[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: Margulis .. Matrix
MargulisCode(p) : RngIntElt -> Code
MargulisCode(p) : RngIntElt -> Code
MarkGroebner(I) : AlgFr ->
MarkGroebner(I) : RngMPol ->
MarkGroebner(I) : AlgFr ->
MarkGroebner(I) : RngMPol ->
Mass(S) : AlgAssVOrd -> FldRatElt
ConnectionPolynomial(S) : SeqEnum -> RngUPolElt, RngIntElt
CharacteristicPolynomial(S) : SeqEnum -> RngUPolElt, RngIntElt
BerlekampMassey(S) : SeqEnum -> RngUPolElt, RngIntElt
MasseyProduct(Aoo,terms) : Rec, SeqEnum[RngElt] -> RngElt
HighProduct(Aoo,terms) : Rec, SeqEnum[RngElt] -> RngElt
MasseyProduct(Aoo,terms) : Rec, SeqEnum[RngElt] -> RngElt
MatRep(K) : DBAtlasKeyMatRep -> SeqEnum[GrpMatElt]
MatRepCharacteristics(A) : GrpAtlas -> SetEnum[RngIntElt]
MatRepDegrees(A) : GrpAtlas -> SetEnum[RngIntElt]
MatRepFieldSizes(A) : GrpAtlas -> SetEnum[RngIntElt]
MatRepKeys(A) : GrpAtlas -> SeqEnum[DBAtlasKeyMatRep]
MATRICES
The Burnside Algorithm (K[G]-MODULES AND GROUP REPRESENTATIONS)
Match(u, v, f) : GrpFPElt, GrpFPElt, RngIntElt -> BoolElt, RngIntElt
Match(u, v, f) : SgpFPElt, SgpFPElt, RngIntElt -> BoolElt, RngIntElt
AutomorphismGroupMatchingIdempotents(A) : AlgBas -> AlgBas, ModMatFldElt
GradedAutomorphismGroupMatchingIdempotents(A) : AlgBas -> GrpMat, SeqEnum, SecEnum
MaximumMatching(G) : GrphUnd -> [ { GrphEdge } ]
MaximumMatching(G : parameters) : GrphMultUnd -> [ { GrphEdge rbrace ]
Scheme_mathieu-monodromy (Example H112E60)
MatRep(K) : DBAtlasKeyMatRep -> SeqEnum[GrpMatElt]
MatRepCharacteristics(A) : GrpAtlas -> SetEnum[RngIntElt]
MatRepDegrees(A) : GrpAtlas -> SetEnum[RngIntElt]
MatRepFieldSizes(A) : GrpAtlas -> SetEnum[RngIntElt]
MatRepKeys(A) : GrpAtlas -> SeqEnum[DBAtlasKeyMatRep]
BasicRootMatrices(C) : Mtrx -> AlgMatElt, AlgMatElt
ComplexRootMatrices(k) : RngIntElt -> AlgMatElt, AlgMatElt, AlgMatElt, RngElt, RngIntElt
CondensationMatrices(A) : AlgMat -> Tup
IsIsogenousPeriodMatrices(P1, P2) : Mtrx, Mtrx -> Bool, Mtrx
IsIsomorphicBigPeriodMatrices(P1, P2) : Mtrx, Mtrx -> Bool, Mtrx, Mtrx
IsIsomorphicSmallPeriodMatrices(t1,t2) : Mtrx, Mtrx -> Bool, Mtrx
Matrices(D, n) : DB, RngIntElt -> [ AlgMatElt ]
Matrices(model) : ModelG1 -> [ AlgMatElt ]
NumberOfMatrices(D, n) : DB, RngIntElt -> RngIntElt
ReflectionMatrices(W) : GrpMat -> [AlgMatElt]
ReflectionMatrices(W) : GrpPermCox -> []
ReflectionMatrices(R) : RootDtm -> []
ReflectionMatrices(R) : RootSys -> []
SimpleReflectionMatrices(W) : GrpMat -> [AlgMatElt]
