[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: RightGreatestCommonDivisor  ..  Ring


RightGreatestCommonDivisor

   RightGcd(u, v: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
   RightGreatestCommonDivisor(u, v: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
   RightGCD(u, v: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
   RightGCD(S: parameters) : Setq -> GrpBrdElt

RightHandFactors

   RightHandFactors(L) : RngDiffOpElt -> SeqEnum, SeqEnum[[BoolElt]]

RightIdeal

   lideal<S | X> : AlgQuatOrd, [AlgQuatElt] -> AlgQuatOrdIdl
   RightIdeal(S, X) : AlgQuatOrd, [AlgQuatElt] -> AlgQuatOrdIdl
   rideal<S | X> : AlgQuatOrd, [AlgQuatElt] -> AlgQuatOrd
   ideal<S | X> : AlgQuatOrd, [AlgQuatElt] -> AlgQuatOrdIdl
   LeftIdeal(S, X) : AlgQuatOrd, [AlgQuatElt] -> AlgQuatOrdIdl

RightIdealClasses

   RightIdealClasses(S) : AlgQuatOrd -> [AlgQuatOrdIdl]
   LeftIdealClasses(S) : AlgQuatOrd -> [AlgQuatOrdIdl]

RightInverse

   RightInverse(phi : parameters) : MapModAbVar -> MapModAbVar, RngIntElt

RightInverseMorphism

   RightInverseMorphism(phi : parameters) : MapModAbVar -> MapModAbVar

RightIsomorphism

   RightIsomorphism(I, J) : AlgQuatOrdIdl, AlgQuatOrdIdl -> Map, AlgQuatElt

RightLCM

   RightLcm(u, v: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
   RightLeastCommonMultiple(u, v: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
   RightLCM(u, v: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
   RightLCM(S: parameters) : Setq -> GrpBrdElt

RightLcm

   RightLcm(u, v: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
   RightLeastCommonMultiple(u, v: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
   RightLCM(u, v: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
   RightLCM(S: parameters) : Setq -> GrpBrdElt

RightLeastCommonMultiple

   RightLcm(u, v: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
   RightLeastCommonMultiple(u, v: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
   RightLCM(u, v: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
   RightLCM(S: parameters) : Setq -> GrpBrdElt

RightMixedCanonicalForm

   RightMixedCanonicalForm(u: parameters) : GrpBrdElt -> Tup, Tup

RightNormalForm

   RightNormalForm(~u: parameters) : GrpBrdElt ->
   RightNormalForm(u: parameters) : GrpBrdElt -> GrpBrdElt

RightOrder

   RightOrder(I) : AlgAssVOrdIdl[RngOrd] -> AlgAssVOrd
   LeftOrder(I) : AlgAssVOrdIdl[RngOrd] -> AlgAssVOrd
   RightOrder(I) : AlgQuatOrdIdl -> AlgQuatOrd

RightRegularModule

   RightRegularModule(B) : AlgBas -> ModAlg

RightRepresentationMatrix

   RightRepresentationMatrix(e) : AlgAssVOrdElt -> AlgMatElt
   LeftRepresentationMatrix(e) : AlgAssVOrdElt -> AlgMatElt

RightString

   RightString(W, r, s) : GrpPermCox, RngIntElt, RngIntElt -> RngIntElt
   RightString(R, r, s) : RootDtm, RngIntElt, RngIntElt -> RngIntElt
   RightString(R, r, s) : RootSys, RngIntElt, RngIntElt -> RngIntElt

RightStringLength

   RightStringLength(W, r, s) : GrpPermCox, RngIntElt, RngIntElt -> RngIntElt
   RightStringLength(R, r, s) : RootDtm, RngIntElt, RngIntElt -> RngIntElt
   RightStringLength(R, r, s) : RootSys, RngIntElt, RngIntElt -> RngIntElt

RightTransversal

   RightTransversal(G, H) : Grp, Grp -> {@ GrpElt @}, Map
   Transversal(G, H) : Grp, Grp -> {@ GrpElt @}, Map
   Transversal(G, H) : GrpAb, GrpAb -> {@ GrpAbElt @}, Map
   Transversal(G, H) : GrpFP, GrpFP -> {@ GrpFPElt @}, Map
   Transversal(P) : GrpFPCosetEnumProc -> {@ GrpFPElt @}, Map
   Transversal(G, H) : GrpGPC, GrpGPC -> {@ GrpGPCElt @}, Map
   Transversal(G, H) : GrpMat, GrpMat -> {@ GrpMatElt @}, Map
   Transversal(G, H) : GrpPC, GrpPC -> {@ GrpPCElt @}, Map
   Transversal(G, H) : GrpPerm, GrpPerm -> {@ GrpPermElt atbrace, Map

