[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: classfields  ..  ClassicalType


classfields

   FldFunAb_classfields (Example H43E2)

ClassFunctionSpace

   CharacterRing(G) : Grp -> AlgChtr
   ClassFunctionSpace(G) : Grp -> AlgChtr

ClassGroup

   ClassGroup(C) : Crv[FldFin] -> GrpAb, Map, Map
   ClassGroup(K) : FldQuad -> GrpAb, Map
   ClassGroup(Q) : FldRat -> GrpAb, Map
   ClassGroup(K: parameters) : FldAlg -> GrpAb, Map
   ClassGroup(F : parameters) : FldFun -> GrpAb, Map, Map
   ClassGroup(F : parameters) : FldFunG -> GrpAb, Map, Map
   ClassGroup(Q: parameters) : QuadBin -> GrpAb, Map
   ClassGroup(O: parameters) : RngOrd -> GrpAb, Map
   ClassGroup(O) : RngFunOrd -> GrpAb, Map, Map
   ClassGroup(Z) : RngInt -> GrpAb, Map
   RngOrd_ClassGroup (Example H37E18)

ClassGroupAbelianInvariants

   ClassGroupAbelianInvariants(C) : Crv[FldFin] -> [RngIntElt]
   ClassGroupAbelianInvariants(F : parameters) : FldFun -> SeqEnum
   ClassGroupAbelianInvariants(F : parameters) : FldFunG -> SeqEnum
   ClassGroupAbelianInvariants(O) : RngFunOrd -> SeqEnum

ClassGroupCyclicFactorGenerators

   ClassGroupCyclicFactorGenerators(O) : RngOrd -> ModHomElt

ClassGroupExactSequence

   ClassGroupExactSequence(F) : FldFunG -> Map, Map, Map
   ClassGroupExactSequence(O) : RngFunOrd -> Map, Map, Map

ClassGroupGenerationBound

   ClassGroupGenerationBound(F) : FldFunG -> RngIntElt
   ClassGroupGenerationBound(q, g) : RngIntElt, RngIntElt -> RngIntElt

ClassGroupGetUseMemory

   ClassGroupGetUseMemory(O) : RngOrd -> BoolElt

ClassGroupPRank

   ClassGroupPRank(C) : Crv[FldFin] -> RngIntElt
   ClassGroupPRank(F) : FldFunG -> RngIntElt
   ClassGroupPRank(F) : FldFunG -> RngIntElt

ClassGroupPrimeRepresentatives

   ClassGroupPrimeRepresentatives(O, I) : RngOrd, RngOrdIdl -> Map

ClassGroupSetUseMemory

   ClassGroupSetUseMemory(O, f) : RngOrd, BoolElt ->

ClassGroupStructure

   ClassGroupStructure(Q: parameters) : QuadBin -> [ RngIntElt ]

Classical

   ClassicalConstructiveRecognition(G : parameters) : GrpMat[FldFin] -> BoolElt, [], [], GrpMatElt
   ClassicalCovariantsOfCubicSurface(f) : RngMPolElt -> SeqEnum
   ClassicalElementToWord(G, g): GrpMat[FldFin], GrpMatElt[FldFin] -> BoolElt, GrpSLPElt
   ClassicalForms(G: parameters): GrpMat -> Rec
   ClassicalIntersection(S) : SeqEnum -> GrpMat
   ClassicalMaximals(type, d, q : parameters) : MonStgElt, RngIntElt, RngIntElt -> SeqEnum
   ClassicalModularPolynomial(N) : RngIntElt -> RngMPolElt
   ClassicalPeriod(M, j, prec) : ModSym, RngIntElt, RngIntElt -> FldPrElt
   ClassicalStandardGenerators(type, d, q) : MonStgElt, RngIntElt, RngIntElt -> []
   ClassicalStandardPresentation (type, d, q : parameters) : MonStgElt, RngIntElt, RngIntElt -> SLPGroup, []
   ClassicalSylow(G,p) : GrpMat, RngIntElt -> GrpMat
   ClassicalSylowConjugation(G,P,S) : GrpMat, GrpMat, GrpMat -> GrpMatElt
   ClassicalSylowNormaliser(G,P) : GrpMat, GrpMat -> GrpMatElt
   ClassicalSylowToPC(G,P) : GrpMat, GrpMat -> GrpPC, UserProgram, Map
   ClassicalType(G) : GrpMat -> MonStgElt
   InvolutionClassicalGroupEven (G : parameters) : GrpMat[FldFin] ->GrpMatElt[FldFin], GrpSLPElt, RngIntElt
   IsClassicalType(L) : AlgLie -> BoolElt
   RecogniseClassicalSSA(A) : AlgMat -> BoolElt, AlgMat, Map, Map
   RecognizeClassical( G : parameters): GrpMat -> BoolElt

