[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: Ladder  ..  Lattice


Ladder

   ProcessLadder(L, G, U) : [GrpPerm], GrpPerm, GrpPerm -> Rec
   StabilizerLadder(G, d) : GrpPerm, RngMPolElt -> [GrpPerm]
   YoungSubgroupLadder(L) : [RngIntElt] -> [GrpPerm]

Laguerre

   LaguerrePolynomial(n) : RngIntElt -> RngUPolElt

LaguerrePolynomial

   LaguerrePolynomial(n) : RngIntElt -> RngUPolElt

Lambda

   CarmichaelLambda(n) : RngIntElt -> RngIntElt
   FactoredCarmichaelLambda(n) : RngIntElt -> RngIntEltFact

Lang

   Lang(c, q) : GrpLieElt, RngIntElt -> GrpLieElt

langlands

   The Local Langlands Correspondence (ADMISSIBLE REPRESENTATIONS OF GL2(Qp))

Laplace

   Laplace(f) : RngSerElt -> RngSerElt

Large

   IsLargeReeGroup(G) : GrpMat -> BoolElt, RngIntElt
   LargeReeElementToWord(G, g) : GrpMat, GrpMatElt -> BoolElt, GrpSLPElt
   LargeReeGroup(q) : RngIntElt -> GrpMat
   LargeReeSylow(G, p) : GrpMat, RngIntElt -> GrpMat, SeqEnum
   RecogniseLargeRee(G : parameters) : GrpMat -> BoolElt, Map, Map, Map, Map

large

   Orbit and Stabilizer Functions for Large Groups (MATRIX GROUPS OVER GENERAL RINGS)

large example

   GrpCoh_large example (Example H68E13)

large_ree

   Constructive Recognition of Large Ree Groups (ALMOST SIMPLE GROUPS)
   Large Ree Groups (ALMOST SIMPLE GROUPS)

Larger

   WriteOverLargerField(G) : GrpMat -> GrpMat, GrpAb, SeqEnum

largeree

   Introduction (ALMOST SIMPLE GROUPS)

largeree-intro

   Introduction (ALMOST SIMPLE GROUPS)

LargeReeElementToWord

   LargeReeElementToWord(G, g) : GrpMat, GrpMatElt -> BoolElt, GrpSLPElt

LargeReeGroup

   LargeReeGroup(q) : RngIntElt -> GrpMat

LargeReeSylow

   LargeReeSylow(G, p) : GrpMat, RngIntElt -> GrpMat, SeqEnum

Largest

   LargestConductor(D) : DB -> RngIntElt
   LargestDimension(D) : DB -> RngIntElt
   LargestDimension(D) : DB -> RngIntElt
   LargestDimension(D) : DB -> RngIntElt
   LargestDimension(D) : DB -> RngIntElt
   LargestDimension(D): DB -> RngIntElt

LargestConductor

   LargestConductor(D) : DB -> RngIntElt

LargestDimension

   LargestDimension(D) : DB -> RngIntElt
   LargestDimension(D) : DB -> RngIntElt
   LargestDimension(D) : DB -> RngIntElt
   LargestDimension(D) : DB -> RngIntElt
   LargestDimension(D): DB -> RngIntElt

Last

   ColumnLength(t, j): Tbl,RngIntElt -> RnfIntElt
   LastIndexOfColumn(t, j) : Tbl,RngIntElt -> RngIntElt
   LastIndexOfRow(t, i) : Tbl,RngIntElt -> RngIntElt

last-example

   FldFunRat_last-example (Example H41E11)

LastIndexOfColumn

   ColumnLength(t, j): Tbl,RngIntElt -> RnfIntElt
   LastIndexOfColumn(t, j) : Tbl,RngIntElt -> RngIntElt

LastIndexOfRow

   RowLength(t, i) : Tbl,RngIntElt -> RngIntElt
   LastIndexOfRow(t, i) : Tbl,RngIntElt -> RngIntElt

latdb

   Database of Lattices (LATTICES)
   Lat_latdb (Example H30E22)

latdb-names

   Lat_latdb-names (Example H30E21)

