[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: orbit .. Order
Action on Orbits (MATRIX GROUPS OVER GENERAL RINGS)
Action on Orbits (PERMUTATION GROUPS)
Images, Orbits and Stabilizers (PERMUTATION GROUPS)
Orbit and Stabilizer Functions for Large Groups (MATRIX GROUPS OVER GENERAL RINGS)
Orbits and Stabilizers (MATRIX GROUPS OVER GENERAL RINGS)
Action on Orbits (MATRIX GROUPS OVER GENERAL RINGS)
Action on Orbits (PERMUTATION GROUPS)
OrbitAction(G, T) : GrpMat, Elt -> Hom(Grp), GrpPerm, GrpMat
OrbitAction(G, T) : GrpPerm, GSet -> Hom(Grp), GrpPerm, GrpPerm
OrbitActionBounded(G, T, b) : GrpMat, Elt, RngIntElt -> BoolElt, Hom(Grp), GrpPerm, GrpMat
GrpPerm_OrbitActions (Example H58E26)
OrbitalGraph(P, u, T) : GrpPerm, RngIntElt, { RngIntElt } -> GrphUnd
OrbitalGraph(P, u, T) : GrpPerm, RngIntElt, { RngIntElt } -> GrphUnd
OrbitBounded(G, y, b) : GrpMat, Elt, RngIntElt -> BoolElt, SetEnum
OrbitClosure(G, M, S) : Grp, Any, Any -> Any
OrbitClosure(G, S) : GrpMat, { Elt } -> GSet
OrbitClosure(G, Y, S) : GrpPerm, GSet, { Elt } -> GSet
OrbitImage(G, T) : GrpMat, Set -> GrpPerm
OrbitImage(G, T) : GrpPerm, GSet -> GrpPerm
OrbitImageBounded(G, T, b) : GrpMat, Set, RngIntElt -> BoolElt, GrpPerm
OrbitKernel(G, T) : GrpMat, Set -> GrpMat
OrbitKernel(G, T) : GrpPerm, GSet -> GrpPerm
OrbitKernelBounded(G, T, b) : GrpMat, Set, RngIntElt -> BoolElt, GrpMat
OrbitRepresentatives(G) : GrpPerm -> SeqEnum
BasicOrbits(G) : GrpPerm -> [SetIndx]
DistinguishedOrbitsOnSimples(R) : RootDtm -> SeqEnum[GSetEnum]
GammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
GammaOrbitsRepresentatives(R, delta) : RootDtm, RngIntElt -> SeqEnum
LineOrbits(G) : GrpMat -> [ SetIndx ]
NilpotentOrbits( L ) : AlgLie -> SeqEnum
Orbits(G) : GrpMat -> [ SetIndx ]
Orbits(A, Y) : GrpPerm, GSet -> [ GSet ]
Orbits(G, Y) : GrpPerm, GSet -> [ GSet ]
Orbits(G, Y) : GrpPerm, GSet -> [ GSet ]
Orbits(G, Y) : GrpPerm, GSet -> [ GSet ]
OrbitsOfSpaces(G, k) : GrpMat, RngIntElt -> SeqEnum
OrbitsOnSimples(R) : RootDtm -> SeqEnum[GSetEnum]
OrbitsPartition(G) : GrphUnd -> [ { GrphVert } ]
ReducedOrbits(Q) : QuadBin -> [ {@ QuadBinElt @} ]
GrpMatGen_Orbits (Example H59E17)
Nilpotent Orbits in Simple Lie Algebras (LIE ALGEBRAS)
OrbitsOfSpaces(G, k) : GrpMat, RngIntElt -> SeqEnum
GrpMatGen_OrbitsOfSpaces (Example H59E18)
GrpMatGen_OrbitsOfSpaces (Example H59E19)
OrbitsOnSimples(R) : RootDtm -> SeqEnum[GSetEnum]
OrbitsPartition(G) : GrphUnd -> [ { GrphVert } ]
