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Chapter 17

INTRODUCTION TO RINGS

17.1 Overview

Rings of various kinds form the richest source of algebraic structures in MAGMA. Tables

1 and 2 list the most i

mportant types.

symbol description Category Ch
Z ring of integers RngInt 18
Z/mZ ring of residue classes RngIntRes 18
R[z] univariate polynomial ring RngUPol 23
Flx]/f(x) polynomial factor ring RngUPolRes 23
Rlzq, -, 2] multivariate polynomial ring RngMPol 24
R[zy, -, om]¢ invariant ring RngInvar 110
R[[z]] power series ring RngSer 49
0 order in a number field RngOrd 37
0 order in a function field RngFunOrd 42
Z, p-adic ring RngPad 47
R, local ring RngLoc 47
1% valuation ring RngVal 45
Table 1: The main types of Ring in MAGMA.
symbol description Category Ch |
Q rational field FldRat 20
F, finite field F1dFin 21
F(xy, -, zm) rational function field FldFunRat 41
F((z)) field of Laurent series RngSerLaur 49
Q(VD) quadratic number field FldQuad 35
Q) cyclotomic number field F1dCyc 36
Q(«) number field F1dNum 34
F(x)(a) function field F1dFun 42
Q, p-adic field FldPad 47
Q, () local field FldLoc 47
R real field FldRe 25
C complex field F1dCom 25

Table 2: The main types of Field in MAGMA.
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The list of rings in Table 1 is not exhaustive, for two reasons. In the first place, some
rings have been categorized differently, because their module structure or algebra struc-
ture seems pre-eminent; thus matrix rings and finitely presented algebras appear (more
or less arbitrarily) in the Part on Algebras, and vector spaces and their generalizations
appear in the Module Part. (Also, rings of class functions appear in the Part on Groups.)
Furthermore, certain general constructions (such as sub) allow the user to define rings that
do not appear in the above list, most notably subrings of Z.

Looking at the table it may seem that all rings in MAGMA are commutative and unital.
This is not the case (even though it would have made life much easier); since polynomial
rings and the like can be defined over any coefficient ring, the matrix rings and finitely
presented algebras not listed here that are not generally commutative, allow the construc-
tion of non-commutative rings. Furthermore, the sub constructor allows the creation of
rings without 1; certain functions for the construction of new rings from old ones do not
allow such non-unital coefficient rings.

In this Chapter we give an overview of the various types and the relations between
them. Moreover, we describe the important principles underlying the rules for coercion
of elements of one ring into another. This Chapter also describes the common functions
for all types of rings (and their elements), and subsequent Chapters deal with particular
categories of rings, as indicated by the table.

17.2 The World of Rings

There are various ways in which to order the families of rings appearing in Table 1. We
look at some in this section.

17.2.1 New Rings from Existing Ones

It is important to realize at the outset that to work comfortably with a ring, it should be
finitely generated (over some subring); indeed, the only violations of this rule occur for real
and complex fields, and p-adic and power series type structures, in which we necessarily
have to cope with approximations. All other rings we will label as ezact.

All rings in Table 1 can be obtained from the ring of rational integers Z by repeated
application of a handful of fundamental mathematical constructions. The first such con-
struction is forming fractions: the rational field Q can be obtained as the field of fractions
of Z. The second construction is that of forming quotients: in this way the rings Z/mZ are
obtained from Z. The third important construction is that of transcendental extension: by
adjoining an element that satisfies no relation over the coefficient ring, a polynomial ring
is obtained. An algebraic extension can be obtained by a combination of a transcendental
extension and a quotient. Finally, completion of a ring at a prime leads in general to the
rings that were labelled above as not exact. Some other constructions are: tensoring, tak-
ing direct products (leading to tuple modules), and taking valuation rings (an operation
inverse to taking fields of fractions).

Most of these constructions are supported by MAGMA. In many situations the quo and
ext constructors will perform the quotient and algebraic extension operations, just like
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sub creates sub-structures. Note an important distinction: usually sub creates structures
of exactly the same type as the original structure—this is precisely why the construction
of sub-object does not appear as an important construction for creating new objects in the
previous paragraph.

Care should be taken not to confuse the mathematical properties of rings (or objects
in MAGMA in general) and the properties of the object that MAGMA is aware of. For
example, if one creates the ring of residue classes Z/pZ for a prime number p, using
the command IntegerRing(p), the MAGMA object created is a residue class ring (whose
modulus happens to be prime) and not a finite field; the functions applicable are the
residue class ring functions, and it is, for instance, not possible to create a field extension
over this object. If the intention was to create a finite field, the FiniteField(p) command
should have been used, and for that object it is possible to create a field extension.

Similarly, a convenient way of thinking about a number field K = Q(«) is to regard it as
a quotient of the polynomial ring Q[X] and the ideal generated by the minimal polynomial
f of the primitive element «:

K = Q(a) = Q[X]/(f)-

This is, however, not the way to create number fields in MAGMA. The quotient ring of a
polynomial ring will be an object to which only the generic ring functions apply, whereas to
obtain the number field with all the machinery to manipulate it one has to use a command
like NumberField(f).

17.2.2 Attributes

17.3 Coercion

A ring element can often be coerced into a ring other than its parent. The need for this
occurs for example when one wants to perform a binary ring operation on elements of
different structures, or when an intrinsic function is invoked on elements for which it has
not been defined.

The basic principle is that such an operation may be performed whenever it makes sense
mathematically. Before the operation can be performed however, an element may need to
be coerced into some structure in which the operation can legally be performed. There are
two types of coercion: automatic and forced coercion. Automatic coercion occurs when
MAGMA can figure out for itself what the target structure should be, and how elements of
the originating structure can be coerced into that structure. In other cases MAGMA may
still be able to perform the coercion, provided the target structure has been specified; for
this type of coercion R ! x instructs MAGMA to execute the coercion of element x into
ring R.

The precise rules for automatic and forced coercion between rings are explained in
the next two subsections. It is good to keep an important general distinction between
automatic and forced coercion in mind: whether or not automatic coercion will succeed
depends on the originating and the target structure alone, while for forced coercion success
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may depend on the particular element as well. Thus, integers can be lifted automatically
to the rationals if necessary, but conversely, only the integer elements of Q can be coerced
into Z by using !.

The subsections below will describe for specific rings R and S in MAGMA whether
or not an element r of R can be lifted automatically or by force into S. Suppose that
the unary MAGMA function Function takes elements of the type of S as argument and
one is interested in the result of that function when applied to r. If R can be coerced
automatically into a unique structure S of the desired type, then Function (r) will produce
the required result. If R cannot be coerced automatically into such S, but forced coercion
on 7 is possible, then Function(S ! r) will yield the desired effect. If, finally, neither
automatic nor forced coercion is possible, it may be possible to define a map m from R to
S, and then Function( m(r) ) will give the answer.

For example, the function Order is defined for elements of residue class rings (among
others). But Order(3) has no obvious interpretation (and an error will arise) because
there is not a unique residue class ring in which this should be evaluated.

If a binary operation o : C'x C' — C' on members C of a category of rings C is applied to
elements r and s of members R and S from C, the same rules for coercion will be used to
determine the legality of ros. If s can be coerced automatically into R, then this will take
place and r o s will be evaluated in R; otherwise, if r can be coerced automatically into S,
then r o s will be evaluated in S. If neither succeeds, then, in certain cases, MAGMA will
try to find an existing common overstructure T' for R and S, that is, an object T from C
such that C T' O S; then both r and s will be coerced into T" and the result t = r o s will
be returned as an element of T'. If none of these cases apply, an error results. It may still
be possible to evaluate by forced coercion of r into S or s into R, using (S ! r) o s or
usingr o (R ! s).

17.3.1 Automatic Coercion

We will first deal with the easier of the two cases: automatic coercion. A simple demon-
stration of the desirability of automatic coercion is given by the following example:

print 1 + (1/2);

It is obvious that one wants the result to be 3/2: we want to identify the integer 1 with
the rational number 1 and perform the addition in Q, that is, we clearly wish to have
automatic coercion from Z to Q.

The basic rule for automatic coercion is:

automatic coercion will only take place when there exists a unique target
structure and an obvious homomorphism from the parent structure to the
target structure

In particular, if one structure is naturally contained in the other (and MAGMA knows about
it!), automatic coercion will take place. (The provision that MAGMA must know about
the embedding is in particular relevant for finite fields and number fields; in these cases it
is possible to create subrings, or even isomorphic rings/fields, for which the embedding is
not known.)
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Also, for any ring R there is a natural ring homomorphism Z — R, hence any integer
can be coerced automatically into any ring.

Table 3 gives a summary for all cases in which MAcMA will apply automatic coercion:
if a ring operation is attempted on an element from one of the structures in the first row,
and the specifications for the operation require that the argument is an element from a
structure in the first column, the element will be coerced into the structure indicated by
the table.

Automatic Coercion (Ring Elements)
Fps |2/nZ| Z Q  |Q/Aan| Q) L | or R, Cy,
F,r c | - F,r - - - - - - -
Z/mZ | — | = Z/mZ - - - - - - -
zZ |Fps|2/nz| z Q  |Q/Aan| Q) L | or R, C,
Q - - Q Q  |Q(/Ax)| Q) L - R, C,
Q/Aan| - | - |an/an|an/an| = - - _ _ _
Qem) | = | = | Qm) | QGm) - | QQem(m,ny) | — - - -
K - | - K K - - = |K=1L - -
Ok - | - Ok - - - K=L| = - -
Q |- | - Qp Qp - - - | - - -
Z, - | - Zp— - - - - - - -

R - | - Ron R, - - - — | Ruax(m.n) | Cmax(m,n)

Cm - | - Cm Cm - - - — | Crax(m.n) | Cmax(m,n)

Table 3.

The symbols in the table have the following meaning:

— indicates that automatic coercion will not take place; as the table shows for instance,
automatic coercion will not take place when we try to add a finite field element and an
element of Z /nZ (not even when n is prime and of the same characteristic as the field).

C indicates that automatic coercion will only take place if one structure is contained in
the other, or MAGMA can find a common overstructure to both structures. Thus the
top-left entry in the table indicates that two finite field elements can be added if they
are members of finite fields F; and F5 such that Fy, C Fy or Fy C Fi, or both fields
have been created inside a field F', so I} C F D F5.

= The = is used to denote that automatic coercion only takes place if both structures are
the same. The entry K = L is used to indicate that an element of an order Og will
only be coerced into the number field L if K = L.

In addition to these rules, general rules apply to polynomial and matrix algebras. The
rules for polynomial rings are as follows. An element s from a ring S can be automatically
coerced into R[ X1, ..., X,,] if either S equals R[X7,...,X;| for some 1 <i<n,or S=R.
Note that in the latter case the element s must be an element of the coefficient ring R,
and that it is not sufficient for it to be coercible into R.
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So, for example, we can add an integer and a polynomial over the integers, we can
add an element f of Z[X] and g of Z[X, Y], but not an integer and a polynomial over the
rationals.

An element s can be coerced automatically in the matrix ring M, ,,(R) if it is coercible
automatically into the coefficient ring R, in which case s will be identified with the diagonal
matrix that has each diagonal entry equal to s.

So we can add an integer and a matrix ring element over the rationals, but we cannot
automatically add elements of M, ,,(Z) and M, ,(Q), nor elements from M s(Z) and
M; 3(Z).

17.3.2 Forced Coercion

In certain cases where automatic coercion will not take place, one can cast an element into
the ring in which the operation should take place.

If, for example, one is working in a ring Z/pZ, and p happens to be prime, it may occur
that one wishes to perform some finite field operations on an element in the ring; if F' is a
finite field of characteristic p an element x of Z/pZ can be cast into an element of F' using
F ! x;

Table 4 describes the possibilities for using ! for coercion in rings. It shows when it is

possible to coerce an element from a structure in the first row into a structure in the first
column.

! Non-Automatic Coercion (Ring Elements)

/ Fo  |z/mz|z|Q] Q/r2) | Qw) L or |Rn|Cn
F,r slror 3 |n=p|+|— - — — — — | =
Z/mZ |m=p,s=1| m|n |[+]|— — — - — _ | =

Z s=1lor 3| + |+]|>3 5 5 N

Q - - ||+ E} E} - | -

Q(y/ A1) - — |+|+|A1=2A%0r > > - _ N
Q(¢m) - - ||+ D or 3 n|lm or 3 - - | -

K — — + |+ — - K=L |K=L| — —
Ox _ N (N N — - K=L>K=L|-| -
Qp s=1 n=p|+|> — - - — — | =
Z, s=1 |n=p|+]|- - - - IR R
R - +|+]| Ag >0o0r > > - - + )
Cn — - |+|+ + + - - + | +

Table 4.

The symbols are the same as those in Table 3 except:

+ indicates that coercion can take place without restrictions (sometimes it will be done
automatically if necessary);

|, = (In)equalities on parameters of the structures indicate the restrictions for ! to work;
thus, an element from F,: can only be coerced into Z/mZ if s = 1 and m = p;
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> The > symbols in this table indicates that coercion only applies to certain elements
of the domain; thus only those elements of Q can be coerced into Z that are in fact
integers.

or In some cases coercion may either take place if some condition on parameters is

satisfied or on a subset of the domain; thus the entry s|r or > for coercion of F -
into F,~ indicates that such coercion is always possible if s divides 7, and only on
a subset of F,: (like F),) in general (note that the characteristics have to be the
same).

The rules for coercion from and to polynomial rings and matrix rings are as follows.
If an attempt is made to forcibly coerce s into P = R[X7, ..., X,,], the following steps
are executed successively:

(a)if s is an element of P it remains unchanged;

(b)if s is a sequence, then the zero element of P is returned if s is empty, and if it is
non-empty but the elements of the sequence can be coerced into P[X7q,..., X,_1] then
the polynomial ), s[7] X771 is returned;

(c) if s can be coerced into the coefficient ring R, then the constant polynomial s is returned;

(d)if s is a polynomial in R[X1, ..., Xi] for some 1 < k < n, then it is lifted in the obvious
way into P;

(e)if s is a polynomial in R[X71, ..., Xj] for some k > n, but constant in the indeterminates
Xp+1,--., Xk, then s is projected down in the obvious way to P.

If none of these steps successfully coerces s into P, an error occurs.

The ring element s can be coerced into M, ,,(R) if either it can be coerced into R
(in which case s will be identified with the diagonal matrix with s on the diagonal), or
s € S = M,,(R'), where R’ can be coerced into R. Also a sequence of n? elements
coercible into R can be coerced into the matrix ring M,, ,,(R).

Elements from a matrix ring M, ,(R) can only be coerced into rings other than a
matrix ring if n = 1; in that case the usual rules for the coefficient ring R apply.

Note that in some cases it is possible to go from (a subset of) some structure to another
in two steps, but not directly: it is possible to go

> y:=L 1! @Q"! %)

to coerce a rational element of one number field into another via the rationals.
Finally we note that the binary Boolean operator in returns true if and only if forced
coercion will be successful.
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17.4  Generic Ring Functions

The generic functions described in this Chapter apply in principle to every type of ring.
For certain rings these are the only applicable functions. The qualification ‘in principle’
in the first sentence is made because for some classes of rings an algorithm to compute
certain of these functions does not exist, or has not been implemented. In that case an
error will result.

This general list is provided primarily to avoid duplication of common descriptions. In
the following Chapters the generic functions will be listed merely without further descrip-
tion, and the emphasis can be on the functions specific to a particular type of ring.

17.4.1 Related Structures

| Parent (R) |

The parent of ring R. Currently this returns the power structure of the ring.

Category(R)

Type (R)

The ‘type’ of R, that is, the MAGMA category to which the ring R belongs. The
procedure call ListCategories() gives a list of all the categories, as does the Ap-
pendix.

PrimeField(F) |

For a field F', this returns either F,,, if the characteristic p of F' is positive, or Q, if
the characteristic of F'is 0. If F' is an extension field then it will return the field at
the bottom of the extension tower.

PrimeRing(R)

For a unitary ring R, this returns either Z/nZ, if the characteristic n of R is positive,
or Z, if the characteristic of R is 0. If R is an extension ring then it will return the
ring at the bottom of the extension tower.

Centre(R)
Center(R)

Given a ring R, return its centre, consisting of the subring of elements commuting
with all other elements of R.

17.4.2 Numerical Invariants

| Characteristic(R) |

The characteristic of the ring R, which is the smallest positive integer m such that
m -1 = 0 for every r € R, or zero if such m does not exist.

The cardinality of the ring R; here R must be finite.
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17.4.3 Predicates and Boolean Operations

IsCommutative (R) |

Returns true if it is known that the ring R is commutative, false if it is known
that R is not commutative. An error results if the answer is not known.

IsUnitary(R)

Returns true if the ring R is known to be unitary (that is, if R has a multiplicative
identity), false if R has no 1.

| IsFinite(R) |

Returns true if the ring R is known to be a finite ring, false if it is known to be
infinite. An error results if the answer is not known.

| IsOrdered(R) |

Returns true if the ring R has a total ordering defined on the set of its elements,
false otherwise.

| IsField(R) |

Returns true if the ring R is known to be a field, false if it is known to not be a
field. An error results if the answer is not known.

IsDivisionRing(R)

Returns true if the ring R is known to be a division ring (that is, every non-zero
element is invertible), false if it is known that R is not a division ring. An error
results if the answer is not known.

IsEuclideanDomain(R) |

Returns true if the ring R is known to be a euclidean domain, false if it is known
that R is not a euclidean domain. An error results if the answer is not known.

IsEuclideanRing(R)

Returns true if the ring R is known to be euclidean, false if it is known that R is
not euclidean. An error results if the answer is not known.

IsMagmaEuclideanRing(R)

Returns true iff the ring R is a computable euclidean ring within Magma (i.e., iff the
necessary euclidean operations are defined for R so algorithms requiring a euclidean
ring will work).

IsPID(R)
IsPrincipalIdealDomain(R)

Returns true if the ring R is known to be a principal ideal domain, false if it is
known that R is not a principal ideal domain. An error results if the answer is not
known.
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IsPIR(R)
IsPrincipalIdealRing(R)

Returns true if the ring R is known to be a principal ideal ring, false if it is known
that R has non-principal ideals. An error results if the answer is not known.

IsUFD(R)

IsUniqueFactorizationDomain(R)

Returns true if the ring R is known to be a unique factorization domain, false if it
is known that R is not a unique factorization domain. An error results if the answer
is not known.

IsDomain(R)

IsIntegralDomain(R)

Returns true if it is known that R is an integral domain (i. e., R has no zero
divisors), false if R is known to have zero divisors. An error results if the answer
is not known.

HasGCD(R) |
Returns true iff there is a GCD algorithm for elements of ring R in MAGMA.
R eq S

For certain pairs R, S of rings, this returns true if R and S refer to the same ring,
and false otherwise. However, if R and S belong to different categories an error
may result.

For certain pairs R, S of rings, this returns true if R and S refer to different rings,
and false otherwise. However, if R and S belong to different categories an error
may result.

17.5 Generic Element Functions

17.5.1 Parent and Category

| Parent (r) |

The (default) parent ring of ring element r. Usually the parent of r has been created
explicitly before, but in certain cases, such as literal integers, rationals, reals, and
values returned by certain functions a default parent is created in the background.

Category(r)

Type (r)

The ‘type’ of r, that is, the MAGMA category to which the ring element r belongs.
The procedure call ListCategories() gives a list of all the categories, as does the
Appendix.
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17.5.2 Creation of Elements

Zero(R)

The zero element of ring R; this is equivalent to R ! 0.

bed

One (R)
Id(R)
The multiplicative identity 1 of ring R; this is equivalent toR ! 1.

Coerce the element a of some ring into the ring R. (The rules on coercion are
explained earlier in this Chapter.) If a is an integer, the coercion will always succeed:
the element a - 1 will be returned, where 1 is the unit element of R.

Random(R) |

A random element of the finite ring R (every element of R has the same probability
of being returned).

Representative(R)

Rep(R)

A representative element of the finite ring R.

—

7.5.3 Arithmetic Operations

Element a.

+
H I

The negation (additive inverse) of element a.

a+b

The sum of the ring elements a and b; if @ and b do not belong to the same ring R,
an attempt will be made to find a common overstructure in which the sum can be
taken.

The difference of the ring elements a and b; if @ and b do not belong to the same ring
R, an attempt will be made to find a common overstructure in which the difference
can be taken.

a*xb

The product of the ring elements a and b; if @ and b do not belong to the same ring
R, an attempt will be made to find a common overstructure in which the product
can be taken.
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a " k
Form the k-th power of the ring element a, for small, non-negative, k. If a = 0 then
we must have k > 0.

a” -k
Form the k-th power of the multiplicative inverse of the unit a.

al/b

Given an element a of R and a unit b of R, form the quotient of the elements a and
b. If b is not invertible in R, an error results, unless both a and b are integers, in
which case a / b returns the rational number a/b. If a and b do not belong to the
same ring R, an attempt will be made to find a common overstructure in which the
quotient can be taken.

a+:=b

Mutation assignment: change a into the sum of a and b.

Mutation assignment: change a into the difference of a and b.
a *x:=Db

Mutation assignment: change a into the product of a and b.

a/:=b
Mutation assignment: change a into the quotient of a and b.
a ":=k

Mutation assignment: change a into the power a*.

17.5.4 Equality and Membership

aeqb

Returns true if the elements a and b of R are the same, otherwise false.

aneb
Returns true if the elements a and b of R are distinct, otherwise false.
R eq S
Returns true if the rings R and S are the same, otherwise false.

R ne S

Returns true if the rings R and S are distinct, otherwise false.

a in R

Returns true if and only if a is an element of R.

a notin R |

Returns true if and only if a is not an element of R.
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17.5.5 Predicates on Ring Elements

| IsZero(a) |

Returns true if and only if the element a of R equals Og.