Lattice

   LatticeVector(L,Q) : TorLat,[RngIntElt] -> TorLatElt
   L ! [a,b,...] : TorLat,[RngIntElt] -> TorLatElt
   AddVectorToLattice(v) : TorLatElt -> TorLat,TorLatMap
   CoordinateLattice(L) : Lat -> Lat
   CoweightLattice(R) : RootDtm -> Lat
   CoxMonomialLattice(C) : RngCox -> TorLat
   CoxMonomialLattice(X) : TorVar -> TorLat
   DivisorClassLattice(C) : RngCox -> TorLat
   DivisorClassLattice(X) : TorVar -> TorLat
   DualBasisLattice(L) : Lat -> Lat
   ExponentLattice(s) : RngPowAlgElt -> Tup
   FrobeniusActionOnTrivialLattice(E) : CrvEll -> AlgMatElt
   FullRootLattice(R) : RootDtm -> Lat, Map
   GeometricMordellWeilLattice(E) : CrvEll[FldFunRat] -> Lat, Map
   HeightPairingLattice(S) : [PtEll[FldFunG]] -> AlgMatElt, Map
   IntegralBasisLattice(L) : Lat -> Lat, RngIntElt
   IsReverseLatticeWord(w) : MonOrdElt -> BoolElt
   Lattice(C, "A") : Code -> Lat
   Lattice(C, "B") : Code -> Lat
   Lattice(D, i): DB, RngIntElt -> Lat
   Lattice(D, i): DB, RngIntElt -> Lat, SeqEnum
   Lattice(D, i): DB, RngIntElt -> Lat, SeqEnum
   Lattice(D, i): DB, RngIntElt -> Lat, SeqEnum
   Lattice(D, d, i): DB, RngIntElt, RngIntElt -> Lat
   Lattice(D, d, i): DB, RngIntElt, RngIntElt -> Lat, SeqEnum
   Lattice(D, d, i): DB, RngIntElt, RngIntElt -> Lat, SeqEnum
   Lattice(D, d, i): DB, RngIntElt, RngIntElt -> Lat, SeqEnum
   Lattice(G) : GrpMat -> Lat
   Lattice(H) : HomModAbVar -> Lat
   Lattice(H) : ModAbVarHomol -> Lat
   Lattice(G) : ModAbVarSubGrp -> Lat
   Lattice(X) : ModMatRngElt -> Lat
   Lattice(X, M) : ModMatRngElt, AlgMatElt -> Lat
   Lattice(M) : ModSym -> Lat
   Lattice(X, n) : MonStgElt, RngIntElt -> Lat
   Lattice(D, i: parameters): DB, RngIntElt -> Lattice
   Lattice(f) : QuadBinElt -> Lat
   Lattice(O) : RngOrd -> Lat, Map
   Lattice(I) : RngOrdIdl -> Lat, Map
   Lattice(e) : SubModLatElt -> Lat
   LatticeCoordinates(x) : ModAbVarElt -> ModTupFldElt
   LatticeData(D, i): DB, RngIntElt -> Rec
   LatticeDatabase() : -> DB
   LatticeElementToMonomial(D,v) : DivTorElt,TorLatElt -> RngMPolElt
   LatticeMap(L,Q) : TorLat,[TorLatElt] -> TorLatMap
   LatticeName(D, N): DB, MonStgElt -> RecMonStgElt, RngIntElt
   LatticeName(D, N, i): DB, MonStgElt, RngIntElt -> RecMonStgElt, RngIntElt
   LatticeName(D, i): DB, RngIntElt -> MonStgElt, RngIntElt
   LatticeName(D, d, i): DB, RngIntElt, RngIntElt -> RecMonStgElt, RngIntElt
   LatticeWithBasis(G, B) : GrpMat, ModMatRngElt -> Lat
   LatticeWithBasis(G, B, M) : GrpMat, ModMatRngElt, AlgMatElt -> Lat
   LatticeWithBasis(B) : ModMatRngElt -> Lat
   LatticeWithBasis(B, M) : ModMatRngElt, AlgMatElt -> Lat
   LatticeWithGram(F) : AlgMatElt -> Lat
   LatticeWithGram(G, F) : GrpMat, AlgMatElt -> Lat
   MinkowskiLattice(O) : RngOrd -> Lat, Map
   MinkowskiLattice(I) : RngOrdIdl -> Lat, Map
   MonomialLattice(C) : RngCox -> TorLat
   MonomialLattice(X) : TorVar -> TorLat
   MordellWeilLattice(E) : CrvEll[FldFunRat] -> Lat, Map
   NormalLattice(G) : GrpFin -> NormalLattice
   NormalLattice(G) : GrpPC -> SubGrpLat
   NormalLattice(G) : GrpPerm -> SubGrpLat
   OneParameterSubgroupsLattice(C) : RngCox -> TorLat
   OneParameterSubgroupsLattice(X) : TorVar -> TorLat
   PrimitiveLatticeVector(v) : TorLatElt -> TorLatElt
   PureLattice(L) : Lat -> Lat
   RayLattice(C) : RngCox -> TorLat
   RayLatticeMap(C) : RngCox -> Map
   ReconstructLatticeBasis(S, B) : ModMatRngElt, ModMatRngElt -> ModMatRngEltLat
   RootLattice(R) : RootDtm -> Lat, Map
   ScalarLattice() : -> TorLat
   ScaledLattice(L,n) : Lat, RngIntElt -> Lat
   SquareLatticeGraph(n) : RngIntElt -> GrphUnd
   StandardLattice(n) : RngIntElt -> Lat
   SubfieldLattice(K) : FldNum -> SubFldLat
   SubgroupLattice(G) : GrpFin -> SubGrpLat
   SubgroupLattice(G) : GrpPC -> SubGrpLat
   SublatticeLattice(G) : GrpMat, RngIntElt -> LatLat, BoolElt
   SublatticeLattice(G, p) : GrpMat, RngIntElt -> LatLat, BoolElt
   SublatticeLattice(G, Q) : GrpMat, [ RngIntElt ] -> LatLat, BoolElt
   SubmoduleLattice(M) : ModRng -> SubModLat, BoolElt
   SubmoduleLatticeAbort(M, n) : ModRng, RngIntElt -> BoolElt, SubModLat
   ToricLattice(n) : RngIntElt -> TorLat
   ToricLattice(Q) : [[RngIntElt]] -> TorLat,TorLatMap
   WeightLattice(G) : GrpLie -> Lat
   WeightLattice(W) : GrpMat -> Lat
   WeightLattice(W) : GrpPermCox -> Lat
   WeightLattice(R) : RootDtm -> Lat
   WindingLattice(M, j : parameters) : ModSym, RngIntElt -> Lat
   ZeroRootLattice(R) : RootDtm -> Lat
   hom< L -> K | M > : TorLat,TorLat,Mtrx -> TorLatMap

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012