[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: word-access .. WreathProduct
Access Functions for Words (FINITELY PRESENTED GROUPS)
Arithmetic Operators for Words (FINITELY PRESENTED GROUPS)
Construction of Words (FINITELY PRESENTED GROUPS)
Permutations as Words (PERMUTATION GROUPS)
WordAcceptor(G) : GrpAtc -> Rec
WordAcceptorSize(G) : GrpAtc -> RngIntElt, RngIntElt
GrpFP_1_WordAccess (Example H70E2)
GrpCox_WordArithmetic (Example H98E13)
WordDifferenceAutomaton(G) : GrpAtc -> Rec
WordDifferences(G) : GrpAtc -> SeqEnum
WordDifferenceSize(G) : GrpAtc -> RngIntElt, RngIntElt
WordGroup(G) : GrpMat -> GrpSLP, Map
WordGroup(G) : GrpPerm -> GrpBB, Map
WordInStrongGenerators(H, x) : GrpPerm, GrpPermElt -> GrpFPElt
WordMap(G) : GrpMatUnip -> Map
GrpFP_2_WordOps (Example H71E2)
WordProblem(A, x) : AlgMat -> BoolElt, AlgFrElt
WordProblemData(A) : AlgMat -> List
ConstantWords(C, i) : Code, RngIntElt -> { ModTupFldElt }
GeneratingWords(G, H) : GrpFP, GrpFP -> { GrpFPElt }
MinimumWords(C) : Code -> { ModTupFldElt }
NumberOfConstantWords(C, i) : Code, RngIntElt -> RngIntElt
NumberOfWords(C, w) : Code, RngIntElt -> RngIntElt
NumberOfWords(C, w) : Code, RngIntElt -> RngIntElt
RandomProcess(G) : GrpFin -> Process
ReflectionWords(W) : GrpMat -> []
ReflectionWords(W) : GrpPermCox -> []
ReflectionWords(R) : RootDtm -> []
ReflectionWords(R) : RootSys -> []
SubcodeWordsOfWeight(C, S) : Code, { RngIntElt } -> Code
SubcodeWordsOfWeight(C, w) : CodeAdd, RngIntElt -> CodeAdd
SubcodeWordsOfWeight(C, S) : CodeAdd, { RngIntElt } -> CodeAdd
TransversalWords(W, H) : GrpPermCox, GrpPermCox -> @ @
Words(C, w: parameters) : Code, RngIntElt -> { ModTupFldElt }
Words(C, w: parameters) : Code, RngIntElt -> { ModTupFldElt }
WordsOfBoundedLeeWeight(C, l, u) : Code, RngIntElt, RngIntElt -> SetEnum
WordsOfBoundedWeight(C, l, u: parameters) : Code, RngIntElt, RngIntElt -> { ModTupFldElt }
WordsOfBoundedWeight(C, l, u: parameters) : Code, RngIntElt, RngIntElt -> { ModTupFldElt }
WordsOfLeeWeight(C, w) : Code, RngIntElt -> SetEnum
CodeFld_Words (Example H152E23)
GrpAtc_Words (Example H75E7)
GrpFP_1_Words (Example H70E3)
GrpRWS_Words (Example H74E7)
MonRWS_Words (Example H78E9)
Low Level Operations on Words (FINITELY PRESENTED GROUPS: ADVANCED)
Matrices as Words (MATRIX GROUPS OVER GENERAL RINGS)
Solving the Word Problem (MATRIX ALGEBRAS)
Words (ADDITIVE CODES)
Words (LINEAR CODES OVER FINITE FIELDS)
Words (PARTITIONS, WORDS AND YOUNG TABLEAUX)
WordsOfBoundedLeeWeight(C, l, u) : Code, RngIntElt, RngIntElt -> SetEnum
WordsOfBoundedWeight(C, l, u: parameters) : Code, RngIntElt, RngIntElt -> { ModTupFldElt }
WordsOfBoundedWeight(C, l, u: parameters) : Code, RngIntElt, RngIntElt -> { ModTupFldElt }
WordsOfLeeWeight(C, w) : Code, RngIntElt -> SetEnum
WordStrip(H, x) : GrpPerm, GrpPermElt -> BoolElt, GrpFPElt, RngIntElt
ElementToSequence(u: parameters) : GrpBrdElt -> SeqEnum
Eltseq(u: parameters) : GrpBrdElt -> SeqEnum
WordToSequence(u: parameters) : GrpBrdElt -> SeqEnum
WordToTableau(w) : MonOrdElt -> Tbl
Saving and Restoring Workspaces (INPUT AND OUTPUT)
The World of Rings (INTRODUCTION TO RINGS [BASIC RINGS])
IsWPRI(C) : CosetGeom -> BoolElt
IsWeaklyPrimitive(C) : CosetGeom -> BoolElt
FanOfWPS(W) : SeqEnum -> TorFan
IsWreathProduct(G) : GrpPerm -> BoolElt, GrpPerm, GrpPerm, GrpPerm
PrimitiveWreathProduct(G, H) : GrpPerm, GrpPerm -> GrpPerm
PrimitiveWreathProduct(Q) : [ GrpPerm ] -> GrpPerm
TensorWreathProduct(G, H) : GrpMat, GrpPerm -> GrpMat
WreathProduct(G, H) : GrpMat, GrpPerm -> GrpMat
WreathProduct(G, H) : GrpPC, GrpPC -> GrpPC
WreathProduct(G, H, f) : GrpPC, GrpPC, Map -> GrpPC
WreathProduct(G, H) : GrpPerm, GrpPerm -> GrpPerm, SeqEnum[Map], Map, Map
WreathProduct(G, B) : GrpPerm, GSet -> GrpPerm, GrpPerm, GrpPerm
WreathProduct(B) : GSet -> GrpPerm, GrpPerm, GrpPerm
WreathProduct(Q) : [ GrpPerm ] -> GrpPerm
WreathProduct(G, H) : GrpMat, GrpPerm -> GrpMat
WreathProduct(G, H) : GrpPC, GrpPC -> GrpPC
WreathProduct(G, H, f) : GrpPC, GrpPC, Map -> GrpPC
WreathProduct(G, H) : GrpPerm, GrpPerm -> GrpPerm, SeqEnum[Map], Map, Map
WreathProduct(G, B) : GrpPerm, GSet -> GrpPerm, GrpPerm, GrpPerm
WreathProduct(B) : GSet -> GrpPerm, GrpPerm, GrpPerm
WreathProduct(Q) : [ GrpPerm ] -> GrpPerm
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012