[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: real-complex  ..  RecogniseSL3


real-complex

   REAL AND COMPLEX FIELDS
   Real and Complex Valued Functions (NUMBER FIELDS)
   Real and Complex Valued Functions (ORDERS AND ALGEBRAIC FIELDS)

RealEmbeddings

   RealEmbeddings(a) : FldNumElt -> []
   RealEmbeddings(a) : RngOrdElt -> []

RealField

   RealField() : -> FldRe
   RealField(p) : RngIntElt -> FldRe

RealHomology

   RealHomology(A) : ModAbVar -> ModTupFld

RealInjection

   RealInjection(R) : RootSys -> .

RealIntro

   FldRe_RealIntro (Example H25E1)

Realisable

   IsRealisableOverSmallerField(M) : ModGrp -> BoolElt, ModGrp
   IsRealisableOverSubfield(M, F) : ModGrp, FldFin -> BoolElt, ModGrp

RealMatrix

   RealMatrix(phi) : MapModAbVar -> ModMatFldElt

RealPeriod

   RealPeriod(E: parameters) : CrvEll -> FldReElt

RealPlaces

   RealPlaces(K) : FldRat -> [PlcNumElt]
   RealPlaces(K) : FldRat -> [PlcNumElt]

RealReflectionGroupByCartan

   GrpRfl_RealReflectionGroupByCartan (Example H99E6)

RealReflectionGroupByRootDatum

   GrpRfl_RealReflectionGroupByRootDatum (Example H99E7)

reals

   Overview of Real Numbers in Magma (REAL AND COMPLEX FIELDS)

RealSigns

   RealSigns(a) : FldNumElt -> []
   RealSigns(a) : RngOrdElt -> []

RealTamagawaNumber

   RealTamagawaNumber(M) : ModSym -> RngIntElt

Realtime

   Realtime() : -> FldReElt
   Realtime(t) : FldReElt -> FldReElt

RealVectorSpace

   RealVectorSpace(H) : ModAbVarHomol -> ModTupFld

RealVolume

   RealVolume(M, prec) : ModSym, RngIntElt -> FldPrElt

rec

   Recognition Functions (ALMOST SIMPLE GROUPS)
   rec< F | L > : RecFormat, FieldAssignmentList -> Rec

recformat

   recformat< L > : FieldnameList -> RecFormat

recipe-for-schur-index

   Chtr_recipe-for-schur-index (Example H91E4)

Reciprocal

   ReciprocalPolynomial(f) : RngUPolElt -> RngUPolElt

ReciprocalPolynomial

   ReciprocalPolynomial(f) : RngUPolElt -> RngUPolElt

recog

   Recognition of Arbitrary *-Algebras (ALGEBRAS WITH INVOLUTION)
   Recognition of Simple *-Algebras (ALGEBRAS WITH INVOLUTION)

Recognise

   RecogniseAdjoint (G) : GrpMat -> BoolElt, GrpMat
   RecogniseAlternating(G, n: parameters) : Grp, RngIntElt -> BoolElt, Map, Map, Map, Map, BoolElt
   RecogniseAlternating(G, n: parameters) : Grp, RngIntElt -> BoolElt, Map, Map, Map, Map, BoolElt
   RecogniseAlternatingOrSymmetric(G, n) : Grp, RngIntElt -> BoolElt, BoolElt, UserProgram, UserProgram
   RecogniseAlternatingOrSymmetric(G, n) : Grp, RngIntElt -> BoolElt, BoolElt, UserProgram, UserProgram
   RecogniseAlternatingSquare (G) : GrpMat -> BoolElt, GrpMat
   RecogniseClassicalSSA(A) : AlgMat -> BoolElt, AlgMat, Map, Map
   RecogniseDelta (G) : GrpMat -> BoolElt, GrpMat
   RecogniseExchangeSSA(A) : AlgMat -> BoolElt, AlgMat, Map, Map
   RecogniseLargeRee(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map
   RecogniseRee(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map
   RecogniseSL(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
   RecogniseSL3(G) : GrpMat -> BoolElt, Map, Map, Map, Map
   RecogniseSU3(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
   RecogniseSU4(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
   RecogniseSp4Even(G, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
   RecogniseSpOdd(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
   RecogniseStarAlgebra(A) : AlgMat -> BoolElt
   RecogniseSymmetric(G, n: parameters) : Grp, RngIntElt -> BoolElt, Map, Map, Map, Map, BoolElt
   RecogniseSymmetric(G, n: parameters) : Grp, RngIntElt -> BoolElt, Map, Map, Map, Map, BoolElt
   RecogniseSymmetricSquare (G) : GrpMat -> BoolElt, GrpMat
   RecogniseSz(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map

RecogniseAdjoint

   RecogniseAdjoint (G) : GrpMat -> BoolElt, GrpMat

RecogniseAlternating

   RecogniseAlternating(G, n: parameters) : Grp, RngIntElt -> BoolElt, Map, Map, Map, Map, BoolElt
   RecogniseAlternating(G, n: parameters) : Grp, RngIntElt -> BoolElt, Map, Map, Map, Map, BoolElt

RecogniseAlternatingOrSymmetric

   RecogniseAlternatingOrSymmetric(G, n) : Grp, RngIntElt -> BoolElt, BoolElt, UserProgram, UserProgram
   RecogniseAlternatingOrSymmetric(G, n) : Grp, RngIntElt -> BoolElt, BoolElt, UserProgram, UserProgram

RecogniseAlternatingSquare

   RecogniseAlternatingSquare (G) : GrpMat -> BoolElt, GrpMat

RecogniseAltsym1

   GrpASim_RecogniseAltsym1 (Example H65E3)
   GrpPerm_RecogniseAltsym1 (Example H58E39)

RecogniseAltsym2

   GrpASim_RecogniseAltsym2 (Example H65E4)
   GrpPerm_RecogniseAltsym2 (Example H58E40)

RecogniseClassicalSSA

   RecogniseClassicalSSA(A) : AlgMat -> BoolElt, AlgMat, Map, Map
   AlgInv_RecogniseClassicalSSA (Example H87E6)

RecogniseDelta

   RecogniseDelta (G) : GrpMat -> BoolElt, GrpMat

RecogniseExchangeSSA

   RecogniseExchangeSSA(A) : AlgMat -> BoolElt, AlgMat, Map, Map

RecogniseLargeRee

   RecognizeLargeRee(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map
   RecogniseLargeRee(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map

RecogniseRee

   RecognizeRee(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map
   RecogniseRee(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map

RecogniseSL

   RecognizeSL(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
   RecogniseSL(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map

RecogniseSL2-2

   GrpASim_RecogniseSL2-2 (Example H65E10)

RecogniseSL3

   RecogniseSL3(G) : GrpMat -> BoolElt, Map, Map, Map, Map
   GrpASim_RecogniseSL3 (Example H65E11)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012