Operations on Ideals (QUATERNION ALGEBRAS)
Operations on Ideals (QUATERNION ALGEBRAS)
AlgAss_ord_creat_cyc (Example H81E4)
AlgAss_ord_creat_cyc (Example H81E5)
Order(J) : JacHyp -> RngIntElt
# J : JacHyp -> RngIntElt
# G: SchGrpEll -> RngIntElt
# H : SetPtEll -> RngIntElt
AbsoluteOrder(O) : RngFunOrd -> RngFunOrd
AbsoluteOrder(O) : RngOrd -> RngOrd
AdditiveOrder(G) : GrpLie -> SeqEnum
AdditiveOrder(W) : GrpPermCox -> SeqEnum
AdditiveOrder(R) : RootStr -> SeqEnum
AdditiveOrder(R) : RootSys -> SeqEnum
ApproximateOrder(x) : ModAbVarElt -> RngIntElt
CentralOrder(g : parameters) : GrpMatElt -> RngIntElt, BoolElt
ChangeOrder(I, order) : RngMPol, ..., -> RngMPol, Map
ChangeOrder(I, Q) : RngMPol, RngMPol -> RngMPol, Map
ChangeOrder(I, T) : RngMPol, Tup -> RngMPol
ChangeOrder(I, order) : RngMPolLoc, ..., -> RngMPolLoc, Map
ChangeOrder(I, Q) : RngMPolLoc, RngMPolLoc -> RngMPolLoc, Map
ChevalleyOrderPolynomial(type, n: parameters) : MonStgElt, RngIntElt -> RngUPolElt
ComponentGroupOrder(A, p) : ModAbVar, RngIntElt -> RngIntElt
ComponentGroupOrder(M, p) : ModSym, RngIntElt -> RngIntElt
CompositionTreeOrder(G) : Grp -> RngIntElt
CoxeterGroupOrder(C) : AlgMatElt -> .
CoxeterGroupOrder(M) : AlgMatElt -> .
CoxeterGroupOrder(D) : GrphDir -> .
CoxeterGroupOrder(G) : GrphUnd -> .
CoxeterGroupOrder(N) : MonStgElt -> .
CoxeterGroupOrder(R) : RootStr -> RngIntElt
CoxeterGroupOrder(R) : RootSys -> RngIntElt
CyclotomicOrder(K) : FldCyc -> RngIntElt
ECMOrder(p, s) : RngIntElt, RngIntElt -> RngIntElt
EquationOrder(A) : FldAb -> RngOrd
EquationOrder(K) : FldNum -> RngOrd
EquationOrder(F) : FldQuad -> RngQuad
EquationOrder(O) : RngFunOrd -> RngFunOrd
EquationOrder(O) : RngOrd -> RngOrd
EquationOrder(f) : RngUPolElt -> RngOrd
EquationOrderFinite(F) : FldFun -> RngFunOrd
EquationOrderInfinite(F) : FldFun -> RngFunOrd
FactoredChevalleyGroupOrder(type, n, F: parameters) : MonStgElt, RngIntElt, FldFin -> RngIntEltFact
FactoredOrder(A) : AlgMatElt -> [ <RngIntElt, RngIntElt> ]
FactoredOrder(a) : AlgMatElt -> [ <RngIntElt, RngIntElt> ]
FactoredOrder(a) : FldFinElt -> RngIntElt
FactoredOrder(G) : GrpAb -> [<RngIntElt, RngIntElt>]
FactoredOrder(A) : GrpAutCrv -> [ <RngIntElt, RngIntElt> ]
FactoredOrder(A) : GrpAuto -> [ <RngIntElt, RngIntElt> ]
FactoredOrder(G) : GrpFin -> [ <RngIntElt, RngIntElt> ]
FactoredOrder(G) : GrpGPC -> [<RngIntElt, RngIntElt>]
FactoredOrder(G) : GrpLie -> RngIntElt
