[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: IsDifferentialOperatorRing .. IsEndomorphism
IsDifferentialOperatorRing(R) : . -> BoolElt
IsDifferentialSeriesRing(R) : Rng -> BoolElt
IsDimensionCompatible(B) : AlgBas -> Bool
IsDirected(G) : GrphMult -> BoolElt
IsDirectSum(L) : TorLat -> BoolElt
IsDirectSummand(M, S) : ModGrp, ModGrp -> BoolElt, ModGrp
HasComplement(M, S) : ModGrp, ModGrp -> BoolElt, ModGrp
IsDiscriminant(D) : RngIntElt -> BoolElt
IsDisjoint(R, S) : SetEnum, SetEnum -> BoolElt
IsDistanceRegular(G) : GrphUnd -> BoolElt
IsDistanceTransitive(G) : GrphUnd -> BoolElt
IsDivisible(D) : DivSchElt -> BoolElt, RngIntElt
IsDivisibleBy(a, b) : FldFunElt, FldFunElt -> BoolElt, FldFunElt
IsDivisibleBy(P, n) : PtEll, RngIntElt -> BoolElt, PtEll
IsDivisibleBy(n, d) : RngIntElt, RngIntElt -> BoolElt, RngIntElt
IsDivisibleBy(a, b) : RngMPolElt, RngMPolElt -> BoolElt, RngMPolElt
IsDivisibleBy(a, b) : RngUPolElt, RngUPolElt -> BoolElt, RngUPolElt
IsDivisionRing(R) : Rng -> BoolElt
IsDivisiorialContraction(X,i) : TorVar,RngIntElt -> BoolElt
IsIntegralDomain(R): Rng -> BoolElt
IsDomain(R) : Rng -> BoolElt
IsDomain(R) : RngDiff -> BoolElt
IsDominant(f) : MapSch -> BoolElt
IsDominant(R, v) : RootDtm, . -> ModTupFldElt, GrpFPCoxElt
IsDominant(R, v) : RootDtm, . -> ModTupFldElt, GrpFPCoxElt
IsDominant(R, v) : RootDtm, . -> ModTupFldElt, GrpFPCoxElt
IsDoublePoint(p) : Pt -> BoolElt
IsDoublyEven(C) : Code -> BoolElt
IsDualComputable(A) : ModAbVar -> BoolElt, ModAbVar
IsDynkinDigraph(D) : GrphDir -> BoolElt
IsEdgeCapacitated(G) : GrphMult -> BoolElt
IsEdgeLabelled(G) : GrphMult -> BoolElt
IsEdgeTransitive(G) : GrphUnd -> BoolElt
IsEdgeWeighted(G) : GrphMult -> BoolElt
IsPositive(D) : DivCrvElt -> BoolElt
IsEffective(D) : DivCrvElt -> BoolElt
IsEffective(D) : DivSchElt -> BoolElt
IsEffective(C) : GRCrvK -> BoolElt
IsEichler(O, p) : AlgAssVOrd , RngOrdIdl -> BoolElt, AlgAssVOrd, AlgAssVOrd
IsEichler(O) : AlgAssVOrd -> BoolElt, AlgAssVOrd, AlgAssVOrd
IsEisenstein(M) : ModBrdt -> BoolElt
IsEisenstein(M) : ModFrm -> BoolElt
IsEisenstein(M) : ModSym -> BoolElt
IsEisenstein(f) : RngUPolElt -> BoolElt
IsEisensteinSeries(f) : ModFrmElt -> BoolElt
IsEisensteinSeries(f) : ModFrmElt -> BoolElt
IsElementaryAbelian(G) : GrpAb -> BoolElt
IsElementaryAbelian(G) : GrpFin -> BoolElt
IsElementaryAbelian(G) : GrpGPC -> BoolElt
IsElementaryAbelian(G) : GrpMat -> BoolElt
IsElementaryAbelian(G) : GrpPC -> BoolElt
IsElementaryAbelian(G) : GrpPerm -> BoolElt
IsEllipticCurve(C) : CrvHyp -> BoolElt, CrvEll, MapIsoSch, MapIsoSch
IsEllipticCurve(C) : CrvHyp -> BoolElt, CrvEll, MapIsoSch, MapIsoSch
IsEllipticCurve([a, b]) : [ RngElt ] -> BoolElt, CrvEll
IsEllipticWeierstrass(C) : Crv -> BoolElt
IsEmbedded(M) : ModMPol -> BoolElt
IsEmpty(P) : GrpBrdClassProc -> BoolElt
IsEmpty(P) : GrpFPHomsProc -> BoolElt
IsEmpty(P) : GrpFPLixProc -> BoolElt
IsEmpty(G) : Grph -> BoolElt
IsEmpty(G) : GrphMult -> BoolElt
IsEmpty(P) : LatEnumProc -> BoolElt
IsEmpty(S) : List -> BoolElt
IsEmpty(p) : Process -> BoolElt
IsEmpty(p) : Process -> BoolElt
IsEmpty(p) : Process -> BoolElt
IsEmpty(p) : Process -> BoolElt
IsEmpty(P) : Rec -> BoolElt
IsEmpty(X) : Sch -> BoolElt
IsEmpty(S) : SeqEnum -> BoolElt
IsEmpty(R) : SetEnum -> BoolElt
IsEmpty(Xm) : SetPt -> BoolElt, Pt
IsEmpty(P) : TorPol -> BoolElt
IsEmptySimpleQuotientProcess(P) : Rec -> BoolElt
IsEmptyWord(u: parameters) : GrpBrdElt -> BoolElt
IsEndomorphism(phi) : MapModAbVar -> BoolElt
IsEndomorphism(f) : MapSch -> BoolElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012