[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: terms  ..  Three


terms

   Accessing the Underlying Representation (MODULES OVER MULTIVARIATE RINGS)
   Coefficients and Terms (DIFFERENTIAL RINGS)
   Coefficients and Terms (DIFFERENTIAL RINGS)

TernaryGolayCode

   CodeFld_TernaryGolayCode (Example H152E1)
   CodeRng_TernaryGolayCode (Example H155E1)

Test

   DedekindTest(p, m) : RngUPolElt, RngIntElt -> Boolelt
   HomogeneousModuleTest(P, S, F) : [ RngMPol ], [ RngMPol ], RngMPol -> BoolElt, [ RngMPol ]
   HomogeneousModuleTest(P, S, F) : [ RngMPol ], [ RngMPol ], RngMPol -> BoolElt, [ RngMPol ]
   HomogeneousModuleTest(P, S, L) : [ RngMPol ], [ RngMPol ], [ RngMPol ] -> [ BoolElt ], [ [ RngMPol ] ]
   HomogeneousModuleTest(P, S, L) : [ RngMPol ], [ RngMPol ], [ RngMPol ] -> [ BoolElt ], [ [ RngMPol ] ]
   HomogeneousModuleTestBasis(P, S, L) : [ RngMPol ], [ RngMPol ], [ RngMPol ] -> [ BoolElt ], [ [ RngMPol ] ]
   TestHeckeRep(W,r) : GrpFPCox, SeqEnum -> .
   TestWG(W,wg) : GrpFPCox, GrphUnd -> .

test

   Recognition Functions (QUATERNION ALGEBRAS)
   Singularity Analysis (ALGEBRAIC CURVES)
   Testing Finiteness (MATRIX GROUPS OVER INFINITE FIELDS)
   Tests for Baskets (HILBERT SERIES OF POLARISED VARIETIES)

TestHeckeRep

   TestHeckeRep(W,r) : GrpFPCox, SeqEnum -> .

Testing

   Cartan_Testing (Example H95E11)

testing

   Testing for Edge Decorations (MULTIGRAPHS)

Tests

   Boolean Tests on Subspaces (BRANDT MODULES)

tests

   Basic Tests (SCHEMES)
   Tests for Linear Systems (SCHEMES)

TestWG

   TestWG(W,wg) : GrpFPCox, GrphUnd -> .

Tetrahedral

   GrpFP_1_Tetrahedral (Example H70E8)

tg

   CM Points (ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES)
   Creation of Triangle Groups (ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES)
   Fundamental Domain (ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES)

tg-cm-points

   CM Points (ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES)

tg-creation

   Creation of Triangle Groups (ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES)

tg-fundamental-domains

   Fundamental Domain (ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES)

The

   CompleteTheSquare(model) : ModelG1 -> ModelG1

the-next_example

   FldFunRat_the-next_example (Example H41E7)

Theorem

   ChineseRemainderTheorem(I1, L1, e1, L2) : RngOrdIdl, [RngIntElt], RngOrdElt, [RngIntElt] -> RngOrdElt
   CRT(I1, L1, e1, L2) : RngOrdIdl, [RngIntElt], RngOrdElt, [RngIntElt] -> RngOrdElt
   ChineseRemainderTheorem(I1, I2, e1, e2) : RngFunOrdIdl, RngFunOrdIdl, RngFunOrdElt, RngFunOrdElt -> RngFunOrdElt
   ChineseRemainderTheorem(I, J, a, b) : RngInt, RngInt, RngIntElt, RngIntElt -> RngIntElt
   ChineseRemainderTheorem(I1, I2, e1, e2) : RngOrdIdl, RngOrdIdl, RngOrdElt, RngOrdElt -> RngOrdElt
   ChineseRemainderTheorem(X, N) : [RngIntElt], [RngIntElt] -> RngIntElt
   ChineseRemainderTheorem(X, M) : [RngUPolElt], [RngUPolElt] -> RngUPolElt

theory

   An Overview of Relevant Theory (ELLIPTIC CURVES OVER FUNCTION FIELDS)
   Galois Theory (NUMBER FIELDS)
   GALOIS THEORY OF NUMBER FIELDS
   Group Theoretic Functions (CLASS FIELD THEORY)
   Ideal Theory of Orders (QUATERNION ALGEBRAS)
   Representation Theory (POLYCYCLIC GROUPS)

