[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: c .. Canonical
Accessing the Key Data and Testing Equality (HILBERT SERIES OF POLARISED VARIETIES)
Baskets of Singularities (HILBERT SERIES OF POLARISED VARIETIES)
Creation of Curve Singularities (HILBERT SERIES OF POLARISED VARIETIES)
Baskets of Singularities (HILBERT SERIES OF POLARISED VARIETIES)
Creation of Curve Singularities (HILBERT SERIES OF POLARISED VARIETIES)
C
c range
Accessing the Key Data and Testing Equality (HILBERT SERIES OF POLARISED VARIETIES)
CalabiYau(p1,p2,B) : RngIntElt,RngIntElt,GRBskt -> GRCY
CalabiYau(p1,p2,B) : RngIntElt,RngIntElt,GRBskt -> GRCY
CalculateCanonicalClass(~g) : GrphRes ->
CalculateMultiplicities(~g) : GrphRes ->
CalculateTransverseIntersections(~g) : GrphRes ->
CalculateCanonicalClass(~g) : GrphRes ->
CalculateMultiplicities(~g) : GrphRes ->
CalculateTransverseIntersections(~g) : GrphRes ->
Calculating with Representations (REPRESENTATIONS OF LIE GROUPS AND ALGEBRAS)
IndexCalculus(D1, D2, D0, np) : DivCrvElt, DivCrvElt, DivCrvElt, RngIntElt -> RngIntElt
IndexCalculusMatrix(D1, D2, D0, n, rr) : DivCrvElt, DivCrvElt, DivCrvElt, RngIntElt, RngIntElt -> MtrxSprs, SeqEnum, SeqEnum, DivCrvElt, DivCrvElt, RngIntElt, RngIntElt
CalderbankShorSteaneCode(C1, C2) : Code, Code -> CodeQuantum
CSSCode(C1, C2) : Code, Code -> CodeQuantum
CalderbankShorSteaneCode(C1, C2) : Code, Code -> CodeQuantum
CSSCode(C1, C2) : Code, Code -> CodeQuantum
Call by Value Evaluation (MAGMA SEMANTICS)
Exploring the Call Graph (THE MAGMA PROFILER)
Call by Value Evaluation (MAGMA SEMANTICS)
Exploring the Call Graph (THE MAGMA PROFILER)
Memory Usage (INPUT AND OUTPUT)
System Calls (INPUT AND OUTPUT)
CambridgeMatrix(t, K, n, Q) : RngIntElt, FldFin, RngIntElt, [ ] -> AlgMatElt
AlgMat_Cambridge (Example H83E2)
CambridgeMatrix(t, K, n, Q) : RngIntElt, FldFin, RngIntElt, [ ] -> AlgMatElt
CanChangeRing(A, R) : ModAbVar, Rng -> BoolElt, ModAbVar
CanChangeUniverse(S, V) : SeqEnum, Str -> Bool, SeqEnum
CanChangeUniverse(S, V) : SetEnum, Str -> Bool, SeqEnum
CanContinueEnumeration(P) : GrpFPCosetEnumProc -> BoolElt
CanDetermineIsomorphism(A, B) : ModAbVar, ModAbVar -> BoolElt, BoolElt, MapModAbVar
CanIdentifyGroup(o) : RngIntElt -> BoolElt
CanNormalize(F) : RngUPolTwstElt -> BoolElt, RngUPolTwstElt, RngElt
CanRedoEnumeration(P) : GrpFPCosetEnumProc -> BoolElt
CanSignNormalize(F) : RngUPolTwstElt -> BoolElt, RngUPolTwstElt, RngElt
Elements of the Canonical Basis (QUANTUM GROUPS)
The Canonical Basis (QUANTUM GROUPS)
AlgQEA_CanBasMod (Example H102E6)
CanChangeRing(A, R) : ModAbVar, Rng -> BoolElt, ModAbVar
CanChangeUniverse(S, V) : SeqEnum, Str -> Bool, SeqEnum
CanChangeUniverse(S, V) : SetEnum, Str -> Bool, SeqEnum
CanContinueEnumeration(P) : GrpFPCosetEnumProc -> BoolElt
