[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: WeylGroup .. With
WeylGroup(L) : AlgLie -> GrpPermCox
WeylGroup(GrpFPCox, L) : Cat, AlgLie -> GrpPermCox
WeylGroup(GrpMat, L) : Cat, AlgLie -> GrpPermCox
WeylGroup(GrpFPCox, G) : Cat, GrpLie -> GrpFPCox
WeylGroup(GrpMat, G) : Cat, GrpLie -> GrpMat
WeylGroup(G) : GrpLie -> GrpPermCox
WeylWord(p) : PathLS -> SeqEnum
InduceWG(W,wg,seq) : GrpFPCox, GrphUnd, SeqEnum -> GrphUnd
TestWG(W,wg) : GrpFPCox, GrphUnd -> .
WGtable2WG(table) : SeqEnum -> GrphUnd
WriteWG(file,uwg) : MonStgElt, GrphUnd -> .
WG2GroupRep(wg) : GrphUnd -> SeqEnum
WG2HeckeRep(W,wg) : GrpFPCox, GrphUnd -> SeqEnum
WG2GroupRep(wg) : GrphUnd -> SeqEnum
WG2HeckeRep(W,wg) : GrpFPCox, GrphUnd -> SeqEnum
WGelement2WGtable(g,K) : GrpFPCoxElt, SetEnum -> SeqEnum, SeqEnum
WGelement2WGtable(g,K) : GrpFPCoxElt, SetEnum -> SeqEnum, SeqEnum
WGidealgens2WGtable(dgens,K) : SeqEnum, SetEnum -> SeqEnum[SeqEnum[RngIntElt]], SetIndx
WGidealgens2WGtable(dgens,K) : SeqEnum, SetEnum -> SeqEnum[SeqEnum[RngIntElt]], SetIndx
GrpCox_WgraphIdeal (Example H98E35)
W-graphs (COXETER GROUPS)
IsWGsymmetric(dwg) : GrphDir -> BoolElt, GrphDir
InduceWGtable(J, table, W) : SeqEnum, SeqEnum, GrpFPCox -> SeqEnum[SeqEnum[RngIntElt]]
Partition2WGtable(pi) : SeqEnum -> SeqEnum, GrpFPCox
WGelement2WGtable(g,K) : GrpFPCoxElt, SetEnum -> SeqEnum, SeqEnum
WGidealgens2WGtable(dgens,K) : SeqEnum, SetEnum -> SeqEnum[SeqEnum[RngIntElt]], SetIndx
WGtable2WG(table) : SeqEnum -> GrphUnd
WGtable2WG(table) : SeqEnum -> GrphUnd
The where ... is Construction (STATEMENTS AND EXPRESSIONS)
State_where (Example H1E9)
expression1 where identifier := expression2
expression1 where identifier is expression2
The where ... is Construction (STATEMENTS AND EXPRESSIONS)
expression1 where identifier is expression2
while boolexpr do statements end while : ->
State_while (Example H1E13)
State_while (Example H1E14)
CuspWidth(G,x) : GrpPSL2, SetCspElt -> RngIntElt
Widths(FS) : SymFry -> SeqEnum
IsWildlyRamified(L) : RngLocA -> BoolElt
IsTamelyRamified(L) : RngLocA -> BoolElt
IsTamelyRamified(R) : RngPad -> BoolElt
IsWildlyRamified(A, p) : ArtRep, RngIntElt -> BoolElt
IsWildlyRamified(K) : FldAlg -> BoolElt
IsWildlyRamified(O) : RngFunOrd -> BoolElt
IsWildlyRamified(P) : RngFunOrdIdl -> BoolElt
IsWildlyRamified(P, O) : RngFunOrdIdl, RngFunOrd -> BoolElt
IsWildlyRamified(O) : RngOrd -> BoolElt
IsWildlyRamified(P) : RngOrdIdl -> BoolElt
IsWildlyRamified(P, O) : RngOrdIdl, RngOrd -> BoolElt
MacWilliamsTransform(n, k, K, W) : RngIntElt, RngIntElt, FldFin, RngMPol -> RngMPol
MacWilliamsTransform(n, k, q, W) : RngIntElt, RngIntElt, RngIntElt, [ <RngIntElt, RngIntElt> ] -> [ <RngIntElt, RngIntElt> ]
