HANDBOOK OF MAGMA FUNCTIONS

Volume 13

Coding Theory and Cryptography

John Cannon Wieb Bosma
Claus Fieker Allan Steel

Editors

Version 2.19
Sydney
December 17, 2012

ii

MAGMA

COMPUTER®ALGEBRA

HANDBOOK OF MAGMA FUNCTIONS

Editors:
John Cannon Wieb Bosma Claus Fieker Allan Steel

Handbook Contributors:

Geoff Bailey, Wieb Bosma, Gavin Brown, Nils Bruin, John
Cannon, Jon Carlson, Scott Contini, Bruce Cox, Brendan
Creutz, Steve Donnelly, Tim Dokchitser, Willem de Graaf,
Andreas-Stephan Elsenhans, Claus Fieker, Damien Fisher,
Volker Gebhardt, Sergei Haller, Michael Harrison, Florian
Hess, Derek Holt, David Howden, Al Kasprzyk, Markus
Kirschmer, David Kohel, Axel Kohnert, Dimitri Leemans,
Paulette Lieby, Graham Matthews, Scott Murray, Eamonn
O’Brien, Dan Roozemond, Ben Smith, Bernd Souvignier,
William Stein, Allan Steel, Damien Stehlé, Nicole Suther-
land, Don Taylor, Bill Unger, Alexa van der Waall, Paul
van Wamelen, Helena Verrill, John Voight, Mark Watkins,
Greg White

Production Editors:

Wieb Bosma Claus Fieker Allan Steel Nicole Sutherland

HTML Production:
Claus Fieker Allan Steel

XXI

152
153
154
155
156
157

VOLUME 13: OVERVIEW

CODING THEORY .

LINEAR CODES OVER FINITE FIELDS
ALGEBRAIC-GEOMETRIC CODES
LOW DENSITY PARITY CHECK CODES
LINEAR CODES OVER FINITE RINGS
ADDITIVE CODES

QUANTUM CODES

XXII CRYPTOGRAPHY .

158

PSEUDO-RANDOM BIT SEQUENCES

XXIII OPTIMIZATION

159

LINEAR PROGRAMMING

5059
5061
5137
5147
5159
5199
5225

5263
5265

5273
5275

vi

XXI

152

VOLUME 13: CONTENTS

VOLUME 13: CONTENTS

CODING THEORY 5059

LINEAR CODES OVER FINITE FIELDS 5061
152.1 Introduction 5065
152.2 Construction of Codes 5066
152.2.1 Construction of General Linear Codes 5066
152.2.2 Some Trivial Linear Codes 5068
152.2.3 Some Basic Families of Codes 5069
152.3 Invariants of a Code 5071
152.3.1 Basic Numerical Invariants 5071
152.3.2 The Ambient Space and Alphabet 5072
152.3.3 The Code Space 5072
152.3.4 The Dual Space 5073
152.3.5 The Information Space and Information Sets 5074
152.3.6 The Syndrome Space 5075
152.3.7 The Generator Polynomial 5075
152.4 Operations on Codewords 5076
152.4.1 Construction of a Codeword 5076
152.4.2 Arithmetic Operations on Codewords 5077
152.4.3 Distance and Weight 5077
152.4.4 Vector Space and Related Operations 5078
152.4.5 Predicates for Codewords 5079
152.4.6 Accessing Components of a Codeword 5079
152.5 Coset Leaders 5080
152.6 Subcodes 5081
152.6.1 The Subcode Constructor 5081
152.6.2 Sum, Intersection and Dual 5083
152.6.3 Membership and Equality 5084
152.7 Properties of Codes 5085
152.8 The Weight Distribution 5087
152.8.1 The Minimum Weight 5087
152.8.2 The Weight Distribution 5092
152.8.3 The Weight Enumerator 5093
152.8.4 The MacWilliams Transform 5094
152.8.5 Words 5095
152.8.6 Covering Radius and Diameter 5097
152.9 Families of Linear Codes 5098
152.9.1 Cyclic and Quasicyclic Codes 5098
152.9.2 BCH Codes and their Generalizations 5100
152.9.3 Quadratic Residue Codes and their Generalizations 5103
152.9.4 Reed—Solomon and Justesen Codes 5105
152.9.5 Maximum Distance Separable Codes 5106
152.10 New Codes from Existing 5106
152.10.1 Standard Constructions 5106
152.10.2 Changing the Alphabet of a Code 5109
152.10.3 Combining Codes 5110
152.11 Coding Theory and Cryptography 5114
152.11.1 Standard Attacks 5115
152.11.2 Generalized Attacks 5116

152.12 Bounds 5117

153

154

155

VOLUME 13: CONTENTS

152.12.1 Best Known Bounds for Linear Codes
152.12.2 Bounds on the Cardinality of a Largest Code
152.12.3 Bounds on the Minimum Distance

152.12.4 Asymptotic Bounds on the Information Rate
152.12.5 Other Bounds

152.13 Best Known Linear Codes
152.14 Decoding
152.15 Transforms

152.15.1 Mattson—Solomon Transforms

152.15.2 Krawchouk Polynomials

152.16 Automorphism Groups

152.16.1 Introduction

152.16.2 Group Actions

152.16.3 Automorphism Group

152.16.4 Equivalence and Isomorphism of Codes

152.17 Bibliography

ALGEBRAIC-GEOMETRIC CODES

153.1 Introduction

153.2 Creation of an Algebraic Geometric Code
153.3 Properties of AG—Codes

153.4 Access Functions

153.5 Decoding AG Codes

153.6 Toric Codes

153.7 Bibliography

LOW DENSITY PARITY CHECK CODES

154.1 Introduction

154.1.1 Constructing LDPC Codes
154.1.2 Access Functions

154.1.3 LDPC Decoding and Simulation
154.1.4 Density Evolution

LINEAR CODES OVER FINITE RINGS

155.1 Introduction

155.2 Construction of Codes

155.2.1 Construction of General Linear Codes
155.2.2 Construction of Simple Linear Codes
155.2.3 Construction of General Cyclic Codes
155.3 Invariants of Codes

155.4 Codes over Zy4

155.4.1 The Gray Map

155.4.2 Families of Codes over Zg4

155.4.3 Derived Binary Codes

155.4.4 The Standard Form

155.4.5 Constructing New Codes from Old
155.4.6 Invariants of Codes over Zg4

155.4.7 Other Z4 functions

155.5 Construction of Subcodes of Linear Codes
155.5.1 The Subcode Constructor

155.6 Weight Distributions

155.6.1 Hamming Weight

155.6.2 Lee Weight

vii

5117
5118
5120
5120
5120
5121
5127
5128
5128
5129
5129
5129
5130
5131
5134
5134

5137

5139
5140
5142
5143
5143
5144
5145

5147

5149
5149
5150
5152
5154

5159

5161
5161
5161
5164
5165
5167
5168
5168
5170
5176
5177
5178
5181
5182
5182
5182
5183
5183
5184

viii

156

155.6.3
155.7
155.8
155.8.1
155.8.2
155.9
155.9.1
155.9.2
155.9.3
155.10
155.11

VOLUME 13: CONTENTS

Euclidean Weight
Weight Enumerators
Constructing New Codes from Old
Sum, Intersection and Dual
Standard Constructions
Operations on Codewords
Construction of a Codeword
Operations on Codewords and Vectors
Accessing Components of a Codeword
Boolean Predicates
Bibliography

ADDITIVE CODES

156.1
156.2
156.2.1
156.2.2
156.3
156.3.1
156.3.2
156.3.3
156.3.4
156.4
156.4.1
156.4.2
156.4.3
156.4.4
156.4.5
156.4.6
156.5
156.5.1
156.5.2
156.5.3
156.6
156.7
156.7.1
156.7.2
156.7.3
156.7.4
156.7.5
156.8
156.8.1
156.8.2
156.9
156.9.1
156.9.2
156.10

Introduction
Construction of Additive Codes
Construction of General Additive Codes
Some Trivial Additive Codes
Invariants of an Additive Code
The Ambient Space and Alphabet
Basic Numerical Invariants
The Code Space
The Dual Space
Operations on Codewords
Construction of a Codeword
Arithmetic Operations on Codewords
Distance and Weight
Vector Space and Related Operations
Predicates for Codewords
Accessing Components of a Codeword
Subcodes
The Subcode Constructor
Sum, Intersection and Dual
Membership and Equality
Properties of Codes
The Weight Distribution
The Minimum Weight
The Weight Distribution
The Weight Enumerator
The MacWilliams Transform
Words
Families of Linear Codes
Cyclic Codes
Quasicyclic Codes
New Codes from Old
Standard Constructions
Combining Codes
Automorphism Group

5186
5187
5190
5190
5191
5194
5194
5195
5197
5197
5198

5199

5201
5202
5202
5204
5205
5205
5206
5207
5207
5208
5208
5208
5209
5209
5210
5210
5210
5210
5212
5213
5213
5214
5214
5217
5217
5218
5218
5219
5219
5220
5221
5221
5222
5223

157 QUANTUM CODES
157.1 Introduction
157.2 Constructing Quantum Codes
157.2.1 Construction of General Quantum Codes
157.2.2 Construction of Special Quantum Codes
157.2.3 CSS Codes
157.2.4 Cyclic Quantum Codes
157.2.5 Quasi-Cyclic Quantum Codes
157.3 Access Functions
157.3.1 Quantum Error Group
1574 Inner Products and Duals
157.5 Weight Distribution and Minimum Weight
157.6 New Codes From Old
157.7 Best Known Quantum Codes
157.8 Best Known Bounds
157.9 Automorphism Group
157.10 Hilbert Spaces
157.10.1 Creation of Quantum States
157.10.2 Manipulation of Quantum States
157.10.3 Inner Product and Probabilities of Quantum States
157.10.4 Unitary Transformations on Quantum States
157.11 Bibliography

VOLUME 13: CONTENTS

X

5225

5227
5229
5229
5234
5234
5235
5238
5239
5240
5242
5244
5247
5248
5251
5252
5254
5255
5257
5258
5261
5262

XXII

158

VOLUME 13: CONTENTS

CRYPTOGRAPHY

PSEUDO-RANDOM BIT SEQUENCES .

158.1
158.2
158.3
158.4
158.5

Introduction

Linear Feedback Shift Registers
Number Theoretic Bit Generators
Correlation Functions
Decimation

5263

5265

5267
5267
5268
5270
5271

VOLUME 13: CONTENTS

XXIII OPTIMIZATION

159 LINEAR PROGRAMMING
159.1 Introduction
159.2 Explicit LP Solving Functions
159.3 Creation of LP objects
159.4 Operations on LP objects
159.5 Bibliography

x1

5273

5275

5277
5278
5280
5280
5283

152

153

154

155

156

157

PART XXI
CODING THEORY

LINEAR CODES OVER FINITE FIELDS
ALGEBRAIC-GEOMETRIC CODES
LOW DENSITY PARITY CHECK CODES
LINEAR CODES OVER FINITE RINGS
ADDITIVE CODES

QUANTUM CODES

5061

5137

5147

5159

5199

5225

152

152.1 Introduction 5065
152.2 Construction of Codes . . . 5066
152.2.1 Construction of General Linear

Codes 5066
LinearCode< > 5066
LinearCode (U) 5066
LinearCode (A) 5067
PermutationCode(u, G) 5067
152.2.2 Some Trivial Linear Codes . . . 5068
ZeroCode (R, n) 5068
RepetitionCode(R, n) 5068
ZeroSumCode (R, n) 5068
UniverseCode(R, n) 5068
EvenWeightCode (n) 5068
EvenWeightSubcode (C) 5068
RandomLinearCode(K, n, k) 5068
CordaroWagnerCode (n) 5068
152.2.3 Some Basic Families of Codes . . 5069
CyclicCode(n, g) 5069
HammingCode (K, r) 5070
SimplexCode(r) 5070
ReedMullerCode(r, m) 5070
152.3 Invariants of a Code 5071
152.3.1 Basic Numerical Invariants . . . 5071
Length(C) 5071
Dimension(C) 5071
NumberOfGenerators (C) 5071
5071
InformationRate (C) 5071
152.3.2 The Ambient Space and Alphabet 5072
AmbientSpace(C) 5072
RSpace(C) 5072
VectorSpace(C) 5072
Generic(C) 5072
Alphabet (C) 5072
Field(C) 5072
152.3.3 The Code Space. 5072
GeneratorMatrix(C) 5072
BasisMatrix(C) 5072
Basis(C) 5072
Generators(C) 5072
. 5072
152.3.4 The Dual Space 5073
Dual(C) 5073
ParityCheckMatrix(C) 5073
Hull(C) 5073
152.3.5 The Information Space and Infor-

mation Sets. 5074

InformationSpace(C) 5074

LINEAR CODES OVER FINITE FIELDS

InformationSet (C) 5074
AllInformationSets(C) 5074
StandardForm(C) 5074
152.3.6 The Syndrome Space 5075
SyndromeSpace (C) 5075
152.3.7 The Generator Polynomial . . . 5075
GeneratorPolynomial (C) 5075
CheckPolynomial (C) 5075
Idempotent (C) 5075
152.4 Operations on Codewords . 5076
152.4.1 Construction of a Codeword . . 5076
! 5076
elt< > 5076
! 5076
! 5076
Random(C) 5076
152.4.2 Arithmetic Operations on Code-
words5077
+ 5077
- 5077
- 5077
* 5077
Normalize (u) 5077
Syndrome (w, C) 5077
152.4.3 Distance and Weight. 5077
Distance(u, v) 5077
Weight (u) 5077
LeeWeight (u) 5077
152.4.4 Vector Space and Related Opera-
tions.5078
(u, v) 5078
InnerProduct (u, v) 5078
Support (w) 5078
Coordinates(C, u) 5078
Parent (w) 5078
Rotate(u, k) 5078
Rotate(~u, k) 5078
Trace(u, S) 5078
Trace(u) 5078
152.4.5 Predicates for Codewords. . . . 5079
eq 5079
ne 5079
IsZero(u) 5079
152.4.6 Accessing Components of a Code-
word.5079
uli] 5079
uli] := x; 5079
152.5 Coset Leaders. 5080
CosetLeaders(C) 5080

5062

152.6 Subcodes . .o
152.6.1 The Subcode Constructor

sub< >

Subcode(C, k)

Subcode(C, S)
SubcodeBetweenCode (C1, C2, k)
SubcodeWords0fWeight (C, S)

152.6.2 Sum, Intersection and Dual .

+

meet

Dual (C)

152.6.3 Membership and Equality
in

notin

subset

notsubset

€q
ne

152.7 Properties of Codes

IsCyclic(C)
IsSelfDual(C)
IsSelfOrthogonal(C)
IsMaximumDistanceSeparable (C)
IsMDS(C)
IsEquidistant(C)
IsPerfect(C)
IsNearlyPerfect(C)
IsEven(C)
IsDoublyEven(C)
IsProjective(C)

152.8 The Weight Distribution .

152.8.1 The Minimum Weight .

MinimumWeight (C: -)
MinimumDistance(C: -)
MinimumWeightBounds (C)
ResetMinimumWeightBounds (C)
VerifyMinimumDistance
LowerBound(C, d)
VerifyMinimumDistance
UpperBound(C, d)
VerifyMinimumWeight
UpperBound (C, d)
MinimumWord(C)
MinimumWords (C)
IncludeAutomorphism(~C, p)
IncludeAutomorphism(~C, G)
KnownAutomorphismSubgroup (C)

152.8.2 The Weight Distribution .

WeightDistribution(C)
WeightDistribution(C, u)
DualWeightDistribution(C)
PartialWeightDistribution(C, ub)

152.8.3 The Weight Enumerator .

CODING THEORY

5081
. 5081

5081
5081
5082
5082
5082

. 5083

5083
5083
5083

. 5084

5084
5084
5084
5084
5084
5084

5085

5085
5085
5085
5085
5085
5085
5085
5085
5085
5085
5085

5087
. 5087

5087
5087
5089
5089

5089

5090

5090
5090
5090
5092
5092
5092

. 5092

5092
5092
5092
5093

. 5093

Part XXII
WeightEnumerator (C) 5093
WeightEnumerator(C, u) 5093
CompleteWeightEnumerator (C) 5093
CompleteWeightEnumerator(C, u) 5093
152.8.4 The MacWilliams Transform . . 5094
MacWilliamsTransform(n, k, q, W) 5094
MacWilliamsTransform(n, k, K, W) 5095
152.8.5 Words 5095
Words(C, w: -) 5095
Number0fWords(C, w) 5096
WordsOfBoundedWeight(C, 1, u: -) 5096
ConstantWords(C, i) 5096
NumberOfConstantWords(C, i) 5096
152.8.6 Covering Radius and Diameter . 5097
CosetDistanceDistribution(C) 5097
CoveringRadius(C) 5097
Diameter(C) 5097
152.9 Families of Linear Codes . . 5098
152.9.1 Cyclic and Quasicyclic Codes . . 5098
CyclicCode (u) 5098
CyclicCode(n, T, K) 5098
QuasiCyclicCode(n, Gen) 5099
QuasiCyclicCode (Gen) 5099
QuasiCyclicCode(n, Gen, h) 5099
QuasiCyclicCode(Gen, h) 5099
ConstaCyclicCode(n, f, alpha) 5099
QuasiTwistedCyclic
Code(n, Gen, alpha) 5099

QuasiTwistedCyclicCode(Gen, alpha) 5099
152.9.2 BCH Codes and their Generaliza-

tions. 5100
BCHCode (K, n, d, b) 5100
BCHCode (K, n, d) 5100
GoppaCode (L, G) 5101
ChienChoyCode(P, G, n, S) 5102
AlternantCode(A, Y, r, S) 5102
AlternantCode(A, Y, r) 5102
NonPrimitiveAlternantCode(n, m, r) 5102
FireCode(h, s, n) 5103
GabidulinCode(A, W, Z, t) 5103
SrivastavaCode(A, W, mu, S) 5103
GeneralizedSrivastava

Code(A, W, Z, t, S) 5103
152.9.3 Quadratic Residue Codes and their

Generalizations 5103
QRCode (K, n) 5103
GolayCode (X, ext) 5103
DoublyCirculantQRCode (p) 5103
DoublyCirculantQRCodeGF4(m, a) 5104
BorderedDoublyCirculant

QRCode(p, a, b) 5104
TwistedQRCode (1, m) 5104
PowerResidueCode (K, n, p) 5104

152.9.4 Reed—Solomon and Justesen Codes5105
ReedSolomonCode(K, d, b) 5105

Ch. 152

ReedSolomonCode (K, d)

ReedSolomonCode(n, d)

ReedSolomonCode(n, d, b)

GRSCode (A, V, k)

JustesenCode (N, K)

152.9.5 Maximum Distance Separable
Codes e

MDSCode (K, k)

152.10 New Codes from Existing
152.10.1 Standard Constructions

AugmentCode (C)
CodeComplement (C, C1)
DirectSum(C, D)
DirectSum(Q)
DirectProduct(C, D)
ProductCode(C, D)
ExtendCode (C)
ExtendCode(C, n)
PadCode(C, n)
ExpurgateCode (C)
ExpurgateCode(C, L)
ExpurgateWeightCode(C, w)
LengthenCode (C)
PlotkinSum(C1, C2)
PlotkinSum(C1, C2, C3: -)
PunctureCode(C, i)
PunctureCode(C, S)
ShortenCode(C, i)
ShortenCode(C, S)

152.10.2 Changing the Alphabet of a Code

ExtendField(C, L)
LinearCode(C, S)
SubfieldRepresentationCode(C, K)
SubfieldRepresentation
ParityCode(C, K)
SubfieldSubcode(C, S)
RestrictField(C, S)
SubfieldSubcode (C)
RestrictField(C)
SubfieldCode(C, S)
Trace(C, F)
Trace (C)

152.10.3 Combining Codes .

cat

Juxtaposition(C1l, C2)
ConcatenatedCode (0, I)
ConstructionX(C1, C2, C3)
ConstructionXChain(S, C)
ConstructionX3(C1, C2, C3, D1, D2)
ConstructionX3u(C1, C2, C3, D1, D2)
ConstructionXX(C1, C2, C3, D2, D3)
ZinovievCode(I, 0)
ConstructionY1(C)
ConstructionY1(C, w)

5105
5105
5105
5105
5105

. 5106

5106
5106

. 5106

5106
5106
5106
5106
5106
5106
5107
5107
5107
5107
5107
5107
5107
5107
5107
5107
5108
5108
5108

5109

5109
5109
5109

5109
5109
5109
5109
5109
5109
5109
5109

. 0110

5110
5110
5110
5111
5111
5111
5111
5112
5113
5114
5114

LINEAR CODES OVER FINITE FIELDS 5063

152.11 Coding Theory and Cryptog-

raphy 5114
152.11.1 Standard Attacks 5115
McEliecesAttack(C, v, e) 5115
LeeBrickellsAttack(C, v, e, p) 5115
LeonsAttack(C, v, e, p, 1) 5115
SternsAttack(C, v, e, p, 1) 5116
CanteautChabaudsAttack(C, v, e, p, 1) 5116
152.11.2 Generalized Attacks 5116
DecodingAttack(C, v, e) 5116
152.12Bounds 5117
152.12.1 Best Known Bounds for Linear

Codes»b5l117
BKLCLowerBound(F, n, k) 5118
BKLCUpperBound(F, n, k) 5118
BLLCLowerBound(F, k, d) 5118
BLLCUpperBound(F, k, d) 5118
BDLCLowerBound(F, n, d) 5118
BDLCUpperBound(F, n, d) 5118
152.12.2 Bounds on the Cardinality of a

Largest Code 5118
EliasBound(X, n, d) 5118
GriesmerBound (K, n, d) 5118
JohnsonBound(n, d) 5118
LevenshteinBound (X, n, d) 5118
PlotkinBound(K, n, d) 5119
SingletonBound(X, n, d) 5119
SpherePackingBound (K, n, d) 5119
GilbertVarshamovBound (K, n, d) 5119
GilbertVarshamovLinear

Bound (K, n, d4) 5119
VanLintBound (K, n, d) 5119
152.12.3 Bounds on the Minimum Distance 5120
BCHBound (C) 5120

GriesmerMinimumWeightBound (K, n, k) 5120
152.12.4 Asymptotic Bounds on the Infor-

mation Rate 5120
EliasAsymptoticBound (K, delta) 5120
McElieceEtAlAsymptoticBound(delta) 5120
PlotkinAsymptoticBound (K, delta) 5120
SingletonAsymptoticBound(delta) 5120
HammingAsymptoticBound(K, delta) 5120
GilbertVarshamov

AsymptoticBound (K, delta) 5120
152.12.5 Other Bounds. 5120
GriesmerLengthBound (K, k, d) 5120
152.13 Best Known Linear Codes . 5121
BKLC(X, n, k) 5122
BestKnownLinearCode(K, n, k) 5122
BLLC(X, k, d) 5122
BestLengthLinearCode (X, k, d) 5122
BDLC(X, n, d) 5123
BestDimensionLinearCode (K, n, d) 5123

152.14 Decoding 5127

5064 CODING THEORY Part XXII

Decode(C, v: -)
Decode(C, Q: -)

152.15 Transforms . .
152.15.1 Mattson—Solomon Transforms .

MattsonSolomonTransform(f, n)
InverseMattsonSolomon
Transform(A, n)

152.15.2 Krawchouk Polynomials

KrawchoukPolynomial (K, n, k)
KrawchoukTransform(f, K, n)
InverseKrawchouk (A, K, n)

152.16 Automorphism Groups .
152.16.1 Introduction

152.16.2 Group Actions

5127
5127

5128

. 0128

5128

5128

. 5129

5129
5129
5129

5129

. 5129
. 5130

5130
5130
5130

- 5130
- 5130
- 5130
Fix(C, G) 5130
152.16.3 Automorphism Group 5131
AutomorphismGroup(C: -) 5131
MonomialGroup(C: -) 5131
PermutationGroup(C) 5131
AutomorphismSubgroup (C) 5131
MonomialSubgroup(C) 5131
AutomorphismGroupStabilizer(C, k) 5132
MonomialGroupStabilizer(C, k) 5132
Aut (C) 5132
Aut(C, T) 5132
152.16.4 Equivalence and Isomorphism of
Codesb5134
IsIsomorphic(C, D: -) 5134
IsEquivalent(C, D: -) 5134
152.17 Bibliography 5134

Chapter 152
LINEAR CODES OVER FINITE FIELDS

152.1 Introduction

Let K be a finite field and let V' be the vector space of n-tuples over K. The Hamming-
distance between elements x and y of V', denoted d(z,y), is defined by

dlz,y) =#{1<i<n |z #vy }
The minimum distance d for a subset C of V is then
d=min{ d(z,y) |z € C,y e C,xz # vy }.

The subset C of V' is called an (n, M, d) code if the minimum distance for the subset C is
d and |C| = M. Then V is referred to as the ambient space of C.

The code C' is called a [n,k,d] linear code if C is a k-dimensional subspace of V.
Currently MAGMA supports not only linear codes, but also codes over finite fields which
are only linear over some subfield. These are known as additive codes and can be found in
Chapter 156. This chapter deals only with linear codes.

In this chapter, the term “code” will refer to a linear code. MAGMA provides machinery
for studying linear codes over finite fields F, = GF(q), over the integer residue classes
Z,, = Z/mZ, and over galois rings GR(p", k).

This chapter describes those functions which are applicable to codes over Fj,. The
highlights of the facilities provided for such codes include:

e The construction of codes in terms of generator matrices, parity check matrices and
generating polynomials (cyclic codes).

e A large number of constructions for particular families of codes, e.g., quadratic residue
codes.

e Highly optimized algorithms for the calculation of the minimum weight.
e Various forms of weight enumerator including the Macwilliams transform.

e A database that gives the user access to every best known linear code over GF'(2) of
length up to 256, and 98% of best known linear codes over GF'(4) of length up to 100.

e Machinery that allows the user to construct algebraic-geometric codes from a curve
defined over Fj,.

e The computation of automorphism groups for codes over small fields.

The reader is referred to [MS78] as a general reference on coding theory.

5066 CODING THEORY Part XXII
152.2 Construction of Codes
152.2.1 Construction of General Linear Codes

LinearCode< R, n | L >

Example H152E1

Create a code as a subspace of V = R which is generated by the elements specified
by the list L, where L is a list of one or more items of the following types:

a) An element of V.

b) A set or sequence of elements of V.

d) A set or sequence of sequences of type (c).

A subspace of V.

(

(

(c) A sequence of n elements of K, defining an element of V.
(

(e

(

)
f) A set or sequence of subspaces of V.

We define the ternary Golay code as a six-dimensional subspace of the vector space KV, where
K is F3. The ternary Golay code could be defined in a single statement as follows:

C

V V V Vv VvV

K :

= FiniteField(3);

:= LinearCode<K, 11 |

(1, 0, 0, 0, 0, 0, 1,1, 1,1, 11, [0, 1, 0, O, O, O, O, 1, 2, 2, 1],
(o, o, 1, 0, o, 0o, 1, 0, 1, 2, 21, [0, O, O, 1, O, O, 2, 1, O, 1, 2],
(o, o, 0, 0, 1,0, 2, 2,1, o, 11, [0, O, O, O, O, 1, 1, 2, 2, 1, 0]>;

Alternatively, if we want to see the code as a subspace of KV, we would proceed as follows:

> K := FiniteField(3);

> K11 := VectorSpace(K, 11);

> C := LinearCode(sub<Ki1l |

> (1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 11, [0, 1, O, O, O, O, O, 1, 2, 2, 1],

> (o, o, 1, 0, 0, 0, 1, 0, 1, 2, 21, [0, O, O, 1, O, O, 2, 1, O, 1, 2],

> (o, o, o, 0, 1, 0, 2, 2, 1, o, 11, [0, O, O, O, O, 1, 1, 2, 2, 1, 0]>);
LinearCode (U) |

Let V be the R-space R(™ and suppose that U is a subspace of V. The effect of this
function is to define the linear code C' corresponding to the subspace U. Suppose
the code C' being constructed has dimension k. The evaluation of this constructor
results in the creation of the following objects:

(a) The generator matrix G for C, created as a k X n matrix belonging to the
R-matrix space, R * 7).

(b) The parity check matrix H for C, created as an (n — k) X n matrix belonging
to the R-matrix space, R("~*) x),

Ch. 152 LINEAR CODES OVER FINITE FIELDS 5067

LinearCode(A) |

Given a kK X n matrix A over the ring R, construct the linear code generated by
the rows of A. Note that it is not assumed that the rank of A is k. The effect of
this constructor is otherwise identical to that described above.

Example H152E2

We define a code by constructing a matrix in a K-matrix space and using its row space to generate
the code:

> M := KMatrixSpace(FiniteField(5), 2, 4);
>G =M ! [1,1,1,2, 3,2,1,4];

> G;

[1112]

[3 21 4]

> C := LinearCode(G);

> C;

[4, 2, 2] Linear Code over GF(5)
Generator matrix:

[1 0 4 0]

[0 12 2]

PermutationCode(u, G)

Given a finite permutation group G of degree n, and a vector u belonging to the
n-dimensional vector space V over the ring R, construct the code C' correspond-
ing to the subspace of V spanned by the set of vectors obtained by applying the
permutations of G to the vector wu.

Example H152E3

We define G to be a permutation group of degree 7 and construct the code C as the Fb-code
generated by applying the permutations of G to a certain vector:

> G := PSL(3, 2);

> G;

Permutation group G of degree 7
(1, 4)(6, 7
1, 3, 204, 7, 5

> V := VectorSpace(GF(2), 7);
>u:=V![1,O,0,1,0,1,1]§
> C := PermutationCode(u, G);

> C;

[7, 3, 4] Linear Code over GF(2)
Generator matrix:

[1 00101 1]

[0101110]

[0O01011 1]

5068 CODING THEORY Part XXII

152.2.2 Some Trivial Linear Codes

ZeroCode (R, n)

Given a ring R and positive integer n, return the [n, 0, n] code consisting of only the
zero code word, (where the minimum weight is by convention equal to n).

RepetitionCode(R, n)

Given a ring R and positive integer n, return the [n, 1,n| code over K generated by
the all-ones vector.

ZeroSumCode (R, n)

Given a ring R and positive integer n, return the [n,n — 1, 2] code over R such that
for all codewords (ci,ca,...,c,) we have), ¢; = 0.

UniverseCode (R, n)

Given a ring R and positive integer n, return the [n,n,1] code consisting of all
possible codewords.

EvenWeightCode (n)

Given a positive integer n, return the [n,n — 1,2] code over F5 such that all vectors
have even weight. This is equivalent to the zero sum code over Fs.

EvenWeightSubcode (C)

Given a linear code C over Fsy, return the subcode of C containing the vectors of
even weight.

RandomLinearCode (K, n, k)

Given a finite field K and positive integers n and k, such that 0 < k£ < n, the
function returns a random linear code of length n and dimension k over the field
K. The method employed is to successively choose random vectors from K (™) until
generators for a k-dimensional subspace have been found.

CordaroWagnerCode (n)

Construct the Cordaro—Wagner code of length n, This is the 2-dimensional repetition
code over F5 of length n and having the largest possible minimum weight.

Ch. 152 LINEAR CODES OVER FINITE FIELDS 5069

Example H152E4

Over any specific finite field K, the zero code of length n is contained in every code of length
n, and similarly every code of length n is contained in the universe code of length n. This is
illustrated over GF'(2) for length 6 codes with an arbitrary code of length 6 dimension 3.

