[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: EulerCharacteristic  ..  Even


EulerCharacteristic

   EulerCharacteristic(s) : GrphSpl -> RngIntElt
   EulerCharacteristic(X) : SmpCpx -> RngIntElt

EulerFactor

   EulerFactor(A, p) : ArtRep, RngIntElt -> RngUPolElt
   EulerFactor(H, t, p) : HypGeomData, FldRatElt, RngIntElt -> RngUPolElt
   EulerFactor(J) : JacHyp -> RngUPolElt
   EulerFactor(J, K) : JacHyp, FldFin -> RngUPolElt
   EulerFactor(L, p) : LSer, RngIntElt -> .var Degree : RngIntElt : var Precision: RngIntElt Default: desGiven an L-series and a prime p, this computes thepth Euler factor, either as a polynomial or a power series.The optional parameter Degree will truncate the series to that length,and the optional parameter Precision is of use when the series isdefined over the complex numbers.

EulerFactorModChar

   EulerFactorModChar(J) : JacHyp -> RngUPolElt

EulerFactorsByDeformation

   EulerFactorsByDeformation(Q, Y) : RngMPolElt, SeqEnum -> SeqEnum
   ZetaFunctionsByDeformation(Q, Y) : RngMPolElt, SeqEnum -> SeqEnum
   JacobianOrdersByDeformation(Q, Y) : RngMPolElt, SeqEnum -> SeqEnum

EulerGamma

   EulerGamma(R) : FldRe -> FldReElt

Eulerian

   EulerianGraphDatabase(n : parameters) : RngIntElt -> DB
   EulerianNumber(n, r) : RngIntElt, RngIntElt -> RngIntElt
   IsEulerian(G) : Grph -> BoolElt

EulerianGraphDatabase

   EulerianGraphDatabase(n : parameters) : RngIntElt -> DB

EulerianNumber

   EulerianNumber(n, r) : RngIntElt, RngIntElt -> RngIntElt

EulerPhi

   EulerPhi(n) : RngIntElt -> RngIntElt

EulerPhiInverse

   EulerPhiInverse(m) : RngIntElt -> RngIntElt

EulerProduct

   EulerProduct(O, B) : RngOrd, RngIntElt -> FldReElt

Eval

   RawEval(I, GR) : RngOrdFracIdl, GrossenChar -> FldNumElt, FldCycElt, FldCycElt
   Grossencharacter(psi, chi, T) : GrpHeckeElt, GrpDrchNFElt, SeqEnum -> GrossenChar

eval

   Runtime Evaluation: the eval Expression (STATEMENTS AND EXPRESSIONS)
   eval expression
   RngLaz_eval (Example H50E9)

eval-expression

   Runtime Evaluation: the eval Expression (STATEMENTS AND EXPRESSIONS)

eval1

   State_eval1 (Example H1E17)

eval2

   State_eval2 (Example H1E18)

Evaluate

   f(p) : Pt, FldFunFracSchElt -> RngElt
   Evaluate(f, p) : RngElt,Pt -> RngElt
   p @ f : Pt, FldFunFracSchElt -> RngElt
   p @ f : Pt, FldFunFracSchElt -> RngElt
   P @ f : PtHyp, MapIsoSch -> PtHyp
   Evaluate(f, s) : AlgFrElt, [ RngElt ] -> RngElt
   Evaluate(a, P) : FldFunElt, PlcFunElt -> RngElt
   Evaluate(a, P) : FldFunFracSchElt, PlcCrvElt -> RngElt
   Evaluate(f, v, r) : FldFunRatMElt, RngIntElt, RngElt -> FldFunRatMElt
   Evaluate(f, r) : FldFunRatUElt, RngElt -> FldFunRatUElt
   Evaluate(x, p) : FldNumElt, PlcNumElt -> RngElt
   Evaluate(x, p) : FldOrdElt, PlcNumElt -> RngElt
   Evaluate(chi,n) : GrpDrchElt, RngIntElt -> RngElt
   Evaluate(u, Q) : GrpSLPElt, [ GrpElt ] -> GrpElt
   Evaluate(L, s0) : LSer, FldComElt -> FldComElt
   Evaluate(a, P) : RngElt, PlcFunElt -> RngElt
   Evaluate(f, i, r) : RngMPolElt, RngMPolElt, RngElt -> RngMPolElt
   Evaluate(f, s) : RngMPolElt, [ RngElt ] -> RngElt
   Evaluate(s, t) : RngPowLazElt, RngPowLazElt -> RngPowLazElt
   Evaluate(f, s) : RngSerElt, RngElt -> RngElt
   Evaluate(f, phi) : RngUPolElt, MapModAbVar -> MapModAbVar
   Evaluate(p, r) : RngUPolElt, RngElt -> RngElt
   Evaluate(t, a, b) : Thue, RngIntElt, RngIntElt -> RngIntElt
   EvaluateAt(L, p) : LP, Mtrx -> RngIntElt
   EvaluateByPowerSeries(m, P) : MapSch, Pt -> Pt
   EvaluateClassGroup(O) : RngOrd -> BoolElt
   EvaluatePolynomial(C, a, b, c) : CrvHyp, RngElt, RngElt, RngElt -> RngElt
   L(s) : RngIntElt, ModAbVarLSer -> RngElt
   SpecialEvaluate(F, x) : RngUPolElt, Any -> RngElt
   SpecialEvaluate(F, x) : RngUPolTwstElt, RngElt -> RngElt

