[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: terms .. Three
Accessing the Underlying Representation (MODULES OVER MULTIVARIATE RINGS)
Coefficients and Terms (DIFFERENTIAL RINGS)
Coefficients and Terms (DIFFERENTIAL RINGS)
CodeFld_TernaryGolayCode (Example H152E1)
CodeRng_TernaryGolayCode (Example H155E1)
DedekindTest(p, m) : RngUPolElt, RngIntElt -> Boolelt
HomogeneousModuleTest(P, S, F) : [ RngMPol ], [ RngMPol ], RngMPol -> BoolElt, [ RngMPol ]
HomogeneousModuleTest(P, S, F) : [ RngMPol ], [ RngMPol ], RngMPol -> BoolElt, [ RngMPol ]
HomogeneousModuleTest(P, S, L) : [ RngMPol ], [ RngMPol ], [ RngMPol ] -> [ BoolElt ], [ [ RngMPol ] ]
HomogeneousModuleTest(P, S, L) : [ RngMPol ], [ RngMPol ], [ RngMPol ] -> [ BoolElt ], [ [ RngMPol ] ]
HomogeneousModuleTestBasis(P, S, L) : [ RngMPol ], [ RngMPol ], [ RngMPol ] -> [ BoolElt ], [ [ RngMPol ] ]
TestHeckeRep(W,r) : GrpFPCox, SeqEnum -> .
TestWG(W,wg) : GrpFPCox, GrphUnd -> .
Recognition Functions (QUATERNION ALGEBRAS)
Singularity Analysis (ALGEBRAIC CURVES)
Testing Finiteness (MATRIX GROUPS OVER INFINITE FIELDS)
Tests for Baskets (HILBERT SERIES OF POLARISED VARIETIES)
TestHeckeRep(W,r) : GrpFPCox, SeqEnum -> .
Cartan_Testing (Example H95E11)
Testing for Edge Decorations (MULTIGRAPHS)
Boolean Tests on Subspaces (BRANDT MODULES)
Basic Tests (SCHEMES)
Tests for Linear Systems (SCHEMES)
TestWG(W,wg) : GrpFPCox, GrphUnd -> .
GrpFP_1_Tetrahedral (Example H70E8)
CM Points (ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES)
Creation of Triangle Groups (ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES)
Fundamental Domain (ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES)
CM Points (ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES)
Creation of Triangle Groups (ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES)
Fundamental Domain (ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES)
CompleteTheSquare(model) : ModelG1 -> ModelG1
FldFunRat_the-next_example (Example H41E7)
ChineseRemainderTheorem(I1, L1, e1, L2) : RngOrdIdl, [RngIntElt], RngOrdElt, [RngIntElt] -> RngOrdElt
CRT(I1, L1, e1, L2) : RngOrdIdl, [RngIntElt], RngOrdElt, [RngIntElt] -> RngOrdElt
ChineseRemainderTheorem(I1, I2, e1, e2) : RngFunOrdIdl, RngFunOrdIdl, RngFunOrdElt, RngFunOrdElt -> RngFunOrdElt
ChineseRemainderTheorem(I, J, a, b) : RngInt, RngInt, RngIntElt, RngIntElt -> RngIntElt
ChineseRemainderTheorem(I1, I2, e1, e2) : RngOrdIdl, RngOrdIdl, RngOrdElt, RngOrdElt -> RngOrdElt
ChineseRemainderTheorem(X, N) : [RngIntElt], [RngIntElt] -> RngIntElt
ChineseRemainderTheorem(X, M) : [RngUPolElt], [RngUPolElt] -> RngUPolElt
An Overview of Relevant Theory (ELLIPTIC CURVES OVER FUNCTION FIELDS)
Galois Theory (NUMBER FIELDS)
GALOIS THEORY OF NUMBER FIELDS
Group Theoretic Functions (CLASS FIELD THEORY)
Ideal Theory of Orders (QUATERNION ALGEBRAS)
Representation Theory (POLYCYCLIC GROUPS)
JacobiTheta(q, z) : FldReElt, FldReElt -> FldReElt
JacobiTheta(q, z) : FldReElt, RngSerElt[FldRe] -> RngSerElt
JacobiThetaNullK(q, k) : FldReElt, RngIntElt -> FldReElt
Theta(char, z, A) : Mtrx, Mtrx, AnHcJac -> FldComElt
Theta(char, z, tau) : Mtrx, Mtrx, Mtrx -> FldComElt
ThetaOperator(M1, M2) : ModSym, ModSym -> Map
ThetaSeries(L, n) : Lat, RngIntElt -> RngSerElt
ThetaSeries(x, y, prec) : ModBrdtElt, ModBrdtElt, RngIntElt -> RngSerElt
ThetaSeries(f, n) : QuadBinElt, RngIntElt -> RngSerElt
ThetaSeriesIntegral(L, n) : Lat, RngIntElt -> RngSerElt
ThetaSeriesModularForm(L) : Lat -> ModFrmElt
ThetaSeriesModularFormSpace(L) : Lat -> ModFrm
Successive Minima and Theta Series (LATTICES)
Theta Functions (REAL AND COMPLEX FIELDS)
Theta Series as Modular Forms (LATTICES)
ThetaOperator(M1, M2) : ModSym, ModSym -> Map
ModSym_ThetaOperator (Example H133E16)
ThetaSeries(L, n) : Lat, RngIntElt -> RngSerElt
ThetaSeries(x, y, prec) : ModBrdtElt, ModBrdtElt, RngIntElt -> RngSerElt
ThetaSeries(f, n) : QuadBinElt, RngIntElt -> RngSerElt
Lat_ThetaSeries (Example H30E15)
ThetaSeriesIntegral(L, n) : Lat, RngIntElt -> RngSerElt
ThetaSeriesModularForm(L) : Lat -> ModFrmElt
ThetaSeriesModularFormSpace(L) : Lat -> ModFrm
IsThick(X) : CosetGeom -> BoolElt
IsThin(X) : CosetGeom -> BoolElt
ThreeDescent(E : parameters) : CrvEll -> [ Crv ], List
ThreeDescentByIsogeny(E) : CrvEll -> [ Crv ], [ Map ]
ThreeDescentCubic(E, α: parameters) : CrvEll, Tup -> Crv, MapSch
ThreeIsogenyDescent(E : parameters) : CrvEll -> [ Crv ], List, [ Crv ], List, MapSch
ThreeIsogenyDescentCubic(φ, α) : MapSch, Any -> Crv, MapSch
ThreeIsogenySelmerGroups(E : parameters) : CrvEll -> GrpAb, Map, GrpAb, Map, MapSch
ThreeSelmerElement(E, C) : CrvEll, RngMPolElt -> Tup
ThreeSelmerGroup(E : parameters) : CrvEll -> GrpAb, Map
ThreeTorsionMatrices(E, C) : CrvEll, RngMPolElt -> Tup
ThreeTorsionPoints(E : parameters) : CrvEll -> Tup
ThreeTorsionType(E) : CrvEll -> MonStgElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012