> K := GF(2);
> U := UniverseCode(K, 6);
> U;

[6, 6, 1] Linear Code over GF(2)
> Z := ZeroCode(X, 6);

> Z;

[6, 0, 6] Linear Code over GF(2)
> R := RandomLinearCode(K, 6, 3);
> (Z subset R) and (R subset U);
true

152.2.3 Some Basic Families of Codes

In this section we describe how to construct three very important families of codes: cyclic
codes, Hamming codes and Reed-Muller codes. We choose to present these very important
families at this stage since they are easily understood and they give us a nice collection of
codes for use in examples.

Many more constructions will be described in subsequent sections. In particular, vari-
ations and generalizations of the cyclic code construction presented here will be given.

CyclicCode(n, g)

Let K be a finite field. Given a positive integer n and a univariate polynomial
g(x) € K[z] of degree n — k such that g(z) | 2™ — 1, construct the [n, k] cyclic code
generated by g(z).

Example H152E5

We construct the length 23 Golay code over GF'(2) as a cyclic code by factorizing the polynomial
x?® — 1 over GF(2) and constructing the cyclic code generated by one of the factors of degree 11.

> P<x> := PolynomialRing(FiniteField(2));
> F := Factorization(x~23 - 1);
> F;
L
<x + 1, 1>,
<x"11 + xX79 + X°7 + x"6 + X6+ x + 1, 1>,
<x"11 + x710 + x”6 + x5 + x4 + x"2 + 1, 1>
]

> CyclicCode(23, F[2][1]);
[23, 12, 7] Cyclic Code over GF(2)
Generator matrix:

5070 CODING THEORY

[1
(o
(o
[0
[0
[0
[0
[0
(o
(o
(o
(o

O OO OO OO OO OO
O OO OO O OO Ok OO0
O OO OO OO OOOo
O OO OO OO+ OO OO
O OO OO O Kr OO O OO
O OO OO r OO OO OO
O O OO, OO OO O OoOOo
O OO Rr OO OO0 OO OoOOo
OO OO0 OO OO O OoOOo
O P OO OO OO0 O OoOOo
P O O O OO OO OO OO Oo
B =B B, P, OOk, OO Kk O -
QOO FrOFrRFrPrOFr P PFP PP
OO RrOFrPrPrOFr, KPP PFEO
OroOoOrroOoOr rkFEr P, OO
P ORrPFPORFR,EFPREFEL,LEFELOOO
P OO FrR,r PP ORFP, ORF O
R =, OO FP, OO0 O Fr P FP» =
O, PP OO0OOFRr P, FP, OF -

P P, OO0OO0ORFrRr PP, OFL, PO

ORr P RPr P, P, OOKR OO

0]
1]
0]
0]
1]
0]
0]
1]
1]
1]
1]
1]

Part XXII

HammingCode (K, r)

Given a positive integer r, and a finite field K of cardinality ¢, construct the r-th

order Hamming code over K of cardinality ¢g. This code has length

n=("-1)/(g=1).

Example H152E6

We construct the third order Hamming code over GF(2) together with its parity check matrix.

> H := HammingCode (FiniteField(2), 3);
> H;

[7, 4, 3] Hamming code (r = 3) over GF(2)
Generator matrix:

[100O0O01 1]

[01 00110]

[0O01010 1]

[0O0OO0111 1]

> ParityCheckMatrix(H);
[1010110]

[01 1001 1]

[00O0111 1]

SimplexCode (r)

Given a positive integer r, construct the [2" — 1,7, 2"~ !] binary simplex code, which

is the dual of a Hamming code.

ReedMullerCode(r, m)

Given positive integers r and m, where 0 < r < m, construct the r-th order binary

Reed—Muller code of length n = 2™.

Ch. 152 LINEAR CODES OVER FINITE FIELDS 5071

Example H152E7

We construct the first order Reed—Muller code of length 16 and count the number of pairs of
vectors whose components are orthogonal.

> R := ReedMullerCode(1, 4);

> R;

[16, 5, 8] Reed-Muller Code (r = 1, m = 4) over GF(2)
Generator matrix:

[100101100110100 1]
[010101010101010 1]
[0011001100110011]
(0000111100001 111]
(0000000011111 111]

> #{<v, w>: v, w in R | IsZero(InnerProduct(v, w))};
1024

152.3 Invariants of a Code

152.3.1 Basic Numerical Invariants

Length(C)

Given an [n, k] code C, return the block length n of C.

| Dimension(C) |

| NumberOfGenerators (C) |
The dimension k of the [n, k] linear code C.

Given a code C, return the number of codewords belonging to C'.

| InformationRate (C)

The information rate of the [n, k| code C. This is the ratio k/n.

5072 CODING THEORY Part XXII

152.3.2 The Ambient Space and Alphabet

AmbientSpace(C)

The ambient space of the code C i.e. the generic R-space V' in which C' is contained.

RSpace(C)

VectorSpace (C)

Given an [n, k| linear code C, defined as a subspace U of the n-dimensional space V/,
return U as a subspace of V' with basis corresponding to the rows of the generator
matrix for C.

Generic(C) |

Given an [n, k] code C, return the generic [n,n, 1] code in which C' is contained.

Alphabet (C)

Field(C)

The underlying ring (or alphabet) R of the code C.

152.3.3 The Code Space

| GeneratorMatrix(C) |

| BasisMatrix(C) |

The generator matrix for the linear code C, returned as an element of Hom(U, V)
where U is the information space of C' and V' is the ambient space of C.

Basis(C)

The current vector space basis for the linear code C', returned as a sequence of
elements of C.

| Generators (C) |

The current vector space basis for the linear code C, returned as a set of elements
of C.

Given an [n, k] code C and a positive integer i, 1 < i < k, return the i-th element
of the current basis of C.

Ch. 152 LINEAR CODES OVER FINITE FIELDS 5073

152.3.4 The Dual Space

The code that is dual to the code C.

ParityCheckMatrix(C)

The parity check matrix for the code C, returned as an element of Hom(V, U).

Example H152E8

We create a Reed—Muller code and demonstrate some simple relations.

> R := ReedMullerCode(1, 3);

> R;

[8, 4, 4] Reed-Muller Code (r = 1, m = 3) over GF(2)
Generator matrix:

[10010110]

[01 01010 1]

[0OO0O110011]

[O0OO0OO0O1111]

> G := GeneratorMatrix(R);

> P := ParityCheckMatrix(R);

> P;
[10
[0 1

10110]
1010 1]
[0 0 1001 1]
(0000111 1]
> G * Transpose(P);
[0 0 0 0]

[0 0 0 0]

[0 0 0 O]

[0 0 0 O]

> D := LinearCode(P);
> Dual(R) eq D;
true

O » O O

The Hull of a code is the intersection between itself and its dual.

5074 CODING THEORY Part XXII

152.3.5 The Information Space and Information Sets

InformationSpace(C)

Given an [n, k] linear code C, return the k-dimensional R-space U which is the space
of information vectors for the code C.

InformationSet (C) |

Given an [n, k] linear code C over a finite field, return the current information set
for C. The information set for C'is an ordered set of k linearly independent columns
of the generator matrix, such that the generator matrix is the identity matrix when
restricted to these columns. The information set is returned as a sequence of k
integers, giving the numbers of the columns that correspond to the information set.

AllInformationSets(C) |

Given an [n, k] linear code C over a finite field, return all the possible information
sets of C' as a (sorted) sequence of sequences of column indices. Each inner sequence
contains a maximal set of indices of linearly independent columns in the generator
matrix of C.

StandardForm(C) |

Given an [n, k] linear code C over a finite field, return the standard form D of C. A
code is in standard form if the first £ components of the code words correspond to
the information set. MAGMA returns one of the many codes in standard form which
is isomorphic to C. (The same code is returned each time.) Thus, the effect of this
function is to return a code D whose generators come from the generator matrix of
C with its columns permuted, so that the submatrix consisting of the first k£ columns
of the generator matrix for D is the identity matrix. Two values are returned:

(a) The standard form code D;
(b) An isomorphism from C to D.

Example H152E9

We construct a Reed—Muller code C' and its standard form S and then map a codeword of C' into
S.

> C := ReedMullerCode(1, 4);

> C;

[16, 5, 8] Reed-Muller Code (r = 1, m = 4) over GF(2)
Generator matrix:

[1T001011001101001]
[01 0101010101010 1]
[0011001100110011]
[b000111100001111]
[b0OO0OOO0OO0OO0OO11111111]
> InformationSet(C);

(1, 2, 3, 5, 91

Ch. 152 LINEAR CODES OVER FINITE FIELDS 5075

> #AllInformationSets(C);

2688

> S, f := StandardForm(C);

> S;

[16, 5, 8] Linear Code over GF(2)
Generator matrix:

[1000011101101001]
[01 0001101101010 1]
[001001011011001 1]
[0b001001110001111]
[b000100001111111]
>u :=C.1;

> u;

(1001011001101 001)
> f(u);

(1000011101101001)

152.3.6 The Syndrome Space

SyndromeSpace (C)

Given an [n, k| linear code C', return the (n — k)-dimensional vector space W, which
is the space of syndrome vectors for the code C.

152.3.7 The Generator Polynomial

The operations in this section are restricted to cyclic codes.

GeneratorPolynomial (C)

Given a cyclic code C' over a finite field, return the generator polynomial of C'. The
generator polynomial of C' is a divisor of ™ — 1, where n is the length of C.

CheckPolynomial (C)

Given a cyclic code C over a finite field, return the check polynomial of C as an
element of K[x]. If g(x) is the generator polynomial of C' and h(x) is the check
polynomial of C, then g(z)h(x) =0 (mod z™ — 1), where n is the length of C.

Idempotent (C)

Given a cyclic code C, return the (polynomial) idempotent of C. If ¢(z) is the
idempotent of C, then c¢(z)? = 0 (mod z™ — 1), where n is the length of C.

5076

Example H152E10

CODING THEORY

Part XXII

We find the generator and check polynomials for the third order Hamming code over GF(2).

> K<w>
> P<x>

GF(2)

3

> H := HammingCode (K, 3);

> g
> g;
x"3 +x + 1

> h := CheckPolynomial (H);

> h;
x"4 + x72 + x +

1

> gxh mod (x°7 - 1);

0

> forall{ ¢ : ¢ in H | h * P!Eltseq(c) mod (x°7-1) eq 0 };

true

> e := Idempotent(H);

> e;

x"4 + X72 + x

> e”2;

x"8 + x74 + x72

PolynomialRing(X) ;

GeneratorPolynomial (H) ;

152.4 Operations on Codewords

152.4.1 Construction of a Codeword

c! [8.1,

., ap]

elt< C | ag

b

.., a,

>

Given a code C which is defined as a subset of the R-space R, and elements

ai,...,a, belonging to R, construct the codeword (aq, ...

that the vector (aq, ...

,ay) is an element of C.

,ayn) of C. Tt is checked

Given a code C which is defined as a subset of the R-space V = R, and an element
u belonging to V', create the codeword of C' corresponding to u. The function will
fail if u does not belong to C.

The zero word of the code C.

| Random(C) |

A random codeword of C.

Ch. 152 LINEAR CODES OVER FINITE FIELDS 5077

152.4.2 Arithmetic Operations on Codewords

u + v

Sum of the codewords u and v, where u and v belong to the same linear code C.

|
H

Additive inverse of the codeword u belonging to the linear code C.

u - v

Difference of the codewords u and v, where u and v belong to the same linear code

I.Q

a *xu

Given an element a belonging to the field K, and a codeword u belonging to the
linear code C, return the codeword a * u.

| Normalize (u) |

Given an element u over a field, not the zero element, belonging to the linear code C,
return %*u, where a is the first non-zero component of u. If u is the zero vector, it is
returned as the value of this function. The net effect is that Normalize (u) always
returns a vector v in the subspace generated by w, such that the first non-zero

component of v is the unit of K.

Syndrome (w, C)

Given an [n, k| linear code C over a finite field with parent vector space V, and a
vector w belonging to V', construct the syndrome of w relative to the code C. This
will be an element of the syndrome space of C.

152.4.3 Distance and Weight

Distance(u, v)

The Hamming distance between the codewords u and v, where u and v belong to
the same code C.

Weight (u)

The Hamming weight of the codeword wu, i.e., the number of non-zero components
of u.

LeeWeight (u)

The Lee weight of the codeword wu.

5078 CODING THEORY Part XXII

Example H152E11

We calculate all possible distances between code words of the non-extended Golay code over
GF(3), and show the correspondence with all possible code word weights.

> C := GolayCode(GF(3),false);
> {Distance(v,w):v,w in C};
{0,5, 6,8, 9, 111}

> {Weight(v):v in C};

{0,5, 6,8, 9, 11}

152.4.4 Vector Space and Related Operations

(u, v)

InnerProduct(u, v)

Inner product of the vectors u and v with respect to the Euclidean norm, where
and v belong to the parent vector space of the code C'.

Support (w)

Given a word w belonging to the [n, k] code C, return its support as a subset of
the integer set {1..n}. The support of w consists of the coordinates at which w has
non-zero entries.

Coordinates(C, u)

Given an [n, k] linear code C and a codeword u of C' return the coordinates of u
with respect to C. The coordinates of u are returned as a sequence Q = [aq, ..., ay]
of elements from the alphabet of C so that u = a1 *C.1+ ...+ ap *x C.k.

Parent (w) |

Given a word w belonging to the code C', return the ambient space V of C.

Rotate(u, k)

Given a vector u, return the vector obtained from u by cyclically shifting its com-
ponents to the right by £ coordinate positions.

Rotate(~u, k)

Given a vector u, destructively rotate u by k coordinate positions.

Trace(u, S)

Trace(u)

Given a vector u with components in K, and a subfield S of K, construct the vector
with components in S obtained from u by taking the trace of each component with
respect to S. If S is omitted, it is taken to be the prime field of K.

Ch. 152 LINEAR CODES OVER FINITE FIELDS 5079

Example H152E12

We create a specific code word in the length 5 even weight code, after a failed attempt to create
a code word of odd weight. We then display its support, find its coordinates with respect to the
basis and then confirm it by way of re-construction.

> C := EvenWeightCode(5);
> C![1,1,0,1,0];

>> C!'[1,1,0,1,0];
Runtime error in ’!’: Result is not in the given structure
>c :=C![1,1,0,1,1];

> c;

(11011

> Support(c);

{1, 2, 4, 5%

> Coordinates(C,c);
(1,1, 0, 11

>C.1 +C.2 + C.4;
(11011)

152.4.5 Predicates for Codewords

The function returns true if and only if the codewords v and v are equal.

The function returns true if and only if the codewords u and v are not equal.

| IsZero(u) |

The function returns true if and only if the codeword u is the zero vector.

152.4.6 Accessing Components of a Codeword

Given a codeword u belonging to the code C' defined over the ring R, return the
i-th component of u (as an element of R).

uli] = x;

Given an element u belonging to a subcode C' of the full R-space V = R", a positive
integer i, 1 < ¢ < n, and an element x of R, this function returns a vector in V'
which is u with its i-th component redefined to be z.

5080 CODING THEORY Part XXII

152.5 Coset Leaders

| CosetLeaders(C) |

Given a code C' with ambient space V over a finite field, return a set of coset leaders
(vectors of minimal weight in their cosets) for C' in V' as an indexed set of vectors
from V. Note that this function is only applicable when V and C' are small. This
function also returns a map from the syndrome space of C into the coset leaders
(mapping a syndrome into its corresponding coset leader).

Example H152E13

We construct a Hamming code C, encode an information word using C, introduce one error, and
then decode by calculating the syndrome of the “received” vector and applying the CosetLeaders
map to the syndrome to recover the original vector.

First we set C' to be the third order Hamming Code over the finite field with two elements.

> C := HammingCode(GF(2), 3);

> C;

[7, 4, 3] Hamming code (r = 3) over GF(2)
Generator matrix:

[10000O01 1]

[01 0010 1]

[0010110]

[0O0OO0O111 1]

Then we set L to be the set of coset leaders of C' in its ambient space V and f to be the map
which maps the syndrome of a vector in V' to its coset leader in L.

> L, f := CosetLeaders(C);

> L;

{e
(00000O00O0)),
(1000000)),
(01 00000)),
(0010000)),
(0001000),
(0000100),
(0000010),
(00000011

@}

Since C has dimension 4, the degree of the information space I of C' is 4. We set ¢ to be an
“information vector” of length 4 in I, and then encode i using C by setting w to be the product
of ¢ by the generator matrix of C.

> I := InformationSpace(C);

> I;

Full Vector space of degree 4 over GF(2)
>i::=1"'[1, 0,1, 1];

> w := i * GeneratorMatrix(C);

Ch. 152 LINEAR CODES OVER FINITE FIELDS 5081

> w;
(1011010

Now we set r to be the same as w but with an error in the 7-th coordinate (so r is the “received
vector”).

>r o= w;

> r[7] := 1;
> r;
(1011011

Finally we let s be the syndrome of r with respect to C', apply f to s to get the coset leader I,
and subtract [from r to get the corrected vector v. Finding the coordinates of v with respect to
the basis of C' (the rows of the generator matrix of C') gives the original information vector.

> s := Syndrome(r, C);
> s;

(111)

>1 := £(s);

> 1;
(00
> v o
> v;
(101
> res :
> res;
1011)

000 1)
_1;

o

[EY

010)
I ! Coordinates(C, v);

152.6 Subcodes

152.6.1 The Subcode Constructor

| sub< C | L >|

Given an [n, k] linear code C over R, construct the subcode of C, generated by
the elements specified by the list L, where L is a list of one or more items of the
following types:

) An element of C;

a
b) A set or sequence of elements of C;

d) A set or sequence of sequences of type (c);

(
(
(c) A sequence of n elements of R, defining an element of C;
(
(e) A subcode of C;

Subcode (C, k)

Given an [n, k| linear code C' and an integer ¢, 1 <t < n, return a subcode of C' of
dimension t.

5082

CODING THEORY

Subcode(C, S)

Part XXII

Given an [n, k] linear code C' and a set S of integers, each of which lies in the range
[1, k], return the subcode of C' generated by the basis elements whose positions

appear in S.

SubcodeBetweenCode (C1, C2, k)

Given a linear code C; and a subcode C5 of (', return a subcode of C; of dimension

k containing CS.

SubcodeWords0fWeight (C, S)

Example H152E14

Given an [n, k] linear code C' and a set S of integers, each of which lies in the range
[1,n], return the subcode of C' generated by those words of C' whose weights lie in

S.

We give an example of how SubcodeBetweenCode may be used to create a code nested in between
a subcode pair.

> C1
> C1;

(6, 1

:= RepetitionCode(GF(2),6);

, 6] Cyclic Code over GF(2)

Generator matrix:

[11
> C3
> C3;

111 1]
:= EvenWeightCode(6);

[6, 5, 2] Linear Code over GF(2)
Generator matrix:

[10
[01
[0 0
(00
[00
> C1
true
> C2
> C2;

00 1]
00 1]
100 1]
010 1]
001 1]
subset C3;

0
0

:= SubcodeBetweenCode(C3, C1, 4);

[6, 4, 2] Linear Code over GF(2)
Generator matrix:

[10
[0 1
[00
(00

0010]
000 1]
100 1]
010 1]

> (C1 subset C2) and (C2 subset C3);

true

Ch. 152 LINEAR CODES OVER FINITE FIELDS 5083

152.6.2 Sum, Intersection and Dual

For the following operators, C' and D are codes defined as subsets (or subspaces) of the
same R-space V.

The (vector space) sum of the linear codes C' and D, where C' and D are contained
in the same K-space V.

C meet D

The intersection of the linear codes C' and D, where C' and D are contained in the
same K-space V.

The dual D of the linear code C. The dual consists of all codewords in the K-space
V' which are orthogonal to all codewords of C.

Example H152E15

Verify some simple results from the sum and intersection of subcodes with known basis.

> C := EvenWeightCode(5);

> C;

[5, 4, 2] Linear Code over GF(2)
Generator matrix:

[1 000 1]

[0100 1]

[00 10 1]

[00 01 1]

>Cl :=sub< C | C.1 >;
> C2 :=sub< C | C.4 >;
>C3 :=sub< C | {C.1, C.4} >;
> (C1 + C2) eq C3;

true

> (C1 meet C3) eq C1;
true

Example H152E16

Verify the orthogonality of codewords in the dual for a ReedSolomonCode.

> K<w> := GF(8);

> R := ReedSolomonCode (K, 3);

> R;

[7, 5, 3] BCH code (d = 3, b = 1) over GF(2°3)
Generator matrix:

[1 0 0 0 0 w3 w™4]

[O 1 0 0 0 1 1]

[0O 0 1 0 0 w3 w~5]

5084 CODING THEORY Part XXII

[O 0 0 1 0 w w™5]
[O 0 0 0 1 w w4]
> D := Dual(R);

> D;

[7, 2, 6] Cyclic Code over GF(273)

Generator matrix:

[1 0 w™3 1 w3 w wl

[O 1 w4 1 wbwbwid]

> {<u,v> : u in R, v in D | InnerProduct(u,v) ne 0};

{3

152.6.3 Membership and Equality

For the following operators, C' and D are codes defined as a subset (or subspace) of the
R-space V.

u in C

Return true if and only if the vector u of V' belongs to the code C.

| u notin C |

Return true if and only if the vector u of V' does not belong to the code C.

| C subset D |

Return true if and only if the code C' is a subcode of the code D.

| C notsubset D |

Return true if and only if the code C' is not a subcode of the code D.

CeqgD

Return true if and only if the codes C and D are equal.

Return true if and only if the codes C' and D are not equal.

Ch. 152 LINEAR CODES OVER FINITE FIELDS 5085

152.7 Properties of Codes

For the following operators, C' and D are codes defined as a subset (or subspace) of the
vector space V.

IsCyclic(C)

Return true if and only if the linear code C' is a cyclic code.

| IsSelfDual(C) |

Return true if and only if the linear code C' is self-dual. (i.e. C' equals the dual of
).

IsSelfOrthogonal (C)

Return true if and only if the linear code C' is self-orthogonal (i.e., C' is contained
in the dual of C).

IsMaximumDistanceSeparable (C)

IsMDS(C)

Returns true if and only if the linear code C' is maximum-distance separable; that
is, has parameters [n, k,n — k + 1].

IsEquidistant (C)

Returns true if and only if the linear code C' is equidistant.

IsPerfect(C) |

Returns true if and only if the linear code C' is perfect; that is, if and only if the
cardinality of C' is equal to the size of the sphere packing bound of C'

IsNearlyPerfect(C)

Returns true if and only if the binary linear code C is nearly perfect.

IsEven(C) |

Returns true if and only if C is an even linear binary code, (i.e., all codewords
have even weight). If true, then MAGMA will adjust the upper and lower minimum
weight bounds of C' if possible.

IsDoublyEven(C)

Returns true if and only if C'is a doubly even linear binary code, (i.e., all codewords
have weight divisible by 4). If true, then MAGMA will adjust the upper and lower
minimum weight bounds of C' if possible.

IsProjective(C)

Returns true if and only if the (non-quantum) code C' is projective.

5086 CODING THEORY Part XXII

Example H152E17

We look at an extended quadratic residue code over GF(2) which is self-dual, and then confirm
it manually.

> C := ExtendCode(QRCode(GF(2),23));
> C:Minimal;

[24, 12, 8] Linear Code over GF(2)

> IsSelfDual(C);

true

> D := Dual(C);

> D: Minimal;

[24, 12, 8] Linear Code over GF(2)

> C eq D;

true

Example H152E18

We look at the CordaroWagnerCode of length 6, which is self-orthogonal, and then confirm it
manually.

> C := CordaroWagnerCode(6);

> C;

[6, 2, 4] Linear Code over GF(2)
Generator matrix:

[11001 1]

[001111]

> IsSelfOrthogonal(C);

true

> D := Dual(C);

> D;

[6, 4, 2] Linear Code over GF(2)
Generator matrix:

[1 0010 1]

[01010 1]

[00110 0]

[00 001 1]

> C subset D;

true

Ch. 152 LINEAR CODES OVER FINITE FIELDS 5087

152.8 The Weight Distribution

152.8.1 The Minimum Weight

In the case of a linear code, the minimum weight and distance are equivalent. It is clear
that is substantially easier to determine the minimum weight of a (possibly non-linear)
code than its minimum distance. The general principle underlying the minimum weight
algorithm in MAGMA is the embedding of low-weight information vectors into the code
space, in the hope that they will map onto low weight codewords.

Let C be a [n, k] linear code over a finite field and G be its generator matrix. The
minimum weight algorithm proceeds as follows: Starting with » = 1, all linear combinations
of r rows of G are enumerated. By taking the minimum weight of each such combination,
an upper bound, dypper, on the minimum weight of C' is obtained. A strictly increasing
function, djower(r), finds a lower bound on the minimum weight of the non-enumerated
vectors for each computational step (the precise form of this function depends upon the
algorithm being used). The algorithm terminates when djoyer(r) > dypper, at which point
the actual minimum weight is equal to dypper-

The algorithm is used for non-cyclic codes, and is due to A.E. Brouwer and K.H. Zim-
mermann [BFK198]. The key idea is to construct as many different generator matrices
for the same code as possible, each having a different information set and such that the
information sets are as disjoint as possible. By maximizing the number of information sets,
djower(r) can be made increasingly accurate. Each information set will provide a different
embedding of information vectors into the code, and thus the probability of a low-weight
information vector mapping onto a low-weight codeword is increased.

A well known improvement attributed to Brouwer exists for cyclic codes, requiring the
enumeration fo only one information set. A generalisation of this improvement has been
made by G. White to quasicyclic codes, and any codes whose known automorphisms have
large cycles. Functionality is included in this section for inputting partial knowledge of the
automorphism group to take advantage of this improvement.

Information sets are discarded if their ranks are too low to contribute to the lower
bound calculation. The user may also specify a lower bound, RankLowerBound, on the
rank of information sets initially created.

MinimumWeight (C: parameters)

MinimumDistance (C: parameters)

Method MONSTGELT Default : “Auto”
RankLowerBound RNGINTELT Default : 0
MaximumTime RNGRESUBELT Default : oo
Nthreads RNGINTELT Default : 1

Determine the minimum weight of the words belonging to the code C', which is also
the minimum distance between any two codewords. The parameter RankLowerBound
sets a minimum rank on the informations sets used in the calculation, while the
parameter MaximumTime sets a time limit (in seconds of “user time”) after which
the calculation is aborted.

5088

CODING THEORY Part XXII

If the base field is Fo and the parameter Nthreads is set to a positive integer
n, then n threads will be used in the computation, if POSIX threads are enabled.
One can alternatively use the procedure SetNthreads to set the global number of
threads to a value n so that n threads are always used by default in this algorithm
unless overridden by the Nthreads parameter.

Sometimes a brute force calculation of the entire weight distribution can be
a faster way to get the minimum weight for small codes. When the parameter
Method is set to the default "Auto" then the method is internally chosen. The user
can specify which method they want using setting it to either "Distribution" or
"Zimmerman".

By setting the verbose flag "Code", information about the progress of the compu-
tation can be printed. An example to demonstrate the interpretation of the verbose
output follows:

> SetVerbose("Code", true);

> SetSeed(1);

> MinimumWeight (RandomLinearCode (GF(2),85,26));

Linear Code over GF(2) of length 85 with 26 generators. Is not cyclic
Lower Bound: 1, Upper Bound: 60

Constructed 4 distinct generator matrices

Relative Ranks: 26 26 26 7

Starting search for low weight codewords...

Enumerating using 1 generator at a time:

New codeword identified of weight 32, time 0.000
New codeword identified of weight 28, time 0.000
New codeword identified of weight 27, time 0.000
New codeword identified of weight 25, time 0.000
Discarding non-contributing rank 7 matrix

New Relative Ranks: 26 26 26

Completed Matrix 1: 1lower = 4, upper = 25. Time so far: 0.000

New codeword identified of weight 23, time 0.000

Completed Matrix 2: 1lower = 5, upper = 23. Time so far: 0.000
Completed Matrix 3: 1lower = 6, upper = 23. Time so far: 0.000
Enumerating using 2 generators at a time:

New codeword identified of weight 20, time 0.000

Completed Matrix 1: 1lower = 7, upper = 20. Time so far: 0.000
Completed Matrix 2: 1lower = 8, upper = 20. Time so far: 0.000

Completed Matrix 3: Ilower

9, upper = 20. Time so far: 0.000

Enumerating using 3 generators at a time:

Completed Matrix 1: Ilower
Completed Matrix 2: lower

New codeword identified of weight 19, time 0.000
10, upper = 19. Time so far: 0.000
11, upper = 19. Time so far: 0.000

o

Completed Matrix 3: 1lower = 12, upper = 19. Time so far: 0.000
Enumerating using 4 generators at a time:

Ch. 152 LINEAR CODES OVER FINITE FIELDS

New codeword identified of weight 18,
Completed Matrix 1: 1lower = 13, upper
New codeword identified of weight 17,
Completed Matrix 2: 1lower = 14, upper
Completed Matrix 3: 1lower = 15, upper
Termination predicted with 5 generators at
Enumerating using 5 generators at a time:
Completed Matrix 1: 1lower = 16, upper
Completed Matrix 2: 1lower = 17, upper
Final Results: lower =
17

time 0.000
= 18. Time
time 0.000
= 17. Time
= 17. Time
matrix 2

= 17. Time
= 17. Time

510}

SO

So

SO
510)

17, upper = 17, Total time: 0.030

far:
far:

far:

far:
far:

Verbose output can be invaluable on long minimum weight calculations.

The algorithm constructs different (equivalent) generator matrices, each of which have
pivots in different column positions of the code, called its information set. A generator
matrix’s relative rank is the size of its information set independent from the previously

constructed matrices.

5089

The algorithm proceeds by enumerating all combinations derived from r generators, for
each successive r. Once r exceeds the difference between the actual rank of a matrix (i.e.,
the dimension), and its relative rank, then the lower bound on the minimum weight will

increment by 1 for that step.

The upper bound on the minimum weight is determined by the minimum weight of
codewords that are enumerated. Once these bounds meet the computation is complete.

MinimumWeightBounds (C)

Return the currently known lower and upper bounds on the minimum weight of

code C.

ResetMinimumWeightBounds (C)

Undefine the minimum weight of the code C' if it is known, and reset any known

bounds on its value.

VerifyMinimumDistanceLowerBound(C, d)

RankLowerBound RNGINTELT

MaximumTime RNGINTELT

the actual minimum weight of C'.

Default : 0

Default : oo

The minimum weight algorithm is executed until it determines whether or not d is
a lower bound for the minimum weight of the code C. (See the description of the
function MinimumWeight for information on the parameters RankLowerBound and
MaximumTime and on the verbose output). Three values are returned. The first of
these is a boolean value, taking the value true if and only if d is verified to be a
lower bound for the minimum weight of C, (false if the calculation is aborted due
to time restrictions). The second return value is the best available lower bound for
the minimum weight of C, and the third is a boolean which is true if this value is

5090

CODING THEORY Part XXII

VerifyMinimumDistanceUpperBound(C, d)

VerifyMinimumWeightUpperBound(C, d)

RankLowerBound RNGINTELT Default : 0

MaximumTime RNGINTELT Default : oo

The minimum weight algorithm is executed until it determines whether or not d is
an upper bound for the minimum weight of the code C. (See the description of the
function MinimumWeight for information on the parameters RankLowerBound and
MaximumTime and on the verbose output). Three values are returned. The first of
these is a boolean value, taking the value true if and only if d is verified to be an
upper bound for the minimum weight of C', (false if the calculation is aborted due
to time restrictions). The second return value is the best available upper bound for
the minimum weight of C, and the third is a boolean which is true if this value is
the actual minimum weight of C.

| MinimumWord (C) |

Return one word of the code C' having minimum weight.

| MinimumWords (C) |

NumWords RNGINTELT Default :
Method MONSTGELT Default : “Auto”
RankLowerBound RNGINTELT Default : oo
MaximumTime RNGRESUBELT Default : oo

Example H152E19

Given a linear code C, return the set of all words of C' having minimum weight. If
NumWords is set to a non-negative integer, then the algorithm will terminate after
that total of words have been found. Similarly, if MaximumTime then the algorithm
will abort if the specified time limit expires.

