[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: Cohomological Dimension  ..  Coisogeny


Cohomological Dimension

   ModGrp_Cohomological Dimension (Example H90E20)

CohomologicalDimension

   CohomologicalDimension(G, M, i) : GrpFin, ModRng, RngIntElt -> RngIntElt
   CohomologicalDimension(G, M, i) : GrpPerm, ModRng, RngIntElt -> RngIntElt
   CohomologicalDimension(G, M, n) : GrpPerm, ModRng, RngIntElt -> RngIntElt
   CohomologicalDimension(CM, n) : ModCoho, RngIntElt -> RngIntElt
   CohomologicalDimension(M, n) : ModGrp, n -> RngIntElt
   CohomologicalDimension(M, n) : ModGrp, n -> RngIntElt

CohomologicalDimensions

   CohomologicalDimensions(M, n) : ModGrp, n -> RngIntElt
   CohomologicalDimensions(M, n) : ModGrp, n -> RngIntElt

Cohomologous

   AreCohomologous(alpha, beta) : OneCoC, OneCoC -> BoolElt, GrpElt

Cohomology

   ChainmapToCohomology(f,CR) : MapChn, Rec -> RngElt
   Cohomology(A, n) : GGrp, RngIntElt -> SetEnum[OneCoC]
   CohomologyClass(alpha) : OneCoC -> SetIndx[OneCoC]
   CohomologyDimension(M,r,n) : ModMPolGrd, RngIntElt, RngIntElt -> RngIntElt
   CohomologyDimension(S, r, n) : ShfCoh, RngIntElt, RngIntElt -> RngIntElt
   CohomologyElementToChainMap(P, d, n) : ModCpx ,RngIntElt, RngIntElt -> MapChn
   CohomologyElementToCompactChainMap(PR, d, n): Rec, RngIntElt, RngIntElt -> ModMatFldElt
   CohomologyGeneratorToChainMap(P,Q,C,n) : ModCpx, ModCpx, Rec, RngIntElt -> MapChn
   CohomologyGeneratorToChainMap(P, C, n) : ModCpx, Tup, RngIntElt -> MapChn
   CohomologyGroup(CM, n) : ModCoho, RngIntElt -> ModTupRng
   CohomologyLeftModuleGenerators(P, CP, Q) : Tup, Tup, Tup -> Tup
   CohomologyModule(A) : FldAb -> ModGrp, Map, Map, Map
   CohomologyModule(G, A, M) : GrpPerm, GrpAb, Any -> ModCoho
   CohomologyModule(G, M) : GrpPerm, ModGrp -> ModCoho
   CohomologyModule(G, Q, T) : GrpPerm, SeqEnum, SeqEnum -> ModCoho
   CohomologyRightModuleGenerators(P, Q, CQ) : Rec, Rec, Rec -> Rec
   CohomologyRing(k, n) : ModAlgBas, RngIntElt -> Rec
   CohomologyRingGenerators(P) : Rec -> Rec
   CohomologyRingQuotient(CR) : Rec -> Rng,Map
   CohomologyToChainmap(xi,CR,P) : RngElt, Rec, ModCpx -> MapChn
   DegreesOfCohomologyGenerators(C) : Rec -> SeqEnum
   ExtendedCohomologyClass(alpha) : OneCoC -> SetEnum[OneCoC]
   GaloisCohomology(A) : GGrp -> SeqEnum
   OneCohomology(A) : GGrp -> SetEnum[OneCoC]
   SUnitCohomologyProcess(S, U) : {RngOrdIdl}, GrpPerm -> {1}
   SimpleCohomologyDimensions(M) : ModAlg -> SeqEnum
   GrpPerm_Cohomology (Example H58E36)

cohomology

   Calculating Cohomology (COHOMOLOGY AND EXTENSIONS)
   Cohomology (ABELIAN GROUPS)
   Cohomology (BASIC ALGEBRAS)
   Cohomology (GROUPS)
   Cohomology (PERMUTATION GROUPS)
   COHOMOLOGY AND EXTENSIONS
   Cohomology Generators (BASIC ALGEBRAS)
   Cohomology Of Coherent Sheaves (MODULES OVER MULTIVARIATE RINGS)
   Cohomology Rings (BASIC ALGEBRAS)
   Finite Group Cohomology (COHOMOLOGY AND EXTENSIONS)
   Galois Cohomology (GALOIS THEORY OF NUMBER FIELDS)
   Galois Cohomology (GROUPS OF LIE TYPE)

Cohomology-2

   AlgBas_Cohomology-2 (Example H85E19)
   GrpPerm_Cohomology-2 (Example H58E37)

cohomology-generators

   Cohomology Generators (BASIC ALGEBRAS)

cohomology-groups

   Calculating Cohomology (COHOMOLOGY AND EXTENSIONS)

cohomology-relations

   Cohomology Rings (BASIC ALGEBRAS)

CohomologyClass

   CohomologyClass(alpha) : OneCoC -> SetIndx[OneCoC]

CohomologyDimension

   CohomologyDimension(M,r,n) : ModMPolGrd, RngIntElt, RngIntElt -> RngIntElt
   CohomologyDimension(S, r, n) : ShfCoh, RngIntElt, RngIntElt -> RngIntElt

CohomologyElementToChainMap

   CohomologyElementToChainMap(P, d, n) : ModCpx ,RngIntElt, RngIntElt -> MapChn

CohomologyElementToCompactChainMap

   CohomologyElementToCompactChainMap(PR, d, n): Rec, RngIntElt, RngIntElt -> ModMatFldElt

CohomologyGeneratorToChainMap

   CohomologyGeneratorToChainMap(P,Q,C,n) : ModCpx, ModCpx, Rec, RngIntElt -> MapChn
   CohomologyGeneratorToChainMap(P, C, n) : ModCpx, Tup, RngIntElt -> MapChn

CohomologyGroup

   CohomologyGroup(CM, n) : ModCoho, RngIntElt -> ModTupRng

CohomologyLeftModuleGenerators

   CohomologyLeftModuleGenerators(P, CP, Q) : Tup, Tup, Tup -> Tup

CohomologyModule

   CohomologyModule(A) : FldAb -> ModGrp, Map, Map, Map
   CohomologyModule(G, A, M) : GrpPerm, GrpAb, Any -> ModCoho
   CohomologyModule(G, M) : GrpPerm, ModGrp -> ModCoho
   CohomologyModule(G, Q, T) : GrpPerm, SeqEnum, SeqEnum -> ModCoho

CohomologyRightModuleGenerators

   CohomologyRightModuleGenerators(P, Q, CQ) : Rec, Rec, Rec -> Rec

CohomologyRing

   CohomologyRing(k, n) : ModAlgBas, RngIntElt -> Rec
   AlgBas_CohomologyRing (Example H85E21)

CohomologyRingGenerators

   CohomologyRingGenerators(P) : Rec -> Rec

CohomologyRingQuotient

   CohomologyRingQuotient(CR) : Rec -> Rng,Map

CohomologyToChainmap

   CohomologyToChainmap(xi,CR,P) : RngElt, Rec, ModCpx -> MapChn

Coisogeny

   CoisogenyGroup(G) : GrpLie -> GrpAb, Map
   CoisogenyGroup(W) : GrpMat -> GrpAb, Map
   CoisogenyGroup(W) : GrpPermCox -> GrpAb
   CoisogenyGroup(R) : RootDtm -> GrpAb, Map

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012