 10)

(3, 5, 9, 6, 7, 4, 8, 10)

(3, 7)(4, 6)(5, 10)

66.7 Database of Transitive Groups
Magma has a database containing all transitive permutation groups having degree up to
32, and one containing all primitive permutation groups with degree less than 4096.

The transitive groups up to degree 15 were determined by Greg Butler and John McKay,
the groups having degree in the range 16 to 30 were determined by Alexander Hulpke
[Hul05]. John Cannon and Derek Holt [CH08] have determined the transitive groups of
degree 32.

66.7.1 Accessing the Databases

TransitiveGroupDatabaseLimit()

The limiting degree of the database of transitive groups.

NumberOfTransitiveGroups(d)

Given a degree d in the required range, return the number of transitive groups of
degree d.

TransitiveGroup(d, n)

Given a degree d in the required range and a positive integer n, return the n-th
transitive group of degree d. Also returns a string giving a description of the group.

TransitiveGroupDescription(d, n)

A string giving a description of the n-th transitive group of degree d.

TransitiveGroupDescription(G)

A string giving a description of the transitive group G.

Ch. 66 DATABASES OF GROUPS 1961

TransitiveGroup(d)

Given a degree d in the required range, return the first transitive group of degree d.
Also returns a string giving a description of the group.

TransitiveGroup(d, f)

Given a degree d in the required range and a predicate f (as a function or intrinsic),
return the first transitive group of degree d which satisfies f . Also returns a string
giving a description of the group.

TransitiveGroup(S, f)

Given a sequence S of degrees and a predicate f (as a function or intrinsic), return
the first transitive group with degree in S which satisfies f . Also returns a string
giving a description of the group.

TransitiveGroups(d: parameters)

Warning BoolElt Default : true

Return a sequence of all transitive groups of degree d. Some degrees will produce a
very large sequence of groups – in such cases a warning will be printed unless the
user specifies Warning := false.

TransitiveGroups(S: parameters)

Warning BoolElt Default : true

Given a sequence S of degrees, return a sequence of all transitive groups with degree
in S. The resulting sequence may be very long – in such cases a warning will be
printed unless the user specifies Warning := false.

TransitiveGroups(d, f)

Given an integer d and a predicate (function or intrinsic) f , return a sequence
containing all transitive groups G of degree d satisfying f(G) eq true.

TransitiveGroups(S, f)

Given a sequence S of degrees and a predicate (function or intrinsic) f , return a
sequence containing all transitive groups G with degree in S satisfying f(G) eq
true.

1962 FINITE GROUPS Part X

Example H66E9

We apply some of these functions to the degree 8 case.

> NumberOfTransitiveGroups(8);

50

> TransitiveGroup(8, 3);

Permutation group acting on a set of cardinality 8

(1, 2)(3, 4)(5, 6)(7, 8)

(1, 4)(2, 3)(5, 8)(6, 7)

(1, 8)(2, 7)(3, 6)(4, 5)

E(8) = 2[x]2[x]2

> S := TransitiveGroups(8, IsPrimitive);

> #S;

7

> S;

[

Permutation group acting on a set of cardinality 8

(1, 8)(2, 3)(4, 5)(6, 7)

(1, 3)(2, 8)(4, 6)(5, 7)

(1, 5)(2, 6)(3, 7)(4, 8)

(1, 2, 6, 3, 4, 5, 7),

Permutation group acting on a set of cardinality 8

(1, 8)(2, 3)(4, 5)(6, 7)

(1, 3)(2, 8)(4, 6)(5, 7)

(1, 5)(2, 6)(3, 7)(4, 8)

(1, 2, 6, 3, 4, 5, 7)

(1, 2, 3)(4, 6, 5),

Permutation group acting on a set of cardinality 8

(1, 2, 3, 4, 5, 6, 8)

(1, 2, 4)(3, 6, 5)

(1, 6)(2, 3)(4, 5)(7, 8),

Permutation group acting on a set of cardinality 8

(1, 2, 3, 4, 5, 6, 8)

(1, 3, 2, 6, 4, 5)

(1, 6)(2, 3)(4, 5)(7, 8),

Permutation group acting on a set of cardinality 8

(1, 8)(2, 3)(4, 5)(6, 7)

(1, 3)(2, 8)(4, 6)(5, 7)

(1, 5)(2, 6)(3, 7)(4, 8)

(1, 2, 6, 3, 4, 5, 7)

(1, 2, 3)(4, 6, 5)

(1, 2)(5, 6),

Permutation group acting on a set of cardinality 8

(1, 2)(3, 4, 5, 6, 7, 8)

(1, 2, 3),

Permutation group acting on a set of cardinality 8

(1, 2, 3, 4, 5, 6, 7, 8)

(1, 2)

Ch. 66 DATABASES OF GROUPS 1963

]

66.7.2 Processes
A transitive group process enables iteration over all transitive groups of specified degrees
satisfying a given predicate, without having to create and store all such groups together.

The intrinsic function TransitiveGroupProcess may be used to create a transi-
tive group process in Magma. The standard process functions IsEmpty, Current,
CurrentLabel and Advance can then be applied to the process.

TransitiveGroupProcess(d)

Return a group process which will iterate though all transitive groups of degree d.

TransitiveGroupProcess(S)

Return a process which will iterate though all transitive groups with degree in the
sequence S.

TransitiveGroupProcess(d, f)

Return a process which will iterate though all transitive groups with degree d which
satisfy the predicate f .

TransitiveGroupProcess(S, f)

Return a process which will iterate though all transitive groups with degree in the
sequence S which satisfy the predicate f .

IsEmpty(p)

Returns true if the process p has passed its last group.

Current(p)

Return the current group of the process p, as well as a description of the group.

CurrentLabel(p)

Return the label of the current group of the process p. That is, return d and n such
that the current group is TransitiveGroup(d, n).

Advance(∼p)
Move the process p to its next group.

1964 FINITE GROUPS Part X

Example H66E10

The use of processes is illustrated by the following code, in which the orders of all transitive groups
of degree 5 are listed.

> p := TransitiveGroupProcess(5);

> while not IsEmpty(p) do

> CurrentLabel(p), #Current(p);

> Advance(~p);

> end while;

5 1 5

5 2 10

5 3 20

5 4 60

5 5 120

66.7.3 Transitive Group Identification
Given a transitive group G whose degree is at most 30, it is possible to obtain the number
of the group in the transitive groups database which is isomorphic to G.

TransitiveGroupIdentification(G)

Raw BoolElt Default : true

The number (and degree) of the group in the transitive groups database which is
isomorphic to the transitive group G.

If the optional parameter Raw is set to false, a third value is returned. In this
case, the third value is a permutation conjugating the given group to the copy in
the library.

Example H66E11

We get a transitive permutation group from the small groups database and identify it as a tran-
sitive group.

> G := SmallGroup(336, IsTransitive: Search:="Insoluble");

> G;

Permutation group G acting on a set of cardinality 16

(1, 14, 6, 2, 12, 8, 13, 7)(3, 15, 10, 5, 16, 9, 4, 11)

(2, 5, 6)(3, 10, 9)(4, 15, 16)(7, 11, 13)

> TransitiveGroupIdentification(G : Raw := false);

715 16 (1, 16, 3, 4, 2, 11, 5, 6, 9, 8, 13, 10)(7, 12, 15)

> n, d, p := $1;

> G^p eq TransitiveGroup(d, n);

true

We found it to be group 715 of degree 16.

Ch. 66 DATABASES OF GROUPS 1965

66.8 Database of Primitive Groups

Magma has a database containing all primitive permutation groups with degree less than
2500.

The list of primitive groups up to degree 50 was prepared by C. C. Sims (see [Sim70]
for the early part of the list). The list up to degree 999 was determined by Roney-Dougal
and Unger. See [RDU03] for details of the methods used. The list was extended to degree
2499 by Roney-Dougal, as described in [RD05], and was further extended to degree 4095
by Coutts, Quick and Roney-Dougal [CQRD11].

Within the database the groups are stored by degree. Within each degree they are
stored by O’Nan-Scott class in the order soluble affine, insoluble affine, diagonal action,
product action, almost simple. Within each class groups are ordered by increasing size.
(It follows that the alternating and symmetric groups come last at each degree.)

The basic access function takes two parameters, degree and number, and returns the
corresponding primitive group. Functions with name prefixed by NumberOfPrimitive
tell how many groups of each class there are stored. We recommend the use of the
PrimitiveGroupProcess or PrimitiveGroups functions, with appropriate Filter value,
to access all primitive groups in a specific class.

66.8.1 Accessing the Databases

PrimitiveGroupDatabaseLimit()

The limiting degree of the database of primitive groups.

NumberOfPrimitiveGroups(d)

NumberOfPrimitiveSolubleGroups(d)

NumberOfPrimitiveAffineGroups(d)

NumberOfPrimitiveDiagonalGroups(d)

NumberOfPrimitiveProductGroups(d)

NumberOfPrimitiveAlmostSimpleGroups(d)

Given a degree d in the required range, NumberOfPrimitiveGroups returns the
number of primitive groups of degree d. The other functions return the number of
groups of each class at that degree.

PrimitiveGroup(d, n)

Given a degree d in the required range and a positive integer n, return the n-
th primitive group of degree d. Also returns a string (possibly empty) giving a
description of the group and a string giving the group’s O’Nan-Scott type.

PrimitiveGroupDescription(d, n)

A string giving a description of the n-th primitive group of degree d.

1966 FINITE GROUPS Part X

PrimitiveGroup(d)

Given a degree d in the required range, return the first primitive group of degree
d. Also returns a string giving a description of the group and a string giving the
group’s O’Nan-Scott type.

PrimitiveGroup(d, f)

Given a degree d in the required range and a predicate f (as a function or intrinsic),
return the first transitive (primitive) group of degree d which satisfies f .

PrimitiveGroup(S, f)

Given a sequence S of degrees and a predicate f (as a function or intrinsic), return
the first transitive (primitive) group with degree in S which satisfies f .

PrimitiveGroups(d: parameters)

Filter MonStgElt Default : “All”
Return a sequence of all primitive groups of degree d, modified by the value assigned
to Filter. The possible values for the parameter are the strings All, Soluble,
Affine, Diagonal, Product, AlmostSimple, Simple and SimpleNA. Generally these
values restrict the list to groups in the appropriate O’Nan-Scott type, with the ex-
ceptions being All giving no restriction, Simple restricting to a lsit of all simple
groups in the database, and SimpleNA being as for Simple but omitting all alter-
nating groups in their natural representations.

PrimitiveGroups(S: parameters)

PrimitiveGroups(: parameters)

Filter MonStgElt Default : “All”
Given a sequence S of degrees, return a sequence of all primitive groups with degree
in S. The result is modified by Filter with values as above. Omitting the sequence
of degrees gives the same result as specifying all legal degrees.

PrimitiveGroups(d, f: parameters)

PrimitiveGroups(S, f)

PrimitiveGroups(f)

Filter MonStgElt Default : “All”

Given an integer d and a predicate (function or intrinsic) f , return a sequence
containing all primitive groups G of degree d passing the filter satisfying f(G) eq
true. Note that the filter will be generally much quicker in rejecting candidates
than the predicate will be, and only groups passing the filter have f(G) evaluated.

Instead of giving a single degree, a sequence of degrees may be given. Omitting
the degree is the same as specifying the sequence of all legal degrees.

Ch. 66 DATABASES OF GROUPS 1967

Example H66E12

We apply some of these functions to the degree 625 case.

> NumberOfPrimitiveGroups(625);

698

> NumberOfPrimitiveAffineGroups(625);

647

> NumberOfPrimitiveSolubleGroups(625);

509

> NumberOfPrimitiveDiagonalGroups(625);

0

> NumberOfPrimitiveProductGroups(625);

49

> NumberOfPrimitiveAlmostSimpleGroups(625);

2

> PrimitiveGroup(625, 511);

Permutation group acting on a set of cardinality 625

Order = 150000 = 2^4 * 3 * 5^5

5^4:SL(2, 5).2 Affine

> PrimitiveGroup(625,690);

Permutation group acting on a set of cardinality 625

Order = 2^14 * 3^5 * 5^4

Alt(5)^4:Q_8:Sym(4) ProductAction

> Q := PrimitiveGroups(625, func<G|#G eq 3*10^4>

> : Filter := "Affine");

> #Q;

26

66.8.2 Processes
A primitive group process enables iteration over all primitive groups of specified degrees
satisfying a given predicate, without having to create and store a list of all such groups.

The intrinsic function PrimitiveGroupProcess may be used to create a primitive group
process. The standard process functions IsEmpty, Current, CurrentLabel and Advance
can then be applied to the process.

PrimitiveGroupProcess(d: parameters)

PrimitiveGroupProcess(S: parameters)

PrimitiveGroupProcess(: parameters)

Filter MonStgElt Default : “All”
Return a group process which will iterate though all primitive groups of degree d
that pass the filter as described above. A sequence of degrees may be given instead
of a single degree. In this case the process will iterate though the groups of all
the degrees in S. Omitting any degree information is the same as specifying the
sequence of all legal degrees.

1968 FINITE GROUPS Part X

PrimitiveGroupProcess(d, f: parameters)

PrimitiveGroupProcess(S, f: parameters)

PrimitiveGroupProcess(f: parameters)

Filter MonStgElt Default : “All”
Return a process which will iterate though all primitive groups with degree d which
pass the filter and satisfy the predicate f . A sequence of degrees may be given
instead of a single degree. In this case the process will iterate though the groups of
all the degrees in S. Omitting any degree information is the same as specifying the
sequence of all legal degrees.

IsEmpty(p)

Returns true if the process p has passed its last group.

Current(p)

Return the current group of the process p, as well as a description of the group.

CurrentLabel(p)

Return the label of the current group of the process p. That is, return d and n such
that the current group is TransitiveGroup(d, n) (or PrimitiveGroup(d, n)).

Advance(∼p)
Move the process p to its next group.

Example H66E13

The use of processes is illustrated by the following code, in which the orders of all primitive groups
with degree 60 of diagonal type are listed. We also compute the orbit structures of their Sylow
2-subgroups, which demonstrates that they are non-conjugate.

> p := PrimitiveGroupProcess(60:Filter:="Diagonal");

> while not IsEmpty(p) do

> G := Current(p);

> CurrentLabel(p), #G,

> [t[1]:t in OrbitRepresentatives(Sylow(G,2))];

> Advance(~p);

> end while;

60 1 3600 [4, 4, 4, 16, 16, 16]

60 2 7200 [4, 4, 4, 16, 32]

60 3 7200 [4, 8, 16, 32]

60 4 7200 [4, 8, 16, 16, 16]

60 5 14400 [4, 8, 16, 32]

Ch. 66 DATABASES OF GROUPS 1969

66.8.3 Primitive Group Identification
Given a primitive group G whose degree is at most 2499, it is possible to obtain the number
of the group in the primitive groups database which is permutation isomorphic to G.

PrimitiveGroupIdentification(G)

The number (and degree) of the group in the primitive groups database which is
permutation isomorphic to the primitive group G.

Example H66E14

We construct a permutation group of affine type and identify it as a primitive group.

> M := WreathProduct(SL(2,5), Sym(2));

> Q := Getvecs(M);

> G := Semidir(M, Q);

> G;

Permutation group G acting on a set of cardinality 625

> PrimitiveGroupIdentification(G);

595 625

We found it to be group 595 of degree 625.

66.9 Database of Rational Maximal Finite Matrix Groups

Magma includes a database of rational maximal finite matrix groups and their invariant
forms, for small dimensions (up to 31 at V2.8 and above). This section defines the interface
to that database. See the articles of Nebe & Plesken [NP95] and Nebe [Neb96].

A particular entry of the database can be specified in one of two ways. Firstly, a number
in the range 1 to the size of the database can be given. Alternatively, the desired dimension
can be provided, together with a number in the range 1 to the number of entries of that
dimension.

Each entry can be accessed either as a matrix group or as a lattice. If accessed as a
matrix group, the order and base are set on return. If as a lattice, the automorphism
group is set.

RationalMatrixGroupDatabase()

This function returns a database object which contains information about the
database.

LargestDimension(D)

Returns the largest dimension of any entry stored in the database. It is an error to
refer to larger dimensions in the database.

