[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: diag .. Diagram
Diagonalising Commutative Algebras over a Field (MATRIX ALGEBRAS)
DiagonalAutomorphism(L, v) : AlgLie, ModTupRngElt -> Map
DiagonalAutomorphism(G, v) : GrpLie, ModTupRngElt -> Map
DiagonalForm(f) : RngMPolElt -> RngMPolElt, ModMatRngElt
DiagonalJoin(X, Y) : ModMatRngElt, ModMatRngElt -> ModMatRngElt
DiagonalJoin(X, Y) : Mtrx, Mtrx -> Mtrx
DiagonalJoin(A, B) : MtrxSprs, MtrxSprs -> MtrxSprs
DiagonalJoin(Q) : [ ModMatRngElt ] -> ModMatRngElt
DiagonalJoin(Q) : [ Mtrx ] -> Mtrx
DiagonalMatrix(R, Q) : AlgMat, [ RngElt ] -> AlgMatElt
DiagonalMatrix(L, Q) : AlgMatLie, [RngElt] -> AlgMatLieElt
DiagonalMatrix(R, n, Q) : Rng, RngIntElt, [ RngElt ] -> Mtrx
DiagonalMatrix(R, Q) : Rng, [ RngElt ] -> Mtrx
DiagonalMatrix(Q) : [ RngElt ] -> Mtrx
DiagonalModel(n, seq) : RngIntElt, [ RngElt ] -> ModelG1
DiagonalSparseMatrix(R, n, Q) : Rng, RngIntElt, [ RngElt ] -> MtrxSprs
DiagonalSparseMatrix(R, Q) : Rng, [ RngElt ] -> MtrxSprs
DiagonalSparseMatrix(Q) : [ RngElt ] -> MtrxSprs
DiagonalSum(t1, t2) : Tbl,Tbl -> Tbl
DominantDiagonalForm(X) : Mtrx[RngUPol] -> Mtrx, Mtrx, GrpMat, FldFin
IsDiagonal(a) : AlgMatElt -> BoolElt
IsDiagonal(A) : Mtrx -> BoolElt
IsDiagonal(A) : MtrxSprs -> BoolElt
NumberOfPrimitiveGroups(d) : RngIntElt -> RngIntElt
DiagonalAutomorphism(L, v) : AlgLie, ModTupRngElt -> Map
DiagonalAutomorphism(G, v) : GrpLie, ModTupRngElt -> Map
DiagonalForm(f) : RngMPolElt -> RngMPolElt, ModMatRngElt
Diagonalization(A) : AlgMat -> AlgMat, AlgMatElt
Diagonalisation(A) : AlgMat -> AlgMat, AlgMatElt
Diagonalisation(Q) : [AlgMatElt] -> [AlgMatElt], AlgMatElt
Diagonalization(A) : AlgMat -> AlgMat, AlgMatElt
Diagonalisation(A) : AlgMat -> AlgMat, AlgMatElt
Diagonalisation(Q) : [AlgMatElt] -> [AlgMatElt], AlgMatElt
Diagonalization(F) : MtrxSpcElt -> MtrxSpcElt, AlgMatElt, RngIntElt
AlgMat_Diagonalization (Example H83E9)
Diagonalizing a Polynomial of Degree 2 (MULTIVARIATE POLYNOMIAL RINGS)
DiagonalJoin(X, Y) : ModMatRngElt, ModMatRngElt -> ModMatRngElt
DiagonalJoin(X, Y) : Mtrx, Mtrx -> Mtrx
DiagonalJoin(A, B) : MtrxSprs, MtrxSprs -> MtrxSprs
DiagonalJoin(Q) : [ ModMatRngElt ] -> ModMatRngElt
DiagonalJoin(Q) : [ Mtrx ] -> Mtrx
DiagonalMatrix(R, Q) : AlgMat, [ RngElt ] -> AlgMatElt
DiagonalMatrix(L, Q) : AlgMatLie, [RngElt] -> AlgMatLieElt
DiagonalMatrix(R, n, Q) : Rng, RngIntElt, [ RngElt ] -> Mtrx
DiagonalMatrix(R, Q) : Rng, [ RngElt ] -> Mtrx
DiagonalMatrix(Q) : [ RngElt ] -> Mtrx
DiagonalModel(n, seq) : RngIntElt, [ RngElt ] -> ModelG1
DiagonalSparseMatrix(R, n, Q) : Rng, RngIntElt, [ RngElt ] -> MtrxSprs
DiagonalSparseMatrix(R, Q) : Rng, [ RngElt ] -> MtrxSprs
DiagonalSparseMatrix(Q) : [ RngElt ] -> MtrxSprs
DiagonalSum(t1, t2) : Tbl,Tbl -> Tbl
CoxeterDiagram(M) : AlgMatElt ->
CoxeterDiagram(W) : GrpFPCox ->
CoxeterDiagram(G) : GrpLie ->
CoxeterDiagram(W) : GrpMat ->
CoxeterDiagram(R) : RootStr ->
CoxeterDiagram(R) : RootSys ->
Diagram(D) : IncGeom -> GrphUnd, GrphVertSet, GrphEdgeSet
DiagramAutomorphism(U, p) : AlgQUE, GrpPermElt -> Map
DynkinDiagram(M) : AlgMatElt ->
DynkinDiagram(G) : GrpLie ->
DynkinDiagram(W) : GrpMat ->
DynkinDiagram(W) : GrpPermCox ->
DynkinDiagram(R) : RootStr ->
DynkinDiagram(R) : RootSys ->
GraphAutomorphism(L, p) : AlgLie, GrpPermElt -> Map
GraphAutomorphism(G, p) : GrpLie, GrpPermElt -> Map
IsGenuineWeightedDynkinDiagram( L, wd ) : AlgLie, SeqEnum -> BoolElt, SeqEnum
MakeSpliceDiagram(g,e,a) : GrphDir,SeqEnum,SeqEnum -> GrphSpl
MakeSpliceDiagram(e,l,a) : SeqEnum,SeqEnum,SeqEnum -> GrphSpl
RegularSpliceDiagram(P) : LinearSys -> GrphSpl
SpliceDiagram(g) : GrphRes -> GrphSpl
SpliceDiagram(g,v) : GrphRes,GrphResVert -> GrphSpl
SpliceDiagram(v) : GrphSplVert -> GrphSpl
SpliceDiagram(C,p) : Sch,Pt -> GrphSpl
SpliceDiagramVertex(s,i) : GrphSpl,RngIntElt -> GrphSplVert
WeightedDynkinDiagram( o ) : NilpOrbAlgLie -> SeqEnum
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012