A variation of the Zimmermann minimum weight algorithm is generally used to
collect the minimum words, although in some cases (such as small codes) a brute
force enumeration may be used. When the parameter Method is set to the default
"Auto" then the method is internally chosen. The user can specify which method
they want using setting it to either "Distribution" or "Zimmerman".

By setting the verbose flag "Code", information about the progress of the com-
putation can be printed.

The function BKLC(K, n, k) returns the best known linear [n, k]-code over the field K. We use
this function to construct the [77,34, 16] best known linear code and confirm a lower bound on its
minimum weight (which is not as good as its actual minimum weight). We check to see whether
the minimum weight of this code is at least 11 and in doing so we will actually get a slightly
better bound, though it will be still less than the true minimum weight. Since the function BLKC

Ch. 152 LINEAR CODES OVER FINITE FIELDS 5091

will set the true minimum weight, it is first necessary to reset the bounds so that the minimum
weight data is lost.

> a := BKLC(GF(2),77,34);
> a:Minimal;
[77, 34, 16] Linear Code over GF(2)
> ResetMinimumWeightBounds(a) ;
> MinimumWeightBounds(a) ;
144
> a:Minimal;
[77, 34] Linear Code over GF(2)
> SetVerbose("Code",true);
> IsLB, d_lower, IsMinWeight := VerifyMinimumWeightLowerBound(a, 11);
Linear Code over GF(2) of length 77 with 34 generators. Is not cyclic
Lower Bound: 1, Upper Bound: 44
Using congruence d mod 4 = 0
Constructed 3 distinct generator matrices
Relative Ranks: 34 34 6
Starting search for low weight codewords...

Discarding non-contributing rank 6 matrix
Enumerating using 1 generator at a time:

New codeword identified of weight 20, time 0.000

New codeword identified of weight 16, time 0.000

Completed Matrix 1: 1lower = 4, upper = 16. Time so far: 0.000

16. Time so far: 0.000

Completed Matrix 2: Ilower 4, upper
Enumerating using 2 generators at a time:
Completed Matrix 1: 1lower = 8, upper = 16. Time so far: 0.000
Completed Matrix 2: 1lower = 8, upper = 16. Time so far: 0.000
Enumerating using 3 generators at a time:
Completed Matrix 1: 1lower = 8, upper = 16. Time so far: 0.000
Completed Matrix 2: 1lower = 8, upper = 16. Time so far: 0.000

Enumerating using 4 generators at a time:

16. Time so far: 0.010
Final Results: lower = 12, upper = 16, Total time: 0.010

> IsLB;

true

> d_lower, IsMinWeight;

12 false

Completed Matrix 1: 1lower = 12, upper

5092 CODING THEORY Part XXII

IncludeAutomorphism(~C, p)

IncludeAutomorphism(~C, G)

Given some automorphism p or group of automorphisms G of the code C', which
can either be a permutation of the columns or a full monomial permutation of the
code. Then include these automorphism in the known automorphisms subgroup.
Automorphisms with long cycles that can aid the minimum weight calculation should
be added in this way.

KnownAutomorphismSubgroup (C)

Return the maximally known subgroup of the full group of automorphisms of the
code C.

152.8.2 The Weight Distribution

WeightDistribution(C)

Determine the weight distribution for the code C'. The distribution is returned in
the form of a sequence of tuples, where the i-th tuple contains the i-th weight, w;
say, and the number of codewords having weight w;.

WeightDistribution(C, u)

Determine the weight distribution of the coset C' 4+ u of the linear code C. The
distribution is returned in the form of a sequence of tuples, where the i-th tuple
contains the i-th weight, w; say, and the number of codewords having weight w;.

DualWeightDistribution(C)

The weight distribution of the dual code of C' (see WeightDistribution).

Example H152E20

We construct the second order Reed—Muller code of length 64, and calculate the its weight distri-
bution and that of its dual code.

> R := ReedMullerCode(2, 6);

> #R;

4194304

> WeightDistribution(R) ;

[<0, 1>, <16, 2604>, <24, 291648>, <28, 888832>, <32, 1828134>, <36, 888832>,
<40, 291648>, <48, 2604>, <64, 1>]

> D := Dual(R);

> #D;

4398046511104

> time WeightDistribution(D);

[<0, 1>, <8, 11160>, <12, 1749888>, <14, 22855680>, <16, 232081500>, <18,
1717223424>, <20, 9366150528>, <22, 38269550592>, <24, 119637587496>, <26,
286573658112>, <28, 533982211840>, <30, 771854598144>, <32, 874731154374>,
<34, 771854598144>, <36, 533982211840>, <38, 286573658112>, <40,

Ch. 152 LINEAR CODES OVER FINITE FIELDS 5093

119637587496>, <42, 38269550592>, <44, 9366150528>, <46, 1717223424>,
<48, 232081500>, <50, 22855680>, <52, 1749888>, <56, 11160>, <64, 1>]

PartialWeightDistribution(C, ub)

Return the weight distribution of the code C' up to the specified upper bound. This
function uses the minimum weight collection to collect word sets.

152.8.3 The Weight Enumerator

WeightEnumerator (C)

The (Hamming) weight enumerator We(z,y) for the linear code C. The weight
enumerator is defined by

WC(Z’,y) _ Z xn—wt(u)ywt(u).
uel

WeightEnumerator (C, u)

The (Hamming) weight enumerator We o, (z,y) for the coset C' + w.

CompleteWeightEnumerator(C)

The complete weight enumerator We (2o, - . ., 24—1) for the linear code C where ¢ is
the size of the alphabet K of C. Let the g elements of K be denoted by wy, ... ,wy—1.
If K is a prime field, we let w; be i (i.e. take the natural representation of each
number). If K is a non-prime field, we let wy be the zero element of K and let w; be
a'~!fori=1...q—1 where « is the primitive element of K. Now for a codeword u
of C, let s;(u) be the number of components of u equal to w;. The complete weight
enumerator is defined by

Wc(ZO, Ce 7zq—1) = Z Zoso(u) L zq—lsqil(u)'
ueC

CompleteWeightEnumerator(C, u)

The complete weight enumerator We 4, (20, . - ., 2q—1) for the coset C' + u.

5094 CODING THEORY Part XXII

Example H152E21

We construct the cyclic ternary code of length 11 with generator polynomial t° + t* + 2% +¢* 42
and calculate both its weight enumerator and its complete weight enumerator. To ensure the
polynomials print out nicely, we assign names to the polynomial ring indeterminates in each case.
These names will persist if further calls to WeightEnumerator and CompleteWeightEnumerator
over the same alphabet are made.

> R<t> := PolynomialRing(GF(3));
> C := CyclicCode(11, t°5 + t~4 + 2*%t"3 + t72 + 2);
> W<x, y> := WeightEnumerator(C);

> W;

x711 + 132%x76%y~5 + 132%x"5xy~6 + 330*x"3*y~8 + 110*x"2%y~9 + 24xy~11
> CW<u, v, w> := CompleteWeightEnumerator(C);

> CW;

u~1ll + 11*%u"6*v"5 + Bb*xu”6*v~3%w~2 + bbxu”6xv " 2*xw"3 + 11*u"6*w"5 +
11*%u”~b*v"6 + 110%u”b*v~3%w~3 + 11*u"b*w”™6 + 55%u”3*v™6*w"2 +
110%u”~3*v~5*w~3 + 110*%u”3*v~3*w™5 + bbxu”3*v " 2*%w"6 + 55xu”2*%v - 6*w"3 +
B5*%u”2xv~3*w"6 + v~11 + 11*%v™6xw™5 + 11%xv~b*w™6 + w™11

The vector v = (0,0,0,0,0,0,0,0,0,0,1) does not lie in the code C' and can be taken as a coset
leader. We determine the weight enumerator of the coset containing wu.

> u := AmbientSpace(C)![0,0,0,0,0,0,0,0,0,0,1];

> Wu := WeightEnumerator(C, u);

> Wu;

x710%y + 30%x"7*y~4 + 66*x"6%y"5 + 108*x"5xy~6 + 180*x"4*y~7 + 165xx"3xy~8 +
135%x72%y~9 + 32*xx*xy~10 + 12%y~11

152.8.4 The MacW:illiams Transform

MacWilliamsTransform(n, k, q, W)

Let C' be a hypothetical [n, k| linear code over a finite field of cardinality q.
Let W be the weight distribution of C' (in the form as returned by the function
WeightDistribution). This function applies the MacWilliams transform to W to
obtain the weight distribution W’ of the dual code of C. The transform is a combi-
natorial algorithm based on n, k, ¢ and W alone. Thus C' itself need not exist—the
function simply works with the sequence of integer pairs supplied by the user. Fur-
thermore, if W is not the weight distribution of an actual code, the result W’ will
be meaningless and even negative weights may be returned.

Ch. 152 LINEAR CODES OVER FINITE FIELDS 5095

MacWilliamsTransform(n, k, K, W)

Let C' be a hypothetical [n,k] linear code over a finite field K. Let W be
the complete weight enumerator of C' (in the form as returned by the function
CompleteWeightEnumerator). This function applies the MacWilliams transform to
W to obtain the complete weight enumerator W’ of the dual code of C. The trans-
form is a combinatorial algorithm based on K, n, k, and W alone. Thus C' itself need
not exist—the function simply manipulates the given polynomial. Furthermore, if
W is not the weight distribution of an actual code, the weight enumerator W’/ will
be meaningless.

Example H152E22

Let us suppose there exists a [31,11] code C over F5 that has complete weight enumerator
u?' +186u 0" 4 310u' 0" + 5270 00" + 5276 0% 4 3100 0"? + 186w v + v

We compute the weight distribution and the complete weight enumerator of the dual of the
hypothetical code C.

> W := [<0, 1>, <11, 186>, <12, 310>, <15, 527>, <16, 527>,

> <19, 310>, <20, 186>, <31, 1>];

> MacWilliamsTransform(31, 11, 2, W);

[<0, 1>, <6, 806>, <8, 7905>, <10, 41602>, <12, 142600>, <14,

251100>, <16, 301971>, <18, 195300>, <20, 85560>, <22, 18910>, <24,

2635>, <26, 186> 1]

> R<u, v> := PolynomialRing(Integers(), 2);

> CWE := u™31 + 186*%u”20*%v~11 + 310*%u”19%v~12 + 527*u”~16*v~15 + 527*u~15*v~16 +

> 310*xu~12*%v~19 + 186*u~11xv~20 + v~ 31;

> MacWilliamsTransform(31, 11, GF(2), CWE);

u~31 + 806*xu~25xv"6 + 7905xu~23*xv~8 + 41602*u”~21*v~10 + 142600*u”~19*v~12 +
251100%u~17*xv~14 + 301971*%u”~15*%v~16 + 195300*%u~13*v~18 + 85560*u~11*v~20 +
18910%xu~9*xv~22 + 2635xu”~7xv~24 + 186*u”5*v~26

152.8.5 Words

The functions in this section only apply to codes over finite fields.

Words(C, w: parameters)

NumWords RNGINTELT Default :
Method MONSTGELT Default : “Auto”
RankLowerBound RNGINTELT Default : oo
MaximumTime RNGRESUBELT Default : oo

Given a linear code C, return the set of all words of C' having weight w. If NumWords
is set to a non-negative integer ¢, then the algorithm will terminate after that total

5096 CODING THEORY Part XXII

of words have been found. Similarly, if MaximumTime then the algorithm will abort
if the specified time limit expires.

There are two methods for collecting words, one based on the Zimmermann
minimum weight algorithm, and a brute force type calculation. When the parameter
Method is set to the default "Auto" then the method is internally chosen. The user
can specify which method they want using setting it to either "Distribution" or
"Zimmerman".

By setting the verbose flag "Code", information about the progress of the com-
putation can be printed.

Number0fWords (C, w)

Given a linear code C', return the number of words of C' having weight w.

WordsO0fBoundedWeight (C, 1, u: parameters)

Default : oo
Default : true

Cutoff RNGINTELT

StoreWords BooLELT

Given a linear code C', return the set of all words of C' having weight between [and
u, inclusive. If Cutoff is set to a non-negative integer ¢, then the algorithm will
terminate after a total of ¢ words have been found.

If StoreWords is true then any words of a single weight generated will be stored
internally.

ConstantWords(C, i)

Given a linear code C, return the set of all words of C' which have weight ¢ and
which consist of zeros and ones alone.

NumberQOfConstantWords(C, i)

Given a linear code C, return the number of words of C' which have weight ¢ and
which consist of zeros and ones alone.

Example H152E23

We construct the words of weight 11 and also the constant (zero-one) words of weight 11 in the
length 23 cyclic code over F3 that is defined by the generator polynomial z'* 4+ 2'° + 2% 4 22® +

227 + 2° + 2% + 2.

> R<x> := PolynomialRing(GF(3));

>f :=x711 + x710 + X9 + 2*x"8 + 2*%x"7 + x°5 + x”3 + 2;

> C :
> C;
[23, 12, 8] BCH code (d = 5, b = 1) over GF(3)
Generator matrix:

CyclicCode (23, f);

[1000000000002001010221 1]
[01000000000012021211010]
[00100000000001202121101]
[0001000000001011011020 2]

Ch. 152 LINEAR CODES OVER FINITE FIELDS 5097

[0000100000002102111020 1]
[00000100000012122012112]
[00000010000021222000122]
[00000001000022102002220]
[00000000100002210200222]
[0000000001002020112220 0]
[00000000001002020112220]
[00000000000100202011222]

> time WeightDistribution(C);

[<0, 1>, <8, 1518>, <9, 2530>, <11, 30912>, <12, 30912>, <14, 151800>, <15,
91080>, <17, 148764>, <18, 49588>, <20, 21252>, <21, 3036>, <23, 48>]

Time: 0.030

Note that the minimum distance is 8. We calculate all words of weight 11 and the constant words
of weight 11.

1518

> time W11l := Words(C, 11);
Time: 0.350

> #W11;

30912

> ZOW11 := ConstantWords(C, 11);
> #70W11;

23

> Z0OW11 subset Wili1;

true

152.8.6 Covering Radius and Diameter

CosetDistanceDistribution(C)

Given a linear code C, determine the coset distance distribution of C, relative to C.
The distance between C' and a coset D of C' is the Hamming weight of a vector of
minimum weight in D. The distribution is returned as a sequence of pairs comprising
a distance d and the number of cosets that are distance d from C'.

CoveringRadius(C)

The covering radius of the linear code C.

Diameter(C) |
The diameter of the code C' (the largest weight of the codewords of C).

5098 CODING THEORY Part XXII

Example H152E24

We construct the second order Reed—Muller code of length 32, and calculate its coset distance
distribution.

> R := ReedMullerCode(2, 5);

> R:Minimal;

[32, 16, 8] Reed-Muller Code (r = 2, m = 5) over GF(2)

> CD := CosetDistanceDistribution(R);

> CD;

[<0, 1>, <1, 32>, <2, 496>, <3, 4960>, <4, 17515>, <5, 27776>, <6, 14756>]

From the dimension of the code we know C has 2'¢ cosets. The coset distance distribution tells
us that there are 32 cosets at distance 1 from C, 496 cosets are distance 2, etc. We confirm that
all cosets are represented in the distribution.

>&+ [t[2] : t in CD];

65536

> CoveringRadius(R);

6

> Diameter(R);

32

> WeightDistribution(R);

[<0, 1>, <8, 620>, <12, 13888>, <16, 36518>, <20, 13888>, <24, 620>, <32, 1>]

The covering radius gives the maximum distance of any coset from the code, and, from the coset
distance distribution, we see that this maximum distance is indeed 6. We can confirm the value
(32) for the diameter by examining the weight distribution and seeing that 32 is the largest weight
of a codeword.

152.9 Families of Linear Codes

152.9.1 Cyclic and Quasicyclic Codes

CyclicCode (u)

Given a vector u belonging to the R-space R(™, construct the [n, k] cyclic code
generated by the right cyclic shifts of the vector u.

CyclicCode(n, T, K)

Given a positive integer n and a set or sequence T' of primitive n-th roots of unity
from a finite field L, together with a subfield K of L, construct the cyclic code C'
over K of length n, such that the generator polynomial for C' is the polynomial of
least degree having the elements of T" as roots.

Ch. 152 LINEAR CODES OVER FINITE FIELDS 5099

QuasiCyclicCode(n, Gen)

Constructs the quasi-cyclic code of length n with generator polynomials given
by the sequence of polynomials in Gen. Created by HorizontalJoin of each
GeneratorMatrix from the CyclicCode’s generated by the polynomials in Gen.
Requires that |Gen| | n.

QuasiCyclicCode (Gen)

Constructs the quasi-cyclic code of length n generated by simultaneous cyclic shifts
of the vectors in Gen.

QuasiCyclicCode(n, Gen, h)

Constructs the quasi-cyclic code of length n with generator polynomials given by the
sequence of polynomials in Gen. The GeneratorMatrix’s are joined 2 dimensionally,
with height h. Requires that h | (|Gen|) and (|Gen|/h) | n.

QuasiCyclicCode(Gen, h)

Constructs the quasi cyclic code generated by simultaneous cyclic shifts of the vec-
tors in Gen, arranging them two dimensionally with height h.

ConstaCyclicCode(n, f, alpha)

Return the length n code generated by consta-cyclic shifts by « of the coefficients
of f.

QuasiTwistedCyclicCode(n, Gen, alpha)

Construct the quasi-twisted cyclic code of length n pasting together the constacyclic
codes with parameter o generated by the polynomials in Gen.

QuasiTwistedCyclicCode (Gen, alpha)

Construct the quasi-twisted cyclic code generated by simultaneous constacyclic shifts
w.r.t. a of the codewords in Gen.

Example H152E25

Let the m factors of 2™ — 1 be fi(z),i =0,..., m in any particular order. Then we can construct
a chain of polynomials gx(x) = Hf:o fi(z) such that gi(x) | gr+1(x). This chain of polynomials
will generate a nested chain of cyclic codes of length n, which is illustrated here for n = 7.

> P<x> := PolynomialRing(GF(2));

>n :=7;

> F := Factorization(x"n-1);
> F;

[

<x + 1, 1>,
<x"3 + x + 1, 1>,
<x"3 + x"2+ 1, 1>

5100 CODING THEORY Part XXII
> Gens := [&*x[F[i][1]:1 in [1..k]] : k in [1..#F] 1;
> Gens;
[
x + 1,
x4 + x"3 +x72+ 1,
x"7 + 1
]
> Codes := [CyclicCode(n, Gens[k]) : k in [1..#Gens] 1];
> Codes;
[
[7, 6, 2] Cyclic Code over GF(2)
Generator matrix:
[1 00000 1]
[01000O00O0 1]
[001000 1]
[000100 1]
[00O0O010 1]
[0 0 O 001 1],
[7, 4] Cyclic Code over GF(2)
Generator matrix:
[100101 1]
[0101110]
[oO0O10111],
[7, 0, 7] Cyclic Code over GF(2)
]
> { Codes[k+1] subset Codes[k] : k in [1..#Codes-1] };
{ true }
152.9.2 BCH Codes and their Generalizations

BCHCode (K, n, d, b)

BCHCode (K, n, d)

Given a finite field K = F;, and positive integers n, d and b such that ged(n, q) =1,
we define m to be the smallest integer such that n | (¢™ —1), and « to be a primitive
n-th root of unity in the degree m extension of K, GF(q™). This function constructs
the BCH code of designated distance d as the cyclic code with generator polynomial

g(x):: kﬂn{Tnl(x)v"'7ﬂ@d—1(x)}

where m;(x) is the minimum polynomial of a®**~1. The BCH code is an [n, >
(n—m(d—1)),> d] code over K. If b is omitted its value is taken to be 1, in which
case the corresponding code is a narrow sense BCH code.

Ch. 152 LINEAR CODES OVER FINITE FIELDS 5101

Example H152E26

We construct a BCH code of length 13 over GF(3) and designated minimum distance 3

> C := BCHCode(GF(3), 13, 3);

> C;

[13, 7, 4] BCH code (d = 3, b = 1) over GF(3)
Generator matrix:

[1000000121222]
(010000010001 1]
(001000022211 2]
(000100011010 0]
[0000100011010]
(000001000110 1]
(000000121222 1]

GoppaCode (L, G)

Let K be the field GF(q), let G(z) = G be a polynomial defined over the degree
m extension field F of K (i.e. the field GF(¢™)) and let L = [aq,...,a,] be a
sequence of elements of F' such that G(a;) # 0 for all o; € L. This function
constructs the Goppa code I'(L, G) over K. If the degree of G(z) is r, this is an
[n,k >n—mr,d>r+ 1] code.

Example H152E27

We construct a Goppa code of length 31 over GF(2) with generator polynomial G(z) = 2° + 2+ 1.

> q := 275;

> K<w> := FiniteField(q);

> P<z> := PolynomialRing(K);

>G =273 +z + 1;
>L:=[w'i:idin [0 .. q - 2]1];
> C := GoppaCode(L, G);

> C:Minimal;

[31, 16, 7] Goppa code (r = 3) over GF(2)

> WeightDistribution(C);

[<0, 1>, <7, 105>, <8, 295>, <9, 570>, <10, 1333>, <11, 2626>,
<12, 4250>, <13, 6270>, <14, 8150>, <15, 9188>, <16, 9193>,
<17, 8090>, <18, 6240>, <19, 4270>, <20, 2590>, <21, 1418>,
<22, 650>, <23, 195>, <24, 55>, <25, 36>, <26, 11>]

5102 CODING THEORY Part XXII

ChienChoyCode(P, G, n, S)

Let P and G be polynomials over a finite field F', let n be an integer greater than
one, and let S be a subfield of F'. Suppose also that n is coprime to the cardinality
of S, F is the splitting field of 2™ —1 over S, P and G are both coprime to ™ —1 and
both have degree less than n. This function constructs the Chien-Choy generalised
BCH code with parameters P, G, n over S.

AlternantCode(A, Y, r, S)
AlternantCode(A, Y, r)

Let A = [aq,...,a,] be a sequence of n distinct elements taken from the degree
m extension K of the finite field S, and let Y = [y1,...,yn] be a sequence of
n non-zero elements from K. Let r be a positive integer. Given such A, Y, r,
and S, this function constructs the alternant code A(A,Y’) over S. This is an
n,k>n—mr,d>r+1] code. If S is omitted, S is taken to be the prime subfield
of K.

Example H152E28

We construct an alternant code over GF(2) based on sequences of elements in the extension field
GF(2*) of GF(2). The parameter r is taken to be 4, so the minimum weight 6 is greater than
r+ 1.

> q = 274;

> K<w> := GF(q);
>A:=[w~1i:iin [0 .. q- 2]];
>Y :=[K!'"1:4iidin [0 .. q - 2]];
>r = 4;

> C := AlternantCode(A, Y, 1);

> C;

[15, 6, 6] Alternant code over GF(2)
Generator matrix:

[100000110011100]
(0100000110011 10]
(0010000011001 11]
(0010011010111 1]
(0000101010010 1 1]
[00000110011100 1]

NonPrimitiveAlternantCode(n, m, r)

Returns the [n, k, d] non-primitive alternant code over Fo, where n—mr < k <n—r
and d > r+1.

Ch. 152 LINEAR CODES OVER FINITE FIELDS 5103

FireCode(h, s, n)

Let K be the field GF(q). Given a polynomial h in K[X], a nonnegative integer
s, and a positive integer n, this function constructs a Fire code of length n with
generator polynomial h(X® — 1).

GabidulinCode(A, W, Z, t)

Given sequences A = [aq, ...a,|, W = [wy, ...ws|, and Z = [z1, ...2x], such that the n+
s elements of A and W are distinct and the elements of Z are non-zero, together with
a positive integer ¢, construct the Gabidulin MDS code with parameters A, W, Z, t.

SrivastavaCode(A, W, mu, S)

Given sequences A = [aq,...,a], W = [wy,...,ws] of elements from the extension
field K of the finite field S, such that the elements of A are non-zero and the
n + s elements of A and W are distinct, together with an integer p, construct the
Srivastava code of parameters A, W, mu, over S.

GeneralizedSrivastavaCode(A, W, Z, t, S)

Given sequences A = [aq,...,a], W = [w1,...,ws], and Z = [21,...25] of elements
from the extension field K of the finite field S, such that the elements of A and
Z are non-zero and the n + s elements of A and W are distinct, together with a
positive integer ¢, construct the generalized Srivastava code with parameters A, W,
Z, t, over S.

152.9.3 Quadratic Residue Codes and their Generalizations

If p is an odd prime, the quadratic residues modulo p consist of the set of non-zero squares
modulo p while the set of non-squares modulo p are termed the quadratic nonresidues
modulo p.

QRCode (K, n)

Given a finite field K = F, and an odd prime n such that ¢ is a quadratic residue
modulo n, this function returns the quadratic residue code of length n over K. This
corresponds to the cyclic code with generator polynomial go(x) = [[(z — a"), where
« is a primitive n-th root of unity in some extension field of K, and the product is
taken over all quadratic residues modulo p.

GolayCode (K, ext)

If the field K is GF(2), construct the binary Golay code. If the field K is GF(3),
construct the ternary Golay code. If the boolean argument ext is true, construct
the extended code in each case.

DoublyCirculantQRCode (p)

Given an odd prime p, this function returns the doubly circulant binary [2p, p] code
based on quadratic residues modulo p. A doubly circulant code has generator matrix
of the form [I | A], where A is a circulant matrix.

5104 CODING THEORY Part XXII

DoublyCirculantQRCodeGF4(m, a)

Given a prime power m that is greater than 2 and an integer a that is either 0 or 1,
return a [2m,m] doubly circulant linear code over GF(4). For details see [Gab02].

BorderedDoublyCirculantQRCode(p, a, b)

Given an odd prime p and integers a and b, this function returns the bordered
doubly circulant binary [2p + 1,p + 1] code based on quadratic residues modulo p.
The construction is similar to that of a doubly circulant code except that the first
p rows are extended by a mod 2 while the p + 1-th row is extended by b mod 2.

TwistedQRCode (1, m)

Given positive integers [and m, both coprime to 2, return a binary “twisted QR”
code of length [* m.

PowerResidueCode (K, n, p)

Given a finite field K = F,, a positive integer n and a prime p such that ¢ is a p-th
power residue modulo n, construct the p-th power residue code of length n.

Example H152E29
We construct a quadratic residue code of length 23 over GF(3).

> QRCode (GF(3), 23);
[23, 12, 8] Quadratic Residue code over GF(3)
Generator matrix:

[1000000000002221102020 0]
[01000000000002221102020]
[0010000000000022211020 2]
[00010000000022200201220]
[000010000000022200201 2 2]
[0O000010000002210002221 2]
[00000010000021121022121]
0000000100001 020111201 2]
[0O000000010002020110110 1]
[00000000010010112120210]
[00000000001001011212021]
[0000000000011122010100 2]

Ch. 152 LINEAR CODES OVER FINITE FIELDS 5105

152.9.4 Reed—Solomon and Justesen Codes

ReedSolomonCode (K, d, b)

ReedSolomonCode (K, d)

Given a finite field K = Fj, and a positive integer d, return the Reed-Solomon code
of length n = ¢ — 1 with design distance d. This corresponds to BCHCode (K, g-1,
d). For details see [MST78, p.294].

If b is given as a non-negative integer then the primitive element is first raised
to the b-th power.

ReedSolomonCode(n, d)

ReedSolomonCode(n, d, b)

Given an integer n such that ¢ = n + 1 is a prime power, and a positive integer d,
return the Reed-Solomon code over Fy of length n and designed minimum distance
d.

If b is given as a non-negative integer then the primitive element is first raised
to the b-th power.

GRSCode(A, V, k)

Let A = [aq,...,a,] be a sequence of n distinct elements taken from the finite field
K, and let V = [v1,...,v,] be a sequence of n non-zero elements from K. Let k
be a non-negative integer. Given such A, V, and k, this function constructs the
generalized Reed—Solomon code GRS} (A, V) over K. This is an [n, k" < k| code.
For details see [MS78, p.303].

JustesenCode (N, K)

Example H152E30

Given an integer N such that N = 2™ — 1 and a positive integer K, construct
the binary linear Justesen code of length 2mN and dimension mK. For details see
[MS78, p.307].

We construct a generalized Reed—Solomon code over GF(2) based on sequences of elements in the
extension field GF(2%) of GF(2). The parameter k is taken to be 3, so the dimension 3 is at most

k.

> q := 273;

> K<w> := GF(q);
>A:=[w"~1i:1iin [0 .. q - 2]];
>V:=[K!1:iin [0 .. q - 2]];
>k := 3;

> C := GRSCode(A, V, k);

[7, 3, 5] GRS code over GF(2°3)

Generator matrix:

L

[O

0 0 w3 w 1 w 3]
1 0 w'6 w°6 1 w 2]

5106 CODING THEORY Part XXII

[O 0 1 w5 w4 1 w4]

152.9.5 Maximum Distance Separable Codes

MDSCode (K, k)

Given a finite field GF(q = 2™), this function constructs the [¢ + 1,k,q — k + 2]
maximum distance separable code.

152.10 New Codes from Existing

The operations described here produce a new code by modifying in some way the codewords
of a given code.

152.10.1 Standard Constructions

AugmentCode (C)

Given an [n, k] binary code C, construct a new code C’ by including the all-ones
vector with the words of C' (provided that it is not already in C).

CodeComplement (C, C1)
Given a subcode C'1 of C, return a code C2 such that C' = C'1 + C2.

DirectSum(C, D)

Given an [n1, k1] code C' and an [ng, k3] code D, both over the same field F', construct
the direct sum of C' and D. The direct sum consists of all vectors u|v, where u € C
and v € D.

DirectSum(Q)

Given a sequence of codes Q = [C4,...,C,], all defined over the same field F,
construct the direct sum of the C;.

DirectProduct(C, D)
ProductCode(C, D)

Given an [nq, k1] code C' and an [ng, ka] code D, both over the same ring R, construct
the direct product of C' and D. The direct product has length n; - ny, dimension
k1 - ko, and its generator matrix is the Kronecker product of the basis matrices of C'
and D.

Ch. 152 LINEAR CODES OVER FINITE FIELDS 5107

ExtendCode(C) |

Given an [n,k,d] code C form a new code C’ from C by adding the appropriate
extra coordinate to each vector of C' such that the sum of the coordinates of the
extended vector is zero. (Thus if C' is a binary code, the construction will add a 0 at
the end of every codeword having even weight, and a 1 at the end of every codeword
having odd weight.)

ExtendCode(C, n)

Return the code C extended n times.

PadCode(C, n)
Add n zeros to the end of each codeword of C.

ExpurgateCode (C)

Construct a new code by deleting all the code words of C' having odd weight.

ExpurgateCode(C, L)

The sequence L consists of codewords from C. The result is obtained by deleting
the words in L from C.

ExpurgateWeightCode(C, w)

Delete a subspace generated by a word of weight w.

LengthenCode (C)

Given an [n, k| binary code C, construct a new code by first adding the all-ones
codeword, and then extending it by adding an overall parity check.

