[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: ModularParametrisation .. Module
ModularParametrisation(E, z, B : parameters) : CrvEll[FldRat], FldComElt, RngIntElt -> FldComElt
ModularParametrization(E, z, B : parameters) : CrvEll[FldRat], FldComElt, RngIntElt -> FldComElt
ModularParametrisation(E, z, B : parameters) : CrvEll[FldRat], FldComElt, RngIntElt -> FldComElt
ModularParametrization(E, z, B : parameters) : CrvEll[FldRat], FldComElt, RngIntElt -> FldComElt
ModularPolarization(A) : ModAbVar -> MapModAbVar
ModularSolution(A, M) : MtrxSprs, RngIntElt -> ModTupRng
ModularSymbols(E) : CrvEll -> ModSym
ModularSymbols(eps, k) : GrpDrchElt, RngIntElt -> ModSym
ModularSymbols(eps, k, sign) : GrpDrchElt, RngIntElt, RngIntElt -> ModSym
ModularSymbols(A) : ModAbVar -> SeqEnum
ModularSymbols(H) : ModAbVarHomol -> SeqEnum
ModularSymbols(M) : ModFrm -> SeqEnum
ModularSymbols(M, sign) : ModFrm, RngIntElt -> ModSym
ModularSymbols(M, N') : ModSym, RngIntElt -> ModSym
ModularSymbols(s, sign) : MonStgElt, RngIntElt -> ModSym
ModularSymbols(M : parameters) : ModSS -> ModSym
ModularSymbols(M, sign : parameters) : ModSS, RngIntElt -> ModSym
ModularSymbols(N) : RngIntElt -> ModSym
ModularSymbols(N, k) : RngIntElt, RngIntElt -> ModSym
ModularSymbols(N, k, F) : RngIntElt, RngIntElt, Fld -> ModSym
ModularSymbols(N, k, F, sign) : RngIntElt, RngIntElt, Fld, RngIntElt -> ModSym
ModularSymbols(N, k, sign) : RngIntElt, RngIntElt, RngIntElt -> ModSym
ModFrm_ModularSymbols (Example H132E22)
ModularSymbolToIntegralHomology(A, x) : ModAbVar, SeqEnum -> ModTupFldElt
ModularSymbolToRationalHomology(A, x) : ModAbVar, ModSymElt -> ModTupFldElt
AbsoluteModuleOverMinimalField(M) : ModGrp -> ModGrp
AbsoluteModuleOverMinimalField(M, F) : ModGrp, FldFin -> ModGrp
AbsolutelyIrreducibleModule(M) : ModRng -> ModRng
AmbientModule(M) : ModBrdt -> ModBrdt
AnalyticDrinfeldModule(F, p) : FldFun, PlcFunElt -> RngUPolTwstElt
AnalyticModule(x, p) : RngElt, PlcFunElt -> RngElt
BaseModule(R) : AlgMat -> ModTup
BaseModule(L) : AlgMatLie -> ModTupRng
BaseModule(M) : AlgMatLie -> ModTupRng
BrandtModule(A) : AlgQuatOrd -> ModBrdt
BrandtModule(M, N) : AlgQuatOrd, RngElt -> ModBrdt
BrandtModule(M) : ModSS -> ModBrdt
BrandtModule(D) : RngIntElt -> ModBrdt
BrandtModuleDimension(D, N) : RngElt, RngElt -> RngIntElt
BrandtModuleDimension(D, N) : RngIntElt, RngIntElt -> RngIntElt
CarlitzModule(R, x) : RngUPolTwst, RngUPolElt -> RngUPolTwstElt
CohomologyLeftModuleGenerators(P, CP, Q) : Tup, Tup, Tup -> Tup
CohomologyModule(A) : FldAb -> ModGrp, Map, Map, Map
CohomologyModule(G, A, M) : GrpPerm, GrpAb, Any -> ModCoho
CohomologyModule(G, M) : GrpPerm, ModGrp -> ModCoho
CohomologyModule(G, Q, T) : GrpPerm, SeqEnum, SeqEnum -> ModCoho
CohomologyRightModuleGenerators(P, Q, CQ) : Rec, Rec, Rec -> Rec
ColonModule(M, J) : ModMPol, RngMPol -> ModMPol
CommutatorModule(A, B) : AlgAss, AlgAss -> ModTupRng
ElementaryPhiModule(S,d,h) : RngSerLaur, RngIntElt, RngIntElt -> PhiMod
FullModule(S) : ShfCoh -> ModMPol
GradedModule(R, k) : Rng, RngIntElt -> ModMPol
GradedModule(R, W) : Rng, [ RngIntElt ] -> ModMPol
GradedModule(I) : RngMPol -> ModMPol
HasDefinedModuleMap(C,n) : ModCpx, RngIntElt -> BoolElt
HighestWeightModule(L, w) : AlgLie, SeqEnum -> ModTupAlg
HighestWeightModule(U, w) : AlgQUE, SeqEnum -> ModTupAlg
HomogeneousModuleTest(P, S, F) : [ RngMPol ], [ RngMPol ], RngMPol -> BoolElt, [ RngMPol ]
HomogeneousModuleTest(P, S, F) : [ RngMPol ], [ RngMPol ], RngMPol -> BoolElt, [ RngMPol ]
HomogeneousModuleTest(P, S, L) : [ RngMPol ], [ RngMPol ], [ RngMPol ] -> [ BoolElt ], [ [ RngMPol ] ]