1970 FINITE GROUPS Part X

#D

NumberOfGroups(D)

NumberOfLattices(D)

Returns the number of entries stored in the database.

NumberOfGroups(D, d)

NumberOfLattices(D, d)

Returns the number of entries stored in the database of dimension d.

Group(D, i)

Returns the i-th entry from the database D as a matrix group.

Lattice(D, i)

Returns the i-th entry from the database D as a lattice.

Group(D, d, i)

Returns the i-th entry of dimension d from the database D as a matrix group.

Lattice(D, d, i)

Returns the i-th entry of dimension d from the database D as a lattice.

Example H66E15

> D := RationalMatrixGroupDatabase();

> #D;

354

> maxdim := LargestDimension(D);

> maxdim;

31

> &+[NumberOfGroups(D, d) : d in [1 .. maxdim]];

354

These numbers agree (which is nice). The dimension in that range with the most curves is 24.

> S := [NumberOfGroups(D, d) : d in [1 .. maxdim]];

> Max(S);

65 24

The groups have known order, so it is easy to find the group with smallest order and dimension
24.

> time orders := [#Group(D, 24, i): i in [1 .. NumberOfGroups(D, 24)]];

Time: 0.480

> Min(orders);

1872 53

Ch. 66 DATABASES OF GROUPS 1971

66.10 Database of Integral Maximal Finite Matrix Groups

Magma includes a database of representatives of the GL(n,Z)-conjugacy classes of irre-
ducible maximal finite subgroups of GL(n,Z) for n <= 11 and n ∈ {13, 17, 19, 23}. This
section defines the interface to that database.

For n < 10 the groups have been described in [PP77, PP80]. The groups of dimension
10 can be found in [Sou94]. In the cases n > 10 prime, the representatives have been
constructed using the descriptions given in [Ple85].

A particular entry of the database can be specified in one of two ways. Firstly, a number
in the range 1 to the size of the database can be given. Alternatively, the desired dimension
can be provided, together with a number in the range 1 to the number of entries of that
dimension.

Each entry can be accessed either as a matrix group or as a lattice. If accessed as a
matrix group, the order and base are set on return. If as a lattice, the automorphism
group is set.

IntegralMatrixGroupDatabase()

This function returns a database object which contains information about the
database.

LargestDimension(D)

Returns the largest dimension of any entry stored in the database. It is an error to
refer to larger dimensions in the database.

#D

NumberOfGroups(D)

NumberOfLattices(D)

Returns the number of entries stored in the database.

NumberOfGroups(D, d)

NumberOfLattices(D, d)

Returns the number of entries stored in the database of dimension d.

Group(D, i)

Returns the i-th entry from the database D as a matrix group.

Lattice(D, i)

Returns a lattice L and sequence of additional forms F fixed by the i-th group in
the database D.

1972 FINITE GROUPS Part X

Construction(D, i)

Returns a string S which describes the construction of the i-th group G in the
database D.

If the G-invariant lattice is well known, S equals the name of this lattice. If the
Degree d of G is a prime, G usually can be chosen to fix the form a0Id + a1(z +
z−1) + ...+ ak(zk + z−1) with k = (d− 1)/2 and some ai ∈ Z where z denotes the
permutation matrix of some d-cycle in Zd×d (see [Ple85]). In this case, S equals
[a0, a1, a2, ...]. In all other cases, S describes the isomorphism type of G.

The second return value gives the numbers of all groups of degree d in the
Rational Matrix Group Database which contain a GL(d,Q)-conjugate copy of G.

Group(D, d, i)

Returns the i-th entry of dimension d in the database D as a matrix group.

Lattice(D, d, i)

Returns a lattice L and sequence of additional forms F fixed by the i-th group of
dimension d in the database D.

Construction(D, d, i)

Returns a string and integer which describe the construction of the i-th entry of
dimension d in the database D.

Example H66E16

> D:= IntegralMatrixGroupDatabase();

> #D;

222

> G:= Group(D, 8, 7); Construction(D, 8, 7);

A8* [3]

So G is the automorphism group of the dual of the root lattice A8 and it is conjugate to a
subgroup of the third entry of dimension 8 in the RationalMatrixgroupDatabase. We find an
explicit embedding T of G into that group.

> DQ:= RationalMatrixGroupDatabase();

> H:= Group(DQ, 8, 3); L:= Lattice(DQ, 8, 3);

> F:= PositiveDefiniteForm(G);

> for s in Sublattices(G) do

> B:= BasisMatrix(s);

> FF:= B * F * Transpose(B);

> ok, T:= IsIsometric(LatticeWithGram(FF div GCD(Eltseq(FF))), L);

> if ok then break; end if;

> end for;

> assert ok;

> T:= Matrix(Rationals(), T*B);

> [Matrix(Integers(), T*Matrix(G.i)*T^-1) in H : i in [1..Ngens(G)]];

[true, true]

Ch. 66 DATABASES OF GROUPS 1973

66.11 Database of Finite Quaternionic Matrix Groups

Magma includes a database of the finite absolutely irreducible subgroups of GLn(D) where
D is a definite quaternion algebra whose centre has degree d over Q and nd ≤ 10. This
collection is due to Gabriele Nebe [Neb98]. This section defines the interface to that
database.

A particular entry of the database can be specified in one of two ways. Firstly, a number
in the range 1 to the size of the database can be given. Alternatively, the desired dimension
can be provided, together with a number in the range 1 to the number of entries of that
dimension.

Each entry can be accessed either as a matrix group or as a lattice. If accessed as a
matrix group, the order and base are set on return.

QuaternionicMatrixGroupDatabase()

This function returns a database object which contains information about the
database.

LargestDimension(D)

Returns the largest dimension of any entry stored in the database. It is an error to
refer to larger dimensions in the database.

#D

NumberOfGroups(D)

NumberOfLattices(D)

Returns the number of entries stored in the database.

NumberOfGroups(D, d)

NumberOfLattices(D, d)

Returns the number of entries stored in the database of dimension d.

Group(D, i)

Returns the i-th entry from the database D as a matrix group.

Lattice(D, i)

Returns a lattice L and sequence of forms F corresponding to the i-th entry of the
database D.

Construction(D, i)

Returns a string and integer which describe the construction of the i-th entry of the
database D.

Group(D, d, i)

Returns the i-th entry of dimension d in the database D as a matrix group.

1974 FINITE GROUPS Part X

Lattice(D, d, i)

Returns a lattice L and sequence of forms F corresponding to the i-th entry of
dimension d in the database D.

Construction(D, d, i)

Returns a string and integer which describe the construction of the i-th entry of
dimension d in the database D.

Example H66E17

We illustrate accessing the quaternionic matrix groups database with a group and lattice of di-
mension 36.

> DB := QuaternionicMatrixGroupDatabase();

> LargestDimension(DB);

40

> NumberOfGroups(DB, 36);

10

> G := Group(DB, 36, 8);

> G : Minimal;

MatrixGroup(36, Integer Ring) of order 43545600 = 2^10 * 3^5

* 5^2 * 7

> #pCore(G, 2);

2

> L, forms := Lattice(DB, 36, 8);

> Determinant(L);

3874204890000

> IsSquare($1);

true 1968300

66.12 Database of Finite Symplectic Matrix Groups

Magma includes a database of the maximal finite irreducible subgroups of Sp2n(Q) for
1 ≤ i ≤ 11 up to conjugacy in GL2n(Q). This collection is due to Markus Kirschmer
[Kir09]. This section defines the interface to that database.

To avoid non-integral entries, the stored matrix groups do not fix the standard skewsym-
metric form but some other nondegenerate skewsymmetric form. The example below illus-
trates how to construct a conjugate matrix group which fixes the standard skewsymmetric
form.

A particular entry of the database can be specified in one of two ways. Firstly, a number
in the range 1 to the size of the database can be given. Alternatively, the desired dimension
can be provided, together with a number in the range 1 to the number of entries of that
dimension.

Each entry can be accessed either as a matrix group or as a lattice with a pair of forms.
If accessed as a matrix group, the order and base are set on return.

Ch. 66 DATABASES OF GROUPS 1975

SymplecticMatrixGroupDatabase()

This function returns a database object which contains information about the
database.

LargestDimension(D)

Returns the largest dimension of any entry stored in the database. It is an error to
refer to larger dimensions in the database.

#D

NumberOfGroups(D)

NumberOfLattices(D)

Returns the number of entries stored in the database.

NumberOfGroups(D, d)

NumberOfLattices(D, d)

Returns the number of entries stored in the database of dimension d.

Group(D, i)

Returns the i-th entry from the database D as a matrix group.

Lattice(D, i)

Returns a lattice L and a sequence S of two integral forms such that the automor-
phism group of L with respect to S equals Group(DB, i). The first form in S is
the gram matrix of L and the second form is skewsymmetric. The sequence S is
normalized as described in the appendix of [Kir09] to simplify the recognition of the
matrix group.

Construction(D, i)

Returns a string which describes the construction of the i-th entry of the database
D.

Group(D, d, i)

Returns the i-th entry of dimension d in the database D as a matrix group.

Lattice(D, d, i)

Returns a lattice L and a sequence S of forms corresponding to the i-th entry of
dimension d in the database D.

Construction(D, d, i)

Returns a string which describes the construction of the i-th entry of dimension d
in the database D.

1976 FINITE GROUPS Part X

Example H66E18

We illustrate accessing the symplectic matrix group database with a group of dimension 16.

> DB := SymplecticMatrixGroupDatabase();

> NumberOfGroups(DB, 16);

91

> G := Group(DB, 16, 1);

> G : Minimal;

MatrixGroup(16, Integer Ring) of order 2^21 * 3^4 * 5^2

The group G does not fix the standard skewsymmetic form. But it can be conjugated to do so.

> _, S := Lattice(DB, 16, 1);

> T := TransformForm(Matrix(Rationals(), S[2]), "symplectic");

> H := ChangeRing(G, Rationals())^(GL(16,Rationals()) ! T);

> J := SymplecticForm(16, Rationals());

> forall{h: h in Generators(H) | h * J * Transpose(h) eq J};

true

66.13 Database of Irreducible Matrix Groups

Magma has a database containing all irreducible subgroups of GLk(p), for p prime, k ≥ 1
and pk < 2500. One representative of each conjugacy class of subgroups is stored.

The data used is the same as that used to store the affine primitive permutation groups.
See the Primitive Groups Database section for the provenance of the data.

Within the database the groups are stored according to pk. First are the soluble groups,
followed by the insoluble. Within each subdivision, the groups are stored by increasing
order. (It follows that GLk(p) is the last in each list.)

The basic access function takes three parameters, k, p and number, and returns the
corresponding group. Functions with name prefixed by NumberOf tell how many groups of
each class there are stored.

66.13.1 Accessing the Database

NumberOfIrreducibleMatrixGroups(k, p)

NumberOfSolubleIrreducibleMatrixGroups(k, p)

Given k and p, p prime, k ≥ 1 and pk < 2500, NumberOfIrreducibleMatrixGroups
returns the number of subgroups of GLk(p) stored. The other function returns the
number of soluble subgroups stored.

IrreducibleMatrixGroup(k, p, n)

Given k and p p prime, k ≥ 1 and pk < 2500, and a positive integer n, return the
n-th subgroup of GLk(p) stored.

Ch. 66 DATABASES OF GROUPS 1977

Example H66E19

We apply some of these functions to the GL4(5) case.

> NumberOfIrreducibleMatrixGroups(4, 5);

647

> NumberOfSolubleIrreducibleMatrixGroups(4, 5);

509

> G := IrreducibleMatrixGroup(4, 5, 511);

> ChiefFactors(G);

G

| Cyclic(2)

*

| Alternating(5)

*

| Cyclic(2)

1

> IsIrreducible(G);

true

> IsAbsolutelyIrreducible(G);

false

66.14 Database of Quasisimple Matrix Groups

Magma has a database containing characteristic 0 representations of some finite quasisim-
ple groups.

QuasisimpleMatrixGroup(N, d, p : parameters)

OverZ BoolElt Default : true⇔ p = 0
Automorphisms BoolElt Default : false

RepNo RngIntElt Default : 1
Return an absolutely irreducible matrix group in characteristic p, which may be
a prime number or 0, derived from the reduction modulo p of of an absolutely
irreducible representation in charateristic 0 and dimension d of the quasisimple group
G with name N . The generators of G used are its standard generators. For those
quasisimple groups in the ATLAS-database (Section 66.16), the same names are used
as there. Other quasisimple groups are named according to the same conventions.

If there is more than one representation of G in dimension d in the database,
then the first such is used by default, and the others can be accessed by using the
RepNo option.

If the reduction modulo p of the representation is not irreducible, then a ran-
dom non-trivial irreducible constituent is used. (This behaviour may change in the
future.)

1978 FINITE GROUPS Part X

For those representations that are not realisable over Z in dimension d, a repre-
sentation in dimension d over a minimal extension of the rationals and also an irre-
ducible representation in a higher dimension over Z are both stored in the database.
The representation used is the one over Z if the parameter OverZ is true, and the
one over the number field otherwise. Reduction modulo p is generally faster using
the integral representation, so that is the default when p > 0.

If the parameter Automorphisms is set, then extra generators inducing those
outer automorphisms of G that stabilise the representation are included in the group
returned. This may result in extra scalars being present in the group returned, and
when p = 0 this scalar subgroup can sometimes be infinite.

QuasisimpleMatrixGroups()

Returns a list of tuples specifying the names of the groups in the quasisimple matrix
group database, together with the dimension and the number of stored representa-
tions of the group in that dimension.

66.15 Database of Soluble Irreducible Groups

This database contains one representative of each conjugacy class of irreducible soluble
subgroups of GL(n, p), p prime, They may be accessed through specifying a group by its
label in the database, as described in the section on basic functions, or through searching
using predicates, or through a process. The database was constructed by Mark Short
[Sho92].

66.15.1 Basic Functions
The basic access functions for the database are described in this section. The label of a
group in the database is three integers, d, p, i. The first, d ≥ 2, is the degree of the matrix
group. The second, a prime p, specifies the base field of the group. The third is the number
of the group in this degree/field set.

IsolGroupDatabase()

Open the database and return a reference to it. This reference may be passed to
other functions so that they do fewer file operations.

IsolGroup(n, p, i)

Group(D, n, p, i)

Given a positive integer o ≤ 1000 (with o 6= 512 or 768) and a positive integer n,
return the n-th group of order o.

IsolNumberOfDegreeField(n, p)

The number of groups in the database of degree n over Fp.

Ch. 66 DATABASES OF GROUPS 1979

IsolInfo(n, p, i)

This function returns a string which gives some information about a group in the
database given its label. In particular, it contains the order and primitivity infor-
mation about the group.

IsolOrder(n, p, i)

This function returns the order of a group given its label.

IsolMinBlockSize(n, p, i)

This function returns the minimal block size of a group given its label. If it is
primitive, it returns 0.

IsolIsPrimitive(n, p, i)

This function returns whether a group is primitive given its label.

IsolGuardian(n, p, i)

This function returns the “guardian” of a group given its label, i.e., the maximal
subgroup of GL(n, p) of which the group is a subgroup.

Example H66E20

We find a group of degree 3 and its guardian.

> IsolNumberOfDegreeField(3, 5);

22

> G := IsolGroup(3, 5, 10);

> #G;

62

> GG := IsolGuardian(3, 5, 10);

> #GG;

372

> G;

MatrixGroup(3, GF(5)) of order 62 = 2 * 31

Generators:

[0 0 1]

[3 0 4]

[2 3 1]

> GG;

MatrixGroup(3, GF(5)) of order 372 = 2^2 * 3 * 31

Generators:

[1 0 0]

[3 2 2]

[1 4 2]

[0 1 0]

[0 0 1]

[3 0 4]

1980 FINITE GROUPS Part X

66.15.2 Searching with Predicates

We may search the database for a group satisfying some predicate. A predicate for a group
in this database is one of the following:

• A function f (which may either be an intrinsic function or a user defined function)
which takes a matrix group and returns a boolean value.

• A tuple of one function 〈g〉, where g takes a label and returns a boolean value. Again
g is either intrinsic or user defined.