PlotkinSum(C1, C2)

Given two codes over the same alphabet, return the code consisting of all vec-
tors of the form u|u + v, where v € C1 and v € C2. Zeros are appended
where needed to make up any length differences in the two codes. The result is
a [nq + max{ni,no}, k1 + ko, min{2 x dy, ds }] code.

PlotkinSum(C1, C2, C3: parameters)
a FLDFINELT Default : —1

Given three codes over the same alphabet, return the code consisting of all vectors
of the form ulu + a * v|u + v + w, where u € C1, v € C2 and w € C3. Zeros are
appended where needed to make up any length differences in the three codes. The
result for the default case of a := -1is a [ny +max{n,ns} +max{ny, na,n3s}, k1 +
ko + k3, min{3 x dy, 2 * da, d3}] code.

PunctureCode(C, i)

Given an [n, k] code C, and an integer i, 1 < i < n, construct a new code C’ by
deleting the i-th coordinate from each code word of C.

5108 CODING THEORY Part XXII

PunctureCode(C, S)

Given an [n, k] code C' and a set S of distinct integers {i1, -, 1.} each of which lies
in the range [1,n], construct a new code C’ by deleting the components i1, - - -, i,
from each code word of C.

ShortenCode(C, i)

Given an [n, k] code C' and an integer i, 1 < i < n, construct a new code from C
by selecting only those codewords of C' having a zero as their ¢-th component and
deleting the ¢-th component from these codewords. Thus, the resulting code will
have length n — 1.

ShortenCode(C, S)

Given an [n, k] code C and a set S of distinct integers {i1, - - -,i,}, each of which lies
in the range [1,n], construct a new code from C' by selecting only those codewords
of C' having zeros in each of the coordinate positions iq,---,%,, and deleting these

components. Thus, the resulting code will have length n — r.

Example H152E31

Using only two simple RepetitionCode’s and several standard constructions, we create a [12,4, 6]
code. This is the best possible minimum weight for a code of this length and dimension, as is the
minimum weight for all codes produced in this example.

Instead of printing each individual code out, the codes are named by convention as c_n_k_d, where
n, k,d represent the Length,Dimension and MinimumWeight respectively.

c_4_1_4 := RepetitionCode(GF(2),4);

c_6_1_6 := RepetitionCode(GF(2),6);

c_4.3_2 :=Dual(c_4_1_4);

c_8_4_4 := PlotkinSum(c_4_.3_.2 , c_4_1_4);
c_7_4_3 := PunctureCode(c_8_4_4 , 8);
c_6_3_3 := ShortenCode(c¢_7_4.3 , 7);
c_12_4_6 := PlotkinSum(¢_6_3_3 , c_6_1_6);
> c_12_4_6;

[12, 4, 6] Linear Code over GF(2)

Generator matrix:

[10011001100 1]
[01010101010 1]
[b0o1111001111]

(00000011111 1]

V V. V V V VvV V

Ch. 152 LINEAR CODES OVER FINITE FIELDS 5109

152.10.2 Changing the Alphabet of a Code

ExtendField(C, L)

Given an [n, k,d] code C' defined over the finite field K, and an extension field L of
K, construct the code C’ over L corresponding to C'. The function also returns the
embedding map from C into C’.

LinearCode(C, S)
Given an [n, k, d] code C defined over the finite field K, and a subfield S of K such
that the degree of K over S is m, construct a new [N = mn, k, D > d] code C’ over

S by replacing each component of each codeword of C' by its representation as a
vector over S. The function also returns the isomorphism from C onto C’.

SubfieldRepresentationCode(C, K)

Given a linear code over GF'(¢™), return a code whose codewords are obtained from
those of C by expanding each coordinate in GF(q"™) as a vector of dimension m

over K = GF(q).

SubfieldRepresentationParityCode(C, K)

Given a linear code over GF'(¢™), return a code whose codewords are obtained from
those of C' by expanding each coordinate in GF'(¢™) as a vector of dimension m + 1
over K = GF(q), including a parity check bit.

SubfieldSubcode(C, S)
RestrictField(C, S)
SubfieldSubcode (C)
RestrictField(C)

Given an [n, k, d] code C defined over the field K, and a subfield S of K, construct a
new [n, K < k,D > d] code C' over S consisting of the codewords of C' which have
all their components in S. If S is omitted, it is taken to be the prime subfield of K.
The function also returns the restriction map from C' to the subfield subcode C".

SubfieldCode(C, S)

Given an [n, k] code C defined over the field K, and a subfield S of K, such that K
is a degree m extension of S, construct a new [n, k'] code over S by expanding each
element of K as a column vector over S. The new code will have &’ < km.

Trace(C, F)
Trace(C)

Given a code C defined over the field K, and a subfield F' of K, construct a new
code C' over I consisting of the traces with respect to F' of each of the codewords
of L. If F' is omitted, it is taken to be the prime subfield of K.

5110 CODING THEORY Part XXII

152.10.3 Combining Codes

| C1 cat C2 |

Given codes C'1 and C'2, both defined over the same field K, return the concatenation
C of C'1 and C2. If A and B are the generator matrices of C'l and C2, respectively,
the concatenation of C'l and C2 is the code with generator matrix whose rows consist
of each row of A concatenated with each row of B.

Juxtaposition(Cl, C2)

Given an [ny, k,d;]| code C1 and an [ns, k, d3] code C2 of the same dimension, where
both codes are defined over the same field K, the function returns a [ny + no, k, >
dy + ds] code whose generator matrix is HorizontalJoin(A, B), where A and B
are the generator matrices for codes C'1 and C2, respectively.

ConcatenatedCode (0, I)

Given a [N, K, D]-code O defined over GF(q*) and a [n, k,d]-code I defined over
GF(q), construct the [Nn, Kk,6 > dD] concatenated code by taking O as outer
code and [as inner code.

Example H152E32

We use the function ConcatenatedCode to construct a [69, 19, 22] code over GF(2), this being the
best known code for this length and dimension. While it is theoretically possible for a code of
minimum weight up to 24 to exist, the best binary [69, 19] code at the time of writing (July 2001)
has minimum weight 22.

> Cl1 := ShortenCode(QRCode(GF(4),29) , {24..29});
> C1l:Minimal;

[23, 9] Linear Code over GF(2°2)

> C2 := ConcatenatedCode(Cl1 , CordaroWagnerCode(3));
> C2:Minimal;

[69, 18] Linear Code over GF(2)

> res := C2 + RepetitionCode(GF(2),69);

> res:Minimal;

[69, 19] Linear Code over GF(2)

> MinimumWeight (res) ;

22

> res:Minimal;

[69, 19, 22] Linear Code over GF(2)

Ch. 152 LINEAR CODES OVER FINITE FIELDS 5111

ConstructionX(C1, C2, C3)

Let C1,Cs and C3 be codes with parameters [nq, k1,d1], [ne, ks, ds] and [ng, ks, ds],
respectively, where C2 is a union of b cosets of C1, (so n1 = ng and ko < kq)
and k1 = ko + k3. The construction divides C2 into a union of cosets of C'1 and
attaches a different codeword of C3 to each coset. The new code has parameters
[n1 + ng, k1, > min{ da, d; + ds}]. For further details see [MS78, p.581].

ConstructionXChain(S, C)

Example H152E33

Given a sequence of codes S where all codes are subcodes of the first one, apply
ConstructionX to S[1], S[2] and C. Then compute the resulting subcodes from the
other codes in S.

We create a [161,29, 53] code by applying construction X to two BCH codes of length 127. To
maximise the resulting minimum weight we take the best known [34,14] code as C3. The con-
struction sets a lower bound on the minimum weight, making the calculation of the true minimum
weight much faster.

> SetPrintLevel("Minimal");

vV V V V

C3
> C1;
[127,
[127,

C1 :
C2 :
:= BKLC(GF(2), 34, 14);

BCHCode (GF(2), 127, 43);
BCHCode (GF(2), 127, 55);

C2; C3;
29, 43] BCH code (d = 43, b
15, 55] BCH code (d = 55, b

1) over GF(2)
1) over GF(2)

[34, 14, 10] Linear Code over GF(2)

> CX
> CX;
[161,

:= ConstructionX(C1, C2, C3);

29] Linear Code over GF(2)

> time MinimumWeight (CX) ;

53
Time:

0.010

ConstructionX3(C1, C2, C3, D1, D2)

Given a chain of codes C1 = [n,ky1,d1], C2 = [n, ky,ds], and C3 = [n, ks, ds] with
ks < ko < ki, and suffix codes D1 = [n1, k1 — ka,e1] and D2 = [ng, ks — ko, e2],
construct a code C' = [n+mnj+ns, k1, > min{ds,dy +e1,ds+es}. For further details
see [MST78, p.583].

ConstructionX3u(C1i, C2, C3, D1, D2)

Given two chains of codes C1 = [n, k1] C C2 = [n,kg] C C3 = [n, k3] and D1 =
[n', k1 —ks] € D2 = [n/, ky — k3], return the codes C = [n+n', k1| C C" = [n+n’, ko]
using Construction X with C1,C3 and D1 resp. C2,C3 and D2.

5112 CODING THEORY Part XXII

Example H152E34

We construct a best known [74, 43, 11] code using construction X3. From a chain of BCH subcodes,
we take an subcode to get the appropriate length, then use construction X3 with the best possible
codes D1, D2. Because the construction algorithm sets a lower bound on the minimum weight,
then it is quick to calculate afterwards.

> SetPrintLevel ("Minimal");

> C1 := ExtendCode(BCHCode(GF(2), 63, 7));
> C2 := ExtendCode(BCHCode(GF(2), 63, 9));
> C3 := ExtendCode(BCHCode(GF(2), 63, 11));

> C1; C2; C3;

[64, 45, 8] Linear Code over GF(2)

[64, 39, 10] Linear Code over GF(2)
[64, 36, 12] Linear Code over GF(2)

> CC := SubcodeBetweenCode(Cl, C2, 43);
> CC;

[64, 43] Linear Code over GF(2)

> MinimumWeight (CC) ;

8

> CX3 := ConstructionX3(CC, C2, C3,

> BKLC(GF(2), 7, 4), BKLC(GF(2), 3, 3));
> CX3;

[74, 43] Linear Code over GF(2)

> time MinimumWeight (CX3);

11

Time: 0.000

ConstructionXX(C1, C2, C3, D2, D3)

Let the parameters of codes Cy,C5,Cs be [ny,k,dq],[n1,k — la,d2] and [ny,k —
I3, ds] respectively, where Cy and C5 are subcodes of C;. Codes D2, D3 must have
dimensions Iy, I3, with parameters [ns, lo2, d2], [n3, I3, d3] say. The construction breaks
C1 up into cosets of (5 and C3 with the relevant tails added from Do and Ds. If
the intersection of C; and C has minimum distance dy then the newly constructed
code will have parameters [ny + ny + ns, k, min{dy, ds + d2,ds + d3,dy + d2 + 03 }].
For further details see [All84].

Example H152E35

We construct a best known [73,38,13] code C using construction XX. For C1, C2, C3 we take
three cyclic (or BCH) codes of length 63, while for Dy, D2 we use two Best Known Codes.

> SetPrintLevel ("Minimal");

> C1 := BCHCode(GF(2),63,10,57);

> P<x> := PolynomialRing(GF(2));

>p = x728 + x7256 + x722 + x721 + x720 + x717 + x716
> + x715 + x79 + x"8 + x"6 + x°5 + x + 1;

Ch. 152 LINEAR CODES OVER FINITE FIELDS 5113

> C2 := CyclicCode(63, p);

> C3 := BCHCode(GF(2), 63, 10, 58);

> C1; C2; C3;

[63, 38] BCH code (d = 10, b = 57) over GF(2)
[63, 35] Cyclic Code over GF(2)

[63, 32] BCH code (d = 10, b = 58) over GF(2)
> MinimumDistance(C1 meet C2);

12

So the minimum distance of the code produced by Construction XX must be at least 12.

> C := ConstructionXX(C1, C2, C3, BKLC(GF(2),3,3), BKLC(GF(2),7,6));
> C;

[73, 38] Linear Code over GF(2)

MinimumDistance(C) ;

13

Thus the actual minimum distance is one greater than the lower bound guaranteed by Construction
XX.

ZinovievCode (I, 0)

The arguments are as follows: The first argument must be a sequence I containing
an increasing chain of r codes with parameters,

[n, k‘l,dl]q C [n,k’g,dg]q Cc...C [TL, k’r,dr]q

where 0 = kg < k1 < k2 < ... < k., (the inner codes). The second argument
must be a sequence O of r codes with parameters [N, K;, D;]q,, where Q; = ¢® and
e; = k;—k;_1 for i = 1...r (the outer codes). The function constructs a generalised
concatenated [n* N, K, D], code is constructed, where K = e; K; + ...+ ¢, K, and
D =min(d,Dx,...,d.D,). For further details see [MS78, p.590].

Example H152E36

We create a [72, 41, 12] code over GF(2) using the ZinovievCode function, which is the best known
code for this length and dimension. While it is theoretically possible for a [72,41] code to have
minimum weight up to 14, at the time of writing (July 2001) the best known code has minimum
weight 12. The minimum weight is not calculated since it is a lengthy calculation.

Inner := [I1, I2, I3];
Inner:Minimal;

> I1 := RepetitionCode(GF(2),8);

> I2 := I1 + LinearCode(KMatrixSpace(GF(2),3,8) !

> (o,+,0,0,0,1,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1]
>)

> I3 := Dual(Il);

>

>

[

[8, 1, 8] Cyclic Code over GF(2),

5114 CODING THEORY Part XXII

[8, 4, 4] Linear Code over GF(2),
[8, 7, 2] Cyclic Code over GF(2)

]
>
> 01 := Dual(RepetitionCode(GF(2),9));
> 02 := BCHCode(GF(8),9,3,4);
> 03 := BCHCode(GF(8),9,6,7);
> Quter := [01, 02, 03];
> Outer:Minimal;
[
[9, 8, 2] Cyclic Code over GF(2),
[9, 7, 3] BCH code (d = 3, b = 4) over GF(2°3),
[9, 4, 6] BCH code (d = 6, b = 7) over GF(2°3)
]
>
> C := ZinovievCode(Inner, Outer);
> C:Minimal;

[72, 41] Linear Code over GF(2)

ConstructionY1(C) |

Apply construction Y1 to the code C. This construction applies the shortening
operation at the positions in the support of a word of minimal weight in the dual
of C. If C is a [n,k,d] code, whose dual code has minimum weight d’, then the
returned code has parameters [n —d', k —d +1,> d]. For further details see [MST78,
p.h92].

ConstructionY1(C, w)

Apply construction Y1 to the code C. This construction applies the shortening
operation at the positions in the support of a word of weight w in the dual of C. If
C'is a [n, k,d] code, then the returned code has parameters [n —w,k —w + 1, > d|.

152.11 Coding Theory and Cryptography

One of the few public-key cryptosystems which does not rely on number theory is the
McEliece cryptosystem, whose security depends on coding theory. An attack on the
McEliece cryptosystem must determine the coset leader (of known weight) from a user
defined error coset. In general it is assumed that the code in question has no known
structure, and it treated as a random code.

The best known attacks on the McEliece cryptosystem are a series of probabilistic
enumeration-based algorithms.

Ch. 152 LINEAR CODES OVER FINITE FIELDS 5115

152.11.1 Standard Attacks

McEliecesAttack(C, v, e)

MaxTime FLDREELT Default : oo
DirectEnumeration BooLELT Default : true

Perform the original decoding attack described by McEliece when he defined his
cryptosystem. Random information sets are tested for being disjoint for the support
of the desired error vector. This intrinsic attempts to enumerate a vector of weight
e from the error coset v 4+ C' for the given vector v.

If set to a non-zero positive value, the variable argument MaxTime aborts the
computation if it goes to long. The argument DirectEnumeration controls whether
or not the coset is enumerated directly, or whether the larger code generated by
(C,v) is enumerated.

LeeBrickellsAttack(C, v, e, p)

MaxTime FLDREELT Default : oo
DirectEnumeration BooLELT Default : true

Perform the decoding attack described by Lee and Brickell. Random information
sets are tested for having weight less than or equal to p. For most sized codes,
the optimal input parameter for this attack is p = 2. This intrinsic attempts to
enumerate a vector of weight e from the error coset v + C' for the given vector v.

If set to a non-zero positive value, the variable argument MaxTime aborts the
computation if it goes to long. The argument DirectEnumeration controls whether
or not the coset is enumerated directly, or whether the larger code generated by
(C,v) is enumerated.

LeonsAttack(C, v, e, p, 1)

MaxTime FLDREELT Default : oo
DirectEnumeration BooLELT Default : true

Perform the decoding attack described by Leon. For random information sets of
size k, a punctured code of length k + [is investigated for codewords of weight less
than or equal to p. For small codes (up to length around 200), the optimal input
parameter for this attack is p = 2 with [somewhere in the range 3 — 6. For larger
code p = 3 can sometimes be faster, with values of [in the range 7 — 10. This
intrinsic attempts to enumerate a vector of weight e from the error coset v 4+ C' for
the given vector v.

If set to a non-zero positive value, the variable argument MaxTime aborts the
computation if it goes to long. The argument DirectEnumeration controls whether
or not the coset is enumerated directly, or whether the larger code generated by
(C,v) is enumerated.

5116 CODING THEORY Part XXII

SternsAttack(C, v, e, p, 1)

MaxTime FLDREELT Default : oo
DirectEnumeration BooLELT Default : true

Perform the decoding attack described by Stern. For random information sets of size
k, a punctured code of length k+1 is split into two subspaces. Each subspace is enu-
merated up to information weight p and collisions found with zero non-information
weight. For small to mid-range codes (up to length around 500), the optimal input
parameter for this attack is p = 2 with [somewhere in the range 9 — 13. For larger
code p = 3 can sometimes be faster, with values of [from 20 to much higher. This
intrinsic attempts to enumerate a vector of weight e from the error coset v 4+ C' for
the given vector v.

If set to a non-zero positive value, the variable argument MaxTime aborts the
computation if it goes to long. The argument DirectEnumeration controls whether
or not the coset is enumerated directly, or whether the larger code generated by
(C,v) is enumerated.

CanteautChabaudsAttack(C, v, e, p, 1)

MaxTime FLDREELT Default : oo
DirectEnumeration BooLELT Default : true

Perform the decoding attack described by Canteaut and Chabaud. For random
information sets of size k, a punctured code of length k-1 is split into two subspaces.
Using the enumeration technique identical to that of Stern’s attack, a different linear
algebra process steps through information sets more quickly. The price for this is
less independent information sets. This intrinsic attempts to enumerate a vector of
weight e from the error coset v + C' for the given vector v.

For most codes (up to length around 1000), the optimal input parameter for this
attack is p = 1 with [somewhere in the range 6 — 9. For very large codes p = 2 can
sometimes be faster, with values of [from 20 to much higher.

If set to a non-zero positive value, the variable argument MaxTime aborts the
computation if it goes to long. The argument DirectEnumeration controls whether
or not the coset is enumerated directly, or whether the larger code generated by
(C,v) is enumerated.

152.11.2 Generalized Attacks

All of the decoding attacks on the McEliece cryptosystem can be put into a uniform
framework, consisting of repeated operation of a two stage procedure. MAGMA allows the
user to choose any combination of the implemented methods, which include improvements
on the standard attacks.

DecodingAttack(C, v, e)

Enumeration MoNSTGELT Default : “Standard”

MatrixSequence MoNSTGELT Default : “Random”

Ch. 152 LINEAR CODES OVER FINITE FIELDS 0117

NumSteps RNGINTELT Default : 1

p RNGINTELT Default : 2

1 RNGINTELT Default :
MaxTime FLDREELT Default : oo
DirectEnumeration BooLELT Default : true

Perform a generalized decoding attack by specifying the enumeration and matrix
sequence procedures to be used. This intrinsic attempts to enumerate a vector of
weight e from the error coset v + C' for the given vector v.

The parameter Enumeration can take the values "Standard", "Leon" or
"HashTable", and correspond to the methods used in Lee and Brickells, Leons
and Sterns attacks respectively.

The parameter MatrixSequence can take on the values "Random" or "Stepped",
corresponding to either a completely random sequence of information sets or a se-
quence of sets differing in one place.

The integer valued NumSteps offers a generalization of the stepped matrix pro-
cess, taking a sequence of sets which differ at the specified number of places.

The parameter p and 1 describe the enumeration process, and their exact mean-
ing depends on the enumeration process in question. See the earlier descriptions of
the standard attacks for a full description of their meanings.

For codes of lengths anywhere between 500 — 1000, the best performance can be
obtained using a multiply stepped matrix sequence, using around 10 steps at a time.
This is in conjunction with the hashtable enumeration technique using p = 2 and [
in the range 15 — 20.

If set to a non-zero positive value, the variable parameter MaxTime aborts the
computation if it goes to long. The parameter DirectEnumeration controls whether
or not the coset is enumerated directly, or whether the larger code generated by
(C,v) is enumerated.

152.12 Bounds

MAcGMA supplies various functions for computing lower and upper bounds for parameters
associated with codes. It also contains tables of best known bounds for linear codes. The
functions in this section only apply to codes over finite fields.

152.12.1 Best Known Bounds for Linear Codes

A MAGMA database allows the user access to tables giving the best known upper and
lower bounds of the Length, Dimension, and MinimumWeight of linear codes. Tables are
currently available relating to codes over GF(2) and GF(4) with 1 < Length < 256, over
GF(3) with 1 < Length < 243, over GF(5),GF(8), and GF(9) with 1 < Length < 130,
and over GF(7) with 1 < Length < 100.

5118 CODING THEORY Part XXII

BKLCLowerBound(F, n, k)

Returns the best known lower bound on the maximum possible minimum weight of
a linear code over finite field F' having length n and dimension k.

BKLCUpperBound (F, n, k)

Returns the best known upper bound on the minimum weight of a linear code over
finite field F' of length n and dimension k.

BLLCLowerBound(F, k, d)

Returns the best known lower bound on the minimum possible length of a linear
code over finite field F' having dimension k& and minimum weight at least d. If the
required length is out of the range of the database then no bound is available and
-1 is returned.

BLLCUpperBound (F, k, d)

Returns the best known upper bound on the minimum possible length of a linear
code over finite field F' of dimension k£ and minimum weight at least d. If the
required length is out of the range of the database then no bound is available and
-1 is returned.

BDLCLowerBound(F, n, d)

Returns the best known lower bound on the maximum possible dimension of a linear
code over finite field F' having length n and minimum weight at least d.

BDLCUpperBound(F, n, d)

Returns the best known upper bound on the dimension of a linear code over finite
field F' having length n and minimum weight at least d.

152.12.2 Bounds on the Cardinality of a Largest Code

EliasBound(K, n, d)

Return the Elias upper bound of the cardinality of a largest code of length n and
minimum distance d over the field K.

GriesmerBound (K, n, d)

Return the Griesmer upper bound of the cardinality of a largest code of length n
and minimum distance d over the field K.

JohnsonBound (n, d)

Return the Johnson upper bound of the cardinality of a largest binary code of length
n and minimum distance d.

LevenshteinBound (X, n, d)

Return the Levenshtein upper bound of the cardinality of a largest code of length
n and minimum distance d over the field K.

Ch. 152 LINEAR CODES OVER FINITE FIELDS 5119

PlotkinBound (K, n, d)

Return the Plotkin upper bound on the cardinality of a (possibly non-linear) code
of length n and minimum distance d over the field K. The bound is formed by
calculating the maximal possible average distance between codewords.

For binary codes the bound exists for n < 2d, (d even), or n < 2d + 1 (d odd).
For codes over general fields the bound exists for d > (1 — 1/#K) % n.

SingletonBound (K, n, d)

Return the Singleton upper bound of the cardinality of a largest code of length n
and minimum distance d over the field K.

SpherePackingBound(K, n, d)

Return the Hamming sphere packing upper bound on the cardinality of a largest
codes of length n and minimum distance d over the field K.

GilbertVarshamovBound (K, n, d)

Return the Gilbert—Varshamov lower bound of the cardinality of a largest code
(possibly non-linear) of length n and minimum distance d over the field K.

GilbertVarshamovLinearBound(K, n, d)

Return the Gilbert—Varshamov lower bound of the cardinality of a largest linear
code of length n and minimum distance d over the field K.

VanLintBound (K, n, d)

Return the van Lint lower bound of the cardinality of a largest code of length n and
minimum distance d over the field K.

Example H152E37

We compare computed and stored values of best known upper bounds of the dimension of binary
linear codes of length 20. The cardinality of a linear code of dimension k over Fy is ¢*, and so the
computed bounds on cardinality are compared with the stored bounds on dimension by taking
logs.

> n:=20;

> K := GF(2);

> [Ilog(#K, Minimum({GriesmerBound(X, n, d), EliasBound(K, n, d),

> JohnsonBound(n, d) , LevenshteinBound(K, n, d),
> SpherePackingBound(K, n, d)})) : d in [1..n]];

[20, 19, 15, 14, 12, 11, 9, 8, 5, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1]
> [BDLCUpperBound(K, n, d) : 4 in [1..n] 1;
[20, 19, 15, 14, 11, 10, 9, 8, 5, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1]

5120 CODING THEORY Part XXII

152.12.3 Bounds on the Minimum Distance

BCHBound (C) |

Given a cyclic code C, return the BCH bound for C. This a lower bound on the
minimum weight of C.

GriesmerMinimumWeightBound (K, n, k)

Return the Griesmer upper bound of the minimum weight of a linear code of length
n and dimension k over the field K.

152.12.4 Asymptotic Bounds on the Information Rate

EliasAsymptoticBound(K, delta)

Return the Elias asymptotic upper bound of the information rate for § in [0, 1] over
the field K.

McElieceEtAlAsymptoticBound(delta)

Return the McEliece-Rodemich—Rumsey—Welch asymptotic upper bound of the bi-
nary information rate for § in [0, 1].

PlotkinAsymptoticBound (K, delta)

Return the Plotkin asymptotic upper bound of the information rate for ¢ in [0, 1]
over the field K.

SingletonAsymptoticBound(delta)

Return the Singleton asymptotic upper bound of the information rate for ¢ in [0, 1]
over any finite field.

HammingAsymptoticBound (K, delta)

Return the Hamming asymptotic upper bound of the information rate for § in [0, 1]
over the field K.

GilbertVarshamovAsymptoticBound (K, delta)

Return the Gilbert—Varshamov asymptotic lower bound of the information rate for
d in [0, 1] over the field K.

152.12.5 Other Bounds

GriesmerLengthBound(K, k, d)

Return the Griesmer lower bound of the length of a linear code of dimension k£ and
minimum distance d over K.

Ch. 152 LINEAR CODES OVER FINITE FIELDS 5121

152.13 Best Known Linear Codes

An [n, k] linear code C is said to be a best known linear [n, k] code (BKLC) if C has the
highest minimum weight among all known [n, k] linear codes.

An [n, k] linear code C is said to be an optimal linear [n, k| code if the minimum weight
of C achieves the theoretical upper bound on the minimum weight of [n, k| linear codes.

MAacGMA currently has databases for best known linear codes over GF(q) for ¢ =
2,3,4,5,7,8,9. There is also a database of best known quantum codes that can be found
in Chapter 157. The database for codes over GF'(2) contains constructions of best codes of
length up to nmax = 256. The codes of length up to nqp = 31 are optimal. The database
is complete in the sense that it contains a construction for every set of parameters. Thus
the user has access to 33 152 best-known binary codes.

The database for codes over GF'(3) contains constructions of best codes of up to length
Nmax = 243. The codes of length up to nept = 21 are optimal. The database is complete
up to length ncomplete = 100. Many of the codes constructed in this database are vast
improvements on the previously known bounds for best codes over GF'(3). The database
of codes over GF'(3) is a contribution of Markus Grassl, Karlsruhe.

The database for codes over GF'(4) contains constructions of best codes of up to length
Nmax = 256. The codes of length up to nep, = 18 are optimal. The database is over 65%
complete with the first missing code coming at length 98. Many of the codes constructed
in this database are vast improvements on the previously known bounds for best codes
over GF(4).

Similar databases for other small fields have been added in V2.14. They are contribu-
tions of Markus Grassl, Karlsruhe. The statistics of all databases are summarised in the
following table.

GF2) [GF(3) | GF@A) [GE®G) | GE(T) | GF(8) | GF(9)

Nmax 256 243 256 130 100 130 130
Nopt 31 21 18 15 14 14 16
Ncomplete | 206 100 97 80 68 76 93

total 33152 | 29889 | 33152 | 8645 | 5150 | 8645 | 8645
missing 0 6545 | 11379 | 527 381 1763 | 1333
filled 100% | 78.10% | 65.67% | 93.90% | 92.60% | 79.61% | 84.58%

Compared to previous released versions of the MAGMA BKLC database, 1308 codes
over GF'(2), 102 codes over GF'(3) and 160 codes over GF'(4) have been improved, and
the maximal length for codes over GF'(3) and GF'(4) has been increased to 243 and 256,
respectively.

Best known upper and lower bounds on the minimum weight for [n, k| linear codes are
also available (see section 152.12.1).

The MAcMA BKLC database makes use of the tables of bounds compiled by A. E.
Brouwer [Bro98]. The online version of these tables [Bro] has been discontinued. Similar
tables are now maintained by Markus Grassl [Gra]. Any improvements, errors, or problems
with the MaGMA BKLC database should be reported to codes@codetables.de.

It should be noted that the MagMA BKLC database is unrelated to the similar (but
rather incomplete) BKLC database forming part of GUAVA, a share package in GAP3.

5122 CODING THEORY Part XXII

A significant number of entries in the MAGMA BKLC database provide better codes than
the corresponding ones listed in Brouwer’s tables.

The construction of the MAaGMA BKLC database has been undertaken by John Can-
non (Sydney), Markus Grassl (Karlsruhe) and Greg White (Sydney). The authors wish
to express their appreciation to the following people who generously supplied codes, con-
structions or other assistance: Nuh Aydin, Anton Betten, Michael Braun, Iliya Bouyukliev,
Andries Brouwer, Tat Chan, Zhi Chen, Rumen Daskalov, Scott Duplichan, Iwan Duursma,
Yves Edel, Sebastian Egner, Peter Farkas, Damien Fisher, Philippe Gaborit, Willi Geisel-
mann, Stephan Grosse, Aaron Gulliver, Masaaki Harada, Ray Hill, Plamen Hristov, David
Jaffe, Axel Kohnert, San Ling, Simon Litsyn, Pawel Lizak, Tatsuya Maruta, Masami
Mohri, Masakatu Morii, Harald Niederreiter, Ayoub Otmani, Fernanda Pambianco, James
B. Shearer, Neil Sloane, Roberta Sabin, Cen Tjhai, Ludo Tolhuizen, Martin Tomlinson,
Gerard van der Geer, Henk van Tilborg, Chaoping Xing, Karl-Heinz Zimmermann, Jo-
hannes Zwanzger.

Given any two of the parameters: length, dimension, and minimum weight, then
MacGMmA will return the code with the best possible value of the omitted parameter. Given
a specified length and minimum weight, for example, will result in a corresponding code
of maximal possible dimension.

The user can display the method used to construct a particular BKLC code through
use of a verbose mode, triggered by the verbose flag BestCode. When it is set to true, all
of the functions in this section will output the steps involved in each code they construct.
While some codes are defined by stored generator matrices, and some use constructions
which are not general enough, or safe enough, to be available to the user, most codes are
constructed using standard MAGMA functions. Note that having the verbose flag Code set
to true at the same time can produce mixed and confusing output, since the database
uses functions which have verbose outputs dependent on this flag.

