[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: pCore .. Permutation
pCore(G, p) : GrpFin, RngIntElt -> GrpFin
pCore(G, p) : GrpMat, RngIntElt -> GrpMat
pCore(G, S) : GrpPC, { RngIntElt } -> GrpPC
pCore(G, S) : GrpPC, { RngIntElt } -> GrpPC
pCore(G, p) : GrpPerm, RngIntElt -> GrpPerm
pCoreQuotient(G, p) : GrpPerm, RngIntElt -> GrpPerm, Map, GrpPerm
pCoreQuotient(G, p) : GrpPerm, RngIntElt -> GrpPerm, Map, GrpPerm
pCover(G, F, p) : GrpPerm, GrpFP, RngIntElt -> GrpFinFP
pCover(G, F, p) : GrpPerm, GrpFP, RngIntElt -> GrpFP
pCover(G, F, p) : GrpPerm, GrpFP, RngIntElt -> GrpFP
pCoveringGroup(~P) : GrpPCpQuotientProc ->
pCoveringGroup(~P) : GrpPCpQuotientProc ->
PCPresentation(G) : GrpMatUnip -> GrpPC, Map, Map
PCPrimes(G) : GrpPC -> [RngIntElt]
pElementaryAbelianNormalSubgroup(G, p) : GrpPerm, RngIntElt -> GrpPerm
pElementaryAbelianNormalSubgroup(G, p) : GrpPerm, RngIntElt -> GrpPerm
ParametrizePencil(phi, P2) : MapSch, Prj -> BoolElt, MapSch
Pencil(P, p) : Plane, PlanePt -> { PlaneLn }
Creation from Pencils (RESOLUTION GRAPHS AND SPLICE DIAGRAMS)
GrphRes_pencil (Example H115E2)
The Pentahedron of a Cubic Surface (ALGEBRAIC SURFACES)
AlgSrf_penta (Example H116E29)
PentahedronIdeal(f) : RngMPolElt -> RngMPol
PentahedronIdeal(f) : RngMPolElt -> RngMPol
ExtendedPerfectCodeZ4(δ, m) : RngIntElt, RngIntElt -> CodeLinRng, Mtrx
IsNearlyPerfect(C) : Code -> BoolElt
IsPerfect(C) : Code -> BoolElt
IsPerfect(C) : Code -> BoolElt
IsPerfect(F) : Fld -> BoolElt
IsPerfect(G) : GrpFin -> BoolElt
IsPerfect(G) : GrpFP -> BoolElt
IsPerfect(G) : GrpGPC -> BoolElt
IsPerfect(G) : GrpMat -> BoolElt
IsPerfect(G) : GrpPC -> BoolElt
IsPerfect(G) : GrpPerm -> BoolElt
IsProbablyPerfect(G : parameters): Grp -> BoolElt
PerfectForms(G) : GrpMat[RngInt] -> SeqEnum
PerfectGroupDatabase() : -> DB
PerfectSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
PerfectSubgroups(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
RngInt_Perfect (Example H18E7)
PerfectForms(G) : GrpMat[RngInt] -> SeqEnum
PerfectGroupDatabase() : -> DB
PerfectSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
PerfectSubgroups(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
GrpData_perfgps (Example H66E7)
BigPeriodMatrix(A) : AnHcJac -> AlgMatElt
ClassicalPeriod(M, j, prec) : ModSym, RngIntElt, RngIntElt -> FldPrElt
IsIsogenousPeriodMatrices(P1, P2) : Mtrx, Mtrx -> Bool, Mtrx
IsIsomorphicBigPeriodMatrices(P1, P2) : Mtrx, Mtrx -> Bool, Mtrx, Mtrx
IsIsomorphicSmallPeriodMatrices(t1,t2) : Mtrx, Mtrx -> Bool, Mtrx
PeriodMapping(A, prec) : ModAbVar, RngIntElt -> Map
PeriodMapping(M, prec) : ModSym, RngIntElt -> Map
RealPeriod(E: parameters) : CrvEll -> FldReElt
SmallPeriodMatrix(A) : AnHcJac -> AlgMatElt
The Period Map (MODULAR SYMBOLS)
The Period Map (MODULAR SYMBOLS)
PeriodMapping(A, prec) : ModAbVar, RngIntElt -> Map
PeriodMapping(M, prec) : ModSym, RngIntElt -> Map
EllipticCurveFromPeriods(om: parameters) : [ FldComElt ] -> CrvEll
EllipticPeriods(A, n) : ModAbVar, RngIntElt -> FldReElt, FldReElt
Periods(A, n) : ModAbVar, RngIntElt -> SeqEnum
Periods(M, prec) : ModSym, RngIntElt -> SeqEnum
Periods(E: parameters) : CrvEll -> [ FldComElt ]