IsOne(a)

Returns true if and only if the element a of R equals 1g.

| IsMinusOne(a) |

Returns true if and only if the element a of R equals the element —1 of R.

| IsUnit(a) |

Returns true if a is a unit in its parent R, false otherwise.

IsIdempotent (x)

Returns true if and only if 22 equals .

IsNilpotent (x)

Returns true if and only if some integer power x* of x is zero.

IsZeroDivisor (x) |

Returns true if and only if x is a zero-divisor, that is, there exists an element y in
the parent R of x such that xy = 0.

IsIrreducible(x) |

Returns true if and only if the parent R of the element = is a domain and =z is
irreducible in R, that is, x is a non-unit of R and whenever a product ab of elements
of R divides x then a or b is a unit of R.

IsPrime(x) |

Returns true if and only if the parent R of the element z is a domain and x is a
prime element of R, that is, x is neither 0 nor a unit and whenever x divides the
product ab of two elements of R it divides a or b.
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17.5.6 Comparison of Ring Elements

The comparison operations are only defined on types of ring that are ordered.

agthb

Returns true if the ring element a is greater than the ring element b, otherwise
false.

ageb

Returns true if the ring element a is greater than or equal to the ring element b,
otherwise false.

Returns true if the ring element a is less than the ring element b, otherwise false.

Returns true if the ring element a is less than or equal to the ring element b,
otherwise false.

Maximum(a, b)

The maximum of the ring elements a and b; if @ and b do not belong to the same ring
R, an attempt will be made to find a common overstructure in which the maximum
can be taken.

Maximum(Q)

The maximum of the sequence () of ring elements.

Minimum(a, b)

The minimum of the ring elements a and b; if @ and b do not belong to the same ring
R, an attempt will be made to find a common overstructure in which the minimum
can be taken.

Minimum(Q)

The minimum of the sequence @ of ring elements.
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17.6 Ideals and Quotient Rings

The following entries describe the operations on ideals in a commutative ring R. Cer-
tain operations on left and right ideals in non-commutative rings will be described in the
Chapters for the corresponding rings.

17.6.1 Defining Ideals and Quotient Rings

ideal R | a1, ..., a, >
Given a ring R and elements aq,...,a, of R, create the ideal I of R generated by
A1yee.yQp.

quo< R | a,, ..., a, >
Given a ring R and elements aq,...,a, of R, construct the quotient ring Q@ = R/I,

where [ is the ideal of R generated by aq,...,a,.

Given a ring R and an ideal I of R, construct the quotient ring Q = R/I, as well
as the canonical map R — R/I.

| PowerIdeal (R) |
The set of ideals of R. This is the parent of all ideals of R.

17.6.2 Arithmetic Operations on Ideals

The sum of the ideals I and J of the ring R. This ideal consists of elements a + b,
with @ € T and b € J. If I is generated by {ai,...,ax} and J is generated by
{b1,...,bn}, then I + J is generated by {a1,...,ax,b1,...,bm}.

The product of the ideals I and J of the ring R. This is the ideal generated by
elements a - b, with a € I and b € J, and it consists of elements a1b; + - -+ 4+ a, by,
with a; € I and b; € J.

The intersection of the ideals I and J of the ring R.
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17.6.3 Boolean Operators on Ideals

Throughout this subsection I and J are ideals belonging to the same integer ring R, while
a is an element of R.

Returns true if and only if the element a is a member of the ideal I.

| a notin I |

Returns true if and only if the element a is not a member of the ideal I.

I eqld

Returns true if and only if the ideals I and J are equal.

Returns true if and only if the ideals I and J are distinct.

| I subset J |

Returns true if and only if the ideal I is contained in the ideal J.

| I notsubset J |

Returns true if and only if the ideal I is not contained in the ideal J.

17.7 Other Ring Constructions

MacGMmA allows the construction of residue fields, localization of rings, and completion of
rings. These constructions really just create appropriate rings of different categories within
MAGMA.

17.7.1 Residue Class Fields

ResidueClassField(I) |

Given a maximal ideal I of a ring R, create the residue class field K of the quotient

ring R/I, together with a map sending an element of R to the corresponding element
of K.

17.7.2 Localization

lock R | a3, ..., a >

Given a ring R and elements aq,...,a, of R, which generate a prime ideal P of R,
create the localization L of R at P, together with a map sending an element of R
to the corresponding element of L.

Localization(R, P)

Given a ring R and a prime ideal P of R, create the localization L of R at P,
together with a map sending an element of R to the corresponding element of L.
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17.7.3 Completion

comp< R | a3, ..., a, >

Given a ring R and elements ai,...,a, of R, which generate a prime ideal or zero
ideal P of R, create the completion C' of R at P, together with a map sending an
element of R to the corresponding element of C'

Completion(R, P)

Given a ring R and a prime ideal or zero ideal P of R, create the completion C' of
R at P, together with a map sending an element of R to the corresponding element
of C.

17.7.4 Transcendental Extension

ext< R | >

Given a ring R create the univariate transcendental extension R[z| of R. This is
equivalent to PolynomialRing(R).

ext< R, n | >

Given a ring R and an integer n > 1, create the multivariate transcendental exten-
sion R[xq,...,z,] of R. This is equivalent to PolynomialRing (R, n).
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Chapter 18
RING OF INTEGERS

18.1 Introduction

This Chapter describes the operators and functions for working with the ring of rational
integers Z.

Integers are the most commonly used objects in MAGMA. They can be created by
just typing in the literal (decimal) digits. Integers thus created are elements of the ring
of integers which is automatically created when MAGMA is started up. There is just one
single object ‘integer ring’ around, but references to it (new ‘names’ for it) can be created
using the IntegerRing function.

18.1.1 Representation

Since large integers occur so frequently, the first requirement for a computer algebra system
is to support fast arithmetic for integers of arbitrary size. Indeed, within the bounds set
by the available memory, it is possible to operate reasonably efficiently with integers of
any number of decimal digits.

Although it is well possible to use the integer facilities without being aware of the
internal representation of (large) integers, it is sometimes useful to know how integers
are stored. The most important fact is that integers smaller than 23° = 1073741824 in
absolute value are ‘single precision’, and in many circumstances such ‘small integers’ allow
considerably faster arithmetic (they are treated slightly differently internally and escape
the overhead of memory management used to deal with multi-precision integers).

18.1.2 Coercion

Integers will be automatically coerced into almost every unitary ring R using the identi-
fication of 1 and 1. This means that integer arguments are allowed for almost any ring
element function, and that it is not necessary to convert an integer before applying binary
operators (such as +) on a combination of arguments consisting of an integer and another
ring element.

For more on coercion we refer to Chapter 17.

18.1.3 Homomorphisms

Ring homomorphisms are required to be unitary. Therefore, to specify a homomorphism
with the integers as its domain requires merely the specification of the codomain.

hom« Z ->R | >

The natural homomorphism from Z to the ring R.
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Example H18E]

> h := hom< Integers() -> MatrixRing(RealField(12), 3) | >;

> h(2)"-1;

[0.5 0 0]
[ 00.5 0]
[ 0 00.5]

18.2 Creation Functions

18.2.1 Creation of Structures

The ring of integers is automatically created when Magma is first loaded. The ring may be
formally created (and, if desired, assigned to a variable) using the function IntegerRing ().
Subrings of Z are always ideals; see the section on ideals for details.

IntegerRing ()

Integers()

IntegerRing(Q)

RingOfIntegers(Q)

Create the ring of integers Z. Analogous to the creation of the ring of integers of
any number field, there is a version of IntegerRing that creates Z as the ring of
integers of Q.

18.2.2 Creation of Elements

Since the ring of integers is present when Magma is started up, integers typed into Magma
without any explicit context will be regarded as elements of the ring of integers. Integers
can be specified using both decimal and hexadecimal notation.

| ajas...a, |

Given a succession of decimal digits aq,...,a,, create the corresponding integer.
Leading zeros will be ignored.

| Oxajas...a, |

Given a succession of hexadecimal digits aq, ..., a,, create the corresponding integer.
Leading zeros will be ignored.

elt< Z | ajay...a, >

Given a succession of decimal digits aq,...,a,, create the corresponding integer as
an element of Z.
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elt< Z | Oxajas...a, >

Given a succession of hexadecimal digits a1, ..., a,, create the corresponding integer
as an element of Z.

Z ! a

Coerce the ring element a into the ring of integers Z. The element a is allowed to
be an element of the ring of integers modulo m (in which case the result r satisfies
0 < r < m), or an element of a finite field (in which case the result r satisfies
0 <r < pif aisin the prime field, of characteristic p, and an error otherwise), or an
element of the integers, rationals, a quadratic field, a cyclotomic field or a number
field (in which cases the result is the obvious integer if a is integral and an error
otherwise).

Example H18E2

> Z := IntegerRing();

> n := 1234567890;

>n in Z;

true

>m := elt< Z | 1234567890 >;

>m eq n;

true

>1 :=7Z ! elt< QuadraticField(3) | 1234567890, 0>;

> 1;

1234567890

>k := elt< Z | 0x499602D2 >;

1234567890
One (Z2) Identity(Z)
Zero(Z) Representative(Z)

These generic functions (cf. Chapter 17) create 1, 1, 0, and 0 respectively, in the
integer ring Z.

18.2.3 Printing of Elements

Magma supports the printing of integers in both decimal and hexadecimal form. The
default print method is to print integers in base 10; base 16 printing is performed using
the Hex print level.
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Example H18E3

> n := 1234567890;
> n;

1234567890

> n:Hex;
0x499602D2

18.2.4 Element Conversions

FactorizationToInteger(s)

FactorisationToInteger(s)

Facint(s) |

Given a sequence of two-element tuples s = [< p1,k1 >, ..., < pr, k. >| containing
pairs of integers < p;, k; >, 1 < i < r, with k; non-negative, this function returns
the integer plfl -~ pFr. Tt is normally used for converting a factorization sequence to
the corresponding integer.

IntegerToSequence(n, b)

Intseq(n, b)

Given a non-negative integer n and a positive integer b > 2, return the unique base
b representation of n in the form of a sequence Q. That is, if n = agh® +a1b* +... +
ap_1b* 7t with 0 < a; < band a_1 > 0, then Q = [ag,ay,...,ar_1]. (If n =0, then

Q=1])

SequenceToInteger(s, b)

Seqint (s, b)

Given a positive integer b > 2 and a sequence @ = [ag,...,ar—1] of non-negative
integers such that 0 < a; < b, return the integer n = agb® + a;b' + ... + ap_1b* 1.
If @ is the empty sequence, the integer zero is returned. This function performs the
inverse operation of the base b representation.

IntegerToString(n)

Create the string consisting of the decimal digits of the integer n. In the case in
which n is negative the first character will be the minus sign.
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IntegerToString(n, b)

Create the string consisting of the digits of the integer n in base b. In the case in
which n is negative the first character will be the minus sign. The base b can be
between 2 and 36. For b < 10, the digits are represented numerically. For b > 10,
the digits are represented both numerically and alphabetically, so that, 10 is ‘A’, 11
is ‘B’, et cetera.

Eltseq(n)

The sequence [n] which can be coerced back into Z.

| Denominator (n) |

The denominator of n, ie. 1.

18.3 Structure Operations

The following generic ring functions are applicable to the ring of integers and its elements.

18.3.1 Related Structures

Category(Z) Parent (Z) PrimeRing(Z) Center (Z)

AdditiveGroup(Z)

Create the abelian group of integers under addition. This returns an infinite (addi-
tive) abelian group A of rank 1 together with a map from A to the ring of integers
Z, sending A.1 to 1.

MultiplicativeGroup(Z)

UnitGroup(Z)

Create the abelian group of invertible integers, that is, an abelian group isomorphic
to the multiplicative subgroup (—1). This returns an (additive) abelian group A of
order 2 together with a map from A to the ring of integers Z, sending A.1 to —1.

ClassGroup(Z)

The class group of the ring of Z (which is trivial).

FieldOfFractions(Z) |

Create the field of fractions Q of the ring of rational integers.

sub< Z | n >|

Given Z, the ring of integers or an ideal of it, and an element n of Z, create the ideal
aZ N Z of the ring of integers. Note that this creates an ideal, not just a subring.
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18.3.2 Numerical Invariants

Characteristic(Z)

Signature(Z)

The signature of Z as an order of Q, i.e. 1, 0.

18.3.3 Ring Predicates and Booleans

IsCommutative(Z) IsUnitary(Z)

IsFinite(Z) IsOrdered(Z)

IsField(Z) IsEuclideanDomain(Z)

IsPID(Z) IsUFD(Z)

IsDivisionRing(Z) IsEuclideanRing(Z)

IsPrincipalIldealRing(Z) IsDomain(Z)

Z eq R Z ne R

18.4 Element Operations

18.4.1 Arithmetic Operations

Magma includes both the Karatsuba algorithm and the Schénhage-Strassen FFT-based
algorithm for the multiplication of integers ([AHU74, Chap. 7], [v2GG99, Sec. 8.3]). The
crossover point (where the FFT method beats the Karatsuba method) is currently 2!° bits
(approx. 10000 decimal digits) on Sun SPARC workstations and 2! bits (approx. 40000
decimal digits) on Digital Alpha workstations. Assembler macros are used for critical
operations and 64-bit operations are used on DEC-Alpha machines.

Magma also contains an asymptotically-fast integer (and polynomial) division algo-
rithm which reduces division to multiplication with a constant scale factor that is in the
practical range. Thus division of integers and polynomials are based on the Karatsuba
and Schonhage-Strassen (FFT) methods when applicable. The crossover point for integer
division (when the new method outperforms the classical method) is currently at the point
of dividing a 2'2 bit (approx. 1200 decimal digit) integer by a 2! (approx. 600 decimal
digit) integer on Sun SPARC workstations.
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+n - n
m+n m-n m* n n "k m/n
m+:=n m-:=n m *:=n m/:=n m ":=k

n divm

The quotient ¢ of the division with remainder n = ¢m + r, where 0 < r < m or
m < r < 0 (depending on the sign of m), for integers n and m # 0.

n mod m

The remainder r of the division with remainder n = ¢m + r, where 0 < r < m or
m < r < 0 (depending on the sign of m), for integers n and m # 0.

ExactQuotient(n, d)

Assuming that the integer n is exactly divisible by the integer d, return the exact
quotient of n by d (as an integer). An error results if d does not divide n exactly.

n div:=m n mod:=m

18.4.2 Bit Operations

The following functions use bit operations on the internal representation, so are in general
quicker than using the usual arithmetic operators.

ShiftLeft(n, b)

Given integers n and b, with b > 0, return n x 2°.

ShiftRight(n, b)

Given integers n and b, with b > 0, return n div 2°.

ModByPower0f2(n, b)

Given integers n and b, with b > 0, return n mod 2° (so the result is always non-
negative).

18.4.3 Equality and Membership

meqgn mne n

n in R n notin R

18.4.4 Parent and Category

Parent (n) Category(n)
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18.4.5 Predicates on Ring Elements

| IsEven(n) |

Returns true if the integer n is even, otherwise false.

Is0dd(n)

Returns true if the integer n is odd, otherwise false.

IsDivisibleBy(n, d)

Returns true if and only if the integer n is divisible by the integer d; if true, the
quotient of n by d is also returned.

IsSquare(n)

Returns true if the non-negative integer n is the square of an integer, false other-
wise. If n is a square, its positive square root is also returned.

IsSquarefree(n)

Returns true if the non-zero integer n is not divisible by the square of any prime,
false otherwise.

IsPower(n) |

If the integer n > 1 is a power n = b* of an integer b, with k > 1, this function
returns true, the minimal positive b and its associated k; if it is not such integer
power the function returns false.

IsPower(n, k)

If the integer n > 1 is k-th power, with k& > 1, of some integer b, so that n = b*, this
function returns true, and b; if it is not a k-th integer power the function returns
false.

IsPrime(n) |

Proof BooLELT Default : true

Returns true if and only if the integer n is a prime. A rigorous primality test which
returns a proven result will be used unless the parameter Proof is false. The reader
is referred to the section 18.9 for a complete description of this function.

Example H18E4

In this example we find some 10-digit primes that are congruent to 3 modulo 4 such that (p—1)/2
is also prime.

> { p: pin [10710+3..10710+1000 by 4] |
> IsPrime(p) and IsPrime((p-1) div 2)};
{ 10000000259, 10000000643 }
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IsIntegral(n)

Returns true if and only if a is integral, which is of course true for every integer n.

IsSinglePrecision(n)

Returns true if n fits in a single word in the internal representation of integers in
MAGMA, that is, if |n| < 239, false otherwise.

IsZero(n) IsOne(n) IsMinusOne (n)
IsNilpotent (n) IsIdempotent(n)

IsUnit(n) IsZeroDivisor(n) IsRegular(n)
IsIrreducible(n) IsPrime(n)

18.4.6 Comparison of Ring Elements

mgtn mgen mltn mlen
Maximum(m, n) Maximum(Q)
Minimum(m, n) Minimum(Q)

18.4.7 Conjugates, Norm and Trace

ComplexConjugate (n)

The complex conjugate of n, which will be the integer n itself.

Conjugate(n)

The conjugate of n, which will be the integer n itself.

The norm in Q of n, which will be the integer n itself.

| EuclideanNorm(n) |

The Euclidean norm (length) of n, which will equal the absolute value of n.

The trace (in Q) of n, which will be the integer n itself.

MinimalPolynomial (n)

Returns the minimal polynomial of the integer n, which is the monic linear polyno-
mial with constant coefficient n in a univariate polynomial ring R over the integers.



290 BASIC RINGS Part IV

18.4.8 Other Elementary Functions

AbsoluteValue(n) |

Abs(n)

Absolute value of the integer n.

Ilog2(n)

The integral part of the logarithm to the base two of the positive integer n.

Ilog(b, n)

The integral part of the logarithm to the base b of the positive integer n i.e., the
largest integer k such that b* < n. The integer b must be greater than or equal to
two.

Quotrem(m, n)

Returns both the quotient ¢ and remainder r obtained upon dividing the integer m
by the integer n, that is, m = q¢-n+r, where 0 <r <nifn>0and n <r <0 if
n < 0.

Valuation(x, p)

The valuation of the integer z at the prime p. This is the largest integer v for which
p¥ divides x. If x = 0 then v = co. The optional second return value is the integer
u such that x = pYu.

Iroot(a, n)

Given a positive integer a, return the integer b = | {/a], i.e. the integral part of the
n-th root of a. To obtain the actual root (as a real number), a must e coerced into
a real field and the function Root applied.

Sign(n)

Returns —1, 0 or 1 depending upon whether the integer n is negative, zero or
positive, respectively.

Ceiling(n)

The ceiling of the integer n, that is, n itself.

Floor(n)

The floor of the integer n, that is, n itself.

Round (n)

This function rounds the integer n to itself.

Truncate(n) |

This function returns the integer truncation of the integer n, that is, n itself.
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SquarefreeFactorization(n)

Given a non-negative integer n, return a squarefree integer x as well as a positive
integer y, such that n = zy?.

Isqrt(n)

Given a positive integer n, return the integer |\/n|, i.e., the integral part of the
square root of the integer n.

18.5 Random Numbers

Pseudo-random integers in MAGMA are generated using the Monster random number
generator of G. Marsaglia [Mar00]. The period of this generator is 229430 — 227382 (approx-
imately 10%8°?), and the generator passes all of the stringent tests in Marsaglia’s Diehard
test suite [Mar95]. Throughout the following text, the word ‘random’ is used to mean
‘pseudo-random’.

Random(a, b)

A random integer lying in the interval [a, b], where a < b.

Random (b) |
A random integer lying in the interval [0, b], where b is a non-negative integer. Be-
cause of the good properties of the underlying Monster generator, calling Random (1)
is a good safe way of producing a sequence of random bits.

RandomBits(n) |

A random integer m such that 0 < m < 2", where n is a small non-negative integer.
Thus, m has n random bits with a probability of 1/2 for each bit. The function
always returns 0 when n = 0.

RandomPrime(n: parameter)

Proof BooLELT Default : true

A random prime integer m such that 0 < m < 2", where n is a small non-negative
integer. The function always returns 0 for n = 0 or n = 1. A rigorous method will
be used to check primality, unless m > 34 - 10'3 and the optional parameter Proof
is set to Proof := false, in which case the result indicates that m is a probable
prime (of order 20).

RandomPrime(n, a, b, x: parameter)

Proof BooLELT Default : true

Tries up to x iterations to find a random prime integer m congruent to a modulo b
such that 0 < m < 2". If successful, the function returns true and the integer m,
otherwise false. The integer n must be larger than 0, @ must lie between 0 and b—1
and b must be larger than 0. A rigorous method will be used to establish primality,
unless m > 34 - 10'3 and the optional parameter Proof is set to Proof := false,
in which case the result indicates that m is a probable prime (of order 20).
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RandomConsecutiveBits(n, a, b)

A integer m such that 0 < m < 2", and the binary expansion of n consists of
consecutive strings of zeros or ones each of random length in the range [a. .. b].

18.6 Common Divisors and Common Multiples

This section deals with computing greatest common divisors and related computations.

Within the classical range, MAGMA uses the fast classical Accelerated GCD algorithm
of Kenneth Weber [Web95] to compute the GCD of two integers, and the fast classical
Lehmer extended GCD (‘XGCD’) algorithm [Knu97, pp. 345-348] (which is about 5 times
faster than the Euclidean XGCD algorithm) to compute the extended GCD of two integers.