CanDetermineIsomorphism(A, B) : ModAbVar, ModAbVar -> BoolElt, BoolElt, MapModAbVar
CanIdentifyGroup(o) : RngIntElt -> BoolElt
CanNormalize(F) : RngUPolTwstElt -> BoolElt, RngUPolTwstElt, RngElt
CalculateCanonicalClass(~g) : GrphRes ->
CanonicalBasis(V) : ModAlg -> SeqEnum
CanonicalClass(g) : GrphRes -> SeqEnum
CanonicalClass(X) : TorVar -> DivTorElt
CanonicalCoordinateIdeal(S) : Srfc -> RngMPol
CanonicalCurve(H) : HypGeomData -> Crv
CanonicalDissidentPoints(C) : GRCrvS -> SeqEnum
CanonicalDivisor(C) : Crv -> DivCrvElt
CanonicalDivisor(F) : FldFunG -> DivFunElt
CanonicalDivisor(X) : Sch -> DivSchElt
CanonicalDivisor(X) : TorVar -> DivTorElt
CanonicalElements(U, w) : AlgQUE, SeqEnum -> SeqEnum
CanonicalFactorRepresentation(u: parameters) : GrpBrdElt -> Tup
CanonicalGraph(G) : Grph -> Grph
CanonicalImage(C, phi) : Crv, MapSch -> Crv, BoolElt
CanonicalInvolution(X) : CrvMod -> MapSch
CanonicalLength(u: parameters) : GrpBrdElt -> RngIntElt
CanonicalLinearSystem(C) : Crv -> LinearSys
CanonicalLinearSystemFromIdeal(I, d) : RngMPol, RngIntElt -> LinearSys
CanonicalMap(C) : Crv -> MapSch
CanonicalModularPolynomial(N) : RngIntElt -> RngMPolElt
CanonicalScheme(H) : HypGeomData -> Sch
CanonicalSheaf(X) : Sch -> ShfCoh
ElementaryAbelianSeriesCanonical(G) : GrpMat -> [ GrpMat ]
ElementaryAbelianSeriesCanonical(G) : GrpPC -> [GrpPC]
ElementaryAbelianSeriesCanonical(G) : GrpPerm -> [ GrpPerm ]
GenusAndCanonicalMap(C) : Crv -> RngIntElt, BoolElt, MapSch
HadamardCanonicalForm(H) : AlgMatElt -> AlgMatElt, AlgMatElt, AlgMatElt
Height(P: parameters) : JacHypPt -> FldPrElt
Height(P: parameters) : PtEll -> NFldComElt
IsCanonical(D) : DivCrvElt -> BoolElt, DiffCrvElt
IsCanonical(D) : DivFunElt -> BoolElt, DiffFunElt
IsCanonical(D) : DivFunElt -> BoolElt, DiffFunElt
IsCanonical(D) : DivSchElt -> BoolElt
IsCanonical(B) : GRBskt -> BoolElt
IsCanonical(C) : GRCrvS -> BoolElt
IsCanonical(p) : GRPtS -> BoolElt
IsCanonical(C) : TorCon -> BoolElt
IsCanonical(F) : TorFan -> BoolElt
IsCanonical(X) : TorVar -> BoolElt
IsCanonicalWithTwist(D) : DivSchElt -> BoolElt, RngIntElt
LeftMixedCanonicalForm(u: parameters) : GrpBrdElt -> Tup, Tup
LogCanonicalThreshold(C) : Sch -> FldRatElt, BoolElt
LogCanonicalThreshold(C, P) : Sch, Pt -> FldRatElt
LogCanonicalThresholdAtOrigin(C) : Sch -> FldRatElt
LogCanonicalThresholdOverExtension(C) : Sch -> FldRatElt
MinimalModelGeneralType(S) : Srfc -> Map, BoolElt
PossibleCanonicalDissidentPoints(C) : GRCrvS -> SeqEnum
PossibleSimpleCanonicalDissidentPoints(C) : GRCrvS -> SeqEnum
RightMixedCanonicalForm(u: parameters) : GrpBrdElt -> Tup, Tup
SimpleCanonicalDissidentPoints(C) : GRCrvS -> SeqEnum
SuperSummitCanonicalLength(u: parameters) : GrpBrdElt -> RngIntElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012