BKLC(K, n, k)

BestKnownLinearCode (K, n, k)

Given a finite field K, a positive integer n, and a non-negative integer k such that
k < n, return an [n, k] linear code over K which has the largest minimum weight
among all known [n, k] linear codes. A second boolean return value signals whether
or not the desired code exists in the database.

The databases currently available are over GF'(q) for g = 2,3,4,5,7,8,9 of length
up to nmax as given in the table above.

If the verbose flag BestCode is set to true then the method used to construct the
code will be printed.

BLLC(K, k, d)
BestLengthLinearCode (K, k, d)

Given a finite field K, and positive integers k and d, return a linear code over K with
dimension k£ and minimum weight at least d which has the shortest length among

Ch. 152 LINEAR CODES OVER FINITE FIELDS 0123

known codes. A second boolean return value signals whether or not the desired code
exists in the database.

The databases currently available are over GF'(q) for g = 2,3,4,5,7,8,9 of length
up to nmax as given in the table above.

If the verbose flag BestCode is set to true then the method used to construct the
code will be printed.

BDLC(K, n, d)

BestDimensionLinearCode (K, n, d)

Example H152E38

Given a finite field K, a positive integer n, and a positive integer d such that d < n,
return a linear code over K with length n and minimum weight > d which has
the largest dimension among known codes. A second boolean return value signals
whether or not the desired code exists in the database.

The databases currently available are over GF(q) for ¢ = 2,3,4,5,7,8,9 of length
up to nmax as given in the table above.

If the verbose flag BestCode is set to true then the method used to construct the
code will be printed.

We look at some best known linear codes over GF'(2). Since the database over GF'(2) is completely
filled, we can ignore the second boolean return value.

> C :

> C

)

BKLC(GF(2),23,12);

[23, 12, 7] Linear Code over GF(2)
Generator matrix:

[1
(o
(o
(o
(o
(o
[0
(o
[0
(o
[0
(o

0

O O O O O OO OO -

0

0

O O O O O OO oo

0

0000O 0]
1]
0]
0]
1]
0]
0]
1]
1]
1]
1]
1]

O OO OO OOk OO0
O OO0 O OOk OO OO
O OO OO+ OO OO
O OO O Kr OO O OO
O OO RFr OO0 O OO OO
OO P OO OO OO OO
ORr OO OO0 OO O OO
O O O OO0 OO O OO
H O O O OO0 OO0 O OO
B =B, 2, P2 OO0k, OO O -
QOO OFrOFr P OFR P PP
OO PO FrPFPrPORFr, KPP, PFEO
OrOoOrFr P OoOFr P, PFP, P, OO
P OFrRr P ORFRP,r P RPLPFPLOOO
P OO FrR,r P P ORFP,OFL OF
H P, OO R, OO0 O, KPP P, =
O, PP OOOFRr PP, FP, OF K=
P P, OO0OOFrr P, RFP,RORFP,EFL,O
Or P P RFEr P OOK OO -

0000OO0OOOO

> WeightDistribution(C) ;

[<0, 1>, <7, 253>, <8, 506>, <11, 1288>, <12, 1288>, <15, 506>,
<16, 253>, <23, 1>]

> BKLCLowerBound (GF(2),23,12), BKLCUpperBound(GF(2),23,12);

TT

So we see that this code is optimal, in the sense that it meets the best known upper bound on its
minimum weight. (All best known binary codes of length up to 31 are optimal).

5124 CODING THEORY Part XXII

However larger best known codes are not optimal, making it theoretically possible that better
codes exist.

> C := BKLC(GF(2),145,36);

> C:Minimal;

[145, 36, 42] Linear Code over GF(2)

> BKLCLowerBound (GF(2) ,145,36), BKLCUpperBound(GF(2),145,36);
42 52

Example H152E39

We look at some best known codes over GF(4). Since this database is only approximately 66%
complete, it is necessary to check the second boolean return value to know if the database contained
the desired code.

> F<w> := GF(4);

> C, has_code := BKLC(F, 14, 9);

> has_code;

true

> C;

[14, 9, 4] Linear Code over GF(2°2)
Generator matrix:

[+ o o O O O O O O o0 Oow2 w 1]
o 1 o o0 O O O O O o 1t 1 1w2]
Lo o 1 0 O O O O O OoOw2 w 0 wl
o o o t o O O O O O w 1 1 wl
Lo o o o0 1 0 O O O o0 w 0 ww2]
o o o o0 o0 1t o0 O O oOow2 1 1 1]
Lo o o o0 o o0 1t O O o0 1 ww2 0]
Lo o o o0 o O o 1 0 0 0 1 ww2]
Lo o o o0 O O o o0 1t ow2w2 0 1]

> BKLCLowerBound(F, 14, 9), BKLCUpperBound(F, 14, 9);
4 4

Since the database over GF'(4) is completely filled up to length 97 the boolean value was in fact
unnecessary in this case. We see that the minimum weight of this code reaches the theoretical
upper bound, as do all best known codes over GF'(4) up to length 18.

For longer lengths we have the possibility that the database may not contain the desired code.

> C, has_code := BKLC(F, 98, 57);

> has_code;

false

> C;

[98, 0, 98] Cyclic Linear Code over GF(2°2)
>

> C, has_code := BKLC(F, 98, 58);

> has_code;

true

> C:Minimal;

Ch. 152 LINEAR CODES OVER FINITE FIELDS 5125

[98, 58, 16] Linear Code over GF(2°2)

Example H152E40

We search for best known codes using dimension and minimum weight, looking at codes over
GF(2) of dimension 85. Even though the database over GF(2) is 100% filled up to length 256,
the code required may be longer than that so we have to check the second boolean return value.

> C, has_code := BestLengthLinearCode(GF(2),85,23);
> has_code;

true

> C:Minimal;

[166, 85, 23] Linear Code over GF(2)

>

> C, has_code := BestLengthLinearCode(GF(2),85,45);
> has_code;

true

> C:Minimal;

[233, 85, 45] Linear Code over GF(2)

>

> C, has_code := BestLengthLinearCode(GF(2),85,58);
> has_code;

false

Example H152E41

For a given minimum weight, we find the maximal known possible dimensions for a variety of
code lengths over GF'(4).

For lengths < 98 we know the database is filled so we do not need to check the second boolean
return value.

> F<w> := GF(4);

> C := BDLC(F, 12, 8);

> C;

[12, 3, 8] Linear Code over GF(2°2)

Generator matrix:

[1 0 0 wWw?2 WwWw2 Ww W 1 wowl
[0 1 0 ww2 1 O0w?2 w 0w2w2]
[0 O 1 0 1lw2w2w2 0w?2 w wl
>
>
>

C := BDLC(F, 27, 8);
C:Minimal;
[27, 15, 9] Linear Code over GF(2°2)
> C := BDLC(F, 67, 8);
> C:Minimal;
[67, 52, 8] Linear Code over GF(2°2)

But for lengths > 98 there may be gaps in the database so to be safe we check the second value.
> C, has_code := BDLC(F, 99, 8);

5126 CODING THEORY Part XXII

> has_code;

true

> C:Minimal;

[99, 81, 8] Linear Code over GF(2°2)

> C, has_code := BDLC(F, 195, 8);

> has_code;

true

> C:Minimal;

[195, 174, 8] Linear Code over GF(2°2)

Example H152E42

We find the best known code of length 54 and dimension 36, then using the output of the verbose
mode we re-create this code manually.

> SetPrintLevel("Minimal");

> SetVerbose("BestCode",true);

> a := BKLC(GF(2), 54, 36);

Construction of a [54 , 36 , 8] Code:

[11: [63, 46, 7] Cyclic Code over GF(2)
CyclicCode of length 63 with generating polynomial x~17 +
x"16 + x715 + x713 + x"12 + x"8 + X6 + x°4 + x"3 + x"2 +
1

[2]: [64, 46, 8] Linear Code over GF(2)
ExtendCode [1] by 1

[3]: [54, 36, 8] Linear Code over GF(2)
Shortening of [2] at { 55 .. 64 }

> a;

[54, 36, 8] Linear Code over GF(2)

P<x> := PolynomialRing(GF(2));

p :=x"17 + x716 + x716 + x713 + x712 + x"8 + x76 + x74 +
x"3 + x72 + 1;

Cl := CyclicCode(63, p);

C1;

[63, 46] Cyclic Code over GF(2)

> C2 := ExtendCode(C1l);

> C2;

[64, 46] Linear Code over GF(2)

> C3 := ShortenCode(C2, {55 .. 64});

> C3;

[54, 36, 8] Linear Code over GF(2)

>

> C3 eq a;

true

V V V V Vv VvV

Ch. 152 LINEAR CODES OVER FINITE FIELDS 0127

152.14 Decoding

Magma supplies functions for decoding vectors from the ambient space of a linear code C'.
The functions in this section only apply to codes over finite fields.

Decode(C, v: parameters)

Al

MONSTGELT Default : “Euclidean”

Given a linear code C and a vector v from the ambient space V of C, attempt
to decode v with respect to C. Currently the accessible algorithms are: syndrome
decoding (which is demonstrated manually in the example in the Coset Leaders
section above); and a Euclidean algorithm, which operates on alternant codes (BCH,
Goppa, and Reed—Solomon codes, etc.). While the Euclidean algorithm cannot
correct as many errors as can the syndrome algorithm, in general it is much faster,
since the syndrome algorithm requires the coset leaders of the code and is also
inapplicable as soon as the codimension of the code is moderately large. If the code
is alternant, the Euclidean algorithm is used by default, but the syndrome algorithm
will be used if the parameter Al is assigned the value "Syndrome". For non-alternant
codes, only syndrome decoding is possible, so the parameter Al is not relevant. If
the decoding algorithm succeeds in computing a vector v’ as the decoded version
of v, then the function returns true and v'. (In the Euclidean case it may even
happen that v" is not in C' because there are too many errors in v to correct.) If
the decoding algorithm does not succeed in decoding v, then the function returns
false and the zero vector.

Decode(C, Q: parameters)

Al

Example H152E43

MoNSTGELT Default : “Fuclidean”

Given a linear code C and a sequence () of vectors from the ambient space V' of
C, attempt to decode the vectors of () with respect to C'. This function is similar
to the function Decode(C, v) except that rather than decoding a single vector, it
decodes a sequence of vectors and returns a sequence of booleans and a sequence
of decoded vectors corresponding to the given sequence. The algorithm used and
effect of the parameter Al are as for the function Decode(C, v).

We create a code C and a vector v of C' and then perturb v to a new vector w. We then decode
w to find v again.

C :
v o

W o=
w[5]
w[20
v;

(111
> w;

(111

V V V V V V

GolayCode (GF(2), false);

c' [1,1,1,1,0,0,0,1,0,0,1,1,0,0,0,1,0,0,0,1,1,1,1];
v

:= 1 - w[5];
] :=1 - w[20];

1000100110001 0001111)

11001001100010000111)

5128 CODING THEORY Part XXII

>V - w;

(00001000000000000O00CO0100O00)

> b, d := Decode(C, w);

> b;

true

> d;

(11110001001100010001111)

> d eq v;

true

> Decode(C, [w]);

[true]

[
(11110001001100010001111)

152.15 Transforms

152.15.1 Mattson—Solomon Transforms

MattsonSolomonTransform(f, n)

Given f, a polynomial over a finite field containing a primitive n-th root of unity,
return the Mattson—Solomon transform of parameter n.

InverseMattsonSolomonTransform(A, n)

Given A, a polynomial over a finite field containing a primitive n-th root of unity,
return the inverse Mattson—Solomon transform of parameter n.

Example H152E44

We compute the Mattson—Solomon transform of parameter n = 7 of the polynomial z*+ 2?4z +1
over 1?212.

n:=7;

K := GF(2, 12);

FP<x> := PolynomialRing(K);
f :=x"4 +x"2+x+1;

A := MattsonSolomonTransform(f, n);
A;
~6 +

M V V V V V VvV

x5 + x73

Ch. 152 LINEAR CODES OVER FINITE FIELDS 5129

152.15.2 Krawchouk Polynomials

KrawchoukPolynomial (K, n, k)

Return the Krawchouk polynomial of parameters k and n in K over the rational
field.

KrawchoukTransform(f, K, n)

Return the Krawchouk transform of the polynomial f over the rational field with
respect to the vector space K".

InverseKrawchouk(A, K, n)

Return the inverse Krawchouk transform of the polynomial A over the rational field
with respect to the vector space K".

152.16 Automorphism Groups

152.16.1 Introduction

Let C be an [n, k] linear code and G a permutation group of degree n. Then G acts on
C' in the following way: for a codeword v of C' and a permutation x of GG, the image of v
under x is obtained from v by permuting the coordinate positions of v according to z. We
call this the permutation action of G on C.

If C' is a non-binary code over a finite field, there is also a monomial action on C. Let
K be the alphabet of C. A monomial permutation of monomial degree n is equivalent to
a permutation s on K* x {1,...,n} which satisfies the following property:

(o, 4)* = (B,7) implies (ya,i)® = (76, j)

for all o, 8,7 € K* and 4,7 € {1,...,n}. The actual degree of s is (¢ — 1)n. Note that
s is completely determined by its action on the points (1,7) for each i, and the matrix
representation of s is also determined by its action on the elements (1,4), for 1 < i < n.
To represent a monomial permutation of monomial degree n, we number the pair («, i) by
(g —1)(i — 1) + a and then use a permutation s of degree (¢ — 1)n.

The functions in this section allow one to investigate such actions. The algorithms
in MAGMA to compute with such actions are backtrack searches due to Jeff Leon
[Leo82][Le097]. There are 4 algorithms which are provided for codes of length n over
a field of cardinality g¢:

(a) Automorphism group or Monomial group. Computes the group of monomials which
map a code into itself, where monomials are represented as permutations of degree
(¢ —1)n (so the group has degree (¢ —1)n). For this function ¢ may be any small prime
or 4.

(b) Permutation group. Computes the group of permutations which map a code into itself
(so the group has degree n). For this function ¢ may be any small prime or 4.

5130 CODING THEORY Part XXII

—~

c¢) Equivalence test. Computes whether there is a monomial permutation which maps
a code to another code and, if so, returns the monomial as a permutation of degree
(¢ — 1)n. For this function, ¢ may be any small prime or 4.

—~

d) Isomorphism test. Computes whether there is a permutation which maps a code to
another code and returns the permutation (of degree n) if so. For this function ¢ may
only be 2.

For more information on permutation group actions and orbits, see Chapter 58.

152.16.2 Group Actions

~

A% X

Given a codeword v belonging to the [n, k] code C' and an element x belonging to
a permutation group G, construct the vector w obtained from v by the action of z.
If G has degree n, the permutation action is used; otherwise G should have degree
n(q — 1) and the monomial action is used.

v~ G
Given a codeword v belonging to the [n, k] code C' and a permutation group G (with
permutation or monomial action on C'), construct the vector orbit Y of v under the
action of GG. The orbit Y is a G-set for the group G.

C "~ x
Given an [n, k] code C' and an element x belonging to a permutation group G (with
permutation or monomial action on ('), construct the code consisting of all the
images of the codewords of C' under the action of x.

C~G
Given an [n, k] code C and a permutation group G (with permutation or monomial
action on ('), construct the orbit Y of C' under the action of G. The orbit Y is a
G-set for the group G.

S T x
Given a set or sequence S of codewords belonging to the [n, k] code C and an element
x belonging to a permutation group (with permutation or monomial action on the
codewords), construct the set or sequence of the vectors obtained by permuting the
coordinate positions of v, for each v in S, according to the permutation x.

S T x
Given a set or sequence S of codes of length n and an element z belonging to a
permutation group (with permutation or monomial action on the codes) construct

the set or sequence of the codes consisting of all the images of the codewords of C'
under the action of x.

Fix(C, G)

Given an [n, k] code C' and a permutation group G of degree n, find the subcode of
C which consists of those vectors of C' which are fixed by the elements of G. That
is, the subcode consists of those codewords that are fixed by the group G.

Ch. 152 LINEAR CODES OVER FINITE FIELDS 5131

152.16.3 Automorphism Group

AutomorphismGroup(C: parameters)

MonomialGroup(C: parameters)

Weight RNGINTELT Default : 0

The automorphism group A of the [n, k| linear code C' over the field K, where A is
the group of all monomial-action permutations which preserve the code. Thus both
permutation of coordinates and multiplication of components by non-zero elements
from K is allowed, and the degree of A is n(q— 1) where ¢ is the cardinality of K. A
power structure P and transfer map ¢ are also returned, so that, given a permutation
g from A, one can create a map f = t(g) which represents the automorphism g as
a mapping P: C — C.

If the code is known to have very few words of low weight, then it may take some
time to compute the support of the code (a set of low weight words). The optional
parameter Weight can be used to specify the set of vectors of the specified weight
to be used as the support in the algorithm. This set should be of a reasonable
size, (possibly hundreds for a large code), while also keeping the weight as small as
possible.

Warning: If Weight specifies a set that is too small, then the algorithm risks
getting stuck.

PermutationGroup(C)

The permutation group G of the [n, k] linear code C over the field K, where G is the
group of all permutation-action permutations which preserve the code. Thus only
permutation of coordinates is allowed, and the degree of GG is always n. A power
structure P and transfer map t are also returned, so that, given a permutation g
from G, one can create a map f = t(g) which represents the automorphism g as a
mapping P: C — C.

AutomorphismSubgroup(C)

MonomialSubgroup(C)

A subgroup of the (monomial) automorphism group A of the code C'. If the automor-
phism group of C'is already known then the group returned is the full automorphism
group, otherwise it will be a subgroup generated by one element. This allows one to
find just one automorphism of C' if desired. A power structure P and transfer map
t are also returned, so that, given a permutation g from A, one can create a map
f = t(g) which represents the automorphism ¢ as a mapping P : C' — C.

5132 CODING THEORY Part XXII

AutomorphismGroupStabilizer(C, k)

MonomialGroupStabilizer(C, k)

The subgroup of the (monomial) automorphism group A of the code C, which
stabilizes the first k£ base points as chosen by the backtrack search. These base points
may be different to those of the returned group. A power structure P and transfer
map t are also returned, so that, given a permutation g from A, one can create a
map f = t(g) which represents the automorphism ¢ as a mapping P : C' — C.

The power structure A of all automorphisms of the code C' (with monomial action),
together with the transfer map t into A from the generic symmetric group associated
with the automorphism group of C.

Aut(C, T)

The power structure A of all automorphisms of the code C, together with the transfer
map t into A from the generic symmetric group associated with the automorphism
group of C'; the string T' determines which action type should be used: "Monomial"
or "Permutation".

Example H152E45

We compute the automorphism group of the second order Reed—Muller code of length 64.

> C := ReedMullerCode(2, 6);
> aut := AutomorphismGroup(C);
> FactoredOrder (aut) ;
[<2, 21>, [3, 4>, <5, 1>, <7, 2>, <31, 1>]
> CompositionFactors(aut) ;
G
A(5, 2) = L(6, 2)
Cyclic(2)
Cyclic(2)
Cyclic(2)
Cyclic(2)
Cyclic(2)

Cyclic(2)

B — % — % — % — % — % — % —

Ch. 152 LINEAR CODES OVER FINITE FIELDS 5133

Example H152E46

We compute the automorphism group of a BCH code using the set of vectors of minimal weight
as the invariant set. We look first at its weight distribution to confirm that there is sufficient
vectors.

> C := BCHCode(GF(2),23,2);

> C;

[23, 12, 7] BCH code (d = 2, b
Generator matrix:

1) over GF(2)

[1t0000000000011000111010]
[0100000000000110001110 1]
[0010000000001111011010 0]
[00010000000001111011010]
[0000100000000011110110 1]
[00000100000011011001100]
[00000010000001101100110]
[0000000100000011011001 1]
[0000000010001101110001 1]
(0000000001001 010100101 1]
(0000000000101 0010011111]
[0000000000011000111010 1]

> WeightDistribution(C);
[<0, 1>, <7, 253>, <8, 506>, <11, 1288>, <12, 1288>, <15, 506>,
<16, 253>, <23, 1>]
> AutomorphismGroup(C : Weight := MinimumWeight(C));
Permutation group acting on a set of cardinality 23
Order = 10200960 = 277 * 372 * 5 * 7 * 11 * 23

(6, 15, 12)(7, 20, 19)(8, 9, 17)(10, 13, 22)(11, 14, 23) (16,

18, 21)

(5, 17, 9)(6, 21, 20)(7, 16, 23)(10, 13, 22)(11, 12, 19) (14,
18, 15)

(5, 16, 21)(6, 23, 19)(7, 17, 12)(8, 14, 15)(9, 20, 11)(10,
13, 22)

(1, 2)4, 12)(5, 7)(6, 17)(9, 10) (13, 21) (15, 18)(22, 23)

(2, 3)(4, 21, 6, 20)(5, 10, 12, 17)(7, 13, 9, 11) (15, 18) (16,
19, 22, 23)

(3, 8)(4, 5, 20, 22)(6, 16, 21, 12)(7, 11, 13, 9)(10, 17, 19,
23) (15, 18)

(4, 8, 6, 21, 20)(5, 10, 14, 17, 12)(7, 22, 18, 16, 9) (11,
23, 19, 13, 15)

5134 CODING THEORY Part XXII

152.16.4 Equivalence and Isomorphism of Codes

IsIsomorphic(C, D: parameters)

IsEquivalent(C, D: parameters)

AutomorphismGroups MoNSTGELT Default : “Right”
Weight RNGINTELT Default : 0

Given [n, k] codes C' and D, this function returns true if and only if C' is equivalent
to D. If C is equivalent to D, an equivalence map f is also returned from C onto D.
The equivalence is with respect to the monomial action. The function first computes
none, one, or both of the automorphism groups of the left and right codes. This
may assist the isomorphism testing.

The parameter AutomorphismGroups, with valid string values Both, Left, Right,
None, may be used to specify which of the automorphism groups should be con-
structed first if not already known. The default is Right.

In rare cases this algorithm can get stuck, due to an insufficient set of invariant
vectors. In this case, the optional parameter Weight can be used to specify this
set to be the vectors of the specified weight. This set should be of a reasonable
size, (possibly hundreds for large codes), while also keeping the weight as small as
possible.

Warning: If Weight specifies a set that is too small, then the algorithm risks
getting stuck.

152.17 Bibliography

[A1184] W.O. Alltop. A method for extending binary linear codes. IEEE Trans.
Inform. Theory, 30:871 — 872, 1984.

[BFK™98] A. Betten, H. Fripertinger, A. Kerber, A. Wassermann, and K.-H. Zimmer-
mann. Codierungstheorie — Konstruktion und Anwendung linearer Codes. Springer-
Verlag, Berlin—Heidelberg—New York, 1998.

[Bro] A. E. Brouwer. Bounds on the minimum distance of linear codes.
URL:http://www.win.tue.nl/~aeb/voorlincod.html.

[Bro98] A. E. Brouwer. Bounds on the size of linear codes. In Handbook of coding
theory, Vol. I, II, pages 295-461. North-Holland, Amsterdam, 1998.

[Gab02] Philippe Gaborit. Quadratic Double Circulant Codes over Fields. Journal of
Combinatorial Theory, 97:85-107, 2002.

[Gra] Markus Grassl. Bounds on the minimum distance of linear codes.
URL:http://www.codetables.de/.

[Leo82] Jeffrey S. Leon. Computing automorphism groups of error-correcting codes.
IEEE Trans. Inform. Theory, I'T-28:496-511, 1982.

[Leo97] Jeffrey S. Leon. Partitions, refinements, and permutation group computa-
tion. In Larry Finkelstein and William M. Kantor, editors, Groups and Computation

Ch. 152 LINEAR CODES OVER FINITE FIELDS 5135

11, volume 28 of Dimacs series in Discrete Mathematics and Computer Science, pages

123-158, Providence R.I., 1997. Amer. Math. Soc.

[MS78] F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes.
North Holland, New York, 1978.

153 ALGEBRAIC-GEOMETRIC CODES

153.1 Introduction 5139
153.2 Creation of an Algebraic Geo-
metric Code 5140
AlgebraicGeometricCode(S, D) 5140
AGCode (S, D) 5140
AlgebraicGeometricDualCode(S, D) 5140
AGDualCode (S, D) 5140
HermitianCode(q, r) 5140
153.3 Properties of AG—Codes . . 5142
IsWeaklyAG(C) 5142
IsWeaklyAGDual(C) 5142
IsAlgebraicGeometric(C) 5142

IsStronglyAG(C) 5143

153.4 Access Functions

Curve(C)
GeometricSupport (C)
Divisor(C)
GoppaDesignedDistance(C)

153.5 Decoding AG Codes .

AGDecode(C, v, Fd)

153.6 Toric Codes

ToricCode (P, q)
ToricCode(S, q)
ToricCode(S, q)

153.7 Bibliography

5143

5143
5143
5143
5143
5143

5143

5144

5144
5144
5144

5145

Chapter 153
ALGEBRAIC-GEOMETRIC CODES

153.1 Introduction

Algebraic—Geometric Codes (AG—codes) are a family of linear codes described by Goppa
in [Gop8la, Gop81b|. Let X be an irreducible projective plane curve of genus g, defined by
a (absolutely irreducible) homogeneous polynomial H(X,Y, Z) over a finite field K = F,.
A place of X is the maximal ideal of a discrete valuation subring of K(X). We denote by
vp the valuation at place P. Its degree is the degree of its residue class field over K. A
divisor is an element D of the free abelian group over the set of places of X'. Namely, such
an element can be written additively:

D= > np-P,

PePI(X)

where all but finitely many np € Z are zero. The set of places with nonzero multiplicity is
the support of D, denoted by SuppD. The set of divisors can be equipped with a natural
partial order < defined by:

D= Y np-P<D'= > np-P <= np<npforalP.
PeP1(X) PeP1(X)

If f € K(X), then one can define the principal divisor:

PEPI(X)

A divisor D is said to be defined over K if it is stable under the natural action of Gal(K /K).

If (Py,...,P,) is a tuple of places of degree 1, then for a function f € K(X), f(P;)
can be seen as an element of K. If D is a divisor defined over K, then the Riemann—Roch
space L(D) of D is the K-vector space of dimension k:

LD)={f e KX)" | (f)+D=0};uU{0}.

Now provided D has support disjoint from S = {P,..., P,}, we can define the algebraic
geometric code to be the [n, k],-code:

C =05, D) ={(f(Pr),.... f(Pn)) , f € L(D)}.

5140 CODING THEORY Part XXII

If (f1,..., fx) is a base of Lx (D) as a K-vector space, then a generator matrix for C is:

fi(Py) - fi(Pn)
G=|
fe(P1) - fr(Pn)

Standard references are [Sti93] and [TV91].

There are two different implementations of the construction of AG—Codes in MAGMA.
The first was implemented by Lancelot Pecquet and is based on the work of Hache [HLB95,
Hac96]. The second approach exploits the divisor machinery for function fields imple-
mented by Florian Hess. In MAGMA V2.8, only the second implementation is exported. It
is intended to rework the Pecquet version to take advantage of the new curve machinery
before releasing it.

153.2 Creation of an Algebraic Geometric Code

AlgebraicGeometricCode(S, D)

AGCode(S, D)

Suppose X is an irreducible plane curve. Let S be a sequence of places of X having
degree 1 and let D be a divisor of X whose support is disjoint from the support of S.
The function returns the (weakly) algebraic-geometric code obtained by evaluating
functions of the Riemann—Roch space of D at the points of S. The degree of D need
not be bounded by the cardinality of S.

AlgebraicGeometricDualCode(S, D)

AGDualCode (S, D)

Construct the dual of the algebraic geometric code constructed from the sequence
of places S and the divisor D, which corresponds to a differential code. In order to
take advantage of the algebraic geometric structure, the dual must be constructed
in this way, and not by directly calling the function Dual.

HermitianCode(q, r)

Given the prime power ¢ and a positive integer r, construct a Hermitian code C'
with respect to the Hermitian curve

X = glath) 4 ylatl) 4 o(a+1)

defined over F 2. The support of C' consists of all places of degree one of X over
F 2, with the exception of the place over P = (1 :1:0). The divisor used to define
a Riemann—Roch space is r x P.

Ch. 153 ALGEBRAIC-GEOMETRIC CODES 5141

Example H153E1

We construct a [25,9, 16] code over Fig using the genus 1 curve z° + 2%z + y° + y?z + 2°.

F<w> := GF(16);

P2<x,y,z> := ProjectiveSpace(F, 2);
f = X73+x72%z+y " 3+y " 2%z+273;

X := Curve(P2, f);

g := Genus(X);

g;

placesl := Places(X, 1);
#placesl;

V V~ V V V V VYV

25

We now need to find an appropriate divisor D. Since we require a code of dimension k = 9 we
take the divisor corresponding to a place of degree k+ g — 1 =9 (g is the genus of the curve).

> found, place_k := HasPlace(X, 9+g-1);

> D := DivisorGroup(X) ! place_k;
> C := AlgebraicGeometricCode(placesl, D);
> C;

[25, 9] Linear Code over GF(2°4)
Generator matrix:
[100000000 W9 wWWS8O0WS511wbw7ws8wlw4dwill w'b

w™ 10 w~8]

[010000000wW4w5s1w1l0w4dwll w1201 w2 w4 w6 w4dvwb
w14 w~4]

[001000000WSE5EWIBW7 W10 w7 w5bwildvw1ldwlw10w'910
w5 w]

[000100000 w8 w3 w3vw'12w7 w10 w w60 w7 w10 w4 w9
w14 w™8 w™12]

[000010000wW81lw4 w7 wbwwd8wwbwwild0vw1ld w14 w14
W™ 6]

[00000100011w12 w14 w9 w10 w6 w6 w7 w10 w4 w3 w13
w™ 13 w™3 w~4]

[000000100www1l0 w4 w12 w w13 w4 ww?2w3w3w12 w10
w5 w™13]

[000000010 W13 w66 W12 W 2w 3w 7w3vw4dvwi1ldwvidvwllwvidw
w6 w4 wi14]

[0000000010WwWllww7wi12w4w3w6w1l2w3dw13 w2 w11
w10 w3 1]

> MinimumDistance(C);

16

5142 CODING THEORY Part XXII

Example H153E2

We construct a [44, 12,29] code over Fis using the genus 4 curve (y? +xy +2%)2® + 322 + (xy® +
2?y? + 23y + 2z 4+ 23y? + 'y 4 2° and taking as the divisor a multiple of a degree 1 place.

> k<w> := GF(16);

> P2<x,y,z> := ProjectiveSpace(k, 2);

> £ 1= (y72+x*y+x72) %27 3+y " 3%27 2+ (x*y " 3+x 2%y " 2+x " 3xy+x"4) *z+x " 3%y 2+x"4*y+x"5;
> X := Curve(P2, £);

> g := Genus(X);

> g;

4

We find all the places of degree 1.

> placesl := Places(X, 1);
> #placesl;
45

We choose as our divisor 15 x P1, where P1 is a place of degree 1. Before applying the AG-Code
construction we must remove P1 from the set of places of degree 1.

> P1 := Random(placesl);
> Exclude(“placesl, P1);

> #placesi;

44

> D := 15 * (DivisorGroup(X) ! P1);

> C := AlgebraicGeometricCode(placesl, D);

> C:Minimal;

[44, 12] Linear Code over GF(2°4)
> MinimumWeight (C) ;

29

153.3 Properties of AG—Codes

IsWeaklyAG(C)

Return true if and only if the code C' is a weakly algebraic-geometric code, i.e. C'
has been constructed as an algebraic—geometric code with respect to a divisor of
any degree.

IsWeaklyAGDual(C)

Return true if and only if the code C' was constructed as the dual of a weakly
algebraic-geometric code.