RightZeroExtension

   RightZeroExtension(C) : ModCpx -> ModCpx

Ring

   AbsoluteQuotientRing(A) : FldAC -> RngUPolRes
   AbsoluteAffineAlgebra(A) : FldAC -> RngUPolRes
   AffineAlgebra(A) : FldAC -> RngMPolRes
   BaseField(A) : AlgQuat -> Fld
   BaseField(A) : JacHyp -> Fld
   BaseField(J) : JacHyp -> Fld
   BaseField(M) : ModFrmBianchi ->
   BaseField(M) : ModFrmHil ->
   BaseField(R) : RootSys -> Fld
   BaseField(C) : Sch -> Fld
   BaseField(K) : SrfKum -> Fld
   BaseRing(O) : AlgAssVOrd -> Rng
   BaseRing(B) : AlgBas -> Rng
   BaseRing(F) : AlgFr -> Rng
   BaseRing(R) : AlgMat -> Rng
   BaseRing(L) : AlgSym -> Rng
   BaseRing(E) : CrvEll -> Rng
   BaseRing(A) : FldAb -> Rng
   BaseRing(F) : FldFun -> Rng
   BaseRing(FF) : FldFunOrd -> Rng
   BaseRing(F) : FldFunRat -> Rng
   BaseRing(G) : GrpDrch -> Rng
   BaseRing(chi) : GrpDrchElt -> Rng
   BaseRing(G) : GrpLie -> Rng
   BaseRing(G) : GrpLie -> Rng
   BaseRing(G) : GrpPSL2 -> Rng
   BaseRing(L) : Lat -> Rng
   BaseRing(A) : ModAbVar -> Rng
   BaseRing(M) : ModBrdt -> Rng
   BaseRing(M) : ModDed -> Rng
   BaseRing(model) : ModelG1 -> Rng
   BaseRing(M) : ModFrm -> Rng
   BaseRing(M) : ModSS -> Rng
   BaseRing(A) : Mtrx -> Rng
   BaseRing(A) : MtrxSprs -> Rng
   BaseRing(C) : RngCox -> Fld
   BaseRing(R) : RngDiff -> Rng
   BaseRing(R) : RngDiffOp -> Rng
   BaseRing(O) : RngFunOrd -> Rng
   BaseRing(L) : RngLocA -> Rng
   BaseRing(P) : RngMPol -> Rng
   BaseRing(O) : RngOrd -> Rng
   BaseRing(L) : RngPad -> RngPad
   BaseRing(R) : RngPowLaz -> Rng
   BaseRing(R) : RngSer -> Rng
   BaseRing(R) : RngSLPol -> Rng
   BaseRing(P) : RngUPol -> Rng
   BaseRing(R) : RngUPolTwst -> Rng
   BaseRing(F) : RngUPolTwstElt -> Rng
   BaseRing(W) : RngWitt -> Fld
   BaseRing(R) : RootDtm -> RngInt
   BaseRing(C) : Sch -> Rng
   BaseRing(X) : Sch -> Rng
   BaseRing(G) : SchGrpEll -> Rng
   BooleanPolynomialRing(n) : RngIntElt -> RngMPolBool
   BooleanPolynomialRing(n, order) : RngIntElt, MonStgElt -> RngMPolBool
   BooleanPolynomialRing(B, Q) : RngMPolBool, [RngIntElt] -> RngMPolBoolElt
   CanChangeRing(A, R) : ModAbVar, Rng -> BoolElt, ModAbVar
   CentreOfEndomorphismRing(G) : GrpMat -> AlgMat
   CentreOfEndomorphismRing(L) : Lat -> AlgMat
   CentreOfEndomorphismRing(M) : ModRng -> AlgMat
   ChangeRing(I, S) : AlgFr, Rng -> AlgFr
   ChangeRing(A, S) : AlgGen, Rng -> AlgGen, Map
   ChangeRing(A, S, f) : AlgGen, Rng, Map -> AlgGen, Map
   ChangeRing(L, S) : AlgLie, Rng -> AlgLie, Map
   ChangeRing(L, S, f) : AlgLie, Rng, Map -> AlgLie, Map
   ChangeRing(A, S) : AlgMat, Rng -> AlgMat, Map
   ChangeRing(A, S, f) : AlgMat, Rng, Map -> AlgMat, Map
   ChangeRing(U, R) : AlgQUE, Rng -> AlgQUE
   ChangeRing(U, S) : AlgUE, Rng -> AlgUE
   ChangeRing(E, K) : CrvEll, Rng -> CrvEll
   ChangeRing(G, K) : GrpLie, Rng -> GrpLie
