[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: Unit_Group_NumberRing .. Unity
AlgQuat_Unit_Group_NumberRing (Example H86E28)
IsUnital(P, U) : Plane, { PlanePt } -> BoolElt
UnitalFeet(P, U, p) : Plane, { PlanePt }, PlanePt -> { PlanePt }
Unitals (FINITE PLANES)
Plane_unital (Example H141E11)
UnitalFeet(P, U, p) : Plane, { PlanePt }, PlanePt -> { PlanePt }
CU(n, q) : RngIntElt, RngIntElt -> GrpMat
ConformalUnitaryGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
GeneralUnitaryGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
IsUnitary(R) : Rng -> BoolElt
IsUnitaryGroup(G) : GrpMat -> BoolElt
IsUnitarySpace(W) : ModTupFld -> BoolElt
ProjectiveGammaUnitaryGroup(arguments)
ProjectiveGeneralUnitaryGroup(arguments)
ProjectiveSigmaUnitaryGroup(arguments)
ProjectiveSpecialUnitaryGroup(arguments)
SpecialUnitaryGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
UnitaryForm(G) : GrpMat -> BoolElt, AlgMatElt [,SeqEnum]
UnitaryReflection(a, zeta) : ModTupRngElt, FldElt -> AlgMatElt
UnitarySpace(J, sigma) : AlgMatElt, Map -> ModTupFld
UnitaryTransvection(a, alpha) : ModTupRngElt, FldElt -> AlgMatElt
RecognizeSU4(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
Constructive Recognition of Unitary Groups (ALMOST SIMPLE GROUPS)
Unitary Groups (ALMOST SIMPLE GROUPS)
GrpRfl_unitary-transvection (Example H99E4)
UnitaryForm(G) : GrpMat -> BoolElt, AlgMatElt [,SeqEnum]
FldForms_unitaryform (Example H29E11)
UnitaryReflection(a, zeta) : ModTupRngElt, FldElt -> AlgMatElt
UnitarySpace(J, sigma) : AlgMatElt, Map -> ModTupFld
Unitary Spaces (POLAR SPACES)
UnitaryTransvection(a, alpha) : ModTupRngElt, FldElt -> AlgMatElt
UnitDisc() : -> SpcHyd
GrpPSL2Shim_UnitDiscAngle (Example H131E5)
GrpPSL2Shim_UnitDiscBasics (Example H131E4)
GrpPSL2Shim_UnitDiscPractice2 (Example H131E6)
RngOrd_uniteq (Example H37E24)
UnitEquation(a, b, c) : FldNumElt, FldNumElt, FldNumElt -> [ ModHomElt ]
UnitGenerators(G) : GrpDrch -> [RngIntElt]
UnitGroup(S) : AlgQuatOrd[RngInt] -> GrpPerm, Map
MultiplicativeGroup(S) : AlgQuatOrd[RngInt] -> GrpPerm, Map
MultiplicativeGroup(F) : FldFin -> GrpAb, Map
MultiplicativeGroup(Z) : RngInt -> GrpAb, Map
MultiplicativeGroup(R) : RngIntRes -> GrpAb, Map
UnitGroup(K) : FldNum -> GrpAb, Map
UnitGroup(F) : FldPad -> GrpAb, Map
UnitGroup(Q) : FldRat -> GrpAb, Map
UnitGroup(N) : Nfd -> GrpMat, Map
UnitGroup(O) : RngFunOrd -> GrpAb, Map
UnitGroup(R) : RngIntRes -> GrpAb, Map
UnitGroup(O) : RngOrd -> GrpAb, Map
UnitGroup(OQ) : RngOrdRes -> GrpAb, Map
UnitGroup(R) : RngPad -> GrpAb, Map
FldNum_UnitGroup (Example H34E14)
RngOrd_UnitGroup (Example H37E21)
UnitGroupAsSubgroup(O) : RngOrd -> GrpAb
UnitGroupGenerators(F) : FldPad -> SeqEnum
UnitGroupGenerators(R) : RngPad -> SeqEnum
FldNear_unitgrp (Example H22E7)
UnitRank(K) : FldNum -> RngIntElt
UnitRank(K) : FldNum -> RngIntElt
UnitRank(O) : RngFunOrd -> RngIntElt
UnitRank(O) : RngOrd -> RngIntElt
UnitRank(O) : RngOrd -> RngIntElt
ExceptionalUnits(O) : RngOrd -> [ RngOrdElt ]
FundamentalUnits(O) : RngFunOrd -> SeqEnum[RngFunOrdElt]
IndependentUnits(O) : RngFunOrd -> SeqEnum[RngFunOrdElt]
IndependentUnits(O) : RngOrd -> GrpAb, Map
IsTrivialOnUnits(chi) : GrpDrchNFElt -> BoolElt
MergeUnits(K, a) : FldNum, FldNumElt -> BoolElt
SetOrderUnitsAreFundamental(O) : RngOrd ->
Units(S) : AlgQuatOrd -> SeqEnum
pFundamentalUnits(O, p) : RngOrd, RngIntElt -> GrpAb, Map
The Group of Units (NEARFIELDS)
RngLoc_units-autos (Example H47E22)
UnitTrivialSubgroup(G) : GrpDrchNF -> GrpDrchNF
UnitVector(M, i) : ModMPol, RngIntElt -> ModMPolElt
HasRootOfUnity(L, n) : RngPad, RngIntElt -> BoolElt
OrderOfRootOfUnity(r, n) : RngElt, RngIntElt -> RngIntElt
RootOfUnity(n) : RngIntElt -> FldCycElt
RootOfUnity(n, A) : RngIntElt, FldAC -> FldACElt
RootOfUnity(n, K) : RngIntElt, FldCyc -> FldCycElt
RootOfUnity(n, K) : RngIntElt, FldFin -> FldFinElt
RootOfUnity(n, Q) : RngIntElt, FldRat -> FldRatElt
Unity(R) : RngUPolTwst -> RngUPolTwstElt
Unity(W) : RngWitt -> RngWittElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012