classical

   Automorphisms of Classical- type Reductive Algebras (LIE ALGEBRAS)
   Classical Groups (ALMOST SIMPLE GROUPS)
   Constructive Recognition for Simple Groups (MATRIX GROUPS OVER FINITE FIELDS)
   Maximal Subgroups of the Classical Groups (ALMOST SIMPLE GROUPS)
   Sylow Subgroups of the Classical Groups (ALMOST SIMPLE GROUPS)

classical-example

   ModFrmHil_classical-example (Example H137E8)

classical-maximals

   Maximal Subgroups of the Classical Groups (ALMOST SIMPLE GROUPS)

classical-sylow

   Sylow Subgroups of the Classical Groups (ALMOST SIMPLE GROUPS)

ClassicalConstructiveRecognition

   ClassicalConstructiveRecognition(G : parameters) : GrpMat[FldFin] -> BoolElt, [], [], GrpMatElt
   GrpMatFF_ClassicalConstructiveRecognition (Example H60E10)

ClassicalCovariantsOfCubicSurface

   ClassicalCovariantsOfCubicSurface(f) : RngMPolElt -> SeqEnum

ClassicalElementToWord

   ClassicalElementToWord(G, g): GrpMat[FldFin], GrpMatElt[FldFin] -> BoolElt, GrpSLPElt

ClassicalForms

   ClassicalForms(G: parameters): GrpMat -> Rec
   GrpASim_ClassicalForms (Example H65E7)

classicalforms

   Classical Forms (ALMOST SIMPLE GROUPS)

ClassicalIntersection

   ClassicalIntersection(S) : SeqEnum -> GrpMat
   AlgInv_ClassicalIntersection (Example H87E10)

ClassicalMaximals

   ClassicalMaximals(type, d, q : parameters) : MonStgElt, RngIntElt, RngIntElt -> SeqEnum

ClassicalModularPolynomial

   ClassicalModularPolynomial(N) : RngIntElt -> RngMPolElt

ClassicalPeriod

   ClassicalPeriod(M, j, prec) : ModSym, RngIntElt, RngIntElt -> FldPrElt

ClassicalStandardGenerators

   ClassicalStandardGenerators(type, d, q) : MonStgElt, RngIntElt, RngIntElt -> []

ClassicalStandardPresentation

   ClassicalStandardPresentation (type, d, q : parameters) : MonStgElt, RngIntElt, RngIntElt -> SLPGroup, []

ClassicalSylow

   ClassicalSylow(G,p) : GrpMat, RngIntElt -> GrpMat

ClassicalSylowConjugation

   ClassicalSylowConjugation(G,P,S) : GrpMat, GrpMat, GrpMat -> GrpMatElt

ClassicalSylowNormaliser

   ClassicalSylowNormaliser(G,P) : GrpMat, GrpMat -> GrpMatElt

ClassicalSylowToPC

   ClassicalSylowToPC(G,P) : GrpMat, GrpMat -> GrpPC, UserProgram, Map

ClassicalType

   ClassicalType(G) : GrpMat -> MonStgElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012