   ChangeRing(G, S) : GrpMat, Rng -> GrpMat, Map
   ChangeRing(G, S, f) : GrpMat, Rng, Map -> GrpMat, Map
   ChangeRing(L, S) : Lat, Rng -> Lat, Map
   ChangeRing(A, R) : ModAbVar, Rng -> ModAbVar
   ChangeRing(model, B) : ModelG1, Rng -> ModelG1
   ChangeRing(M, S) : ModRng, Rng -> ModRng, Map
   ChangeRing(M, S) : ModRng, Rng -> ModRng, Map
   ChangeRing(M, S) : ModRng, Rng -> ModRng, Map
   ChangeRing(M, S, f) : ModRng, Rng, Map -> ModRng, Map
   ChangeRing(M, S, f) : ModRng, Rng, Map -> ModRng, Map
   ChangeRing(M, S, f) : ModRng, Rng, Map -> ModRng, Map
   ChangeRing(A, R) : Mtrx, Rng -> Mtrx
   ChangeRing(A, R, f) : Mtrx, Rng, Map -> Mtrx
   ChangeRing(A, R) : MtrxSprs, Rng -> MtrxSprs
   ChangeRing(I, S) : RngMPol, Rng -> RngMPol
   ChangeRing(M, S) : RngMPol, Rng -> RngMPol
   ChangeRing(P, S) : RngMPol, Rng -> RngMPol
   ChangeRing(I, L) : RngMPolLoc, Rng -> RngMPolLoc
   ChangeRing(s,R) : RngPowAlgElt, RngMPol -> RngPowAlgElt
   ChangeRing(L, C) : RngPowLaz, Rng -> RngPowLaz, Map
   ChangeRing(R, C) : RngSer, Rng -> RngSer, Map
   ChangeRing(P, S) : RngUPol, Rng -> RngUPol, Map
   ChangeRing(P, S, f) : RngUPol, Rng, Map -> RngUPol, Map
   ChangeRing(C, K) : Sch, Rng -> Sch
   ClassFunctionSpace(G) : Grp -> AlgChtr
   CoefficientRing(A) : AlgFP -> Rng
   CoefficientRing(L) : AlgFPLie -> Rng
   CoefficientRing(A) : AlgGen -> Rng
   CoefficientRing(A) : AlgGrp -> Rng
   CoefficientRing(A) : AlgGrpSub -> Rng
   CoefficientRing(L) : AlgKac -> Rng
   CoefficientRing(L) : AlgLie -> Rng
   CoefficientRing(L) : AlgLieExtr -> Rng
   CoefficientRing(U) : AlgPBW -> Rng
   CoefficientRing(U) : AlgQUE -> Fld
   CoefficientRing(A) : FldAb -> Fld
   CoefficientRing(G) : GrpMat -> Rng
   CoefficientRing(M): ModAlg -> Fld
   CoefficientRing(M) : ModMPol -> ModMPol
   CoefficientRing(M) : ModRng -> Rng
   CoefficientRing(M) : ModTupRng -> Rng
   CoefficientRing(D) : PhiMod -> RngSerLaur
   CoefficientRing(R) : RngInvar -> Grp
   CoefficientRing(Q) : RngMPolRes -> Rng
   CoefficientRing(E) : RngSerExt -> Rng
   CoefficientRing(V) : SSGalRep -> FldFin
   CohomologyRing(k, n) : ModAlgBas, RngIntElt -> Rec
   CohomologyRingGenerators(P) : Rec -> Rec
   CohomologyRingQuotient(CR) : Rec -> Rng,Map
   ConstantRing(R) : RngDiff -> Rng
   ConstantRing(R) : RngDiffOp -> Rng
   CoordinateRing(L) : Lat -> RngInt
   CoordinateRing(A) : Sch -> Rng
   CoordinateRing(C) : Sch -> Rng
   CoordinateRing(A) : Sch -> RngMPol
   CoordinateRing(X) : Sch -> RngMPol
   CoxRing(k,F) : Fld,TorFan -> RngCox
   CoxRing(R,B,Z,Q) : RngMPol,SeqEnum,SeqEnum,SeqEnum -> RngCox
   CoxRing(X) : TorVar -> RngCox
   DefRing(G) : GrpLie -> Rng
   DifferentialLaurentSeriesRing(C) : Fld -> RngDiff
   DifferentialOperatorRing(F) : RngDiff -> RngDiffOp
   DifferentialRing(P, f, C) : Rng, Map, Rng -> RngDiff
