[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: SL2 .. small
RecognizeSL2(G) : GrpMat -> BoolElt, Map, Map, Map, Map
SL2Characteristic(G : parameters) : GrpMat -> RngIntElt, RngIntElt
SL2ElementToWord(G, g) : GrpMat, GrpMatElt -> BoolElt, GrpSLPElt
SL2Triple( L, e ) : AlgLie, AlgLieElt -> SeqEnum
SL2Triple( o ) : NilpOrbAlgLie -> SeqEnum
RngInvar_SL2-invar (Example H110E18)
RngInvar_SL2-tensor (Example H110E19)
SL2Characteristic(G : parameters) : GrpMat -> RngIntElt, RngIntElt
SL2ElementToWord(G, g) : GrpMat, GrpMatElt -> BoolElt, GrpSLPElt
SL2Triple( L, e ) : AlgLie, AlgLieElt -> SeqEnum
SL2Triple( o ) : NilpOrbAlgLie -> SeqEnum
RecogniseSL3(G) : GrpMat -> BoolElt, Map, Map, Map, Map
SL3ElementToWord (G, g) : GrpMat, GrpMatElt -> BoolElt, GrpSLPElt
SL3ElementToWord (G, g) : GrpMat, GrpMatElt -> BoolElt, GrpSLPElt
SL4Invariants(model) : ModelG1 -> [ RngElt ]
SL4Invariants(model) : ModelG1 -> [ RngElt ]
IdDataSLAC(L) : AlgLie -> MonStgElt, SeqEnum, Map
Comments on the Classification over Finite Fields (LIE ALGEBRAS)
Intrinsics for Working with the Classifications (LIE ALGEBRAS)
The List of Solvable Lie Algebras (LIE ALGEBRAS)
The List of Solvable Lie Algebras (LIE ALGEBRAS)
Comments on the Classification over Finite Fields (LIE ALGEBRAS)
Intrinsics for Working with the Classifications (LIE ALGEBRAS)
AlgLie_SLACIdData (Example H100E55)
AlgLie_SLACLnk (Example H100E53)
RandomSLnZ(n, k, l) : RngIntElt, RngIntElt, RngIntElt -> AlgMatElt
Slope(l) : PlaneLn -> FldFinElt
SlopeValuation(L,s) : RngDiffOpElt, RngElt -> FldRatElt
Slope Valuation of an Operator (DIFFERENTIAL RINGS)
LowerSlopes(N) : NwtnPgon -> SeqEnum
AllSlopes(N) : NwtnPgon -> SeqEnum
InnerSlopes(N) : NwtnPgon -> SeqEnum
Slopes(N) : NwtnPgon -> SeqEnum
Slopes(D) : PhiMod -> SeqEnum
SlopeValuation(L,s) : RngDiffOpElt, RngElt -> FldRatElt
CompositionTreeSLPGroup(G) : Grp -> GrpSLP, Map
SLPGroup(n) : RngIntElt -> GrpSLP
GrpSLP_SLPGroup (Example H76E1)
SLPolynomialRing(R, n) : Rng, RngIntElt -> RngSLPol
SLPolynomialRing(R, n) : Rng, RngIntElt -> RngSLPol
IsSLZConjugate(A, B) : AlgMatElt, AlgMatElt -> BoolElt, GrpMatElt
IsGLZConjugate(A, B) : AlgMatElt, AlgMatElt -> BoolElt, GrpMatElt
SmallModCrv_sm_mod_crvs_auto_ex (Example H129E3)
SmallModCrv_sm_mod_crvs_basic_ex (Example H129E1)
Extended Example (SMALL MODULAR CURVES)
SmallModCrv_sm_mod_crvs_cusps (Example H129E4)
SmallModCrv_sm_mod_crvs_prms (Example H129E5)
SmallModCrv_sm_mod_crvs_proj_ex (Example H129E2)
IsInSmallGroupDatabase(o) : RngIntElt -> BoolElt
IsInSmallModularCurveDatabase(N) : RngIntElt -> Boolelt
IsIsomorphicSmallPeriodMatrices(t1,t2) : Mtrx, Mtrx -> Bool, Mtrx
IsSoluble(D, o, n) : DB, RngIntElt, RngIntElt -> Grp
NumberOfSmallGroups(o) : RngIntElt -> RngIntElt
PresentationIsSmall(G) : GrpGPC -> BoolElt
SmallBasis(I) : RngMPol -> [ RngMPolElt ]
SmallGraphDatabase(n : parameters) : RngIntElt -> DB
SmallGroup(o: parameters) : RngIntElt -> Grp
SmallGroup(o, f: parameters) : RngIntElt, Program -> Grp
SmallGroup(o, f: parameters) : RngIntElt, Program -> Grp
SmallGroup(o, n) : RngIntElt, RngIntElt -> Grp
SmallGroupDatabase() : -> DB
SmallGroupDatabaseLimit() : -> RngIntElt
SmallGroupDecoding(c, o) : RngIntElt, RngIntElt -> GrpPC
SmallGroupEncoding(G) : GrpPC -> RngIntElt, RngIntElt
SmallGroupIsInsoluble(o, n) : RngIntElt, RngIntElt -> Grp
SmallGroupProcess(o: parameters) : RngIntElt -> Process
SmallGroupProcess(o, f: parameters) : RngIntElt, Program -> Process
SmallGroupProcess(S: parameters) : [RngIntElt] -> Process
SmallGroupProcess(S, f: parameters) : [RngIntElt], Program -> Process
SmallGroups(o: parameters) : RngIntElt -> [* Grp *]
SmallGroups(o, f: parameters) : RngIntElt, Program -> [* Grp *]
SmallGroups(S: parameters) : [RngIntElt] -> [* Grp *]
SmallGroups(S, f: parameters) : [RngIntElt], Program -> [* Grp *]
SmallModularCurve(N) : RngIntElt -> Crv
SmallPeriodMatrix(A) : AnHcJac -> AlgMatElt
SmallRoots(p, N, X) : RngUPolElt, RngElt, RngElt -> [RngElt]
Access functions (GRAPHS)
Concrete Representations of Small Groups (FINITELY PRESENTED GROUPS)
Constructive Recognition of SL(d, q) in Low Degree (ALMOST SIMPLE GROUPS)
Creation of Small Graph Databases (GRAPHS)
Small Graphs (GRAPHS)
SMALL MODULAR CURVES
Subgroups of Small Rank (REPRESENTATIONS OF LIE GROUPS AND ALGEBRAS)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012