• A tuple of two functions 〈g, f〉 where g, f are as above. In this case, the tested predicate
will be g first, then f . This form is introduced to avoid expanding the group from its
label until absolutely necessary.

IsolGroupSatisfying(f)

Given a predicate f , return a group satisfying it. This function runs through all the
stored groups and applies the predicate until it finds a suitable one. If no group is
found, an error message is printed.

IsolGroupOfDegreeSatisfying(d, f)

As IsolGroupSatisfying(f), except it only runs through the groups of degree d.

IsolGroupOfDegreeFieldSatisfying(d, p, f)

As IsolGroupSatisfying(f), except it only runs through the groups of degree d
and defined over Fp.

IsolGroupsSatisfying(f)

As IsolGroupSatisfying(f), except a sequence of all such groups is returned.

IsolGroupsOfDegreeSatisfying(d, f)

As IsolGroupOfDegreeSatisfying(d, f), except a sequence of all such groups is
returned.

IsolGroupsOfDegreeFieldSatisfying(d, p, f)

As IsolGroupOfDegreeFieldSatisfying(d, p, f), except a sequence of all such
groups is returned.

Ch. 66 DATABASES OF GROUPS 1981

66.15.3 Associated Functions
Associated with this database are two functions useful for constructing semidirect product
of a finite vector space and an irreducible matrix group. Thus for constructing soluble
affine permutation groups.

Getvecs(G)

This function takes a matrix group G over a finite prime field and returns a sequence,
Q say, containing all the vectors of the natural module for G. The ordering of Q
does not depend on G, but only on its natural module.

Semidir(G, Q)

Given an irreducible matrix group G of degree n and over a finite prime field of size
p and the sequence Q obtained from Getvecs, this function returns the permutation
group H of degree pn that is the semidirect product of G with its natural module.
H acts on the set {1 . . . pn} and G is isomorphic to each of the point stabilizers. It
is well known that H is primitive, and that every primitive permutation group with
soluble socle arises in this way. Note that if Semidir is to be called more than once
for subgroups of the same general linear group, then Getvecs need only be called
on the first occasion, since the ordering of Q depends only on n and p. This is why
the call to Getvecs is not made by Semidir itself.

66.15.4 Processes
A small group process enables iteration over all groups with specified degrees and fields,
without having to create and store all such groups together.

A process is created via the function IsolProcess and its variants. The standard
process functions IsEmpty, Current, CurrentLabel and Advance can then be applied to
the process.

A specifier for degree or field is one of a valid degree (field size), or a tuple 〈l, h〉, of
valid degrees (field sizes) which is interpreted to mean all degrees (prime field sizes) in
[l, h].

IsolProcess()

Return a process which will iterate though all groups in the database.

IsolProcessOfDegree(d)

Return a process which will iterate though all groups in the database of degree d.

IsolProcessOfField(p)

Return a process which will iterate though all groups in the database over the
specified field.

1982 FINITE GROUPS Part X

IsolProcessOfDegreeField(d, p)

Return a process for iterating over all the stored groups with degree specifier d and
field specifier p. Initially it points to the first such group (the principal key is the
degree).

IsEmpty(p)

Returns true if the process p has passed its last group.

Current(p)

Return the current group of the process p.

CurrentLabel(p)

Return the label of the current group of the process p. That is, return d, n and i
such that the current group is IsolGroup(d, n, i).

Advance(∼p)
Move the process p to its next group.

Example H66E21

We use a small group process to look at all the groups of degree 3.

> P := IsolProcessOfDegree(3);

> ords := {* *};

> repeat

> Include(~ords, #Current(P));

> Advance(~P);

> until IsEmpty(P);

> ords;

{* 31, 62, 93, 7, 124, 96^^4, 39, 12^^2, 186, 13, 192^^2, 48^^4,

21, 24^^6, 26 *}

Ch. 66 DATABASES OF GROUPS 1983

66.16 Database of ATLAS Groups

Magma includes representations of nearly simple groups from the ATLAS of Finite Group
Representations http://web.mat.bham.ac.uk/atlas/v2.0. The data was supplied by
Robert Wilson.

Groups in the database are accessed by name. The intrinsic ATLASGroupNames gives a
list of the names that may currently be used to access the database. The names are based
on ATLAS names for simple groups, with some exceptions (usually caused by an aversion
to subscripting automorphisms). Classical group names take precedence over their Lie-
type names. Within a name, the letter “T” denotes a twisted group of Lie type. (The
two sorts of twisting of D4 are distinguished by one being “O8m” and the other “TD4”.)
An initial number on the name denotes a central element, a “d” is used to separate the
simple group name from an automorphism (when there is no other letter there), and an
“i” denotes an isoclinic variant.

Example H66E22

The list of names in V2.11 is printed as follows.

> ATLASGroupNames();

{@ A5, 2A5, 2S5, 2S5i, S5, A6, 2A6, 2S6, 3A6, 3S6, 6A6,

6S6, A6V4, M10, PGL29, S6, A7, A8, 2A8, S8, A9, 2A9,

S9, A10, 2A10, S10, A11, 2A11, 2S11, S11, A12, 2A12,

S12, A13, 2A13, S13, A14, 2A14, 2S14, 2S14i, S14, O93,

2O93, 2O93d2, O93d2, O10m2, O10m2d2, O73, 2O73, 2O73d2,

3O73, 3O73d2, O73d2, O8m2, O8m2d2, O8m3, 2O8m3,

2O8m3d2a, O8m3D8, O8m3V4, O8m3d2a, O8p2, S102, S44,

S44d2, S44d4, S45, 2S45, S45d2, S47, 2S47, 2S47d2,

S47d2, S62, 2S62, S63, 2S63, 2S63d2, S63d2, S82, U311,

3U311, 3U311d2, U311d2, U33, U33d2, U42, 2U42, 2U42d2,

U42d2, U43, U52, U52d2, U53, U62, 12U62, 2U62, 3U62,

4U62, 6U62, U62S3, U62d2, U72, E74, E85, E82, E72, E62,

TF42, TF42d2, G25, TE62, 2TE62, 2TE62d2, 3TE62,

3TE62S3, 3TE62d2, 3TE62d3, 4TE62, TE62S3, TE62d2,

TE62d3, E64, 3E64, 3E64d2, TD42, TD42d3, G23, 3G23,

3G23d2, G23d2, G24, 2G24, 2G24d2, 2G24d2i, G24d2, F42,

2F42, 2F42d2, 2F42d4i, F42d2, R27, R27d3, Sz8, 2Sz8,

4Sz8d3, Sz8d3, Sz32, Sz32d5, TD43, L27, L28, L28d3,

L211, 2L211, L211d2, L213, 2L213, 2L213d2, L213d2,

L216, L216d2, L216d4, L217, 2L217, 2L217d2, L217d2,

L219, 2L219, 2L219d2i, L219d2, L223, 2L223, 2L223d2i,

L223d2, L227, L229, 2L229, L231, 2L231, L231d2, L232,

L232d5, L249, 2L249, L33, L33d2, L34, 12aL34, 12bL34,

2L34, 3L34, 4aL34, 4bL34, 6L34, L35, L35d2, L37, 3L37,

3L37d2, L37d2, L311, L52, L52d2, L62, L62d2, L72,

L72d2, B, Co1, 2Co1, Co2, Co3, F22, 2F22, 2F22d2, 3F22,

3F22d2, F22d2, F23, F24, 3F24, 3F24d2, F24d2, HN, HNd2,

HS, 2HS, 2HSd2, HSd2, He, Hed2, J1, J2, 2J2, 2J2d2,

1984 FINITE GROUPS Part X

J2d2, J3, 3J3, 3J3d2, J3d2, J4, Ly, ON, 3ON, 3ONd2,

ONd2, ONd4, Ru, 2Ru, Suz, 2Suz, 2Suzd2, 3Suz, 3Suzd2,

6Suz, 6Suzd2, Suzd2, Th, M, M11, M12, 2M12, 2M12d2,

M12d2, M22, 12M22, 2M22, 2M22d2, 3M22, 3M22d2, 4M22,

4M22d2, 6M22, 6M22d2, M22d2, M23, M24, McL, 3McL,

3McLd2, McLd2, S7 @}

The basic access function takes a name and returns a special type of group, an ATLAS
group, with Magma type GrpAtlas. Access to the information stored about the named
group are then done through this ATLAS group.

66.16.1 Accessing the Database

ATLASGroupNames()

The names of the groups that have representations stored in the database.

ATLASGroup(N)

The ATLAS group stored in the database that has name N .

66.16.2 Accessing the ATLAS Groups
Once an ATLAS group has been extracted from the database, the following intrinsics give
access to the information stored with it.

Order(A)

#G

The order of A.

Multiplier(A)

The order of the multiplier of A, when A is simple.

MatRepKeys(A)

The sequence of keys to the matrix representations of A stored in the database.
This will be the empty sequence if no matrix representations are stored.

MatRepDegrees(A)

The set of degrees of the matrix representations stored for A.

MatRepFieldSizes(A)

The set of sizes of the fields for which a matrix representation of A is available.

MatRepCharacteristics(A)

The set of characteristics of the fields for which a matrix representation of A is
available.

Ch. 66 DATABASES OF GROUPS 1985

PermRepKeys(A)

The sequence of keys to the permutation representations of A stored in the database.
This will be the empty sequence if no permutation representations are stored.

PermRepDegrees(A)

The set of degrees of the permutation representations stored for A.

66.16.3 Representations of the ATLAS Groups
The intrinsics described below construct concrete representations of the ATLAS groups
from the data in the database. Each representation is accessed by its key, sequences of
which are produced by the intrinsics MatRepKeys and PermRepKeys described above. The
intrinsics described in this section take a key and produce a concrete representation.

MatrixGroup(K)

Given a key to a matrix representation of an ATLAS group, construct and return
the corresponding matrix group.

MatRep(K)

The generators of the matrix group designated by database key K.

PermutationGroup(K)

Given a key to a permutation representation of an ATLAS group, construct and
return the corresponding permutation group.

PermRep(K)

The generators of the permutation group designated by database key K.

Example H66E23

We get a representation of 2.J2.2 from the database.

> A := ATLASGroup("2J2d2");

> PermRepKeys(A);

[]

> mrk := MatRepKeys(A);

> mrk;

[

Matrix rep of degree 12 over GF(3),

Matrix rep of degree 6 over GF(25) named a,

Matrix rep of degree 12 over GF(7)

]

The database has no permutation representations and three matrix representations. We construct
the first of the matrix groups. It is small enough to check its composition factors.

> K := mrk[1];

> M := MatrixGroup(K);

1986 FINITE GROUPS Part X

> M‘Order := #A;

> RandomSchreier(M);

> CompositionFactors(M);

G

| Cyclic(2)

*

| J2

*

| Cyclic(2)

1

For efficiency, we asserted the order of the matrix group to be the order of the ATLAS group and
constructed a BSGS by the random schreier.

66.17 Fundamental Groups of 3-Manifolds
The database consists of the fundamental groups of the 10,986 small-volume closed hy-
perbolic manifolds in the Hodgson-Weeks census. The presentations included were gen-
erated by Jeffrey Weeks’ program SnapPea http://www.geometrygames.org/SnapPea/.
Information about finite-index subgroups with homology was generated by Dunfield and
Thurston in [DT03].

66.17.1 Basic Functions
The basic access functions for the database are described in this section.

The result returned by the Manifold function is a record with a number of fields
containing information about the manifold and its fundamental group. The fields of the
records are as follows:

Field Name: A string giving a name to the manifold M .

Field Volume: The volume of M as a floating point number.

Field Homology: A sequence of integers describing the first homology group of M .

Field Group; The fundamental group of M as a finitely presented group.

Field GoodCoverImage: A possibly empty sequence of permutations or integers 1 repre-
senting the identity permutation. These permutations define a homomorphism from the
fundamental group to Sn, such that the kernel of the homomorphism has infinite abelian-
ization.

Field GoodCover: A list describing the construction of the good cover.

Field Degree: A positive integer, the degree of the GoodCoverImage permutation repre-
sentation.

Field KnownPosBettiCover: A boolean value, always true in the current database.

Field KnownWeakPosBettiCover: A boolean value, always true in the current database.

Ch. 66 DATABASES OF GROUPS 1987

Field Reason: A string, one of "AbelianInvariants", "RationalReconstruction" or
"MAGMA".

Field Rank: A positive integer.

Field GoodCoverImageU: A possibly empty sequence of permutations or integers 1 repre-
senting the identity permutation.

ManifoldDatabase()

Open the database and return a reference to it.

Manifold(D, i)

Extract the ith record from the database of fundamental groups of 3-dimensional
manifolds. The current limits on i are 1 ≤ i ≤ 11126.

66.17.2 Accessing the Data
The intrinsic Manifold is one way to access the data in the database. It may be more con-
venient to iterate over the database object returned by ManifoldDatabase. The following
examples show how this may be done.

Example H66E24

We extract a record from the database.

> D := ManifoldDatabase();

> r := Manifold(D, 100);

> r‘Name;

m019(1,4)

> r‘Homology;

[2, 31]

> r‘Group;

Finitely presented group on 2 generators

Relations

$.1 * $.2^3 * $.1 * $.2 * $.1^4 * $.2 * $.1 * $.2 * $.1^4

* $.2 = Id($)

$.1 * $.2 * $.1 * $.2^2 * $.1^-3 * $.2^2 = Id($)

> r‘GoodCoverImage;

[

(1, 2, 4, 6, 5, 8, 7, 9, 3),

(1, 3, 5, 4, 7, 6, 9, 8, 2)

]

In [DT03], Dunfield and Thurston note that they found 132 manifolds with positive Betti number.
We find them in the database as those records where the Degree is 1. We then search the database
for one of these, but by name. Both searches use the facility to iterate over the database that was
mentioned above.

> D := ManifoldDatabase();

> pos_betti := {r‘Name:r in D|r‘Degree eq 1};

1988 FINITE GROUPS Part X

> #pos_betti;

132

> Random(pos_betti);

s527(-5,1)

> exists(r){r:r in D|r‘Name eq "s527(-5,1)"};

true

> F := r‘Group; F;

Finitely presented group F on 2 generators

Relations

F.1^2 * F.2^2 * F.1^2 * F.2^-1 * F.1^2 * F.2^2 * F.1^2 *

F.2^2 * F.1^-1 * F.2^2 = Id(F)

F.1^2 * F.2^2 * F.1^2 * F.2 * F.1^2 * F.2^2 * F.1^2 * F.2

* F.1^2 * F.2^2 * F.1^2 * F.2 * F.1^2 * F.2^2 * F.1^2 *

F.2 * F.1^2 * F.2^2 * F.1^2 * F.2 * F.1^2 * F.2^2 * F.1^2

* F.2^2 * F.1^-3 * F.2^2 = Id(F)

> AbelianQuotientInvariants(F);

[7, 0]

> r‘Homology;

[0, 7]

As expected, we see that the fundamental group has infinite abelianization.

66.18 Bibliography

[BE99a] Hans Ulrich Besche and Bettina Eick. Construction of finite groups. J.
Symbolic Comput., 27(4):387–404, 1999.

[BE99b] Hans Ulrich Besche and Bettina Eick. The groups of order at most 1000
except 512 and 768. J. Symbolic Comput., 27(4):405–413, 1999.

[BE01] Hans Ulrich Besche and Bettina Eick. The groups of order qn · p. Comm.
Algebra, 29(4):1759–1772, 2001.

[BEO01] Hans Ulrich Besche, Bettina Eick, and E. A. O’Brien. The groups of order
at most 2000. Electron. Res. Announc. Amer. Math. Soc., 7:1–4 (electronic), 2001.

[BP00] Sergey Bratus and Igor Pak. Fast constructive recognition of a black box
group isomorphic to Sn or An using Goldbach’s conjecture. J. Symbolic Comp., 29:33–
57, 2000.

[CH08] J.J. Cannon and D.F. Holt. The transitive permutation groups of degree 32.
Experiment. Math., 17:307–314, 2008.

[CQRD11] Hannah J. Coutts, Martyn Quick, and Colva M. Roney-Dougal. The primi-
tive permutation groups of degree less than 4096. Communications in Algebra, 39:10:
3526–3546, 2011.

[DE05] Heiko Dietrich and Bettina Eick. On the groups of cubefree order. J. Algebra,
292:122–137, 2005.