SimpleReflectionMatrices(W) : GrpPermCox -> []
SimpleReflectionMatrices(R) : RootDtm -> []
SimpleReflectionMatrices(R) : RootSys -> []
StandardFormConjugationMatrices(A) : AlgMat -> Tup
ThreeTorsionMatrices(E, C) : CrvEll, RngMPolElt -> Tup
GrpMatGen_Matrices (Example H59E2)
ModFld_Matrices (Example H28E4)
Matrices as Words (MATRIX GROUPS OVER GENERAL RINGS)
Transition Matrices (SYMMETRIC FUNCTIONS)
Transition Matrices from Monomial Basis (SYMMETRIC FUNCTIONS)
Transition Matrices from Elementary Basis (SYMMETRIC FUNCTIONS)
Transition Matrices from Homogeneous Basis (SYMMETRIC FUNCTIONS)
Transition Matrices from Power Sum Basis (SYMMETRIC FUNCTIONS)
Transition Matrices from Schur Basis (SYMMETRIC FUNCTIONS)
Transition Matrices from Elementary Basis (SYMMETRIC FUNCTIONS)
Transition Matrices from Homogeneous Basis (SYMMETRIC FUNCTIONS)
Transition Matrices from Monomial Basis (SYMMETRIC FUNCTIONS)
Transition Matrices from Power Sum Basis (SYMMETRIC FUNCTIONS)
Transition Matrices from Schur Basis (SYMMETRIC FUNCTIONS)
Matrices as Words (MATRIX GROUPS OVER GENERAL RINGS)
Cartan_MatricesAndGraphs (Example H95E12)
AbsoluteCartanMatrix(G, K) : Grp, FldFin -> AlgMatElt
AbsoluteRepresentationMatrix(a) : FldAlgElt -> AlgMatElt
AbsoluteRepresentationMatrix(a) : FldNumElt -> NumMatElt
ActionMatrix(A,x) : AlgBas, Mtrx -> ModMatFldElt
ActionMatrix(M, a): ModAlg, AlgElt -> AlgMatElt
AddScaledMatrix(~A, s, B) : Mtrx, RngElt, Mtrx ->
AddScaledMatrix(A, s, B) : Mtrx, RngElt, Mtrx -> Mtrx
AdjacencyMatrix(G) : Grph -> AlgMatElt
AdjacencyMatrix(G,p) : SymGen, RngIntElt -> AlgMatElt
AdjointMatrix(L, x) : AlgLie, AlgLieElt -> AlgMatLieElt
AmbientMatrix(f) : ModMPolHom -> ModMatRngElt
AntisymmetricMatrix(R, Q) : Rng, [ RngElt ] -> Mtrx
AntisymmetricMatrix(Q) : [ RngElt ] -> Mtrx
BaseChangeMatrix(A) : AlgBas -> ModAlg
BasicAlgebra(A): AlgMat -> AlgBas
BasisMatrix(I) : AlgAssVOrdIdl -> AlgMatElt
BasisMatrix(S) : AlgGrpSub -> ModMatRngElt
BasisMatrix(S) : AlgQuatOrd -> AlgMatElt
BasisMatrix(L) : Lat -> ModMatRngElt
BasisMatrix(M) : ModMPol -> ModMatRngElt
BasisMatrix(V) : ModTupFld -> ModMatElt
BasisMatrix(O) : RngFunOrd -> AlgMatElt
BasisMatrix(I) : RngFunOrdIdl -> AlgMatElt
BasisMatrix(O) : RngOrd -> AlgMatElt
BasisMatrix(I) : RngOrdFracIdl -> MtrxSpcElt
BasisMatrix(e) : SubModLatElt -> Mtrx
BigPeriodMatrix(A) : AnHcJac -> AlgMatElt
BlockMatrix(m, n, blocks) : RngIntElt, RngIntElt, [ Mtrx ] -> Mtrx
