[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: derived .. Descent
Derived Binary Codes (LINEAR CODES OVER FINITE RINGS)
CodeRng_derived-binary (Example H155E12)
DerivedSubgroup(G) : GrpFP -> GrpFP
DerivedGroup(G) : GrpFP -> GrpFP
CommutatorSubgroup(G) : GrpFP -> GrpFP
CommutatorSubgroup(G) : GrpMat -> GrpMat
CommutatorSubgroup(G) : GrpPC -> GrpPC
CommutatorSubgroup(G) : GrpPerm -> GrpPerm
DerivedSubgroup(G) : GrpFin -> GrpFin
DerivedSubgroup(G) : GrpGPC -> GrpGPC
DerivedGroupMonteCarlo (G : parameters) : GrpMat -> GrpMat
DerivedLength(G) : GrpFin -> RngIntElt
DerivedLength(G) : GrpGPC -> RngIntElt
DerivedLength(G) : GrpMat -> RngIntElt
DerivedLength(G) : GrpPC -> RngIntElt
DerivedLength(G) : GrpPerm -> RngIntElt
DerivedSeries(L) : AlgLie -> [ AlgLie ]
DerivedSeries(G) : GrpFin -> [ GrpFin ]
DerivedSeries(G) : GrpGPC -> [GrpGPC]
DerivedSeries(G) : GrpMat -> [ GrpMat ]
DerivedSeries(G) : GrpPC -> [GrpPC]
DerivedSeries(G) : GrpPerm -> [ GrpPerm ]
DerivedSubgroup(G) : GrpAb -> GrpAb
CommutatorSubgroup(G) : GrpAb -> GrpAb
CommutatorSubgroup(G) : GrpFP -> GrpFP
CommutatorSubgroup(G) : GrpMat -> GrpMat
CommutatorSubgroup(G) : GrpPC -> GrpPC
CommutatorSubgroup(G) : GrpPerm -> GrpPerm
DerivedSubgroup(G) : GrpFin -> GrpFin
DerivedSubgroup(G) : GrpGPC -> GrpGPC
DerksenIdeal(F) : FldInvar -> RngMPol
DerksenIdeal(R) : RngInvar -> [RngMPolElt]
DerksenIdeal(F) : FldInvar -> RngMPol
DerksenIdeal(R) : RngInvar -> [RngMPolElt]
The Lie Algebra of Derivations (LIE ALGEBRAS)
GrpFP_1_DerSub (Example H70E62)
IsDesarguesian(P) : Plane -> BoolElt
SIntegralDesbovesPoints(Q, S) : [ RngIntElt ], [ RngIntElt ] -> [ SeqEnum ]
CrvEllQNF_Desboves (Example H122E32)
TwoDescendantsOverTwoIsogenyDescendant(C) : CrvHyp -> SeqEnum[ CrvHyp ], List, MapSch
LiftDescendant(C) : CrvHyp -> SeqEnum[ CrvHyp ], List, MapSch
BruhatDescendants(x) : GrpPermElt -> SetEnum
BruhatDescendants(X) : SetEnum -> SetEnum
Descendants(G : parameters) : GrpPC -> [GrpPC], RngIntElt
LiftDescendant(C) : CrvHyp -> SeqEnum[ CrvHyp ], List, MapSch
IsProductOfParallelDescendingCycles(p) : GrpPermElt -> BoolElt
CasselsMap(phi) : Map -> Map, Map
DescentMaps(phi) : Map -> Map, Map
EightDescent(C : parameters) : CrvEll -> [ Crv ], [ MapSch ]
FourDescent(f : parameters) : RngUPolElt -> [Crv]
LeftDescentSet(W, w) : GrpFPCox, GrpFPCoxElt -> ()
LeftDescentSet(W, w) : GrpMat, GrpMatElt ->()
MordellWeilShaInformation(E: parameters) : CrvEll -> [RngIntElt], [PtEll], [Tup]
MordellWeilShaInformation(E: parameters) : CrvEll -> [RngIntElt], [PtEll], [Tup]
NineDescent(C : parameters) : Crv -> SeqEnum, List
ObstructionDescentBuildingBlock(M) : ModSym -> SeqEnum
RightDescentSet(W, w) : GrpFPCox, GrpFPCoxElt -> ()
RightDescentSet(W, w) : GrpMat, GrpMatElt ->()
SixDescent(C2, C3) : CrvHyp, Crv -> Crv, MapSch
ThreeDescent(E : parameters) : CrvEll -> [ Crv ], List
ThreeDescentByIsogeny(E) : CrvEll -> [ Crv ], [ Map ]
ThreeDescentCubic(E, α: parameters) : CrvEll, Tup -> Crv, MapSch
ThreeIsogenyDescent(E : parameters) : CrvEll -> [ Crv ], List, [ Crv ], List, MapSch
ThreeIsogenyDescentCubic(φ, α) : MapSch, Any -> Crv, MapSch
TwelveDescent(C3, C4) : Crv, Crv -> SeqEnum, MapSch
TwoCoverDescent(C) : CrvHyp -> SetEnum, Map, [Map, SeqEnum]
TwoDescent(E) : CrvEll[FldFunG] -> SeqEnum[CrvHyp], List[MapSch]
TwoDescent(E: parameters) : CrvEll -> [CrvHyp] , [Map]
TwoDescent(E: parameters) : CrvEll -> [CrvHyp] , [Map] , Map
TwoIsogenyDescent(E : parameters) : CrvEll -> SeqEnum[CrvHyp], List, SeqEnum[CrvHyp], List, MapSch, MapSch
WeilDescent(E,k) : FldFun, FldFin -> FldFunG, Map
WeilDescent(E, k, c) : FldFun, FldFin, FldFinElt -> CrvPln, Map
WeilDescentDegree(E,k) : FldFun, FldFin -> RngIntElt
WeilDescentDegree(E, k, c) : FldFun, FldFin, FldFinElt -> RngIntElt
WeilDescentGenus(E,k) : FldFun, FldFin -> RngIntElt
WeilDescentGenus(E, k, c) : FldFun, FldFin, FldFinElt -> RngIntElt
pIsogenyDescent(C,phi) : Crv, MapSch -> SeqEnum, List
pIsogenyDescent(E,P) : CrvEll, PtEll -> RngIntElt, RngIntElt, SeqEnum, CrvEll
qCoverDescent(f,q) : RngUPolElt, RngIntElt -> Set, Map
qCoverPartialDescent(f,factors,q) : RngUPolElt, [* RngUPolElt *], RngIntElt -> Set, Map
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012