[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: product  ..  Projective


product

   KSpace(K, n, F) : Fld, RngIntElt, Mtrx -> ModTupFld
   Construction of a Vector Space with Inner Product Matrix (VECTOR SPACES)
   Inner Products (FREE MODULES)
   Tensor Products (MATRIX GROUPS OVER FINITE FIELDS)
   The Cartesian Product Constructors (SETS)
   TUPLES AND CARTESIAN PRODUCTS
   Unions and Products of Graphs (GRAPHS)
   SmpCpx_product (Example H140E9)

ProductCode

   ProductCode(C, D) : Code, Code -> Code
   DirectProduct(C, D) : Code, Code -> Code

ProductProjectiveSpace

   ProductProjectiveSpace(k,N) : Rng,SeqEnum -> PrjScrl

ProductRepresentation

   ProductRepresentation(D, E) : LieRepDec, LieRepDec -> LieRepDec
   D * E : LieRepDec, LieRepDec -> LieRepDec
   ProductRepresentation(a) : FldFunGElt -> [FldFunGElt], [RngIntElt]
   ProductRepresentation(a) : FldNumElt -> [ FldNumElt ], [ RngIntElt ]
   ProductRepresentation(D, E, R) : LieRepDec, LieRepDec, RootDtm -> LieRepDec
   ProductRepresentation(a) : RngOrdElt -> [ RngOrdElt ], [ RngIntElt ]
   ProductRepresentation(P, E) : [ FldAlgElt ], [ RngIntElt ] -> FldAlgElt
   ProductRepresentation(P, E) : [ FldNumElt ], [ RngIntElt ] -> FldNumElt
   ProductRepresentation(Q, S) : [FldFunGElt], [RngIntElt] -> FldFunGElt

Products

   BasisProducts(A) : AlgGen -> SeqEnum
   BasisProducts(L) : AlgLie -> SeqEnum
   AlgMat_Products (Example H83E5)
   GrpPerm_Products (Example H58E8)

products

   Direct Products and Wreath Products (PERMUTATION GROUPS)
   Inner Products and Duals (QUANTUM CODES)
   Tensor Products of K[G]-Modules (K[G]-MODULES AND GROUP REPRESENTATIONS)

Profile

   ProfileGraph(): -> GrphDir
   ProfileHTMLOutput(G, prefix): GrphDir, MonStgElt ->
   ProfilePrintByTotalCount(G): GrphDir ->
   ProfilePrintByTotalTime(G): GrphDir ->
   ProfilePrintChildrenByCount(G, n): GrphDir, GrphVert ->
   ProfilePrintChildrenByTime(G, n): GrphDir, GrphVert ->
   ProfileReset(): ->
   SetProfile(b): BoolElt ->

profile-reports

   Prof_profile-reports (Example H6E2)

ProfileGraph

   ProfileGraph(): -> GrphDir

ProfileHTMLOutput

   ProfileHTMLOutput(G, prefix): GrphDir, MonStgElt ->

ProfilePrintByTotalCount

   ProfilePrintByTotalCount(G): GrphDir ->

ProfilePrintByTotalTime

   ProfilePrintByTotalTime(G): GrphDir ->

ProfilePrintChildrenByCount

   ProfilePrintChildrenByCount(G, n): GrphDir, GrphVert ->

ProfilePrintChildrenByTime

   ProfilePrintChildrenByTime(G, n): GrphDir, GrphVert ->

Profiler

   THE MAGMA PROFILER

profiler

   Profiler Basics (THE MAGMA PROFILER)
   Recursion and the Profiler (THE MAGMA PROFILER)

profiler-basics

   Profiler Basics (THE MAGMA PROFILER)

profiler-recursion

   Prof_profiler-recursion (Example H6E3)

ProfileReset

   ProfileReset(): ->

Progression

   Seq_Progression (Example H10E1)
   Set_Progression (Example H9E5)

progression

   The Arithmetic Progression Constructors (SEQUENCES)
   The Arithmetic Progression Constructors (SETS)

Proj

   Proj(D) : DivTorElt -> TorVar, PlcEnum
   Proj(R) : RngMPolRes -> Sch,Prj
   ProjectiveSpace(R) : RngMPol -> Prj
   RelativeProj(D) : DivTorElt -> TorVar

proj

   Tangent and Secant Varieties and Isomorphic Projections (SCHEMES)

proj-cl-commutes

   Crv_proj-cl-commutes (Example H114E12)

project

   Isomorphic Projection to Subspaces (SCHEMES)

project-embed

   Isomorphic Projection to Subspaces (SCHEMES)