BlockMatrix(m, n, rows) : RngIntElt, RngIntElt, [ [ Mtrx ] ] -> Mtrx
BoundaryMatrix(X, q, A) : SmpCpx, RngIntElt, Rng -> Mtrx
BurnsideMatrix(G) : GrpPC -> AlgMatElt
CambridgeMatrix(t, K, n, Q) : RngIntElt, FldFin, RngIntElt, [ ] -> AlgMatElt
CartanMatrix(L) : AlgKac -> AlgMatElt
CartanMatrix(A) : AlgMat -> ModMatRngElt
CartanMatrix(M) : AlgMatElt -> AlgMatElt
CartanMatrix(G, K) : Grp, FldFin -> AlgMatElt
CartanMatrix(D) : GrphDir -> AlgMatElt
CartanMatrix(g) : GrphRes -> Mtrx
CartanMatrix(G) : GrpLie -> GrphUnd
CartanMatrix(W) : GrpMat -> AlgMatElt
CartanMatrix(W) : GrpPermCox -> AlgMatElt
CartanMatrix(N) : MonStgElt -> AlgMatElt
CartanMatrix(R) : RootStr -> AlgMatElt
CartanMatrix(R) : RootSys -> AlgMatElt
CentralisingMatrix(G) : GrpMat -> AlgMatElt
ChangeOfBasisMatrix(G, S) : GrpMat, ModGrp -> AlgMatElt
ChangeRing(A, R) : Mtrx, Rng -> Mtrx
ChangeRing(A, R) : MtrxSprs, Rng -> MtrxSprs
CloseVectorsMatrix(L, w, u) : Lat, ModTupRngElt, RngElt -> ModMatRngElt
ClosestVectorsMatrix(L, w) : Lat, ModTupRngElt -> ModMatRngElt, RngElt
CompanionMatrix(L) : RngDiffOpElt -> AlgMatElt
CompanionMatrix(f) : RngUPolElt -> AlgMatElt
CompanionMatrix(p) : RngUPolElt -> AlgMatElt
ComplexCartanMatrix(k) : RngIntElt -> AlgMatElt
CoordinateMatrix(I) : RngMPol -> Matrix
CoxeterMatrix(W) : GrpFPCox -> AlgMatElt
CoxeterMatrix(G) : GrphUnd -> AlgMatElt
CoxeterMatrix(G) : GrpLie -> AlgMatElt
CoxeterMatrix(W) : GrpMat -> AlgMatElt
CoxeterMatrix(N) : MonStgElt -> AlgMatElt
CoxeterMatrix(R) : RootStr -> AlgMatElt
CoxeterMatrix(R) : RootSys -> AlgMatElt
DecompositionMatrix(G, K) : Grp, FldFin -> AlgMatElt
DefiningMatrix(f) : TorLatMap -> ModMatRngElt
DefiniteGramMatrix(B) : SeqEnum[AlgQuatElt] -> FldReElt
DegeneracyMatrix(M1, M2, d) : ModSym, ModSym, RngIntElt -> AlgMatElt
DiagonalMatrix(R, Q) : AlgMat, [ RngElt ] -> AlgMatElt
DiagonalMatrix(L, Q) : AlgMatLie, [RngElt] -> AlgMatLieElt
DiagonalMatrix(R, n, Q) : Rng, RngIntElt, [ RngElt ] -> Mtrx
DiagonalMatrix(R, Q) : Rng, [ RngElt ] -> Mtrx
DiagonalMatrix(Q) : [ RngElt ] -> Mtrx
DiagonalSparseMatrix(R, n, Q) : Rng, RngIntElt, [ RngElt ] -> MtrxSprs
DiagonalSparseMatrix(R, Q) : Rng, [ RngElt ] -> MtrxSprs
DiagonalSparseMatrix(Q) : [ RngElt ] -> MtrxSprs
DisplayBurnsideMatrix(G) : GrpPC ->
DistanceMatrix(G) : Grph -> AlgMatElt
DotProductMatrix(W) : SeqEnum[ModTupFldElt] -> AlgMatElt
ElementaryToHomogeneousMatrix(n): RngIntElt -> AlgMatElt
