[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: PositiveDefiniteForm  ..  Power


PositiveDefiniteForm

   PositiveDefiniteForm(G) : GrpMat -> Mtrx
   PositiveDefiniteForm(L) : Lat -> AlgMatElt

PositiveGammaOrbitsOnRoots

   PositiveGammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
   NegativeGammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
   ZeroGammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
   GammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]

PositiveQuadrant

   PositiveQuadrant(L) : TorLat -> TorCon

PositiveRelativeRoots

   PositiveRelativeRoots(R) : RootDtm -> SetIndx
   NegativeRelativeRoots(R) : RootDtm -> SetIndx
   SimpleRelativeRoots(R) : RootDtm -> SetIndx
   RelativeRoots(R) : RootDtm -> SetIndx

PositiveRoots

   PositiveCoroots(G) : GrpLie -> (@@)
   PositiveRoots(G) : GrpLie -> (@@)
   PositiveRoots(W) : GrpMat -> (@@)
   PositiveRoots(W) : GrpPermCox -> (@@)
   PositiveRoots(R) : RootStr -> (@@)
   PositiveRoots(R) : RootSys -> (@@)

PositiveRootsPerm

   PositiveRootsPerm(U) : AlgQUE -> SeqEnum

PositiveSum

   PositiveSum(m, i) : Map, RngIntElt -> FldReElt

Possible

   PossibleCanonicalDissidentPoints(C) : GRCrvS -> SeqEnum
   PossibleHypergeometricData(d) : RngIntElt -> SeqEnum
   PossibleSimpleCanonicalDissidentPoints(C) : GRCrvS -> SeqEnum

PossibleCanonicalDissidentPoints

   PossibleCanonicalDissidentPoints(C) : GRCrvS -> SeqEnum

PossibleHypergeometricData

   PossibleHypergeometricData(d) : RngIntElt -> SeqEnum

PossibleSimpleCanonicalDissidentPoints

   PossibleSimpleCanonicalDissidentPoints(C) : GRCrvS -> SeqEnum

POT

   Position Over Term: POT (MODULES OVER MULTIVARIATE RINGS)

POTPERM

   Position Over Term (Permutation): POT-PERM (MODULES OVER MULTIVARIATE RINGS)