For larger integers, MAGMA uses the asymptotically fast Schénhage recursive (“half-
GCD”) algorithm ([Sch71]; see also [Mon92, Sec. 3.8] for the basic idea, applied to poly-
nomials). On a Sun SPARC workstation, the crossover point for the Schénhage GCD
algorithm (where it beats the classical Accelerated GCD algorithm) is 32768 bits (about
10000 decimal digits), while the crossover point for the Schénhage XGCD algorithm (when
it beats the Lehmer XGCD algorithm) is 6000 bits (about 2000 decimal digits).

GreatestCommonDivisor(m, n)
Ged(m, n)
GCD(m, n)

The greatest common divisor of m and n, normalized to be non-negative. If either
of the inputs is zero, then the result is the absolute value of the other input, while
if m and n are both zero the result is zero.

| GreatestCommonDivisor(s)

The GCD of the entries of the sequence s. If all entries of the sequence are zero,
the result is zero. An error results if the sequence is the null sequence.

ExtendedGreatestCommonDivisor (m, n)

Xgcd(m, n)

XGCD(m, n)

The extended GCD of m and n; returns integers g, x and y such that g is the greatest
common divisor of the integers m and n, and g = x-m +y-n. If m and n are both
zero, g is zero; otherwise g is always positive. If m and m are both non-zero, the
multipliers z and y are unique.
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| ExtendedGreatestCommonDivisor(s) |

Xgecd(s)

XGCD(s)
Given a sequence of integers s = [s1,. .., ], return the non-negative integer g and a
sequence X = (z1,...,z,) such that g is the greatest common divisor of the integers

T
si and g = 2121 Ti - S

LeastCommonMultiple(m, n)

Lem(m, n)
LCM(m, n)

The smallest non-negative integer divisible by both m and n. If m or n equals zero,
the result is zero; this ensures that lem(m,n)ged(m,n) = m - n.

LeastCommonMultiple(s)

Least common multiple of the sequence of integers s.

18.7 Arithmetic Functions

Each of the functions in this section may take an integer or the factorization of that integer.

| CarmichaellLambda(n) |
CarmichaelLambda(Q)
CarmichaelLambda(Q)

The Carmichael function \(n); its value equals the exponent of (Z/nZ)*.

DickmanRho (u) |

Computes p(u) where p is Dickman’s rho function.

FactoredCarmichaellLambda(n)

FactoredCarmichaellLambda(Q)

FactoredCarmichaellLambda(Q)

The Carmichael function A(n), returned as a factorization sequence.

DivisorSigma(i, n)

DivisorSigma(i, Q)

The divisor function o;(n) = > din d’ for integer n and small non-negative integer i.
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NumberOfDivisors(n) |

Number0fDivisors(Q)

The number of divisors of the positive integer m. This is a special case of
DivisorSigma.

SumOfDivisors(n) |

SumOfDivisors(Q)

The sum of the divisors of the positive integer n. This is a special case of
DivisorSigma.

EulerPhi (n) |
EulerPhi (Q)
EulerPhi (Q)

The Euler totient function ¢(n); its value equals the order of (Z/nZ)*.

FactoredEulerPhi (n) |
FactoredEulerPhi (Q)
FactoredEulerPhi (Q)

The Euler totient function ¢(n), returned as a factorization sequence.

EulerPhiInverse(m) |

EulerPhiInverse(Q)

The inverse of the Euler totient function ¢(n); that is, the sorted sequence of all
integers n such that ¢(n) = m.

FactoredEulerPhilInverse(n) |

FactoredEulerPhiInverse(Q)

The factored inverse of the Euler totient function ¢(n); that is, the sorted sequence
of the factorizations of all integers n such that ¢(n) = m.

LegendreSymbol(n, m)

The Legendre symbol (%) for prime m this checks whether or not n is a quadratic
residue modulo m. The function returns 0 if m divides n, —1 if n is not a quadratic
residue, and 1 if n is a quadratic residue modulo m. A fast probabilistic primality
test is performed on m. If m fails the test (and is therefore composite), an error

results; if it passes the test the Jacobi symbol is computed.
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JacobiSymbol(n, m)

The Jacobi symbol (). For odd m > 1 this is defined (but not calculated!) as the
product of the Legendre symbols (p%), where the product is taken over all primes

p; dividing m including multiplicities. Quadratic reciprocity is used to calculate this
symbol, which has the values —1, 0 or 1.

KroneckerSymbol(n, m)

The Kronecker symbol (%) This is the extension of the Jacobi symbol to all integers

m, by multiplicativity, and by defining (%) = (—1)("2_1)/8 for odd n (and 0 for even
n) and <_i1> = +1 according to the sign of n for n # 0 (and 1 for n = 0).

MoebiusMu(n)
MoebiusMu(Q)

The Mébius function p(n). This is a multiplicative function characterized by p(1) =
1, u(p) = —1, and p(p*) = 0 for k > 2, where p is a prime number.

Example H18E5

A pair of positive integers (m,n) is called amicable if the sum of the proper divisors (that is:
excluding m itself) of m equals n, and vice versa. The following function finds such pairs. Note
that it also finds perfect numbers: amicable pairs of the form (m,m).

d := func< m | DivisorSigma(l, m)-m >;
z = func< m | d(d(m)) eq m >;
for m := 2 to 10000 do
if z(m) then
m, d(m);
end if;
end for;
6
28 28
220 284
284 220
496 496
1184 1210
1210 1184
2620 2924
2924 2620
5020 5564
5564 5020
6232 6368
6368 6232
8128 8128

» V V V V V V. YV
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18.8 Combinatorial Functions

Binomial(n, r)

The binomial coefficient (:f)

Multinomial(n, [a;, ... a,l)
Given a sequence ) = [rq,...,r,| of positive integers such that n = r1 + ... + ryg,
return the multinomial coefficient (r " )
15Tk
| Factorial(n) |

The factorial n! for positive small integer n.

| IsFactorial(n) |

Tests if n = k! for some k. If so, return true and k, false otherwise.

| Partitions(n) |

The unrestricted partitions of the positive integer n. This function returns a se-
quence of integer sequences, each of which is a different sequence of positive integers
(in descending order) adding up to n. The integer n must be small.

| NumberOfPartitions(n) |

The number of unrestricted partitions of the non-negative integer n. The integer n
must be small.

RestrictedPartitions(n, Q)

The partitions of the positive integer n, restricted to elements of the positive integer
sequence ().

RestrictedPartitions(n, k, M)

The partitions of the positive integer n into k parts, restricted to elements of the
positive integer sequence ().

StirlingFirst(n, k)

The Stirling number of the first type, [}/], where n and k are non-negative integers.

StirlingSecond(n, k)

The Stirling number of the second type, {}}, where n and k are non-negative
integers.

The nth Bell number, giving the number of partitions of a set of size n. (Not to
be confused with NumberOfPartitions(n), which gives the number of partitions of
the integer n.) This is equal to the sum of StirlingSecond(n,k) for k between 0
and n (inclusive).
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Fibonacci(n) |

Given an integer n, this function returns the n-th Fibonacci number F;,, which can
be defined via the recursion Fy =0, F} =1 and F,, = F,,_1 + F,,_> for all integers
n. Note that n is allowed to be negative, and that F_,, = (—1)"T1F,.

Given an integer n, this function returns the n-th Lucas number L,,, which can be
defined via the recursion Lo =2, L1 =1 and L,, = L,,_1 + L,_o for all integers n.
Note that n is allowed to be negative, and that L_,, = (—=1)"L,,.

GeneralizedFibonacciNumber (g0, gl, n)

The nth member of the generalized Fibonacci sequence defined by Gog = g9, G1 = ¢1
and G,, = G,,_1 + G, _o for all integers n. Note that n is allowed to be negative.
The Fibonacci and Lucas numbers are special cases where (go,¢1) = (0,1) or (2,1)
respectively.

18.9 Primes and Primality Testing

Primality testing algorithms enable the user to certify the primality of prime integers.
Proving the primality of very big integers can be time consuming and therefore in some of
the algorithms using primes and factorization of integers the user can speed up the algo-
rithm by explicitly allowing MAGMA to use probable primes rather than certified primes.

A probable prime is an integer that has failed some compositeness test; if an integer
passes a compositeness test it will be composite, but there is a (small) probability that a
composite number will fail the test and is hence called a probable prime. Each Miller-Rabin
test for instance, has a probability of less than 1/4 of declaring a composite number prob-
ably prime; in practice that means that numbers that fail several such cheap independent
Miller-Rabin compositeness tests will be prime.

Unless specifically asked otherwise, MAGMA will use rigorous primality proofs.

18.9.1 Primality

If a positive integer n is composite, this can be shown quickly by exhibiting a witness to
this fact. A witness for the compositeness of n is an integer 1 < a < n with the property
that _

a”" #1modn and a’? # —1modn fori=0,1,...,k—1

where r odd, and k are such that n — 1 = r - 2*. A witness never falsely claims that n is
composite, because for prime n it must hold that a”~! = 1 mod n and only +1 are square
roots of 1 modulo prime n. Moreover, it has been shown that a fraction of at least 3/4 of
all a in the range 2...n — 1 will witness the compositeness of n. Thus randomly choosing
a will usually quickly expose compositeness. Unless more than 3/4 of all possibilities for a
are checked though (which in practice will be impossible for reasonable n) the procedure of
checking k bases a at random for being a witness (often referred to as ‘Miller-Rabin’) will
not suffice to prove the primality of n; it does however lend credibility to the claim that n
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is most likely prime if among & (say 20) random choices for a no witness for compositeness
has been found. In such cases n is called probably prime of order k, and in some sense the
probability that n is composite is less than 47%.

A slight adaptation of this compositeness test can be used for primality proofs in a
bounded range. There are no composites smaller than 34 - 10'® for which a witness does
not exist among a = 2,3,5,7,11,13,17 ([Jae93]). Using these values of a for candidate
witnesses it is certain that for any number n less than 34 - 10'3 the test will either find a
witness or correctly declare n prime.

But even for large integers it is thus usually easy to identify composites without finding
a factor; to be certain that a large probable prime is truly prime, a primality proving
algorithm is invoked. MAGMA uses the ECPP (Elliptic Curve Primality Proving) method,
as implemented by Francois Morain (Ecole Polytechnique and INRIA). The ECPP program
in turn uses the BigNum package developed jointly by INRIA and Digital PRL. This ECPP
method is both fast and rigorous, but for large integers (of say more than 100 decimal digits)
it will be still be much slower than the Miller-Rabin compositeness test. The method is
too involved to be explained here; we refer the reader to the literature ([AM93]).

The IsPrime function invokes ECPP, unless a Boolean flag is used to indicate that only
‘probable primality’ is required. The latter is equivalent to a call to IsProbablePrime.

IsPrime(n) |

IsPrime(n: parameter)

Proof BooLELT Default : true

Returns true iff the integer n is prime. A rigorous method will be used, unless
n > 34-10' and the optional parameter Proof is set to Proof := false, in which
case the result indicates that n is a probable prime (a strong pseudoprime to 20
bases).

SetVerbose ("ECPP", wv)

Sets the verbose level for output when the ECPP algorithm is used in the above
primality tests. The legal values are true, false, 0, 1 and 2 (false and true are
the same as 0 and 1 respectively). Level 1 outputs only basic information about the
times for the top-level stages (downrun and uprun). Level 2 outputs full information
about every step : this level is very verbose!

PrimalityCertificate(n)

IsPrimeCertificate(cert) |

ShowCertificate BooLELT Default : true
Trust RNGINTELT Default : 0

PrimalityCertificate is a variant on IsPrime which uses ECPP and outputs a
certificate of primality at the conclusion. If the number n is actually proven to be
composite or the test fails, then a runtime error occurs. The certificate is a Magma
list with data in the format described in [AM93].
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To verify that a given number is prime from its primality certificate, the func-
tion IsPrimeCertificate is used. By default, this outputs only the result of the
verification : true or false. If the user wishes to see the stages of the verification,
the parameter ShowCertificate should be set to true. This is rather verbose as
it shows the verification of primality of all small factors that need to be shown to
be prime at each substage of the algorithm. It is usually more convenient to set
the parameter Trust to a positive integer N which means that asserted primes less
than N are not checked. This slightly reduces the time for the verification, but more
importantly, it greatly reduces the output of ShowCertificate.

IsProbablePrime(n: parameter)

IsProbablyPrime(n: parameter)

Bases RNGINTELT Default : 20

Returns true if and only if the integer n is a probable prime. More precisely, the
function returns true if and only if either n is prime for n < 34 - 10'3, or n is a
strong pseudoprime for 20 random bases b with 1 < b < n. By setting the optional
parameter Bases to some value B, the number of random bases used is B instead
of 20.

IsPrimePower (n) |

Example H18EG6

Returns true if and only if the integer n is a prime power; that is, if n equals p* for
some prime p and exponent k > 1. If this is the case, the prime p and the exponent
k are also returned, Note that the primality of p is rigorously proven.

This piece of code uses 5 Miller-Rabin tests to find the next probable repunit-prime (consisting
of all 1’s as decimal digits), using the fact that primes of this form consist of a prime number of

digits:

> NextPPRepunit := function(nn)

> n := nn;

> repeat

> n := NextPrime(n);

> until IsProbablePrime( (10°n-1) div 9 : Bases := 5);
> return n;

> end function;

The first few cases are easy:

> NextPPRepunit(1);

2

> NextPPRepunit(2);

19

> NextPPRepunit(19);

23

> NextPPRepunit(23);
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317

So we found a 317 digit prime (although we should check genuine primality, using IsPrime)! We
leave it to the reader to find the next (it has more than 1000 decimal digits).

18.9.2 Other Functions Relating to Primes

The functions NextPrime and PreviousPrime can be used to find primes in the neigh-
bourhood of a given integer. After sieving out only multiples of very small primes, the
remaining integers are tested for primality in order. Again, a rigorous method is used
unless the user flags that probable primes suffice.

The PrimeDivisors function is different from all other functions in this section since
it requires the factorization of its argument.

NextPrime (n)

NextPrime(n: parameter)

Proof BooLELT Default : true

The least prime number greater than n, where n is a non-negative integer. The
primality is proved. The optional boolean parameter ‘Proof’ (Proof := true by
default) can be set to Proof := false, to indicate that the next probable prime
(of order 20) may be returned.

| PreviousPrime(n) |

PreviousPrime(n: parameter)

Proof BooLELT Default : true

The greatest prime number less than n, where n > 3 is an integer. The primality is
proved. The optional boolean parameter ‘Proof’ (Proof := true by default) can
be set to Proof := false, to indicate that the previous probable prime (of order
20) may be returned.

PrimesUpTo(B)

This function lists the primes up to (and including) the (positive) bound B. The
algorithm is not super-optimised, but is reasonable.

PrimesInInterval(t, b)

This function lists the primes in the interval from b to e, including the endpoints.
The algorithm is not very optimised.

NthPrime(n)

Given a number n, this function returns the nth prime.
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RandomPrime(n: parameter)

Proof BooLELT Default : true

A random prime integer m such that 0 < m < 2", where n is a small non-negative
integer. The function always returns 0 for n = 0 or n = 1. A rigorous method will
be used to check primality, unless m > 34 - 10'2 and the optional parameter ‘Proof’
is set to Proof := false, in which case the result indicates that m is a probable
prime (of order 20).

RandomPrime(n, a, b, x: parameter)

Proof BooLELT Default : true

Tries up to z iterations to find a random prime integer m congruent to a modulo
b such that 0 < m < 2™. Returns true, m if found, or false if not found. n must
be larger than 0. a must be between 0 and b — 1 and b must be larger than 0. A
rigorous method will be used to check primality, unless m > 34-10'3 and the optional
parameter ‘Proof’ is set to Proof := false, in which case the result indicates that
m is a probable prime (of order 20).

| PrimeBasis (n) |

| PrimeDivisors(n) |

A sequence containing the distinct prime divisors of the positive integer |n|.

18.10 Factorization

This section contains a description of most of the machinery provided in MAGMA for the
factorization of integers. An account of the Number Field Sieve is deferred until later in
the chapter.

In the first subsection the general-purpose Factorization function is described. It
employs a combination of methods in an attempt to find the complete prime factorization
of a given integer. Some control is possible over each of the methods, but in general default
choices for the parameters would give good results for a wide range of arguments.

In the second subsection we describe functions that enable access to each of the fac-
torization methods available in MAGMA. The user has control over parameters for these
methods.

Factorization functions in MAGMA return a factorization sequence. This is a sequence
of two-element tuples [< p1,k1 >,..., < pp, ky >], with p; < ps < -+ < p, distinct prime
numbers and k; positive, which is used to represent integers in factored form: n = [[;_, p,’fz
Although such sequences are printed like ordinary sequences, they form a separate category
RngIntEltFact. Operations on such factorization sequences are described in the next
section.
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18.10.1 General Factorization

The general Factorization function is designed to give close to optimal performance for
the factorization of integers that may be encountered in the course of daily computations.
The strategy employed is as follows (the next subsection gives a more detailed description
of the individual methods). First of all a compositeness test is used to ensure that the
argument is composite; if not the primality proving algorithm is invoked (unless a flag is
set to avoid this — see below). See the previous section for compositeness testing and
primality proving. This operation is repeated for any non-trivial factor (and cofactor)
found along the way. Before any of the general factorization techniques is employed, it is
checked whether |n| is of the special form b* &1, in which case an intelligent database look-
up is used which is likely to be successful if b and k are not too large. This is equivalent
to the Cunningham function on b, k, £1, described in the next subsection. In the first true
stage of factorization trial division is used to find powers of 2 and other small primes (by
default up to 10000). After this it is checked whether the remaining composite number
is the power of a positive integer; if so the appropriate root is used henceforth. After
this Pollard’s p method is applied (using 8191 iterations by default). The bound on trial
division factors and the number of iterations for p can be set by the optional parameters
TrialDivisionLimit and PollardRhoLimit. It is possible, from this point on, that several
composite factors still need factorization. The description below applies to each of these.

The final two algorithms deployed are usually indicated by ECM (for Elliptic Curve
Method) and MPQS (for Multiple Polynomial Quadratic Sieve). By default, ECM (which is
likely to find ‘smaller’ factors if they exist) is used with parameters that depend on the size
of the remaining (composite) factors. After that, if a composite factor of at least 25 digits
remains, MPQS is used; it is the best method available for factoring integers of more than
about 40 decimal digits especially for products of two primes of roughly equal size. If the
remaining composite is smaller than 25 digits, ECM is again invoked, now in an indefinite
loop until a factor is found. The latter will also occur if the user, via a flag MPQSLimit
indicates that MPQS should not be applied to numbers of the given size, and provided the
user has not limited the number of ECM trials by setting the ECMLimit. Thus, unless both
MPQSLimit and ECMLimit are set as optional parameters by the users, the algorithm will
continue until the complete factorization has been completed.

Besides the limiting parameters just mentioned it also possible to avoid the use of
primality proofs and receive probable primes, with a flag similar to that used on IsPrime;
see the previous section.

A verbose flag can be set to obtain informative printing on progress in the various
stages of factorization. Specific flags for ECM and MPQS may be used as well; they are
described in the next subsection.

SetVerbose("Factorization", v)

(Procedure.) Set the verbose printing level for all of the factorization algorithms to
be v. Currently the legal values for v are true, false, 0 or 1 (false is the same as
0, and true is the same as 1). If the level is 1, information is printed at each stage
of the algorithm as a number is factored.
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Factorization(n)

Factorisation(n)

Factorization(n: parameters)

Factorisation(n: parameters)

A combination of algorithms (Cunningham, trial division, Pollard p, ECM and MPQS)
is used to attempt to find the complete factorization of |n|, where n is a non-zero
integer. A factorization sequence is returned, representing the completely factored
part of |n| (which is usually all of |n|). The second return value is 1 or —1, reflecting
the sign of n. If the factorization could not be completed, a third sequence is
returned, containing composite factors that could not be decomposed with the given
values of the parameters; this can only happen if both ECMLimit and MPQSLimit
have been set. (Note that the third variable will remain unassigned if the full
factorization is found.)

When a very large prime (more than 200 decimal digits say), appears in the
factorization, proving its primality may dominate the running time.

There are 6 optional parameters.

Proof BooLELT Default : true
Bases RNGINTELT Default : 20
The parameter Proof (Proof := true by default) can be set to false to indicate that

the first sequence may contain probable primes (see also the previous section), in
which case the parameter Bases indicates the number of tests used by Miller-Rabin
(Bases := 20 by default).

TrialDivisionLimit RNCGINTELT Default : 10000

The parameter TrialDivisionLimit can be used to specify an upper bound for the
primes used in the trial division stage (default TrialDivisionLimit := 10000).

PollardRholimit RNGINTELT Default : 8191

The parameter PollardRhoLimit can be used to specify an upper bound on the
number of iterations in the p method (default PollardRhoLimit := 8191).

ECMLimit RNGINTELT Default :

This optional parameter can be used to limit the number of curves used by the ECM
part of the factorization attempt. Setting ECMLimit := O prevents the use of ECM.
The default value depends on the size of the input, and ranges from 2 for n with less
than 37 digits to around 500 for n with 80 digits. The smoothness is incremented in
each step to grow by default from 500 to 600 (for 37 digits and less), and from 500
to about 10000 for n having 80 digits. For the indefinite case of ECM (which applies
when MPQS is disallowed) the initial smoothness is 500, the number of curves is
infinite and the smoothness is incremented by 100 in each step.

MPQSLimit RNGINTELT Default : o

The parameter MPQSLimit can be used specify the maximum number of decimal
digits for an integer to which MPQS should still be applied; MPQS will not be invoked
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on integers having less than (or sometimes equal) 25 decimal digits. Setting the
parameter to anything less than 25 will therefore prevent MPQS from being used.
Unless ECMLimit has been set, this will imply that ECM will be applied until the
full factorization has been obtained.

Note that progress can be monitored by use of Verbose("Factorization",
true).