ElementaryToMonomialMatrix(n): RngIntElt -> AlgMatElt
ElementaryToPowerSumMatrix(n): RngIntElt -> AlgMatElt
ElementaryToSchurMatrix(n): RngIntElt -> AlgMatElt
FrobeniusMatrix(D) : PhiMod -> AlgMatElt
FuchsianMatrixRepresentation(A) : AlgQuat -> Map
GeneratorMatrix(C) : Code -> ModMatFldElt
GeneratorMatrix(C) : Code -> ModMatFldElt
GeneratorMatrix(C) : Code -> ModMatRngElt
GramMatrix(S) : AlgQuatOrd -> AlgMatElt
GramMatrix(L) : Lat -> AlgMatElt
GramMatrix(L) : Lat -> Mtrx
GramMatrix(M) : ModBrdt -> AlgMatElt
GramMatrix(X) : ModMatRngElt : -> AlgMatElt
GramMatrix(V) : ModTupRng -> AlgMatElt
GramMatrix(f) : QuadBinElt -> AlgMatElt
HadamardMatrixFromInteger(x, n) : RngIntElt, RngIntElt -> AlgMatElt
HadamardMatrixToInteger(H) : AlgMatElt -> RngIntElt
HeightPairingMatrix(S: parameters) : [PtEll] -> AlgMat
HeightPairingMatrix(P : parameters) : [PtEll] -> AlgMatElt
HeightPairingMatrix(S: Precision) : [JacHypPt] -> AlgMat
HeightPairingMatrix(S) : SeqEnum[PtEll[FldFunG]] -> AlgMatElt
HessianMatrix(X) : Sch -> ModMatRngElt
HessianMatrix(C) : Sch -> Mtrx
HomogeneousToElementaryMatrix(n): RngIntElt -> AlgMatElt
HomogeneousToMonomialMatrix(n): RngIntElt -> AlgMatElt
HomogeneousToPowerSumMatrix(n): RngIntElt -> AlgMatElt
HomogeneousToSchurMatrix(n): RngIntElt -> AlgMatElt
HyperbolicCoxeterMatrix(i) : RngIntElt -> AlgMatElt
IdentitySparseMatrix(R, n) : Rng, RngElt -> MtrxSprs
IncidenceMatrix(G) : Grph -> ModHomElt
IncidenceMatrix(D) : Inc -> ModMatRngElt
IncidenceMatrix(P) : Plane -> AlgMatElt
IndexCalculusMatrix(D1, D2, D0, n, rr) : DivCrvElt, DivCrvElt, DivCrvElt, RngIntElt, RngIntElt -> MtrxSprs, SeqEnum, SeqEnum, DivCrvElt, DivCrvElt, RngIntElt, RngIntElt
InnerProductMatrix(L) : Lat -> AlgMatElt
InnerProductMatrix(M) : ModBrdt -> AlgMatElt
InnerProductMatrix(V) : ModTupRng -> AlgMatElt
IntegralMatrix(phi) : MapModAbVar -> ModMatRngElt
IntegralMatrixGroupDatabase() : -> DB
IntegralMatrixOverQ(phi) : MapModAbVar -> ModMatFldElt
IntersectionMatrix(M) : CrvRegModel -> Mtrx, SeqEnum
IntersectionMatrix(G, P) : GrphUnd, { { GrphVert } } -> AlgMatElt
InverseRSKCorrespondenceMatrix(t1, t2) : Tbl, Tbl -> Mat
IrreducibleCartanMatrix(X, n) : MonStgElt, RngIntElt -> AlgMatElt
IrreducibleCoxeterMatrix(X, n) : MonStgElt, RngIntElt -> AlgMatElt
IrreducibleMatrixGroup(k, p, n) : RngIntElt, RngIntElt, RngIntElt -> GrpMat
IsCartanMatrix(C) : AlgMatElt -> BoolElt
IsCoxeterMatrix(M) : AlgMatElt -> BoolElt
