[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: irreducible .. IsAbelian
Generic Functions for Finding Irreducible Modules (K[G]-MODULES AND GROUP REPRESENTATIONS)
Irreducible Subgroups of the General Linear Group (ALMOST SIMPLE GROUPS)
The Burnside Algorithm (K[G]-MODULES AND GROUP REPRESENTATIONS)
The Construction of all Irreducible Modules (K[G]-MODULES AND GROUP REPRESENTATIONS)
The Rational Algorithm (K[G]-MODULES AND GROUP REPRESENTATIONS)
The Schur Algorithm for Soluble Groups (K[G]-MODULES AND GROUP REPRESENTATIONS)
The Table of Irreducible Characters (CHARACTERS OF FINITE GROUPS)
Generic Functions for Finding Irreducible Modules (K[G]-MODULES AND GROUP REPRESENTATIONS)
The Construction of all Irreducible Modules (K[G]-MODULES AND GROUP REPRESENTATIONS)
The Rational Algorithm (K[G]-MODULES AND GROUP REPRESENTATIONS)
The Burnside Algorithm (K[G]-MODULES AND GROUP REPRESENTATIONS)
The Schur Algorithm for Soluble Groups (K[G]-MODULES AND GROUP REPRESENTATIONS)
Irreducible Subgroups of the General Linear Group (ALMOST SIMPLE GROUPS)
IrreducibleCartanMatrix(X, n) : MonStgElt, RngIntElt -> AlgMatElt
Cartan_IrreducibleCoxeter (Example H95E13)
IrreducibleCoxeterGraph(X, n) : MonStgElt, RngIntElt -> GrpUnd
IrreducibleCoxeterGroup(GrpFPCox, X, n) : Cat, MonStgElt, RngIntElt -> GrpFPCox
IrreducibleCoxeterMatrix(X, n) : MonStgElt, RngIntElt -> AlgMatElt
IrreducibleDynkinDigraph(X, n) : MonStgElt, RngIntElt -> GrphDir
IrreducibleLowTermGF2Polynomial(n) : RngIntElt -> RngUPolElt
IrreducibleMatrixGroup(k, p, n) : RngIntElt, RngIntElt, RngIntElt -> GrpMat
SimpleModule(B, i) : AlgBas, RngIntElt -> ModAlg
IrreducibleModule(B, i) : AlgBas, RngIntElt -> ModAlg
AbsolutelyIrreducibleModules(G, K : parameters) : Grp, Fld -> SeqEnum
IrreducibleModules(G, K : parameters) : Grp, Fld -> SeqEnum
IrreducibleModules(G, K : parameters) : Grp, Fld -> SeqEnum
IrreducibleModules(G, Q : parameters) : Grp, FldRat -> SeqEnum, SeqEnum
ModGrp_IrreducibleModules (Example H90E13)
ModGrp_IrreducibleModules (Example H90E16)
ModGrp_IrreducibleModules2 (Example H90E17)
ModGrp_IrreducibleModules_M11 (Example H90E14)
IrreducibleModulesBurnside(G, K : parameters ) : Grp, FldFin -> [ ModGrp ]
AbsolutelyIrreducibleModulesInit(G, F : parameters) : GrpPC, Fld -> SolRepProc
IrreducibleRepresentationsInit(G, F : parameters) : GrpPC, Fld -> SolRepProc
IrreducibleModulesInit(G, F : parameters) : GrpPC, Fld -> SolRepProc
AbsolutelyIrreducibleRepresentationsInit(G, F : parameters) : GrpPC, Fld -> SolRepProc
IrreducibleModulesSchur(G, K: parameters) : GrpPC, Rng -> List[GModule]
IrreducibleRepresentationsSchur(G, k: parameters) : GrpPC, Rng -> List[Map]
IrreduciblePolynomial(F, n) : FldFin, RngIntElt -> RngUPolElt
IrreducibleReflectionGroup(X, n) : MonStgElt, RngIntElt -> GrpMat
AbsolutelyIrreducibleModulesInit(G, F : parameters) : GrpPC, Fld -> SolRepProc