   DifferentialRingExtension(L) : RngDiffOpElt -> RngDiff
   DimensionOfCentreOfEndomorphismRing(G) : GrpMat -> RngIntElt
   DimensionOfCentreOfEndomorphismRing(L) : Lat -> RngIntElt
   DimensionOfEndomorphismRing(G) : GrpMat -> RngIntElt
   DimensionOfEndomorphismRing(L) : Lat -> RngIntElt
   EndomorphismAlgebra(M) : ModRng -> AlgMat
   EndomorphismRing(A) : AnHcJac -> AlgMat, SeqEnum
   EndomorphismRing(G) : GrpMat -> AlgMat
   EndomorphismRing(L) : Lat -> AlgMat
   EndomorphismRing(P) : Mtrx -> AlgMat
   GaloisRing(q, d) : RngIntElt, RngIntElt -> RngGal
   GaloisRing(p, a, d) : RngIntElt, RngIntElt, RngIntElt -> RngGal
   GaloisRing(p, a, D) : RngIntElt, RngIntElt, RngUPol -> RngGal
   GaloisRing(q, D) : RngIntElt, RngUPol -> RngGal
   GeneratorsOverBaseRing(K) : FldNum -> FldNumElt
   GeneratorsSequenceOverBaseRing(K) : FldNum -> [FldNumElt]
   GroundField(F) : FldAlg -> Fld
   GroundField(F) : FldNum -> Fld
   HeckeEigenvalueRing(M : parameters) : ModSym -> Rng, Map
   IntegerRing() : -> RngInt
   IntegerRing(F) : FldFunRat -> RngPol
   IntegerRing(F) : FldPad -> RngPad
   IntegerRing(F) : RngFrac -> Rng
   IntegerRing(R) : RngSer -> RngSerPow
   IntegerRing(E) : RngSerExt -> RngSerExt
   Integers(O) : RngOrd -> RngOrd
   InvariantRing(G) : GrpMat -> RngInvar
   InvariantRing(I, A) : RngMPol, Mtrx -> RngInvar
   IsDifferentialLaurentSeriesRing(R) : Rng -> BoolElt
   IsDifferentialOperatorRing(R) : . -> BoolElt
   IsDifferentialSeriesRing(R) : Rng -> BoolElt
   IsDivisionRing(R) : Rng -> BoolElt
   IsEuclideanRing(R) : Rng -> BoolElt
   IsMagmaEuclideanRing(R) : Rng -> BoolElt
   IsMatrixRing(A) : AlgQuat -> BoolElt, AlgMat, Map
   IsPIR(R) : Rng -> BoolElt
   IsPrincipalIdealRing(F) : FldAlg -> BoolElt
   IsPrincipalIdealRing(F) : FldNum -> BoolElt
   IsPrincipalIdealRing(O) : RngOrd -> BoolElt
   IsRing(H) : HomModAbVar -> BoolElt
   IsRingHomomorphism(m) : Map -> BoolElt
   IsRingHomomorphism(m) : Map -> BoolElt
   IsRingOfAllModularForms(M) : ModFrm -> BoolElt
   LaurentSeriesRing(L) : AlgKac -> RngSerLaur
   LaurentSeriesRing(R) : Rng -> RngSerLaur
   LazyPowerSeriesRing(C, n) : Rng, RngIntElt -> RngPowLaz
   LocalPolynomialRing(K, n) : Rng, RngIntElt -> RngMPolLoc
   LocalPolynomialRing(K, n, order) : Rng, RngIntElt, MonStgElt, ... -> RngMPolLoc
   LocalPolynomialRing(K, n, T) : Rng, RngIntElt, Tup -> RngMPolLoc
   LocalRing(P, prec) : RngOrdIdl, RngIntElt -> RngLoc, Map
   LocalRing(P, k) : RngOrdIdl, RngIntElt -> RngPad, Map
   LocalRing(W) : RngWitt -> RngLoc, Map
   MatrixAlgebra(S, n) : Rng, RngIntElt -> AlgMat
   MatrixAlgebra<S, n | L> : Rng, RngIntElt, List -> AlgMat
   MatrixRing(A, eps) : AlgQuat, AlgQuatElt -> AlgMat, Map
   MaximalOrder(F) : FldAlg -> RngOrd
   MaximalOrder(F) : FldNum -> RngOrd
