[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: simplicial  ..  Singular


simplicial

   Simplicial Complexes (SIMPLICIAL HOMOLOGY)
   SIMPLICIAL HOMOLOGY

simplicial-complexes

   Simplicial Complexes (SIMPLICIAL HOMOLOGY)

SimplicialComplex

   SimplicialComplex(G) : Grph -> SmpCpx
   SimplicialComplex(f) : SeqEnum[SetEnum] -> SmpCpx

SimplicialProjectivePlane

   SimplicialProjectivePlane() : -> SmpCpx

SimplicialSubdivision

   SimplicialSubdivision(F) : TorFan -> TorFan

simplification

   Simplification (FINITELY PRESENTED GROUPS)

Simplified

   IsSimplifiedModel(E) : CrvEll -> BoolElt
   IsSimplifiedModel(C) : CrvHyp -> BoolElt
   SimplifiedModel(E): CrvEll -> CrvEll, Map, Map
   SimplifiedModel(C) : CrvHyp -> CrvHyp, MapIsoSch

SimplifiedModel

   SimplifiedModel(E): CrvEll -> CrvEll, Map, Map
   SimplifiedModel(C) : CrvHyp -> CrvHyp, MapIsoSch

Simplify

   Simplify(A) : FldAC ->
   Simplify(D) : Inc -> Inc
   Simplify(M) : ModDed -> ModDed
   Simplify(G: parameters) : GrpFP -> GrpFP, Map
   Simplify(~P : parameters) : GrpFPTietzeProc ->
   Simplify(O) : RngFunOrd -> RngFunOrd
   Simplify(O) : RngOrd -> RngOrd
   SimplifyLength(G: parameters) : GrpFP -> GrpFP, Map
   SimplifyLength(~P : parameters) : GrpFPTietzeProc ->
   SimplifyRep(s) : RngPowAlgElt -> RngPowAlgElt

simplify

   Simplification (ALGEBRAICALLY CLOSED FIELDS)

Simplify1

   GrpFP_1_Simplify1 (Example H70E68)

SimplifyLength

   SimplifyLength(G: parameters) : GrpFP -> GrpFP, Map
   SimplifyLength(~P : parameters) : GrpFPTietzeProc ->

SimplifyPresentation

   SimplifyPresentation(~P : parameters) : GrpFPTietzeProc ->
   Simplify(~P : parameters) : GrpFPTietzeProc ->

SimplifyRep

   SimplifyRep(s) : RngPowAlgElt -> RngPowAlgElt

Simply

   IsSimplyConnected(G) : GrpLie -> BoolElt
   IsSimplyConnected(R) : RootDtm -> BoolElt
   IsSimplyLaced(C) : AlgMatElt -> BoolElt
   IsSimplyLaced(M) : AlgMatElt -> BoolElt
   IsSimplyLaced(D) : GrphDir -> BoolElt
   IsSimplyLaced(G) : GrphUnd -> BoolElt
   IsSimplyLaced(G) : GrpLie-> BoolElt
   IsSimplyLaced(W) : GrpMat -> BoolElt
   IsSimplyLaced(W) : GrpPermCox-> BoolElt
   IsSimplyLaced(N) : MonStgElt -> BoolElt
   IsSimplyLaced(R) : RootStr -> BoolElt
   IsSimplyLaced(R) : RootSys-> BoolElt
   IsWeaklySimplyConnected(G) : GrpLie -> BoolElt
   IsWeaklySimplyConnected(R) : RootDtm -> BoolElt
   SimplyConnectedVersion(R) : RootDtm -> RootDtm, Map

SimplyConnectedVersion

   SimplyConnectedVersion(R) : RootDtm -> RootDtm, Map

Simpson

   SimpsonQuadrature(f, a, b, n) : Program, FldReElt, FldReElt, RngIntElt -> FldReElt

SimpsonQuadrature

   SimpsonQuadrature(f, a, b, n) : Program, FldReElt, FldReElt, RngIntElt -> FldReElt

