[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: RootOfUnity .. roots
RootOfUnity(n) : RngIntElt -> FldCycElt
RootOfUnity(n, A) : RngIntElt, FldAC -> FldACElt
RootOfUnity(n, K) : RngIntElt, FldCyc -> FldCycElt
RootOfUnity(n, K) : RngIntElt, FldFin -> FldFinElt
RootOfUnity(n, Q) : RngIntElt, FldRat -> FldRatElt
GrpCox_RootOperations (Example H98E20)
RootDtm_RootOperations (Example H97E22)
RootSys_RootOperations (Example H96E14)
RootPermutation(phi) : Map -> GrpPermElt
CorootPosition(G, v) : GrpLie, . -> (@@)
RootPosition(G, v) : GrpLie, . -> (@@)
RootPosition(W, v) : GrpMat, . -> (@@)
RootPosition(W, v) : GrpPermCox, . -> (@@)
RootPosition(R, v) : RootStr, . -> (@@)
RootPosition(R, v) : RootSys, . -> (@@)
Reflections (COXETER GROUPS)
Reflections (GROUPS OF LIE TYPE)
Reflections (REFLECTION GROUPS)
Reflections (ROOT DATA)
Reflections (ROOT SYSTEMS)
AdditivePolynomialFromRoots(x, P) : RngElt, PlcFunElt -> RngUPolTwstElt
AllRoots(a, n) : FldFinElt, RngIntElt -> SeqEnum
AllSquareRoots(a) : RngIntResElt -> [ RngIntResElt ]
GammaOrbitOnRoots(R,r) : RootDtm, RngIntElt -> GSetEnum
GammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
HasAllRootsOnUnitCircle(f) : RngUPolElt -> BoolElt
NumberOfPositiveRoots(C) : AlgMatElt -> RngIntElt
NumberOfPositiveRoots(W) : GrpFPCox -> RngIntElt
NumberOfPositiveRoots(G) : GrpLie -> RngIntElt
NumberOfPositiveRoots(W) : GrpMat -> RngIntElt
NumberOfPositiveRoots(W) : GrpPermCox -> RngIntElt
NumberOfPositiveRoots(N) : MonStgElt -> .
NumberOfPositiveRoots(R) : RootStr -> RngIntElt
NumberOfPositiveRoots(R) : RootSys -> RngIntElt
PositiveRoots(G) : GrpLie -> (@@)
PositiveRoots(W) : GrpMat -> (@@)
PositiveRoots(W) : GrpPermCox -> (@@)
PositiveRoots(R) : RootStr -> (@@)
PositiveRoots(R) : RootSys -> (@@)
PositiveRootsPerm(U) : AlgQUE -> SeqEnum
QuarticNumberOfRealRoots(q) : RngUPolElt -> RngUPolElt
RelativeRoots(R) : RootDtm -> SetIndx
Roots(G) : GrpLie -> (@@)
Roots(W) : GrpMat -> (@@)
Roots(W) : GrpPermCox -> (@@)
Roots(f) : RngUPolElt -> [ < FldACElt, RngIntElt> ]
Roots(f) : RngUPolElt -> [ < FldFinElt, RngIntElt> ]
Roots(p) : RngUPolElt -> [ < RngElt, RngIntElt> ]
Roots(p, S) : RngUPolElt -> [ < RngElt, RngIntElt> ]
Roots(p) : RngUPolElt -> [ <FldComElt, RngIntElt> ]
Roots(f) : RngUPolElt -> [ <RngPadElt, RngIntElt> ]
Roots(f) : RngUPolElt -> [<RngSerElt, RngIntElt>]
Roots(f, D) : RngUPolElt, DivFunElt -> SeqEnum[ FldFunElt ]
Roots(f) : RngUPolElt[RngLocA] -> SeqEnum
Roots(R) : RootStr -> (@@)
Roots(R) : RootSys -> (@@)
RootsAndCoroots(G) : GrpMat -> [RngIntElt], [ModTupRngElt], [ModTupRngElt]
RootsInSplittingField(f) : RngUPolElt[FldFin] -> [<RngUPolElt, RngIntElt>], FldFin
RootsNonExact(p) : RngUPolElt[FldRe] -> [ FldComElt ], [ FldComElt ]
SimpleRoots(G) : GrpLie -> Mtrx
SimpleRoots(W) : GrpMat -> Mtrx
SimpleRoots(W) : GrpPermCox -> Mtrx
SimpleRoots(R) : RootStr -> Mtrx
SimpleRoots(R) : RootSys -> Mtrx
SmallRoots(p, N, X) : RngUPolElt, RngElt, RngElt -> [RngElt]
ValuationsOfRoots(f) : RngUPolElt -> SeqEnum[<FldRatElt, RngIntElt>]
ValuationsOfRoots(f) : RngUPolElt -> [ < RngIntElt, RngIntElt > ]
ValuationsOfRoots(f, p) : RngUPolElt, RngIntElt -> [ < RngIntElt, RngIntElt > ]
FldRe_Roots (Example H25E5)
Functions returning Roots (p-ADIC RINGS AND THEIR EXTENSIONS)
Hensel Lifting of Roots (p-ADIC RINGS AND THEIR EXTENSIONS)
Roots (ALGEBRAICALLY CLOSED FIELDS)
Roots (REAL AND COMPLEX FIELDS)
Roots and Coroots (ROOT SYSTEMS)
Roots of Elements (p-ADIC RINGS AND THEIR EXTENSIONS)
Roots of Ideals (ALGEBRAIC FUNCTION FIELDS)
Roots of Ideals (ORDERS AND ALGEBRAIC FIELDS)
Roots of Polynomials (NEWTON POLYGONS)
Roots of Polynomials (p-ADIC RINGS AND THEIR EXTENSIONS)
Roots, Coroots and Reflections (COXETER GROUPS)
Roots, Coroots and Weights (GROUPS OF LIE TYPE)
Roots, Coroots and Weights (ROOT DATA)
Simple and Positive Roots (ROOT DATA)
Simple and Positive Roots (ROOT SYSTEMS)
The Coxeter Group (ROOT SYSTEMS)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012