[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: composition .. conditional
Composition (MAPPINGS)
Composition and Chief Factors (MATRIX GROUPS OVER GENERAL RINGS)
Composition and Chief Series (PERMUTATION GROUPS)
Composition and Decomposition (CHARACTERS OF FINITE GROUPS)
Composition and Reversion (POWER, LAURENT AND PUISEUX SERIES)
Composition Series (MODULES OVER AN ALGEBRA)
Composition Trees for Matrix Groups (MATRIX GROUPS OVER FINITE FIELDS)
Composition and Decomposition (CHARACTERS OF FINITE GROUPS)
Composition and Chief Factors (MATRIX GROUPS OVER GENERAL RINGS)
Composition and Reversion (POWER, LAURENT AND PUISEUX SERIES)
Composition and Chief Series (PERMUTATION GROUPS)
Composition Series (MODULES OVER AN ALGEBRA)
Composition Trees for Matrix Groups (MATRIX GROUPS OVER FINITE FIELDS)
CompositionFactors(G) : : GrpFin -> [ <RngIntElt, RngIntElt, RngIntElt> ]
CompositionFactors(G) : : GrpMat -> [ <RngIntElt, RngIntElt, RngIntElt> ]
CompositionFactors(A) : AlgGen -> [ AlgGen ]
CompositionFactors(L) : AlgLie -> [ AlgLie ]
CompositionFactors(G) : GrpPC -> SeqEnum
CompositionFactors(G) : GrpPerm -> [ <RngIntElt, RngIntElt, RngIntElt> ]
CompositionFactors(M) : ModRng -> [ ModRng ]
GrpMatGen_CompositionFactors (Example H59E25)
RngSer_CompositionReversion (Example H49E2)
CompositionSeries(A) : AlgGen -> [ AlgGen ], [ AlgGen ], AlgMatElt
CompositionSeries(L) : AlgLie -> [ Alg ], [ AlgLie ], AlgMatElt
CompositionSeries(G) : GrpAb -> [GrpAb]
CompositionSeries(G) : GrpPC -> [GrpPC]
CompositionSeries(G, i) : GrpPC, RngIntElt -> [GrpPC]
CompositionSeries(G) : GrpPerm -> [ GrpPerm ]
CompositionSeries(M) : ModRng -> [ ModRng ], [ ModRng ], AlgMatElt
CompositionTree(G : parameters) : GrpMat[FldFin] -> []
CompositionTreeCBM(G) : GrpMat[FldFin -> GrpMatElt
CompositionTreeElementToWord(G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt
CompositionTreeFactorNumber(G, g) : Grp, GrpElt -> RngIntElt
CompositionTreeFastVerification(G) : Grp -> BoolElt
CompositionTreeNiceGroup(G) : Grp -> GrpMat[FldFin]
CompositionTreeNiceToUser(G) : Grp -> Map, []
CompositionTreeOrder(G) : Grp -> RngIntElt
CompositionTreeReductionInfo(G, t) : Grp, RngIntElt -> MonStgElt,Grp, Grp
CompositionTreeSeries(G) : Grp -> SeqEnum, List, List, List, BoolElt, []
CompositionTreeSLPGroup(G) : Grp -> GrpSLP, Map
CompositionTreeVerify(G) : Grp -> BoolElt, []
Compositum(K, A) : FldAlg, FldAb -> FldAlg
Compositum(K, L) : FldAlg, FldAlg -> FldAlg
Compositum(K, L) : FldNum, FldNum -> FldNum
FldNum_Compositum (Example H34E7)
RngOrd_Compositum (Example H37E8)
ModAlg_CompSeries (Example H89E6)
GrpMatFF_CompTree1 (Example H60E11)
GrpMatFF_CompTree2 (Example H60E12)
HasComputableAbelianQuotient(G) : GrpFP -> BoolElt, GrpAb, Map
HasComputableLCS(G) : GrpGPC -> BoolElt
HasInfiniteComputableAbelianQuotient(G) : GrpFP -> BoolElt, GrpAb, Map
IsDualComputable(A) : ModAbVar -> BoolElt, ModAbVar
Homology Computation (SIMPLICIAL HOMOLOGY)
PrimeFactorisation(D) : DivSchElt -> SeqEnum
ComputePrimeFactorisation(~D) : DivSchElt ->
ComputeReducedFactorisation(~D) : DivSchElt ->
PrimeFactorisation(D) : DivSchElt -> SeqEnum
ComputePrimeFactorisation(~D) : DivSchElt ->
ReducedFactorisation(D) : DivSchElt -> SeqEnum
ComputeReducedFactorisation(~D) : DivSchElt ->
Computing L-values (L-FUNCTIONS)
Comultiplication(U, d) : AlgQUE, RngIntElt -> UserProgram
ConcatenatedCode(O, I) : Code, Code -> Code
ConcatenatedCode(O, I) : Code, Code -> Code
CodeFld_ConcatenatedCode (Example H152E32)
Concrete Representations of Small Groups (FINITELY PRESENTED GROUPS)
Concrete Representations of Small Groups (FINITELY PRESENTED GROUPS)
IsConcurrent(P, R) : Plane, { PlaneLn } -> BoolElt, PlanePt
CondensationMatrices(A) : AlgMat -> Tup
CondensationMatrices(A) : AlgMat -> Tup
CondensedAlgebra(A) : AlgMat -> AlgMat
CondensedAlgebra(A) : AlgMat -> AlgMat
AlgMat_CondensedAlgebra (Example H83E11)
ConditionalClassGroup(K) : FldAlg -> GrpAb, Map
ConditionalClassGroup(O) : RngOrd -> GrpAb, Map
Classes of Subgroups Satisfying a Condition (PERMUTATION GROUPS)
Conditional Statements and Expressions (STATEMENTS AND EXPRESSIONS)
The Simple Conditional Expression (STATEMENTS AND EXPRESSIONS)
The Simple Conditional Statement (STATEMENTS AND EXPRESSIONS)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012