[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: subfield .. Subgroup
The Subfield Lattice (GALOIS THEORY OF NUMBER FIELDS)
The Subfield Lattice (GALOIS THEORY OF NUMBER FIELDS)
SubfieldCode(C, S) : Code, FldFin -> Code
SubfieldLattice(K) : FldNum -> SubFldLat
RngOrdGal_SubfieldLattice (Example H38E8)
SubfieldRepresentationCode(C, K) : Code, FldFin -> Code
SubfieldRepresentationParityCode(C, K) : Code, FldFin -> Code
Subfields(K) : FldNum -> [<FldNum, Map>]
AutomorphismGroup(K) : FldNum -> GrpPerm, [Map], Map
GaloisGroup(K) : FldNum -> GrpPerm, [RngElt], GaloisData
MaximalSubfields(e) : SubFldLatElt -> [ SubFldLatElt ]
NormalSubfields(A) : FldAb -> []
Subfields(K) : FldAlg -> [ < FldAlg, Hom > ]
Subfields(K, n) : FldAlg, RngIntElt -> [ < FldAlg, Hom > ]
Subfields(F) : FldFun -> SeqEnum[FldFun]
FldFunG_Subfields (Example H42E15)
Subfields (ALGEBRAIC FUNCTION FIELDS)
Subfields (GALOIS THEORY OF NUMBER FIELDS)
Subfields and Subfield Towers (GALOIS THEORY OF NUMBER FIELDS)
RestrictField(C, S) : Code, FldFin -> Code, Map
SubfieldSubcode(C, S) : Code, FldFin -> Code, Map
SubfieldSubplane(P, F) : Plane, FldFin -> Plane, PlanePtSet, PlaneLnSet
IsSubgraph(G, H) : Grph, Grph -> BoolElt
IsSubgraph(G, H) : GrphMultUnd, GrphMultUnd -> BoolElt
Graph_Subgraph (Example H149E9)
Subgraphs and Quotient Graphs (GRAPHS)
The Graph of a Map (MAPPINGS)
The Graph of a Map (MAPPINGS)
Subgraphs and Quotient Graphs (GRAPHS)
TorsionSubgroup(H) : SetPtEll -> GrpAb, Map
AbelianGroup(H) : SetPtEll -> GrpAb, Map
AbelianNormalSubgroup(G) : GrpPerm -> GrpPerm
AddSubgroupGenerator(~P, w) : GrpFPCosetEnumProc, GrpFPElt ->
AutomorphismSubgroup(C) : Code -> GrpPerm, PowMap, Map
AutomorphismSubgroup(D) : Inc -> GrpPerm, PowMap, Map
Borel(C) : CosetGeom -> GrpPerm
CentralizerOfNormalSubgroup(G, H) : GrpPerm, GrpPerm -> GrpPerm
CollineationSubgroup(P) : Plane -> GrpPerm, GSet, GSet, PowMap, Map
CommutatorSubgroup(G) : GrpAb -> GrpAb
CommutatorSubgroup(H, K) : GrpAb, GrpAb -> GrpAb
CommutatorSubgroup(G, H, K) : GrpFin, GrpFin, GrpFin -> GrpFin
CommutatorSubgroup(G) : GrpFP -> GrpFP
CommutatorSubgroup(G, H, K) : GrpGPC, GrpGPC, GrpGPC -> GrpGPC
CommutatorSubgroup(G) : GrpMat -> GrpMat
CommutatorSubgroup(G, H, K) : GrpMat, GrpMat, GrpMat -> GrpMat
CommutatorSubgroup(G) : GrpPC -> GrpPC
CommutatorSubgroup(G, H, K) : GrpPC, GrpPC, GrpPC -> GrpPC
CommutatorSubgroup(G) : GrpPerm -> GrpPerm
CommutatorSubgroup(G, H, K) : GrpPerm, GrpPerm, GrpPerm -> GrpPerm
CongruenceSubgroup(N) : RngIntElt -> GrpPSL2
CongruenceSubgroup(i,N) : RngIntElt, RngIntElt -> GrpPSL2
CongruenceSubgroup([N,M,P]) : SeqEnum -> GrpPSL2
CuspidalSubgroup(A) : ModAbVar -> ModAbVarSubGrp
DerivedSubgroup(G) : GrpFin -> GrpFin
DerivedSubgroup(G) : GrpGPC -> GrpGPC
ElementaryAbelianNormalSubgroup(G) : GrpPerm -> GrpPerm
FittingSubgroup(G) : GrpFin -> GrpFin
FittingSubgroup(G) : GrpGPC -> GrpGPC
[Future release] FittingSubgroup(G) : GrpMat -> GrpMat
FittingSubgroup(G) : GrpPC -> GrpPC
FittingSubgroup(G) : GrpPerm -> GrpPerm
FrattiniSubgroup(G) : GrpAb -> GrpAb
FrattiniSubgroup(G) : GrpFin -> GrpFin
FrattiniSubgroup(G) : GrpMat -> GrpMat
FrattiniSubgroup(G) : GrpPC -> GrpPC
FrattiniSubgroup(G) : GrpPerm -> GrpPerm
GaloisSubgroup(K, U) : FldNum, GrpPerm -> FldNum, UserProgram