IsGeneralizedCartanMatrix(C) : AlgMatElt -> BoolElt
IsMatrixRing(A) : AlgQuat -> BoolElt, AlgMat, Map
IsSymplecticMatrix(A) : Mtrx -> BoolElt
JacobianMatrix(C) : Sch -> ModMatRngElt
JacobianMatrix(X) : Sch -> ModMatRngElt
JacobianMatrix( [ f ] ) : [ RngMPolElt ] -> RngMPol
KillingMatrix(L) : AlgLie -> ModMatFldElt
LLLBasisMatrix(L) : Lat -> ModMatElt, AlgMatElt
LLLGramMatrix(L) : Lat -> AlgMatElt, AlgMatElt
LeftRepresentationMatrix(e) : AlgAssVOrdElt -> AlgMatElt
LowerTriangularMatrix(R, Q) : Rng, [ RngElt ] -> Mtrx
LowerTriangularMatrix(Q) : [ RngElt ] -> Mtrx
Matrix(D, n, k) : DB, RngIntElt, RngIntElt -> AlgMatElt
Matrix(g,D) : GrpPSL2Elt, SpcHyd -> AlgMatElt
Matrix(phi) : MapModAbVar -> ModMatFldElt
Matrix(f) : MapSch -> Mtrx
Matrix(model) : ModelG1 -> Mtrx
Matrix(A) : Mtrx -> Mtrx
Matrix(A) : MtrxSprs -> Mtrx
Matrix(P) : PMat -> Mtrx
Matrix(R, m, n, Q) : Rng, RngIntElt, RngIntElt, [ RngElt ] -> Mtrx
Matrix(R, n, Q) : Rng, RngIntElt, [ RngElt ] -> Mtrx
Matrix(R, Q) : Rng, [ [ RngElt ] ] -> Mtrx
Matrix(m, n, Q) : RngIntElt, RngIntElt, [ RngElt ] -> Mtrx
Matrix(m, n, Q) : RngIntElt, RngIntElt, [ [ RngElt ] ] -> Mtrx
Matrix(n, Q) : RngIntElt, [ RngElt ] -> Mtrx
Matrix(Q) : [ Mtrx ] -> Mtrx
Matrix(Q) : [ [ RngElt ] ] -> Mtrx
MatrixAlgebra(A) : AlgAss -> AlgMat
MatrixAlgebra(A) : AlgFP -> AlgMat, Map
MatrixAlgebra(A, E) : AlgMat, FldFin -> AlgMat, Map
MatrixAlgebra(F, E) : FldFin, FldFin -> AlgMat, Map
MatrixAlgebra(H) : HomModAbVar -> AlgMat
MatrixAlgebra(A, M : parameters) : AlgAss, AlgAss -> AlgMat, Map
MatrixAlgebra(R, n) : Rng, RngInt -> AlgMat
MatrixAlgebra(S, n) : Rng, RngIntElt -> AlgMat
MatrixAlgebra<S, n | L> : Rng, RngIntElt, List -> AlgMat
MatrixAlgebra(Q) : RngMPolRes -> AlgMat, Map
MatrixGroup(K) : DBAtlasKeyMatRep -> GrpMat
MatrixGroup(M) : ModGrp -> GrpMat
MatrixGroup< n, R | L > : RngIntElt, Rng, List -> GrpMat
MatrixLieAlgebra(A) : AlgMat -> AlgMatLie
MatrixLieAlgebra(C, k) : AlgMatElt, Rng -> AlgLie
MatrixLieAlgebra(T, k) : MonStgElt, Rng -> AlgLie
MatrixLieAlgebra(R, n) : Rng, RngIntElt -> AlgMatLie
MatrixLieAlgebra(R, k) : RootSys -> GrpMat
MatrixOfElement(CM, g) : ModCoho, GrpElt -> AlgMatElt
MatrixOfIsomorphism(f) : Map -> AlgMatElt
MatrixRepresentation(A) : AlgQuat -> Map
MatrixRepresentation(A) : GrpAutCrv -> Grpmat, Map, SeqEnum
MatrixRing(A, eps) : AlgQuat, AlgQuatElt -> AlgMat, Map
MatrixUnit(R, i, j) : AlgMat, RngIntElt, RngIntElt -> AlgMatElt
MonomialToElementaryMatrix(n): RngIntElt -> AlgMatElt
