[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: IsFiniteMatrixGroupF .. IsHomogeneous
GrpMatInf_IsFiniteMatrixGroupF (Example H61E7)
GrpMatInf_IsFiniteMatrixGroupF (Example H61E8)
GrpMatInf_IsFiniteMatrixGroupFF (Example H61E2)
GrpMatInf_IsFiniteMatrixGroupFF (Example H61E3)
GrpMatInf_IsFiniteMatrixGroupFF (Example H61E4)
GrpMatInf_IsFiniteMatrixGroupFF (Example H61E5)
GrpMatInf_IsFiniteMatrixGroupFQ (Example H61E1)
IsFiniteOrder(O) : RngFunOrd -> BoolElt
IsFirm(X) : IncGeom -> BoolElt
IsFlex(C,p) : Sch,Pt -> BoolElt,RngIntElt
IsInflectionPoint(p) : Sch,Pt -> BoolElt,RngIntElt
IsFlipping(X,i) : TorVar,RngIntElt -> BoolElt
IsForest(G) : GrphUnd -> BoolElt
IsFree(L) : LinearSys -> BoolElt
IsBasePointFree(L) : LinearSys -> BoolElt
IsFree(G) : GrpAb -> BoolElt
IsFree(M) : ModMPol -> BoolElt
IsFrobenius(G) : GrpPerm -> BoolElt
IsFTGeometry(C) : CosetGeom -> BoolElt
IsFTGeometry(D) : IncGeom -> BoolElt
IsFuchsianOperator(L) : RngDiffOpElt -> BoolElt, SetEnum
IsFundamentalDiscriminant(D) : RngIntElt -> BoolElt
IsFundamental(D) : RngIntElt -> BoolElt
IsFundamentalDiscriminant(D) : RngIntElt -> BoolElt
IsFundamental(D) : RngIntElt -> BoolElt
IsGamma0(G) : GrpPSL2 -> BoolElt
IsGamma0(M) : ModFrm -> BoolElt
IsGamma1(G) : GrpPSL2 -> BoolElt
IsGamma1(M) : ModFrm -> BoolElt
IsGE(u, v: parameters) : GrpBrdElt, GrpBrdElt -> BoolElt
IsGe(u, v: parameters) : GrpBrdElt, GrpBrdElt -> BoolElt
u ≥v : GrpBrdElt, GrpBrdElt -> BoolElt
IsGE(u, v: parameters) : GrpBrdElt, GrpBrdElt -> BoolElt
IsGe(u, v: parameters) : GrpBrdElt, GrpBrdElt -> BoolElt
u ≥v : GrpBrdElt, GrpBrdElt -> BoolElt
IsGeneralizedCartanMatrix(C) : AlgMatElt -> BoolElt
IsGeneralizedCharacter(x) : AlgChtrElt -> BoolElt
IsGenuineWeightedDynkinDiagram( L, wd ) : AlgLie, SeqEnum -> BoolElt, SeqEnum
IsGenus(G) : SymGen -> BoolElt
IsGenusOneModel(f) : RngMPolElt -> BoolElt, ModelG1
IsGeometricallyHyperelliptic(C) : Crv -> BoolElt, Crv, MapSch
IsHyperelliptic(C) : Crv -> BoolElt, CrvHyp, MapSch
IsGL2Equivalent(f, g, n) : RngUPolElt, RngUPolElt, RngIntElt -> BoolElt, SeqEnum
IsGLattice(L) : Lat -> GrpMat
IsGLConjugate(H, K) : GrpMat, GrpMat -> BoolElt, GrpMatElt | Unass
IsGLConjugate(H, K) : GrpMat, GrpMat -> BoolElt, GrpMatElt | Unass
IsGlobal(F) : FldFunG -> BoolElt
IsGloballySplit(C, l) : , UserProgram -> BoolElt, UserProgram
IsGlobalUnit(a) : FldFunElt -> BoolElt
IsGlobalUnit(a) : FldFunElt -> BoolElt
IsGlobalUnitWithPreimage(a) : FldFunElt -> BoolElt, GrpAbElt
IsGlobalUnitWithPreimage(a) : FldFunElt -> BoolElt, GrpAbElt
IsGLQConjugate(G, H) : GrpMat, GrpMat -> BoolElt, GrpMatElt
IsSLZConjugate(A, B) : AlgMatElt, AlgMatElt -> BoolElt, GrpMatElt
IsGLZConjugate(A, B) : AlgMatElt, AlgMatElt -> BoolElt, GrpMatElt
IsGLZConjugate(G, H) : GrpMat[RngInt], GrpMat[RngInt] -> BoolElt, GrpMatElt
GrpPC_IsGood (Example H63E29)
IsGorenstein(X) : Sch -> BoolElt
IsArithmeticallyCohenMacaulay(X) : Sch -> BoolElt
IsArithmeticallyGorenstein(X) : Sch -> BoolElt
IsCohenMacaulay(X) : Sch -> BoolElt
IsGorenstein(O, p) : AlgAssVOrd , RngOrdIdl -> BoolElt
IsGorenstein(O) : AlgAssVOrd -> BoolElt
IsGorenstein(C) : TorCon -> BoolElt
IsGorenstein(F) : TorFan -> BoolElt
IsGorenstein(X) : TorVar -> BoolElt
IsGorensteinSurface(B) : GRBskt -> BoolElt
IsGorensteinSurface(p) : GRPtS -> BoolElt
IsHomogeneous(M) : ModMPol -> BoolElt
IsGraded(M) : ModMPol -> BoolElt
IsGraded(f) : ModMPolHom -> BoolElt
IsGradedIsomorphic(A, B) : AlgBas, AlgBas -> Bool, ModMatFldElt
IsGraph(C) : CosetGeom -> GrphUnd
IsGraph(D) : IncGeom -> GrphUnd
IsGroebner(S) : { RngMPolElt } -> BoolElt
IsHadamard(H) : AlgMatElt -> BoolElt
IsHadamardEquivalent(H, J : parameters) : AlgMatElt, AlgMatElt -> BoolElt, AlgMatElt, AlgMatElt
IsHeckeAlgebra(H) : HomModAbVar -> BoolElt
IsHeckeOperator(phi) : MapModAbVar -> BoolElt, RngIntElt
IsHereditary(O, p) : AlgAssVOrd , RngOrdIdl -> BoolElt
IsHereditary(O) : AlgAssVOrd -> BoolElt
IsHomeomorphic(G: parameters) : GrphMultUnd -> BoolElt
IsHomeomorphic(G : parameters) : GrphUnd -> BoolElt
IsHomogeneous(M) : ModMPol -> BoolElt
IsGraded(M) : ModMPol -> BoolElt
IsGraded(f) : ModMPolHom -> BoolElt
IsHomogeneous(s): AlgSymElt -> BoolElt
IsHomogeneous(f) : ModMPolElt -> BoolElt
IsHomogeneous(I) : RngMPol -> BoolElt
IsHomogeneous(f) : RngMPolElt -> BoolElt
IsHomogeneous(X,f) : Sch,RngMPolElt -> BoolElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012