IsAlgebraicGeometric(C)

Return true if and only if the code C' is of algebraic—geometric construction of
length n, built from a divisor D with deg(D) < n.

Ch. 153 ALGEBRAIC-GEOMETRIC CODES 5143

IsStronglyAG(C)

Return true if and only if C' is an algebraic—geometric code of length n constructed
from a divisor D satisfying 2g — 2 < deg(D) < n, where g is the genus of the curve.

153.4 Access Functions

At the time an AG—Code is constructed a number of attributes describing its construction
are stored along with the code. The functions in this section give the user access to these
attributes.

Curve(C)

Given an algebraic—geometric code C, returns the curve from which C was defined.

GeometricSupport (C)

Given an algebraic—geometric code C, return the sequence of places which forms the
support for C.

Divisor(C) |

Given an algebraic—geometric code C, return the divisor from which C' was con-
structed.

GoppaDesignedDistance(C)

Given an algebraic—geometric code C' constructed from a divisor D, return the
Goppa designed distance n — deg(D).

153.5 Decoding AG Codes

Specialized decoding algorithms exist for differential code, those which are the duals of the
standard algebraic-geometric codes. These algorithms generally require as input another
divisor on the curve whose support is disjoint from the divisor defining the code.

AGDecode(C, v, Fd)

Decode the received vector v of the dual algebraic geometric code C' using the divisor
Fd.

5144 CODING THEORY Part XXII

Example H153E3

An algebraic-geometric code with Goppa designated distance of 3 is used to correct one error.

> q = 8;

> F<a> := GF(q);

> PS<x,y,z> := ProjectiveSpace(F, 2);

> W 1= x"3%y + y 3%z + x*z"3;

> Cv := Curve(PS, W);

> FF<X,Y> := FunctionField(Cv);

> P1 := Places(Cv, 1);

> plc := Place(Cv ! [0,1,01);

>P := [P1[i] : i in [1..#P1] | P1[i] ne plc];
> G := 11xplc;

> C := AGDualCode(P, G);

>

> v := Random(C);

> rec_vec := V;

> rec_vec[Random(1,Length(C))] +:= Random(F);
> res := AGDecode(C, v, 4#*plc);

> res eq Vv;

true

153.6 Toric Codes

ToricCode(P, q)

The linear code C over the finite field F, associated with the lattice points of the
polygon P.

To achieve this, after a translation so that the lattice points of P lie in the
first quadrant, as close to the origin as possible, these points must lie in the box
[0, — 2] x [0,q — 2]. Then the code is the monomial evaluation code where each
point (a,b) corresponds to the monomial 2%y®, and these monomials are evaluated
at the points of the torus (F)>.

ToricCode(S, q)

ToricCode(S, q)

The linear code C' over the finite field F, associated with the lattice points in S.
(Note that the points will be translated to lie within a box at the origin of the first
quadrant, as is usual.)

Ch. 153 ALGEBRAIC-GEOMETRIC CODES 5145

Example H153E4

We construct the toric code based on the lattice points in the polygon with vertices (3,0), (5,0),
(3,3), (1,5), (0,3), (0,1).

> P := Polytope([[3,0], [5,0], [3,31, [1,5], [0,3], [0,11]);
> C := ToricCode(P, 7);

> [Length(C), Dimension(C), MinimumDistance(C)];

[36, 19, 12 1]

We can compare this with the current database of best known linear codes.

> BKLCLowerBound(Field(C), Length(C), Dimension(C));
11

153.7 Bibliography
[Gop8la] V. D. Goppa. Codes on algebraic curves. Dokl. Akad. Nauk SSSR, 259(6):
1289-1290, 1981.

[Gop81b] V. D. Goppa. Codes on algebraic curves. Soviet Math. Dokl., 24(1):170-172,
1981.

[Hac96] Gaétan Haché. Construction effective des codes géométriques. PhD thesis,
I’Université Paris 6, 1996.

[HLB95] Gaétan Haché and Dominique Le Brigand. Effective construction of algebraic
geometry codes. IEEE Trans. Inform. Theory, 41(6, part 1):1615-1628, 1995. Special
issue on algebraic geometry codes.

[Sti93] Henning Stichtenoth. Algebraic function fields and codes. Springer-Verlag,
Berlin, 1993.

[TV91] M. A. Tsfasman and S. G. Vladut. Algebraic-geometric codes. Kluwer Aca-
demic Publishers Group, Dordrecht, 1991. Translated from the Russian by the authors.

154 LOW DENSITY PARITY CHECK CODES

154.1 Introduction 5149 LDPCEnsembleRate(Sv, Sc) 5151
154.1.1 Constructing LDPC Codes . . . 5149 154.1.3 LDPC Decoding and Simulation. 5152
LDPCCode (H) 5149 LDPCDecode(C, v) 5152
GallagerCode(n, a, b) 5149 LDPCSimulate(C, N) 5154
RegularLDPCEnsemble(n, a, b) 5149 154.1.4 Density Evolution 5154
IrregularLDPCEnsemble(n, Sv, Sc) 5149 . .
MargulisCode (p) 5149 LDPCB}narySymmetr}cThreshold(v, c 5155
LDPCBinarySymmetricThreshold(Sv, Sc) 5155
154.1.2 Access Functions 5150 DensityEvolutionBinary
IsLDPC(C) 5150 Symmetric(v, c, p) 5155
AssignlDPCMatrix(~C, H) 5150 DensityEvolutionBinary
LDPCMatrix(C) 5151 Symmetric(Sv, Sc, p) 5155
LDPCDensity(C) 5151 LDPCGaussianThreshold(v, c) 5156
IsRegularLDPC(C) 5151 LDPCGaussianThreshold(Sv, Sc) 5156
TannerGraph (C) 5151 DensityEvolutionGaussian(v, c, o) 5157
LDPCGirth(C) 5151 DensityEvolutionGaussian(Sv, Sc, o) 5157

LDPCEnsembleRate (v, c) 5151 GoodLDPCEnsemble (i) 5157

Chapter 154
LOW DENSITY PARITY CHECK CODES

154.1 Introduction

Low density parity check (LDPC) codes are among the best performing codes in practice,
being capable of correcting errors close to the Shannon limit. MAGMA provides facilities
for the construction, decoding, simulation and analysis of LDPC codes.

154.1.1 Constructing LDPC Codes

LDPC codes come in two main varieties, reqular and irregular, defined by the row and
column weights of the sparse parity check matrix. If all columns in the parity check matrix
have some constant weight a, and all rows have some constant weight b, then the LDPC
code is said to be (a,b)-regular. When either the columns or the rows have a distribution
of weights, the LDPC code is said to be irregular.

Currently, there do not exist many techniques for the explicit construction of LDPC
codes. More commonly, these codes are selected at random from an ensemble, and their
properties determined through simulation.

LDPCCode (H) |

Given a sparse binary matrix H, return the LDPC code which has H as its parity
check matrix.

GallagerCode(n, a, b)

Return a random (a,b)-regular LDPC code of length n, using Gallager’s original
method of construction. The row weight a must dividethe length n.

RegularLDPCEnsemble(n, a, b)

Return a random code from the ensemble of (a, b)-regular binary LDPC codes.

IrregularLDPCEnsemble(n, Sv, Sc)

Given (unnormalized) distributions for the variable and check weights, return length
n irregular LDPC codes whose degree distributions match the given distribution.
The arguments Sv and Sc are sequences of real numbers, where the i-th entry
indicates what percentage of the variable (resp. check) nodes should have weight 3.

Note that the distributions will not be matched perfectly unless everything is in
complete balance.

MargulisCode (p)

Return the (3,6)-regular binary LDPC code of length 2(p3 —p) using the group-based
construction of Margulis.

5150 CODING THEORY Part XXII

Example H154E1

Most LDPC constructions are generated pseudo-randomly from an ensemble, so the same function
will return a different code each time. To be able to re-use an LDPC code, the sparse parity check
matrix which must be saved.

> C1 := RegularLDPCEnsemble(10, 2, 4);
> C2 := RegularLDPCEnsemble(10, 2, 4);
> C1 eq C2;

false

> LDPCMatrix(C1) :Magma;
SparseMatrix(GF(2), 5, 10, [

4, 2,1, 3,1, 4,1, 6,1,
4, 1,1, 7,1, 9,1, 10,1,
4, 1,1, 2,1, 3,1, 7,1,
4, 5,1, 6,1, 8,1, 9,1,
4, 4,1, 5,1, 8,1, 10,1

H b b b

> H := SparseMatrix(GF(2), 5, 10, [

> 4, 2,1, 3,1, 4,1, 6,1,

> 4, 1,1, 7,1, 9,1, 10,1,

> 4, 1,1, 2,1, 3,1, 7,1,

> 4, 5,1, 6,1, 8,1, 9,1,

> 4, 4,1, 5,1, 8,1, 10,1 1);
> C3 := LDPCCode (H);

> C3 eq C1;

true

154.1.2 Access Functions

Since a code can have many different parity check matrices, the matrix which defines a code
as being LDPC must be assigned specifically. Any parity check matrix can be assigned for
this purpose, and once a code is assigned an LDPC matrix it is considered by MAGMA to
be an LDPC code (regardless of the density or other properties of the matrix). The matrix
must be of sparse type (MtrxSprs).

ISLDPC(C) |

Return true if C' is an LDPC code (which is true if it has been assigned an LDPC
matrix).

AssignLDPCMatrix(~C, H)

Given a sparse matrix H which is a parity check matrix of the code C, assign H as
the LDPC matrix of C.

Ch. 154 LOW DENSITY PARITY CHECK CODES 5151

LDPCMatrix(C) |

Given an LDPC code C, return the sparse matrix which has been assigned as its
low density parity check matrix.

LDPCDensity(C)

Given an LDPC code C, return the density of the sparse matrix which has been
assigned as its low density parity check matrix.

IsRegularLDPC(C)

Returns true if C' is an LDPC code and has regular column and row weights. If
true, the row and column weights are also returned.

TannerGraph (C)

For an LDPC code C, return its Tanner graph. If there are n variables and m
checks, then the graph has n + m nodes, the first n of which are the variable nodes.

LDPCGirth(C) |
For an LDPC code C|, return the girth of its Tanner graph.

LDPCEnsembleRate(v, c)
LDPCEnsembleRate(Sv, Sc)

Return the theoretical rate of LDPC codes from the ensemble described by the given
inputs.

Example H154E2

In Macma, whether or not a code is considered LDPC is based solely on whether or not an LDPC
matrix has been assigned. This example shows that any code can be made to be considered LDPC,
although a random parity check matrix without low density will perform very badly using LDPC
decoding.

> C := RandomLinearCode(GF(2),100,50);

> ISLDPC(C);

false

> H := SparseMatrix(ParityCheckMatrix(C));
> H;

Sparse matrix with 50 rows and 100 columns over GF(2)
> AssignlDPCMatrix(~C, H);

> IsLDPC(C);

true

> LDPCDensity(C);
0.253400000000000014122036873232

The density of the parity check matrices of LDPC codes is much lower than that of randomly
generated codes.

> C1 := RegularLDPCEnsemble(100,3,6);

5152

> C1:M

CODING THEORY Part XXII

inimal;

[100, 50] Linear Code over GF(2)
> LDPCDensity(C1);
0.0599999999999999977795539507497

154.1

.3 LDPC Decoding and Simulation

The impressive performance of LDPC codes lies in their iterative decoding algorithm.
MacGMmA provides facilities to decode using LDPC codes, as well as simulating transmission

over a

binary symmetric or white Gaussian noise channels.

The binary symmetric channel transmits binary values and is defined by p < 0.5. Each
individual bit independently sustains a “bit-flip” error with probability p.

The Gaussian channel is analog, transmitting real-values, and is defined by a standard
deviation o. Binary values are mapped to —1 and 1 before being transmitted. Each value

indepe

ndently sustains an errors which are normally distributed about 0 with standard

deviation o.

LDPCDecode(C, v)

Channel MoNSTGELT Default : “BinarySymmetric’
P RNGRESUBELT Default : 0.1

StdDev RNGRESUBELT Default : 0.25

Iterations RNGINTELT Default : Dimension(C)

Example H154E3

Errors

vV V V
o QB
|

For an LDPC code C and a received vector v, decode v to a codeword of C using
the LDPC iterative decoding algorithm.

The nature of the channel from which v is received is described by the vari-
able argument Channel, which can either be the BinarySymmetric channel or the
Gaussian channel. Errors on the binary symmetric channel is described by the
argument p, while on the Gaussian channel they are described by StdDev.

The vector v must be over a ring corresponding to the channel which is selected.
For the binary symmetric channel v must be a binary vector over F5, while for the
Gaussian channel it must be real-valued.

Since the decoding algorithm is iterative and does not necessarily terminate on
its own, a maximum number of iterations needs to be specified using the argument
Iterations. The default value is much larger than would normally be used in
practice, giving maximum error-correcting performance (at possibly some cost to
efficiency).

in the binary symmetric channel are just bit flips.

500;

= RegularLDPCEnsemble(n, 4, 8);

5;

Ch. 154 LOW DENSITY PARITY CHECK CODES 5153

Errs := {};

repeat Include("Errs, Random(1l,n)); until #Errs eq e;

v := Random(C);

ev := AmbientSpace(C)![(i in Errs) select 1 else O : i in [1..n]];
rec_vec := v + ev;

time res := LDPCDecode(C, rec_vec : Channel:="BinarySymmetric", p:=0.2);
Time: 0.000

> res eq Vv;

true

V V V V VvV V

Example H154E4

For the Gaussian channel binary vectors are considered to be transmitted as sequences of the values
1 and —1. Errors are normally distributed with a standard deviation defined by the channel.

To simulate a Gaussian channel requires obtaining normally distributed errors. This can be done
(discretely) by generating a multiset of possible errors.

> sigma := 0.5;

> MaxE := 3.0;

>N := 100;

>V := [MaxEx(i/N) : i din [-N div 2..N div 2]];

> E := [0.5%(1+Erf(x/(sigma*Sqrt(2)))) : x in V J;

> Dist := {* V[i]""Round(1000*(E[i]-E[i-1])) : i in [2..#V]x};

A codeword of an LDPC code needs to be mapped into the real domain.

> n := 500;

> C := RegularLDPCEnsemble(n, 4, 8);

> v := Random(C);

> R := RealField();

> RS := RSpace(R, n);

> VvR := RS ! [IsOne(v[i]) select 1 else -1 : i in [1..n]];

Normally distributed errors are then introduced, and the received vector decoded.

> for i in [1..n] do

> vR[i] +:= Random(Dist);

> end for;

> time res := LDPCDecode(C, vR : Channel:="Gaussian", StdDev:=sigma);
Time: 0.000

> res eq V;

true

5154 CODING THEORY Part XXII

LDPCSimulate(C, N)

Channel MONSTGELT Default : “BinarySymmetric’
P RNGRESUBELT Default : 0.1

StdDev RNGRESUBELT Default : 0.25

Iterations RNGINTELT Default : Dimension(C)

For an LDPC code C, simulate /N transmissions across the given channel and return
the accumulated bit error rate and word error rate.

The variable arguments are as described for the function LDPCDecode. The chan-
nel which is described controls not only the way the decoding algorithm functions,
but also the nature of the errors introduced during the simulation.

Example H154E5

The more noise that is introduced into the channel the error rate increases. Note that the bit error
rate (the first return value) is always lower than the word error rate (the second return value).

> C := RegularLDPCEnsemble (200, 3, 6);

> LDPCSimulate(C, 10000 : Channel := "Gaussian", StdDev := 0.7);
0.00118249999999999995739519143001 0.00619999999999999978211873141731
> LDPCSimulate(C, 10000 : Channel := "Gaussian", StdDev := 0.75);
0.00749499999999999992617016886243 0.0410000000000000017208456881690
> LDPCSimulate(C, 10000 : Channel := "Gaussian", StdDev := 0.8);
0.0337220000000000019735324485737 0.159700000000000008615330671091

> LDPCSimulate(C, 10000 : Channel := "Gaussian", StdDev := 0.85);
0.0856174999999999991606713933834 0.370800000000000018474111129763

> LDPCSimulate(C, 10000 : Channel := "Gaussian", StdDev := 0.9);
0.162790999999999991265653420669 0.640499999999999958255614274094

> LDPCSimulate(C, 10000 : Channel := "Gaussian", StdDev := 0.95);
0.237657499999999993756105709508 0.840099999999999957900342906214

> LDPCSimulate(C, 10000 : Channel := "Gaussian", StdDev := 1.0);
0.296526500000000026169288958044 0.944799999999999973177011725056

154.1.4 Density Evolution

The asymptotic performance of ensembles of LDPC codes can be determined using density
evolution. An ensemble of LDPC codes (either regular or irregular) is defined by a pair of
degree distributions, corresponding to the degrees at the variable and check nodes of the
Tanner graph.

Over a specific channel, the critical parameter which defines the asymptotic performance
of a given ensemble is its threshold, which is a value of the channel parameter (i.e., the
probability of error p for the binary symmetric channel, and the standard deviation o for the
Gaussian channel). When the channel parameter is less than the threshold, asymptotically
a code from the ensemble will decode with an error probability tending to zero. However,

Ch. 154 LOW DENSITY PARITY CHECK CODES 5155

at any channel parameter above the threshold there will be a non-vanishing finite error
probability.

Determining the threshold of an ensemble over the binary symmetric channel is rel-
atively trivial, however over the real-valued Gaussian channel it can involve extensive
computations. The speed depends heavily on the granularity of the discretization which
is used, though this also affects the accuracy of the result.

The default settings of the MAGMA implementation use a reasonably coarse discretiza-
tion, emphasizing speed over accuracy. These (still quite accurate) approximate results
can then be used to help reduce the workload of calculations over finer discretizations if
more accuracy is required.

LDPCBinarySymmetricThreshold(v, c)
LDPCBinarySymmetricThreshold(Sv, Sc)

Precision RNGRESUBELT Default : 0.00005

Determines the threshold of the described ensemble of LDPC codes over the binary
symmetric channel, which is the critical value of the channel parameter above which
there is a non-vanishing error probability (asymptotically). The ensemble can either
be defined by two integers for (v, c)-regular LDPC codes, or by two density distri-
butions Sv and Se¢, which are sequences of non-negative real numbers. The density
distributions do not ned to be normalized, though the first entry (corresponding to
weight 1 nodes in the Tanner graph) should always be zero.

The computation proceeds by establishing lower and upper bounds on the thresh-
old, then narrowing this range by repeatedly performing density evolution on the
midpoint. The argument Precision controls the precision to which the threshold
is desired.

DensityEvolutionBinarySymmetric(v, c, p)

DensityEvolutionBinarySymmetric(Sv, Sc, p)

Perform density evolution on the binary symmetric channel using channel parameter
p and determine the asymptotic behaviour for the given LDPC ensemble. The return
value is boolean, where true indicates that p is below the threshold and the ensemble
has error probability asymptotically tending to zero.

Example H154E6

Density evolution on the binary symmetric channel is not computationally intensive.

> time LDPCBinarySymmetricThreshold(3, 6);
0.0394140625000000000000000000000

Time: 0.010

> time LDPCBinarySymmetricThreshold(4, 8);
0.0473925781250000000000000000001

Time: 0.110

> time LDPCBinarySymmetricThreshold(4, 10);
0.0368359375000000000000000000000

5156 CODING THEORY Part XXII

Time: 0.090

LDPCGaussianThreshold (v, c)
LDPCGaussianThreshold(Sv, Sc)

Lower RNGRESUBELT Default : 0
Upper RNGRESUBELT Default : oo
Points RNGINTELT Default : 500
MaxLLR RNGRESUBELT Default : 25
MaxIterations RNGINTELT Default : oo
QuickCheck BooLELT Default : true
Precision RNGRESUBELT Default : 0.00005

Determines the threshold of the described ensemble of LDPC codes over the Gaus-
sian channel, which is the critical value of the standard deviation above which there
is a non-vanishing error probability (asymptotically). The ensemble can either be
defined by two integers for (v, ¢)-regular LDPC codes, or by two density distribu-
tions Sv and Sc, which are sequences of non-negative real numbers. The density
distributions do not ned to be normalized, though the first entry (corresponding to
weight 1 nodes in the Tanner graph) should always be zero.

The computation proceeds by establishing lower and upper bounds on the thresh-
old, then narrowing this range by repeatedly performing density evolution on the
midpoint. If the threshold is approximately known then manually setting tight
Lower and Upper bounds can reduce the length of the calculation.

The speed with which these evolutions are computed depends on how fine the
discretization is, controlled by the variable argument Points. If the threshold is
needed to high levels of accuracy then an initial computation with fewer points is
recommended to get a reduced searched range. The specific meaning of eachvariable
argument is described below.

Lower and Upper are real-valued bounds on the threshold, which (if tight) can
help to reduce the search range and speed up the threshold determination. The
validity of an input bound is verified before the search begins, and an error is
returned if it is incorrect.

Points and MaxLLR define the discretized basis of log likelihood ratios on which
density evolution is performed, and have integer and real values resp. Specifically,
the probability mass function is defined on the range [—~MaxLLR, ... MaxLLR| on 2 x
Points + 1 discretized points.

MaxIterations allows the user to set a finite limit of iterations that a density
evolution should perform in determining the asymptotic behaviour at each channel
parameter. Although this may help reduce the time of a computation, it should be
kept in mind that the result may not be valid.

Ch. 154 LOW DENSITY PARITY CHECK CODES 5157

QuickCheck defines the method by which the asymptotic behaviour at each chan-
nel parameter is identified. If set to false, then the probability density must evolve
all the way to within an infinitesimal value of unity. When set to true, if the rate
of change of the probability density is seen to be successively increasing then the
asymptotic behaviour is assumed to go to unity. Empirically this method seems
to give accurate results and so the default behaviour is true, however it has no
theoretical justification.

Precision is a real-valued parameter defining the precision to which the thresh-
old should be determined.

Setting the verbose mode Code prints out the bounds on the threshold as subse-
quent density evolutions narrow the search range.

DensityEvolutionGaussian(v, c, o)

DensityEvolutionGaussian(Sv, Sc, o)

Points RNGINTELT Default : 500
MaxLLR RNGRESUBELT Default : 25
MaxIterations RNGINTELT Default : oo
QuickCheck BOOLELT Default : true

Perform density evolution on the Gaussian channel using standard deviation ¢ and
determine the asymptotic behaviour for the given LDPC ensemble. The return value
is boolean, where true indicates that o is below the threshold and the ensemble has
error probability asymptotically tending to zero.

See the description of LDPCGaussianThreshold for a description of the variable
arguments.

GoodLDPCEnsemble (i) |

Example H154E7

Access a small database of density distributions defining good irregular LDPC en-
sembles. Returned is the published threshold of the ensemble over the Gaussian
channel, along with the variable and check degree distributions. The input ¢ is a
non-negative integer, which indexes the database (in no particular order).

Since performing density evolution on a large number of discrete points is time consuming, it is
normally better to first get an estimate with an easier computation.

In this example a published value of the threshold of an ensemble (obtained using a different
implementation) can be compared to the outputs from different levels of discretization.

>
>
>

thresh, Sv, Sc := GoodLDPCEnsemble(5);
:= RealField(4);
[R4] x : x in Sv];

[0.0000, 0.3001, 0.2839, 0.0000, 0.0000, 0.0000, 0.0000, 0.4159]

>

[R4] x : x in Sc]l;

[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.2292, 0.7708]

>

thresh;

5158 CODING THEORY Part XXII

0.949700000000000000000000000000

> time approxl := LDPCGaussianThreshold(Sv, Sc:
> Points := 500, Precision := 0.001);
Time: 19.400

> approxi;

0.960976562499999964472863211995

> time approx2 := LDPCGaussianThreshold(Sv, Sc:
> Points := 3000,

> Lower := approx1-0.02, Upper := approxl1+0.02);
Time: 873.560

> approx2;

0.951210937499999964472863211995

This estimate can now be used to narrow the search range of accurate density evolution. For the
very long calculation the verbose mode is used to keep track of the progress of the calculation.

> SetVerbose("Code", true);
> time approx3 := LDPCGaussianThreshold(Sv, Sc:
> Points := 5000,
> Lower := approx2-0.005, Upper := approx2+0.0005);
Determining the mapping matrix...
...mapping matrix obtained 19.10s
Threshold Determination for LDPC code ensemble:
c: (6):0.229190 (7):0.770810
v: (2):0.300130 (3):0.283950 (8):0.415920
will be found to precision 0.000050
Max LLR is 25.000000 distributed across 5000 points
Asymptotic behaviour determination is: fast
Beginning search with 1b = 0.946211, ub = 0.951711

New Bounds: 1b = 0.948961, ub = 0.951711 114.41s
New Bounds: 1b = 0.950336, ub = 0.951711 367.19s
New Bounds: 1b = 0.950336, ub = 0.951023 553.95s
New Bounds: 1b = 0.950336, ub = 0.950680 814.35s
New Bounds: 1b = 0.950508, ub = 0.950680 1261.46s
New Bounds: 1b = 0.950508, ub = 0.950594 1557.46s
New Bounds: 1b = 0.950508, ub = 0.950551 1891.52s

Time: 2136.150

The thresholds given in the database are published values taken from other implementations, and
so are not guaranteed to match up exactly with the values obtained using MacMA.

155 LINEAR CODES OVER FINITE RINGS

155.1 Introduction 5161 QRCodeZ4 (p) 5171
GolayCodeZ4(e) 5171
155.2 Construction of Codes . . . 5161 SimplexAlphaCodeZ4 (k) 5171
155.2.1 Construction of General Linear SimplexBetaCodeZ4 (k) 5171
Codesb5l61 HadamardCodeZ4 (5, m) 5172
LinearCode< > 5161 ExtendedPerfectCodeZ4 (5, m) 5172
LinearCode (U) 5162 ReedMullerCodeZ4(r, m) 5173
. ReedMullerCodeQRMZ4(r, m) 5173
LinearCode (A) 5162 1
PermutationCode (u, G) 5162 ReedMullerCodesLRMZ4(r, m) 517
15522 C . £ Simple Li ReedMullerCodeRMZ4(s, r, m) 5174
2.2 Construction of Simple Linear ReedMullerCodesRMZ4(s, m) 5175
Codes5164 15543 Derived Bi Cod 5176
ZeroCode (R, n) 5164 4. erived Binary Codes
RepetitionCode (R, n) 5164 B?naryResiQueCode(C) 5176
ZeroSumCode (R, n) 5164 BinaryTorsionCode(C) 5176
UniverseCode (R, n) 5164 Z4CodeFromBinaryChain(C1, C2) 5176
RandomLinearCode(R, n, k) 5164 155.4.4 The Standard Form 5177
155.2.3 Construction of General Cyclic StandardForm(C) 5177
Codes5165 .
' 155.4.5 Constructing New Codes from Old5178
gy‘:l?ccc’de(u) b165 PlotkinSum(A, B) 5178
yclicCode(n, g) 5165 .
CyclotomicFactors(R, n) 5165 PlotkinSum(C, D) o178
’ QuaternaryPlotkinSum(A, B) 5179
155.3 Invariants of Codes 5167 QuaternaryPlotkinSum(C, D) 5179
5167 BQPlotkinSum(A, B, C) 5179
5167 BQPlotkinSum(D, E, F) 5179
: . DoublePlotkinSum(A, B, C, D) 5180
Name (C, i) 5167 .
AL DoublePlotkinSum(E, F, G, H) 5180
phabet (C) 5167 Dualk KerZ4 (C) 5130
AmbientSpace(C) 5167 uatfironecker
Basis(C) 5167 155.4.6 Invariants of Codes over Zy4 . . . 5181
Generators(C) 5167 SpanZ2CodeZ4 (C) 5181
GeneratorMatrix(C) 5167 KernelZ2CodeZ4 (C) 5181
Generic(C) 5167 Dimension0fSpanZ2(C) 5181
Length(C) 5167 RankZ2(C) 5181
PseudoDlmens1on(C)() 5168 Dimension0fKernelZ2(C) 5181
NumberOfGenerators(C 5168 .
Ngens (C) 5163 155.4.7 Other Z4 functions 5182
ParityCheckMatrix(C) 5168 Correlation(v) 5182
Random (C) 5168 155.5 Construction of Subcodes of
RSpace (C) 5168 Linear Codes 5182
InformationRate(C) 5168
155.5.1 The Subcode Constructor . . . 5182
155.4 Codesover 24 5168 sub< > 5182
155.4.1 The Gray Map 5168 Subcode(C, t) 5182
GrayMap(C) 5168 Subcode(C, S) 5183
GrayMapImage (C) 5169 155.6 Weight Distributions. . . . 5183
HasLinearGrayMapImage (C) 5169 . .
- 155.6.1 Hamming Weight 5183
155.4.2 Families of Codes over Z4 . . . 5170
MinimumWeight (C) 5184
KerdockCode (m) 5170 MinimumDistance (C) 5184
PreparataCode (m) 5170 WeightDistribution(C) 5184
ReedMullerCodeZ4(r, m) 5170 DualWeightDistribution(C) 5184
GoethalsCode (m) 5170 .
DelsarteGoethalsCode(m, delta) 5171 155.6.2 Lee Weight 5184

GoethalsDelsarteCode(m, delta) 5171 LeeWeight (a) 5184

5160

LeeWeight (v)

LeeDistance(u, v)
MinimumLeeWeight (C)
MinimumLeeDistance (C)
LeeWeightDistribution(C)
DualLeeWeightDistribution(C)
WordsOfLeeWeight (C, w)
WordsOfBoundedLeeWeight(C, 1, u)

155.6.3 Euclidean Weight .

EuclideanWeight (a)
EuclideanWeight (v)
EuclideanDistance(u, v)
MinimumEuclideanWeight (C)
MinimumEuclideanDistance(C)
EuclideanWeightDistribution(C)
DualEuclideanWeightDistribution(C)

155.7 Weight Enumerators .

CompleteWeightEnumerator (C)
SymmetricWeightEnumerator(C)
WeightEnumerator (C)
HammingWeightEnumerator (C)
LeeWeightEnumerator (C)
EuclideanWeightEnumerator (C)

155.8 Constructing New Codes from
Oold .

155.8.1 Sum, Intersection and Dual .

+

meet
Dual(C)

155.8.2 Standard Constructions

DirectSum(C, D)
DirectProduct(C, D)
cat

ExtendCode (C)
ExtendCode(C, n)
PadCode(C, n)
PlotkinSum(C, D)
PunctureCode(C, i)
PunctureCode(C, S)
ShortenCode(C, i)
ShortenCode(C, S)

CODING THEORY

5185
5185
5185
5185
5185
5185
5185
5185

. 5186

5186
5186
5186
5186
5186
5186
5186

5187

5187
5188
5188
5188
5188
5188

5190
. 5190

5190
5190
5190

. 5191

5191
5192
5192
5192
5192
5192
5192
5192
5192
5192
5192

Part XXII

155.9 Operations on Codewords 5194
155.9.1 Construction of a Codeword . . 5194
! 5194
elt< > 5194
! 5194
! 5194
155.9.2 Operations on Codewords and Vec-

torsb195
+ 5195
- 5195
- 5195
* 5195
Weight (v) 5195
Distance(u, v) 5195
Support (w) 5195
(u, v) 5195
InnerProduct (u, v) 5195
Coordinates(C, u) 5195
Normalize (u) 5195
Rotate(u, k) 5196
Rotate(~u, k) 5196
Parent (w) 5196
155.9.3 Accessing Components of a Code-

word.5197
uli] 5197
uli] := x; 5197
155.10 Boolean Predicates 5197
in 5197
notin 5197
subset 5197
notsubset 5197
eq 5197
ne 5197
IsCyclic(C) 5197
IsSelfDual(C) 5197
IsSelfOrthogonal(C) 5197
IsProjective(C) 5198
IsZero(u) 5198
155.11 Bibliography 5198

Chapter 155
LINEAR CODES OVER FINITE RINGS

155.1 Introduction

This chapter describes those functions which are applicable to linear codes over finite rings.
MAaGMA currently supports the basic facilities for codes over integer residue rings and galois
rings, including cyclic codes, and the complete weight enumerator calculation. Additional
functionality is available for the special case of codes over Z4, the integers modulo 4.