Sims

   SimsSchreier(G: parameters) : GrpPerm : ->

SimsSchreier

   SimsSchreier(G: parameters) : GrpPerm : ->

Sin

   Sin(c) : FldComElt -> FldComElt
   Sin(f) : RngSerElt -> RngSerElt
   Sin(f) : RngSerElt -> RngSerElt

Sincos

   Sincos(s) : FldReElt -> FldReElt, FldReElt
   Sincos(f) : RngSerElt -> RngSerElt
   Sincos(f) : RngSerElt -> RngSerElt

sing

   Creation of Curve Singularities (HILBERT SERIES OF POLARISED VARIETIES)
   Creation of Point Singularities (HILBERT SERIES OF POLARISED VARIETIES)
   Curve Singularities (HILBERT SERIES OF POLARISED VARIETIES)
   Identifying Special Types of Point Singularity (HILBERT SERIES OF POLARISED VARIETIES)
   Point Singularities (HILBERT SERIES OF POLARISED VARIETIES)
   Singularity Analysis (ALGEBRAIC CURVES)

sing-test

   Singularity Analysis (ALGEBRAIC CURVES)

Singer

   SingerDifferenceSet(n, q) : RngIntElt, RngIntElt -> { RngIntResElt }

SingerDifferenceSet

   SingerDifferenceSet(n, q) : RngIntElt, RngIntElt -> { RngIntResElt }

Single

   InverseRSKCorrespondenceSingleWord(t1, t2) : Tbl, Tbl -> MonOrdElt
   IsSinglePrecision(n) : RngIntElt -> BoolElt

single

   The `single use' Rule (MAGMA SEMANTICS)

single-use

   The `single use' Rule (MAGMA SEMANTICS)

Singleton

   SingletonAsymptoticBound(delta) : FldPrElt -> FldPrElt
   SingletonBound(K, n, d) : FldFin, RngIntElt, RngIntElt -> RngIntElt

SingletonAsymptoticBound

   SingletonAsymptoticBound(delta) : FldPrElt -> FldPrElt

SingletonBound

   SingletonBound(K, n, d) : FldFin, RngIntElt, RngIntElt -> RngIntElt

sings

   Singularity Properties (ALGEBRAIC SURFACES)

Singular

   CuspIsSingular(N,d) : RngIntElt, RngIntElt -> BoolElt
   HasSingularPointsOverExtension(C) : Sch -> BoolElt
   HasSingularVector(V) : ModTupFld -> BoolElt, ModTupFldElt
   IsIrregularSingularPlace(L, p) : RngDiffOpElt, PlcFunElt -> BoolElt
   IsRegularSingularOperator(L) : RngDiffOpElt -> BoolElt, SetEnum
   IsRegularSingularPlace(L, p) : RngDiffOpElt, PlcFunElt -> BoolElt
   IsSingular(V) : ModTupFld -> BoolElt, ModTupFldElt
   IsSingular(A) : Mtrx -> BoolElt
   IsSingular(C) : Sch -> BoolElt
   IsSingular(X) : Sch -> BoolElt
   IsSingular(p) : Sch,Pt -> BoolElt
   IsSingular(p) : Sch,Pt -> BoolElt
   IsSingular(C) : TorCon -> BoolElt
   IsSingular(F) : TorFan -> BoolElt
   IsSingular(X) : TorVar -> BoolElt
   IsTotallySingular(V) : ModTupFld) -> BoolElt
   MaximalTotallySingularSubspace(V) : ModTupFld -> ModTupFld
   ParametrizeSingularDegree3DelPezzo(X,P2) : Sch, Prj -> BoolElt, MapIsoSch
   SetsOfSingularPlaces(L) : RngDiffOpElt -> SetEnum, SetEnum
   SingularCones(F) : TorFan -> SeqEnum,SeqEnum
   SingularPoints(C) : Sch -> SetIndx
   SingularRadical(V) : ModTupFld -> ModTupFld
   SingularRank(X) : GRK3 -> RngIntElt
   SingularSubscheme(X) : Sch -> Sch
   TotallySingularComplement(V, U, W) : ModTupFld, ModTupFld, ModTupFld) -> ModTupFld

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012