[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: pRank .. predicate
pRank(D, p) : Inc, RngIntElt -> RngIntElt
pRank(P) : Plane -> RngIntElt
pRank(P, p) : Plane -> RngIntElt
pRanks(G) : GrpPC-> [ RngIntElt ]
Precision and Valuation (p-ADIC RINGS AND THEIR EXTENSIONS)
Precision of Extensions (p-ADIC RINGS AND THEIR EXTENSIONS)
Precision of Extensions (p-ADIC RINGS AND THEIR EXTENSIONS)
Precision and Valuation (p-ADIC RINGS AND THEIR EXTENSIONS)
Appendix A: Precedence (MAGMA SEMANTICS)
Appendix B: Reserved Words (MAGMA SEMANTICS)
AbsolutePrecision(x) : RngPadElt -> RngIntElt
AbsolutePrecision(f) : RngSerElt -> RngIntElt
AbsolutePrecision(e) : RngSerExtElt -> RngIntElt
BitPrecision(R) : FldCom -> RngIntElt
BitPrecision(r) : FldReElt -> RngIntElt
ChangePrecision(r, n) : FldReElt, RngIntElt -> FldReElt
ChangePrecision(~D, prec) : PhiMod, RngIntElt ->
ChangePrecision(F, p) : RngDiff, RngElt -> RngDiff, Map
ChangePrecision(~ R, k) : RngOrdRecoEnv, RngIntElt ->
ChangePrecision(L, k) : RngPad, Any -> RngPad
ChangePrecision(R, r) : RngSer, Any -> RngSer
ChangePrecision(f, r) : RngSerElt, RngIntElt -> RngSerElt
ChangePrecision(E, r) : RngSerExt, RngIntElt -> RngSerExt
ChangePrecision(x, k) : RngUPolElt, RngIntElt -> RngPadElt
ExpandToPrecision(f, c, n) : RngUPolElt, RngSerElt, RngIntElt -> RngSerElt
IsSinglePrecision(n) : RngIntElt -> BoolElt
LSetPrecision(L,precision) : LSer, RngIntElt ->
L`DefaultPrecision : RngPad -> RngIntElt
Precision(R) : FldCom -> RngIntElt
Precision(r) : FldReElt -> RngIntElt
Precision(M) : ModFrm -> RngIntElt
Precision(L) : RngLocA -> RngIntElt
Precision(L) : RngPad -> RngIntElt
Precision(x) : RngPadElt -> RngIntElt
Precision(R) : RngSer -> ExtReElt
Precision(E) : RngSerExt -> RngIntElt
Precision(L) : [FldReElt] -> RngIntElt
PrecisionBound(M : parameters) : ModFrm -> RngIntElt
PrintToPrecision(s, n) : RngPowLazElt, RngIntElt ->
RelativePrecision(F) : RngDiff -> RngElt
RelativePrecision(a) : RngLocAElt -> RngExtReElt
RelativePrecision(x) : RngPadElt -> RngIntElt
RelativePrecision(f) : RngSerElt -> RngIntElt
RelativePrecision(e) : RngSerExtElt -> RngIntElt
RelativePrecisionOfDerivation(F) : RngDiff -> RngElt
RelativePrecisionOfDerivation(R) : RngDiffOp -> RngElt
SetKantPrecision(n) : RngIntElt ->
SetPrecision(M, prec) : ModFrm, RngIntElt ->
SuggestedPrecision(f) : RngUPolElt -> RngIntElt
SuggestedPrecision(f) : RngUPolElt[RngLocA] -> RngIntElt
Free and Fixed Precision (POWER, LAURENT AND PUISEUX SERIES)
Precision (DIFFERENTIAL RINGS)
Precision (DIFFERENTIAL RINGS)
Precision (L-FUNCTIONS)
Precision (POWER, LAURENT AND PUISEUX SERIES)
Precision (POWER, LAURENT AND PUISEUX SERIES)
Precision (REAL AND COMPLEX FIELDS)
Precision (DIFFERENTIAL RINGS)
Precision (DIFFERENTIAL RINGS)
PrecisionBound(M : parameters) : ModFrm -> RngIntElt
DeleteHeckePrecomputation(O) : AlgAssVOrd ->
Predicates of Orders (QUATERNION ALGEBRAS)
Predicates on Elements (ALGEBRAIC FUNCTION FIELDS)
Predicates on Elements (ASSOCIATIVE ALGEBRAS)
Predicates on Lazy Series (LAZY POWER SERIES RINGS)
Predicates on Prime Ideals (ALGEBRAIC FUNCTION FIELDS)
Structure Predicates (ALGEBRAIC FUNCTION FIELDS)
Predicates on Prime Ideals (ALGEBRAIC FUNCTION FIELDS)
Ideal Predicates (FINITELY PRESENTED ALGEBRAS)
Ideal Predicates (LOCAL POLYNOMIAL RINGS)
Ideal Predicates (POLYNOMIAL RING IDEAL OPERATIONS)
Predicates (RING OF INTEGERS)
Predicates and Boolean Operations (INTRODUCTION TO RINGS [BASIC RINGS])
Predicates on Ring Elements (VALUATION RINGS)
Ring Predicates and Booleans (FINITE FIELDS)
Ring Predicates and Booleans (GALOIS RINGS)
Ring Predicates and Booleans (INTEGER RESIDUE CLASS RINGS)
Ring Predicates and Booleans (RATIONAL FUNCTION FIELDS)
Ring Predicates and Properties (ALGEBRAICALLY CLOSED FIELDS)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012