18.10.2 Storing Potential Factors

As of V2.14 (October 2007), MAGMA now internally stores a list of factors found by
the ECM and MPQS algorithms. Subsequently, when either of those algorithms are to
be invoked by the Factorization function, the integers in the list are first tried to see
whether factors can be easily found. One may also give prime factors to MAGMA to store
in this list via the following procedure.

StoreFactor(n)

StoreFactor(S)

(Procedure.) Store the single integer n or the integers in the set/sequence S in the
list of factors to be tried by the Factorization function. Each integer must be a
positive prime.

| GetStoredFactors() |

Return a sequence containing the currently stored integers.

18.10.3 Specific Factorization Algorithms

In this subsection we discuss how various factorization algorithms can be accessed individ-
ually. Generally these function should not be used for ordinary factorization (for that use
Factorization discussed in the previous subsection), but they can be used for experimen-
tation, or to build a personal factorization function with control over each of the methods
used.

On some functions a little preprocessing is done to ensure that the argument is compos-
ite, that powers of 2 (and sometimes 3) are taken out and that the integer to be factored
is not the power of an integer.

For each of these functions the Proof (default true) and Bases parameters can be used
to indicate that primality of prime factors need not be rigorously proved, and how many
bases should be used in the compositeness test, as discussed in the subsection on IsPrime.

SetVerbose ("Cunningham", b)
SetVerbose("ECM", b)
SetVerbose("MPQS", b)

Using this procedure to set either of the verbose flags "Cunningham", "ECM" or
"MPQS", (which are false by default) enables the user to obtain progress information
on attempts to factor integers using the ‘Cunningham’ method, ECM or MPQS.
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Cunningham(b, k, c)

This function attempts to factor n = b* + ¢, where ¢ € {£1} and b and k are not
too big. This function uses R. Brent’s factor algorithm [BtR92|, which employs a
combination of table-lookups and attempts at ‘algebraic’ factorization (Aurifeuillian
techniques). An error results if the tables, containing most of the known factors for
numbers of this form (including the ‘Cunningham tables’), cannot be located by the
system. The function will always return the complete prime factorization (in the
form of a factorization sequence) of the number n (but it may take very long before
it completes); it should be pointed out, however, that the primes appearing in the
factorization are only probable primes and a rigorous primality prover has not been
applied.

AssertAttribute(RngInt, "CunninghamStorageLimit", 1)

This attribute is used to change the number of Cunningham factorizations which
are stored in MAGMA. Normally, MAGMA stores a certain number of factorizations
computed by the Cunningham intrinsic function so that commonly needed factoriza-
tions can be recalled quickly. When the stored list fills up, the factorization least
recently accessed is removed from the list. Setting this attribute to zero ensures
that no storage is done. The default value is 20.

TrialDivision(n) |

TrialDivision(n, B)

Proof BooLELT Default : true
Bases RNGINTELT Default : 20

The integer n # 0 is subjected to trial division by primes up to a certain bound
B (the sign of n is ignored). If only the argument n is given, B is taken to be
10000. The function returns a factorization sequence and a sequence containing an
unfactored composite that remains.

PollardRho(n) |

PollardRho(n, c, s, k)
Proof BooLELT Default : true
Bases RNGINTELT Default : 20

The p-method of Pollard is invoked by this function to find the factorization of an
integer n > 1. For this method a quadratic function 22 + c is iterated k times, with
starting value x = s. If only n is used as argument to the function, the default values
c=1,s=1,and k = 8191 are selected. A speed-up to the original algorithm, due to
R. P. Brent [Bre80], is implemented. The function returns two values: a factorization
sequence and a sequence containing unfactored composite factors.
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pMinus1(n, B1)

x0
B2
k

RNGINTELT Default :
RNGINTELT Default :
RNCGINTELT Default :

Given an integer n > 1, an attempt to find a factor is made using Paul Zimmer-
mann’s GMP-ECM implementation of Pollard’s p — 1 method. If a factor f with
1 < f < n is found, then f is returned; otherwise 0 is returned.

The Step 1 bound Bj is given as the second argument Bi. By default, the
Step 2 bound B; is optimally chosen, but may be given with the parameter B2
instead. By default, an optimal number of blocks is chosen for Step 2, but this may
be overridden via the parameter k (see the function ECM). The base x( is chosen
randomly by default, but may instead be supplied via the parameter x0.

This method will return a prime factor p of n if p — 1 has all its prime factors
less than or equal to the Step 1 bound Bj, except for one factor which may be less
than or equal to the Step 2 bound Bs.

pPlusi(n, B1)

x0
B2
k

RNCGINTELT Default :
RNGINTELT Default :
RNGINTELT Default :

Given an integer n > 1, an attempt to find a factor is made using Paul Zimmer-
mann’s GMP-ECM implementation of Williams’ p + 1 method. If a factor f with
1 < f < n is found, then f is returned; otherwise 0 is returned.

The Step 1 bound B; is given as the second argument Bl. By default, the
Step 2 bound Bs is optimally chosen, but may be given with the parameter B2
instead. By default, an optimal number of blocks is chosen for Step 2, but this may
be overridden via the parameter k (see the function ECM). The base z( is chosen
randomly by default, but may instead be supplied via the parameter x0.

This method may return a prime factor p of n if p + 1 has all its prime factors
less than or equal to the Step 1 bound B;, except for one factor which may be
less than or equal to the Step 2 bound B>. A base x( is used, and not all bases
will succeed: only half of the bases work (namely those where the Jacobi symbol of
23 — 4 and p is -1.) Unfortunately, since p is usually not known in advance, there is
no way to ensure that this holds. However, if the base is chosen randomly, there is
a probability of about 1/2 that it will give a Jacobi symbol of -1 (so that the factor
p would be found assuming that p+ 1 is smooth enough). A rule of thumb is to run
pPlusl three times with different random bases.

SQUFOF (n)

SQUFOF (n, k)

Proof BooLELT Default : true
Bases RNGINTELT Default : 20
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Use a fast implementation of Shanks’s square form factorization method that will
only work for integers n > 1 less than 22*~2, where b is the number of bits in a long
(which is either 32 or 64). The argument k may be used to specify the maximum
number of iterations used to find the square; by default it is 200000.

ECM(n, B1)
Sigma RNGINTELT Default :
x0 RNGINTELT Default :
B2 RNGINTELT Default :
k RNGINTELT Default : 2

Given an integer n > 1, an attempt is made to find a factor using the GMP-ECM
implementation of the Elliptic Curve Method (ECM). If a factor f with 1 < f <n
is found, then f is returned together with the corresponding successful o seed;
otherwise 0 is returned.

The Step 1 bound B is given as the second argument B1. By default, the Step
2 bound Bs is optimally chosen, but may be given with the parameter B2 instead.

The elliptic curve used is defined by Suyama’s parametrization and is determined
by a parameter o. By default, ¢ is chosen randomly with 0 < o < 232, but an
alternative positive integer may be supplied instead via the parameter Sigma. Let
u=o0%—-5v=40 and a = (v —u)3(3u + v)/(4u3v) — 2. The starting point used
is (7 : 1), where by default 79 = u3/v3, but zg may instead be supplied via the
parameter x0. Finally, the curve used is by? = 23 +ax?+z, where b = 23 + ax + x¢.

Step 1 uses very little memory, but Step 2 may use a large amount of memory,
especially for large Bs, since its efficient algorithms use some large tables. To reduce
the memory usage of Step 2, one may increase the parameter k, which controls the
number of “blocks” used. Multiplying the default value of k by 4 will decrease the
memory usage by a factor of 2. For example, with By = 10'° and a 155-digit number
n, Step 2 requires about 96MB with the default £ = 2, but only 42MB with k£ = 8.
Increasing k does, however, slightly increase the time required for Step 2.

ECMSteps(n, L, U)

Given an integer n > 1, an attempt to find a factor of n is made by repeated calls to
ECM. The initial B; bound is taken to be L, and subsequently B; is replaced with
By + |VB1] at each step. If a factor is found at any point, then this is returned
with the corresponding successful o seed; otherwise, if B; becomes greater than the
upper bound U, then 0 is returned.

MPQS (n)

MPQS(n, D)

Proof BooLELT Default : true

Bases RNGINTELT Default : 20
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This function can be used to drive Arjen Lenstra’s implementation of the multiple
polynomial quadratic sieve MPQS. Given an integer n > 5-10%* an attempt is made
to find the prime factorization of n using MPQS. The name of a directory (which
should not yet exist) may be specified as a string D where files used by MPQS
will be stored. By default, the directory indicated by the environment variable
MAGMA_QS_DIR will be used, and if that has not been set, the directory /tmp. It is
possible to assist the master running the main MAGMA job by generating relations
on other machines (slaves), starting an auxiliary process on such machine, in the
directory D, by typing magma -q D machine where machine is the name of the
machine. The function returns two values: a factorization sequence and a sequence
containing unfactored composite factors.

18.10.4 Factorization Related Functions

ECMOrder (p, s)

ECMFactoredOrder(p, s)

Suppose p is a prime factor found by the ECM algorithm and such that the o value
determining the successful curve was s. These functions compute the order of the
corresponding elliptic curve. The first function returns the order as an integer, while
the second function returns the factorization of the order. In general, this order will
have been smooth with respect to the relevant bounds for the ECM algorithm to
have worked, and these functions allow one to examine how small the prime divisors
of the curve order really are.

| PrimeBasis(n) |

| PrimeDivisors(n) |

A sequence containing the distinct prime divisors of the positive integer |n|, given
in increasing order.

| Divisors(n) |

| Divisors(f) |

Returns a sequence containing all divisors of the positive integer, including 1 and
the integer itself, given in increasing order. The argument given must be either the
integer n itself, or a factorization sequence f representing it.

CoprimeBasis(S)

Given a set or sequence S of integers, return a coprime basis of S in the form of
a factorization sequence () whose integer value is the same as the product of the
elements of S but @) has coprime bases (i.e., the first components of tuples from
are coprime).
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Example H18ET7

In this example we use the Divisors function together with the &+ reduction of sequences to find
the first few perfect numbers, that is, numbers n such that the sum of the divisors less than n
equals n.

{ x : x in [2..1000] | &+Divisors(x) eq 2*x };
6, 28, 496 }

f := Factorization(496);

f

<2, 4>, <31, 1> ]
Divisors(f);
1, 2, 4, 8, 16, 31, 62, 124, 248, 496 ]

—m Vm/mV VA~V

PartialFactorization(S) |

Given a sequence of non-zero integers S, return, for each integer S[i], two factor-
ization lists F; and G, such that S[i]| = Facint(F;)«Facint(G;). All the divisors
in F; are square factors, and, for any ¢ and j, the divisors in G; and G; are either
equal or are pairwise coprime. In other terms, PartialFactorization(S) provides
a partial decomposition of the integers in S in square and coprime factors. The
interesting fact is that this factorization uses only ged and exact integer division.
This algorithm is due to J.E. Cremona.

Example H18ES8

A partial factorization is shown.

> PartialFactorization([1380, 675, 3408, 654]);
[
[
[ <2, 2> 1],
[ <115, 1>, <3, 1> ]

[<5, 2>’ <3’ 2> ]’
[ <3, 1> 1]

[ <2, 4> 1],
[ <71, 1>, <3, 1> ]

a1,
[ <218, 1>, <3, 1> ]
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18.11 Factorization Sequences

The factorization of integers results in a factorization sequence, consisting of a sequence
of pairs of prime and exponent. It is sometimes convenient to perform operations on such
sequences without converting back to the integers they represent — it would, for example,
be very inefficient to factor the product of two integers that have both been factored
already. In this section we briefly list the operations that are allowed on such factorization
sequences — note that these factorization sequences now have their own special type:
RngIntEltFact. Conversion functions are supplied as well.

18.11.1 Creation and Conversion

Factorization sequence usually arise as the result of the Factorization of an integer,
possibly via functions like FactoredOrder. The functions below allow conversion from
and to ordinary sequences, and the inverse operation to factorization, creating an integer
from a factorization.

Facint (f) |

FactorizationToInteger (f)

Create the integer corresponding to the factorization sequence f.

SegFact (s)

SequenceToFactorization(s)

Given a sequence of tuples, each consisting of pairs of prime integers and positive
integer exponents, create the corresponding factorization sequence. The pairs must
be ordered with strictly increasing primes as first components.

Eltseq(f)

ElementToSequence (f)

Given a factorization sequence f, create the enumerated sequence containing the
same pairs of primes and exponents.

18.11.2 Arithmetic

The difference of two factorization sequences is only permitted when the first integer repre-
sented is greater than the second integer represented. An error results from division when
the quotient does not correspond to an integer.

~

s +t s -t S * t s/ t S k
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18.11.3 Divisors

The functions listed below can be applied to factorization sequences; their behaviour will
be clear, and all of them are documented elsewhere when the argument is the corresponding
positive integer.

Lem(s, t) Ged(s, t) SquarefreeFactorization(f)
MoebiusMu(f) Divisors(f) PrimeDivisors(f)
NumberOfDivisors (f) SumQfDivisors(f)

18.11.4 Predicates

All predicates listed below are applicable both to factorization sequences and to the positive
integers these represent, and have been documented for integer arguments elsewhere.

IsOne(s) Is0dd(s) IsEven(s) IsUnit(s)

IsPrime(s) IsPrimePower(s) IsSquare(s) IsSquarefree(s)

18.12 Modular Arithmetic

In this section we describe some functions that make it possible to perform modular arith-
metic without conversions to residue class rings.

18.12.1 Arithmetic Operations

Modexp(n, k, m)

The modular power n* mod m, where n is an integer, k is an integer and m is an
integer greater than one. If k is negative, n must have an inverse ¢ modulo m, and
the result is then i =% mod m. The result is always an integer r with 0 < r < m.

n mod m

Remainder upon dividing the integer n by the integer m. The result always has the
same sign as m. An error results if m is zero.

Modinv(n, m)

InverseMod(n, m)

Given an integer n and a positive integer m, such that n and m are coprime, return
an inverse u of n modulo m, that is, return an integer 1 < u < m such that
u-n =1 mod m.
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Modsqrt(n, m)

Given an integer n and an integer m > 2, this function returns an integer b such
that 0 < b < m and b?> = n mod m if such b exists; an error results if no such root
exists.

Modorder (n, m)

For integers n and m, m > 1, the function returns the least integer k£ > 1 such that
n* = 1 mod m, or zero if ged(n,m) # 1.

IsPrimitive(n, m)

Returns true if n is a primitive root for m, false otherwise (0 < n < m).

PrimitiveRoot (m) |

Given an integer m > 1, this function returns an integer value defined as follows:
If Z/mZ has a primitive root and the function is successful in finding it, the root
a is returned. If Z/mZ has a primitive root but the algorithm does not succeed in
finding it, or Z/mZ does not possess a primitive root, then zero is returned.

18.12.2 The Solution of Modular Equations

The functions described here can be used if an occasional modular operation is required;
the results are integers again. For more extensive modular arithmetic it is preferable to
convert to residue class ring arithmetic. See section 19.4 for details.

Solution(a, b, m)

If a solution exists to the linear congruence ax = b mod m, then returns x0, k such
that © = 20 4 ¢ % k represents the complete set of solutions, where i can be any
integer. Otherwise, returns -1.

ChineseRemainderTheorem(X, N)
CRT(X, N)

Apply the Chinese Remainder Theorem to the integer sequences X and N. The
sequences must have the same length, k say. The function returns the unique integer
x in the range 0 < o < LCM(N][1] - ... N[k]) such that + = X[i] mod N[i]. The
elements of N must all be positive integers greater than one. If there is no solution,
then -1 is returned.

Solution(A, B, N)

Return a solution x to the system of simultaneous linear congruences defined by
the integer sequences A, B and N. Each of these sequences must have the same
number of terms, k£ say. The elements of N must all be positive integers greater
than one. The i-th congruence is A[i]-x = B[i] mod N[i]. The solution x will satisfy
0<z<LCM(N[1]-...- N[k]). If no solution exists, -1 is returned.
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NormEquation(d, m)

NormEquation(d, m: parameters)

Factorization [<RNGINTELT, RNGINTELT>]

Given a positive integer d and a non-negative integer m, return true and two non-
negative integers x and y, such that 22 4+ y?d = m, if such a solution exists. If such
a solution does not exists only the value false is returned. If the factorization of m
is known, it may be supplied as the value of the parameter Factorization to speed
up the computation.

Example H18E9

>d :
>m :

957440000095744000002277749760;
5102197760510219776012138128480644;
> time NormEquation(d, m);

true 98 73

Time: 2.990

> time f := Factorization(m);

Time: 4.670

> £

[ <2, 2>, <19, 1>, <67134181059344997052791291164219, 1> ]
> time NormEquation(d, m: Factorization := f);

true 98 73

Time: 0.420

18.13 Infinities

Occasionally it is convenient to work with infinite quantities (for example, when working
with valuations or cardinalities). MAGMA provides two such objects, the positive and
negative infinities. This section describes the MAGMA facilities for dealing with such
objects.

The infinities are compatible with certain finite quantities: integers, rationals and real
numbers. In contexts where a common universe is needed to contain both finite and
infinite quantities (for example, if creating a sequence of valuations) the extended reals
(type ExtRe) are used. The extended reals are a coproduct-like object that can contain
both infinities and compatible finite objects. When viewed as members of the extended
reals, the elements are of type ExtReELt.
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18.13.1 Creation

Certain system intrinsics such as Valuation which normally return an integer may return
an infinite object for appropriate exceptional cases. Two special intrinsics are also provided
to create infinite objects.

Infinity ()

The positive infinity object.

MinusInfinity()

The negative infinity object.

18.13.2 Arithmetic

Only basic arithmetic operations are provided for infinite objects. The operations described
below may freely mix infinite and finite quantities, but note that certain forms (such as
00 — 0o or oo * () are not well defined and will cause an error.

- X

x+y X -y X xy x/y X " n

18.13.3 Comparison
Infinite objects may be compared with themselves and finite quantities.

X eq y X ney x 1t y x ley xgty X gey

Maximum(x, y) Minimum(x, y)

18.13.4 Miscellaneous

Sign(x)

Returns 1 if z is the positive infinite object, —1 if = is the negative infinite object.

Abs (x)
AbsoluteValue(x) |

Returns the positive infinite object.

Round (x)
Floor(x)
Ceiling(x)

Returns the infinite object x again; these functions are for convenience when dealing
with objects which could be either finite numeric types or infinite objects.

IsFinite(x) |

Returns true if x is finite, otherwise false. This is more convenient than checking
the type of x.
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18.14 Advanced Factorization Techniques: The Number Field
Sieve

MAGMA provides an experimental implementation of the fastest general purpose factoring
algorithm known: the Number Field Sieve (NFS). The implementation may be used both
as a General Number Field Sieve and a Special Number Field Sieve — the only difference
is in the selection of a suitable polynomial.

18.14.1 The Macma Number Field Sieve Implementation

In order to make use of the MAGMA NFS, the user should have some knowledge of the
algorithm. The MAcMA NFS implementation also requires a significant amount of mem-
ory and disk space to be available for the duration of the factorization. For example,
factorization of an 80-digit number may require at least 64 megabytes of RAM and half a
gigabyte of disk space.

MacmA’s NFS implementation uses one linear polynomial (the “rational side”) and
one polynomial of higher degree (the “algebraic side”). At the time of writing this is not
a major restriction, since the best methods for selecting polynomials for factorization of
numbers of more than 100 digits involve one linear and one non-linear polynomial. MAGMA
provides a number of functions to assist in choosing a good algebraic-side polynomial for
the factorization of a particular number, following the ideas of Montgomery and Murphy
in [Mur99].

MAGMA provides two methods for using the NFS implementation. The first is the
one-step function NFS, which provides a naive NFS factorization attempt using default
algorithm parameters.

The second, more powerful method is to work with an NF'S process object, splitting the
algorithm into four stages: Sieving, Auxiliary data, Linear algebra and Final factorization.
This approach allows greater control over the algorithm, as the user may supply their
own algorithm parameter values. It also allows the user to distribute the computationally
intensive sieving and final factorization stages over several machines or processors.

Some functions are included to allow MAGMA users to co-operate in factorization at-
tempts using CWI tools.

A verbose flag may be set to obtain informative printing on progress in the various
stages of the NF'S algorithm.

SetVerbose("NFS", v)

Set the verbose printing level for the NFS algorithms to the integer v. Currently
the legal values for v are 0, 1, 2 and 3.

If the level is 0, no verbose output is produced.

If the level is 1, NF'S will produce basic information about its progress, and will
also print information on NFS algorithm parameters.

If the level is 2, NFS will provide more detailed information about progress and
parameters.

If the level is 3, NFS will print out extremely detailed information about progress
and data. This level will only be useful for experts and developers.
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18.14.2 Naive NF'S

MAGMA’s Number Field Sieve implementation provides a one-step black-box function NFS.
Here, the user provides the integer n to be factored, a homogeneous bivariate integer
polynomial F' and integers m1 and m2 such that F(ml,m2) = 0 mod n. MAGMA will
attempt to factor n using F', m1 and m2, automatically selecting the other parameters
(see below) for the algorithm.

The automatically chosen parameters are NOT optimal in general, and therefore no
conclusions should be drawn about the speed of the implementation or the algorithm itself
based on the use of this function.

For example, note that the default algebraic factor base size of NFS is chosen to be
rather large to decrease the likelihood of running out of useful relations. This slows the
algorithm considerably, since it increases the size of the matrix to be reduced — but it also
means that the algorithm should succeed in finding a factor unless one chooses a really
bad polynomial.

NumberFieldSieve(n, F, ml, m2)
NFS(n, F, ml, m2)

Performs the factorization of an integer n using the Number Field Sieve with alge-
braic polynomial F', where the integers m1 and m2 satisfy F(ml, m2) = 0 mod n.
Returns a nontrivial factor of n if one is found, or 0 otherwise.