HomogeneousModuleTest(P, S, L) : [ RngMPol ], [ RngMPol ], [ RngMPol ] -> [ BoolElt ], [ [ RngMPol ] ]
HomogeneousModuleTestBasis(P, S, L) : [ RngMPol ], [ RngMPol ], [ RngMPol ] -> [ BoolElt ], [ [ RngMPol ] ]
InjectiveModule(B, i) : AlgBas, RngIntElt -> ModAlg
InjectiveSyzygyModule(M, n) : ModAlg, RngIntElt -> ModAlg
IrreducibleModule(B, i) : AlgBas, RngIntElt -> ModAlg
IsLeftModule(M): ModAlg -> BoolElt
IsModuleHomomorphism(f) : ModMatFldElt -> BoolElt
IsModuleHomomorphism(X) : ModMatFldElt -> BoolElt
IsPermutationModule(M) : ModRng -> BoolElt
IsRightModule(M): ModAlg -> BoolElt
MinimalSyzygyModule(M) : ModMPol -> [ ModMPolElt ]
Module(A, m): Alg, Map[SetCart, ModRng] -> ModAlg
Module(O) : AlgAssVOrd[RngOrd] -> PMat
Module(A) : AlgGen -> ModTupRng
Module(S) : AlgGrpSub -> ModTupRng, Map
Module(L) : AlgLie -> ModTupRng
Module(CM) : ModCoho -> ModGrp
Module(X) : PMat -> ModDed
Module(R) : RngInvar -> ModMPol, Map
Module(O) : RngOrd -> ModDed, Map
Module(O, n) : RngOrd, RngIntElt -> ModDed
Module(I) : RngOrdFracIdl -> ModDed, Map
Module(I) : RngOrdFracIdl -> ModDed, Map
Module(L, R) : SeqEnum[ DiffFunElt ], Rng -> Mod, Map, SeqEnum[ ModElt ]
Module(L, R) : SeqEnum[ FldFunGElt ], Rng -> Mod, Map, SeqEnum[ ModElt ]
Module(S) : SeqEnum[ModElt] -> ModDed, Map
Module(S) : SeqEnum[RngOrdFracIdl] -> ModDed
Module(S) : SeqEnum[Tup] -> ModDed, Map
Module(S) : ShfCoh -> ModMPol
Module(e) : SubModLatElt -> ModRng
Module(L) : [DiffCrvElt] -> Mod, Map, [ ModElt ]
Module(S) : [FldFunFracSchElt[Crv]] -> Mod, Map, [ModElt]
ModuleHomomorphism(f) : ShfHom -> ModMPolHom
ModuleMap(f, n) : MapChn, RngIntElt -> ModMatRngElt
ModuleOverSmallerField(M, F) : ModGrp, FldFin -> ModGrp
ModuleWithBasis(Q): SeqEnum -> ModAlg
NextRepresentation(P) : SolRepProc -> BoolElt, Map
NormSpace(S) : AlgQuatOrd -> ModTupRng, Map
PermutationModule(G, K) : Grp, Fld -> ModGrp
PermutationModule(G, H, K) : Grp, Grp, Fld -> ModGrp
PermutationModule(G, H, R) : Grp, Grp, Rng -> ModGrp
PermutationModule(G, V) : Grp, ModTupFld -> ModGrp
PermutationModule(G, u) : Grp, ModTupFldElt -> ModGrp
PermutationModule(G, H, R) : GrpFin, GrpFin, Rng -> ModGrpFin
PermutationModule(G, H, R) : GrpMat, GrpMat, Rng -> ModGrp
PermutationModule(G, K) : GrpPerm, Fld -> ModGrp
PermutationModule(G, R) : GrpPerm, Rng -> ModGrp
PermutationModule(G, R) : GrpPerm, Rng -> ModGrpFin
PhiModule(M) : AlgMatElt -> PhiMod
PhiModuleElement(x,D) : AlgMatElt, PhiMod -> PhiModElt
ProjectiveIndecomposableModule(I: parameters) : ModGrp -> ModGrp
ProjectiveModule(B, i) : AlgBas, RngIntElt -> ModRng
ProjectiveModule(B, S) : AlgBas, SeqEnum[RngIntElt] -> ModAlg, SeqEnum, SeqEnum
QuotientModule(A, S) : AlgFP, AlgFP -> AlgFP
QuotientModule(A, S) : AlgFP, AlgFP -> AlgFP
QuotientModule(A, S) : AlgFP, AlgFP -> AlgFP
QuotientModule(A, S) : AlgFP, AlgFP -> AlgFP
QuotientModule(A, S) : AlgFPOld, AlgFPOld -> [AlgMatElt], [ModTupFldElt], [AlgFPEltOld]
QuotientModule(I) : RngMPol -> ModMPol
QuotientModuleAction(G, S) : GrpMat -> Map, GrpMat
QuotientModuleImage(G, S) : GrpMat -> GrpMat
RelationModule(M) : ModMPol -> [ ModMPol ]
RightRegularModule(B) : AlgBas -> ModAlg
SubalgebraModule(B, M): Alg, ModAlg -> ModAlg
SupersingularModule(p,N : parameters) : RngIntElt, RngInt -> ModSS
SupersingularModule(p) : RngIntElt -> ModForm
SyzygyModule(M, n) : ModAlg, RngIntElt -> ModAlg
SyzygyModule(M) : ModMPol -> [ ModMPolElt ]
SyzygyModule(Q) : [ RngMPolElt ] -> ModTupRng
TrivialModule(G, K) : Grp, Fld -> ModGrp
ZeroModule(B) : AlgBas -> ModAlg
RngInvar_Module (Example H110E11)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012