Projection

   CuspidalProjection(f) : ModFrmElt -> ModFrmElt
   EisensteinProjection(f) : ModFrmElt -> ModFrmElt
   IsomorphicProjectionToSubspace(X) : Sch -> Sch, MapSch
   Projection(X,Y) : Prj,Prj -> MapSch
   Projection(X, Q) : Sch, Prj -> Sch, MapSch
   ProjectionFromNonsingularPoint(X,p) : Sch,Pt -> Sch,MapSch,Sch
   ProjectionMap(CN,N,CM,M) : Crv, RngIntElt, Crv, RngIntElt -> MapSch
   ProjectionMap(CN,N,CM,M,r) : Crv, RngIntElt, Crv, RngIntElt, RngIntElt -> MapSch
   ProjectionOnto(A : parameters) : ModAbVar -> MapModAbVar

ProjectionFromNonsingularPoint

   ProjectionFromNonsingularPoint(X,p) : Sch,Pt -> Sch,MapSch,Sch

ProjectionMap

   ProjectionMap(CN,N,CM,M) : Crv, RngIntElt, Crv, RngIntElt -> MapSch
   ProjectionMap(CN,N,CM,M,r) : Crv, RngIntElt, Crv, RngIntElt, RngIntElt -> MapSch

ProjectionOnto

   ProjectionOntoImage(phi : parameters) : MapModAbVar -> MapModAbVar
   ProjectionOnto(A : parameters) : ModAbVar -> MapModAbVar

ProjectionOntoImage

   ProjectionOntoImage(phi : parameters) : MapModAbVar -> MapModAbVar
   ProjectionOnto(A : parameters) : ModAbVar -> MapModAbVar