HallSubgroup(G, S) : GrpPC, { RngIntElt } -> GrpPC
IntersectionWithNormalSubgroup(G, N: parameters) : GrpPerm, GrpPerm -> GrpPerm
IsParabolicSubgroup(W, H) : GrpPermCox, GrpPermCox -> BoolElt
IsReflectionSubgroup(W, H) : GrpPermCox, GrpPermCox -> BoolElt
IsStandardParabolicSubgroup(W, H) : GrpPermCox, GrpPermCox -> BoolElt
KnownAutomorphismSubgroup(C) : Code -> GrpPerm
LMGCommutatorSubgroup(G, H) : GrpMat, GrpMat -> GrpMat
LMGFittingSubgroup(G) : GrpMat -> GrpMat, GrpPC, Map
LMGIsSubgroup(G, H) : GrpMat, GrpMat -> BoolElt
MaximalNormalSubgroup(G) : GrpPerm -> GrpPerm
MinimalNormalSubgroup(G) : GrpPC -> GrpPC
MinimalNormalSubgroup(G, N) : GrpPC -> GrpPC
NextSubgroup(~P) : GrpFPLixProc ->
PrintSylowSubgroupStructure(G) : GrpLie ->
RationalCuspidalSubgroup(A) : ModAbVar -> ModAbVarSubGrp
ReflectionSubgroup(W, a) : GrpPermCox, () -> GrpPermCox
ReflectionSubgroup(W, s) : GrpPermCox, [] -> GrpPermCox
StandardParabolicSubgroup(W, J) : GrpPermCox, () -> GrpPermCox
Subgroup(V) : GrpFPCos -> GrpFP
Subgroup(P) : GrpFPCosetEnumProc -> GrpFP
Subgroup(X, oQ : parameters) : [MapModAbVar], BoolElt -> HomModAbVar
Subgroup(X) : [MapModAbVar] -> HomModAbVar
Subgroup(X) : [ModAbVarElt] -> ModAbVarSubGrp
SubgroupClasses(G) : GrpPC -> SeqEnum
SubgroupClasses(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
SubgroupClasses(G: parameters) : GrpMat -> [ rec< GrpMat, RngIntElt, RngIntElt, GrpFP> ]
SubgroupClasses(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
SubgroupLattice(G) : GrpFin -> SubGrpLat
SubgroupLattice(G) : GrpPC -> SubGrpLat
SubgroupOfTorus(M, x) : ModSym, ModSymElt -> RngIntElt
SubgroupOfTorus(M, s) : ModSym, SeqEnum -> GrpAb
SubgroupScheme(E,P) : CrvEll, Pt -> CrvEllSubgroup
SubgroupScheme(p,N) : Pt, RngIntElt -> SchGrpEll, CrvEll
SubgroupScheme(G, f) : SchGrpEll, RngUPolElt -> SchGrpEll
SubsystemSubgroup(G, s) : GrpLie, SeqEnum -> RootDtm
SubsystemSubgroup(G, a) : GrpLie, SetEnum -> RootDtm
SylowSubgroup(G, p) : GrpFin, RngIntElt -> GrpFin
SylowSubgroup(G, p) : GrpLie, RngIntElt -> List
SylowSubgroup(G, p) : GrpMat, RngIntElt -> GrpMat
SylowSubgroup(G, p) : GrpPC, RngIntElt -> GrpPC
SylowSubgroup(G, p) : GrpPerm, RngIntElt -> GrpPerm
SylowSubgroup(G, p : parameters) : GrpAb, RngIntElt -> GrpAb
TorsionFreeSubgroup(A) : GrpAb -> GrpAb
TorsionSubgroup(E) : CrvEll -> GrpAb, Map
TorsionSubgroup(E) : CrvEll[FldFunG] -> GrpAb, Map
TorsionSubgroup(A) : GrpAb -> GrpAb
TorsionSubgroup(J) : JacHyp -> GrpAb, Map
TorsionSubgroup(A) : ModAbVar -> BoolElt, ModAbVarSubGrp
TorsionSubgroup(H) : SetPtEll -> GrpAb, Map
TorsionSubgroupScheme(G, n) : SchGrpEll, RngIntElt -> SchGrpEll
TwoTorsionSubgroup(J) : JacHyp -> GrpAb, Map
TwoTorsionSubgroup(Q) : QuadBin -> GrpAb, Map
UnitGroupAsSubgroup(O) : RngOrd -> GrpAb
UnitTrivialSubgroup(G) : GrpDrchNF -> GrpDrchNF
YoungSubgroup(L) : [RngIntElt] -> GrpPerm
YoungSubgroupLadder(L) : [RngIntElt] -> [GrpPerm]
ZeroSubgroup(A) : ModAbVar -> ModAbVarSubGrp
nTorsionSubgroup(A, n) : ModAbVar, RngIntElt -> ModAbVarSubGrp
nTorsionSubgroup(G, n) : ModAbVarSubGrp, RngIntElt -> ModAbVarSubGrp
pElementaryAbelianNormalSubgroup(G, p) : GrpPerm, RngIntElt -> GrpPerm
GrpGPC_Subgroup (Example H72E3)
Grp_Subgroup (Example H57E6)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012