[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: PositiveDefiniteForm .. Power
PositiveDefiniteForm(G) : GrpMat -> Mtrx
PositiveDefiniteForm(L) : Lat -> AlgMatElt
PositiveGammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
NegativeGammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
ZeroGammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
GammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
PositiveQuadrant(L) : TorLat -> TorCon
PositiveRelativeRoots(R) : RootDtm -> SetIndx
NegativeRelativeRoots(R) : RootDtm -> SetIndx
SimpleRelativeRoots(R) : RootDtm -> SetIndx
RelativeRoots(R) : RootDtm -> SetIndx
PositiveCoroots(G) : GrpLie -> (@@)
PositiveRoots(G) : GrpLie -> (@@)
PositiveRoots(W) : GrpMat -> (@@)
PositiveRoots(W) : GrpPermCox -> (@@)
PositiveRoots(R) : RootStr -> (@@)
PositiveRoots(R) : RootSys -> (@@)
PositiveRootsPerm(U) : AlgQUE -> SeqEnum
PositiveSum(m, i) : Map, RngIntElt -> FldReElt
PossibleCanonicalDissidentPoints(C) : GRCrvS -> SeqEnum
PossibleHypergeometricData(d) : RngIntElt -> SeqEnum
PossibleSimpleCanonicalDissidentPoints(C) : GRCrvS -> SeqEnum
PossibleCanonicalDissidentPoints(C) : GRCrvS -> SeqEnum
PossibleHypergeometricData(d) : RngIntElt -> SeqEnum
PossibleSimpleCanonicalDissidentPoints(C) : GRCrvS -> SeqEnum
Position Over Term: POT (MODULES OVER MULTIVARIATE RINGS)
Position Over Term (Permutation): POT-PERM (MODULES OVER MULTIVARIATE RINGS)
AlgebraicPowerSeries(dp, ip, L, e) : RngUPolElt, RngMPolElt, Lat, RngIntElt -> RngPowAlgElt
AlternatingPower(R, n, v) : RootDtm, RngIntElt, ModTupRngElt -> LieRepDec
CartesianPower(R, k) : Str, RngIntElt -> SetCart
ClassPowerCharacter(x, j) : AlgChtrElt, RngIntElt -> AlgChtrElt
ConjugatesToPowerSums(I) : [] -> []
Eigenform(M, prec) : ModSym, RngIntElt -> RngSerPowElt
ElementaryToPowerSumMatrix(n): RngIntElt -> AlgMatElt
EvaluateByPowerSeries(m, P) : MapSch, Pt -> Pt
EvaluationPowerSeries(s, nu, v) : Tup, SeqEnum, SeqEnum -> RngPowAlgElt
ExteriorPower(a,r) : AlgMat, RngIntElt -> AlgMatElt
ExteriorPower(V, n) : ModAlg, RngIntElt -> ModAlg, Map
ExteriorPower(V, n) : ModAlg, RngIntElt -> ModAlg, Map
HasHomogeneousBasis(A): AlgSym -> BoolElt
HomogeneousToPowerSumMatrix(n): RngIntElt -> AlgMatElt
IsPower(a, n) : FldACElt, RngIntElt -> BoolElt, FldACElt
IsPower(a, k) : FldAlgElt, RngIntElt -> BoolElt, FldAlgElt
IsPower(a, n) : FldFinElt, RngIntElt -> BoolElt, FldFinElt
IsPower(a, k) : FldNumElt, RngIntElt -> BoolElt, FldNumElt
IsPower(I, n) : RngFunOrdIdl, RngIntElt -> BoolElt, RngFunOrdIdl
IsPower(n) : RngIntElt -> BoolElt
IsPower(n, k) : RngIntElt -> BoolElt
IsPower(w, n) : RngOrdElt, RngIntElt -> BoolElt, RngOrdElt
IsPower(I, k) : RngOrdFracIdl, RngIntElt -> BoolElt, RngOrdFracIdl
IsPower(x, n) : RngPadElt, RngIntElt -> BoolElt, RngPadElt
IsPrimePower(n) : RngIntElt -> BoolElt, RngIntElt, RngIntElt
LazyPowerSeriesRing(C, n) : Rng, RngIntElt -> RngPowLaz
ModByPowerOf2(n, b) : RngIntElt, RngIntElt -> RngIntElt
MonomialToPowerSumMatrix(n): RngIntElt -> AlgMatElt
PowerFormalSet(R) : Str -> PowSetIndx
PowerGroup(G) : GrpPC -> PowerGroup
PowerIdeal(R) : Rng -> PowIdl
PowerIndexedSet(R) : Str -> PowSetIndx
PowerMap(G) : GrpFin -> Map
PowerMap(G) : GrpMat -> Map
PowerMap(G) : GrpPC -> Map
PowerMap(G) : GrpPerm -> Map
PowerMultiset(R) : Str -> PowSetMulti
PowerPolynomial(f,n) : RngUPolElt, RngIntElt -> RngUPolElt
PowerProduct(B, E) : [RngOrdFracIdl], [RngIntElt] -> RngOrdFracIdl
PowerRelation(r, k: parameters) : FldReElt, RngIntElt -> RngUPolElt
PowerResidueCode(K, n, p) : FldFin, RngIntElt, RngIntElt -> Code
PowerSequence(R) : Str -> PowSeqEnum
PowerSeriesRing(R) : Rng -> RngSerPow
PowerSet(R) : Str -> PowSetEnum
PowerSumToElementaryMatrix(n): RngIntElt -> AlgMatElt
PowerSumToElementarySymmetric(I) : [] -> []
PowerSumToHomogeneousMatrix(n): RngIntElt -> AlgMatElt
PowerSumToMonomialMatrix(n): RngIntElt -> AlgMatElt
PowerSumToSchurMatrix(n): RngIntElt -> AlgMatElt
PrimePowerRepresentation(x, k, a) : FldFunGElt, RngIntElt, FldFunGElt -> SeqEnum
ProductRepresentation(P, E) : [ FldAlgElt ], [ RngIntElt ] -> FldAlgElt
ProductRepresentation(P, E) : [ FldNumElt ], [ RngIntElt ] -> FldNumElt
ProductRepresentation(Q, S) : [FldFunGElt], [RngIntElt] -> FldFunGElt
SchurToPowerSumMatrix(n): RngIntElt -> AlgMatElt
SetPowerPrinting(F, l) : FldFin, BoolElt ->
SymmetricFunctionAlgebraPower(R) : Rng -> AlgSym
SymmetricPower(a,r) : AlgMatElt, RngIntElt -> AlgMatElt
SymmetricPower(L, m) : LSer, RngIntElt -> LSer
SymmetricPower(V, n) : ModAlg, RngIntElt -> ModAlg, Map
SymmetricPower(V, n) : ModAlg, RngIntElt -> ModAlg, Map
SymmetricPower(L, m) : RngDiffOpElt, RngIntElt -> RngDiffOpElt
SymmetricPower(R, n, v) : RootDtm, RngIntElt, ModTupRngElt -> LieRepDec
TensorPower(M, n) : ModGrp, RngIntElt -> ModGrp
TensorPower(R, n, v) : RootDtm, RngIntElt, ModTupRngElt -> LieRepDec
TensorProduct(S, T) : ShfCoh, ShfCoh -> ShfCoh
f ^ n : QuadBinElt, RngIntElt -> QuadBinElt
qExpansion(f) : ModFrmElt -> RngSerPowElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012