[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: conditional-expression  ..  cones


conditional-expression

   The Simple Conditional Expression (STATEMENTS AND EXPRESSIONS)

conditional-statement

   The Simple Conditional Statement (STATEMENTS AND EXPRESSIONS)

ConditionalClassGroup

   ConditionalClassGroup(K) : FldAlg -> GrpAb, Map
   ConditionalClassGroup(O) : RngOrd -> GrpAb, Map

Conditioned

   ConditionedGroup(G) : GrpPC -> GrpPC
   IsConditioned(G) : GrpPC -> BoolElt

conditioned

   WeightClass(x) : GrpPCElt -> RngIntElt
   Conditioned Presentations (FINITE SOLUBLE GROUPS)

conditioned-presentation

   WeightClass(x) : GrpPCElt -> RngIntElt
   Conditioned Presentations (FINITE SOLUBLE GROUPS)

ConditionedGroup

   ConditionedGroup(G) : GrpPC -> GrpPC

Conditions

   OreConditions(R, n, j) : RngPad, RngIntElt, RngIntElt -> BoolElt

conditions

   Point Conditions (SCHEMES)

Conductor

   Level(S) : AlgQuatOrd -> RngElt
   Conductor(S) : AlgQuatOrd -> RngElt
   Conductor(A) : ArtRep -> RngIntElt
   Conductor(E) : CrvEll -> DivFunElt
   Conductor(E) : CrvEll -> FldPadElt
   Conductor(E) : CrvEll -> RngIntElt
   Conductor(E) : CrvEll -> RngOrdIdl
   Conductor(m) : DivFunElt -> DivFunElt
   Conductor(m, U) : DivFunElt, GrpAb -> DivFunElt
   Conductor(A) : FldAb -> RngOrdIdl, [RngIntElt]
   Conductor(K) : FldCyc -> RngIntElt, [RngIntElt]
   Conductor(A) : FldFunAb -> DivFunElt
   Conductor(K) : FldQuad -> RngIntElt, [RngIntElt]
   Conductor(Q) : FldRat -> RngIntElt
   Conductor(psi) : GrossenChar -> RngOrdIdl, SeqEnum
   Conductor(chi) : GrpDrchElt -> RngIntElt
   Conductor(chi) : GrpDrchNFElt -> RngOrdIdl, SeqEnum
   Conductor(A) : ModAbVar -> RngIntElt
   Conductor(M) : ModBrdt -> RngIntElt
   Conductor(Q) : QuadBin -> RngIntElt
   Conductor(pi) : RepLoc -> RngIntElt
   Conductor(O) : RngOrd -> RngOrdIdl
   Conductor(O) : RngQuad -> RngIntElt
   ConductorRange(D) : DB -> RngIntElt, RngIntElt
   EulerFactor(L, p) : LSer, RngIntElt -> .var Degree : RngIntElt : var Precision: RngIntElt Default: desGiven an L-series and a prime p, this computes thepth Euler factor, either as a polynomial or a power series.The optional parameter Degree will truncate the series to that length,and the optional parameter Precision is of use when the series isdefined over the complex numbers.
   LargestConductor(D) : DB -> RngIntElt
   QuaternionOrder(M) : ModBrdt -> AlgQuatOrd

ConductorRange

   ConductorRange(D) : DB -> RngIntElt, RngIntElt

Cone

   Cone(A) : Seq -> TorCon
   Cone(X) : SmpCpx -> SmpCpx
   Cone(F,i) : TorFan,RngIntElt -> TorCon
   Cone(F,S) : TorFan,[RngIntElt] -> TorCon
   Cone(v) : TorLatElt -> TorCon
   ConeInSublattice(C) : TorCon -> TorCon,Map
   ConeIndices(F) : TorFan -> SeqEnum
   ConeIndices(F,C) : TorFan -> SeqEnum
   ConeIntersection(F,C1,C2) : TorFan,TorCon,TorCon -> TorCon
   ConeQuotientByLinearSubspace(C) : TorCon -> TorCon,Map,Map
   ConeToPolyhedron(C) : TorCon -> TorPol
   ConeWithInequalities(B) : Set -> TorCon
   FullCone(L): TorLat -> TorCon
   GradedCone(D) : DivTorElt -> TorCon
   MoriCone(X) : TorVar -> TorCon
   NefCone(X) : TorVar -> TorCon
   NormalisedCone(P) : TorPol -> TorCon
   SupportingCone(P,v) : TorPol,TorLatElt -> TorCon
   TangentCone(p) : Pt -> Sch
   TangentCone(p) : Sch,Pt -> Sch
   ZeroCone(L): TorLat -> TorCon

cone-suspension

   SmpCpx_cone-suspension (Example H140E12)

ConeIndices

   ConeIndices(F) : TorFan -> SeqEnum
   ConeIndices(F,C) : TorFan -> SeqEnum

ConeInSublattice

   ConeInSublattice(C) : TorCon -> TorCon,Map

ConeIntersection

   ConeIntersection(F,C1,C2) : TorFan,TorCon,TorCon -> TorCon

ConeQuotientByLinearSubspace

   ConeQuotientByLinearSubspace(C) : TorCon -> TorCon,Map,Map

Cones

   AllCones(F) : TorFan -> SeqEnum
   Cones(F) : TorFan -> SeqEnum
   Cones(F,i) : TorFan,RngIntElt -> SeqEnum
   ConesOfCodimension(F,i) : TorFan,RngIntElt -> SeqEnum
   ConesOfMaximalDimension(F) : TorFan -> SeqEnum
   SingularCones(F) : TorFan -> SeqEnum,SeqEnum

cones

   Cones (CONVEX POLYTOPES AND POLYHEDRA)
   Cones and Polyhedra (CONVEX POLYTOPES AND POLYHEDRA)
   Geometrical Properties of Cones and Polyhedra (TORIC VARIETIES)
   Polytopes, Cones and Polyhedra (CONVEX POLYTOPES AND POLYHEDRA)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012