MonomialToHomogeneousMatrix(n): RngIntElt -> AlgMatElt
MonomialToPowerSumMatrix(n): RngIntElt -> AlgMatElt
MonomialToSchurMatrix(n): RngIntElt -> AlgMatElt
NormalizerMatrix(Q) : CodeQuantum -> ModMatFldElt
NullspaceMatrix(A) : Mtrx -> ModTupRng
NullspaceMatrix(A) : MtrxSprs -> Mtrx
NumberOfIrreducibleMatrixGroups(k, p) : RngIntElt, RngIntElt -> RngIntElt
ParametrizationMatrix(C) : CrvCon -> ModMatRngElt
ParityCheckMatrix(C) : Code -> ModMatFldElt
ParityCheckMatrix(C) : Code -> ModMatFldElt
ParityCheckMatrix(C) : Code -> ModMatRngElt
PermutationGroup< X | L > : Set, List -> GrpPerm, Hom
PermutationMatrix(R, x) : Rng, GrpPermElt -> Mtrx
PermutationMatrix(R, Q) : Rng, [ RngIntElt ] -> Mtrx
PowerSumToElementaryMatrix(n): RngIntElt -> AlgMatElt
PowerSumToHomogeneousMatrix(n): RngIntElt -> AlgMatElt
PowerSumToMonomialMatrix(n): RngIntElt -> AlgMatElt
PowerSumToSchurMatrix(n): RngIntElt -> AlgMatElt
PresentationMatrix(f) : ModMPolHom -> ModMatRngElt
PseudoMatrix(I) : AlgAssVOrdIdl[RngOrd] -> PMat
PseudoMatrix(O) : AlgAssVOrd[RngOrd]> -> PMat
PseudoMatrix(M) : ModDed -> PMat
PseudoMatrix(m) : Mtrx -> PMat
PseudoMatrix(I, m) : [RngOrdFracIdl], MtrxSpcElt -> PMat
QuadraticFormMatrix(V) : ModTupRng -> ModAlgElt
QuasisimpleMatrixGroup(N, d, p : parameters) : MonStgElt, RngIntElt, RngIntElt ->GrpMat
QuasisimpleMatrixGroups(): -> SeqEnum
QuaternionOrder(M) : ModBrdt -> AlgQuatOrd
QuaternionicMatrixGroupDatabase() : -> DB
RandomMatrix(R, m, n) : Rng, RngIntElt, RngIntElt -> Mtrx
RandomSymplecticMatrix(g, m) : RngIntElt, RngIntElt -> Mtrx
RandomUnimodularMatrix(M, n) : RngIntElt, RngIntElt -> Mtrx
RationalMatrixGroupDatabase() : -> DB
RealMatrix(phi) : MapModAbVar -> ModMatFldElt
ReducedGramMatrix(S) : AlgQuatOrd[RngInt] -> AlgMatElt
ReducedGramMatrix(S) : AlgQuatOrd[RngUPol] -> AlgMatElt, SeqEnum
ReflectionMatrix(W, r) : GrpMat, RngIntElt -> AlgMatElt
ReflectionMatrix(W, r) : GrpPermCox, RngIntElt -> []
ReflectionMatrix(R, r) : RootDtm, RngIntElt -> []
ReflectionMatrix(R, r) : RootSys, RngIntElt -> []
RelationMatrix(K, B) : FldNum, RngIntElt -> ModHomElt
RelationMatrix(A) : GrpAb -> Mtrx
RelationMatrix(M) : ModMPol -> ModMatRngElt
RelationMatrix(O) : RngOrd -> ModHomElt
RepresentationMatrix(a) : AlgAssVOrdElt -> AlgMatElt
RepresentationMatrix(f) : AlgFPElt -> AlgMatElt
RepresentationMatrix(a) : FldAlgElt -> AlgMatElt
RepresentationMatrix(a) : FldFunGElt -> AlgMatElt