MacWilliamsTransform(n, k, q, W) : RngIntElt, RngIntElt, RngIntElt, [ <RngIntElt, RngIntElt> ] -> [ <RngIntElt, RngIntElt> ]
TwistedWindingElement(M, i, eps) : ModSym, RngIntElt, GrpDrchElt -> ModSymElt
TwistedWindingSubmodule(M, j, eps) : ModSym, RngIntElt, GrpDrchElt -> ModTupFld
WindingElement(M) : ModSym -> ModSymElt
WindingElement(M, i) : ModSym, RngIntElt -> ModSymElt
WindingLattice(M, j : parameters) : ModSym, RngIntElt -> Lat
WindingSubmodule(M, j : parameters) : ModSym, RngIntElt -> ModTupFld
Winding Elements (MODULAR SYMBOLS)
WindingElement(M) : ModSym -> ModSymElt
WindingElement(M, i) : ModSym, RngIntElt -> ModSymElt
WindingLattice(M, j : parameters) : ModSym, RngIntElt -> Lat
WindingSubmodule(M, j : parameters) : ModSym, RngIntElt -> ModTupFld
CharacterWithSchurIndex(n: parameters) : RngIntElt -> AlgChtrElt. GrpPC
ConeWithInequalities(B) : Set -> TorCon
ConstituentsWithMultiplicities(M) : ModRng -> [ <ModRng, RngIntElt> ], [ RngIntElt ]
EllipticCurveSearch(N, Effort) : RngOrdIdl, RngIntElt -> SeqEnum
IdealWithFixedBasis(B) : [ RngMPolElt ] -> RngMPol
ImageWithBasis(X, M) : ModMatRngElt, ModRng -> ModRng
IntersectionWithNormalSubgroup(G, N: parameters) : GrpPerm, GrpPerm -> GrpPerm
IsCanonicalWithTwist(D) : DivSchElt -> BoolElt, RngIntElt
IsGlobalUnitWithPreimage(a) : FldFunElt -> BoolElt, GrpAbElt
IsGlobalUnitWithPreimage(a) : FldFunElt -> BoolElt, GrpAbElt
IsIsomorphic(S, T) : ShfCoh, ShfCoh -> BoolElt, ShfHom
IsSUnitWithPreimage(a, S) : FldFunElt, SetEnum[PlcFunElt] -> BoolElt, GrpAbElt
IsUnitWithPreimage(a) : RngFunOrdElt -> BoolElt, GrpAbElt
KMatrixSpaceWithBasis(Q) : [ ModMatRngElt ] -> ModMatRng
LatticeWithBasis(G, B) : GrpMat, ModMatRngElt -> Lat
LatticeWithBasis(G, B, M) : GrpMat, ModMatRngElt, AlgMatElt -> Lat
LatticeWithBasis(B) : ModMatRngElt -> Lat
LatticeWithBasis(B, M) : ModMatRngElt, AlgMatElt -> Lat
LatticeWithGram(F) : AlgMatElt -> Lat
LatticeWithGram(G, F) : GrpMat, AlgMatElt -> Lat
ModuleWithBasis(Q): SeqEnum -> ModAlg
QuotientWithPullback(L, I) : AlgLie, AlgLie -> AlgLie, Map, UserProgram, UserProgram
RMatrixSpaceWithBasis(Q) : [ ModMatRngElt ] -> ModMatRng
RMatrixSpaceWithBasis(Q) : [ModTupRngElt] -> ModMatRng
RModuleWithAction(H) : HomModAbVar -> ModED
RModuleWithAction(H, p) : HomModAbVar, RngIntElt -> ModED
RModuleWithBasis(Q) : [ModFldElt] -> ModFld
RandomProcess(G) : GrpFin -> Process
TableauxOnShapeWithContent(S, C) : SeqEnum[RngIntElt], SeqEnum[RngIntElt] -> SetEnum
TableauxWithContent(C) : SeqEnum[RngIntElt] -> SetEnum
VectorSpaceWithBasis(Q) : [ModTupFldElt] -> ModTupFld
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012