[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: FittingLength .. Flow
FittingLength(G) : GrpGPC -> RngIntElt
FittingSeries(G) : GrpGPC -> [GrpGPC]
FittingSubgroup(G) : GrpFin -> GrpFin
FittingSubgroup(G) : GrpGPC -> GrpGPC
[Future release] FittingSubgroup(G) : GrpMat -> GrpMat
FittingSubgroup(G) : GrpPC -> GrpPC
FittingSubgroup(G) : GrpPerm -> GrpPerm
GrpGPC_FittingSubgroup (Example H72E15)
REFLECTION GROUPS
Fix(C, G) : Code, GrpPerm -> Code
Fix(G, Y) : GrpPerm, GSet -> { Elt }
Fix(g, Y): GrpPermElt, GSet -> { Elt }
Fix(M): Mod -> Mod
FixedField(A, U) : FldAb, GrpAb -> FldAb
AbelianSubfield(A, U) : FldAb, GrpAb -> FldAb
FixedArc(g,H) : GrpPSL2Elt, SpcHyp -> SeqEnum
FixedField(K, U) : FldAlg, GrpPerm -> FldNum, Map
FixedField(K, S) : FldAlg, [Map] -> FldNum, Map
FixedField(L, G) : RngLocA, GrpPerm -> RngLocA
FixedField(V) : SSGalRep -> RngSerLaur
FixedGroup(K, L) : FldAlg, FldAlg -> GrpPerm
FixedGroup(K, a) : FldAlg, FldAlgElt -> GrpPerm
FixedGroup(K, L) : FldAlg, [FldAlgElt] -> GrpPerm
FixedPoints(g,D) : GrpPSL2Elt, SpcHyd -> SeqEnum
FixedPoints(g,H) : GrpPSL2Elt, SpcHyp -> SeqEnum
FixedSubspaceToPolyhedron(G) : GrpMat -> TorPol
IdealWithFixedBasis(B) : [ RngMPolElt ] -> RngMPol
NumberOfFixedSpaces(x, s) : GrpMatElt, RngIntElt -> RngIntElt
Free and Fixed Precision (POWER, LAURENT AND PUISEUX SERIES)
The Fixed-point Space of a Module (K[G]-MODULES AND GROUP REPRESENTATIONS)
The Fixed-point Space of a Module (K[G]-MODULES AND GROUP REPRESENTATIONS)
Free and Fixed Precision (POWER, LAURENT AND PUISEUX SERIES)
FixedArc(g,H) : GrpPSL2Elt, SpcHyp -> SeqEnum
FixedField(A, U) : FldAb, GrpAb -> FldAb
AbelianSubfield(A, U) : FldAb, GrpAb -> FldAb
FixedField(K, U) : FldAlg, GrpPerm -> FldNum, Map
FixedField(K, S) : FldAlg, [Map] -> FldNum, Map
FixedField(L, G) : RngLocA, GrpPerm -> RngLocA
FixedField(V) : SSGalRep -> RngSerLaur
FixedGroup(K, L) : FldAlg, FldAlg -> GrpPerm
FixedGroup(K, a) : FldAlg, FldAlgElt -> GrpPerm
FixedGroup(K, L) : FldAlg, [FldAlgElt] -> GrpPerm
FixedPoints(g,D) : GrpPSL2Elt, SpcHyd -> SeqEnum
FixedPoints(g,H) : GrpPSL2Elt, SpcHyp -> SeqEnum
FixedSubspaceToPolyhedron(G) : GrpMat -> TorPol
CliqueComplex(G) : Grph -> SmpCpx
FlagComplex(G) : Grph -> SmpCpx
CliqueComplex(G) : Grph -> SmpCpx
FlagComplex(G) : Grph -> SmpCpx
Flat(C) : Cop -> Cop
Flat(e) : FldAlgElt -> [ FldRatElt]
Flat(a) : FldFunElt -> [FldFunGElt]
Flat(e) : FldNumElt -> [ FldRatElt]
Flat(C) : SetCart -> SetCart
Flat(T) : Tup -> Tup
Flattening (COPRODUCTS)
ELLIPTIC CURVES OVER FINITE FIELDS
ELLIPTIC CURVES OVER FUNCTION FIELDS
IsFlex(C,p) : Sch,Pt -> BoolElt,RngIntElt
IsInflectionPoint(p) : Sch,Pt -> BoolElt,RngIntElt
InflectionPoints(C) : Sch -> Sch
Flexes(C) : Sch -> Sch
BitFlip(e, B) : HilbSpcElt, RngIntElt -> HilbSpcElt
BitFlip(e, k) : HilbSpcElt,RngIntElt -> HilbSpcElt
Flip(D) : DivTorElt -> TorVar
Flip(X,i) : TorVar,RngIntElt -> TorVar
IdentityAutomorphism(A) : Sch -> AutSch
PhaseFlip(e, B) : HilbSpcElt, RngIntElt -> HilbSpcElt
PhaseFlip(e, k) : HilbSpcElt,RngIntElt -> HilbSpcElt
WeightsOfFlip(X,i) : TorVar,RngIntElt -> SeqEnum
Translation(A,p) : Sch,Pt -> AutSch
FlipCoordinates(A) : Sch -> AutSch
Automorphism(A,q) : Sch,RngMPolElt -> AutSch
IdentityAutomorphism(A) : Sch -> AutSch
IsFlipping(X,i) : TorVar,RngIntElt -> BoolElt
Floor(q) : FldRatElt -> RngIntElt
Floor(r) : Infty -> Infty
Floor(n) : RngIntElt -> RngIntElt
Round(x) : Infty -> Infty
Flow(e) : GrphEdge -> RngIntElt
Flow(u, v) : GrphVert, GrphVert -> RngIntElt
MaximumFlow(s, t : parameters) : GrphVert, GrphVert -> RngIntElt, SeqEnum
MaximumFlow(Ss, Ts : parameters) : [ GrphVert ], [ GrphVert ] -> RngIntElt, SeqEnum
Network_Flow (Example H151E4)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012