FactoredOrder(G) : GrpMat -> [ <RngIntElt, RngIntElt> ]
FactoredOrder(g) : GrpMatElt -> [ <RngIntElt, RngIntElt> ], BoolElt
FactoredOrder(G) : GrpPC -> [<RngIntElt, RngIntElt>]
FactoredOrder(P) : GrpPCpQuotientProc -> [ <RngIntElt, RngIntElt> ]
FactoredOrder(G) : GrpPerm -> [ <RngIntElt, RngIntElt> ]
FactoredOrder(J) : JacHyp -> [ <RngIntElt, RngIntElt> ]
FactoredOrder(P) : PtEll -> RngIntElt
FactoredOrder(G) : SchGrpEll -> RngIntElt
FactoredOrder(H) : SetPtEll -> RngIntElt
FactoredProjectiveOrder(a) : AlgMatElt -> [ <RngIntElt, RngIntElt> ]
FactoredProjectiveOrder(A) : AlgMatElt -> [ <RngIntElt, RngIntElt> ], RngElt
FactoredProjectiveOrder(A) : AlgMatElt -> [ <RngIntElt, RngIntElt> ], RngElt
GeneratorOrder(G) : GrpAtc -> SeqEnum
GroupOfLieTypeFactoredOrder(R, q) : RootDtm, RngElt -> RngIntElt
GroupOfLieTypeOrder(R, q) : RootDtm, RngElt -> RngIntElt
HasFiniteOrder(g) : GrpMatElt -> BoolElt, RngIntElt
HasFiniteOrder(A) : Mtrx -> BoolElt
HasFiniteOrder (g : parameters ) : GrpMatElt -> BoolElt, RngIntElt
HasGrevlexOrder(I) : RngMPol -> BoolElt
HasOrder(P, n) : JacHypPt, RngIntElt -> BoolElt
IsAbsoluteOrder(O) : RngFunOrd -> BoolElt
IsAbsoluteOrder(O) : RngOrd -> BoolElt
IsAdditiveOrder(R, Q) : RootStr, [RngIntElt] -> BoolElt
IsAdditiveOrder(R, Q) : RootSys, [RngIntElt] -> BoolElt
IsEquationOrder(O) : RngFunOrd -> BoolElt
IsEquationOrder(O) : RngOrd -> BoolElt
IsFiniteOrder(O) : RngFunOrd -> BoolElt
IsOrder(P, m) : PtEll, RngIntElt -> BoolElt
IsOrderTerm(s) : RngDiffElt -> BoolElt
IsolOrder(n, p, i) : RngIntElt, RngIntElt, RngIntElt -> RngIntElt
LMGFactoredOrder(G) : GrpMat[FldFin] -> SeqEnum
LeftOrder(I) : AlgAssVOrdIdl[RngOrd] -> AlgAssVOrd
LeftOrder(I) : AlgQuatOrdIdl -> AlgQuatOrd
MaximalOrder(A) : AlgAssV[FldRat] -> AlgAssVOrd
MaximalOrder(O) : AlgQuatOrd -> AlgQuat
MaximalOrder(A) : AlgQuat[FldRat] -> AlgQuatOrd
MaximalOrder(A) : FldAb -> RngOrd
MaximalOrder(F) : FldAlg -> RngOrd
MaximalOrder(F) : FldNum -> RngOrd
MaximalOrder(F) : FldQuad -> RngQuad
MaximalOrder(Q) : FldRat -> RngInt
MaximalOrder(O) : RngFunOrd -> RngFunOrd
MaximalOrder(O) : RngOrd -> RngOrd
MaximalOrder(f) : RngUPolElt -> RngOrd
MaximalOrderFinite(F) : FldFun -> RngFunOrd
MaximalOrderFinite(A) : FldFunAb -> RngFunOrd
MaximalOrderInfinite(F) : FldFun -> RngFunOrd
MonomialOrder(P) : RngMPol -> Tup
MonomialOrder(R) : RngMPolLoc -> Tup
MonomialOrderWeightVectors(P) : RngMPol -> [ [ FldRatElt ] ]
MonomialOrderWeightVectors(R) : RngMPol -> [ [ FldRatElt ] ]