Ch. 66 DATABASES OF GROUPS 1989

[DT03] Nathan M. Dunfield and William P. Thurston. The virtual Haken conjecture;
experiments and examples. Geometry & Topology, 7:399–441, 2003.

[HP89] D.F. Holt and W. Plesken. Perfect Groups. Oxford University Press, 1989.
[Hul05] Alexander Hulpke. Constructing transitive permutation groups. J. Symbolic

Comput., 39(1):1–30, 2005.
[Kir09] M. Kirschmer. Finite symplectic matrix groups. Dissertation, RWTH

Aachen, 2009. available at
URL:http://www.math.rwth-aachen.de/ Markus.Kirschmer/symplectic/thesis.pdf.

[MNVL04] E.A. O’Brien M.F. Newman and M.R. Vaughan-Lee. Groups and nilpotent
Lie rings whose order is the sixth power of a prime. J. Algebra, 278:383–401, 2004.

[Neb96] G. Nebe. Finite subgroups of GLn(Q) for 25 ≤ n ≤ 31. Comm. Algebra,
24(7):2341–2397, 1996.

[Neb98] G. Nebe. Finite quaternionic matrix groups. Represent. Theory, 2:106–223,
1998.

[NP95] G. Nebe and W. Plesken. Finite rational matrix groups. Mem. Amer. Math.
Soc., 116(556), 1995.

[O’B90] E.A. O’Brien. The p-group generation algorithm. J. Symbolic Comput.,
9:677–698, 1990.

[O’B91] E.A. O’Brien. The Groups of Order 256. J. Algebra, 143:219–235, 1991.
[OVL05] E.A. O’Brien and M.R. Vaughan-Lee. The groups with order p7 for odd

prime p. J. Algebra, 2005.
[Ple85] Wilhelm Plesken. Finite unimodular groups of prime degree and circulants.

J. Algebra, 97:286–312, 1985.
[PP77] Wilhelm Plesken and Michael Pohst. On maximal finite irreducible subgroups

of GL(n,Z). Parts I and II. Math. Comp., 31:536–576, 1977.
[PP80] Wilhelm Plesken and Michael Pohst. On maximal finite irreducible subgroups

of GL(n,Z). Parts III-V. Math. Comp., 34(149):245–301, 1980.
[RD05] Colva M. Roney-Dougal. The primitive permutation groups of degree less

than 2500. J. Algebra, 292(1):154–183, 2005.
[RDU03] Colva M. Roney-Dougal and William R. Unger. The affine primitive permu-

tation groups of degree less than 1000. J. Symbolic Comp., 35:421–439, 2003.
[Sho92] Mark W. Short. The Primitive Soluble Permutation Groups of Degree less

than 256, volume 1519 of Lecture Notes in Math. Springer, Berlin and Heidelberg,
1992.

[Sim70] C.C. Sims. Computational methods in the study of permutation groups. In
J. Leech, editor, Computational problems in abstract algebra, pages 169–183. Oxford -
Pergamon, 1970.

[Sou94] Bernd Souvignier. Irreducible finite integral matrix groups of degree 8 and
10. Math. Comp., 63:335–350, 1994.

67 AUTOMORPHISM GROUPS
67.1 Introduction 1993

67.2 Creation of Automorphism
Groups 1994

AutomorphismGroup(G) 1994
AutomorphismGroup(G, Q, I) 1996

67.3 Access Functions 1996

Group(A) 1996
NumberOfGenerators(A) 1996
Ngens(A) 1996
NumberOfPCGenerators(A) 1996
NPCGenerators(A) 1996
NPCgens(A) 1996
Generators(A) 1996
PCGenerators(A) 1996
InnerGenerators(A) 1996
CharacteristicSeries(A) 1997
IsSoluble(A) 1997
IsSolvable(A) 1997
IsSolubleAutomorphismGroupPGroup(A) 1997
IsSolvableAutomorphismGroupPGroup(A) 1997

67.4 Order Functions 1997

Order(A) 1997
1997
FactoredOrder(A) 1997
OuterOrder(A) 1997

67.5 Representations of an Automor-
phism Group 1999

PermutationRepresentation(A) 1999

PermutationGroup(A) 1999
PermutationSupport(A) 1999
PCGroupAutomorphismGroupPGroup(A) 1999
FPGroup(A) 1999
OuterFPGroup(A) 1999

67.6 Automorphisms 2001

. 2001
Identity(A) 2001
Id(A) 2001
! 2001
! 2002
Order(f) 2002
* 2002
^ 2002
(g1, ..., gr) 2002
eq 2002
ne 2002
IsInner(f) 2002

67.7 Stored Attributes of an Auto-
morphism Group 2004

HasAttribute(A, s) 2004
SetAttribute(A, s, v) 2004

67.8 Holomorphs 2007

Holomorph(G) 2007
Holomorph(GrpFP, G) 2007
Holomorph(G, A) 2007
Holomorph(GrpFP, G, A) 2007

67.9 Bibliography 2008

Chapter 67

AUTOMORPHISM GROUPS

67.1 Introduction
Magma provides facilities for constructing and working with automorphism groups of
various objects. In this chapter we describe the machinery provided in Magma for groups
of automorphisms in the case of groups.

An automorphism of a group G is a bijective homomorphism from G to itself. The set
of all automorphisms of G forms a group U known as the automorphism group of G. A
subgroup A of U will be referred to as a group of automorphisms of G. The group G is
called the base group of a group of automorphisms A and we say that A acts on G. Each
Magma automorphism group A stores, as part of its data structure, a generating set for
its base group, and each automorphism of A is described by its action on these generators.

The full group of automorphisms may be found using an algorithm that proceeds as
follows: A series of characteristic subgroups

1 = Nr < Nr−1 < . . . < N1 = L < G

is constructed for the given group G, such that each Ni/Ni+1 is elementary abelian and
such that G/L has no non-trivial soluble normal subgroup. The automorphism group is
found for each of the associated factor groups of G, starting with the top factor G/L and
lifting through each layer Ni/Ni+1 in turn, until we finally have the automorphism group
for G itself. The general algorithm for a non-soluble group is described in Cannon and
Holt [CH03]. More specialised versions are described by Eick, Leedham-Green and O’Brien
[ELGO02] (p-groups) and Smith [Smi94] (soluble groups). This general class of algorithms
will be referred to collectively as lifting algorithms.

When G is a non-soluble permutation or matrix group, the algorithm relies on a
database of automorphism groups for the non-cyclic simple factors of G, hence the non-
abelian composition factors of G must belong to a restricted list. In V2.11 this list includes
all simple groups of order at most 1.6 × 107, the alternating groups of degree at most
1000, all groups from several generic families, including PSL(2, q), PSL(3, q), PSL(4, p),
PSL(5, p), PSU(3, p) and PSp(4, p) and the sporadic groups M11, M12, M22, M23, M24,
J1, J2, J3, HS, McL, Co3, He and others. The list is being extended regularly.

An automorphism group A of G is represented as a set of homomorphisms of G into
itself. We shall refer to this as the mappings representation of A. The full automorphism
group is also returned as a finitely presented group and, in addition, it is also possible to
construct a permutation representation of the automorphism.

The family of all groups of automorphisms forms a category. The objects are the auto-
morphism groups and the morphisms are group homomorphisms. The Magma designation
for this category of automorphism groups is GrpAuto.

1994 FINITE GROUPS Part X

67.2 Creation of Automorphism Groups

An automorphism group of the finite group G may be created in one of two ways. Firstly,
the full automorphism group of G may be constructed by invoking an appropriate lifting
algorithm. Secondly, an arbitrary group of automorphisms A of G may be created by
giving a set of generators for A defined in terms of their action on a set of generators for
G.

AutomorphismGroup(G)

Given a finite group G, construct the full automorphism group F of G. The group
G may be a permutation group, a (finite) matrix group or a finite soluble group
given by a pc-presentation. The function returns the full automorphism group of
G as a group of mappings (i.e., as a group of type GrpAuto). If G is a permu-
tation or matrix group, then the automorphism group F is also computed as a
finitely presented group and can be accessed via the function FPGroup(F). A func-
tion PermutationRepresentation is provided that when applied to F attempts to
construct a faithful permutation representation of reasonable degree (see below).

SmallOuterAutGroup RngIntElt Default : 20000

SmallOuterAutGroup := t: Specify the strategy for the backtrack search when
testing an automorphism for lifting to the next layer. If the outer automorphism
group O at the previous level has order at most t, then the regular representation
of O is used, otherwise the program tries to find a smaller degree permutation
representation of O.

Print RngIntElt Default : 0

The level of verbose printing. The possible values are 0, 1, 2 or 3.

PrintSearchCount RngIntElt Default : 1000

PrintSearchCount := s: If Print := 3, then a message is printed at each s-th
iteration during the backtrack search for lifting automorphisms.

In the case of a non-soluble group, the algorithm described in Cannon and Holt
[CH03] is used. If G is a p-group of type GrpPC the algorithm described in Eick,
Leedham-Green and O’Brien [ELGO02] is used. For more details see Section 63.12.2.
If G is of type GrpPC but is not a p-group, the algorithm of Smith [Smi94], as
extended by Smith and Slattery, is used. For more details see Section 63.12.

When G is a non-soluble permutation or matrix group, the algorithm relies on a
database of automorphism groups for the non-cyclic simple factors of G, hence the
non-abelian composition factors of G must belong to a restricted list. In V2.11 this
list includes all simple groups of order at most 1.6× 107, the alternating groups of
degree at most 1000, all groups from several generic families, including PSL(2, q),
PSL(3, q), PSL(4, p), PSL(5, p), PSU(3, p) and PSp(4, p) and the sporadic groups
M11, M12, M22, M23, M24, J1, J2, J3, HS, McL, Co3, He and others. The list is
being extended regularly.

Ch. 67 AUTOMORPHISM GROUPS 1995

Example H67E1

We create a non-soluble group G of 4× 4 matrices defined over the field of 8-th roots of unity and
construct its automorphism group.

> L<zeta_8> := CyclotomicField(8);

> i := -zeta_8^2;

> t := zeta_8^3;

> G := MatrixGroup< 4, L |

> [1/2, 1/2, 1/2, 1/2,

> 1/2,-1/2, 1/2,-1/2,

> 1/2, 1/2,-1/2,-1/2,

> 1/2,-1/2,-1/2, 1/2],

> DiagonalMatrix([1,1,1,-1]),

> DiagonalMatrix([1,i,1,i]),

> DiagonalMatrix([t,t,t,t]) >;

> Order(G);

92160

> CompositionFactors(G);

G

| Cyclic(2)

*

| Alternating(6)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

1

> A := AutomorphismGroup(G);

> Order(A);

92160

1996 FINITE GROUPS Part X

AutomorphismGroup(G, Q, I)

Let G be a finite group and let Q be a sequence of elements which generate G.
Let φ1, . . . , φr be a sequence of automorphisms of G that generate the group of
automorphisms A. The group A is specified by a sequence I of length r where the
i-th term of I defines φi in terms of a sequence containing the images of the elements
of Q under the action of φi. The function returns the group of automorphisms A of
G.

67.3 Access Functions

The functions described here provide access to basic information stored for an automor-
phism group A.

Group(A)

Given a group of automorphisms A of the group G, return the base group G on
which A acts.

NumberOfGenerators(A)

Ngens(A)

Given a group of automorphisms A of the group G, return the number of defining
generators for A.

NumberOfPCGenerators(A)

NPCGenerators(A)

NPCgens(A)

Given a group of automorphisms A of the group G, where a pc-representation has
been created for A (and attribute PCGenerators is set on A), return the number of
pc-generators for A.

Generators(A)

Given a group of automorphisms A of the group G, return a set containing the
defining generators of A.

PCGenerators(A)

Given a group of automorphisms A of the group G, where a pc-representation has
been created for A (and attribute PCGenerators is set on A), return an indexed set
containing the pc-generators of A.

InnerGenerators(A)

Given the full group of automorphisms A of the group G, return a sequence of
generators for the inner automorphism group of the base group of A (attribute
InnerGenerators), if this attribute has been set.

Ch. 67 AUTOMORPHISM GROUPS 1997

CharacteristicSeries(A)

Given a group of automorphisms A of the group G, return the value of the charac-
teristic series of G used to compute A, if this attribute has been set.

IsSoluble(A)

IsSolvable(A)

Given a group of automorphisms A of the group G, return the value of A’s attribute
Soluble, if this attribute has been set.

IsSolubleAutomorphismGroupPGroup(A)

IsSolvableAutomorphismGroupPGroup(A)

Given a group of automorphisms A of a p-group G constructed using the intrinsic
AutomorphismGroup(G) or any equivalent alias, determine if A is soluble and return
the result. This function also sets the Soluble attribute on A.

67.4 Order Functions

Unless the order is already known, each of the functions in this family will create a faithful
permutation representation of the group of automorphisms in order to compute the order.

Order(A)

#A

The order of the group of automorphisms A, returned as an integer. If not already
known, this function will create a permutation representation for A.

FactoredOrder(A)

The factored order of the group of automorphisms A. If not already known, this
function will create a permutation representation for A.

OuterOrder(A)

The order of the outer automorphism group associated with the group of automor-
phisms A.

Example H67E2

We create the non-soluble group G = PGL(2, 9) and examine the properties of its automorphism
group.

> G := PGL(2, 9);

> A := AutomorphismGroup(G);

> A;

A group of automorphisms of GrpPerm: G, Degree 10, Order 2^4 * 3^2 * 5

Generators:

Automorphism of GrpPerm: G, Degree 10, Order 2^4 * 3^2 * 5 which maps:

(3, 5, 9, 6, 7, 4, 8, 10) |--> (1, 7, 3, 5, 4, 2, 10, 9)

1998 FINITE GROUPS Part X

(1, 8, 2)(3, 4, 5)(6, 10, 7) |--> (1, 6, 8)(2, 7, 10)(3, 9, 5)

Automorphism of GrpPerm: G, Degree 10, Order 2^4 * 3^2 * 5 which maps:

(3, 5, 9, 6, 7, 4, 8, 10) |--> (1, 4, 6, 10, 7, 8, 5, 9)

(1, 8, 2)(3, 4, 5)(6, 10, 7) |--> (1, 9, 10)(2, 6, 3)(4, 8, 7)

Automorphism of GrpPerm: G, Degree 10, Order 2^4 * 3^2 * 5 which maps:

(3, 5, 9, 6, 7, 4, 8, 10) |--> (3, 5, 9, 6, 7, 4, 8, 10)

(1, 8, 2)(3, 4, 5)(6, 10, 7) |--> (1, 10, 2)(3, 4, 7)(5, 8, 9)

Automorphism of GrpPerm: G, Degree 10, Order 2^4 * 3^2 * 5 which maps:

(3, 5, 9, 6, 7, 4, 8, 10) |--> (1, 10, 3, 5, 2, 4, 7, 6)

(1, 8, 2)(3, 4, 5)(6, 10, 7) |--> (1, 6, 2)(3, 7, 5)(4, 9, 8)

> #A;

1440

> FactoredOrder(A);

[<2, 5>, <3, 2>, <5, 1>]

> OuterOrder(A);

2

> InnerGenerators(A);

[

Automorphism of GrpPerm: G, Degree 10, Order 2^4 * 3^2 * 5 which maps:

(3, 5, 9, 6, 7, 4, 8, 10) |--> (1, 7, 3, 5, 4, 2, 10, 9)

(1, 8, 2)(3, 4, 5)(6, 10, 7) |--> (1, 6, 8)(2, 7, 10)(3, 9, 5),

Automorphism of GrpPerm: G, Degree 10, Order 2^4 * 3^2 * 5 which maps:

(3, 5, 9, 6, 7, 4, 8, 10) |--> (1, 4, 6, 10, 7, 8, 5, 9)

(1, 8, 2)(3, 4, 5)(6, 10, 7) |--> (1, 9, 10)(2, 6, 3)(4, 8, 7),

Automorphism of GrpPerm: G, Degree 10, Order 2^4 * 3^2 * 5 which maps:

(3, 5, 9, 6, 7, 4, 8, 10) |--> (3, 5, 9, 6, 7, 4, 8, 10)

(1, 8, 2)(3, 4, 5)(6, 10, 7) |--> (1, 10, 2)(3, 4, 7)(5, 8, 9)

]

> CharacteristicSeries(A);

[

Permutation group G acting on a set of cardinality 10

Order = 720 = 2^4 * 3^2 * 5

(3, 5, 9, 6, 7, 4, 8, 10)

(1, 8, 2)(3, 4, 5)(6, 10, 7),

Permutation group acting on a set of cardinality 10

Order = 1

]

Ch. 67 AUTOMORPHISM GROUPS 1999

67.5 Representations of an Automorphism Group

To compute with automorphism groups, Magma uses various concrete representations of
the group. These are summarised in this section.