Theta

   JacobiTheta(q, z) : FldReElt, FldReElt -> FldReElt
   JacobiTheta(q, z) : FldReElt, RngSerElt[FldRe] -> RngSerElt
   JacobiThetaNullK(q, k) : FldReElt, RngIntElt -> FldReElt
   Theta(char, z, A) : Mtrx, Mtrx, AnHcJac -> FldComElt
   Theta(char, z, tau) : Mtrx, Mtrx, Mtrx -> FldComElt
   ThetaOperator(M1, M2) : ModSym, ModSym -> Map
   ThetaSeries(L, n) : Lat, RngIntElt -> RngSerElt
   ThetaSeries(x, y, prec) : ModBrdtElt, ModBrdtElt, RngIntElt -> RngSerElt
   ThetaSeries(f, n) : QuadBinElt, RngIntElt -> RngSerElt
   ThetaSeriesIntegral(L, n) : Lat, RngIntElt -> RngSerElt
   ThetaSeriesModularForm(L) : Lat -> ModFrmElt
   ThetaSeriesModularFormSpace(L) : Lat -> ModFrm

theta

   Successive Minima and Theta Series (LATTICES)
   Theta Functions (REAL AND COMPLEX FIELDS)

theta_modfrm

   Theta Series as Modular Forms (LATTICES)

ThetaOperator

   ThetaOperator(M1, M2) : ModSym, ModSym -> Map
   ModSym_ThetaOperator (Example H133E16)

ThetaSeries

   ThetaSeries(L, n) : Lat, RngIntElt -> RngSerElt
   ThetaSeries(x, y, prec) : ModBrdtElt, ModBrdtElt, RngIntElt -> RngSerElt
   ThetaSeries(f, n) : QuadBinElt, RngIntElt -> RngSerElt
   Lat_ThetaSeries (Example H30E15)

ThetaSeriesIntegral

   ThetaSeriesIntegral(L, n) : Lat, RngIntElt -> RngSerElt

ThetaSeriesModularForm

   ThetaSeriesModularForm(L) : Lat -> ModFrmElt

ThetaSeriesModularFormSpace

   ThetaSeriesModularFormSpace(L) : Lat -> ModFrm

Thick

   IsThick(X) : CosetGeom -> BoolElt

Thin

   IsThin(X) : CosetGeom -> BoolElt

Three

   ThreeDescent(E : parameters) : CrvEll -> [ Crv ], List
   ThreeDescentByIsogeny(E) : CrvEll -> [ Crv ], [ Map ]
   ThreeDescentCubic(E, α: parameters) : CrvEll, Tup -> Crv, MapSch
   ThreeIsogenyDescent(E : parameters) : CrvEll -> [ Crv ], List, [ Crv ], List, MapSch
   ThreeIsogenyDescentCubic(φ, α) : MapSch, Any -> Crv, MapSch
   ThreeIsogenySelmerGroups(E : parameters) : CrvEll -> GrpAb, Map, GrpAb, Map, MapSch
   ThreeSelmerElement(E, C) : CrvEll, RngMPolElt -> Tup
   ThreeSelmerGroup(E : parameters) : CrvEll -> GrpAb, Map
   ThreeTorsionMatrices(E, C) : CrvEll, RngMPolElt -> Tup
   ThreeTorsionPoints(E : parameters) : CrvEll -> Tup
   ThreeTorsionType(E) : CrvEll -> MonStgElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012