MultiplicativeOrder(gamma) : AlgAssVOrdElt -> SeqEnum
Order(O, N) : AlgAssVOrd, RngOrdIdl -> AlgAssVOrd
Order(I) : AlgAssVOrdIdl -> AlgAssVOrd
Order(A, m, I) : AlgAssV[FldOrd], AlgMatElt[FldOrd], SeqEnum[RngOrdFracIdl] -> AlgAssVOrd
Order(A, pm) : AlgAssV[FldOrd], PMat -> AlgAssVOrd
Order(x) : AlgChtrElt -> RngIntElt
Order(A) : AlgMatElt -> RngIntElt
Order(a) : AlgMatElt -> RngIntElt
Order(O, N) : AlgQuatOrd, RngElt -> AlgQuatOrd
Order(D) : Dsgn -> RngIntElt
Order(a) : FldFinElt -> RngIntElt
Order(FF) : FldFunOrd -> RngFunOrd
Order(F) : FldOrd -> RngOrd
Order(G) : GrpAb -> RngIntElt
Order(x) : GrpAbElt -> RngIntElt
Order(A) : GrpAtlas -> RngIntElt
Order(A) : GrpAutCrv -> RngIntElt
Order(f) : GrpAutCrvElt -> RngIntElt
Order(A) : GrpAuto -> RngIntElt
Order(f) : GrpAutoElt -> RngIntElt
Order(u) : GrpBBElt -> RngIntElt
Order(G) : GrpDrch -> RngIntElt
Order(chi) : GrpDrchElt -> RngIntElt
Order(chi) : GrpDrchNFElt -> RngIntElt
Order(g) : GrpElt -> RngIntElt
Order(G) : GrpFin -> RngIntElt
Order(G) : GrpGPC -> RngIntElt
Order(x) : GrpGPCElt -> RngIntElt
Order(G) : Grph -> RngIntElt
Order(G) : GrphMult -> RngIntElt
Order(G) : GrpLie -> RngIntElt
Order(G) : GrpMat -> RngIntElt
Order(g) : GrpMatElt -> RngIntElt, BoolElt
Order(G) : GrpMatUnip -> RngIntElt
Order(G) : GrpPC -> RngIntElt
Order(x) : GrpPCElt -> RngIntElt
Order(P) : GrpPCpQuotientProc -> RngIntElt
Order(G) : GrpPerm -> RngIntElt
Order(g) : GrpPermElt -> RngIntElt
Order(G) : GrpRWS -> RngIntElt
Order(G) : GrpRWS -> RngIntElt
Order(P) : JacHypPt -> RngIntElt
Order(P, l, u, n, m) : JacHypPt, RngIntElt, RngIntElt ,RngIntElt, RngIntElt -> RngIntElt
Order(P, l, u) : JacHypPt, RngIntElt, RngIntElt -> RngIntElt
Order(x) : ModAbVarElt -> RngIntElt
Order(G) : ModAbVarSubGrp -> RngIntElt
Order(M) : MonRWS -> RngIntElt
Order(x) : NfdElt -> RngIntElt
Order(g: parameters) : GrpAbGenElt -> RngIntElt
Order(g, l, u, n, m: parameters) : GrpAbGenElt, RngIntElt, RngIntElt ,RngIntElt, RngIntElt -> RngIntElt
Order(g, l, u: parameters) : GrpAbGenElt, RngIntElt, RngIntElt -> RngIntElt
Order(G: parameters) : GrpFP -> RngIntElt
Order(G : parameters) : GrpMat -> RngIntElt
Order(P) : Plane -> RngIntElt
Order(pm) : PMat -> Rng
Order(P) : PtEll -> RngIntElt
Order(f) : QuadBinElt -> RngIntElt
Order(R, S) : Rng, SeqEnum[AlgAssVElt] -> AlgAssVOrd
Order(L) : RngDiffOpElt -> RngIntElt
Order(O, T, d) : RngFunOrd, AlgMatElt, RngElt -> RngFunOrd
