[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: dimension  ..  Direct


dimension

   Dimension Formulas (MODULAR SYMBOLS)
   Dimension of Ideals (LOCAL POLYNOMIAL RINGS)
   Dimension of Ideals (POLYNOMIAL RING IDEAL OPERATIONS)
   Finite Dimensional Affine Algebras (AFFINE ALGEBRAS)
   Finite Dimensional FP- Algebras (FINITELY PRESENTED ALGEBRAS)
   SmpCpx_dimension (Example H140E2)

dimension-formulas

   Dimension Formulas (MODULAR SYMBOLS)

Dimensional

   IsZeroDimensional(I) : RngMPol -> BoolElt
   IsZeroDimensional(I) : RngMPolLoc -> BoolElt

DimensionByFormula

   DimensionByFormula(M) : ModFrm -> RngIntElt
   DimensionByFormula(N, k) : RngIntElt, FldRatElt -> RngIntElt

DimensionCuspForms

   DimensionCuspForms(eps, k) : GrpDrchElt, RngIntElt -> RngIntElt

DimensionCuspFormsGamma0

   DimensionCuspFormsGamma0(N, k) : RngIntElt, RngIntElt -> RngIntElt

DimensionCuspFormsGamma1

   DimensionCuspFormsGamma1(N, k) : RngIntElt, RngIntElt -> RngIntElt

DimensionFormulas

   ModSym_DimensionFormulas (Example H133E28)

DimensionNewCuspFormsGamma0

   DimensionNewCuspFormsGamma0(N, k) : RngIntElt, RngIntElt -> RngIntElt

DimensionNewCuspFormsGamma1

   DimensionNewCuspFormsGamma1(N, k) : RngIntElt, RngIntElt -> RngIntElt

DimensionOfCentreOfEndomorphismRing

   DimensionOfCentreOfEndomorphismRing(G) : GrpMat -> RngIntElt
   DimensionOfCentreOfEndomorphismRing(L) : Lat -> RngIntElt

DimensionOfEndomorphismRing

   DimensionOfEndomorphismRing(G) : GrpMat -> RngIntElt
   DimensionOfEndomorphismRing(L) : Lat -> RngIntElt

DimensionOfExactConstantField

   DegreeOfExactConstantField(F) : FldFunG -> RngIntElt
   DimensionOfExactConstantField(F) : FldFunG -> RngIntElt

DimensionOfFieldOfGeometricIrreducibility

   DimensionOfFieldOfGeometricIrreducibility(C): Crv -> RngIntElt

DimensionOfGlobalSections

   DimensionOfGlobalSections(S) : ShfCoh -> RngIntElt

DimensionOfHomology

   DimensionOfHomology(C, n) : ModCpx, RngIntElt -> RngIntElt

DimensionOfKernelZ2

   DimensionOfKernelZ2(C) : CodeLinRng -> RngIntElt

DimensionOfSpanZ2

   RankZ2(C) : CodeLinRng -> RngIntElt
   DimensionOfSpanZ2(C) : CodeLinRng -> RngIntElt

Dimensions

   CohomologicalDimensions(M, n) : ModGrp, n -> RngIntElt
   CohomologicalDimensions(M, n) : ModGrp, n -> RngIntElt
   DimensionsEstimate(L, g) : AlgLieExtr, UserProgram -> SeqEnum, SetMulti
   DimensionsOfHomology(C) : ModCpx -> SeqEnum
   DimensionsOfInjectiveModules(B) : AlgBas -> SeqEnum
   DimensionsOfProjectiveModules(B) : AlgBas -> SeqEnum
   DimensionsOfTerms(C) : ModCpx -> SeqEnum
   InstancesForDimensions(L, g, D) : AlgLieExtr, UserProgram, SetEnum[RngIntElt] -> Assoc
   ProjectiveIndecomposableDimensions(G, K) : Grp, FldFin -> SeqEnum
   SimpleCohomologyDimensions(M) : ModAlg -> SeqEnum
   SimpleHomologyDimensions(M) : ModAlg -> SeqEnum

DimensionsEstimate

   DimensionsEstimate(L, g) : AlgLieExtr, UserProgram -> SeqEnum, SetMulti

DimensionsOfHomology

   DimensionsOfHomology(C) : ModCpx -> SeqEnum

DimensionsOfInjectiveModules

   DimensionsOfInjectiveModules(B) : AlgBas -> SeqEnum

DimensionsOfProjectiveModules

   DimensionsOfProjectiveModules(B) : AlgBas -> SeqEnum

DimensionsOfTerms

   DimensionsOfTerms(C) : ModCpx -> SeqEnum

DIR

   MAGMA_HELP_DIR
   MAGMA_TEMP_DIR

Dir

   GetTempDir() : -> MonStgElt

dir

   Adjacency and Degree Functions for Multidigraphs (MULTIGRAPHS)

dirconstr

   Construction of a General Multidigraph (MULTIGRAPHS)