RepresentationMatrix(a, R) : FldFunGElt, Rng -> AlgMatElt
RepresentationMatrix(a) : FldNumElt -> NumMatElt
RepresentationMatrix(a, M : parameters) : AlgAssElt, AlgAss -> AlgMatElt
RepresentationMatrix(a) : RngLocAElt -> AlgMatElt
RepresentationMatrix(f) : RngMPolResElt -> AlgMatElt
RestrictionMatrix( G, k ) : GrphDir, RngIntElt ) -> AlgMatElt
RestrictionMatrix(G, H) : MonStgElt, MonStgElt -> AlgMatElt
RestrictionMatrix(R, S) : RootDtm, RootDtm -> AlgMatElt
RestrictionMatrix(R, Q) : RootDtm, SeqEnum -> AlgMatElt
ScalarMatrix(R, t) : AlgMat, RngElt -> AlgMatElt
ScalarMatrix(L, r) : AlgMatLie, RngElt -> AlgMatLieElt
ScalarMatrix(R, n, s) : Rng, RngIntElt, RngElt -> Mtrx
ScalarMatrix(n, s) : RngIntElt, RngElt -> Mtrx
ScalarSparseMatrix(R, n, s) : Rng, RngIntElt, RngElt -> MtrxSprs
ScalarSparseMatrix(n, s) : RngIntElt, RngElt -> MtrxSprs
SchurToElementaryMatrix(n): RngIntElt -> AlgMatElt
SchurToHomogeneousMatrix(n): RngIntElt -> AlgMatElt
SchurToMonomialMatrix(n): RngIntElt -> AlgMatElt
SchurToPowerSumMatrix(n): RngIntElt -> AlgMatElt
ShortVectorsMatrix(L, u) : Lat, RngElt -> ModMatRngElt
ShortestVectorsMatrix(L) : Lat -> ModMatRngElt
SmallPeriodMatrix(A) : AnHcJac -> AlgMatElt
SparseMatrix(A) : Mtrx -> MtrxSprs
SparseMatrix(R) : Rng -> MtrxSprs
SparseMatrix(R, m, n) : Rng, RngIntElt, RngIntElt -> MtrxSprs
SparseMatrix(R, m, n, Q) : Rng, RngIntElt, RngIntElt, [ <RngIntElt, RngIntElt, RngElt> ] -> MtrxSprs
SparseMatrix(m, n) : RngIntElt, RngIntElt -> MtrxSprs
SparseMatrixStructure(R) : [ Rng ] -> MtrxSprsStr
StabilizerMatrix(Q) : CodeQuantum -> ModMatFldElt
SymmetricMatrix(R, Q) : Rng, [ RngElt ] -> Mtrx
SymmetricMatrix(f) : RngMPolElt -> Mtrx
SymmetricMatrix(Q) : [ RngElt ] -> Mtrx
SymplecticMatrixGroupDatabase() : -> DB
SyzygyMatrix(Q) : [ RngMPolElt ] -> ModMatRngElt
TraceMatrix(O) : RngOrd -> AlgMatElt
TransformationMatrix(O1, O2) : RngFunOrd, RngFunOrd -> AlgMatElt, RngElt
TransformationMatrix(I) : RngFunOrdIdl -> AlgMatElt, RngElt
TransformationMatrix(O, P) : RngOrd, RngOrd -> AlgMatElt, RngIntElt
TransformationMatrix(I) : RngOrdFracIdl -> MtrxSpcElt, RngIntElt
UnipotentMatrixGroup(G) : GrpMat -> GrpMatUnip
UpperTriangularMatrix(R, Q) : Rng, [ RngElt ] -> Mtrx
UpperTriangularMatrix(Q) : [ RngElt ] -> Mtrx
WronskianMatrix(L) : [RngDiffElt] -> AlgMatElt
ZeroMatrix(R, m, n) : Rng, RngIntElt, RngIntElt -> Mtrx
ModRng_Matrix (Example H54E10)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012