Power

   AlgebraicPowerSeries(dp, ip, L, e) : RngUPolElt, RngMPolElt, Lat, RngIntElt -> RngPowAlgElt
   AlternatingPower(R, n, v) : RootDtm, RngIntElt, ModTupRngElt -> LieRepDec
   CartesianPower(R, k) : Str, RngIntElt -> SetCart
   ClassPowerCharacter(x, j) : AlgChtrElt, RngIntElt -> AlgChtrElt
   ConjugatesToPowerSums(I) : [] -> []
   Eigenform(M, prec) : ModSym, RngIntElt -> RngSerPowElt
   ElementaryToPowerSumMatrix(n): RngIntElt -> AlgMatElt
   EvaluateByPowerSeries(m, P) : MapSch, Pt -> Pt
   EvaluationPowerSeries(s, nu, v) : Tup, SeqEnum, SeqEnum -> RngPowAlgElt
   ExteriorPower(a,r) : AlgMat, RngIntElt -> AlgMatElt
   ExteriorPower(V, n) : ModAlg, RngIntElt -> ModAlg, Map
   ExteriorPower(V, n) : ModAlg, RngIntElt -> ModAlg, Map
   HasHomogeneousBasis(A): AlgSym -> BoolElt
   HomogeneousToPowerSumMatrix(n): RngIntElt -> AlgMatElt
   IsPower(a, n) : FldACElt, RngIntElt -> BoolElt, FldACElt
   IsPower(a, k) : FldAlgElt, RngIntElt -> BoolElt, FldAlgElt
   IsPower(a, n) : FldFinElt, RngIntElt -> BoolElt, FldFinElt
   IsPower(a, k) : FldNumElt, RngIntElt -> BoolElt, FldNumElt
   IsPower(I, n) : RngFunOrdIdl, RngIntElt -> BoolElt, RngFunOrdIdl
   IsPower(n) : RngIntElt -> BoolElt
   IsPower(n, k) : RngIntElt -> BoolElt
   IsPower(w, n) : RngOrdElt, RngIntElt -> BoolElt, RngOrdElt
   IsPower(I, k) : RngOrdFracIdl, RngIntElt -> BoolElt, RngOrdFracIdl
   IsPower(x, n) : RngPadElt, RngIntElt -> BoolElt, RngPadElt
   IsPrimePower(n) : RngIntElt -> BoolElt, RngIntElt, RngIntElt
   LazyPowerSeriesRing(C, n) : Rng, RngIntElt -> RngPowLaz
   ModByPowerOf2(n, b) : RngIntElt, RngIntElt -> RngIntElt
   MonomialToPowerSumMatrix(n): RngIntElt -> AlgMatElt
   PowerFormalSet(R) : Str -> PowSetIndx
   PowerGroup(G) : GrpPC -> PowerGroup
   PowerIdeal(R) : Rng -> PowIdl
   PowerIndexedSet(R) : Str -> PowSetIndx
   PowerMap(G) : GrpFin -> Map
   PowerMap(G) : GrpMat -> Map
   PowerMap(G) : GrpPC -> Map
   PowerMap(G) : GrpPerm -> Map
   PowerMultiset(R) : Str -> PowSetMulti
   PowerPolynomial(f,n) : RngUPolElt, RngIntElt -> RngUPolElt
   PowerProduct(B, E) : [RngOrdFracIdl], [RngIntElt] -> RngOrdFracIdl
   PowerRelation(r, k: parameters) : FldReElt, RngIntElt -> RngUPolElt
   PowerResidueCode(K, n, p) : FldFin, RngIntElt, RngIntElt -> Code
   PowerSequence(R) : Str -> PowSeqEnum
   PowerSeriesRing(R) : Rng -> RngSerPow
   PowerSet(R) : Str -> PowSetEnum
   PowerSumToElementaryMatrix(n): RngIntElt -> AlgMatElt
   PowerSumToElementarySymmetric(I) : [] -> []
   PowerSumToHomogeneousMatrix(n): RngIntElt -> AlgMatElt
   PowerSumToMonomialMatrix(n): RngIntElt -> AlgMatElt
   PowerSumToSchurMatrix(n): RngIntElt -> AlgMatElt
   PrimePowerRepresentation(x, k, a) : FldFunGElt, RngIntElt, FldFunGElt -> SeqEnum
   ProductRepresentation(P, E) : [ FldAlgElt ], [ RngIntElt ] -> FldAlgElt
   ProductRepresentation(P, E) : [ FldNumElt ], [ RngIntElt ] -> FldNumElt
   ProductRepresentation(Q, S) : [FldFunGElt], [RngIntElt] -> FldFunGElt
   SchurToPowerSumMatrix(n): RngIntElt -> AlgMatElt
   SetPowerPrinting(F, l) : FldFin, BoolElt ->
   SymmetricFunctionAlgebraPower(R) : Rng -> AlgSym
   SymmetricPower(a,r) : AlgMatElt, RngIntElt -> AlgMatElt
   SymmetricPower(L, m) : LSer, RngIntElt -> LSer
   SymmetricPower(V, n) : ModAlg, RngIntElt -> ModAlg, Map
   SymmetricPower(V, n) : ModAlg, RngIntElt -> ModAlg, Map
   SymmetricPower(L, m) : RngDiffOpElt, RngIntElt -> RngDiffOpElt
   SymmetricPower(R, n, v) : RootDtm, RngIntElt, ModTupRngElt -> LieRepDec
   TensorPower(M, n) : ModGrp, RngIntElt -> ModGrp
   TensorPower(R, n, v) : RootDtm, RngIntElt, ModTupRngElt -> LieRepDec
   TensorProduct(S, T) : ShfCoh, ShfCoh -> ShfCoh
   f ^ n : QuadBinElt, RngIntElt -> QuadBinElt
   qExpansion(f) : ModFrmElt -> RngSerPowElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012