18.14.3 Factoring with NFS Processes

An NF'S Process (an object of category NFSProc) encapsulates the data of a MAGMA NFS
factorization. It contains the number n to be factored, the algebraic polynomial F' and the
integers my and ms. It also provides access to a number of NFS algorithm parameters (such
as approximate factor base sizes). These parameters are attributes of the NFS process. If
any of the parameters are not set, sensible (but not necessarily optimal) defaults will be
provided by MAGMA.

The NFS algorithm is divided into four stages:

Sieving
Auxiliary data gathering

Linear algebra

Ll

Factorization

The stages are described in detail below.

After creating an NFS process for the factorization attempt, the user should proceed
through each of the four stages in the above order.

NFSProcess(n, F, ml, m2)

Given a (composite) integer n, a bivariate homogeneous integer polynomial F', and
nonzero integers m1 and m2 such that F'(ml, m2) = 0 mod n, this function creates
an NFS process object for an NFS factorization of n.
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Example H18E10

The attributes associated with an NFS process are:

> ListAttributes (NFSProc);

AlgebraicError OutputFilename
AlgebraicFBBound RationalError
AlgebraicLargePrimeBound RationalFBBound
CacheSize RationallLargePrimeBound
F ml

Firstb m2

Lastb n

Maximuma

OutputFilename is the base name for NFS-generated data files. These files (and their actual
names) are discussed below.

AlgebraicFBBound is the upper bound for smooth primes in the algebraic-side factor base, and
RationalFBBound, the upper bound for smooth primes in rational-side factor base.

Maximuma bounds the sieve interval for a: NFS will sieve for relations with |a| < Maximuma.
Firstb is the first value of b to sieve on, and Lastb is the last.

AlgebraicLargePrimeBound gives the upper bound for “large” (non-smooth) primes in the
algebraic-side factor base. Similarly, RationalLargePrimeBound is the upper bound for the ratio-
nal side.

AlgebraicError defines an “error” tolerance for logarithm arithmetic on algebraic side. Similarly,
RationalError defines an “error” tolerance for the rational side.

CacheSize is a flag reflecting the computer cache memory size, for optimisation.

18.14.3.1 Attribute Selection

As a guideline for the selection of attributes, we include here a few examples of attributes
that we have determined to be good for the MAGMA NFS implementation.

Example H18E11

Sample attributes for a 70-digit number:

> n := 5235869680233366295366904510725458053043111241035678897933802235060927 ;
> R<X,Y> := PolynomialRing(Integers( ), 2);

> F := 2379600*%X"4 - 12052850016*xX~3*Y — 13804671642407*X"2*xY~2 +
> 11449640164912254*X*xY"3 + 7965530070546332840%Y"4 ;

> ml := 6848906180202117;

>m2 := 1;

> P := NFSProcess(n,F,m1,m2);

> P‘AlgebraicFBBound := 8%1075;

> P‘RationalFBBound := 6%1075;

> P‘OutputFilename := "/tmp/nfs_70_digit";

> P‘Maximuma := 4194280;

> P‘AlgebraicError := 16;

> P‘RationalError := 14;
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Example H18E12

Sample attributes for an 80-digit number:

> n := 1871831866357686493451122722951040222063279350383738650253906933489072\
> 2483083589;

> P<X,Y> := PolynomialRing(Integers(),2);

> F := 15901200%X"4 + 9933631795*xX"3*Y - 112425819157429*X"2*xY"2 -
> 231659214929438137*X*xY~3 - 73799500175565303965*Y°4;

> ml := 1041619817688573426;

>m2 :=1;

> P := NFSProcess(n, F, ml, m2);

> P‘AlgebraicFBBound := 8%1075;

> P‘RationalFBBound := 6%1075;

> P‘OutputFilename := "/tmp/nfs_80_dgit";

> P‘Maximuma := 10485760;

> P‘AlgebraicError := 16;

> P‘RationalError := 14;

Example H18E13

Sample attributes for an 87-digit number:

> n := 12118618732463427472219179104631767765107839384219612469780841876821498\
> 2402918637227743;

> P<X,Y> := PolynomialRing(Integers(),2);

> F := 190512000%X"4 - 450872401242*X"3*Y +

> 1869594915648551*X"2*xY"2 + 2568544235742498*X*Y"3 -

> 9322965583419801010104*Y74;

> ml := 28241170741195273211;

>m2 :=1;
>
>
>
>
>
>
>

P := NFSProcess(n, F, ml, m2);
P‘AlgebraicFBBound := 16%1075;
P‘RationalFBBound := 1076;
P‘OutputFilename := "/tmp/nfs_87_digit";
P‘Maximuma := 2724;

P‘AlgebraicError := 24;

P‘RationalError := 18;

The best choice for the factor base size depends on many variables, including the
average log size and the Murphy a parameter (defined in [Mur99]) for the polynomial F.
Our polynomials above are quite good: if the user does not know much about determining
the quality of polynomials, then he or she should use much larger factor bases.
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18.14.3.2 The Sieving stage

MacmA’s NFS uses a “line-by-line” (or “classical”) sieving algorithm. Future versions
may include lattice sieving.

The line-by-line siever sieves values of F'(a,b) on the algebraic side and corresponding
values a - m2 — b - ml on the rational side. This is done by fixing a value of b (beginning
with the parameter Firstb, if supplied), then sieving all values of a between —aq and ay,
where aq is approximately equal to the parameter Maximuma (some rounding off is done to
make sure that the sieve interval length is divisible by a high power of 2). When this is
completed b is incremented, and the next value of b is processed.

The sieving continues until either the maximum value of b (specified by the param-
eter Lastb) has been reached, or until enough relations are obtained to complete the
factorization. If Lastb is not defined, the sieve simply continues until enough rela-
tions are found. The number of relations required may be determined by the function
NumberOfRelationsRequired.

“Cycles” among partial relations are counted after every 256 iterations.

The sieve implementation uses (rounded natural) logarithms of primes to mark the sieve
interval. Moreover, the implementation does not sieve with prime powers. Therefore, we
must allow for some error in scanning the sieve arrays for useful relations; the acceptable
sieve threshold errors for each side are defined by the AlgebraicError and RationalError
parameters. If, in addition, the user wants to take advantage of large prime relations
(recommended), then larger error terms should be used. The implementation will keep
relations having up to 2 large primes on each side, but will only find such relations if
the user selects large enough sieve threshold error bounds. The user should be cautious
when sieving for (and subsequently using) relations with large primes, as they greatly
increase overall disk space requirements. Some experimentation may be required in order
to determine the best error bounds for speed or disk space optimization purposes.

The CacheSize parameter may be used to take advantage of the cache memory size of
the computer: a value of 1 indicates a small cache size, 2 a medium cache size, and 3 a for
large cache size.

NumberOfRelationsRequired(P)

The minimum number of relations required for an NFS factor attempt with NFS
process P.

FindRelations(P) |

Given an NFS process P for factoring an integer n, generates relations to factor n
with the Number Field Sieve algorithm. Returns the number of full relations plus
the number of cycles found.

18.14.3.3 The Auxiliary data stage

In this stage of the algorithm, “cycles”[LD95] are detected in the partial relations from
the sieving stage, and quadratic characters are calculated for the relations. This greatly
improves the efficiency of the NFS.

In a typical factorization, the user should call the procedures CreateCycleFile and
CreateCharacterFile in succession.
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CreateCycleFile(P)

Creates a file with all the cycle information that the NFS algorithm requires to
complete the matrix reduction and final factorization stages for the NFS process P.

CycleCount (P)

Returns the number of cycles in the partial relations of the NFS process P. This
function is mainly intended for factoring with multiple processors.

CycleCount (fn)

Returns the number of cycles in the partial data file corresponding to the base file
name fn. This function is mainly intended for factoring with multiple processors.

CreateCharacterFile(P) |

Creates a file with the quadratic character data for the full relations and cycles in
the NFS process P.

CreateCharacterFile (P, cc)

Creates a file with the quadratic character data for the full relations and cycles in
the NFS process P. There are cc sets of 32 quadratic character columns created.

18.14.3.4 Finding dependencies: the Linear algebra stage

In this stage, the relations are collected together to form a matrix, and then block Lanczos
reduction is applied to find linear dependencies among the relations. These dependencies
become candidates for factorization.

FindDependencies (P)

Finds dependencies between relations in the NFS process P.

18.14.3.5 The Factorization stage

In this stage, number field square roots are extracted and we attempt to factor the depen-
dencies found in the linear algebra stage.

Factor (P)

Try to factor with each dependency in the NFS process P until a proper factor is
found. Returns the factor, or 0 if no factor is found.

Factor (P,k)

Attempt to factor with the k-th dependency in the NFS process P. Returns a proper
factor if found, 0 otherwise.



Ch. 18 RING OF INTEGERS 321

18.14.4 Data files

Many data files are ued for an NFS factorization. The user can control the names and
location of the files by specifying the OutputFilename parameter; then all output files will
have names beginning with the OutputFilename string, with a range of suffixes depending
on their purpose.

In general, all files are appended to rather than overwritten; so to avoid inconsistencies
(and to save disk space) the user should call RemoveFiles after a successful factorization.

When distributing factorizations, or collecting results from sieving stages that have
been broken up into several runs for some reason (for example, if a process has been
interrupted), MAGMA provides the function MergeFiles. This takes a sequence of base
filenames (which are treated as if they were the value for OutputFilename), and reads
in the corresponding relation and partial relation files; it then combines the contents of
these files, removing duplicates and corrupted lines of data, and places the results into new
relation and partial relation files.

RemoveFiles (P) |
Deletes any data files created by the NFS process P.

MergeFiles(S, fn)

Merges the NF'S relation files named in the sequence S (and their associated partial
relation files) into a pair of new relation and partial relation files, while removing du-
plicate and corrupted lines of data; returns the number of relations and the number
of partial relations in the new output files. The combined full relations are stored
in a file named fn, and the partial relations in a file named fn_partials.

18.14.4.1 MacMmA native NF'S data files

Here we describe the files used in a typical MAGMA NFS factorization. These files all use
formats peculiar to Magma’s NF'S.

The first kind of file created by NFS stores the relations generated in the sieving stage
by the FindRelations procedure. The name of the file is precisely the OutputFilename
string.

NFS also stores partial relations generated in the sieving stage; these are stored in a
file named OutputFilename_partials.

Whenever cycles [LD95] are counted (for example, in CycleCount, a file named
OutputFilename_cycles is created to store them in. Some other files are also created
and then deleted during the cycle counting process.

The quadratic characters calculated in CreateCharacterFile are stored in a file named
OutputFilename_cc.

The linear algebra stage creates a file named OutputFilename null space, which lists
relations making up null space vectors for the NFS matrix.
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18.14.5 Distributing NFS Factorizations

MAGMA provides a number of tools for distributing the sieving and final factoring stages
over a number of computers.

To distribute the sieving stage, each processor should get a unique range of b-values
to sieve and unique data file names. During the sieving, the user must manually check
when the combined data has enough relations to factor the number. To do this, the data
files must first be merged using MergeFiles, and then the cycles can be counted with
CycleCount. If the combined number of full relations plus the number of cycles exceeds
the size of both factor bases combined, then the user can proceed to the other stages of
the factorization attempt using the merged data file name.

To distribute the factorization stage, the user may choose a dependency for each process
to factor, then call Factor (P,k) where P is the NFS process and k the number specifying
the dependency to factor, with a different value of k for each process.

Example H18E14

Here we demonstrate a distributed NFS factorization (of a very small n) over two processes, A
and B — which may be on different machines, or different magma processes on the same machine,
or even in the same magma process.

We begin with process A:

> R<X,Y> := PolynomialRing(Integers( ),2);
> n := T0478782497479747987234958341;

> F := 814xX"4 + 3172xX"3xY — 49218%X"2xY"2 - 142775*%X*Y"3
> - 65862*%Y7°4;

> ml := 3050411;

>m2 :=1;

> A := NFSProcess(n,F,ml1,m2);

> A‘Firstb := 0;

> A‘Lastb := 99;

> A‘OutputFilename := "/tmp/nfs-distrib-A";
> FindRelations(A);

38562

Now, process B, with n, F', m1 and m2 as above:

B := NFSProcess(n,F,ml,m2);

B‘Firstb := 99;

B¢Lastb := 199;

B‘OutputFilename := "/tmp/nfs-distrib-B";
FindRelations(B);

2455

vV V V VvV V

Then later, on a single machine,

> input_files := ["/tmp/nfs-distrib-A","/tmp/nfs-distrib-B"];
> P := NFSProcess(n,F,ml1,m2);

> P‘OutputFilename := "/tmp/nfs-distrib-all";

> MergeFiles(input_files, P‘OutputFilename);
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4162 25925

> CycleCount (P);

4368

> CreateCycleFile(P);

> CreateCharacterFile(P);
> FindDependencies(P);

Now, the final factorization stage may be distributed over more than one processor also. We
attempt to factor a relation on A:

> A‘OutputFilename := "/tmp/nfs-distrib-all";

> Factor(A,9); // factor dependency 9

0

No factor was found on machine A, but meantime on B:
> B‘OutputFilename := "/tmp/nfs-distrib-all";

> Factor(P,1); // factor dependency 1

94899629

> n mod $1, n div $1;
0 742666575624650207929

We have a successful factorisation.

18.14.6 Macma and CWI NFS Interoperability

At the time of writing, the record NFS factorizations were lead by the CWI group and
by people using CWI’s or Arjen Lenstra’s code. The CWI tools use a different data file
format to MAGMA’s native format, but MAGMA supplies some tools to allow users to assist
in CWI factorization attempts.

The user may generate relations in CWI relation format, rather than M AGMA native
format, by using FindRelationsInCWIFormat. The user should note that relations in CWI
format cannot at present be used in the Auxiliary data, Linear algebra or Factorization
stages of the MAGMA NFS.

Alternatively, assuming some MAGMA NF'S relations have already been computed for a
process, then the user may use the procedure ConvertToCWIFormat to convert the relation
data files from MAGMA native format to CWI format. The resulting data file is named
OutputFilename CWI format, and will contain both the full and partial relations of the
process.

FindRelationsInCWIFormat (P) |

Given an NFS process P for factoring an integer n, generates relations to factor n
with the Number Field Sieve algorithm, in a file format suitable for use with CWI’s
NEFS tools. Returns the number of relations found.

ConvertToCWIFormat (P, pb)

Converts the relation files of the NFS process P to CWI format, storing primes only
greater than or equal to the prime printing bound pb. The resulting data file name
will be named P‘OutputFilename CWI_format.
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18.14.7 Tools for Finding a Suitable Polynomial

MAGMA does not provide a function to select an optimal polynomial for the factorization
of a given number. However, MAGMA does provide some functions that are useful for the
implementation of the polynomial selection algorithms developed by Peter Montgomery
and Brian Murphy in [Mur99].

The functions BaseMPolynomial, MurphyAlphaApproximation, OptimalSkewness,
BestTranslation, PolynomialSieve, and DickmanRho, will be useful for those wanting
to implement polynomial selection routines within the MAGMA interpreter language.

BaseMPolynomial(n, m, d)

Given integers n, m and d, returns a homogeneous bivariate polynomial F =
Z?:o ¢; XY =% such that the coefficients ¢; give a base m representation of n: that
is, Yo, cim® = n. The coefficients also satisfy |¢;| < m/2.

This polynomial F' may be used to factorize n using the number field sieve (with
my :=m and mgy = 1).

This function requires that d > 2 and n > m?.

MurphyAlphaApproximation(F, b)

Given a univariate or homogeneous bivariate polynomial F', return an approximation
of the o value of F', using primes less than the positive integer bound b.

The « value of a polynomial is defined in [Mur99].

Since random sampling is used for primes dividing the discriminant, successive
calls to this function will give slightly different results.

OptimalSkewness (F)

Given a univariate or homogeneous bivariate polynomial F', return its optimal skew-
ness and corresponding average log size.
The optimal skewness and average log size values are defined in [Mur99].

Example H18E15

This example illustrates an effective (though not optimal) method for finding a “good” polynomial
for use in NFS factorizations.

Here we search for a degree d = 4 polynomial to use in factoring a 52-digit integer n.

We define the rating of a polynomial to be the sum of the a value and corresponding “average
log size” (see [Mur99)).

We then proceed by iterating over base m polynomials with successive leading coefficients (with
the values of m near (m'/%m'/4+1)1/2 and chosen to minimize the second-to-leading coefficient),
and choosing as a result the polynomial with the smallest rating.

> n := RandomPrime(90)*RandomPrime (90) ;

> n;
3596354707256253204076739374167770148715218949803889
>d := 4;

> approx_m := Iroot( Iroot( n, d+l1 ) * Iroot( n, d) , 2 );
> leading_coeff := n div approx_m~d;
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> leading_coeff;

143082

>m := Iroot( n div leading_coeff, d );

> P<X,Y> := PolynomialRing( Integers(), 2 );

> F<X,Y> := BaseMPolynomial(n,m,d);

> F;

143082*%X"4 + 463535*xX"3*%Y - 173869838910*%X"2*Y~2 + 167201617413*X*xY"3 +
159859288415%xY"4

> skew, als := OptimalSkewness( F );

> alpha := MurphyAlphaApproximation( F, 2000 );
> rating := als + alpha;

> rating;

23.143714548914575193314917

>

> best_rating := rating;

> best_m := m;

> for i in [1..100] do

> leading_coeff := leading_coeff + 1;

> m := Iroot( n div leading_coeff, d );

> F<X,Y> := BaseMPolynomial(n,m,d);

> skew, als := OptimalSkewness( F );

> alpha := MurphyAlphaApproximation( F, 2000 );
> rating := als + alpha;

> if rating 1t best_rating then

> best_rating := rating;

> best_m := m;

> end if;

> end for;

> best_rating;

20.899568473033257031950385

> best_m;

398116527578

> F<X,Y> := BaseMPolynomial(n,best_m,d);

> F;

143160*X~4 + 199085*X~3*Y - 9094377652*X"2*Y~2 - 93898749030*X*Y"3 -
169859083883*Y"4

> OptimalSkewness( F );

165.514255523681640625 20.969934467920612180646408

> MurphyAlphaApproximation( F, 2000 );

-0.0542716157630141449500150842

> time NFS( n, F, best_m, 1 );
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BestTranslation(F, m, a)

Given a univariate or homogeneous bivariate polynomial F', an integer m, and real
value a (which should be the average log size of F' for some optimal skewness),
returns a polynomial G and an integer m’ such that G(m') = F'(m), together with
the average log size and optimal skewness of G. The translation G is selected such
that the average log size is a local minimum.

PolynomialSieve(F, m, JO, J1,MaxAlpha)
PrimeBound RNGINTELT Default : 1000

Given a homogeneous bivariate integer polynomial F' of degree d, together with
integers m, Jp and J; and a real value MaxAlpha, returns a list of tuples, each of
which contains a polynomial G' = F +jiz2y%=2 — (|jo| + jim)zy?=1 + (jom)y?, where
l70| < Jo and |j1| < Ji such that the a value (see [Mur99]) of G is “better” (that is,
lower) than MaxAlpha.
Each tuple contains the data <average log size + «, skewness, «, G, m, jo, j1 >.
If the optional parameter PrimeBound is set, it is used as an upper bound for

primes used to calculate a.
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Chapter 19
INTEGER RESIDUE CLASS RINGS

19.1 Introduction

This chapter presents the machinery provided in MAGMA for computing in quotient rings
of the ring of integers Z, that is, integer residue class rings. The first half of the chapter
describes operations with ideals of Z and their quotient rings while the second half provides
an introduction to computing with Dirichlet characters.

19.2 Ideals of Z

The theory of ideals of Z is very elementary but for completeness the general machinery
for ring ideals applies. Such ideals will have type RngInt, that is, the same type as the
ring of integers itself (ideal<Integers() | 1>).

In the case of Z any subring is an ideal so that the sub-constructor creates the same
object as does the ideal-constructor.

ideal< R | a >|

Given the ring of integers Z and an integer a, return the ideal of Z generated by a.

Example H19E1

We construct some ideals of Z.

> Z := IntegerRing();
> 113 := ideal< Z | 13 >;

> I13;

Ideal of Integer Ring generated by 13
> 1 in I13;

false

> 0 in I13;

true

> -13 in I13;

true

> I0 := ideal< Z | 0 >;
> 0 in IO;

true

> 1 in IO;

false

We check that that Z is regarded as an ideal.

> I1 := ideal< Z | 1 >;
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> I1 eq Z;
true

19.3 Z as a Number Field Order

A collection of functions are provided that make Z behave like an order of a number field.
Note however, that Z is not of type RngOrd. If complete compatibility is necessary, the
user should create the maximal order of a degree 1 extension of Q.

Decomposition(R, p)

Returns the ideal decomposition of the prime p, i.e. a list [ < ideal<Z|p>, 1> ]
as in the number field case.

Generator(I)

A generator for the given ideal.

RamificationIndex(I, p)

RamificationIndex(I)

The ramification index of I over Z which is always 1.

Degree(I)

The inertia degree of the ideal I, which is always 1.

TwoElementNormal (I) |

Two integers that generate the ideal I. In this case the generator is returned twice.

ChineseRemainderTheorem(I, J, a, b)

The Chinese remainder theorem for ideals. Given ideals I and J of Z together with
integers a and b, an integer x such that x —a € I and x — b € J is returned.

Valuation(x, I)

The valuation of the integer z at the prime ideal I.

ClassRepresentative(I)

The representative of the ideal I of Z in the basis of the class group.
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19.4 Residue Class Rings

The ring Z/mZ consists of representatives for the residue classes of integers modulo m > 1.
This Section describes the operations in MAGMA for such rings and their elements.

