[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: singular  ..  sl-poly


singular

   Singular Places (DIFFERENTIAL RINGS)

singular-places

   Singular Places (DIFFERENTIAL RINGS)

SingularCones

   SingularCones(F) : TorFan -> SeqEnum,SeqEnum

SingularElements

   Lat_SingularElements (Example H30E14)

Singularities

   HasOnlyOrdinarySingularities(C) : CrvPln -> BoolElt, RngIntElt, RngMPol
   HasOnlyOrdinarySingularitiesMonteCarlo(C) : CrvPln -> BoolElt, RngIntElt
   HasOnlySimpleSingularities(S) : Srfc -> BoolElt, List

singularities

   Singular Places and Indicial Polynomials (DIFFERENTIAL RINGS)

Singularity

   HypersurfaceSingularityExpandFunction(dat,f,prec,R): Rec, FldFunRatMElt, RngIntElt, RngMPol -> RngMPolElt, RngMPolElt
   HypersurfaceSingularityExpandFurther(dat,prec,R): Rec, RngIntElt, RngMPol -> RngMPolElt
   IsHypersurfaceSingularity(p,prec) : Pt, RngIntElt -> BoolElt, RngMPolElt, SeqEnum, Rec
   IsOrdinarySingularity(p) : Sch,Pt -> BoolElt
   IsOrdinarySingularity(p) : Sch,Pt -> BoolElt
   IsSimpleSurfaceSingularity(p) : Pt -> BoolElt, MonStr, RngIntElt

singularity

   GrphRes_singularity (Example H115E1)

SingularPoints

   SingularPoints(C) : Sch -> SetIndx

SingularRadical

   SingularRadical(V) : ModTupFld -> ModTupFld

SingularRank

   SingularRank(X) : GRK3 -> RngIntElt

SingularSubscheme

   SingularSubscheme(X) : Sch -> Sch

Sinh

   Sinh(s) : FldComElt -> FldComElt
   Sinh(f) : RngSerElt -> RngSerElt
   Sinh(f) : RngSerElt -> RngSerElt

SIntegral

   IsSIntegral(P, S) : PtEll, SeqEnum -> BoolElt
   SIntegralDesbovesPoints(Q, S) : [ RngIntElt ], [ RngIntElt ] -> [ SeqEnum ]
   SIntegralLjunggrenPoints(Q, S) : [ RngIntElt ], [ RngIntElt ] -> [ SeqEnum ]
   SIntegralPoints(E, S) : CrvEll, SeqEnum -> [ PtEll ], [ Tup ]
   SIntegralQuarticPoints(Q, S) : [ RngIntElt ], [ RngIntElt ] -> [ SeqEnum ]

SIntegralDesbovesPoints

   SIntegralDesbovesPoints(Q, S) : [ RngIntElt ], [ RngIntElt ] -> [ SeqEnum ]

SIntegralLjunggrenPoints

   SIntegralLjunggrenPoints(Q, S) : [ RngIntElt ], [ RngIntElt ] -> [ SeqEnum ]

SIntegralPoints

   SIntegralPoints(E, S) : CrvEll, SeqEnum -> [ PtEll ], [ Tup ]
   CrvEllQNF_SIntegralPoints (Example H122E30)

SIntegralQuarticPoints

   SIntegralQuarticPoints(Q, S) : [ RngIntElt ], [ RngIntElt ] -> [ SeqEnum ]

Six

   SixDescent(C2, C3) : CrvHyp, Crv -> Crv, MapSch

six

   Six and Twelve Descent (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)

six-and_twelve-descent

   Six and Twelve Descent (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)

SixDescent

   SixDescent(C2, C3) : CrvHyp, Crv -> Crv, MapSch

Size

   BlockSize(D) : Dsgn -> RngIntElt
   BlockDegree(D) : Dsgn -> RngIntElt
   BlockDegree(D, B) : Inc, IncBlk -> RngIntElt
   CellSize(P, h, i) : StkPtnOrd, RngIntElt, RngIntElt -> RngIntElt
   GetPreviousSize() : -> RngIntElt
   GraphSizeInBytes(n, m : parameters): RngIntElt, RngIntElt -> RngIntElt
   IsolMinBlockSize(n, p, i) : RngIntElt, RngIntElt, RngIntElt -> RngIntElt
   SetBufferSize(D, n) : DB, RngIntElt ->
   SetHistorySize(n) : RngIntElt ->
   SetPreviousSize(n) : RngIntElt ->
   Size(G) : Grph -> RngIntElt
   Size(G) : GrphMult -> RngIntElt
   Size(g) : GrphRes -> RngIntElt
   Size(s) : GrphRes -> RngIntElt
   VarietySizeOverAlgebraicClosure(I) : RngMPol -> RngIntElt
   WordAcceptorSize(G) : GrpAtc -> RngIntElt, RngIntElt
   WordDifferenceSize(G) : GrpAtc -> RngIntElt, RngIntElt

size

   Bounds on the Graph Order (GRAPHS)

Sizes

   BlockSizes(D) : Inc -> [ RngIntElt ]
   BlockDegrees(D) : Inc -> [ RngIntElt ]
   MatRepFieldSizes(A) : GrpAtlas -> SetEnum[RngIntElt]

Skeleton

   Skeleton(X, q) : SmpCpx, RngIntElt -> SmpCpx
   Skeleton(F,n) : TorFan,RngIntElt -> TorFan

Skew

   ColumnSkewLength(t, j) : Tbl,RngIntElt -> RngIntElt
   IsSkew(t) : Tbl -> BoolElt
   NumberOfSkewRows(t) : Tbl -> RngIntElt
   RowSkewLength(t, i) : Tbl,RngIntElt -> RngIntElt
   SkewHadamardDatabase() : -> DB
   SkewInvariant100(f) : RngMPolElt -> RngElt
   SkewShape(t) : Tbl -> SeqEnum[RngIntElt]
   SkewWeight(t) : Tbl -> RngIntElt

SkewHadamardDatabase

   SkewHadamardDatabase() : -> DB

SkewInvariant100

   SkewInvariant100(f) : RngMPolElt -> RngElt

Skewness

   OptimalSkewness(F) : RngMPolElt -> FldReElt, FldReElt

SkewShape

   InnerShape(t) : Tbl -> SeqEnum[RngIntElt]
   SkewShape(t) : Tbl -> SeqEnum[RngIntElt]

SkewWeight

   SkewWeight(t) : Tbl -> RngIntElt

SL

   Constructive Recognition of SL(d, q) in Low Degree (ALMOST SIMPLE GROUPS)
   RecogniseSL(G, d, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
   SpecialLinearGroup(n, q) : RngIntElt, RngIntElt -> GrpMat

sl

   Straight-line Polynomials (GALOIS THEORY OF NUMBER FIELDS)

sl-poly

   Straight-line Polynomials (GALOIS THEORY OF NUMBER FIELDS)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012