IrreducibleRepresentationsInit(G, F : parameters) : GrpPC, Fld -> SolRepProc
IrreducibleModulesInit(G, F : parameters) : GrpPC, Fld -> SolRepProc
AbsolutelyIrreducibleRepresentationsInit(G, F : parameters) : GrpPC, Fld -> SolRepProc
IrreducibleModulesSchur(G, k: parameters) : GrpPC, Rng -> List[GModule]
IrreducibleRepresentationsSchur(G, k: parameters) : GrpPC, Rng -> List[Map]
IrreducibleRootDatum(X, n) : MonStgElt, RngIntElt -> RootDtm
RootDtm_IrreducibleRootDatum (Example H97E4)
IrreducibleRootSystem(X, n) : MonStgElt, RngIntElt -> RootSys
RootSys_IrreducibleRootSystem (Example H96E4)
KnownIrreducibles(R) : AlgChtr -> SeqEnum
RemoveIrreducibles(I, C) : [ AlgChtrElt ], [ AlgChtrElt ] -> [ AlgChtrElt ], [ AlgChtrElt ]
Finding Irreducibles (CHARACTERS OF FINITE GROUPS)
IrreducibleSecondaryInvariants(R) : RngInvar -> [ RngMPolElt ]
IrreducibleSimpleSubalgebrasOfSU(N) : RngIntElt -> SeqEnum
IrreducibleSimpleSubalgebraTreeSU(Q, d) : SeqEnum[SeqEnum[Tup]], RngIntElt -> GrphDir
IrreducibleSolubleSubgroups(n, q) : RngIntElt, RngIntElt -> SeqEnum
IrreducibleSparseGF2Polynomial(n) : RngIntElt -> RngUPolElt
IrreducibleSubgroups(n, q) : RngIntElt, RngIntElt -> SeqEnum
Zassenhaus Nearfields (NEARFIELDS)
HasIrregularFibres(s) : GrphSpl -> BoolElt
IrregularLDPCEnsemble(n, Sv, Sc) : RngIntElt, SeqEnum, SeqEnum -> Code
IsIrregularSingularPlace(L, p) : RngDiffOpElt, PlcFunElt -> BoolElt
Irregularity(S) : Srfc -> RngIntElt
IrregularLDPCEnsemble(n, Sv, Sc) : RngIntElt, SeqEnum, SeqEnum -> Code
IrrelevantComponents(C) : RngCox -> SeqEnum
IrrelevantGenerators(C) : RngCox -> SeqEnum
IrrelevantIdeal(C) : RngCox -> SeqEnum
IrrelevantIdeal(X) : TorVar -> SeqEnum
IrrelevantComponents(C) : RngCox -> SeqEnum
IrrelevantGenerators(C) : RngCox -> SeqEnum
IrrelevantIdeal(C) : RngCox -> SeqEnum
IrrelevantIdeal(X) : TorVar -> SeqEnum
Database of Irreducible Matrix Groups (DATABASES OF GROUPS)
Database of Irreducible Matrix Groups (DATABASES OF GROUPS)
The where ... is Construction (STATEMENTS AND EXPRESSIONS)
Crv_is-hyper-surfacr-divisor-example (Example H114E32)
Is2T1(C) : CosetGeom -> BoolElt
IsLocallyTwoTransitive(C) : CosetGeom -> BoolElt
Is2T1(C) : CosetGeom -> BoolElt
IsLocallyTwoTransitive(C) : CosetGeom -> BoolElt
Crv_is_hyperelliptic (Example H114E14)
ISA(T, U) : Cat, Cat -> BoolElt
ISABaseField(F,G) : Fld, Fld -> BoolElt
ISABaseField(F,G) : Fld, Fld -> BoolElt
IsAbelian(L) : AlgLie -> BoolElt
IsAbelian(A) : FldAb -> BoolElt
IsAbelian(F) : FldAlg -> BoolElt
IsAbelian(F) : FldNum -> BoolElt
IsAbelian(K, k) : FldPad, FldPad -> BoolElt
IsAbelian(G) : GrpFin -> BoolElt
IsAbelian(G) : GrpGPC -> BoolElt
IsAbelian(G) : GrpLie -> BoolElt
IsAbelian(G) : GrpMat -> BoolElt
IsAbelian(G) : GrpPC -> BoolElt
IsAbelian(G) : GrpPerm -> BoolElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012