At any stage during a session, MAGMA will have at most one copy of Z/mZ present, for
any m > 1. In other words, different names for the same residue class ring will in fact be
different references to the same structure. This saves memory and avoids confusion about
different but isomorphic structures.

If m is a prime number, the ring Z/mZ forms a field; however, MAGMA has special
functions for dealing with finite fields. The operations described here should not be used
for finite field calculations: the implementation of finite field arithmetic in MAGMA as
described in Chapter 21 takes full advantage of the special structure of finite fields and
leads to superior performance.

19.4.1 Creation

In addition to the general quotient constructor, a number of abbreviations are provided
for computing residue class rings.

quo< Z | I >

Given the ring of integers Z, and an ideal I, create the residue class ring modulo
the ideal.

quo< Z | m >

Given the ring of integers Z, and an integer m # 0, create the residue class ring
Z/mZ.

ResidueClassRing(m)

IntegerRing(m)

Integers(m)

RingOfIntegers(m)

Given an integer greater than zero, create the residue class ring Z/mZ.

ResidueClassRing(Q)

IntegerRing(Q)

Integers(Q)

Create the residue class ring Z/mZ, where m is the integer corresponding to the
factorization sequence (). This is more efficient than creating the ring by m alone,
since the factorization () will be stored so it can be reused later.
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Example H19E2

We construct a residue ring having modulus the largest prime not exceeding 2'°.

> p := PreviousPrime(2716);

> p;

65521

> R := ResidueClassRing(p);

Residue class ring of integers modulo 65521

Now we try to find an element x in R such that z* = 23.

> exists(t){x : x in R | x°3 eq 23};
true

> t;

12697

19.4.2 Coercion

As can be seen from the tables in Chapter 17, automatic coercion takes place between
Z/mZ and Z so that a binary operation like + applied to an element of Z/mZ and an
integer will result in a residue class from Z/mZ.

Using !, elements from a prime field F,, can be coerced into Z/pZ, and elements from
Z/pZ can be coerced into F,r. Also, transitions between Z/mZ and Z/nZ can be made
using ! provided that m divides n or n divides m. In cases where there is a choice — such
as when an element r from Z/mZ is coerced into Z/nZ with m dividing n — the result will
be the residue class containing the representative for 7.

Example H19E3

r := ResidueClassRing(3) ! 5;
r;

ResidueClassRing(6) ! r;

N VN V V

So the representative 2 of 5 mod 3 is mapped to the residue class 2 mod 6, and not to 5 mod 6.
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19.4.3 Elementary Invariants

Characteristic(R) # R

| Modulus(R)

Given a residue class ring R = Z/mZ, this function returns the common modulus
m for the elements of R.

FactoredModulus(R) |

Given a residue class ring R = Z/mZ, this function returns the factorization of the
common modulus m for the elements of R.

19.4.4  Structure Operations

AdditiveGroup (R)

Given R = Z/mZ, create the abelian group of integers modulo m under addition.
This returns the finite additive abelian group A (of order m) together with a map
from A to the ring Z/mZ, sending A.1 to 1.

MultiplicativeGroup(R)

UnitGroup(R)

Given R = Z/mZ, create the multiplicative group of R as an abelian group. This
returns an (additive) abelian group A of order ¢(m), together with a map from A

to R.

sub< R | n >|

Given R, the ring of integers modulo m or an ideal of it, and an element n of R
create the ideal of R generated by n.

Create the enumerated set consisting of the elements of the residue class ring R.

Category(R) Parent (R) PrimeRing(R)

Center(R)
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19.4.5 Ring Predicates and Booleans

IsCommutative (R) IsUnitary(R)

IsFinite(R) IsOrdered(R)

IsField(R) IsEuclideanDomain(R)

IsPID(R) ISUFD(R)

IsDivisionRing(R) IsEuclideanRing(R)

IsPrincipalIldealRing(R) IsDomain(R)

R eqR R ne R

19.4.6 Homomorphisms

Ring homomorphisms with domain Z/mZ are completely determined by the image of 1.
As usual (see Chapter 18 ), we require our homomorphisms to map 1 to 1. Therefore, the
general homomorphism constructor with domain Z/mZ needs no arguments.

hom< R -> S | >|

Given a residue class ring R, and a ring S, create a homomorphism from R to S,
determined by f(1g) = lg. Note that it is the responsibility of the user that the
map defines a homomorphism!

19.5 Elements of Residue Class Rings

19.5.1 Creation

| elt< R | k >|

Create the residue class containing the integer k in residue class ring R.

Create the residue class containing k in the residue class ring R. Here k is allowed
to be either an integer, or an element of the finite field F,, in the case R = Z/pZ,
or an element of S = Z/nZ for a multiple or divisor n of m (with R = Z/mZ).

One (R) Identity(R)

Zero(R) Representative(R)

These generic functions (cf. Chapter 17) create 1, 1, 0, and 0 respectively, in any
Z/mZ.

| Random(R) |

Create a “random” residue class in R.
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19.5.2 Arithmetic Operators

+ n -n
m+n m-n m* n n "k m/ n m div n
m+:=n m-:=n m *:=n m/:=n m ":=k

19.5.3 Equality and Membership

megn m ne n

n in R n notin R

19.5.4 Parent and Category

Parent (n) Category(n)

19.5.5 Predicates on Ring Elements

IsZero(n) IsOne(n) IsMinusOne (n)
IsNilpotent (n) IsIdempotent(n)

IsUnit(n) IsZeroDivisor(n) IsRegular(n)
IsIrreducible(n) IsPrime(n)

19.5.6  Solving Equations over Z/mZ

Solution(a, b)

Given elements a and b of Z/mZ, return a solution = to the linear congruence
a-x=>becZ/mZ. An error is signalled if no solution exists.

IsSquare(n)

Factorization [<RNGINTELT, RNGINTELT>|

Given an element n € Z/mZ this function returns true if there exists a € Z/mZ
such that a® = n € Z/mZ, false otherwise. If n is a square, a square root a is
also returned. If m is large and its prime factorization is known, the computation
may be speeded up by assigning the factorization sequence for m to the optional
argument Factorization.
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Sqrt(a)

SquareRoot (a)

Factorization [<RNGINTELT, RNGINTELT>|

Given an element a of the ring Z/mZ, this function returns an element b of Z/mZ
such that b2 = a € Z/mZ, if such an element exists, and an error otherwise. If m is
large and its prime factorization is known, the computation may be speeded up by
assigning the factorization sequence for m to the optional argument Factorization.

AllSquareRoots(a)

Al1Sqrts(a)

Factorization [<RNGINTELT, RNGINTELT>|

Return a sequence containing all square roots of the element a in a residue class
ring Z/mZ. If the modulus m is large and its prime factorization is known, the
computation may be speeded up by assigning the factorization sequence for m to
the optional argument Factorization.

Example H19E4

We construct the residue class ring having modulus 2340 and find all the square roots of 1404.

> R := ResidueClassRing(2340);

Residue class ring of integers modulo 2340

> x := R!1404;

> sqrts := AllSquareRoots(x);

> sqrts;

[ 78, 312, 468, 702, 858, 1092, 1248, 1482, 1638,
1872, 2028, 2262 ]

> [ y72 : y in sqrts ]1;

[ 1404, 1404, 1404, 1404, 1404, 1404, 1404, 1404,
1404, 1404, 1404, 1404 ]

So 1404 has 12 square roots!
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19.6 Ideal Operations

ideal< R | a;, ..., a, >

The ideal of the residue ring R generated by the greatest common divisor of the
elements a; and the modulus of R.

GreatestCommonDivisor(a, b)
Ged(a, b)
GCD(a, b)

Greatest common divisor of the elements a and b of R, that is, a generator for the
R-ideal (a) + (b).

GreatestCommonDivisor (Q)
Ged(Q)
GCD(Q)

Greatest common divisor of the sequence of elements (), that is, a generator for the
R-ideal generated by the elements in Q).

LeastCommonMultiple(a, b)

Lem(a, b)
LCM(a, b)

Least common multiple of the elements a and b of R, that is, a generator for the
R-ideal (a) N (b).

LeastCommonMultiple(Q)

Lem(Q)
LCM(Q)

Least common multiple of the sequence of elements (), that is, a generator for the
R-ideal formed by the intersection of the principal ideals generated by elements of

Q.
I +7 I x7J I meet J
a in I a notin I
I eqld I neld

I subset J I notsubset J
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19.7 The Unit Group

UnitGroup(R)

Given R = Z/mZ, construct the unit group of R as an abelian group. This returns
an (additive) abelian group A of order ¢(m), together with a map from A to R.

IsPrimitive(n) |

Returns true if the element n € Z/mZ is primitive, that is, if it generates the
multiplicative group of Z/mZ, false otherwise.

PrimitiveElement (R) |

PrimitiveRoot (R)

Given R = Z/mZ, this function returns a generator for the group of units of R if
this group is cyclic, and returns 0 otherwise. Thus a valid generator is only returned
if m = 2,4, p* or 2p*, with p an odd prime and t > 1.

Given an element a belonging to Z/mZ, return the multiplicative order k£ > 1 of a
if a is in the unit group (Z/mZ)*, and zero if a is not a unit.

Normalize(x)

Normalise(x)

Given an element x € R = Z/mZ, this function returns the unique canonical asso-
ciate y € R of x and a unit v € R such that v -x = y. The canonical associate of x
is the GCD of x and m, considered as natural integers (unless x is 0, in which case
it is 0).

Example H19E5

We determine the unit group of the ring with modulus 735 and then verify its order by comparing

it with ¢(m).

>m := 735;

> R := ResidueClassRing(m);

Residue class ring of integers modulo 735

> U, psi := UnitGroup(R);

> U;

Abelian Group isomorphic to Z/2 + Z/2 + Z/84
Defined on 3 generators

Relations:
2%U.1 =0
4xU.2 = 0
42%xU.3 = 0

> #U;

336

> EulerPhi(735);



Ch. 19 INTEGER RESIDUE CLASS RINGS 341

336

So the order of U is equal to ¢(m) as it should be. Finally, we look for three elements of R that
generate the unit group.

> gens := [ psi(U.i) : i in [1..3] ]; gens;
> [ Order(x) : x in gens ];
[ 2, 4, 42 ]

Example H19E6

We construct a residue class ring R = Z/mZ having cyclic unit group. By a theorem of Gauss,
the ring R has cyclic unit group precisely when n = 4,n = p°, or n = 2p°, and p is an odd prime.

> R := IntegerRing(50);
> U, psi := UnitGroup(R);
Abelian Group isomorphic to Z/20
Defined on 1 generator
Relations:

20xU.1 = 0
> w := PrimitiveElement(R);
> w;
3
> Order(w);
20

We verify that the powers of w are precisely the elements of the unit group U.

> powers := { w”i : i in [0..19] };

> powers;

{29, 1, 31, 3, 33, 7, 37, 9, 39, 11, 41, 13, 43, 17, 47, 19, 49, 21, 23, 27 }
> powers eq { psi(u) : u in U };

true

19.8 Dirichlet Characters

Let R be a ring. Then a Dirichlet character over R of modulus N is a homomorphism
e:(Z/NZ)" — R”,

where R* is the group of invertible elements of R. We extend ¢ to a set theoretic map on
the whole of Z by defining e(x) = 0 if ged(x, N) # 1. The conductor of ¢ is the smallest
positive integer M such that the homomorphism (Z/NZ)* — R* factors through (Z/MZ)*
via the natural map (Z/NZ)* — (Z/MZ)*.



342 BASIC RINGS Part IV

19.8.1 Creation

DirichletGroup (N)

The group of Dirichlet characters modulo N with image in RationalField (). Note
that this is a group of exponent at most 2.

DirichletGroup(N,R)

The group of Dirichlet characters modulo N with image in the ring R. Here R can
be the integers, rationals, a number field or a finite field.

DirichletGroup(N,R,z,r)

The group of Dirichlet characters mod N with image in the order-r cyclic subgroup
of the ring R generated by the root of unity z. Here z must be an element of R of
exact order r.

FullDirichletGroup (N)

The group of Dirichlet characters modulo N taking values in the mth cyclotomic
field, where m is the exponent of the unit group modulo N. (This is a shortcut for
the previous command.)

BaseExtend (G, R)
BaseExtend (G, R, 2z)

The group of Dirichlet characters corresponding to G with values in the ring R. In
the second form, the distinguished root of unity of the base ring of G is identified
with the given element z.

AssignNames(~G, S)

Assign names to the generators of the Dirichlet group G.

19.8.2 Element Creation

| Elements(G) |

A sequence containing all Dirichlet characters in the Dirichlet group G.

Random(G) |
A random element of the Dirichlet group G.

The i7th generator of the group G.

This coerces the given element x into the Dirichlet group G. Here z may be a
Dirichlet character belonging to a different group, or a sequence of integers specifying
an element of the AbelianGroup of G.
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KroneckerCharacter (D) |

KroneckerCharacter(D, R)

The Kronecker character n +— (d/n), where d is the fundamental discriminant asso-
ciated to the integer D.
When a ring R is given, this is returned as a character with values in R.

19.8.3 Properties of Dirichlet Groups

BaseRing(G)

The ring in which characters in G take values.

| Modulus(G) |
The integer N such that G is a group of Dirichlet characters on Z/N.

Order (G)

The order of the Dirichlet group G.

Exponent (G)

The exponent of the Dirichlet group G.

AbelianGroup(G)

This returns a finite abelian group isomorphic to the given group G of Dirichlet
characters (as an abstract group), and secondly returns a map from the abstract
group to G.

It is necessary to use this function in order to make group theoretic constructions
involving G.

| NumberOfGenerators (G) |

The number of generators of the Dirichlet group G.

| Generators(G) |

A sequence containing generators for the Dirichlet group G.

The ith generator of the group G.

| UnitGenerators(G) |

This returns an ordered sequence of integers that reduce to “canonical” generators
of the unit group of Z/N, where N is the modulus of G.
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19.8.4 Properties of Elements

BaseRing(chi)

The ring in which the Dirichlet character x takes values.

| Modulus(chi) |

The modulus of the group of Dirichlet characters that contains y.

| Conductor(chi) |

The minimal conductor of the Dirichlet character y. (That is, the smallest integer M
such that chi is well-defined on the unit group of Z/M.)

ElementToSequence(chi)

A sequence of integers specifying the Dirichlet character y (in terms of generators
of the group containing x).

Return true iff the given characters have the same modulus and values.

| Order(chi) |

The order of the given element x in a group of Dirichlet characters.

| IsTrivial(chi) |

Returns true if and only if the Dirichlet character x has order 1.

| IsPrimitive(chi) |

Returns true iff the Dirichlet character x is primitive (equivalently, if its conductor
equals its modulus).

| AssociatedPrimitiveCharacter(chi)

The primitive character modulo the conductor of y which takes the same values (on
units) as .

| IsEven(chi) |

Returns true if and only if Evaluate(chi,-1) is equal to 1. Note that in charac-
teristic 0, the space of modular forms of weight k& and character y is zero if x is even
and k is odd.

Is0dd(chi)

Returns true if and only if Evaluate(chi,-1) is equal to —1. Note that in char-
acteristic 0, the space of modular forms of weight k and character x is zero if y is
odd and k is even.
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IsTotallyEven(chi)

For a Dirichlet character x, this is true if and only if every character in the
Decomposition of y (into prime power components) is even.

Decomposition(chi)

This decomposes the Dirichlet character x as a product of characters with prime
power moduli. The function returns a list (not a sequence) containing these char-
acters (which do not belong to the same group).

GaloisConjugacyRepresentatives(G)

GaloisConjugacyRepresentatives(seq)

This returns a sequence containing one representative from each Galois conjugacy
class (over Q) of characters corresponding to a character in the given group or the
given sequence.

MinimalBaseRingCharacter (chi)

The returns a character which is the same as x, except which takes values in the
smallest possible subring of the base ring of x.

19.8.5 Evaluation

Evaluate(chi,n)

The value of the Dirichlet character x at the integer n.

| ValueList(chi) |

A sequence containing the values [x(1), .., x(IV)] of the given character x, where N
is the modulus of x.

The list of values is stored; then in later calls to Evaluate, the stored value is
returned.

ValuesOnUnitGenerators(chi) |

A sequence containing the values of y on the ordered sequence of elements of Z/m
given by UnitGenerators(Parent(chi)), where m is the modulus of x.

Order0fRoot0fUnity(r, n)

Given an element r of some ring which is assumed to satisfy r" = 1, this returns the
smallest integer m such that »” = 1.

(This provides a convenient way to calculate the order of values of non-real
characters.)
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19.8.6 Arithmetic

X*y

x/y

The product or quotient (respectively) of the Dirichlet characters x and y. This is
a Dirichlet character of modulus equal to the least common multiple of the moduli
of x and y. The base rings and chosen roots of unity of the parents of x and y are
equal.

~

X n

The Dirichlet character x raised to the power of n, where n is any integer.

~

x ~ phi

The image of the Dirichlet character x under the automorphism ¢.

Sqrt (x)

Given a Dirichlet character z of odd order, this returns a square root of x (in the
same group).

19.8.7 Example

Example H19E7

We begin by constructing the group of characters (Z/5Z)" — Q.

> G<a> := DirichletGroup(5); G; // The default base field is Q.
Group of Dirichlet characters of modulus 5 over Ratiomnal Field

> #G;

2

> [Evaluate(a, n) : n in [1..5]];
[1, -1, -1, 1, 0]

Eltseq(a);

[ 2]

> a eq G![2];

true

> IsEven(a);

true

> Is0dd(a);

false

> IsTrivial(a);

false

\4

Next we create a character by building it up “locally”.

> G1<a4> := DirichletGroup(4);
> Conductor(a4);

4

> G2<ab> := DirichletGroup(25);
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> Conductor(ab);

5

> eps := ad*ab;
> Modulus(eps);
100

> Conductor (eps) ;
20

> Evaluate(eps,7) eq Evaluate(a4,7)*Evaluate(a5,7);
true

Characters can be constructed over various fields.

G<a> := DirichletGroup(7,GF(7));
#G;

G<a3,ab> := DirichletGroup(15,CyclotomicField(EulerPhi(15)));

>

>

6

> Evaluate(a,2);
2

>

>

> G,

Group of Dirichlet characters of modulus 15 over Cyclotomic Field of

order 8 and degree 4
#G;

Conductor(a3);

>

8

>

3

> Conductor(ab);
5

> Order(ab);

4

>

Evaluate(a5,2);
zeta_8"2

347

If D is a fundamental discriminant, then KroneckerCharacter(D) is the quadratic Dirich-
let character corresponding to the quadratic field Q(v/ D). The following code verifies that

KroneckerCharacter and KroneckerSymbol agree in the case D = 209.

chi := KroneckerCharacter(209);
for n in [1..209] do

assert Evaluate(chi,n) eq KroneckerSymbol(209,n);
end for;

vV V V V

If F is an elliptic curve with newform fg, then the twist Ep corresponds to fg twisted by this

character, as illustrated below.

> E := EllipticCurve(CremonaDatabase(),"11A");

> f := gEigenform(E,8); f;

q - 2%¥q"2 - q"3 + 2¥q"4 + q°5 + 2*q"6 - 2xq"7 + 0(q"8)
>

>

q

chi := KroneckerCharacter(-7);
qEigenform(QuadraticTwist (E,-7),8);
- 2%q"2 + q"3 + 2%xq"4 - q°5 - 2%q"6 + 0(q"8)
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> R<g> := Parent(f);
> &+[Evaluate(chi,n)*Coefficient(f,n)*q"™n : n in [1..7]] + 0(q"8);
q - 2*q"2 + q°3 + 2%q"4 - q°5 - 2*q"6 + 0(q"8)




20 RATIONAL FIELD

20.1 Introduction
20.1.1 Representation

20.1.2 Coercion .

20.1.3 Homomorphisms

hom

20.2 Creation Functions

20.2.1 Creation of Structures .

Rationals()
RationalField()
MaximalOrder (Q)
IntegerRing(Q)
IntegerRing()
Integers()
RingOfIntegers(Q)
FieldOfFractions(Z)
Completion(Q, P)
20.2.2 Creation of Elements
/

!

!

elt< >
]

One Identity

Zero Representative
Root0fUnity(n, Q)
Random(Q, m)

20.3 Structure Operations

20.3.1 Related Structures.

Category

Parent PrimeField
IntegralBasis(Q)
MinimalField(q)
MinimalField(S)
BaseField(Q)
Basis(Q)
AbsoluteBasis(Q)
UnitGroup(Q)
ClassGroup(Q)
AutomorphismGroup(Q)
AutomorphismGroup(Q, Q)
Algebra(Q, Q)
VectorSpace(Q, Q)
Decomposition(Q, p)

20.3.2 Numerical Invariants .

Characteristic
Conductor(Q)
Degree(Q)
AbsoluteDegree(Q)
Discriminant (Q)

351
351

351

352
352

353
353

353
353
353
353
353
353
353
353
353

353

353
353
354
354
354
354
354
354
354

354
354

354
354
354
354
355
355
355
355
355
355
355
355
355
355
355

356

356
356
356
356
356

AbsoluteDiscriminant (Q)
DefiningPolynomial(Q)
Signature(Q)

20.3.3 Ring Predicates and Booleans .

IsCommutative IsUnitary
IsFinite IsOrdered

IsField IsEuclideanDomain
IsPID IsUFD

IsDivisionRing IsEuclideanRing
IsPrincipalldealRing IsDomain
eq ne

20.4 Element Operations
20.4.1 Parent and Category .
Parent Category

20.4.2 Arithmetic Operators

+:= —:1= %x:= /:: Te=

20.4.3 Numerator and Denominator .

Numerator(q)
Denominator(q)

20.4.4 Equality and Membership

eq ne
in notin

20.4.5 Predicates on Ring Elements .

IsIntegral(q)

IsZero IsOne IsMinusOne
IsNilpotent IsIdempotent
IsUnit IsZeroDivisor IsRegular
IsIrreducible IsPrime

20.4.6 Comparison

gt ge 1t le
Maximum Maximum
Minimum Minimum

20.4.7 Conjugates, Norm and Trace .

ComplexConjugate(q)
Conjugate(q)

Norm(q)

Norm(q)

Trace(q)
MinimalPolynomial(q)

20.4.8 Absolute Value and Sign .

AbsoluteValue(q)

Abs (q)

Sign(q)

Height (q)

20.4.9 Rounding and Truncating

Ceiling(q)

356
356
356

356

356
356
356
356
356
356
356

357
357
357
357

357
357
357

357

357
357

357

357
357

358

358
358
358
358
358

358

358
358
358

358

358
358
358
358
358
358

359

359
359
359
359

359
359



350 BASIC RINGS Part IV

Floor(q) 359 PalhidtioRatjoial Reconstruction . . . . 360
goun“ ;D @ ggg RAthdZal ReqomsteuCotonlsipns . . . . . 360
Qizﬁzz(e qM) 359 BhemgutTaSdauenge(2) . . . . . . . . . 360

EY Eltseq(a) 360

Valuation(x, p) 360



Chapter 20
RATIONAL FIELD

20.1 Introduction

This Chapter describes functions relating to the field of rational numbers Q. Note that
most functions for rational integers can be found in Chapter 18.