   MaximalOrder(F) : FldQuad -> RngQuad
   MaximalOrder(Q) : FldRat -> RngInt
   MinimalBaseRingCharacter(chi) : GrpDrchElt -> GrpDrchElt
   MultiplicatorRing(I): AlgAssVOrdIdl -> AlgAssVOrd
   MultiplicatorRing(I) : RngFunOrdIdl -> RngFunOrd
   MultiplicatorRing(I) : RngFunOrdIdl -> RngFunOrd
   MultiplicatorRing(I) : RngOrdFracIdl -> Rng
   OriginalRing(A) : AlgFP -> Rng
   OriginalRing(Q) : RngMPolRes -> Rng
   ParentRing(N) : NwtnPgon -> Rng
   PolynomialAlgebra(R) : Rng -> RngUPol
   PolynomialRing(model) : ModelG1 -> RngMPol
   PolynomialRing(R, n) : Rng, RngIntElt -> RngMPol
   PolynomialRing(R, n) : Rng, RngIntElt -> RngMPol
   PolynomialRing(R, n, order) : Rng, RngIntElt, MonStgElt, ... -> RngMPol
   PolynomialRing(R, n, order) : Rng, RngIntElt, MonStgElt, ... -> RngMPol
   PolynomialRing(R, n, T) : Rng, RngIntElt, Tup -> RngMPol
   PolynomialRing(R, Q) : Rng, [ RngIntElt ] -> RngMPol
   PolynomialRing(R) : RngInvar -> RngMPol
   PowerSeriesRing(R) : Rng -> RngSerPow
   PreimageRing(A) : AlgFP -> AlgFr
   PreimageRing(Q) : RngMPolRes -> RngMPol
   PreimageRing(Q) : RngUPolRes -> RngUPol
   PrimeRing(F) : FldFun -> Rng
   PrimeRing(R) : Rng -> Rng
   PrimeRing(L) : RngPad -> RngPad
   PuiseuxSeriesRing(R) : Rng -> RngSerPuis
   QuaternionOrder(G) : GrpPSL2 -> AlgQuatOrd
   QuotientRing(R, I) : RngDiff, RngMPol -> RngDiff, Map
   RayResidueRing(D) : DivFunElt -> GrpAb, Map
   RayResidueRing(D) : DivNumElt -> GrpAb, Map
   RayResidueRing(I) : RngOrdIdl -> GrpAb, Map
   ResidueClassRing(m) : RngIntElt -> RngIntRes
   ResidueClassRing(Q) : RngIntEltFact -> RngIntRes
   Ring(CM) : ModCoho -> ModGrp
   Ring(P) : SetPt -> Rng
   Ring(H) : SetPtEll -> Rng
   RingClassGroup(O) : RngOrd -> GrpAb, Map
   RingGeneratedBy(H) : HomModAbVar -> HomModAbVar
   RingMap(P) : SetPt -> Map
   RingOfFractions(R) : RngDiff -> RngDiff, Map
   RingOfFractions(Q) : RngMPolRes -> RngFunFrac
   RingOfIntegers(R) : RngPad -> RngPad
   SLPolynomialRing(R, n) : Rng, RngIntElt -> RngSLPol
   SetTargetRing(~chi, e) : GrpDrchNFElt, RngElt ->
   UnderlyingRing(F) : FldFunG -> FldFunG
   UnderlyingRing(C) : RngCox -> RngMPol
   UnderlyingRing(R) : RngDiff -> Rng
   UnramifiedQuotientRing(K, k) : FldFin, RngIntElt -> Rng
   ValuationRing(F) : FldFun -> RngVal
   ValuationRing(F, f) : FldFun, RngUPolElt -> RngVal
   ValuationRing(F) : FldFunRat -> RngVal
   ValuationRing(F, f) : FldFunRat, RngUPolElt -> RngVal
   ValuationRing(Q, p) : FldRat, RngIntElt -> RngVal
   WittRing(F, n) : Fld, RngIntElt -> RngWitt
   pAdicQuotientRing(p, k) : RngIntElt, RngIntElt -> RngPadRes
   pAdicRing(p) : RngIntElt -> RngPad
   pAdicRing(p, k) : RngIntElt, RngIntElt -> RngPad
   pMatrixRing(A, p) : AlgQuat, RngOrdIdl -> AlgMat, Map, Map

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012