Order(O, M) : RngFunOrd, ModDed -> RngFunOrd
Order(O, S) : RngFunOrd, [FldFunElt] -> RngFunOrd
Order(I) : RngFunOrdIdl -> RngFunOrd
Order(a) : RngIntResElt -> RngIntElt
Order(O, T, d) : RngOrd, AlgMatElt, RngIntElt -> RngOrd
Order(O, M) : RngOrd, ModDed -> RngOrd
Order(I) : RngOrdFracIdl -> RngOrd
Order(s) : RngPowAlgElt -> RngIntElt
Order(S) : SeqEnum[AlgAssVElt[FldAlg]] -> AlgAssVOrd
Order(S, I) : SeqEnum[AlgAssVElt[FldAlg]], SeqEnum[RngOrdFracIdl] -> AlgAssVOrd
Order(H, r) : SetPtEll, RngIntElt -> RngIntElt
Order(e) : SubGrpLatElt -> RngIntElt
Order( [ e1, ... en ] ): [FldAlgElt] -> RngOrd
OrderAutomorphismGroupAbelianPGroup (A) : SeqEnum -> RngIntElt
OrderOfRootOfUnity(r, n) : RngElt, RngIntElt -> RngIntElt
OuterOrder(A) : GrpAuto -> RngIntElt
ProjectiveOrder(a) : AlgMatElt -> RngIntElt
ProjectiveOrder(A) : AlgMatElt -> RngIntElt, RngElt
ProjectiveOrder(g) : GrpMatElt -> RngIntElt, RngElt
QuadraticOrder(Q) : QuadBin -> RngQuad
QuaternionOrder(A, M) : AlgQuat[FldRat], RngIntElt -> AlgQuatOrd
QuaternionOrder(G) : GrpPSL2 -> AlgQuatOrd
QuaternionOrder(M) : ModBrdt -> AlgQuatOrd
QuaternionOrder(M) : ModFrmHil -> AlgAssVOrd
QuaternionOrder(R, S) : Rng, [AlgQuatElt] -> AlgQuatOrd
QuaternionOrder(N) : RngIntElt -> AlgQuatOrd
QuaternionOrder(D1, D2, T) : RngIntElt, RngIntElt, RngIntElt -> AlgQuat
QuaternionOrder(S) : [AlgQuatElt] -> AlgQuatOrd
RandomElementOfOrder(G, n : parameters) : GrpMat, RngIntElt-> BoolElt, GrpMatElt, GrpSLPElt, BoolElt
RightOrder(I) : AlgQuatOrdIdl -> AlgQuatOrd
SetOrderMaximal(O, b) : RngFunOrd, BoolElt ->
SetOrderMaximal(O, b) : RngOrd, BoolElt ->
SetOrderTorsionUnit(O, e, r) : RngOrd, RngOrdElt, RngIntElt ->
SetOrderUnitsAreFundamental(O) : RngOrd ->
SubOrder(O) : RngFunOrd -> RngFunOrd
SubOrder(O) : RngOrd -> RngOrd
TameOrder(A) : AlgQuat[FldAlg] -> AlgAssVOrd
TwistedTorusOrder(R, w) : RootDtm, GrpPermElt -> SeqEnum
WeakOrder(L) : RngDiffOpElt -> RngIntElt
pMaximalOrder(O, p) : AlgQuatOrd, RngElt -> AlgQuatOrd, RngIntElt
pMaximalOrder(O, p) : RngFunOrd, RngFunOrdIdl -> RngFunOrd
pMaximalOrder(O, p) : RngFunOrd, RngFunOrdIdl -> RngFunOrd
pMaximalOrder(O, p) : RngOrd, RngIntElt -> RngOrd
CrvEllFldFin_Order (Example H121E2)
GB_Order (Example H105E1)
GrpAtc_Order (Example H75E5)
GrpMatGen_Order (Example H59E11)
GrpMatGen_Order (Example H59E9)
GrpRWS_Order (Example H74E6)
Grp_Order (Example H57E14)
RngMPolLoc_Order (Example H107E1)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012