The rational field Q is automatically created when Magma is started up. That means
that in Q, unlike most other structures, arithmetic can be done without the need to create
the structure explicitly first. The same is true for the ring of integers.

In order to be compatible with the other rings and fields, Q.1 will return 1.

20.1.1 Representation

Rational numbers are stored as pairs of numerator and denominator. Whenever a rational
number is created, it will be put in reduced form (coprime numerator and denominator,
positive denominator). It is well possible that a rational number has denominator 1, and
thus represents a rational integer; in such cases it will however never automatically be
converted into an integer (that is, its type will not be changed).

20.1.2 Coercion

The tables in Chapter 17 describe which coercions of rational numbers are allowed, and
which will take place automatically when necessary. As a general rule, automatic coercion
occurs between elements of Q and elements of any ring R of characteristic 0. That means,
for example, that addition of any rational number and an element r of such ring can be
performed without the need to coerce the elements first; the result will be in the larger of
Q and R (usually R, unless R is a subring of Q such as Z). The most important exceptions
to the above rule are those cases where the result would lie in a structure strictly larger
than both Q and R. Examples of this are R = Z[z], and the result would generally be in
Q(z), and R = Ok, an order in a number field (and the result could be in K).

Example H20E1

We give three examples of successful automatic coercion, and one where it does not work. Note
that in the third case the result, although being integral, is still in the rational field.

> 1/2 + elt< CyclotomicField(3) | 1,2>;
1/2%(4*xzeta_3 + 3)

> 1/2 - 0.12345;

0.37655

> 1/2 * 2;
1

>

Parent(1/2 * 2);
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Rational Field

> R<x> := PolynomialRing(Integers());
> // The following produces an error:
> 1/2 + x;

>> 1/2 + x;

~

Runtime error in ’+’: Bad argument types

20.1.3 Homomorphisms

Since homomorphisms are generally only allowed to be unitary, the specification of ring
homomorphisms from @ = Q to a ring R is particularly simple: the image is completely
determined by the image of 1, which we require to be 1 in R, so

hom<« Q@ -> R | >

suffices.

Note that MAGMA allows the user to define maps with hom that are not proper homo-
morphisms; this is sometimes useful, as the example below shows.

Example H20E2

Suppose we wish to coerce rational numbers with denominator not divisible by 11 into the ring
Z/11Z in the obvious way by sending 7/s to rs~* mod 11. The coercion rules do not allow you
to do so using !, but a simple ‘homomorphism’ will work.

Z11 := Integers(11);

Q := RationalField();
h := hom< Q -> Z11 | >;
h(1/2);

» V. V V VvV
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20.2 Creation Functions

20.2.1 Creation of Structures

The rational field Q is automatically created when MAGMA is started up. Nevertheless,
it may be necessary to formally create the rational field, for instance if it is to be used
as the coefficient ring for a polynomial ring. There is a unique rational field structure in
MAGMA, that is, multiple calls to the creation function RationalField () will return the
same object (and not an isomorphic copy), so no memory will be wasted.

Rationals()
RationalField() |

Create the field Q of rational numbers.

MaximalOrder (Q)

IntegerRing(Q)

IntegerRing ()

Integers()

RingOfIntegers(Q)

Create the field Z of rational integers.

FieldOfFractions(Z) |

The function Field0fFractions returns the field Q when R is either the ring Z of
rational integers, or the field Q itself.

Completion(Q, P)

Precision RNGINTELT Default : oo

Computes the completion of Q at the integral prime ideal P together with the injec-
tion into the completion.
The parameter Precision may be used to specify a particular precision.

20.2.2 Creation of Elements

Unlike elements of other structures, rational numbers and integers can be created as literals
without the need to define the parent field Q or the parent ring Z first, since these structures
are loaded whenever MAGMA is started up.

Given integers a and b # 0, form the rational number a/b (in reduced form). Of
course a and be are allowed to be given as expressions defining integers.

Q ! [a]

The inverse function to Eltseq, returns Q!a.
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Q! [a, b]
elt< Q| a, b >

Given the rational field Q, and integers a,b (with b # 0), construct the rational
number a/b, in reduced form.

Given the rational field Q, and an integer a, create the rational number a = a/1 in
Q. Also, any element from a quadratic, cyclotomic or number field (or an order of
such) that is rational can be coerced into the rational field this way.

One (Q) Identity(Q)

Zero(Q) Representative(Q)

These generic functions (cf. Chapter 17) create 1, 1, 0, and 0 respectively, in the
rational field Q.

Root0fUnity(n, Q)

This function returns, in general, for a positive integer n and a cyclotomic field @
a primitive n-th root of unity in @Q; if @ is the rational field, n must be 1 or 2, and
the result will be 1 or —1 in Q) accordingly.

Random(Q, m)

This function returns a random rational number with random numerator in [—u..u]
and random denominator in [1..u], where u is the absolute value of m.

20.3 Structure Operations

20.3.1 Related Structures

Category (Q)
Parent (Q) PrimeField(Q)
IntegralBasis(Q)

An integral basis for () as a number field as a sequence of elements of ) (giving the
sequence containing 1 for the rational field).

MinimalField(q)

Return the least cyclotomic field containing the cyclotomic field element g; if ¢ is
rational this returns the rational field.
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MinimalField(S) |

Returns the minimal cyclotomic field containing the cyclotomic field elements in the
enumerated set S; this will return the rational field if all elements of S are rational
numbers.

BaseField(Q)
In analogy to the number fields, returns the coefficient field of () which will be Q.

Basis(Q)
AbsoluteBasis(Q)

A basis for @) as a Q-vector space, i.e. [1].

UnitGroup(Q)

The unit group of the maximal order of Q (i.e. of Z).

ClassGroup(Q)

The class group of the ring of integers Z of Q (which is trivial).

AutomorphismGroup (Q)

AutomorphismGroup(Q, Q)

The group of Q automorphisms of Q, ie. a trivial finitely presented group, the
parent structure for Q-automorphisms and a map from the group to actual field
automorphisms. In this case, of course the only Q-automorphism will be the identity.

Algebra(Q, Q)

The field of the rational number form canonically an algebra. This function returns
an associative Q-algebra isomorphic to Q and the map from the algebra to Q.

VectorSpace(Q, Q)

The field of the rational number form canonically a vector space. This function
returns a Q-vector space isomorphic to Q and the map from the vector space to Q.

Decomposition(Q, p)

For a prime p or for the “infinite prime” Infinity() compute the decomposition
in Q as a number field. This returns a list of length one containing a 2-tuple
describing the splitting behaviour: the first component contains p and the second
it’s ramification degree, ie. 1.
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20.3.2 Numerical Invariants

The functions below are defined for the rational field Q mainly because it often arises as
a degenerate case of quadratic or cyclotomic field constructions. See the corresponding
Chapters 35 and 36 for more.

Characteristic(Q)

Conductor (Q)

The smallest positive integer n such that () is contained in the cyclotomic field
Q(¢y). For the rational field this is 1.

Degree(Q)

AbsoluteDegree(Q)
The degree of @ as a number field (which is 1 for the rational field).

Discriminant (Q)

AbsoluteDiscriminant (Q)

The field discriminant of ¢ (which is 1 for the rational field).

DefiningPolynomial (Q)

An irreducible polynomial over Q a root of which generates @) as a number field (for
the rational field this returns the linear polynomial z — 1).

Signature(Q)

The signature (number of real embeddings and pairs of complex embeddings) of Q.

20.3.3 Ring Predicates and Booleans

IsCommutative (Q) IsUnitary(Q)

IsFinite(Q) IsOrdered(Q)

IsField(Q) IsEuclideanDomain(Q)

IsPID(Q) ISUFD(Q)

IsDivisionRing(Q) IsEuclideanRing(Q)

IsPrincipalIldealRing(Q) IsDomain(Q)

Q eqR Q ne R
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20.4 Element Operations

A variety of different types of operations are provided for rational elements including
arithmetic operations, comparison and predicates and converting to a sequence.

20.4.1 Parent and Category

Parent (r) Category(r)

20.4.2 Arithmetic Operators

+ a - a
a+b a-b a*xb a "~k a/b
a+:=b a-:=b a *:=Db a/:=b a ":=k

20.4.3 Numerator and Denominator

Numerator(q)

The (integer) numerator of the rational number ¢ in reduced form.

Denominator(q)

The (integer) denominator of the rational number ¢ in reduced form. This will
always be a positive integer.

Example H20E3

Rational numbers are always immediately put in reduced form, that is, the greatest common
divisor of numerator and denominator is taken out, and the denominator will be positive.

> Numerator(10/-4);
-5

> Denominator(10/-4);
2

20.4.4 Equality and Membership

aeqb aneb

a in R a notin R
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20.4.5 Predicates on Ring Elements

IsIntegral(q)
Returns true if the rational number ¢ is an element of the ring of integers, false
otherwise.

IsZero(a) IsOne(a) IsMinusOne (a)

IsNilpotent(a) IsIdempotent(a)

IsUnit(a) IsZeroDivisor(a) IsRegular(a)

IsIrreducible(a) IsPrime(a)

20.4.6 Comparison

agthb ageb altb aleb
Maximum(a, b) Maximum(Q)
Minimum(a, b) Minimum(Q)

20.4.7 Conjugates, Norm and Trace

ComplexConjugate(q)

The complex conjugate of ¢, which will be the rational number ¢ itself.

Conjugate(q)

The conjugate of ¢, which will be the rational number ¢ itself.

Norm(q)

Norm(q)

The norm (in Q) of ¢, which will be the rational number ¢ itself.

Trace(q)

The trace (in Q) of g, which will be the rational number q itself.

MinimalPolynomial(q)

Returns the minimal polynomial of the rational number ¢, which is the monic linear
polynomial with constant coefficient ¢ in a univariate polynomial ring R over the
rational field. (If R has not been created before with a name for its indeterminate,
$.1-q will be returned.)



Ch. 20 RATIONAL FIELD 359

20.4.8 Absolute Value and Sign

AbsoluteValue(q)
Abs(q)

The absolute value |g| of a rational number q.

Sign(q)

Returns the sign of the rational number ¢, which is one of the integers —1, 0, 1,
corresponding to the cases ¢ < 0, ¢ =0, and ¢ > 0.

Height (q)

The height of ¢ = r/s. For r and s coprime, the height is defined as the maximum
of the absolute value of r and s.

20.4.9 Rounding and Truncating

Ceiling(q)

The ceiling of the rational number ¢, that is, the least integer greater than or equal
to q.

Floor(q)

The floor of the rational number ¢, that is, the largest integer less than or equal to
q.

Round (q)

This function returns the integer value of the rational number ¢ rounded to the
nearest integer. In the case of a tie, rounding is done away from zero (that is, i + %
is rounded to i + 1, for non-negative integers i and i — % is rounded to i — 1, for

2
non-positive integers ).

Truncate(q)

This function returns the integer truncation of the rational number ¢, that is the
integral part of q. Thus the effect is that of rounding towards 0.

Qround(q, M)

ContFrac BooLELT Default : false

Finds an rational approximation d of ¢ such that the denominator of d is bounded
by M. If ContFrac is given then an optimal approximation is computed using the
continued fraction process. By default d is obtained by some rounding procedure
which is faster but gives worse results.
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20.4.10 Rational Reconstruction

Under certain circumstances it is useful to have a partial inverse of the function ,, :
Q — Z/mZ of taking residues modulo m (where the obvious value of 1), is only defined
for rational numbers with denominator in smallest terms coprime to m); the partial inverse
of the function is sometimes referred to as ‘rational reconstruction’. For s € Z/mZ the
value of 1) ~1(s) is the rational number r for which ,,,(r) = s and, in addition, the absolute
values of both the numerator and denominator of r are at most \/m/2; such r does not
always exist, but if r exists it is unique.

| RationalReconstruction(s)

Given an element s of a ring S of m elements, return a Boolean flag indicating
whether or not a rational number r exists such that for the representation r = n/d
in minimal terms it holds that n-d~! = s mod m, |n| < /m/2 and 0 < d < \/m/2.
If the flag is true, the element r is also returned. The ring S is allowed to be a residue
class ring Integers(m) or a finite field of prime cardinality p = m: FiniteField(p).

In addition, s is allowed to be a matrix over a prime finite field, in which case
the existence (and, if possible, value) of a rational reconstruction of the matrix is
determined.

20.4.11 Valuation

Valuation(x, p)

Valuation(x, I)

The valuation v of the rational number x at the prime p (the prime ideal I). This
is the difference of the valuations of the numerator and denominator of z. The
optional second return value is the rational w such that x = pu.

20.4.12 Sequence Conversions

ElementToSequence(a)

Eltseq(a)

The sequence [a] for compatibility with the other field types.
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Chapter 21
FINITE FIELDS

21.1 Introduction

MAGMA provides a powerful environment for computing with lattices of finite fields. Com-
plete freedom in the manner in which fields are constructed is allowed, while assuring
compatibility. Finite fields of various kinds are supported, with optimized representations
for each kind. For a detailed description of how finite fields are presented in MAGMA, see
[BCS97].

21.1.1 Representation of Finite Fields

In MAGMA, arithmetic in small non-prime finite fields is carried out using tables of Zech
logarithms. While this ensures that finite field arithmetic is fast, its use is limited to finite
fields of small cardinality.

Larger finite fields are internally represented as polynomial rings over a small finite field.
It is possible for the user to specify his own irreducible polynomial (although internally an
alternative representation may well be used).

Although two finite fields of the same cardinality are isomorphic, in practical appli-
cations it is often important to be guaranteed to work in a field defined by a specific
polynomial. Moreover, in passing between fields and subfields, choices regarding the em-
beddings have to be made, so that these embeddings are compatible (so that ‘diagrams
commute’). The scheme implemented in MAGMA and described in [BCS97] ensures that
this is so.

21.1.2 Conway Polynomials

To avoid ambiguities when talking about (small) finite fields, Conway polynomials have
been defined and calculated by R. Parker. The Conway polynomial C,, ,, is the lexicograph-
ically first monic irreducible, primitive polynomial of degree n over F,, with the property
that it is consistent with all C, ,, for m dividing n. Consistency of C), ,, and C, ,,, for m

dividing n means that for a root « of C,, ,, it holds that 8 = Q™= is a root of Cp,m- Lexico-
graphically first is with respect to the system of representatives —%, e, —1,0,1,.0 pg—l
for the residue classes modulo p, ordered via 0 < —1 <1 < =2 < ;)5_1 (and we only
need to compare polynomials of the same degree).

To compute the Conway polynomial C),,, one needs to know all Conway polynomials
Cp,m for m dividing n, and as far as we know, no essentially better method is known than
enumerating and testing the primitive polynomials of degree n in lexicographical order.

Conway polynomials are used in MAGMA by default for the construction of Fj» using
FiniteField(p, n) or its synonyms, whenever the Conway polynomial is available. How-

ever, it must be stressed that Conway polynomials are only used in MAGMA to provide
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standard defining polynomials for F» — the special properties of Conway polynomials are
never used because they are totally irrelevant in the scheme implemented in MAGMA!

21.1.3 Ground Field and Relationships

Throughout this Chapter we will use the notions of ground field and prime field in the
following way. The prime field of a finite field F' is the unique field of cardinality p, the
characteristic of F. Here we mean unique not just in the mathematical sense, but in
the sense that all prime fields of the same cardinality are identical in MAGMA, and their
elements are denoted 0,1,...,p — 1. The ground field of F' is the field over which F is
created as an extension. If F' was not explicitly created as an extension of a finite field
E by using ext, its ground field will be the prime field. Printing in MAGMA always takes
place with respect to the ground field, that is, elements of F' are expressed as polynomials
in the generator F. 1 of the field with coefficients in the ground field; there is one exception
to this rule: if the field F' is small enough to be represented by means of Zech logarithms,
the printing of elements is in the form of powers of the primitive element (see the option
on AssertAttribute below for ways of changing that).

It should be kept in mind that finite fields may be related mathematically without
MAGMA being aware of the relation between them. This happens for example when two
fields of dividing degrees are created as extensions of one field; although an isomorphic
image of the smaller field will be contained in the larger, MAGMA will not establish this
relation (unless the user explicitly asks for it, using the Embed function). However, all
subfields of one common overfield in MAGMA will have their inclusion relations set up
automatically.

21.2 Creation Functions

Since V2.13, a database of low-term irreducible polynomials over F5 is available for all
degrees up to 90000 (see the function IrreducibleLowTermGF2Polynomial below). Thus
one can create the finite field For for k£ within this range and compute within the field
without any delay in the creation. Advantage is also taken of the special form of the
defining polynomial.

Previous to V2.11, sparse trinomial /pentanomial irreducible polynomials (see the func-
tion IrreducibleSparseGF2Polynomial) were used by default for constructing GF(2F)
when k is beyond the Conway range. To enable compatibility with older versions, one may
select these sparse polynomials with the parameter Sparse in the creation functions.

21.2.1 Creation of Structures

FiniteField(q)

GaloisField(q)
GF(q)

Optimize BooLELT Default : true
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Sparse BooLELT Default : false

Given ¢ = p", where p is a prime, create the finite field F,. If p is very big, it
is advised to use the form FiniteField(p, n) described below instead, because
MaGMA will first attempt to factor ¢ completely.

The primitive polynomial used to construct F, when n > 1 will be a Conway
polynomial, if it is available. If the parameter Optimize is false, then no optimized
representation (i.e., by using Zech logarithm tables or internal multi-step extensions)
will be constructed for the new field which means that the time to create the field
will be trivial but arithmetic operations in the field may be slower — this is useful
if say one wishes to just compute a few trivial operations on a few elements of the
field alone.

If ¢ = 2% and k is beyond the Conway range, then a low-term irreducible
is used (see IrreducibleLowTermGF2Polynomial below). Setting the parameter
Sparse to true will cause a sparse polynomial to be used instead if possible (see
IrreducibleSparseGF2Polynomial below).

FiniteField(p, n)
GaloisField(p, n)

GF(p, n)
Check BooLELT Default : true
Optimize BooLELT Default : true
Sparse BooLELT Default : false

Given a prime p and an exponent n > 1, create the finite field F,». The primitive
polynomial used to construct F, when n > 1 will be a Conway polynomial, if it is
available.

By default p is checked to be a strong pseudoprime for 20 random bases b with
1 < b < p; if the parameter Check is false, then no check is done on p at all (this is
useful when p is very large and one does not wish to perform an expensive primality
test on p).

The parameters are as above.

ext< F | n >|

Optimize BooLELT Default : true
Sparse BooLELT Default : false

Given a finite field F' and a positive integer n, create an extension G of degree n
of F'; as well as the embedding map ¢ : ' — G. The parameter Optimize has the
same behaviour as that for the FiniteField function. If F'is a default field, then
G will also be a default field (so its ground field will be the prime field). Otherwise,
the ground field of G will be F.

The parameters are as above.
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ext< F | P >|

Optimize BooLELT Default : true

Given a finite field F' and a polynomial P of degree n over F', create an extension

G = F[a] of degree n of F, as well as the natural embedding map ¢ : F' — G;

the polynomial P must be irreducible over F', and « is one of its roots. Thus the

defining polynomial of G over F' will be P. The parameter Optimize has the same

behaviour as that for the FiniteField function. The ground field of G will be F.
The parameter is as above.

ExtensionField< F, x | P >

Given a finite field F', a literal identifier x, and a polynomial P of degree n over F'
presented as a (polynomial) expression in z, create an extension G = F'[x] of degree
n of F, as well as the natural embedding map ¢ : F' — G the polynomial P must
be irreducible over F', and z is one of its roots. Thus the defining polynomial of
G over F will be P. The parameter Optimize has the same behaviour as in the
FiniteField function.

RandomExtension(F, n)

Given a finite field F' and a degree n, return the extension of F' by a random degree-n
irreducible polynomial over F'.

SplittingField(P)

Given a univariate polynomial P over a finite field F', create the minimal splitting
field of P, that is, the smallest-degree extension field G of F' such that P factors
completely into linear factors over G.

SplittingField(S)

Given a set S of univariate polynomials each over a finite field F', create the minimal
splitting field of S, that is, the smallest-degree extension field G' of F' such that for
every polynomial P of S, P factors completely into linear factors over G.

sub< F | d >|
Optimize BooLELT Default : true
Sparse BooLELT Default : false

Given a finite field F' of cardinality p™ and a positive divisor d of n, create a subfield
FE of F of degree d, as well as the embedding map ¢ : £ — F'.
The parameters are as above.
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sub< F | f >
Optimize BooLELT Default : true
Sparse BooLELT Default : false

Given a finite field F' and an element f of F', create the subfield E of F' generated by
f, together with the embedding map ¢ : E — F. The map and field are constructed
so that ¢(w) = f, where w is the generator of F (that is, E.1).