For modules defined over rings with zero divisors, it is of course not possible to talk
about the concept of dimension (the modules are not free). But in MAGMA each code over
such a ring has a unique generator matrix corresponding to the Howell form. The number
of rows k in this unique generator matrix will be called the pseudo-dimension of the code.
It should be noted that this pseudo-dimension is not invariant between equivalent codes,
and so does not provide structural information like the dimension of a code over a finite
field.

Note that the rank of the generator matrix is always well-defined and unique (based on
the Smith form which is well-defined over PIRs), but £ may sometimes be larger than the
rank.

Without a concept of dimension, codes over finite rings are referenced by their cardi-
nality. A code C is called an (n, M, d) code if it has length n, cardinality M and minimum
Hamming weight d.

In this chapter, as for codes over finite fields, the term “code” will refer to a linear
code, unless otherwise specified.

The reader is referred to [Wan97] as a general reference on Z4-codes.

155.2 Construction of Codes

155.2.1 Construction of General Linear Codes

LinearCode< R, n | L >

Create a code as a subspace of the R-space V = R which is generated by the
elements specified by the list L, where L is a list of one or more items of the
following types:

a) An element of V.

b) A set or sequence of elements of V.

d) A set or sequence of sequences of type (c).

(
(
(c) A sequence of n elements of R, defining an element of V.
(
(e) A subspace of V.

(

)
f) A set or sequence of subspaces of V.

5162 CODING THEORY Part XXII

LinearCode (U) |

Let V be the R-space R™ and suppose that U is a subspace of V. The effect of
this function is to define the linear code C' corresponding to the subspace U.

LinearCode(A)

Given a kK X n matrix A over the ring R, construct the linear code generated by
the rows of A. Note that it is not assumed that the rank of A is k. The effect of
this constructor is otherwise identical to that described above.

PermutationCode(u, G)

Given a finite permutation group G of degree n, and a vector u belonging to the
n-dimensional vector space V over the ring R, construct the code C correspond-
ing to the subspace of V spanned by the set of vectors obtained by applying the
permutations of G to the vector u.

Example H155E1

The octacode Og over Zs [Wan97, Ex. 1.3] can be defined as follows:

> Z4 := IntegerRing(4);

> 08 := LinearCode<Z4, 8 |
> [1,0,0,0,3,1,2,1],

> (0,1,0,0,1,2,3,1],

> [0,0,1,0,3,3,3,2],

> [0,0,0,1,2,3,1,1]>;
> 08;

[8, 4, 4] Linear Code over IntegerRing(4)
Generator matrix:
[10003121]
[01001231]
[00103332]
[00012311]

Alternatively, if we want to see the code as a subspace of R®) | where R = Z4, we could proceed
as follows:

> 08 := LinearCode(sub<RSpace(Z4, 8) |
> (1,0,0,0,3,1,2,1],

> (0,1,0,0,1,2,3,1],

> (0,0,1,0,3,3,3,2],

> [0,0,0,1,2,3,1,1]>);

Ch. 155 LINEAR CODES OVER FINITE RINGS 5163

Example H155E2

We define a code by constructing a matrix over GR(4, 3), and using its rowspace to generate the
code:

> R<w> := GaloisRing(4,3);

>SS :=1[1,1, 0, w2, w, w + 2, 2¥w”2, 2%w"2 + w + 3];

> G := Matrix(R, 2, 4, S);

> G;

[1 1 0 w™2]
[W w o+ 2 2%xw"2 2%w"2 + w + 3]
> C := LinearCode(G);

> C;

(4, 512, 3) Linear Code over GaloisRing(2, 2, 3)
Generator matrix:

[1 1 0 w™2]
[0 2 2xW"2 2%W"2 + 2%w]
> #C;

512

Example H155E3

We define G to be a permutation group of degree 7 and construct the code C' as the Zj-code
generated by applying the permutations of GG to a certain vector:

> G := PSL(3, 2);

> G;

Permutation group G of degree 7
1, @6, 7
1, 3, 204, 7, 5

> Z4 := IntegerRing(4);

> V := RSpace(Z4, 7);
>u:=Vv![1, 0, 0, 1, 0, 1, 1];
> C := PermutationCode(u, G);

> C;

[7, 6, 2] Linear Code over IntegerRing(4)
Generator matrix:

[1001011]
[0101110]
[0010111]
[000200 2]
[000020 2]
[00000 2 2]

5164 CODING THEORY Part XXII

155.2.2 Construction of Simple Linear Codes

ZeroCode(R, n)

Given a ring R and positive integer n, return the (n,0,n) code consisting of only
the zero code word, (where the minimum weight is by convention equal to n).

RepetitionCode (R, n)

Given a ring R and positive integer n, return the length n code with minimum
Hamming weight n, generated by the all-ones vector.

ZeroSumCode (R, n)

Given a ring R and positive integer n, return the length n code over R such that
for all codewords (ci,ca,...,c,) we have), ¢; = 0.

UniverseCode (R, n)

Given a ring R and positive integer n, return the length n code with minimum
Hamming weight 1, consisting of all possible codewords.

RandomLinearCode(R, n, k)

Given a finite ring R and positive integers n and k, such that 0 < k < n, the function
returns a random linear code of length n over R with k£ generators.

Example H155E4

The repetition and zero sum codes are dual over all rings.

> R := Integers(9);

> C1 := RepetitionCode(R, 5);

> C1;

(5, 9, 5) Linear Code over IntegerRing(9)
Generator matrix:

[1 111 1]
> C2 := ZeroSumCode(R, 5);
> C2;

(6, 6561, 2) Linear Code over IntegerRing(9)
Generator matrix:

[1 000 8]

(0100 8]

[0010 8]

(000 18]

> C1 eq Dual(C2);

true

Ch. 155 LINEAR CODES OVER FINITE RINGS 5165

155.2.3 Construction of General Cyclic Codes

Cyclic codes form an important family of linear codes over all rings. A cyclic code is one
which is generated by all of the cyclic shifts of a given codeword:

(003 Clv e 7C7L—l7 Cn)7 (C’n7 CO) A 7C7’L—27 Cn—l)» LR (017027 cee 7Cn7 CO)
Using the correspondence (cg,c1,...,¢,) <= ¢o+ c1x + -+ + ¢z, the cyclic codes

of length n over the ring R are in one-to-one correspondence with the principal ideals of
R[z]/(z™ — 1)R[z].

CyclicCode (u)

Given a vector u belonging to the R-space R, construct the length n cyclic code
generated by the right cyclic shifts of the vector w.

CyclicCode(n, g)

Let R be aring. Given a positive integer n and a univariate polynomial g(x) € R[z],
construct the length n cyclic code generated by g(x).

CyclotomicFactors(R, n)

Given a Galois ring R (which is possibly an integer residue ring with a prime power
modulus), and a positive integer n which is coprime to the characteristic of R, return
a factorisation of 2™ — 1 over R.

Note that since factorisation is not necessarily unique over R, the factorisation
returned is the one obtained by first factoring over the residue field of R and then
performing Hensel lifting.

Example H155E5

We construct some cyclic codes over Z4 by factorizing ™ — 1 over Z4 for n = 7,23 and using some
of the irreducible factors found.

> Z4 := IntegerRing(4);
> P<x> := PolynomialRing(Z4);
>n :=7; L := CyclotomicFactors(Z4, n); L;

[
x + 3,
x"3 + 2%x"2 + x + 3,
x"3 + 3%x"2 + 2*%x + 3
]

> CyclicCode(n, L[1]);

[7, 6, 2] Cyclic Code over IntegerRing(4)
Generator matrix:

[1 00000 3]

[01 0000 3]
(001000 3]
(000100 3]

5166 CODING THEORY

[00OO0O0O1O0 3]

[00OO0O0OO01 3]

> CyclicCode(n, L[2]);

[7, 4, 3] Cyclic Code over IntegerRing(4)
Generator matrix:

[1 00031 2]

[01 0021 1]

[001011 3]

[000132 3]

> CyclicCode(n, L[3]);

[7, 4, 3] Cyclic Code over IntegerRing(4)
Generator matrix:

[10O0O 2 3]

[0 1 1 1]

[0 0 1 2]

[0 0 1 3]

>n := 23; L := CyclotomicFactors(Z4, n); L;
[

N o = O
= O O
N~ W Ww

x + 3,
x"11 + 2*%x710 + 3*%x79 + 3*%x”7 + 3*x"6 + 3*%x”5 + 2*xx"4 + x + 3,
x"11 + 3*%x710 + 2*%x"7 + x°6 + x"b5 + x74 + x72 + 2%x + 3

]

> CyclicCode(n, L[2]);

[23, 12] Cyclic Code over IntegerRing(4)

Generator matrix:

[10000000000031002333032]
[0100000000002110001132 3]
[00100000000033112330120]
[0001000000000331123301 2]
[00001000000022331301321]
[00000100000011231201100]
[00000010000001123120110]
[00000001000000112312011]
[0000000010001301330221 3]
[0000000001003230322321 3]
[00000000001030232211313]
(0000000000013 002111012 3]

Example H155E6

Part XXII

We create a cyclic code of length 5 over GR(4, 2).

> R<w> := GR(4,2);

> P<x> := PolynomialRing(R);

> g := CyclotomicFactors(R, 5)[2];
> g;

x"2 + (3%w + 2)*x + 1
> C := CyclicCode(5, g);

Ch. 155 LINEAR CODES OVER FINITE RINGS 5167

> C;
(5, 4096, 3) Cyclic Code over GaloisRing(2, 2, 2)
Generator matrix:

[1 0 0 1 3*xw + 2]
[0 1 0 w+2 w+ 2]
[0 0 1 3%y + 2 1]

155.3 Invariants of Codes

Given a code C, return the number of codewords belonging to C'.
Name(C, i)

Given a code C and a positive integer 7, return the i-th generator of C.

Alphabet (C)

The underlying ring (or alphabet) R of the code C.

AmbientSpace(C)

The ambient space of the code C, i.e., the generic R-space V in which C' is contained.

Basis(C)

The basis of the linear code C, returned as a sequence of elements of C.

| Generators(C) |

The generators for the linear code C, returned as a set.

| GeneratorMatrix(C) |

The generator matrix for the linear code C'. This gives a unique canonical generating
set for the code.

| Generic(C) |

Given a length n code C over a ring R, return the generic (n, #R", 1) code in which
C' is contained.

Length(C)

Given an code C', return the block length n of C.

5168 CODING THEORY Part XXII

PseudoDimension(C)

NumberQOfGenerators (C) |
Ngens (C)

The number of generators (which equals the pseudo-dimension k) of the linear code

C.
ParityCheckMatrix(C)

The parity check matrix for the code C, which can be defined as the canonical
generator matrix of the dual of C.

Random(C) |

A random codeword of the code C.

RSpace(C)

Given a length n linear code C, defined as a subspace U of the n-dimensional space
V', return U as a subspace of V with basis corresponding to the rows of the generator
matrix for C.

InformationRate (C) |

Given a code C over a ring with cardinality ¢, return the information rate of C', that
is, the ratio Log,(#C)/n.

155.4 Codes over Z,

The ring Z4, the ring of integers modulo 4, is a special case for which extra functionality
is available. Error correcting codes over Z, are often referred to as quaternary codes.
Important concepts when discussing quaternary codes are Lee weight and the Gray
map, which maps linear codes over Z4 to (possibly non-linear) codes over Z,. Many good
non-linear binary codes can be defined as the images of simple linear quaternary codes.

155.4.1 The Gray Map
For an element x € Z4, the Gray map ¢ : Z, — Z3 is defined by:

0+ 00, 1+ 01, 2+ 11, 3+ 10.

This map is extended to a map from Z7 onto Z3" in the obvious way (by concatenating the
images of each component). The resulting map is a weight- and distance-preserving map
from Z7 (with Lee weight metric) to Z2" (with Hamming weight metric). See [Wan97,
Chapter 3] for more information (but note that that author has a different order for the
components of the image of a vector).

GrayMap (C)

Given a Zjy-linear code C, this function returns the Gray map for C. This is the
map ¢ from C to F3", as defined above.

Ch. 155 LINEAR CODES OVER FINITE RINGS 5169

GrayMapImage (C)

Given a Zg4-linear code C, this function returns the image of C' under the Gray map
as a sequence of vectors in F3". As the resulting image may not be a Fs-linear code,
a sequence of vectors is returned rather than a code.

HasLinearGrayMapImage (C)

Given a Zg4-linear code C, this function returns true if and only if the image of C'
under the Gray map is a Fs-linear code. If so, the function also returns the image
B as a Fy-linear code, together with the bijection ¢ : C' — B.

Example H155E7

Let ¢(Osg) be the image of the octacode Og under the Gray map. This image is not a Fa-linear code,
but it is the non-linear (8,256,6) Nordstrom-Robinson code [Wan97, Ex.3.4]. We demonstrate
that the Hamming weight distribution of the F5 image is identical to the Lee weight distribution
of the linear Z4 code.

> Z4 := IntegerRing(4);
> 08 := LinearCode<Z4, 8 |

> (1,0,0,0,3,1,2,1],

> (0,1,0,0,1,2,3,1],

> (o,0,1,0,3,3,3,2],

> [0,0,0,1,2,3,1,1]>;

> HasLinearGrayMapImage (08) ;
false

> NR := GrayMapImage(08);

> #NR;

256

> LeeWeightDistribution(08);

[<0, 1>, <6, 112>, <8, 30>, <10, 112>, <16, 1>]
> {x Weight(v): v in NR *};

{x 0, 16, 677112, 87730, 1077112 %}

For the code K3, we first note the image of some of the vectors under the Gray map.

Z4 := IntegerRing(4);
K8 := LinearCode< Z4, 8 |
(1,1,1,1,1,1,1,1],

>
>
>
> 0,0,0
> 0,2,0,0
> [0,0,0,2,0,
> 0,0,0,2
> 0,0,0
> 0
> f =
> K8.1;

1

(11 11111)
> £(K8.1);

5170 CODING THEORY Part XXII

(010101010101 0101
> K8.2;

(0200000 2)

> £(K8.2);
(001100000000001 1)

Finally, we see that the image of Ky is linear over Fs.

> 1, B, g := HasLinearGrayMapImage (K8) ;
> 1;

true

> B;

[16, 8, 4] Linear Code over GF(2)
Generator matrix:

[1001010101010110]
[010101010101010 1]
[0011000000000011]
[0000110000000011]
[0000001100000011]
[0O000000011000011]
[0O000000000110011]
[0O000000000001111]
> g(K8.1) in B;

true

155.4.2 Families of Codes over Z,4

This section gives some standard constructions for Zy4-linear codes. Further constructions
will be available in the future.

KerdockCode (m) |

Given an integer m > 2, return the quaternary Kerdock code K (m) of length 2™ —1
defined by a default primitive polynomial h € Z4[z] of degree m.

PreparataCode (m)

Given an integer m > 2, return the quaternary Preparata code P(m) of length
2™ — 1 defined by a default primitive polynomial h € Z4[x| of degree m.

ReedMullerCodeZ4(r, m)

Given an integer m > 2 and an integer r such that 0 < r < m this function returns
the r-th order Reed-Muller code over Z4 of length 2™.

GoethalsCode (m) |

Given a positive integer m, where m must be an odd and greater than or equal to
3, return the Goethals code of length 2™.

Ch. 155 LINEAR CODES OVER FINITE RINGS 5171

DelsarteGoethalsCode(m, delta)
Return the Delsarte-Goethals Code of length 2.

GoethalsDelsarteCode(m, delta)
Return the Goethals-Delsarte code of length 2™

QRCodeZ4 (p)

Given a prime number p such that 2 is a quadratic residue modulo p, return the
quadratic residue code of length p over Zy.

GolayCodeZ4 (e)

Return the Golay Code over Z4. If e is true then return the extended Golay Code

SimplexAlphaCodeZ4 (k)

Return the simplex alpha code over Z, of degree k.

SimplexBetaCodeZ4 (k)

Return the simplex beta code over Z, of degree k.

Example H155E8
We compute some default Kerdock and Preparata codes and their minimum Lee weights.

> PreparataCode(3);

(8, 256, 4) Linear Code over IntegerRing(4)
Generator matrix:

[1t0003121]

[01 00211 3]

(0010113 2]

(0001323 3]

> MinimumLeeWeight ($1) ;

6

> KerdockCode(4) ;

[16, 5, 8] Linear Code over IntegerRing(4)
Generator matrix:

[100001130330212 3]
01 0002333213001 1]
[0010031030311322]
[0001021301231330]
[000011303302121 3]
> MinimumLeeWeight ($1);

12

> KerdockCode(5) ;

(32, 4096, 16) Linear Code

Generator matrix:

[10000033320
2 2

32
(0100003221231

over IntegerRing(4)

203010131103123223 3]
023311100213031101 2]

5172

o O O O
o O O O
O O O -

L
[
[
L

0001030131303321023322220331 3]

10012110213313220112331032100]

01001211021331322011233103210]

00111201220103031330132122131]
> MinimumLeeWeight ($1);

28

CODING THEORY Part XXII

HadamardCodeZ4 (5, m)

Given an integer m > 2 and an integer § such that 1 < § < |(m + 1)/2], return
a Hadamard code over Z4 of length 2~ ! and type 274%, where v = m + 1 — 26.
Moreover, return a generator matrix with v+ ¢ rows constructed in a recursive way
from the Plotkin and BQPlotkin constructions defined in Section 155.4.5.

A Hadamard code over Z, of length 2™~ ! is a code over Z, such that, after the
Gray map, give a binary (not necessarily linear) code with the same parameters as
the binary Hadamard code of length 2.

ExtendedPerfectCodeZ4 (5, m)

Example H155E9

Given an integer m > 2 and an integer § such that 1 < 6 < [(m + 1)/2], return
an extended perfect code over Z4 of length 2!, such that its dual code is of type
2749 where v = m + 1 — 26. Moreover, return a generator matrix constructed in
a recursive way from the Plotkin and BQPlotkin constructions defined in Section
155.4.5.

An extended perfect code over Z4 of length 2~ ! is a code over Z, such that, after
the Gray map, give a binary (not necessarily linear) code with the same parameters
as the binary extended perfect code of length 2.

We compute codes over Z4 such that, after the Gray map, they are binary codes with the same
parameters as some well-known families of binary linear codes.

First, we define a Hadamard code C over Z4 of length 8 and type 2'42. The matrix Ge is
the quaternary matrix used to generate C' and obtained in a recursive way from Plotkin and

BQPlot

>C, G
> C;
(8, 4

kin constructions.

¢ := HadamardCodeZ4(2,4);

"2 271)) Linear Code over IntegerRing(4)

Generator matrix:

[1 03
[012
[00O
> Gc;

[111
[012
[00O
> HasL

2]
3]

2
3
0 2]

N O
N = O

3
2
2

1 1 1]
3 2 3]
02222]
inearGrayMapImage (C) ;

O =
=

Ch. 155 LINEAR CODES OVER FINITE RINGS 5173

true [16, 5, 8] Linear Code over GF(2)

Generator matrix:

[10000O1110111100
[010010110100101
(001011010010110
[000111100001111
(0000000111 1111

Mapping from: CodeLinRng: C to

Then, we define an extended perfect

0]
1]
1]
0]
1]
[16, 5, 8] Linear Code over GF(2) given by a rule

code D over Z4 of length 8, such that its dual code is of type

2'4%2. The matrix Gd is the quaternary matrix which is used to generate D and obtained in a
recursive way from Plotkin and BQPlotkin constructions. Note that the code D is the Kronecker

dual code of C.

> D, Gd := ExtendedPerfectCodeZ4(2,4);

> D;

((8, 475 271)) Linear Code over IntegerRing(4)

Generator matrix:

[1001001 3]
[01 01002 2]
[00110011]
[0002000 2]
[000010 3 2]
[0000012 3]
> Gd;

[11111111]
[01 23012 3]
[0011001 1]
[0002000 2]
[000O01111]

[0000012 3]
> DualKroneckerZ4(C) eq D;
true

ReedMullerCodeZ4(r, m)

ReedMullerCodeQRMZ4 (r, m)

Given an integer m > 2 and an integer r such that 0 < r < m, return the r-th order
Reed-Muller code over Z4 of length 2™.
The binary image under the modulo 2 map is the binary linear r-th order Reed-

Muller code of length 2™.
quaternary linear Kerdock

For r = 1 and » = m — 2, the function returns the
and Preparata code, respectively.

5174 CODING THEORY Part XXII

ReedMullerCodesLRMZ4 (r, m)

Given an integer m > 1 and an integer r such that 0 < r < m, return a set of r-th
order Reed-Muller codes over Z,4 of length 2m~1,

The binary image under the Gray map of any of these codes is a binary (not
necessarily linear) code with the same parameters as the binary linear r-th order
Reed-Muller code of length 2. Note that for these codes neither the usual inclusion
nor duality properties of the binary linear Reed-Muller family are satisfied.

ReedMullerCodeRMZ4(s, r, m)

Given an integer m > 1, an integer r such that 0 < r < m, and an integer s such
that 0 < s < [(m — 1)/2], return a r-th order Reed-Muller code over Z, of length
2m=1 " denoted by RM(r,m).

The binary image under the Gray map is a binary (not necessarily linear) code
with the same parameters as the binary linear r-th order Reed-Muller code of length
2™. Note that the inclusion and duality properties are also satisfied, that is, the
code RMg(r — 1,m) is a subcode of RM (r,m), r > 0, and the code RM(r,m) is
the Kronecker dual code of RMs(m —r —1,m), r < m.

Example H155E10

We define RM;(1,4) and RM;(2,4). We can see that the former is a subcode of the latter.
Note that RM;(1,4) and RM;(2,4) are the same as the ones given in Example H155E9 by
HadamardCodeZ4(2,4) and ExtendedPerfectCodeZ4(2,4), respectively.

> C1,G1 := ReedMullerCodeRMZ4(1,1,4);

> C2,G2 := ReedMullerCodeRMZ4(1,2,4);

> C1;

((8, 472 271)) Linear Code over IntegerRing(4)
Generator matrix:

[1 032103 2]

[01 23012 3]

[00002222]

> C2;

((8, 4”5 271)) Linear Code over IntegerRing(4)
Generator matrix:

[1001001 3]
[01 01002 2]
[00110011]
[0002000 2]
[000010 3 2]
[0000012 3]
> C1 subset C2;
true

> DualKroneckerZ4(C2) eq C1;
true

Ch. 155 LINEAR CODES OVER FINITE RINGS

ReedMullerCodesRMZ4 (s, m)

5175

Given an integer m > 1, and an integer s such that 0 < s < |(m —1)/2], return the
family of Reed-Muller codes over Z,4 of length 21, that is, the codes RM(r,m),

forall 0 <r <m.

The binary image of these codes under the Gray map gives a family of binary
(not necessarily linear) codes with the same parameters as the binary linear Reed-

Muller family of codes of length 2™. Note that RMs(0,m) C RMs(1,m) C ...

RM¢(m,m).

C

Example H155E11

We construct the family of Reed-Muller codes over Z,4 of length 22 given by s = 0.

> F := ReedMullerCodesRMZ4(0,3);

> F;

[((4, 470 271)) Cyclic Linear Code over IntegerRing(4)
Generator matrix:

[2 22 2],

((4, 471 272)) Cyclic Linear Code over IntegerRing(4)
Generator matrix:

[1111]

[0 2 0 2]

(002 2],

((4, 473 271)) Cyclic Linear Code over IntegerRing(4)
Generator matrix:

[1 00 1]

[0 10 1]

[0011]

(000 2],

((4, 474 270)) Cyclic Linear Code over IntegerRing(4)
Generator matrix:

[1 00 0]

[0 10 0]

[0 01 0]

[0 0 0 1]]

> F[1] subset F[2] and F[2] subset F[3] and F[3] subset F[4];

true

5176 CODING THEORY Part XXII

155.4.3 Derived Binary Codes

As well as the binary image of a quaternary code under the Gray map (see section 155.4.1),
there are also two other associated canonical binary codes. They are known the residue
and torsion codes, the former being a subcode of the latter.

From any binary code-subcode pair C; C C5, a quaternary code C' can be constructed
such that the residue and torsion codes of C' will be C; and (5 respectively. Note that
this quaternary code is not unique.

BinaryResidueCode (C)

Given a quaternary code C, return the binary code formed by taking each codeword
in C' modulo 2. This is known as the binary residue code of C.

BinaryTorsionCode (C)

Given a quaternary code C', return the binary code formed by the support of each
codeword in C which is zero modulo 2. This is known as the binary torsion code of

C.
ZACodeFromBinaryChain(C1, C2)

Given binary code C7 and (s such that C'; C (5, return a quaternary code such
that its binary residue code is C; and its binary torsion code is Cs.

Example H155E12

We look at the derived binary codes of the Z4 Golay code, which are in fact equal to the binary
Golay code.

> C := GolayCodeZ4(false);

> C;

(23, 16777216) Cyclic Code over IntegerRing(4)
Generator matrix:

[L0O000000000031002333032]
[0100000000002110001132 3]
[00100000000033112330120]
[0001000000000331123301 2]
[00001000000022331301321]
[0000010000001123120110 0]
[O0000010000001123120110]
[O000000100000011231201 1]
[0000000010001301330221 3]
[0000000001003230322321 3]
[00000000001030232211313]
[0000000000013002111012 3]
>

> CRes := BinaryResidueCode(C);

> CTor := BinaryResidueCode(C);

> CRes eq CTor;
true

Ch. 155 LINEAR CODES OVER FINITE RINGS 5177

> CRes:Minimal;

[23, 12, 7] Linear Code over GF(2)

> AreEq, _ := IsEquivalent(CRes, GolayCode(GF(2), false));
> AreEq;

true

Note that the canonical code over Z4 corresponding to the derived binary codes C'Res and CTor
is not the same as the one we started from.

> C1 := ZACodeFromBinaryChain(CRes, CTor);

> C1:Minimal;

(23, 16777216) Linear Code over IntegerRing(4)
> C eq C1;

false

155.4.4 The Standard Form

A Zy-linear code is in standard form if its generator matrix is of the form:

I, A B

0 2I;, 2C
where Iy, and Iy, are the k1 x k1 and ko x ko identity matrices, respectively, A and C are
Zs-matrices, and B is a Zs-matrix. Any Zy4-linear code C is permutation-equivalent to a

code S which is in standard form. Furthermore, the integers ki and ks, defined above, are
unique [Wan97, Prop. 1.1].

| StandardForm(C) |

This function, given any Zj-linear code C, returns a permutation-equivalent code S
in standard form, together with the corresponding isomorphism from C' onto S.

Example H155E13

We compute the standard form of a certain code. Note that the number of rows in the generator
matrix of the standard code may be less than that of the original code.

> Z4 := IntegerRing(4);

> C := LinearCode<Z4, 4 | [2,2,1,1], [0,2,0,2]>;
> C;

[4, 3, 2] Linear Code over IntegerRing(4)
Generator matrix:

[2 01 3]

[0 2 0 2]

[0 02 2]

> S8, f := StandardForm(C);

> S;

[4, 2, 2] Linear Code over IntegerRing(4)
Generator matrix:

(112 2]

5178 CODING THEORY Part XXII

>
8

> #C;
8

> f(C.1);
(1 302)
> £(C.2);
(02 20)
> £(C.3);
(2200)
> S.100f;
(2211)

> S.200f;
(020 2)

155.4.5 Constructing New Codes from Old

The functions described here produce a new code over Z4 by modifying in some way the
codewords of some given codes over Zj.

PlotkinSum(A, B)

Given matrices A and B both over the same ring and with the same number of
columns, return the P4p matrix over the same ring of A and B, where

A A
)

PlotkinSum(C, D)

Given codes C' and D both over the same ring and of the same length, construct
the Plotkin sum of C' and D. The Plotkin sum consists of all vectors of the form
(u|u +v), where uw € C' and v € D.

Note that the Plotkin sum is computed using generator matrices of C' and D
and the PlotkinSum function for matrices, that is, this function returns the code
over Z, generated by the matrix Psp defined above, where A and B are generators
matrices of C' and D, respectively.

Ch. 155 LINEAR CODES OVER FINITE RINGS 5179

QuaternaryPlotkinSum(A, B)

Given two matrices A and B over Z,4, both with the same number of columns, return
the QP4 p matrix over Z4, where

A A A A
QPAB_(O B 2B 33)'

QuaternaryPlotkinSum(C, D)

Given two codes C' and D over Z,4, both of the same length, construct the Quaternary
Plotkin sum of C' and D. The Quaternary Plotkin sum is a code over Z, that consists
of all vectors of the form (u,u + v,u + 2v,u + 3v), where u € C and v € D.

Note that the Quaternary Plotkin sum is computed using generator matrices of C'
and D and the QuaternaryPlotkinSum function for matrices, that is, this function
returns the code over Z, generated by the matrix QPap defined above, where A
and B are generators matrices of C' and D, respectively.

BQPlotkinSum(A, B, C)

Given three matrices A, B, and C over Z,4, all with the same number of columns,
return the BQ P4pc matrix over Z4, where

A A A A
0 B 2B’ 3B’

BQPapc = o 0o B B |
0

0 0 C

B’ is obtained from B replacing the twos with ones in the rows of order two, and B
is obtained from B removing the rows of order two.

BQPlotkinSum(D, E, F)

Given three codes D, F and F over Z4, all of the same length, construct the BQ
Plotkin sum of D, E and F. Let Ge be a generator matrix of the code E of type
2749 The code E’ over Z, is obtained from E replacing the twos with ones in the
~ rows of order two of Ge, and the code E over Z4 is obtained from E removing the
~ rows of order two of Ge.“ The BQ Plotkin sum is a code over Z, that consists of
all vectors of the form (u,u+v',u+2v"4+0,u+ 30"+ 0+ z), where u € Gd, v’ € Ge’
b€ Ge, and z € Gf, where Gd, Ge/, Ge and Gf are generators matrices of D, F,
E and F , respectively.

Note that the BQPlotkin sum is computed using generator matrices of D, E' and
F and the BQPlotkinSum function for matrices. However, this function does not
necessarily return the same code over Z,4 generated by the matrix QPapc defined
above, where A, B and C are generators matrices of D, F and F, respectively, as
shown in Example H2EA4.

5180

CODING THEORY Part XXII

DoublePlotkinSum(A, B, C, D)

Given four matrices A, B, C, and D over Z4, all with the same number of columns,
return the D Pjpc matrix over Zy4, where

A A A A
0 B 2B 3B
DPapcp = 00 C C
0 0 0 D

DoublePlotkinSum(E, F, G, H)

Given four codes E, F, G and H over Z,4, all of the same length, construct the
Double Plotkin sum of E, F', G and H. The Double Plotkin sum is a code over Zg4
that consists of all vectors of the form (u,u + v,u 4+ 2v + z,u + 3v 4+ z + t), where
uek veF,zeGandte H.