PermutationRepresentation(A)

Construct a permutation representation of the group of automorphisms A. The
function finds a union of conjugacy classes of the base group G which is closed
under the action of A and with G-normal closure equal to G. The permutation
action of A on such a set is faithful. The results returned are the representation of
A as a homomorphism A→ P , the image of this homomorphism as a permutation
group with standard support, and the set of elements of G used.

PermutationGroup(A)

Given a group of automorphisms A of a group G, this function returns a per-
mutation group isomorphic to A as defined in the description of the function
PermutationRepresentation.

PermutationSupport(A)

Given a group of automorphisms A of a group G, this function returns the set
of elements of G (i.e., a union of conjugacy classes) used as the support of the
permutation group constructed by the PermutationRepresentation function.

PCGroupAutomorphismGroupPGroup(A)

Attempt to directly construct a pc-representation for the group of automor-
phisms A of a conditioned p-group G. A must have been constructing using the
AutomorphismGroup intrinsic, or any equivalent alias. The results returned are a
boolean value indicating the solubility of A, and if soluble, a representation of A as
a homomorphism A→ P and the image of this homomorphism as a pc-group.

FPGroup(A)

A presentation for the group of automorphisms A on the generators of A. The
isomorphism from the finitely presented group to the group of automorphisms A is
also returned.

OuterFPGroup(A)

Suppose that A is the full group of automorphisms of a group G. This function
returns a finitely presented group O isomorphic to the outer automorphism group
of the base group G. The natural homomorphism from FPGroup(A) onto O is also
returned.

2000 FINITE GROUPS Part X

Example H67E3

We calculate a permutation representation and presentation for the group of automorphisms of
PSL(2, 9).

> G := PGL(2, 9);

> A := AutomorphismGroup(G);

> PermutationGroup(A);

Permutation group acting on a set of cardinality 36

Order = 1440 = 2^5 * 3^2 * 5

(1, 30)(3, 27)(5, 17)(6, 24)(8, 9)(10, 14)(11, 13)(12, 32) (15, 34)(16, 21)

(18, 25)(19, 28)(22, 29)(23, 31)(26, 33)(35, 36)

(1, 32, 19, 22)(2, 34)(3, 18, 7, 17)(4, 25, 30, 31) (5, 23, 33, 24)

(6, 15, 26, 21)(8, 16, 29, 20)(9, 35, 14, 27) (10, 13, 11, 12)(28, 36)

(1, 2, 3, 5, 8, 13, 22, 31)(4, 7, 9, 15, 24, 26, 34, 29)

(6, 10, 17, 23, 32, 33, 28, 35)(11, 19, 27, 16, 25, 21, 30, 36)

(12, 20, 14, 18)

(1, 32, 33, 12, 21, 6)(2, 34, 26, 35, 17, 16)(3, 28, 22, 7, 18, 13)

(4, 31, 20, 29, 24, 11)(5, 19, 25, 10, 15, 8)(9, 30, 36, 14, 23, 27)

> F<x, y, z, t> := FPGroup(A);

> F;

Finitely presented group F on 4 generators

Relations

x^2 = Id(F)

y^4 = Id(F)

(x * y^-1)^5 = Id(F)

y^-2 * x * y^-2 * x * y^-2 * x * y^2 * x * y^2 * x = Id(F)

z^-1 * x * z * y^-1 * x^-1 * y^-2 * x^-1 * y * x^-1 *

y^-2 * x^-1 * y * x^-1 * y^-1 * x^-1 = Id(F)

z^-1 * y * z * y * x^-1 * y * x^-1 * y^-1 * x^-1 = Id(F)

z^2 * y^-1 * x^-1 * y * x^-1 * y^-1 * x^-1 = Id(F)

x^t = y * x * y^-1

y^t = y^-1 * x * y * x * y

z^t = z * x * y^-1 * x

t^2 = x * y^2 * x * y^-1 * x * y

Example H67E4

We illustrate the process of finding a low degree permutation representation of an automorphism
group using the above functions. We start with the Higman-Sims sporadic simple group, construct
its automorphism group, and then use the function PermutationGroup to obtain a permutation
representation.

> load hs100;

Loading "/home/magma/libs/pergps/hs100"

The simple group of Higman-Sims represented as a

permutation group of degree 100.

Order: 44 352 000 = 2^9 * 3^2 * 5^3 * 7 * 11.

Base: 1, 2, 3, 4, 5, 6.

Ch. 67 AUTOMORPHISM GROUPS 2001

Group: G

> aut := AutomorphismGroup(G);

> P := PermutationGroup(aut);

> P;

Permutation group P acting on a set of cardinality 5775

Order = 88704000 = 2^10 * 3^2 * 5^3 * 7 * 11

We’ve got a permutation representation on 5775 letters. Now we want to get it on 100 letters, so
we need to find the subgroup of index 100.

> lix := LowIndexSubgroups(P, 100);

> [Index(P, H) : H in lix];

[1, 2, 100]

There it is, so we can compute the corresponding permutation representation.

> H := CosetImage(P, lix[3]);

> H;

Permutation group H acting on a set of cardinality 100

> CompositionFactors(H);

G

| Cyclic(2)

*

| HS

1

67.6 Automorphisms

The elements of a group of automorphisms are automorphisms of the base group, so
Magma treats them as both homomorphisms and group elements. Thus they may be
applied to elements and subgroups of the base group as a homomorphism, or they may be
multiplied and have inverses taken as group elements. Of course, these last two operations
are also homomorphism operations, being composition and the usual inverse of a bijection.
Elements of a group of automorphisms are of type GrpAutoElt.

A . i

Let A be a group of automorphisms of a group G and let i be an integer such that
−n ≤ i ≤ n, where n is the number of generators of A. This operator returns the
i-th generator for A. A negative subscript indicates that the inverse of the generator
is to be created. Finally, A.0 denotes the identity of A.

Identity(A)

Id(A)

A ! 1

The identity element of the group of automorphisms A.

2002 FINITE GROUPS Part X

A ! f

Let A be a group of automorphisms of a group G. Given an automorphism f of G,
represented as a Magma map, this function returns the element of A corresponding
to f . An error will result if f is not in the group generated by the generators of A.
This uses the permutation representation of A to test for membership.

Order(f)

The order of the group automorphism f .

f * g

The product of the group automorphisms f and g. If f and g are regarded as maps,
this function returns their composite: first apply f , then apply g.

f ^ n

The nth power of the group automorphism f . The integer n may be positive or
negative.

(g1, ..., gr)

The left-normed commutator of the group automorphisms g1, . . . , gr. Each of
g1, . . . , gr must belong to a common automorphism group.

g eq h

Given group automorphisms g and h belonging to the same automorphism group,
return true if g and h are the same element, false otherwise.

g ne h

Given group automorphisms g and h belonging to the same automorphism group,
return false if g and h are the same element, true otherwise.

IsInner(f)

Returns true if the group automorphism f is an inner automorphism of the base
group, false otherwise. If f is inner, then an element of the base group with
conjugation action equal to the action of f is also returned.

Ch. 67 AUTOMORPHISM GROUPS 2003

Example H67E5

We illustrate some arithmetic operations with elements of the full group of automorphisms of a
group of order 81.

> G := SmallGroup(81, 10);

> G;

GrpPC : G of order 81 = 3^4

PC-Relations:

G.1^3 = G.4,

G.2^3 = G.4^2,

G.2^G.1 = G.2 * G.3,

G.3^G.1 = G.3 * G.4

> A := AutomorphismGroup(G);

> #A;

486

> Ngens(A);

5

> IsInner(A.3);

false

> Order(A.3);

3

> A.3;

Automorphism of GrpPC : G of order 3 which maps:

G.1 |--> G.1

G.2 |--> G.2 * G.4^2

G.3 |--> G.3

G.4 |--> G.4

> A.3*A.4;

Automorphism of GrpPC : G which maps:

G.1 |--> G.1

G.2 |--> G.2 * G.3 * G.4^2

G.3 |--> G.3 * G.4

G.4 |--> G.4

> (A.3*A.4)^3;

Automorphism of GrpPC : G which maps:

G.1 |--> G.1

G.2 |--> G.2

G.3 |--> G.3

G.4 |--> G.4

> $1 eq Id(A);

true

Example H67E6

We can use the automorphism group machinery to determine the characteristic subgroups of a
group.

> CharacteristicSubgroups := function(G)

2004 FINITE GROUPS Part X

> local A, outers, NS, CS;

> A := AutomorphismGroup(G);

> outers := [a : a in Generators(A) | not IsInner(a)];

> NS := NormalSubgroups(G);

> CS := [n : n in NS | forall{a: a in outers| a(n‘subgroup) eq n‘subgroup }];

> return CS;

> end function;

>

> CS := CharacteristicSubgroups(DirectProduct(Alt(4),Alt(4)));

> [c‘order: c in CS];

[1, 16, 144]

> G := SmallGroup(512,298);

> #NormalSubgroups(G);

42

> #CharacteristicSubgroups(G);

28

67.7 Stored Attributes of an Automorphism Group

Groups of automorphisms have several attributes that may be stored as part of their data
structure. The function HasAttribute is used to test if an attribute is stored and to
retrieve its value, while the function SetAttribute is used to set attribute values. The
user is warned that when using SetAttribute the data given is not checked for validity,
apart from some simple type checks. Setting attributes incorrectly will result in errors.

HasAttribute(A, s)

SetAttribute(A, s, v)

The HasAttribute function returns whether the group of automorphisms A has the
attribute named by the string s defined and, if so, also returns the value of the
attribute.

The SetAttribute procedure sets the attribute of the group of automorphisms
group named by string s to have value v. The possible names are:
Group: The base group of the automorphism group. This is always set.
Order: The order of the automorphism group. It is an integer and may be set by
giving either an integer or a factored integer.
OuterOrder: The order of the outer automorphism group associated with A. It is
an integer and may be set by giving either an integer or a factored integer.
Soluble: (also Solvable) A boolean value telling whether or not the automorphism
group is soluble.
InnerGenerators: A sequence of generators of A known to be inner automorphisms.
InnerMap: A homomorphism from the base group to the automorphism group taking
each base group element to its corresponding inner automorphism.
ClassAction: Stores the result of the PermutationRepresentation function call.

Ch. 67 AUTOMORPHISM GROUPS 2005

ClassImage: Stores the result of the PermutationGroup function call.
ClassUnion: Stores the result of the ClassUnion function call.
FpGroup: Stores the result of the FPGroup function call.
OuterFpGroup: Stores the result of the OuterFPGroup function call.
GenWeights: WeightSubgroupOrders: See the section on automorphism groups in
the chapter on soluble groups for details.

Example H67E7

We select a group of order 904 from the small groups database and compute its group of auto-
morphisms.

> G := SmallGroup(904, 4);

> FactoredOrder(G);

[<2, 3>, <113, 1>]

> FactoredOrder(Centre(G));

[<2, 1>]

> A := AutomorphismGroup(G);

> FactoredOrder(A);

[<2, 7>, <7, 1>, <113, 1>]

> HasAttribute(A, "FpGroup");

false

> HasAttribute(A, "OuterFpGroup");

false

Note that values for some attributes, such as FpGroup, have not been calculated. The outer
automorphism group has order 25 × 7. We find the characteristic subgroups of G.

> n := NormalSubgroups(G);

> [x‘order : x in n];

[1, 2, 113, 4, 226, 452, 452, 452, 904]

> characteristics := [s : x in n |

> forall{f: f in Generators(A) | s@f eq s}

> where s is x‘subgroup];

> [#s : s in characteristics];

[1, 2, 113, 4, 226, 452, 904]

Note that two of the normal subgroups of order 452 are not characteristic.

Example H67E8

> G := AlternatingGroup(6);

> A := AutomorphismGroup(G);

> HasAttribute(A, "OuterFpGroup");

true

> F, f := FPGroup(A);

> O, g := OuterFPGroup(A);

> O;

Finitely presented group O on 2 generators

2006 FINITE GROUPS Part X

Relations

O.1^2 = Id(O)

O.2^2 = Id(O)

(O.1 * O.2)^2 = Id(O)

> A‘OuterOrder;

4

We find the outer automorphism group is elementary abelian of order 4. The direct product of
G with itself has maximal subgroups isomorphic to G, in the form of diagonal subgroups. We can
construct four non-conjugate examples using the outer automorphism group. The first example
can be constructed without using an outer automorphism.

> GG, ins := DirectProduct(G, G);

> M := sub<GG|[(x@ins[1])*(x@ins[2]):x in Generators(G)]>;

> IsMaximal(GG, M);

true

The subgroup M is the first, the obvious diagonal, constructed using just the embeddings returned
by the direct product function. We get others by twisting the second factor using an outer
automorphism. First we get (representatives of) the outer automorphisms explicitly.

> outers := {x @@ g @ f : x in [O.1, O.2, O.1*O.2]};

> Representative(outers);

Automorphism of GrpPerm: G, Degree 6, Order 2^3 * 3^2 * 5 which maps:

(1, 2)(3, 4, 5, 6) |--> (1, 3, 6, 2)(4, 5)

(1, 2, 3) |--> (1, 4, 2)(3, 5, 6)

The set outers now contains three distinct outer automorphisms of G. We use them to get three
more diagonal subgroups.

> diags := [M] cat

> [sub<GG|[(x @ ins[1])*(x @ f @ ins[2]):x in Generators(G)]>:

> f in outers];

> [IsMaximal(GG, m) : m in diags];

[true, true, true, true]

> IsConjugate(GG, diags[2], diags[4]);

false

The other five tests for conjugacy will give similarly negative results.

Ch. 67 AUTOMORPHISM GROUPS 2007

67.8 Holomorphs
Given a group G and the full group of automorphisms A of G then the holomorph of G is
the semidirect product G×θ A, where θ : A→ Aut(G) is the identity map.

Holomorph(G)

Holomorph(GrpFP, G)

Given a finite permutation, matrix or pc-group G with full group of automorphisms
A, this function returns the semidirect product E of G by A. The group E is
returned as a permutation group (or a finitely presented group if GrpFP is specified)
of degree |G| in which G is a regular normal subgroup, and A is the stabilizer of
the point 1. The embedding map G→ E, and the natural epimorphism E → A are
also returned. In the returned group E, the generators of G appear first, followed
by those of A.

Holomorph(G, A)

Holomorph(GrpFP, G, A)

Given a finite permutation, matrix or pc-group G and a group of automorphisms A,
this function returns the semidirect product E of G by A. The group E is returned
as a permutation group (or a finitely presented group if GrpFP is specified) of degree
|G| in which G is a regular normal subgroup, and A is the stabilizer of the point
1. The embedding map G → E, and the natural epimorphism E → A are also
returned. In the returned group E, the generators of G appear first, followed by
those of A.

Example H67E9

We construct the holomorph of the group G = PGL(2, 9).

> G := PGL(2, 9);

> E := Holomorph(G); E;

Permutation group E acting on a set of cardinality 720

> #E;

1036800

> CompositionFactors(E);

G

| Cyclic(2)

*

| Cyclic(2)

*

| Cyclic(2)

*

| Alternating(6)

*

| Alternating(6)

1

2008 FINITE GROUPS Part X

67.9 Bibliography
[CH03] J.J. Cannon and D.F. Holt. Automorphism group computation and isomor-

phism testing in finite groups. J. Symbolic Comp., 35(3):241–267, 2003.
[ELGO02] Bettina Eick, C.R. Leedham-Green, and E.A. O’Brien. Constructing auto-

morphism groups of a p-groups. Comm. Algebra, 30:2271–2295, 2002.
[Smi94] Michael J. Smith. Computing automorphisms of finite soluble groups. PhD

thesis, Australian National University, 1994.

