[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: ModulesOverCommonField .. Monomial
ModulesOverCommonField(M, N) : ModGrp, ModGrp -> ModGrp, ModGrp
ModulesOverSmallerField(Q, F) : SeqEnum, FldFin -> ModGrp
ModuleWithBasis(Q): SeqEnum -> ModAlg
Moduli(L) : AlgLie -> SeqEnum
Moduli(M) : ModTupRng -> [ RngElt ]
ModuliPoints(X,E) : CrvMod, CrvEll -> SeqEnum
CrvMod_Moduli points (Example H128E1)
AlgLie_ModuliOfLieAlgebra (Example H100E29)
ModuliPoints(X,E) : CrvMod, CrvEll -> SeqEnum
BlumBlumShubModulus(b) : RngIntElt -> RngIntElt
BBSModulus(b) : RngIntElt -> RngIntElt
Conductor(psi) : GrossenChar -> RngOrdIdl, SeqEnum
CongruenceModulus(A) : ModAbVar -> RngIntElt
CongruenceModulus(M : parameters) : ModSym -> RngIntElt
FactoredModulus(R) : RngIntRes -> RngIntEltFact
Modulus(c) : FldComElt -> FldReElt
Modulus(G) : GrpDrch -> RngIntElt
Modulus(chi) : GrpDrchElt -> RngIntElt
Modulus(G) : GrpDrchNF -> RngOrdIdl, SeqEnum
Modulus(R) : RngIntRes -> RngInt
Modulus(OQ) : RngOrdRes -> RngOrdIdl
Modulus(Q) : RngUPolRes -> RngUPolElt
MoebiusMu(n) : RngIntElt -> RngIntElt
MoebiusStrip() : -> SmpCpx
MoebiusMu(n) : RngIntElt -> RngIntElt
MoebiusStrip() : -> SmpCpx
MolienSeries(G) : GrpMat -> FldFunUElt
MolienSeriesApproximation(G, n) : GrpPerm, RngIntElt -> RngSerLaurElt
Molien Series (INVARIANT THEORY)
MolienSeries(G) : GrpMat -> FldFunUElt
RngInvar_MolienSeries (Example H110E5)
MolienSeriesApproximation(G, n) : GrpPerm, RngIntElt -> RngSerLaurElt
IsMonic(L) : RngDiffOpElt -> BoolElt
IsWeaklyMonic(L) : RngDiffOpElt -> BoolElt
MonicDifferentialOperator(L) : RngDiffOpElt -> RngDiffOpElt
ResolveAffineMonicSurface(s) : RngUPolElt -> List, RngIntElt
MonicDifferentialOperator(L) : RngDiffOpElt -> RngDiffOpElt
MonodromyPairing(P, Q) : ModSSElt, ModSSElt -> RngIntElt
MonodromyWeights(M) : ModSS -> SeqEnum
ModSS_Monodromy (Example H135E9)
The Monodromy Pairing (SUPERSINGULAR DIVISORS ON MODULAR CURVES)
The Monodromy Pairing (SUPERSINGULAR DIVISORS ON MODULAR CURVES)
MonodromyPairing(P, Q) : ModSSElt, ModSSElt -> RngIntElt
MonodromyWeights(M) : ModSS -> SeqEnum
FreeMonoid(n) : RngIntElt -> MonFP
Monoid< generators | relations > : MonFPElt, ..., MonFPElt, Rel, ..., Rel -> MonFP
OrderedIntegerMonoid() : -> MonOrd
OrderedMonoid(P) : MonPlc -> MonOrd
OrderedMonoid(M) : MonPlc -> MonOrd;
OrderedMonoid(n) : RngIntElt -> MonOrd
PlacticIntegerMonoid() : -> MonOrd
PlacticMonoid(O) : MonOrd -> MonOrd
TableauIntegerMonoid() : -> MonTbl
TableauMonoid(O) : MonOrd -> MonTbl
SgpFP_Monoid (Example H77E2)
Ordered Monoids (PARTITIONS, WORDS AND YOUNG TABLEAUX)
Plactic Monoids (PARTITIONS, WORDS AND YOUNG TABLEAUX)
Tableau Monoids (PARTITIONS, WORDS AND YOUNG TABLEAUX)
MonomialGroup(C: parameters) : Code -> GrpPerm, PowMap, Map
AutomorphismGroup(C: parameters) : Code -> GrpPerm, PowMap, Map
AutomorphismGroupStabilizer(C, k) : Code, RngIntElt -> GrpPerm, PowMap, Map
AutomorphismSubgroup(C) : Code -> GrpPerm, PowMap, Map
CoxMonomialLattice(C) : RngCox -> TorLat
CoxMonomialLattice(X) : TorVar -> TorLat
DefiningMonomial(D) : DivTorElt -> RngMPolElt
ElementaryToMonomialMatrix(n): RngIntElt -> AlgMatElt
HasHomogeneousBasis(A): AlgSym -> BoolElt
HomogeneousToMonomialMatrix(n): RngIntElt -> AlgMatElt
LatticeElementToMonomial(D,v) : DivTorElt,TorLatElt -> RngMPolElt
LeadingMonomial(f) : AlgFrElt -> AlgFrElt
LeadingMonomial(f) : RngMPolElt -> RngMPolElt
LeadingMonomialIdeal(I) : RngMPol -> RngMPol
LeadingMonomialIdeal(I) : RngMPolLoc -> RngMPolLoc
Monomial(P, E) : RngMPol, [ RngIntElt ] -> RngMPolElt
MonomialBasis(Q) : RngMPolRes -> [ RngMPolResElt ]
MonomialCoefficient(f, m) : AlgFrElt, AlgFrElt -> RngElt
MonomialCoefficient(f, m) : RngMPolElt, RngMPolElt -> RngElt
MonomialCoefficient(p, m) : RngUPolElt, RngUPolElt -> RngElt
MonomialLattice(C) : RngCox -> TorLat
MonomialLattice(X) : TorVar -> TorLat
MonomialOrder(P) : RngMPol -> Tup
MonomialOrder(R) : RngMPolLoc -> Tup
MonomialOrderWeightVectors(P) : RngMPol -> [ [ FldRatElt ] ]
MonomialOrderWeightVectors(R) : RngMPol -> [ [ FldRatElt ] ]
MonomialToElementaryMatrix(n): RngIntElt -> AlgMatElt
MonomialToHomogeneousMatrix(n): RngIntElt -> AlgMatElt
MonomialToPowerSumMatrix(n): RngIntElt -> AlgMatElt
MonomialToSchurMatrix(n): RngIntElt -> AlgMatElt
PowerSumToMonomialMatrix(n): RngIntElt -> AlgMatElt
SchurToMonomialMatrix(n): RngIntElt -> AlgMatElt
SymmetricFunctionAlgebraMonomial(R) : Rng -> AlgSym
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012