Direct

   DirectSum(R1, R2) : RootDtm, RootDtm -> RootDtm
   R1 + R2 : RootDtm, RootDtm -> RootDtm
   R1 + R2 : RootSys, RootSys -> RootSys
   L + M : TorLat,TorLat -> TorLat,TorLatMap,TorLatMap,TorLatMap,TorLatMap
   DirectProduct(C, D) : Code, Code -> Code
   DirectProduct(C, D) : Code, Code -> Code
   DirectProduct(C, D) : Code, Code -> Code
   DirectProduct(G, H) : Grp, Grp -> Grp
   DirectProduct(G, H) : GrpFP, GrpFP -> GrpFP
   DirectProduct(G, H) : GrpGPC, GrpGPC -> GrpGPC, [Map], [Map]
   DirectProduct(G1, G2) : GrpLie, GrpLie -> GrpLie
   DirectProduct(G, H) : GrpMat, GrpMat -> GrpMat
   DirectProduct(G, H) : GrpPC, GrpPC -> GrpPC, [Map], [Map]
   DirectProduct(G, H) : GrpPerm, GrpPerm -> GrpPerm, [ Hom(Grp) ], [ Hom(Grp) ]
   DirectProduct(W1, W2) : GrpPermCox, GrpPermCox -> GrpPermCox
   DirectProduct(A,B) : Prj,Prj -> PrjProd,SeqEnum
   DirectProduct(A,B) : Sch,Sch -> Sch,SeqEnum
   DirectProduct(R, S) : SgpFP, SgpFP -> SgpFP
   DirectProduct(Q) : [ Grp ] -> Grp
   DirectProduct(Q) : [ GrpFP ] -> GrpFP
   DirectProduct(Q) : [ GrpMat ] -> GrpMat
   DirectProduct(Q) : [ GrpPerm ] -> GrpPerm, [ Hom(Grp) ], [ Hom(Grp) ]
   DirectProduct(Q) : [GrpPC] -> GrpPC, [ Map ], [ Map ]
   DirectSum(A, B) : AlgGen, AlgGen -> AlgGen
   DirectSum(L, M) : AlgLie, AlgLie -> AlgLie
   DirectSum(R, T) : AlgMat, AlgMat -> AlgMat
   DirectSum(a, b) : AlgMatElt, AlgMatElt -> AlgMatElt
   DirectSum(C, D) : Code, Code -> Code
   DirectSum(C, D) : Code, Code -> Code
   DirectSum(C, D) : Code, Code -> Code
   DirectSum(Q1, Q2) : CodeQuantum, CodeQuantum -> CodeQuantum
   DirectSum(A, B) : GrpAb, GrpAb -> GrpAb
   DirectSum(L, M) : Lat, Lat -> Lat
   DirectSum(A, B) : ModAbVar, ModAbVar -> ModAbVar, List, List
   DirectSum(U, V) : ModAlg, ModAlg -> SeqEnum
   DirectSum(ρ, τ) : ModAlg, ModAlg -> SeqEnum
   DirectSum(ρ, τ) : ModAlg, ModAlg -> SeqEnum
   DirectSum(C, D) : ModCpx, ModCpx -> ModCpx
   DirectSum(M, N) : ModGrp, ModGrp -> ModGrp, Map, Map, Map, Map
   DirectSum(M, N) : ModMPol, ModMPol -> ModMPol, [ModMPolHom], [ModMPolHom]
   DirectSum(M, N) : ModRng, ModRng -> ModRng, Map, Map, Map, Map
   DirectSum(M, N) : ModRng, ModRng -> ModRng, Map, Map, Map, Map
   DirectSum(D1, D2) : PhiMod, PhiMod -> PhiMod
   DirectSum(Q): SeqEnum -> ModAlg, SeqEnum, SeqEnum
   DirectSum(S, T) : ShfCoh, ShfCoh -> ShfCoh
   DirectSum(Q) : [ ModGrp ] -> [ ModGrp ], [ Map ], [ Map ]
   DirectSum(Q) : [ ModRng ] -> ModRng, [ Map ], [ Map ]
   DirectSum(Q) : [ ModRng ] -> [ ModRng ], [ Map ], [ Map ]
   DirectSum(Q) : [Code] -> Code
   DirectSum(Q) : [Code] -> Code
   DirectSum(X) : [ModAbVar] -> ModAbVar, List, List
   DirectSum(S) : [ModMPol] -> ModMPol, [ModMPolHom], [ModMPolHom]
   DirectSumDecomposition(A) : AlgAssV -> [ AlgAssV ], [ AlgAssVElt ]
   DirectSumDecomposition(ρ) : Map[AlgLie, AlgMatLie] -> SeqEnum
   DirectSumDecomposition(ρ) : Map[GrpLie, GrpMat] -> SeqEnum
   DirectSumDecomposition(V) : ModAlg -> SeqEnum
   DirectSumDecomposition(M) : ModRng -> [ ModRng ]
   DirectSumDecomposition(R) : RootDtm -> [], RootDtm, Map
   DirectSumDecomposition(R) : RootSys -> []
   FrobeniusTraceDirect(E, p) : CrvEll, RngIntElt -> RngIntElt
   HasComplement(M, S) : ModGrp, ModGrp -> BoolElt, ModGrp
   IndecomposableSummands(L) : AlgLie -> [ AlgLie ]
   IsDirectSum(L) : TorLat -> BoolElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012