68 COHOMOLOGY AND EXTENSIONS
68.1 Introduction 2011

68.2 Creation of a Cohomology Mod-
ule 2012

CohomologyModule(G, M) 2012
CohomologyModule(G, Q, T) 2012
CohomologyModule(G, A, M) 2013

68.3 Accessing Properties of the Co-
homology Module 2013

Module(CM) 2013
Invariants(CM) 2013
Dimension(CM) 2013
Ring(CM) 2013
Group(CM) 2013
FPGroup(CM) 2013
MatrixOfElement(CM, g) 2014

68.4 Calculating Cohomology . . . 2014

CohomologyGroup(CM, n) 2014
CohomologicalDimension(CM, n) 2014
CohomologicalDimension(M, n) 2014
CohomologicalDimensions(M, n) 2014
CohomologicalDimension(G, M, n) 2015

68.5 Cocycles 2016

ZeroCocycle(CM, s) 2016
IdentifyZeroCocycle(CM, s) 2016
OneCocycle(CM, s) 2017
IdentifyOneCocycle(CM, s) 2017
IsOneCoboundary(CM, s) 2017
TwoCocycle(CM, s) 2017
IdentifyTwoCocycle(CM, s) 2017
IsTwoCoboundary(CM, s) 2017

68.6 The Restriction to a Subgroup 2019

Restriction(CM, H) 2019

68.7 Other Operations on Cohomol-
ogy Modules 2020

CorestrictionMapImage(G, C, c, i) 2020
CorestrictCocycle(G, C, c, i) 2020
InflationMapImage(M, c) 2020
LiftCocycle(M, c) 2020
CoboundaryMapImage(M, i, c) 2020

68.8 Constructing Extensions . . . 2021

Extension(CM, s) 2021
SplitExtension(CM) 2021
pMultiplicator(G, p) 2021
pCover(G, F, p) 2021

68.9 Constructing Distinct Extensions2024

DistinctExtensions(CM) 2024
ExtensionsOfElementaryAbelian

Group(p, d, G) 2025
ExtensionsOfSolubleGroup(H, G) 2025
IsExtensionOf(G) 2027
IsExtensionOf(L) 2028

68.10 Finite Group Cohomology . 2028

68.10.1 Creation of Gamma-groups . . . 2029

GammaGroup(Gamma, A, action) 2029
InducedGammaGroup(A, B) 2029
IsNormalised(B, action) 2030
IsInduced(AmodB) 2030

68.10.2 Accessing Information 2030

Group(A) 2030
GammaAction(A) 2030
ActingGroup(A) 2030

68.10.3 One Cocycles 2031

OneCocycle(A, imgs) 2031
OneCocycle(A, alpha) 2031
TrivialOneCocycle(A) 2031
IsOneCocycle(A, imgs) 2031
IsOneCocycle(A, alpha) 2031
AreCohomologous(alpha, beta) 2031
CohomologyClass(alpha) 2031
InducedOneCocycle(AmodB, alpha) 2031
InducedOneCocycle(A, B, alpha) 2031
ExtendedOneCocycle(alpha) 2031
ExtendedCohomologyClass(alpha) 2032
GammaGroup(alpha) 2032
CocycleMap(alpha) 2032

68.10.4 Group Cohomology 2032

Cohomology(A, n) 2032
OneCohomology(A) 2032
TwistedGroup(A, alpha) 2032

68.11 Bibliography 2035

Chapter 68

COHOMOLOGY AND EXTENSIONS

68.1 Introduction

The following collection of cohomology functions is designed to provide a flexible set of
tools for computing with first and second cohomology groups of any type of finite group
acting on any reasonable module, including a module defined by an action on an arbitrary
finitely generated abelian group. First (but not second) cohomology groups can also be
calculated for infinite groups defined by a finite presentation.

Zero-cocycles, one-cocycles and two-cocycles may be computed and identified. Exten-
sions of modules by groups can be constructed as finitely presented groups, or as PC-groups
when the acting group is a PC-group. It is also possible to compute a representative set of
extensions of the module by the group each of which is distinct up to a group isomorphism
fixing the module. These functions complement, but do not completely supplant, an older
collection of functions pertaining to cohomology groups, Schur multiplicators and covering
groups which apply to permutation groups (see Chapter 58 on Permutation Groups).

The first cohomology group H1(G,M) is calculated as the nullspace of a certain ma-
trix. The details can be found in Section 5 of [CCH01]. This immediately allows ma-
nipulation and identification of one-cocycles. The second cohomology group H2(G,M) is
more difficult to compute. While it can also be found as the nullspace of a suitable ma-
trix, this matrix can be uncomfortably large in big examples. For soluble groups defined
by a PC-presentation, the matrix corresponds to solving the consistency equations for a
PC-presentation of a general extension of the module by the group, which depends on the
number of group generators rather than its order, and is manageable for quite large groups.
For permutation and matrix groups G, the size of the matrix for which the nullspace is
required is much larger, but can often be reduced to a reasonable size by using a base
and strong generating set for G. In the case where only the dimension of H2(G,M) is
required, and M is a module over a finite field of prime order p, then the calculation of
this dimension can be reduced to the determination of H2(Q,M) for a suitable collection
of p-subgroups Q of G. The latter calculation can be carried out efficiently using the
PC-presentation approach (see [Hol85b] for details).

To use the new functions, the user must initially invoke the function CohomologyModule,
which creates a special object for the group action corresponding to the module, and all
subsequent (new) cohomology functions take this object as their first argument.

In the case of a finite permutation or matrix group G acting on a module M over a
prime field, the dimension of H2(G,M) may be found much more quickly by executing
CohomologicalDimension(CM, 2), where CM is the cohomology module for the action of
G on M , rather than by invoking Dimension(CohomologyGroup(CM, 2)). However, the

2012 FINITE GROUPS Part X

former call does not allow the possibility of subsequent calculations with two-cocycles or
extensions.

The equivalent older function, CohomologicalDimension(G, M, 2); (for a permuta-
tion group G) is often faster still for small examples, but the new function will succeed on
much larger examples than the old. For the convenience of the reader, some of these older
functions are described in this section of the Handbook. For complete details about the
older functions, see the section on cohomology in the chapter on Permutation Groups.

68.2 Creation of a Cohomology Module
In order to compute the cohomology of a group with respect to a G-module M , it is first
necessary to construct a data structure known as a cohomology module.

CohomologyModule(G, M)

Given a group G and a G-module M with acting group G this function returns a
cohomology module for the action of G. The group G may be a finite permutation
group, a finite matrix group, a PC-group, or any finitely presented group. For the
PC-group case, however, the PC-presentation of G must be conditioned. This can
be achieved by first executing the statement G := ConditionedGroup(G);

CohomologyModule(G, Q, T)

Let G be a group which acts on a finitely-generated abelian group with invariants
given by the sequence Q, and action described by T . The action T is given in the
form of a sequence of d×d matrices over the integers, where d is the length of T , and
T[i] defines the action of the i-th generator of G on the abelian group. The function
returns a cohomology module for the action of G. The group G may be a finite per-
mutation group, a finite matrix group, a PC-group or any finitely presented group.
For the PC-group case, however, the PC-presentation of G must be conditioned.
This can be achieved by first executing the statement G := ConditionedGroup(G);

Example H68E1

We construct the cohomology module for PSL(3, 2) acting on a module of dimension 3 over
GF (2). We first need to find a module of dimension 3.

> G := PSL(3, 2);

> Irrs := AbsolutelyIrreducibleModules(G, GF(2));

> Irrs;

[

GModule of dimension 1 over GF(2),

GModule of dimension 3 over GF(2),

GModule of dimension 3 over GF(2),

GModule of dimension 8 over GF(2)

]

> M := Irrs[2];

> CM := CohomologyModule(G, M);

Ch. 68 COHOMOLOGY AND EXTENSIONS 2013

> CM;

Cohomology Module

CohomologyModule(G, A, M)

For a permutation group G acting on some abelian group A through M , compute
the cohomology module. M has to be either a map from G into the endomorphisms
of A, or a sequence of endomorphisms of A, one for each of the generators of G.

68.3 Accessing Properties of the Cohomology Module
The functions described in this section merely return data used to define the cohomology
module. In each case, the argument CM must be a cohomology module returned by a call
to CohomologyModule.

Module(CM)

The K[G]-module used to define the cohomology module CM . An error occurs if
CM was defined by an action on a finitely generated abelian group.

Invariants(CM)

Given a cohomology module CM that was defined by an action on a finitely gen-
erated abelian group A, return the invariants of A. If CM was not defined by an
action on an abelian group, an error results.

Dimension(CM)

Let CM be a cohomology module. If CM was defined by the action of a group on
an R-module M , return the dimension of M . In the case in which CM was defined
by the action of a group on a finitely generated abelian group A, the rank of A is
returned.

Ring(CM)

The ring over which the module used to define the cohomology module CM is
defined. If CM is defined in terms of an action on a finitely generated abelian group
A, then the ring will be the integers if A is infinite, and the integers modulo the
exponent of A if A is finite.

Group(CM)

The group used to define action on the cohomology module CM .

FPGroup(CM)

Given a cohomology module CM with associated groupG, return a finitely presented
group F isomorphic to G and the isomorphism from F to G. This presentation is
on a strong generating set if G is a permutation or matrix group. It is used in the
construction of presentations of extensions returned by the function Extension.

2014 FINITE GROUPS Part X

MatrixOfElement(CM, g)

The matrix representing the action of the element g in the group of CM on the
module of CM .

68.4 Calculating Cohomology

CohomologyGroup(CM, n)

Given a cohomology module CM for the group G acting on the module M and
a non-negative integer n taking one of the values 0, 1 or 2, this function returns
the cohomology group Hn(G,M). For modules defined over the ring of integers
only, n may also be equal to 3. (In this case, H3(G,M) is computed as the second
cohomology group of M regarded as a module over Q/Z.) If the group used to
define CM was a finitely presented group, then n may only be equal to 0 or 1. Note
that CM must be a module returned by invoking CohomologyModule.

CohomologicalDimension(CM, n)

Given a cohomology module CM for the group G acting on the module M defined
over a finite field K and a non-negative integer n taking one of the values 0, 1 or 2,
this function returns the dimension of Hn(G,M) over K. Note that this function
may only be applied to the module returned by a call to CohomologyModule(G, M),
where M is a module over a finite field K. When n = 2, this function is faster
and may be applied to much larger examples than CohomologyGroup(CM, n) but,
unlike that function, it does not enable the user to compute with explicit extensions
and two-cocycles.

Note that there are some alternative functions for performing these calculations
described in other manual chapters.

CohomologicalDimension(M, n)

For K[G]-module M (with K a finite field and G a finite group), compute and
return the K-dimension of the cohomology group Hn(G,M) for n ≥ 0. For n = 0
and 1, this is carried out by using the function CohomologicalDimension(CM,n) just
described. For n ≥ 2, it is done recursively using projective covers and dimension
shifting to reduce to the case n = 1.

CohomologicalDimensions(M, n)

For K[G]-module M (with K a finite field and G a finite group), compute and return
the sequence of K-dimensions of the cohomology groups Hk(G,M) for 1 ≤ k ≤ n.
On account of the recursive method used, this is quicker than computing them all
individually.

Ch. 68 COHOMOLOGY AND EXTENSIONS 2015

CohomologicalDimension(G, M, n)

Given the permutation group G, the K[G]-module M and an integer n (equal to 1
or 2), return the dimension of the n-th cohomology group of G acting on M . Note
that K must be a finite field of prime order. This function invokes Derek Holt’s
original C cohomology code (see [Hol85b]). In some cases it will be faster than the
function that uses the cohomology module data structure.

Example H68E2

We examine the first and second cohomology groups of the group A8.

> G := Alt(8);

> M := PermutationModule(G, GF(3));

We first calculate the dimensions of H1(G, M) and H2(G, M) using the old functions.

> time CohomologicalDimension(G, M, 1);

0

Time: 0.020

> time CohomologicalDimension(G, M, 2);

1

Time: 0.020

We now recalculate the dimensions of H1(G, M) and H2(G, M) using the new functions.

> X := CohomologyModule(G, M);

> time CohomologicalDimension(X, 1);

0

Time: 0.020

> time CohomologicalDimension(X, 2);

1

Time: 0.920

> X := CohomologyModule(G, M);

> time C:=CohomologyGroup(X, 2);

Time: 4.070

> C;

Full Vector space of degree 1 over GF(3)

Example H68E3

In the case of Ω−(8, 3) acting on its natural module, the new function succeeds, but the old
function does not.

> G := OmegaMinus(8, 3);

> M := GModule(G);

> X := CohomologyModule(G, M);

> time CohomologicalDimension(X, 2);

2

Time: 290.280

> phi, P := PermutationRepresentation(G);

2016 FINITE GROUPS Part X

> MM := GModule(P, [ActionGenerator(M, i): i in [1..Ngens(G)]]);

> time CohomologicalDimension(P, MM, 2);

Out of space.

>> time CohomologicalDimension(P, MM, 2);

^

Runtime error in ’CohomologicalDimension’: Cohomology failed

68.5 Cocycles

Before invoking the functions in this section, it is necessary to first invoke the function
CohomologyGroup(CM, n) for the appropriate n.

For n = 0, 1 or 2, an n-cocycle is a function from Gn to the module M , where elements
of Gn are represented as an n-tuple 〈g1, . . . , gn〉 of group elements, for which a certain
relation is satisfied. These relations are consistent with the Magma convention of the
use of right actions, and so they are slightly different from those encountered in many
textbooks, where left actions are more common.

0-, 1- and 2-cocycles z, o and t, respectively, satisfy the following relations for all
g, h,∈ G.

z(〈〉)g = z(〈〉);

o(〈gh〉) = o(〈g〉)h + o(〈h〉);

t(〈gh, k〉) + t(〈g, h〉)k = t(〈g, hk〉) + t(〈h, k〉).

ZeroCocycle(CM, s)

Given a cohomology module CM constructed from the K[G]-module M and an
element s of the cohomology group H0(G,M) associated with CM , this function
returns the corresponding zero-cocycle. The zero-cocycle is returned as a function of
the 0-tuple 〈〉, of which the image is an element of the fixed point submodule of M .
The argument s may either be given as an element of H0(G,M) or as a sequence of
integers defining such an element.

IdentifyZeroCocycle(CM, s)

Given a cohomology module CM constructed from the K[G]-module M and a zero-
cocycle given as a function of the 0-tuple 〈〉, of which the image is an element of
the fixed point submodule of M , this function returns the corresponding element of
H0(G,M). Hence this function is the inverse function to ZeroCocycle.

Ch. 68 COHOMOLOGY AND EXTENSIONS 2017

OneCocycle(CM, s)

Given a cohomology module CM constructed from the K[G]-module M and an
element s of the cohomology group H1(G,M) associated with CM , the function
returns a corresponding one-cocycle. The one-cocycle is returned as a function from
G to the module M , where elements g of G are represented as 1-tuples 〈g〉. The
argument s may either be given as an element of H1(G,M) or as a sequence of
integers defining such an element.

IdentifyOneCocycle(CM, s)

Given a cohomology module CM constructed from the K[G]-module M and a one-
cycle s for CM , specified as a function from G to the module M (where elements g of
G are represented as 1-tuples 〈g〉), this function returns the corresponding element
of H1(G,M). Thus, the function is the inverse to OneCocycle.

IsOneCoboundary(CM, s)

Given a cohomology module CM constructed from the K[G]-module M and a one-
cycle s for CM , specified as a function from G to the module M (where elements g
of G are represented as 1-tuples 〈g〉), this function determines whether the cocyle is
a 1-coboundary; that is, whether it corresponds to the zero element of H1(G,M).
If so, then it also returns a corresponding 0-cochain t(〈〉) that satisfies s(〈g〉) =
t(〈〉)− t(〈〉)g for all g ∈ G.

TwoCocycle(CM, s)

Given a cohomology module CM constructed from the K[G]-module M and an
element s of the cohomology group H2(G,M) associated with CM , the function
returns a corresponding two-cocycle. The two-cocycle is returned as a function
from G×G to the module M , where elements of G×G are represented as 2-tuples
〈g1, g2〉. The argument s may either be given as an element of H2(G,M) or as a
sequence of integers defining such an element.