evaluate

   Evaluation (RATIONAL FUNCTION FIELDS)

evaluate-funfld-example

   Scheme_evaluate-funfld-example (Example H112E9)

EvaluateAt

   EvaluateAt(L, p) : LP, Mtrx -> RngIntElt

EvaluateByPowerSeries

   EvaluateByPowerSeries(m, P) : MapSch, Pt -> Pt

EvaluateClassGroup

   EvaluateClassGroup(O) : RngOrd -> BoolElt

EvaluatePolynomial

   EvaluatePolynomial(C, a, b, c) : CrvHyp, RngElt, RngElt, RngElt -> RngElt

Evaluation

   EvaluationPowerSeries(s, nu, v) : Tup, SeqEnum, SeqEnum -> RngPowAlgElt
   GetEvaluationComparison(R) : RngSLPol -> FldFin, RngIntElt
   SetEvaluationComparison(R, F, n) : RngSLPol, FldFin, RngIntElt ->

evaluation

   Evaluation (FINITELY PRESENTED ALGEBRAS)
   Evaluation (INTEGER RESIDUE CLASS RINGS)
   Evaluation and Derivative (POWER, LAURENT AND PUISEUX SERIES)
   Evaluation in Magma (MAGMA SEMANTICS)
   Evaluation, Interpolation (MULTIVARIATE POLYNOMIAL RINGS)
   Evaluation, Interpolation (UNIVARIATE POLYNOMIAL RINGS)
   The Evaluation Process Revisited (MAGMA SEMANTICS)

evaluation-derivative

   Evaluation and Derivative (POWER, LAURENT AND PUISEUX SERIES)

evaluation-interpolation

   Evaluation, Interpolation (MULTIVARIATE POLYNOMIAL RINGS)

EvaluationPowerSeries

   EvaluationPowerSeries(s, nu, v) : Tup, SeqEnum, SeqEnum -> RngPowAlgElt

Even

   EvenSublattice(L) : Lat -> Lat, Map
   EvenWeightCode(n) : RngIntElt -> Code
   EvenWeightSubcode(C) : Code -> Code
   HasSquareSha(J) : JacHyp -> BoolElt
   InvolutionClassicalGroupEven (G : parameters) : GrpMat[FldFin] ->GrpMatElt[FldFin], GrpSLPElt, RngIntElt
   IsDoublyEven(C) : Code -> BoolElt
   IsEven(C) : Code -> BoolElt
   IsEven(chi) : GrpDrchElt -> BoolElt
   IsEven(chi) : GrpDrchNFElt -> BoolElt
   IsEven(G): GrpPerm -> BoolElt
   IsEven(g) : GrpPermElt -> BoolElt
   IsEven(L) : Lat -> BoolElt
   IsEven(n) : RngIntElt -> BoolElt
   IsTotallyEven(chi) : GrpDrchElt -> BoolElt
   IsTotallyEven(chi) : GrpDrchNFElt -> BoolElt
   RecogniseSp4Even(G, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012