Projective

   CompactProjectiveResolution(M, n) : ModAlg, RngIntElt -> Rec
   CompactProjectiveResolutionPGroup(M, n) : ModAlgBas, RngIntElt -> Rec
   CompactProjectiveResolutionsOfSimpleModules(A,n) : AlgBas, RngIntElt -> SeqEnum
   DimensionsOfProjectiveModules(B) : AlgBas -> SeqEnum
   FactoredProjectiveOrder(a) : AlgMatElt -> [ <RngIntElt, RngIntElt> ]
   FactoredProjectiveOrder(A) : AlgMatElt -> [ <RngIntElt, RngIntElt> ], RngElt
   FactoredProjectiveOrder(A) : AlgMatElt -> [ <RngIntElt, RngIntElt> ], RngElt
   FanOfFakeProjectiveSpace(W,Q) : SeqEnum -> TorFan
   [Future release] FanOfProjectiveSpace(n) : RngIntElt -> TorFac
   FiniteProjectivePlane(D) : Inc -> Plane, PlanePtSet, PlaneLnSet
   FiniteProjectivePlane(W) : ModTupFld -> PlaneProj
   FiniteProjectivePlane< v | X : parameters > : RngIntElt, List -> PlaneProj
   HasProjectiveDerivation(F) : RngDiff -> BoolElt
   HasProjectiveDerivation(R) : RngDiffOp -> BoolElt
   IsAdditiveProjective(C) : CodeAdd -> BoolElt
   IsFakeWeightedProjectiveSpace(X) : TorVar -> BoolElt
   IsOrdinaryProjective(X) : Sch -> BoolElt
   IsOrdinaryProjectiveSpace(X) : Sch -> BoolElt
   IsProjective(C) : Code -> BoolElt
   IsProjective(C) : Code -> BoolElt
   IsProjective(C) : Code -> BoolElt
   IsProjective(M) : ModAlg -> BoolElt, SeqEnum
   IsProjective(X) : Sch -> BoolElt
   IsProjective(X) : Sch -> BoolElt
   IsProjective(X) : TorVar -> BoolElt
   IsWeightedProjectiveSpace(X) : TorVar -> BoolElt
   MakeProjectiveClosureMap(A, P, S) : Aff,Prj,SeqEnum ->
   PGO(arguments)
   PGOMinus(arguments)
   PGOPlus(arguments)
   PSO(arguments)
   PSOMinus(arguments)
   PSOPlus(arguments)
   ParametrizeProjectiveHypersurface(X, P2) : Srfc, Prj -> BoolElt, MapSch
   ParametrizeProjectiveSurface(X, P2) : Srfc, Prj -> BoolElt, MapSch
   ProductProjectiveSpace(k,N) : Rng,SeqEnum -> PrjScrl
   ProjectiveClosure(f) : MapSch -> MapSch
   ProjectiveClosure(A): Sch -> Sch
   ProjectiveClosure(C) : Sch -> Sch
   ProjectiveClosure(X) : Sch -> Sch
   ProjectiveClosureMap(A) : Aff -> MapSch
   ProjectiveCover(M) : ModAlg -> ModAlg, ModMatFldElt, SeqEnum[ModMatFldElt], SeqEnum[ModMatFldElt], SeqEnum[RngIntElt]
   ProjectiveCover(M) : ModGrp -> ModGrp, ModMatGrpElt
   ProjectiveEmbedding(P) : PlaneAff -> PlaneProj, PlanePtSet, PlaneLnSet, Map
   ProjectiveFunction(f) : FldFunFracSchElt -> FldFracElt
   ProjectiveFunction(f) : FldFunFracSchElt -> RngFunFracElt
   ProjectiveGammaLinearGroup(arguments)
   ProjectiveGammaUnitaryGroup(arguments)
   ProjectiveGeneralLinearGroup(arguments)
   ProjectiveGeneralUnitaryGroup(arguments)
   ProjectiveIndecomposableDimensions(G, K) : Grp, FldFin -> SeqEnum
   ProjectiveIndecomposableModule(I: parameters) : ModGrp -> ModGrp
   ProjectiveIndecomposableModules(G, K: parameters) : Grp, FldFin -> SeqEnum
   ProjectiveMap(f, Y) : FldFunFracSchElt, Sch -> MapSch
   ProjectiveMap(L, Y) : [FldFunFracSchElt], Sch -> MapSch
   ProjectiveModule(B, i) : AlgBas, RngIntElt -> ModRng
   ProjectiveModule(B, S) : AlgBas, SeqEnum[RngIntElt] -> ModAlg, SeqEnum, SeqEnum
   ProjectiveOmega(arguments)
   ProjectiveOmegaMinus(arguments)
   ProjectiveOmegaPlus(arguments)
   ProjectiveOrder(a) : AlgMatElt -> RngIntElt
   ProjectiveOrder(A) : AlgMatElt -> RngIntElt, RngElt
   ProjectiveOrder(g) : GrpMatElt -> RngIntElt, RngElt
   ProjectivePlane( N : parameters) : Nfd -> PlaneProj, PlanePtSet, PlaneLnSet
   ProjectiveRationalFunction(f) : FldFunFracSchElt -> FldFunRatMElt
   ProjectiveResolution(M, n) : ModAlg, RngIntElt -> ModCpx, ModMatFldElt
   ProjectiveResolution(M, n) : ModAlgBas, RngIntElt -> ModCpx, ModMatFldElt
   ProjectiveResolution(PR) : Rec -> ModCpx, ModMatFldElt
   ProjectiveResolutionPGroup(PR) : Rec -> ModCpx
   ProjectiveSigmaLinearGroup(arguments)
   ProjectiveSigmaSymplecticGroup(arguments)
   ProjectiveSigmaUnitaryGroup(arguments)
   ProjectiveSpace(k,n) : Fld,RngIntElt -> Prj
   ProjectiveSpace(k,W) : Fld,SeqEnum -> Prj
   ProjectiveSpace(k,n) : Rng,RngIntElt -> Prj
   ProjectiveSpace(k,n) : Rng,RngIntElt -> Prj
   ProjectiveSpace(R) : RngMPol -> Prj
   ProjectiveSpecialLinearGroup(arguments)
   ProjectiveSpecialUnitaryGroup(arguments)
   ProjectiveSuzukiGroup(arguments)
   ProjectiveSymplecticGroup(arguments)
   ResolveProjectiveCurve(p) : RngMPolElt -> List, List, List, RngIntElt
   ResolveProjectiveSurface(S) : Srfc -> List, RngIntElt
   SimplicialProjectivePlane() : -> SmpCpx

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012