[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: local .. LocalTwoSelmerMap
Creation of Points on Curves (ALGEBRAIC CURVES)
GENERAL LOCAL FIELDS
Local Computations (ELLIPTIC CURVES OVER FUNCTION FIELDS)
Local Conditions for Conics (RATIONAL CURVES AND CONICS)
Local Declarations (MAGMA SEMANTICS)
Local Geometry (ALGEBRAIC CURVES)
Local Geometry of Schemes (SCHEMES)
Local Intersection Theory (ALGEBRAIC CURVES)
Local Invariants (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
Local Invariants (QUADRATIC FORMS)
LOCAL POLYNOMIAL RINGS
Local Solubility (SCHEMES)
Local-Global Correspondence (RATIONAL CURVES AND CONICS)
Norm Residue Symbol (RATIONAL CURVES AND CONICS)
Operations at a Point (ALGEBRAIC CURVES)
p-adic Fields (p-ADIC RINGS AND THEIR EXTENSIONS)
p-adic Rings (p-ADIC RINGS AND THEIR EXTENSIONS)
p-ADIC RINGS AND THEIR EXTENSIONS
The Local Langlands Correspondence (ADMISSIBLE REPRESENTATIONS OF GL2(Qp))
GENERAL LOCAL FIELDS
Local Geometry (ALGEBRAIC CURVES)
Local Declarations (MAGMA SEMANTICS)
p-adic Fields (p-ADIC RINGS AND THEIR EXTENSIONS)
Local Conditions for Conics (RATIONAL CURVES AND CONICS)
Local-Global Correspondence (RATIONAL CURVES AND CONICS)
Norm Residue Symbol (RATIONAL CURVES AND CONICS)
Local Intersection Theory (ALGEBRAIC CURVES)
Crv_local-intersection-example (Example H114E10)
HasseMinkowskiInvariants(f) : RngMPolElt -> SeqEnum
Local Invariants (QUADRATIC FORMS)
The Local Langlands Correspondence (ADMISSIBLE REPRESENTATIONS OF GL2(Qp))
Operations at a Point (ALGEBRAIC CURVES)
Creation of Points on Curves (ALGEBRAIC CURVES)
LOCAL POLYNOMIAL RINGS
p-adic Rings (p-ADIC RINGS AND THEIR EXTENSIONS)
Local Solubility (SCHEMES)
Invariants of p-adic Genera (LATTICES)
LocalComponent(M, p) : ModSym, RngIntElt -> RepLoc
LocalCoxeterGroup(H) : GrpPermCox -> GrpPermCox, Map
LocalDegree(P) : PlcNumElt -> RngIntElt
LocalDegree(P) : PlcNumElt -> RngIntElt
LocalFactorization(f) : RngUPolElt -> [ < RngUPolElt, RngIntElt >]
Factorization(f) : RngUPolElt -> [ < RngUPolElt, RngIntElt > ]
LocalField(L, f) : FldPad, RngUPolElt -> RngLocA
LocalGenera(G) : SymGen -> Lat
CrvCon_LocalGlobal (Example H119E6)
LocalHeight(P, Pl : parameters) : PtEll, PlcNumElt -> FldPrElt
LocalHeight(P, Pl) : PtEll, PlcFunElt -> FldPrElt
LocalHeight(P, p) : PtEll, RngIntElt -> FldComElt
LocalInformation(E) : CrvEll -> [ < Tup > ]
LocalInformation(E) : CrvEll -> [ Tup ]
LocalInformation(E, p) : CrvEll, RngIntElt -> <RngIntElt, RngIntElt, RngIntElt, RngIntElt, SymKod, BoolElt>, CrvEll
LocalInformation(E) : CrvEll, RngIntElt -> [ Tup ]
LocalInformation(E) : CrvEll, RngOrdIdl -> Tup, CrvEll
LocalInformation(E, P) : CrvEll, RngOrdIdl -> Tup, CrvEll
LocalInformation(E, Pl) : CrvEll[FldFun], PlcFunElt -> Tup, CrvEll
Localization(M) : ModMPol -> ModMPol
Localization(R, P) : Rng, Rng -> Rng, Map
Localization(R) : RngDiffOp -> RngDiffOp, Map
Localization(R, p) : RngDiffOp, PlcFunElt -> RngDiffOp, Map, PlcFunElt
Localization(L) : RngDiffOpElt -> RngDiffOpElt, Map
Localization(L, p) : RngDiffOpElt, PlcFunElt -> RngDiffOpElt, Map, PlcFunElt
Localization(R) : RngMPol -> RngMPolLoc
Localization (INTRODUCTION TO RINGS [BASIC RINGS])
HasIndexOneEverywhereLocally(C) : CrvHyp -> BoolElt
HasPointsEverywhereLocally(f,q) : RngUPolElt, RngIntElt -> BoolElt
IsLocallyFree(S) : ShfCoh -> BoolElt, RngIntElt
IsLocallySolvable(X, p) : Sch, RngOrdIdl -> BoolElt, Pt
IsLocallyTwoTransitive(C) : CosetGeom -> BoolElt
LocalPolynomialAlgebra(K, n, order) : Rng, RngIntElt, MonStgElt, ... -> RngMPolLoc
LocalPolynomialRing(K, n, order) : Rng, RngIntElt, MonStgElt, ... -> RngMPolLoc
LocalPolynomialRing(K, n) : Rng, RngIntElt -> RngMPolLoc
LocalPolynomialRing(K, n, order) : Rng, RngIntElt, MonStgElt, ... -> RngMPolLoc
LocalPolynomialRing(K, n, T) : Rng, RngIntElt, Tup -> RngMPolLoc
LocalRing(P, prec) : RngOrdIdl, RngIntElt -> RngLoc, Map
LocalRing(P, k) : RngOrdIdl, RngIntElt -> RngPad, Map
LocalRing(W) : RngWitt -> RngLoc, Map
LocalTwoSelmerMap(P) : RngOrdIdl -> Map
LocalTwoSelmerMap(A, P) : RngUPolRes, RngOrdIdl -> Map, SeqEnum
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012