The parameters are as above.

GroundField(F) |
BaseField(F)

Given a finite field F', return its ground field. If F' was constructed as an extension
of the field E, this function returns E; if F' was not explicitly constructed as an
extension then the prime field is returned.

| PrimeField(F) |
The subfield of F' of prime cardinality.

| IsPrimeField(F) |
Returns whether field F' is a prime field.

Given finite fields F' and G of the same characteristic p, return the finite field that
forms the intersection FF N G.

CommonOverfield(K, L)

Given finite fields K and L, both of characteristic p, return the smallest field which
contains both of them.

Example H21E1

To define the field of 7 elements, use
> F7 := FiniteField(7);
We can define the field of 7* elements in several different ways. We can use the Conway polynomial:

> F<z> := FiniteField(7°4);
> F;
Finite field of size 774

We can define it as an extension of the field of 7 elements, using the internal polynomial:

> F<z> := ext< F7 | 4 >;
> F;
Finite field of size 774

We can supply our own polynomial, say z* + 423 + 2z + 3:

> P<x> := PolynomialRing(F7);
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> p 1= XT4+4%x73+2%x+3;
> F<z> := ext< F7 | p >;
> F;

Finite field of size 774

We can define it as an extension of the field of 72 elements:

> F49<w> := ext< F7 | 2 >;
> F<z> := ext< F49 | 2 >;
> F;

Finite field of size 774

Part IV

21.2.2 Creating Relations

Embed(E, F)

Given finite fields E and F of cardinality p? and p™, such that d divides n, assert the
embedding relation between E and F'. That is, an isomorphism between E and the
subfield of F of cardinality p? is chosen and set up, and can be used from then on
to move between the fields E and F. See [BCS97] for details as to how this is done.
If both £ and F have been defined with Conway polynnomials then the isomorphism

will be such that the generator 8 of F' is mapped to a»?-1, where « is the generator

of F.

Embed(E, F, x)

Given finite fields E and F of cardinality p® and p™ such that d divides n, as well
as an element x € F', assert the embedding relation between E and F' mapping
the generator of E' to x. The element x must be a root of the polynomial defining
E over the prime field. Thus an isomorphism between F and the subfield of F' of
cardinality p? is set up, and can be used from then on to move between the fields
FE and F.

21.2.3 Special Options

For finite fields for which the complete table of Zech logarithms is stored (and which must
therefore be small), printing of elements can be done in two ways: either as powers of the

primitive element or as polynomials in the generating element.

Note that power printing is not available in all cases where the logarithm table is stored
however (the defining polynomial may not be primitive); for convenience element of a prime
field are always printed as integers, and therefore power printing on prime fields will not
work. Also, if a field is created with a generator that is not primitive, then power printing

will be impossible.
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AssertAttribute(F1dFin, "PowerPrinting", 1)

This attribute is used to change the default printing for all (small) finite fields
created after the AssertAttribute command is executed. If [ is true all elements
of finite fields small enough for the Zech logarithms to be stored will be printed by
default as a power of the primitive element — see PrimitiveElement). If [ is false
every finite field element is printed by default as a polynomial in the generator F.1
of degree less than n over the ground field. The default can be overruled for a
particular finite field by use of the AssertAttribute option listed below. The value
of this attribute is obtained by use of HasAttribute (F1dFin, "PowerPrinting").

SetPowerPrinting(F, 1)

AssertAttribute(F, "PowerPrinting", 1)

Given a finite field F', the Boolean value [ can be used to control the printing of
elements of F', provided that F' is small enough for the table of Zech logarithms
to be stored. If [ is true all elements will be printed as a power of the primitive
element — see PrimitiveElement). If [ is false (which is the only possibility for
big fields), every element of F' is printed as a polynomial in the generator F.1 of
degree less than n over the ground field of F', where n is the degree of F' over its
ground field. The function HasAttribute(F, "PowerPrinting") may be used to
obtain the current value of this flag.

HasAttribute(F1dFin, "PowerPrinting", 1)

This function is used to find the current default printing style for all (small) finite
fields. It returns true (since this attribute is always defined for FldFin), and also re-
turns the current value of the attribute. The procedure AssertAttribute (F1dFin,
"PowerPrinting", 1) may be used to control the value of this flag.

HasAttribute(F, "PowerPrinting")

Given a finite field F' that is small enough for the table of Zech logarithms to be
stored, returns true if the attribute "PowerPrinting" is defined, else returns false.
If the attribute is defined, the function also returns the value of the attribute. The
procedure AssertAttribute(F, "PowerPrinting", 1) may be used to control the
value of this flag.

AssignNames(~F, [f])

Procedure to change the name of the generating element in the finite field F' to the
contents of the string f. When F' is created, the name will be F. 1.

This procedure only changes the name used in printing the elements of F. It
does not assign to an identifier called f the value of the generator in F'; to do this,
use an assignment statement, or use angle brackets when creating the field.

Note that since this is a procedure that modifies F', it is necessary to have a
reference ~F to F' in the call to this function.
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Name(F, 1)

Given a finite field F', return the element which has the name attached to it, that
is, return the element F.1 of F'.

21.2.4 Homomorphisms

hom< F -> G | x >|

Given a finite field F', create a homomorphism with F' as its domain and G as its
codomain. If F' is a prime field, then the right hand side in the constructor must
be empty; in this case the ring homomorphism is completely determined by the rule
that the map must be unitary, that is, 1 of F' is mapped to 1 of G. If F' is not
of prime cardinality, then the homomorphism must be specified by supplying one
element z in the codomain, which serves as the image of the generator of the field
F over its prime field. Note that it is the responsibility of the user that the map
defines a homomorphism.

21.2.5 Creation of Elements

The generator for F' as an algebra over its ground field. Thus, if F' was defined by
the polynomial P = P(X) over F, so F = E[X]/P(X), then F.1 is the image of X
in F.

If F'is a prime field, then 1 = 1p will be returned.

| elt< F | a >|

Given a finite field F' create the element specified by a; here a is allowed to be an
element coercible into F', which means that a may be

(i) an element of F;

(ii)an element of a subfield of F’;

(iiijpn element of an overfield of F' that lies in F

(iv)an integer, to be identified with a modulo the characteristic of F;
(

v)a sequence of elements of the ground field E of F, of length equal to the degree
of F over E. In this case the element ag+ajw+---+a,_jw" ! is created, where

a = [ag,...a,—1] and w is the generator F.1 of F over E.
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elt< F | ag, ..., ap—1 >

Given a finite field F' with generator w of degree n over the ground field F, create
the element ag +ayw+---+a, jw" ' € F, wherea; € E (0 <i<n—1). If the a;
are in some subfield of F or the a; are integers, they will be coerced into the ground

field.
One (F) Identity (F)
Zero(F) Representative (F)

These generic functions (cf. Chapter 17) create 1, 1, 0, and 0 respectively, in any
finite field.

Random (F) |

Create a ‘random’ element of finite field F'.
21.2.6 Special Elements

| Generator (F) |

Given a finite field F', this function returns the element f of F' that generates F
over its ground field F, so F' = E[f]. This is the same as the element F.1.

Generator(F, E)

Given a finite field F' and a subfield F of F', this function returns an element f of
F that generates F' over E, so F' = E[f]. Note that this element may be different
from the element F.1, but if F.1 works it will be returned.

PrimitiveElement (F) |

Given a finite field F', this function returns a primitive element for F', that is, a
generator for the multiplicative group F* of F'. Note that this may be an element
different from the generator F.1 for the field as an algebra. This function will return
the same element upon different calls with the same field; the primitive element that
is returned is the one that is used as basis for the Log function.

SetPrimitiveElement (F, x)

(Procedure.) Given a finite field F' and a primitive element x of F, set the internal
primitive element p of F' to be x. If the internal primitive element p of F' has already
been computed or set, x must equal it. The function Log (given one argument)
returns the logarithm of its argument with respect to the base p; this function thus
allows one to specify which base should be used. (One can also use Log(x, b) for a
given base but setting the primitive element and using Log(x) will be faster if many
logarithms are to be computed.)
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NormalElement (F) |

Given a finite field F' = F», this function returns a normal element for F' over the
ground field GG, that is, an element o € F' such that o, a4,... ,ozqnfl forms a basis
for F' over GG, where ¢ is the cardinality of GG, and n the degree for F' over GG. Two
calls to this function with the same field may result in different normal elements.

NormalElement (F, E)

Given a finite field /' = F;» and a subfield £ = F, this function returns a normal

element for F' over F, that is, an element o € F' such that a, a4, ... ,aqn_l forms a
basis for F' over E.

21.2.7 Sequence Conversions

SequenceToElement (s, F)

Seqelt(s, F)

Given a sequence s = [sg, ..., S,—1] of elements of a finite field E, of length equal to
the degree of the field F' over its subfield F, construct the element s = sg + s;w +
o4 s, w1 of F, where w is the generator F.1 of F over E.

ElementToSequence(a)

Eltseq(a)

Given an element a of the finite field F, return the sequence of coefficients
[ag, .. .,an_1] in the ground field E of F' such that a = ag + ajw + - -+ + @, _jw™ 1,
with w the generator of F' over E, and n the degree of F' over E.

ElementToSequence(a, E)

Eltseq(a, E)

Given an element a of the finite field F, return the sequence of coefficients
[ag,...,a,_1] in the subfield E of F such that a = ag + a1w + -+ + a,_jw" 1,
with w the generator of F' over F, and n the degree of F' over F.

21.3 Structure Operations
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21.3.1 Related Structures

Category (F) Parent (F) Centre(F)

PrimeRing(F) PrimeField(F)

FieldOfFractions(F)

AdditiveGroup (F)

Given F' = F, create the finite additive abelian group A of order ¢ = p” that is the
direct sum of r copies of the cyclic group of order p, together with the corresponding
isomorphism from the group A to the field F.

MultiplicativeGroup (F)

UnitGroup (F)

Given F' = F,, create the multiplicative group of R as an abelian group. This
returns the (additive) cyclic group A of order g — 1, together with a map from A to
F'\ 0, sending 1 to a primitive element of F'.

Create the enumerated set consisting of the elements of finite field F'.

VectorSpace(F, E)

Given a finite field F' that is an extension of degree n of E, define the natural
isomorphism between F and the n-dimensional vector space E™. The function
returns two values:

(a) A vector space V = E";

(b) The isomorphism ¢ : F' — V.

The basis of V is chosen to correspond with the power basis a?, a!, ..., a® ! of F,
where « is the generator returned by Generator(F, E),sothat V =F-1 X E-a X
-xE-a"1tand ¢:a' — ey, (fori=0,...,n — 1), where e; is the basis vector

of V' having all components zero, except the i-th, which is one.

VectorSpace(F, E, B)

Given a finite field F' that is an extension of degree n of E, define the isomorphism
between F' and the n-dimensional vector space E™ defined by the basis B for F' over
E. The function returns two values:

(a) A vector space V = E";

(b) The isomorphism ¢ : F' — V.

The basis of V' is chosen to correspond with the basis B = 1, (2, ..., 3, of F over
E, as specified by the user, sothat V. =FE -1 X E-y XX E-f3,. ¢ : B; — ¢;, (for
i=1,...,n), where e; is the basis vector of V' having all components zero, except
the 2-th, which is one.
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MatrixAlgebra(F, E)

Let F' be a finite field that is an extension of degree n of E. The function returns
two values:

(a) A matrix algebra A of degree n, such that A is isomorphic to F’;
(b) An isomorphism ¢ : F' — A.

The matrix algebra A will be the subalgebra of the full algebra of n x n matrices
over E/ generated by the companion matrix C' of the defining polynomial of F' over
E. The generator Generator (F, E) of F over FE is thus mapped to C.

MatrixAlgebra(A, E)

Let F be a finite field. Let A be a matrix algebra over F', and E be a subfield of F'.
The function returns two values:

(a) A matrix algebra N over F isomorphic to A, obtained from A by expanding each
component of an element of A into the block matrix associated with it;

(b)An E-isomorphism ¢ : A — N.

N is A considered as an F-matrix algebra.

Example H21E2

Given the field F of 7* elements defined as an extension of the field F49 of 72 elements as above,
we can construct two vector spaces, one of dimension 2, and the other of dimension 4:

> F7 := FiniteField(7);

> F49<w> := ext< F7 | 2 >;

> F<z> := ext< F49 | 2 >;

> v2, i2 := VectorSpace(F, F49);

> v2;

Full Vector space of degree 2 over GF(7°2)
> i2(z"12);

( ww28)

> v4, i4 := VectorSpace(F, PrimeField(F));
> v4;

Full Vector space of degree 4 over GF(7)
> i4(z~12);

(6 36 4)

GaloisGroup (K, k)

Compute the Galois group (which is of course cyclic) of K/k as a permutation group.
The group is returned as well as the roots of the defining polynomial of K/k in a
compatible ordering.
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AutomorphismGroup (K, k)

Computes the (cyclic) group of k-automorphisms of K. The group is returned as well
as a sequence of all automorphisms and a map sending an element of the abstract
automorphism group to an explicit automorphism.

21.3.2 Numerical Invariants

Characteristic(F) # F

Degree (F)

The absolute degree of F', that is, the degree over its prime subfield.

Degree(F, E)

Given a finite field F' that has been constructed as an extension of a field E, return
the degree of F over E.

21.3.3 Defining Polynomial

DefiningPolynomial (F)

Given a finite field F' that has been constructed as an extension of a field F, return
the polynomial with coefficients in E that was used to define F' as an extension of
E. This is the minimum polynomial of F.1.

DefiningPolynomial (F, E)

Given a finite field F' and a subfield E, return the polynomial with coefficients in
used to define F' as an extension of E. This is the same as the minimum polynomial
of the generator Generator(F, E) over E.

21.3.4 Ring Predicates and Booleans

IsConway (F)

Given a finite field F', this function returns true iff F' is defined over its prime field
using a Conway polynomial.

IsDefault (F) |
Given a finite field F', this function returns true iff F is a default field.

IsCommutative (F) IsUnitary(F)
IsFinite(F) IsOrdered(F)
IsField(F) IsEuclideanDomain (F)
IsPID(F) IsUFD(F)
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IsDivisionRing(F) IsEuclideanRing(F)
IsPrincipalIdealRing(F) IsDomain (F)
F eqG F ne G

21.3.5 Roots

Roots(f)

Given a polynomial f over a finite field F', this function finds all roots of f in F,
and returns a sorted sequence of tuples (pairs), each consisting of a root of f in F
and its multiplicity.

RootsInSplittingField(f)

Given a univariate polynomial f over a finite field K, compute the minimal splitting
field S of f as an extension field of K, and return the roots of f in S, together with
S. Using this function will be faster than computing the roots of f anew over the
splitting field.

FactorizationOverSplittingField(f)

Given a univariate polynomial f over a finite field K, compute the minimal splitting
field S of f as an extension field of K, and return the factorization (into linears)
of f over S, together with S. Using this function will be faster than factorizing f
anew over the splitting field.

Root0fUnity(n, K)

Return a primitive n-th root of unity in the smallest possible extension field of K.

Example H21E3

We compute the roots of a certain degree-20 polynomial f in its minimal splitting field.

> K := GF(2);

> P<x> := PolynomialRing(GF(2));
>f :=x720 + x711 + 1;

> Factorization(f);

[
<x"3 + x72 + 1, 1>,
<x"8 + X77 + x73 + x72 + 1, 1>,
<x"9 + X7 + x76 + x4 + 1, 1>
]
> time r, S<w> := RootsInSplittingField(f);
Time: 0.040

We note that the splitting field S has degree 72 and there are 20 roots of f in S of course. We
check that the evaluation of f at each root is zero.

> S;
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Finite field of size 2772

> DefiningPolynomial(S);

Xx"72 + x748 + x747 + x744 + x738 + x735 + x732 + x731 + x730 +
X729 + x727 + x726 + x723 + x722 + x721 + x718 + x715 +
x"12 + x"8 + x74 + 1

> #r;

20

> r[1];

<w"68 + w67 + w64 + w62 + w60 + w'b9 + w'b6 + w50 + w™49 +
w48 + w47 + w44 + w43 + w”39 + w™37 + w™3b + w™33 + w32
+ w30 + w29 + w28 + w25 + w21 + w719 + w”18 + w™16 +
w'lb + w14 + w"12 + w"10 + w6 + w, 1>

> [IsZero(Evaluate(f, t[1])): t in r];

[ true, true, true, true, true, true, true, true, true, true, true, true,

true, true, true, true, true, true, true, true ]

21.4 Element Operations

See also Section 17.5.

21.4.1 Arithmetic Operators

+ a - a

a+b a-b ax*xb a/b
a " k

a+:=b a-:=b a *:= b

21.4.2 Equality and Membership

aeqgb aneb

a in F a notin F

21.4.3 Parent and Category

Parent (a) Category (a)
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21.4.4 Predicates on Ring Elements

IsZero(a) IsOne(a) IsMinusOne (a)
IsNilpotent(a) IsIdempotent(a)
IsUnit(a) IsZeroDivisor(a) IsRegular(a)
IsIrreducible(a) IsPrime(a)

| IsPrimitive(a) |

Returns true if and only if the element a of F' is a primitive element for F' (i.e., if
and only if the multiplicative order of a is #F — 1).

| IsPrimitive(f) |

Given a univariate polynomial f € F[x], over a finite field F', such that the degree
of f is greater than or equal to 1, this function returns true if and only if f defines
a primitive extension G = F[z]/f of F' (that is, = is primitive in G).

| IsNormal (a) |

Returns true if and only if the element a of F' generates alnormal basis for the field
over the ground field, that is, if and only if a,a?,...,a?" ~ form a basis for F over
the ground field G = F,.

IsNormal(a, E)

Returns true if and only if the element a of the finite field F' with ¢" elements gen-
erates a normal basis for F over its subfield F, that is, if and only if a,a?,...,a?
form a basis for F' over E for ¢ = #F.

IsSquare(a)

Given a finite field element a € F', this function returns either true and an element
b € F such that b = a, or it returns false in the case that such an element does
not exist.

21.4.5 Minimal and Characteristic Polynomial

MinimalPolynomial(a)

The minimal polynomial of the element a of the field F', relative to the ground field
of F'. This is the unique minimal-degree monic polynomial with coefficients in the
ground field, having a as a root.

MinimalPolynomial(a, E)

The minimal polynomial of the element a of the field F', relative to the subfield £
of F'. This is the unique minimal-degree monic polynomial with coefficients in F,
having a as a root.
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CharacteristicPolynomial(a)

Given an element a of a finite field F', return the characteristic polynomial of a with
respect to the ground field of F. (This polynomial is the characteristic polynomial
of the companion matrix of a written as a polynomial over the ground field, and is
a power of the minimal polynomial.)

CharacteristicPolynomial(a, E)

Given an element a of a finite field F', return the characteristic polynomial of a with
respect to the subfield E of F. (This polynomial is the characteristic polynomial of
the companion matrix of a written as a polynomial over E, and is a power of the
minimal polynomial over E.)

21.4.6 Norm, Trace and Frobenius

The norm of the element a from the field F' to the ground field of F.

Norm(a, E)

The relative norm of the element a from the field F', with respect to the subfield £
of F'. The result is an element of E.

AbsoluteNorm(a) |
NormAbs (a)

The absolute norm of the element a, that is, the norm to the prime subfield of the
parent field F' of a.

The trace of the element a from the field F' to the ground field of F'.

Trace(a, E)

The relative trace of the element a from field F', with respect to the subfield F of
F. The result is an element of F.

AbsoluteTrace(a) |
TracelAbs (a)

The trace of the element a, that is, the trace to the prime subfield of the parent
field F of a.

Frobenius(a) |

The Frobenius image of a w.r.t. the ground field of K; i.e., a®, where G is the
ground field of the parent of a.
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Frobenius(a, r)

The r-th Frobenius image of a w.r.t. the ground field of K i.e., a#%)" where G is
the ground field of the parent of a.

Frobenius(a, E)

The Frobenius image of x w.r.t. E; i.e., 27F.

Frobenius(a, E, r)

The Frobenius image of x w.r.t. F; i.e., z#E)"

NormEquation (K, y)

Given a finite field K and an element y of a subfield S of K, return whether an

element x € K exists such that Norm(z,S) = y, and, if so, such an element x (in
K).

Hilbert90(a, q)

Given an element a of some finite field k£ and a power g of the characteristic of k,
return a solution of the Hilbert 90 equation 292! = a. Note that the solution may
be in an finite-degree extension of k.

AdditiveHilbert90(a, q)

Given an element a of some finite field k£ and a power ¢ of the characteristic of k,
return a solution of the additive Hilbert 90 equation z? — x = a. Note that the
solution may be in an finite-degree extension of k.

21.4.7 Order and Roots

Order(a)

The multiplicative order of the non-zero element a of the field F.

| FactoredOrder(a) |

The multiplicative order of the non-zero element a of the field F' as a factorization
sequence.

SquareRoot (a)

Sqrt(a)

The square root of the non-zero element a from the field F), i.e., an element y of F’
such that y? = a. An error results if a is not a square.

Root(a, n)

The n-th root of the non-zero element a from the field F), i.e., an element y of F
such that y"™ = a. An error results if no such root exists.



Ch. 21 FINITE FIELDS 381

IsPower(a, n)

Given a finite field element a € F, and an integer n > 0, this function returns either
true and an element b € F' such that 6" = a, or it returns false in the case that
such an element does not exist.

A