IdentifyTwoCocycle(CM, s)

Given a cohomology module CM constructed from the K[G]-module M and a two-
cycle s for CM , specified as a function from G×G to the module M (where elements
of G×G are represented as 2-tuples 〈g1, g2〉), this function returns the corresponding
element of H2(G,M). Thus, the function is the inverse to TwoCocycle.

IsTwoCoboundary(CM, s)

Given a cohomology module CM constructed from the K[G]-module M and a two-
cycle s for CM , specified as a function from G to the module M (where elements
of G×G are represented as 2-tuples 〈g1, g2〉), this function determines whether the
cocyle is a 2-coboundary; that is, whether it corresponds to the zero element of
H2(G,M). If so, then it also returns a corresponding 1-cochain t(〈g〉) that satisfies
s(〈g, h〉) = t(〈g〉)h + t(〈h〉)− t(〈gh〉) for all g, h ∈ G.

2018 FINITE GROUPS Part X

Example H68E4

An easy example where the module is an abelian group defined by its invariant factors.

> G := PermutationGroup< 4 | (1,2,3,4) >;

> invar:=[2,4,4];

> mats := [Matrix(Integers(),3,3,[1,2,0,0,0,1,0,1,2])];

> X := CohomologyModule(G,invar,mats);

> C := CohomologyGroup(X,0);

> C;

Full Quotient RSpace of degree 1 over Integer Ring

Column moduli:

[4]

> ZeroCocycle(X,[3]);

function(tp) ... end function

> IdentifyZeroCocycle(X,func<x|-$1(<>)>);

(1)

> C := CohomologyGroup(X,1);

> C;

Full Quotient RSpace of degree 2 over Integer Ring

Column moduli:

[2, 2]

> z1 := OneCocycle(X,[1,0]);

> z2 := OneCocycle(X,[0,1]);

> z1(<G.1>);

(1 0 0)

> z := func< x | z1(x)+z2(x) >;

> IdentifyOneCocycle(X,z);

(1 1)

> C := CohomologyGroup(X,2);

> C;

Full Quotient RSpace of degree 1 over Integer Ring

Column moduli:

[4]

> z1 := TwoCocycle(X,[1]);

> z1(<G.1,G.1^2>);

(1 1 3)

> z := func< xy | z1(xy)+z1(xy) >;

> IdentifyTwoCocycle(X,z);

(2)

Ch. 68 COHOMOLOGY AND EXTENSIONS 2019

68.6 The Restriction to a Subgroup

Restriction(CM, H)

Given a cohomology module for a group G and a subgroup H of G, form the re-
striction of the input cohomology module to H.

Note that, denoting this restriction by CMH, we can define the restriction maps
on the first and second cohomology groups of CM by

> res1 := hom<CohomologyGroup(CM, 1) -> CohomologyGroup(CMH, 1) |
> x:->IdentifyOneCocycle(CMH,OneCocycle(CM,x)) >;
> res2 := hom<CohomologyGroup(CM, 2) -> CohomologyGroup(CMH, 2) |
> x:->IdentifyTwoCocycle(CMH,TwoCocycle(CM,x)) >;

Example H68E5

In this example we define G to be the group GL(3, 2) and H to be the Sylow 2-subgroup of G.
We illustrate how to calculate the restriction mappings of Hn(G, M) to Hn(G, MH), where MH
is the restriction of M to H.

> G := GL(3, 2);

> M := GModule(G);

> H := Sylow(G, 2);

> CG := CohomologyModule(G, M);

> CH := Restriction(CG, H);

We first consider H1(G, M).

> H1G := CohomologyGroup(CG, 1); H1G;

Full Vector space of degree 1 over GF(2)

> H1H := CohomologyGroup(CH, 1); H1H;

Full Vector space of degree 2 over GF(2)

> res1 := hom<H1G -> H1H | x:->IdentifyOneCocycle(CH,OneCocycle(CG,x)) >;

> res1(H1G.1);

(1 1)

We now consider H2(G, M).

> H2G := CohomologyGroup(CG, 2); H2G;

Full Vector space of degree 1 over GF(2)

> H2H := CohomologyGroup(CH, 2); H2H;

Full Vector space of degree 3 over GF(2)

> res2 := hom<H2G -> H2H | x:-> IdentifyTwoCocycle(CH,TwoCocycle(CG,x)) >;

> res2(H2G.1);

(0 0 1)

In the case of a zero restriction, we can find a corresponding coboundary.

> H:=sub< G | G.2, G.2^(G.1*G.2*G.1) >;

> #H;

21

2020 FINITE GROUPS Part X

> CH := Restriction(CG, H);

> CohomologyGroup(CH, 1); CohomologyGroup(CH, 2);

Full Vector space of degree 0 over GF(2)

Full Vector space of degree 0 over GF(2)

> t:=TwoCocycle(CG,[1]);

> isc, o := IsTwoCoboundary(CH, t);

> isc;

true

> forall{ <h,k> : h in H, k in H | t(<h,k>) eq

> o(<h>)*MatrixOfElement(CH,k) + o(<k>) - o(<h*k>) };

true

68.7 Other Operations on Cohomology Modules

CorestrictionMapImage(G, C, c, i)

CorestrictCocycle(G, C, c, i)

Given an i-cochain c for the cohomology module C which has to be defined wrt. to
some subgroup U of G, return the corestriction of c to Hi(G, . . .).

InflationMapImage(M, c)

LiftCocycle(M, c)

NewCodomain Any Default : false

Level RngIntElt Default : false

Given a cochain c : Gi → X and a (transversal) map H → G, return the inflation
(lift) of c to H, ie. a cochain d : Hi → X defined by d(h) := c(M(h)). If Level is
given c is assumed to be in the cohomology group of that level, ie. i :=Level. If
Level is not specified, Magma tries its best to guess the correct level.

If NewCodomain is given, the values of d are coerced into this structure.

CoboundaryMapImage(M, i, c)

For a cohomology module M , a level i and a i-cochain c (as a user program), return
a i+ 1-coboundary as obtained from the cohomological coboundary operator.

Ch. 68 COHOMOLOGY AND EXTENSIONS 2021

68.8 Constructing Extensions

Extension(CM, s)

Given the cohomology module CM for the group G acting on the module M and an
element s of H2(G,M), this function returns the corresponding extension E of the
module M by G as a finitely presented group. The generators of E are chosen so
that the generators of the acting group G (or rather strong generators for G when
G is a permutation or matrix group) come first, and the generators of M come last.
The argument s should be either an element of H2(G,M) or a sequence of integers
defining such an element.

The projection from E to G and the injection from an abelian group isomorphic
to M to E are also returned.

This function may only be applied when the module M used to define CM is
defined over a finite field of prime order, the integers, or as an abelian group in a
call of CohomologyModule(G, Q, T).

SplitExtension(CM)

Given the cohomology module CM for the group G acting on the module M , this
function returns the split extension E of the module M by G as a finitely pre-
sented group. The generators of E are chosen so that the generators of the acting
group G (or strong generators for G when G is a permutation or matrix group)
come first, and the generators of M come last. The extension returned is the
same as for Extension(CM, s) with s taken as the zero element of H2(G,M), but
SplitExtension is much faster, and does not require H2(G,M) to be calculated
first. This function will also work when the group used to define CM was a finitely
presented group.

The projection from E to G and the injection from an abelian group isomorphic
to M to E are also returned.

This function may only be applied when the module M used to define CM is
defined over a finite field of prime order, the integers, or as an abelian group in a
call of CohomologyModule(G, Q, T).

pMultiplicator(G, p)

Given the permutation group G and a prime p dividing the order of G, return the
invariant factors of the p-part of the Schur multiplicator of G. This function calls
Derek Holt’s original cohomology code (see [Hol84]).

pCover(G, F, p)

Given the permutation group G and the finitely presented group F such that G is
an epimorphic image of F in the sense described below, and a prime p, return a
presentation for the p-cover of G, constructed as an extension of the p-multiplier by
F . Note that the epimorphism of F onto G must satisfy the conditions that, firstly,
the generators of F are in one-to-one correspondence with those of G and, secondly,
the relations of F are satisfied by the generators of G. In other words, the mapping

2022 FINITE GROUPS Part X

taking the i-th generator of F to the i-th generator of G must be an epimorphism.
Usually this mapping will be an isomorphism, although this is not mandatory. This
function calls Derek Holt’s original cohomology code (see [Hol85a]).

Example H68E6

We apply the machinery to construct a non-split extension of the elementary abelian group of
order 38 by A8.

> G := Alt(8);

> M := PermutationModule(G,GF(3));

> X := CohomologyModule(G,M);

> C := CohomologyGroup(X,2);

> C;

Full Vector space of degree 1 over GF(3)

The function Extension is used to construct a non-split extension E of the module M by the
group G.

> E := Extension(X,[1]);

The object E is a finitely presented group, in which the 8 module generators come last. We now
construct a (rather large-degree) faithful permutation representation of E.

> n := Ngens(E);

> D := sub< E | [E.i : i in [n-7..n-1]] >;

> ct := CosetTable(E,D:CosetLimit:=10^6,Hard:=true);

> P := CosetTableToPermutationGroup(E,ct);

> Degree(P);

60480

> #P eq 3^8 * #G;

true

We extract the normal subgroup of order 38 of the extension E, and verify that the extension is
non-split.

> Q := sub<P | [P.i : i in [n-7..n]] >;

> #Q eq 3^8;

true

> IsNormal(P,Q);

true

> Complements(P,Q);

[]

Example H68E7

We investigate the cohomology of the permutation module for A5 taken over the integers.

> G := Alt(5);

> M := PermutationModule(G,Integers());

> X := CohomologyModule(G,M);

Ch. 68 COHOMOLOGY AND EXTENSIONS 2023

> CohomologyGroup(X,0);

Full Quotient RSpace of degree 1 over Integer Ring

Column moduli:

[0]

> CohomologyGroup(X,1);

Full Quotient RSpace of degree 0 over Integer Ring

Column moduli:

[]

> CohomologyGroup(X,2);

Full Quotient RSpace of degree 1 over Integer Ring

Column moduli:

[3]

While we can form extensions of M in this case, we are unable to determine the distinct extensions.

> E := Extension(X,[1]);

> E;

Finitely presented group E on 8 generators

Relations

(E.4, E.5) = Id(E)

(E.4, E.6) = Id(E)

(E.4, E.7) = Id(E)

(E.4, E.8) = Id(E)

(E.5, E.6) = Id(E)

(E.5, E.7) = Id(E)

(E.5, E.8) = Id(E)

(E.6, E.7) = Id(E)

(E.6, E.8) = Id(E)

(E.7, E.8) = Id(E)

(E.1, E.4^-1) = Id(E)

(E.1, E.5^-1) = Id(E)

E.1^-1 * E.6 * E.1 * E.7^-1 = Id(E)

E.1^-1 * E.7 * E.1 * E.8^-1 = Id(E)

E.1^-1 * E.8 * E.1 * E.6^-1 = Id(E)

E.2^-1 * E.4 * E.2 * E.5^-1 = Id(E)

E.2^-1 * E.5 * E.2 * E.6^-1 = Id(E)

E.2^-1 * E.6 * E.2 * E.4^-1 = Id(E)

(E.2, E.7^-1) = Id(E)

(E.2, E.8^-1) = Id(E)

(E.3, E.4^-1) = Id(E)

E.3^-1 * E.5 * E.3 * E.6^-1 = Id(E)

E.3^-1 * E.6 * E.3 * E.7^-1 = Id(E)

E.3^-1 * E.7 * E.3 * E.5^-1 = Id(E)

(E.3, E.8^-1) = Id(E)

E.1^-3 * E.4^-1 * E.5^-2 = Id(E)

(E.1^-1 * E.3^-1)^2 = Id(E)

E.3^-3 * E.4 * E.8^2 = Id(E)

E.2^-1 * E.1 * E.3^-1 * E.2 * E.1^-1 * E.4^-1 * E.8^2 = Id(E)

E.2 * E.3 * E.2 * E.3 * E.8^-4 = Id(E)

2024 FINITE GROUPS Part X

E.2^-1 * E.3^-1 * E.2^2 * E.3^-1 * E.4 * E.5 * E.6^-2 * E.7 = Id(E)

> DE := DistinctExtensions(X);

Sorry, can only compute distinct extensions over prime field or finite abelian

group

68.9 Constructing Distinct Extensions
The functions below compute the distinct extensions of one group by another.

DistinctExtensions(CM)

Given the cohomology module CM for the group G acting on the module M , this
function returns a sequence containing all of the distinct extensions of the module
M by G, each in the form returned by Extension(CM, s). Two such extensions
E1, E2 are regarded as being distinct if there is no group isomorphism from one to
the other that maps the subgroup of E1 corresponding to M to the subgroup of E2

corresponding to M .
This function may only be applied when the module M used to define CM is

defined over a finite field of prime order, the integers, or as an abelian group in a
call of CohomologyModule(G, Q, T).

Example H68E8

We consider the extensions of the trivial module over GF (2) by the group Z2 × Z2.

> G := DirectProduct(CyclicGroup(2),CyclicGroup(2));

> M := TrivialModule(G,GF(2));

> C := CohomologyModule(G,M);

> CohomologicalDimension(C,2);

3

> D := DistinctExtensions(C);

> #D;

4

So there are 23 = 8 equivalence classes of extensions. But only four are distinct up to an isomor-
phism fixing the module. To examine them, we form permutation representations:

> DP := [CosetImage(g,sub<g|>) : g in D];

> [IsAbelian(d): d in DP];

[true, true, false, false]

// the first two are abelian

> [IsIsomorphic(d,DihedralGroup(4)) : d in DP];

[false, false, true, false]

// The third one is dihedral

> #[g : g in DP[4] | Order(g) eq 4];

6

So the fourth group must be the quaternion group.

Ch. 68 COHOMOLOGY AND EXTENSIONS 2025

ExtensionsOfElementaryAbelianGroup(p, d, G)

Given a prime p, a positive integer d, and a permutation group G, this function
returns a list of finitely presented groups which are isomorphic to the distinct ex-
tensions of an elementary abelian group N of order pd by G. Two such extensions
E1 and E2 with normal subgroups N1 and N2 isomorphic to N are considered to
be distinct if there is no group isomorphism G1 → G2 that maps N1 to N2. Each
extension E is defined on d+r generators, where r is the number of generators of G.
The last d of these generators generate the normal subgroup N , and the quotient of
E by N is a presentation of G on its own generators.

Example H68E9

We form the distinct extensions of the elementary abelian group Z2×Z2 by the alternating group
A4.

> E := ExtensionsOfElementaryAbelianGroup(2,2,Alt(4));

> #E;

4

So there are four distinct extensions of an elementary group of order 4 by A4

> EP := [CosetImage(g,sub<g|>) : g in E];

> [#Centre(e): e in EP];

[1, 1, 4, 4]

The first two have nontrivial action on the module. The module generators in the extensions come
last, so these will be e.3 and e.4. We can use this to test which of the extensions are non-split.

> [Complements(e,sub<e|e.3,e.4>) eq [] : e in EP];

[false, true, false, true]

> AbelianInvariants(Sylow(EP[2],2));

[4, 4]

So the first and fourth extensions split and the second and third do not. EP [2] has a normal
abelian subgroup of type [4, 4].

ExtensionsOfSolubleGroup(H, G)

Given permutation groups G and H, where H is soluble, this function returns a
sequence of finitely presented groups, the terms of which are isomorphic to the dis-
tinct extensions of H by G. Two such extensions E1 and E2 with normal subgroups
H1 and H2 isomorphic to H are considered to be distinct if there is no group iso-
morphism G1 → G2 that maps H1 to H2. Each extension E is defined on d + r
generators, where the last d generators generate the normal subgroup H, and the
quotient of E by H is a presentation for G on its own generators. (The last d gener-
ators of E do not correspond to the original generators of H, but to a PC-generating
sequence for H.)

2026 FINITE GROUPS Part X

Example H68E10

How many extensions are there of a dihedral group of order 8 by itself? This calculation is
currently rather slow.