Complex Period Lattice (MODULAR ABELIAN VARIETIES)
PermRep(K) : DBAtlasKeyPermRep -> SeqEnum[GrpPermElt]
PermRepDegrees(A) : GrpAtlas -> SetEnum[RngIntElt]
PermRepKeys(A) : GrpAtlas -> SeqEnum[DBAtlasKeyPermRep]
PositiveRootsPerm(U) : AlgQUE -> SeqEnum
The Burnside Algorithm (K[G]-MODULES AND GROUP REPRESENTATIONS)
PermRep(K) : DBAtlasKeyPermRep -> SeqEnum[GrpPermElt]
PermRepDegrees(A) : GrpAtlas -> SetEnum[RngIntElt]
PermRepKeys(A) : GrpAtlas -> SeqEnum[DBAtlasKeyPermRep]
Induced Permutation Representations (FINITELY PRESENTED GROUPS: ADVANCED)
CosetTableToPermutationGroup(G, T) : GrpFP, Map -> GrpPerm
InducedPermutation(u) : GrpBrdElt -> GrpPermElt
IsPermutationModule(M) : ModRng -> BoolElt
IsProbablyPermutationPolynomial(p) : RngUPolElt -> BoolElt
Permutation(G, Q) : GrpPerm, [Elt] -> GrpPermElt
PermutationAutomorphism(A, g) : Sch,GrpPermElt -> MapIsoSch
PermutationCharacter(K) : FldNum -> ArtRep
PermutationCharacter(G, H) : Grp, Grp -> AlgChtrElt
PermutationCharacter(G, H) : GrpFin, GrpFin -> AlgChtrElt
PermutationCharacter(G, H) : GrpMat, GrpMat -> AlgChtrElt
PermutationCharacter(G) : GrpPerm -> AlgChtrElt
PermutationCharacter(G) : GrpPerm -> AlgChtrElt
PermutationCharacter(G) : GrpPerm -> AlgChtrElt
PermutationCharacter(G, H) : GrpPerm, GrpPerm -> AlgChtrElt
PermutationCode(u, G) : ModTupRngElt, GrpPerm -> Code
PermutationCode(u, G) : ModTupRngElt, GrpPerm -> Code
PermutationGroup(C) : Code -> GrpPerm, PowMap, Map
PermutationGroup(C) : CodeAdd -> GrpPerm
PermutationGroup(Q) : CodeQuantum -> GrpPerm
PermutationGroup(K) : DBAtlasKeyPermRep -> GrpPerm
PermutationGroup(A) : GrpAb -> GrpPerm, Hom(Grp)
PermutationGroup(A) : GrpAutCrv -> GrpPerm
PermutationGroup(A) : GrpAuto -> GrpPerm
PermutationGroup(G) : GrpFP -> GrpPerm, GrpHom
PermutationGroup(D, i: parameters): DB, RngIntElt -> GrpPerm
PermutationGroup< n | L > : RngIntElt, List -> GrpPerm
PermutationGroup< X | L > : Set, List -> GrpPerm
PermutationGroup< X | L > : Set, List -> GrpPerm, Hom
PermutationMatrix(R, x) : Rng, GrpPermElt -> Mtrx
PermutationMatrix(R, Q) : Rng, [ RngIntElt ] -> Mtrx
PermutationModule(G, K) : Grp, Fld -> ModGrp
PermutationModule(G, H, K) : Grp, Grp, Fld -> ModGrp
PermutationModule(G, H, R) : Grp, Grp, Rng -> ModGrp
PermutationModule(G, V) : Grp, ModTupFld -> ModGrp
PermutationModule(G, u) : Grp, ModTupFldElt -> ModGrp
PermutationModule(G, H, R) : GrpFin, GrpFin, Rng -> ModGrpFin
PermutationModule(G, H, R) : GrpMat, GrpMat, Rng -> ModGrp
PermutationModule(G, K) : GrpPerm, Fld -> ModGrp
PermutationModule(G, R) : GrpPerm, Rng -> ModGrp
PermutationModule(G, R) : GrpPerm, Rng -> ModGrpFin
PermutationRepresentation(A) : GrpAutCrv -> GrpPerm, Map
PermutationRepresentation(A) : GrpAuto -> Map, GrpPerm, SetIndx
PermutationRepresentation(D, i: parameters): DB, RngIntElt -> Hom(Grp), GrpFP, GrpPerm
PermutationSupport(A) : GrpAuto -> SetIndx
Reflection(W, r) : GrpPermCox, RngIntElt -> GrpPermElt
ReflectionPermutation(W, r) : GrpMat, RngIntElt -> []
ReflectionPermutation(R, r) : RootDtm, RngIntElt -> []
ReflectionPermutation(R, r) : RootSys, RngIntElt -> []
RootPermutation(phi) : Map -> GrpPermElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012