> D4 := DihedralGroup(4);

> time S := ExtensionsOfSolubleGroup(D4, D4);

Time: 120.210

> #S;

20

> ES := [CosetImage(g,sub<g|>) : g in S];

> [#Centre(g): g in ES];

[4, 2, 4, 2, 4, 2, 2, 4, 2, 4, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2]

> [NilpotencyClass(g) : g in ES];

[2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]

> [Exponent(g): g in ES];

[4, 8, 4, 8, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8]

Example H68E11

We determine the distinct extensions of the abelian group with invariants [2, 4, 4] by the cyclic
group of order 4.

> Z := Integers();

> G := PermutationGroup<4 | (1,2,4,3)>;

> Q := [2, 4, 4];

> T := [Matrix(Z,3,3,[1,2,0,0,0,1,0,1,2])];

> CM := CohomologyModule(G, Q, T);

> extns := DistinctExtensions(CM);

> extns;

[

Finitely presented group on 4 generators

Relations

$.2^2 = Id($)

$.3^4 = Id($)

$.4^4 = Id($)

($.2, $.3) = Id($)

($.2, $.4) = Id($)

($.3, $.4) = Id($)

$.1^-1 * $.2 * $.1 * $.3^-2 * $.2^-1 = Id($)

$.1^-1 * $.3 * $.1 * $.4^-1 = Id($)

$.1^-1 * $.4 * $.1 * $.4^-2 * $.3^-1 = Id($)

$.1^4 = Id($),

Finitely presented group on 4 generators

Relations

$.2^2 = Id($)

$.3^4 = Id($)

$.4^4 = Id($)

($.2, $.3) = Id($)

Ch. 68 COHOMOLOGY AND EXTENSIONS 2027

($.2, $.4) = Id($)

($.3, $.4) = Id($)

$.1^-1 * $.2 * $.1 * $.3^-2 * $.2^-1 = Id($)

$.1^-1 * $.3 * $.1 * $.4^-1 = Id($)

$.1^-1 * $.4 * $.1 * $.4^-2 * $.3^-1 = Id($)

$.1^4 * $.2^-1 * $.3^-1 * $.4^-3 = Id($),

Finitely presented group on 4 generators

Relations

$.2^2 = Id($)

$.3^4 = Id($)

$.4^4 = Id($)

($.2, $.3) = Id($)

($.2, $.4) = Id($)

($.3, $.4) = Id($)

$.1^-1 * $.2 * $.1 * $.3^-2 * $.2^-1 = Id($)

$.1^-1 * $.3 * $.1 * $.4^-1 = Id($)

$.1^-1 * $.4 * $.1 * $.4^-2 * $.3^-1 = Id($)

$.1^4 * $.3^-2 * $.4^-2 = Id($)

]

Since the extensions are soluble groups, we construct pc-presentations of each and verify that no
two of the groups are isomorphic.

> E1 := SolubleQuotient(extns[1]);

> E2 := SolubleQuotient(extns[2]);

> E3 := SolubleQuotient(extns[3]);

> IsIsomorphic(E1, E2);

false

> IsIsomorphic(E1, E3);

false

> IsIsomorphic(E2, E3);

false

IsExtensionOf(G)

Degree RngInt Default : 0

MaxId RngInt Default : 15

DegreeBound RngInt Default : ∞
For a given permutation group G, find normal abelian subgroup A < G such that G
can be obtained by extending G/A by A. The function returns a sequence of tuples
T containing
- the cohomology module of G/A acting on A

- the 2-cocyle as an element in H2(G/A,A) corresponding to G

- the actual 2-cocyle as a user defined function

2028 FINITE GROUPS Part X

- a pair 〈a, b〉 giving the degree a of the transitive group G/A and the number b
identifying the group in the data base. If b is larger than 20 (or MaxId) the hash
value of the group is returned instead.

- the abelian invariants of A
- a set containing all pairs 〈a, b〉 such that aTb can be obtained through this ex-

tension process.
If DegreeBound is given, only subgroups A are considered such that G/A has

less than DegreeBound many elements. The list considered contains only sugroups
that are maximal under the restrictions. If Degree is given, G/A must have exactly
Degree many elements.

IsExtensionOf(L)

Degree RngInt Default : 0
MaxId RngInt Default : 15
DegreeBound RngInt Default : ∞

For all groups G in L, IsExtensionOf is called. The first sequence returned contains
tuples as in IsExtensionOf above. The sequence is minimal such that all groups
in L can be generated using the cohomology modules in the sequence. The second
return value contains a set of pairs 〈a, b〉 describing all transitive groups that can
be obtained through the processes.

68.10 Finite Group Cohomology
This section describes Magma functions for computing the first cohomology group of a
finite group with coefficient in a finite (not necessarily abelian) group. These functions are
based on [Hal05].

Let Γ be a group. A group A on which Γ acts by group automorphisms from the right,
is called a Γ-group. Given a Γ-group A, define

H0(Γ, A) := {a ∈ A | aσ = afor all σ ∈ Γ}.

A 1-cocycle of Γ on A is a map

α : Γ → A, σ 7→ ασ,

such that
αστ = (ασ)τατ for all σ, τ ∈ Γ.

Two cocycles α, β on A are called cohomologous (with respect to a) if there exists a ∈ A,
such that βσ = a−σ · ασ · a for all σ ∈ Γ. Note that being cohomologous is an equivalence
relation.

We denote by Z1(Γ, A) the set of all 1-cocycles of Γ on A. We denote by [α] the
equivalence class of α and by H1(Γ, A) the set of equivalence classes of 1-cocycles.

Z1(Γ, A) and H1(Γ, A) are pointed sets.

Ch. 68 COHOMOLOGY AND EXTENSIONS 2029

The constant map t : σ 7→ 1 is the distinguished element of Z1(Γ, A), called the trivial
1-cocycle. Its cohomology class is the distinguished element of H1(Γ, A).

A twisted form Aβ of A by the cocycle β ∈ Z1(Γ, A) is the same group A but with a
different action of Γ on it, given by

a ∗ σ := aσασ for σ ∈ Γ and a ∈ A.

68.10.1 Creation of Gamma-groups
This section describes intrinsics dealing with cocycles and the first cohomology.

GammaGroup(Gamma, A, action)

Given a group A and a group Γ acting on it by the map action, return the object
of type GGrp, which is the Group A together with this particular action of Γ. The
map action must be a homomorphism from Γ to the automorphism group of A.

If B is a normal subgroup of A and normalised by the action of Γ on A (thus a
Γ-group itself), then the action of Γ on A induces in the natural way to A/B. It is
possible to create such a group:

InducedGammaGroup(A, B)

Given a Γ-group A and a normal subgroup B normalised by the action of Γ, return
the induced Γ-group A/B.

Example H68E12

Let Γ act on A by conjugation:

> A := SymmetricGroup(4);

> Gamma := sub<A|(1,2,3), (1,2)>;

> action := hom< Gamma -> Aut(A) |

> g :-> iso< A -> A | a :-> a^g, a :-> a^(g^-1) > >;

> A := GammaGroup(Gamma, A, action);

> A;

Gamma-group: Symmetric group acting on a set of cardinality 4

Order = 24 = 2^3 * 3

(1, 2, 3, 4)

(1, 2)

Gamma-action: Mapping from: GrpPerm: $, Degree 4 to

Set of all automorphisms of GrpPerm: $, Degree 4, Order 2^3 * 3

given by a rule [no inverse]

Gamma: Permutation group acting on a set of cardinality 4

(1, 2, 3)

(1, 2)

>

and B be a normal subgroup of A:

> B := AlternatingGroup(4);

2030 FINITE GROUPS Part X

> AmodB := InducedGammaGroup(A, B);

> AmodB;

Gamma-group: Symmetric group acting on a set of cardinality 2

Order = 2

(1, 2)

(1, 2)

Gamma-action: Mapping from: GrpPerm: $, Degree 4, Order 2 * 3 to

Set of all automorphisms of GrpPerm: $, Degree 2, Order 2

given by a rule [no inverse]

Gamma: Permutation group acting on a set of cardinality 4

Order = 6 = 2 * 3

(1, 2, 3)

(1, 2)

Induced from another Gamma-group

IsNormalised(B, action)

Returns true if the group B is normalised by the action action, where action is as
above.

IsInduced(AmodB)

Returns true iff the Γ-group AmodB was created as an induced Γ-group. If it is,
then the Γ-groups A, B, the projection and representative maps are returned as
well.

68.10.2 Accessing Information

Group(A)

Returns the group A as a Grp object to be used in Magma.

GammaAction(A)

Returns the action of Γ on A as a map.

ActingGroup(A)

Returns the group Γ acting on A.

Ch. 68 COHOMOLOGY AND EXTENSIONS 2031

68.10.3 One Cocycles

OneCocycle(A, imgs)

OneCocycle(A, alpha)

Check BoolElt Default : true

If the map α : Γ → A or the sequence imgs of images of the generators Γ.1, ...,Γ.n
defines a 1-cocycle, return the 1-cocycle. By default, the map is checked to define
a 1-cocycle. If it doesn’t, OneCocycle will abort with an error. This check can be
disabled by setting the optional argument Check to false.

TrivialOneCocycle(A)

Return the trivial 1-cocycle.

IsOneCocycle(A, imgs)

IsOneCocycle(A, alpha)

Return true if the map α : Γ → A or the sequence imgs of images of the generators
Γ.1, ...,Γ.n defines a 1-cocycle and false otherwise. If true, return the cocycle as
the second argument.

Note that IsOneCocycle does not abort with an error in contrast to OneCocycle
if the map does not define a cocycle.

AreCohomologous(alpha, beta)

Return true if and only if the 1-cocycles α and β are cohomologous. If they are,
return the intertwining element as the second return value.

CohomologyClass(alpha)

Return the cohomology class of the 1-cocycle α.

InducedOneCocycle(AmodB, alpha)

InducedOneCocycle(A, B, alpha)

Given a 1-cocycle on A, return the induced 1-cocycle on AmodB. The second version
will generate the induced Γ-group A/B first.

ExtendedOneCocycle(alpha)

OnlyOne BoolElt Default : false

Given a 1-cocycle on an induced Γ-group A/B, return the set of all non-
cohomologous 1-cocycles on A, which induce to α. If the optional argument OnlyOne
is true, the set will contain at most one 1-cocycle. If α is not extendible, the re-
turned set is empty.

2032 FINITE GROUPS Part X

ExtendedCohomologyClass(alpha)

Given a 1-cocycle on an induced Γ-group A/B, return the the set of all non-
cohomologous 1-cocycles on A, which induce to a cocycle in the cohomology class
of α. If no such cocycles on A exist, the returned set is empty.

GammaGroup(alpha)

Return the Γ-group on which α is defined.

CocycleMap(alpha)

Return the Map object corresponding to α.

68.10.4 Group Cohomology

Cohomology(A, n)

Given a finite group A and an integer n (currently restricted to being 1) return
the n-th cohomology group Hn(Γ, A). Since the group A is not assumed to be
abelian, only n = 0, 1 can be used. Currently, only n = 1 implemented. (The zero
cohomology of A is the subgroup of A centralised by Γ and can be constructed using
group theoretical methods available in Magma.)

OneCohomology(A)

Return the first cohomology H1(Γ, A). as a set of representatives of all cohomol-
ogy classes. If the group A is abelian, existing code by Derek Holt is used (see
Chapter 68). Otherwise use [Hal05].

TwistedGroup(A, alpha)

Given the Γ-group A and a 1-cocycle α on it, return the twisted group Aα.

Example H68E13

First, we create the group A = D8. The returned group is the usual permutation group on the
octagon. Γ is the Normaliser of A in S8 and is acting by conjugation.

> A := DihedralGroup(8);

> Gamma := sub< Sym(8) | (1, 2, 3, 4, 5, 6, 7, 8),

> (1, 8)(2, 7)(3, 6)(4, 5), (2, 4)(3, 7)(6, 8) >;

> A^Gamma eq A;

true

> Gamma;

Permutation group Gamma acting on a set of cardinality 8

Order = 32 = 2^5

(1, 2, 3, 4, 5, 6, 7, 8)

(1, 8)(2, 7)(3, 6)(4, 5)

(2, 4)(3, 7)(6, 8)

> action := hom< Gamma -> Aut(A) |

> g :-> iso< A -> A | a :-> a^g, a :-> a^(g^-1) > >;

Ch. 68 COHOMOLOGY AND EXTENSIONS 2033

> A := GammaGroup(Gamma, A, action);

Now let B be the center of A and create the induced Γ-group A/B:

> B := Center(Group(A));

> AmodB := InducedGammaGroup(A, B);

Create the trivial 1-cocycle on A/B and compute its cohomology class:

> triv := TrivialOneCocycle(AmodB);

> CohomologyClass(triv);

{@

One-Cocycle

defined by [

Id($),

Id($),

Id($)

],

One-Cocycle

defined by [

Id($),

(1, 4)(2, 7)(3, 8)(5, 6),

(1, 4)(2, 7)(3, 8)(5, 6)

],

One-Cocycle

defined by [

(1, 4)(2, 7)(3, 8)(5, 6),

Id($),

(1, 4)(2, 7)(3, 8)(5, 6)

],

One-Cocycle

defined by [

(1, 4)(2, 7)(3, 8)(5, 6),

(1, 4)(2, 7)(3, 8)(5, 6),

Id($)

]

@}

Pick one of the cocycles in this class and compute the intertwining element:

> alpha := Random($1);alpha;

One-Cocycle

defined by [

(1, 4)(2, 7)(3, 8)(5, 6),

(1, 4)(2, 7)(3, 8)(5, 6),

Id($)

]

> bo, a := AreCohomologous(alpha,triv);

> bo; a;

true

2034 FINITE GROUPS Part X

(1, 5)(2, 8)(3, 7)(4, 6)

Now create another cocycle on A/B and extend it to A:

> alpha := OneCocycle(AmodB,

> [Group(AmodB)| (1, 7, 4, 2)(3, 5, 8, 6),

> (1, 2, 4, 7)(3, 6, 8, 5),

> 1]);

> ExtendedOneCocycle(alpha);

{

One-Cocycle

defined by [

(1, 4, 7, 2, 5, 8, 3, 6),

(1, 2, 3, 4, 5, 6, 7, 8),

Id($)

],

One-Cocycle

defined by [

(1, 8, 7, 6, 5, 4, 3, 2),

(1, 6, 3, 8, 5, 2, 7, 4),

Id($)

]

}

Pick a cocycle β in this set and check if it really induces to α:

> beta := Rep($1);

> InducedOneCocycle(AmodB, beta) eq alpha;

true

Finally, create the twisted group Aβ :

> A_beta := TwistedGroup(A, beta);

> A_beta;

Gamma-group: Permutation group acting on a set of cardinality 8

Order = 16 = 2^4

(1, 2, 3, 4, 5, 6, 7, 8)

(1, 8)(2, 7)(3, 6)(4, 5)

Gamma-action: Mapping from: GrpPerm: $, Degree 8, Order 2^5 to

Set of all automorphisms of GrpPerm: $, Degree 8, Order 2^4

given by a rule [no inverse]

Gamma: Permutation group acting on a set of cardinality 8

Order = 32 = 2^5

(1, 2, 3, 4, 5, 6, 7, 8)

(1, 8)(2, 7)(3, 6)(4, 5)

(2, 4)(3, 7)(6, 8)

>

Ch. 68 COHOMOLOGY AND EXTENSIONS 2035

68.11 Bibliography
[CCH01] J.J. Cannon, B. Cox, and D.F. Holt. Computing the subgroup lattice of a

permutation group. J. Symbolic Comp., 31:149–161, 2001.
[Hal05] Sergei Haller. Computing Galois Cohomology and Forms of Linear Algebraic

Groups. Phd thesis, Technical University of Eindhoven, 2005.
[Hol84] D.F. Holt. The calculation of the Schur multiplier of a permutation group. In

Computational group theory (Durham, 1982), pages 307–319. Academic Press, London,
1984.

[Hol85a] D.F. Holt. A computer program for the calculation of a covering group of a
finite group. J. Pure Appl. Algebra, 35(3):287–295, 1985.

[Hol85b] D.F. Holt. The mechanical computation of first and second cohomology groups.
J. Symbolic Comp., 1(4):351–361, 1985.