Note that the Double Plotkin sum is computed using generator matrices of F,
F, G and H and the DoublePlotkinSum function for matrices, that is, this function
returns the code over Z4 generated by the matrix DPspcp defined above, where
A, B, C and D are generators matrices of E/, F', G and H, respectively.

DualKroneckerZ4(C) |

Example H155E14

Given a code C' over Z,4 of length 2™, return its Kronecker dual code. The Kronecker
dual code of C is Cg = {x € Z¥" : 2 Kom -y' = 0,Vy € C}, where Kom = 7L, Ko,

0 3
Kom is a quaternary matrix of length 2™ with the vector (1,3,3,1,3,1,1,3,...) in
the main diagonal and zeros elsewhere.

Ky = (1 0) and ® denotes the Kronecker product of matrices. Equivalently,

In this example, we show that the codes over Z4 constructed from the BQPlotkinSum function for
matrices are not necessarily the same as the ones constructed from the BQPlotkinSum function for
codes.

Z4 .
Ga:
Gb:
Gc:
Ca:
Cb:
Cc:
> C:=
> D:=
>C e
false

V V V V V V V

=IntegerRing(4) ;
=Matrix(Z4,1,2,[1,1]);
=Matrix(Z4,2,2,[1,2,0,2]);
=Matrix(Z4,1,2,[2,2]1);
=LinearCode (Ga) ;

=LinearCode (Gb) ;

=LinearCode (Gc) ;

LinearCode (BQPlotkinSum(Ga,Gb,Gc)) ;
BQPlotkinSum(Ca,Cb,Cc) ;

q D;

Ch. 155 LINEAR CODES OVER FINITE RINGS 5181

Example H155E15

> Ga := GeneratorMatrix(ReedMullerCodeRMZ4(1,2,3));
> Gb := GeneratorMatrix(ReedMullerCodeRMZ4(1,1,3));
> Gc := GeneratorMatrix(ReedMullerCodeRMZ4(1,0,3));
> C := ReedMullerCodeRMZ4(1,2,4);

> Cp := LinearCode(PlotkinSum(Ga, Gb));

> C eq Cp;

true

> D := ReedMullerCodeRMZ4(2,2,5);

> Dp := LinearCode(BQPlotkinSum(Ga, Gb, Gc));
> D eq Dp;

true

155.4.6 Invariants of Codes over Z,4

SpanZ2CodeZz4 (C)

Given a code C over Z,4 of length n, return S¢ = ®~1(Sy;,,) as a code over Zy4, and
the linear span of Chin, Spin = (Chin), as a binary linear code of length 2n, where
Chin, = ®(C) and @ is the Gray map.

KernelZ2CodeZ4(C) |

Given a code C' over Z, of length n, return its kernel Ko as a subcode over Z,
of C, and Kp;, = ®(K¢) as a binary linear subcode of Cy;, of length 2n, where
Chin = ®(C) and @ is the Gray map.

The kernel K¢ contains the codewords v such that 2vxu € C for all u € C', where
* denotes the component-wise product. Equivalently, the kernel K, = ®(K¢)
contains the codewords ¢ € Cy;y, such that ¢ + Chiy = Chin, where Chypy = ©(C) and
® is the Gray map.

DimensionOfSpanZ2(C)
| Rankz2(C) |

Given a code C over Z,4, return the dimension of the linear span of C%;,, that is,
the dimension of (Cy;y,), where Chyy = ®(C') and @ is the Gray map.

| DimensionOfKernelZ2(C) |

Given a code C over Z,4, return the dimension of the Gray map image of its kernel
K¢ over Zy4, that is the dimension of Ky;,, = ®(K¢), where ® is the Gray map.
Note that Kjp;, is always a binary linear code.

5182 CODING THEORY

Example H155E16

Part XXII

> C := ReedMullerCodeRMZ4(0,3,5);
> DimensionOfKernelZ2(C) ;

20

> Dimension0fSpanZ2(C);

27

> K, Kb := KernelZ2CodeZ4(C);
> S, Sb := SpanZ2CodeZ4(C);

> K subset C;

true

> C subset S;

true

> Dimension(Kb) eq DimensionOfKernelZ2(C);
true

> Dimension(Sb) eq Dimension0fSpanZ2(C);
true

155.4.7 Other Z, functions

Correlation(v) |

Let v be a codeword over Zy. Define w; = #{k : v[k] = j} for j =0,...,3. Then

the correlation of v is the Gaussian integer (wg — wsz) + i * (w; — ws).

155.5 Construction of Subcodes of Linear Codes

155.5.1 The Subcode Constructor
| sub< C | L >|

Given a length n linear code C' over R, construct the subcode of C, generated by
the elements specified by the list L, where L is a list of one or more items of the

following types:
a) An element of C;

b) A set or sequence of elements of C

d) A set or sequence of sequences of type (c);
e) A subcode of C;

f) A set or sequence of subcodes of C.

(
(
(
(
(
(

Subcode(C, t)

c) A sequence of n elements of R, defining an element of C;

Given a length n linear code C' with k£ generators and an integer t, 1 <t < k, return

a subcode of C' of pseudo-dimension t.

Ch. 155 LINEAR CODES OVER FINITE RINGS 5183

Subcode(C, S)

Given a length n linear code C' with k£ generators and a set S of integers, each
of which lies in the range [1, k], return the subcode of C generated by the basis
elements whose positions appear in S.

Example H155E17

We construct a subcode of a code over a Galois ring by multiplying each of its generators by a
zero divisor.

> R<w> := GR(4,2);

> C := RandomLinearCode(R, 4, 2);

> C;

(4, 256, 3) Linear Code over GaloisRing(2, 2, 2)
Generator matrix:

[1 0 w+ 1 3*y + 2]

[0 1 3%y + 1 1]

> #C;

256

>

> C1 := sub< C | 2xC.1, 2*xC.2 >;

> C1;

(4, 16, 3) Linear Code over GaloisRing(2, 2, 2)
Generator matrix:

[2 0 2%w + 2 2%y7]
[0 2 2xy + 2 2]
> #C1;

16

155.6 Weight Distributions

In the case of a linear code, weight and distance distributions are equivalent (in particular
minimum weight and minimum distance are equivalent).

155.6.1 Hamming Weight
For an element x € R for any finite ring R, the Hamming weight wy (x) is defined by:

wh(x) =0 <= = =0, wg(x) =1 <= z#0
The Hamming weight wg(v) of a vector v € R™ is defined to be the sum (in Z) of the

Hamming weights of its components.
The Hamming weight is often referred to as simply the weight.

5184 CODING THEORY Part XXII

MinimumWeight (C)

MinimumDistance(C) |

Determine the minimum (Hamming) weight of the words belonging to the code C,
which is also the minimum distance between any two codewords.

WeightDistribution(C)

Determine the (Hamming) weight distribution for the code C. The distribution is
returned in the form of a sequence of tuples, where the i-th tuple contains the ¢-th
weight, w; say, and the number of codewords having weight w;.

DualWeightDistribution(C)

The (Hamming) weight distribution of the dual code of C. For more explanation,
see WeightDistribution.

Example H155E18

We calculate the weight distribution of a cyclic code over the Galois ring of size 81.

> R<w> := GR(9,2);

> P<x> := PolynomialRing(R);

> L := CyclotomicFactors(R, 4);

> g := L[3] * L[4];

> g;

x"2 + (8w + T)*x + w + 1

> C := CyclicCode(4, g);

> C;

(4, 6561, 3) Cyclic Code over GaloisRing(3, 2, 2)
Generator matrix:

[1 0 w+ 1 8xyw + 7]
[0 1 w 8*w + 8]
> WeightDistribution(C);

[<0, 1>, <3, 320>, <4, 6240>]

155.6.2 Lee Weight
For an element = € Zy, the Lee weight wy,(x) is defined by:

The Lee weight wr,(v) of a vector v € Z} is defined to be the sum (in Z) of the Lee weights
of its components. See [Wan97, p. 16].

LeeWeight (a)

The Lee weight of the element a € Zy4.

Ch. 155 LINEAR CODES OVER FINITE RINGS 5185

LeeWeight (v)

The Lee weight of the codeword v.

LeeDistance(u, v)

The Lee distance between the codewords v and v, where u and v belong to the same
code C. This is defined to be the Lee weight of (u — v).

MinimumLeeWeight (C)

MinimumLeeDistance(C) |

The minimum Lee weight of the code C.

LeeWeightDistribution(C)
The Lee weight distribution of the code C.

DualLeeWeightDistribution(C)

The Lee weight distribution of the dual of the code C' (see LeeWeightDistribution)

WordsOfLeeWeight (C, w)

Cutoff RNGINTELT Default : oo

Given a linear code C, return the set of all words of C' having Lee weight w. If
Cutoff is set to a non-negative integer ¢, then the algorithm will terminate after a
total of ¢ words have been found.

WordsOfBoundedLeeWeight (C, 1, u)

Cutoff RNGINTELT Default : oo

Given a linear code C', return the set of all words of C' having Lee weight between
[and wu, inclusive. If Cutoff is set to a non-negative integer ¢, then the algorithm
will terminate after a total of ¢ words have been found.

Example H155E19

We calculate the Lee weight distribution of a Reed Muller code over Z4 and enumerate all words
of Lee weight 8.

> C := ReedMullerCodeZ4(1, 3);

> C;

(8, 256, 4) Linear Code over IntegerRing(4)
Generator matrix:

[10003121]

[01 00211 3]

[00O101132]

[0001323 3]

> LeeWeightDistribution(C);

[<0, 1>, <6, 112>, <8, 30>, <10, 112>, <16, 1>]
> W := WordsOfLeeWeight(C, 8);

5186 CODING THEORY Part XXII

> #W;
30

155.6.3 Euclidean Weight
For an element = € Zy4, the Euclidean weight wg(z) is defined by:

The Euclidean weight wg(v) of a vector v € Z} is defined to be the sum (in Z) of the
Euclidean weights of its components. See [Wan97, p. 16].

EuclideanWeight (a)

The Euclidean weight of the element a € Z4.

EuclideanWeight (v)

The Euclidean weight of the Z4-codeword v.

EuclideanDistance(u, v)

The Euclidean distance between the Zj4-codewords u and v, where u and v belong
to the same code C. This is defined to be the Euclidean weight of (u — v).

MinimumEuclideanWeight (C)

MinimumEuclideanDistance(C) |

The minimum Euclidean weight of the Z4-code C.

EuclideanWeightDistribution(C)

The Euclidean weight distribution of the Z4-code C.

DualEuclideanWeightDistribution(C)

The Euclidean weight distribution of the dual of the Z4-code C.

Ch. 155 LINEAR CODES OVER FINITE RINGS 5187

Example H155E20

We calculate the Euclidean weight distribution of quadratic residue code over Zg4

> C := QRCodeZ4(17);

> C;

(17, 262144) Cyclic Code over IntegerRing(4)
Generator matrix:

[10000000011303031]
[01000000030231312]
[00100000021221113]
[0001000001302110 2]
[00001000023100132]
[00000100020112031]
[00000010031112212]
[0000000102131320 3]
[00000000113030311]

> EuclideanWeightDistribution(C) ;

[<0, 1>, <7, 136>, <8, 170>, <9, 170>, <10, 408>, <11, 544>, <12, 986>, <13,
1768>, <14, 3128>, <15, 5032>, <16, 6120>, <17, 6360>, <18, 8432>, <19, 12512>,
<20, 12682>, <21, 11152>, <22, 14416>, <23, 17680>, <24, 16048>, <25, 15164>,
<26, 17952>, <27, 16864>, <28, 13328>, <29, 14144>, <30, 14144>, <31, 10064>,
<32, 7837>, <33, 8024>, <34, 6800>, <35, 4896>, <36, 3485>, <37, 2992>, <38,
2992>, <39, 1768>, <40, 510>, <41, 1258>, <42, 1224>, <44, 238>, <45, 408>, <46,
136>, <47, 136>, <48, 34>, <68, 1>]

155.7 Weight Enumerators

CompleteWeightEnumerator (C)

Let C be a code over a finite ring R of cardinality ¢, and suppose that the elements
of R are ordered in some way. Then for a codeword v € C and the i-th element
a € R, let s;(v) denote the number of components of v equal to a.

This function returns the complete weight enumerator We (Xo, Xi,..., Xq-1) of
C, which is defined by:

WC(XO, X]_, e 7Xq—1) —= Z Xoso(v)Xlsl(v) e Xq—]_sqil(v).
vel

See [Wan97, p. 9] for more information. The result will lie in a global multivariate
polynomial ring over Z with ¢ variables. The angle-bracket notation may be used
to assign names to the indeterminates.

5188 CODING THEORY Part XXII

SymmetricWeightEnumerator (C)

Suppose C' is a Zy-code. This function returns the symmetric weight enumerator
swec (Xo, X1, X2) of C, which is defined by:

swec (Xo, X1, X2) = We(Xo, X1, Xo, X1),

where We is the complete weight enumerator, defined above. See [Wan97, p. 14] for
more information. The result will lie in a global multivariate polynomial ring over
Z with three variables. The angle-bracket notation may be used to assign names to
the indeterminates.

WeightEnumerator (C)

HammingWeightEnumerator (C)

Suppose C' is a code over some finite ring R. This function returns the Hamming
weight enumerator Hame (X, Y') of C, which is defined by:

Hame(X,Y) = Y Xn-wnywnlv),
vel

where wy (v) is the Hamming weight function. The result will lie in a global multi-
variate polynomial ring over Z with two variables. The angle-bracket notation may
be used to assign names to the indeterminates.

LeeWeightEnumerator(C)

Suppose C is a Zg4-code. This function returns the Lee weight enumerator
Leec(X,Y) of C, which is defined by:

Leeo(X,Y) =) x»n-wrywrlv),
velC

where wr, (v) is the Lee weight function, defined in Section 155.6.2. The result will
lie in a global multivariate polynomial ring over Z with two variables. The angle-
bracket notation may be used to assign names to the indeterminates.

EuclideanWeightEnumerator(C)

Suppose C' is a Zy4-code. This function returns the Euclidean weight enumerator
Euclideanc (X,Y) of C, which is defined by:

Euclideanc(X,Y) = Z Xn—wp()yws()
vel

where wg(v) is the Euclidean weight function, defined in Section 155.6.3. The
result will lie in a global multivariate polynomial ring over Z with two variables.
The angle-bracket notation may be used to assign names to the indeterminates.

Ch. 155 LINEAR CODES OVER FINITE RINGS 5189

Example H155E21

We compute the complete weight enumerator of a cyclic code over the Galois ring GR(4, 2).

> R<w> := GR(4,2);

> P<x> := PolynomialRing(R);

> L := CyclotomicFactors(R, 3);
> g :=L[1];

> g;

x + 3

> C := CyclicCode(3, g);

> C;

(3, 256, 2) Cyclic Code over GaloisRing(2, 2, 2)

Generator matrix:

[1 0 3]

[0 1 3]

> CWE<[X]> := CompleteWeightEnumerator(C);

> CWE;

X[11°3 + 6xX[1]*X[2]*X[4] + 3*X[1]1*X[3]"2 + 6*X[1]1*X[5]*X[13]
6xX[1]*X[6]1*X[16] + 6*X[1]1*X[7]1*X[15] + 6*X[1]*X[8]*X[14]
3xX[11*X[9] "2 + 6*xX[1]1*X[10]*X[12] + 3*X[1]*X[11]"2 +
3*xX[2] "2*X[3] + 6*%X[2]*X[56]*X[16] + 6*X[2]*X[6]*X[15] +
6xX [2]*X[7]1#X[14] + 6xX[2]*X[8]1*X[13] + 6*X[2]*X[9]1*X[12]
6xX[2]*X[10]*X[11] + 3*xX[3]*X[4] "2 + 6xX[3]*X[5]*X[15] +
6*%X[3]*X[6]1*X[14] + 6xX[3]*X[7]1*X[13] + 6*X[3]1*X[8]*X[16]
6*X[3]1*X[9]*X[11] + 3*X[3]*X[10]"2 + 3*X[3]*X[12]"2 +
6*X[4]1*X[6]*X[14] + 6*xX[4]*X[6]1*X[13] + 6*X[4]1*X[7]*X[16] +
6xX [4]*X[8]*X[15] + 6xX[4]1*X[9]1*X[10] + 6xX[4]1*X[11]1*X[12] +
3xX[56] "2*xX[9] + 6*X[5]*X[6]*X[12] + 6*X[5]*X[7]1*X[11] +
6xX[5]*X[8]1*X[10] + 3*X[6] "2*X[11] + 6xX[6]*X[7]1*X[10] +
6*xX[6]1*X[8]1*X[9] + 3*X[7]1°2xX[9] + 6*xX[7]1*X[8]*X[12] +
3xX[8] 2%X[11] + 3*X[9]1*X[13]1"2 + 6%xX[9]1*X[14]1*X[16] +
3*xX[9]1*X[15] "2 + 6xX[10]*X[13]*X[16] + 6*X[10]*X[14]*X[15] +
6%X[11]1*X[13]*X[15] + 3*X[11]*X[14]"2 + 3*xX[11]1*X[16]"2 +
6*xX[12]*X[13]*X[14] + 6xX[12]*X[15]*X[16]

+ +

<+

+

Example H155E22

We compute the various weight enumerators of the octacode. To ensure the polynomials print
out nicely, we assign names to the polynomial ring indeterminates in each case. These names will
persist if further calls to these functions (over Z4) are made.

Z4 := IntegerRing(4);
08 := LinearCode<Z4, 8 |
[1,0,0,0,3,1,2,1],
[0,1,0,0,1,2,3,1],
(0,0,1,0,3,3,3,2],
[0,0,0,1,2,3,1,1]>;
#08;

14

V V V V V V V

5190 CODING THEORY Part XXII

256

> CWE<X0,X1,X2,X3> := CompleteWeightEnumerator (08);

> CWE;

X078 + 14xX0"4xX2"4 + 56*%X0"3*X1"3*X2*X3 + b6*X0"3*X1*xX2*xX3"3 +
56*%X0*xX1"3*xX2"3*xX3 + 56*X0*X1*xX2"3*xX3"°3 + X178 + 14xX174xX3"4 +

X2°8 + X378

> SWE<X0,X1,X2> := SymmetricWeightEnumerator (08);

> SWE;

X078 + 14%X074%X274 + 112%xX0"3*X174*X2 + 112xX0*X174xX2"3 + 16*xX1°8 +
X278

> HWE<X,Y> := HammingWeightEnumerator (08);

> HWE;

X"8 + 14xX74xY~"4 + 112xX"3*Y"5 + 112%X*Y"7 + 17*%Y"8

> LeeWeightEnumerator (08) ;

X716 + 112%X710*Y"6 + 30*X"8*Y"8 + 112*%X"6*Y"10 + Y~16
> EuclideanWeightEnumerator (08) ;

X732 + 128%X724xY"8 + 126*%X"16*xY"16 + Y~32

155.8 Constructing New Codes from Old

The operations described here produce a new code by modifying in some way the code
words of a given code.

155.8.1 Sum, Intersection and Dual

For the following operators, C' and D are codes defined as subsets (or subspaces) of the
same R-space V.

The (vector space) sum of the linear codes C' and D, where C' and D are contained
in the same R-space V.

C meet D

The intersection of the linear codes C' and D, where C' and D are contained in the
same R-space V.

The dual D of the linear code C. The dual consists of all codewords in the R-space
V' which are orthogonal to all codewords of C.

Ch. 155 LINEAR CODES OVER FINITE RINGS

Example H155E23

5191

Verify some simple results from the sum and intersection of subcodes.

R<w> := GR(9,2);

P<x> := PolynomialRing(R) ;

g = X72 + THxwkx + 1;

C := CyclicCode(5, g);

> C;

(6, 43046721) Cyclic Code over GaloisRing(3, 2, 2)
Generator matrix:

vV V VvV V

[1 0 0 1 w]

[O 1 0 2xw 2%w]

[O 0 1 w 1]

[O 0 0 3 0]

[O 0 0 0 3]

>

>C1l :=sub< C | C.1 >;
> C1;

(6, 81, 3) Linear Code over GaloisRing(3, 2, 2)
Generator matrix:

[1 001 w]
> C2 :=sub< C | C.4 >;
> C2;

(5, 9, 1) Linear Code over GaloisRing(3, 2, 2)
Generator matrix:

[0 0 0 3 0]
>C3 :=sub< C | {C.1, C.4} >;
> C3;

(5, 729, 1) Linear Code over GaloisRing(3, 2, 2)
Generator matrix:

[1001w]

[0 0 0 3 0]

> (C1 + C2) eq C3;
true

> (C1 meet C3) eq C1;
true

155.8.2 Standard Constructions

DirectSum(C, D)

Given a length n; code C and a length ny code D, both over the same ring R,
construct the direct sum of C' and D. The direct sum consists of all length nq + no

vectors ulv, where v € C' and v € D.

5192 CODING THEORY Part XXII

DirectProduct(C, D)

Given a length n; code C and a length ns code D, both over the same ring R,
construct the direct product of C' and D. The direct product has length ny - no and
its generator matrix is the Kronecker product of the basis matrices of C' and D.

| C1 cat C2 |

Given codes C'1 and C'2, both defined over the same ring R, return the concatenation
C of C'1 and C2. If A and B are the generator matrices of C'l and C2, respectively,
the concatenation of C'l and C2 is the code with generator matrix whose rows consist
of each row of A concatenated with each row of B.

ExtendCode (C)

Given a length n code C form a new code C’ from C by adding the appropriate
extra coordinate to each vector of C such that the sum of the coordinates of the
extended vector is zero.

ExtendCode(C, n)
Return the code C' extended n times.
PadCode(C, n)
Add n zeros to the end of each codeword of C.
PlotkinSum(C, D)

Given codes C' and D both over the same ring R and of the same length n, construct
the Plotkin sum of C' and D. The Plotkin sum consists of all vectors u|u + v, u € C
and v € D.

PunctureCode(C, i)

Given an length n code C, and an integer i, 1 < ¢ < n, construct a new code C’ by
deleting the i-th coordinate from each code word of C.

PunctureCode(C, S)

Given a length n code C and a set S of distinct integers {iq,---,i,} each of which
lies in the range [1,n], construct a new code C’ by deleting the components iy, - - -, i,
from each code word of C.

ShortenCode(C, i)

Given a length n code C and an integer i, 1 < ¢ < n, construct a new code from C
by selecting only those codewords of C' having a zero as their i-th component and
deleting the i-th component from these codewords. Thus, the resulting code will
have length n — 1.

ShortenCode(C, S)

Given a length n code C and a set S of distinct integers {iq, - - -, i, }, each of which lies
in the range [1,n], construct a new code from C' by selecting only those codewords
of C' having zeros in each of the coordinate positions iq,---,%,, and deleting these

components. Thus, the resulting code will have length n — r.

Ch. 155 LINEAR CODES OVER FINITE RINGS 5193

Example H155E24

We combine codes in various ways and look at the length of the new code.

> R<w> := GR(8,2);

> C1 := RandomLinearCode(R, 4, 2);
> C2 := RandomLinearCode(R, 5, 3);
> Length(C1);

4

> Length(C2);

5

> C3 := DirectSum(C1l, C2);

> Length(C3);

9

> C4 := DirectProduct(Ci, C2);

> Length(C4);

20

> C5 := C1 cat C2;
> Length(C5);
9

Example H155E25

We note that, in general, puncturing a code over Z4 reduces the minimum Lee distance by 2.

> C := PreparataCode(3);

> C;

(8, 256, 4) Linear Code over IntegerRing(4)
Generator matrix:

[10003121]

[01 00211 3]

[00101132]

[0001323 3]

> MinimumLeeWeight (C);

6

> C1 := PunctureCode(C,8);

> C1;

(7, 256, 3) Linear Code over IntegerRing(4)
Generator matrix:

[1000312]

[01 0021 1]

[001011 3]

[000132 3]

> MinimumLeeWeight (C1);

4

5194 CODING THEORY Part XXII

155.9 Operations on Codewords

155.9.1 Construction of a Codeword

c!' [a;, ..., a,l

elt< C | a1, ..., a, >

Given a code C which is defined as a subset of the R-space R, and elements

ai,...,a, belonging to R, construct the codeword (aq,...,a,) of C. It is checked
that the vector (aq,...,ay) is an element of C.
Clu

Given a code C' which is defined as a subset of the R-space V = R("), and an element
u belonging to V', create the codeword of C' corresponding to u. The function will
fail if u does not belong to C.

c!'!'o0
The zero word of the code C.

Example H155E26

We create some elements of a code over a finite ring.

> R<w> := GR(16,2);

> P<x> := PolynomialRing(R);

> L := CyclotomicFactors(R, 7);

> C := CyclicCode(7, L[2]);

>C ' [1, 2*xw, 0, w+3, 7*w, 12*w+3, w+3];

(1 2%y 0 w+ 3 7w 12*%w + 3 w + 3)
>elt< C | 0, 3, 0, 2w + 5, 6%y + 9, 4*xy + 5, 14*xy + 14 >;

(0 3 0 2%w + 5 6%w + 9 4dxyw + 5 14*w + 14)

If the given vector does not lie in the given code then an error will result.

> ¢! [0,0,0,0,0,0,1];

> ¢ ! [0,0,0,0,0,0,1];

Runtime error in ’!’: Result is not in the given structure
> elt< C | 1, 0, 1, 0, 1, 0, 1>;

> elt< C | 1, 0, 1, 0, 1, 0, 1>;

~

Runtime error in elt< ... >: Result is not in the lhs of the constructor

Ch. 155 LINEAR CODES OVER FINITE RINGS 5195

Operations on Codewords and Vectors

u+t+ v

—
ot
o
©
[\

Sum of the codewords u and v, where v and v belong to the same linear code C'.

|
H

Additive inverse of the codeword u belonging to the linear code C.

u - v

Difference of the codewords u and v, where u and v belong to the same linear code

a *xu

I.Q

Given an element a belonging to the ring R, and a codeword u belonging to the
linear code C, return the codeword a * u.

Weight (v)

The Hamming weight of the codeword v, i.e., the number of non-zero components
of v.

Distance(u, v)

The Hamming distance between the codewords v and v, where u and v belong to
the same code C.

Support (w)

Given a word w belonging to the length n code C, return its support as a subset of
the integer set {1..n}. The support of w consists of the coordinates at which w has
non-zero entries.

(u, v)

InnerProduct(u, v)

Inner product of the vectors u and v with respect to the Euclidean norm, where u
and v belong to the parent vector space of the code C.

Coordinates(C, u)

Given a length n linear code C' and a codeword u of C' return the coordinates of u
with respect to C. The coordinates of u are returned as a sequence Q = [aq, ..., ak]
of elements from the alphabet of C so that u = a1 *xC.1+ ...+ ap *x C.k.

| Normalize (u) |

Given an element u of a code defined over the ring R, return the normalization of wu,
which is the unique vector v such that v = a - u for some scalar a € R such that the
first non-zero entry of v is the canonical associate in R of the first non-zero entry of
u (v is zero if u is zero).

5196 CODING THEORY Part XXII

Rotate(u, k)

Given a vector u, return the vector obtained from u by cyclically shifting its com-
ponents to the right by £ coordinate positions.

Rotate(~u, k)

Given a vector u, destructively rotate u by k coordinate positions.

Parent (w) |

Given a word w belonging to the code C, return the ambient space V of C.

Example H155E27

Given a code over a finite ring, we explore various operations on its code words.

> R<w> := GR(4, 4);

> P<x> := PolynomialRing(R);

> g i=x + 2%w”3 + 3*%w"2 + w + 2;

> C := CyclicCode(3, g);

> C;

(3, 1048576) Cyclic Code over GaloisRing(2, 2, 4)
Generator matrix:

[1 0 w2 + wl
[0 1 w2+ w+ 1]
[0 0 2]
>u :=C.1;

>v :=C.2;

> u;

(1 0 w™2 + w)

> v,

(0 1w2+w+ 1)
> u + v;

(1 1 2%w™2 + 2%y + 1)
> 2%u;

(2 0 2*%w™2 + 2%w)
> 4xu;

(0 0 0)

> Weight (u);

2

> Support (u) ;
{1, 3%

Ch. 155 LINEAR CODES OVER FINITE RINGS 5197

155.9.3 Accessing Components of a Codeword

Given a codeword u belonging to the code C' defined over the ring R, return the
i-th component of u (as an element of R).

uli] := x;

Given an element u belonging to a subcode C' of the full R-space V' = R, a positive
integer i, 1 < ¢ < n, and an element x of R, this function returns a vector in V'
which is u with its i-th component redefined to be z.

155.10 Boolean Predicates

For the following operators, C' and D are codes defined as a subset (or subspace) of the
R-space V.

Return true if and only if the vector u of V' belongs to the code C.

| u notin C |

Return true if and only if the vector u of V' does not belong to the code C.

| C subset D |
Return true if and only if the code C' is a subcode of the code D.

| C notsubset D |

Return true if and only if the code C' is not a subcode of the code D.

CeqgD

Return true if and only if the codes C' and D are equal.

Return true if and only if the codes C' and D are not equal.

IsCyclic(C)

Return true if and only if the linear code C' is a cyclic code.

IsSelfDual(C) |

Return true if and only if the linear code C' is self-dual (or self-orthogonal) (i.e., C
equals the dual of C).

IsSelfOrthogonal (C)

Return true if and only if the linear code C' is self-orthogonal; that is, return whether
C' is contained in the dual of C.

5198 CODING THEORY

IsProjective(C)

Returns true if and only if the (non-quantum) code C is projective.

IsZero(u) |

Return true if and only if the codeword u is the zero vector.

Example H155E28

Part XXII

We consider an [8, 7] linear code K3 over Z4 and examine some of its properties.

> Z4 := IntegerRing(4);

> K8 := LinearCode< Z4, 8 |
> [1,1,1,1,1,1,1,17,

> (0,2,0,0,0,0,0,2],

> (o,0,2,0,0,0,0,21,

> (0,0,0,2,0,0,0,21,

> (0,0,0,0,2,0,0,21,

> (0,0,0,0,0,2,0,2],

> [0,0,0,0,0,0,2,2]>;

> K8;

[8, 7, 2] Linear Code over IntegerRing(4)
Generator matrix:

[11111111]
[0200000 2]
[0020000 2]
[0002000 2]
[0000200 2]
[0O0OO0O0O020 2]
[OOO0OO0O0O02 2]
> IsCyclic(K8);
true

> IsSelfDual(K8);
true

> K8 eq Dual(K8);
true

155.11 Bibliography

[Wan97] Zhe-Xian Wan. Quaternary Codes, volume 8 of Series on Applied Mathematics.

World Scientific, Singapore, 1997.

156 ADDITIVE CODES

156.1 Introduction 5201
156.2 Construction of Additive
Codes b202
156.2.1 Construction of General Additive
Codes 5202
AdditiveCode< > 5202
AdditiveCode(G) 5202
AdditiveCode (K, G) 5202
AdditiveCode (K, C) 5203
156.2.2 Some Trivial Additive Codes . . 5204
AdditiveZeroCode(F, K, n) 5204
AdditiveRepetitionCode(F, K, n) 5204
AdditiveZeroSumCode(F, K, n) 5205
AdditiveUniverseCode(F, K, n) 5205
RandomAdditiveCode(F, K, n, k) 5205

156.3 Invariants of an Additive Code5205
156.3.1 The Ambient Space and Alphabet 5205

Alphabet (C) 5205
Field(C) 5205
CoefficientField(C) 5205
AmbientSpace(C) 5206
Generic(C) 5206
156.3.2 Basic Numerical Invariants . . . 5206
Length(C) 5206
Dimension(C) 5206
NumberOfGenerators (C) 5207
Ngens (C) 5207
5207
InformationRate(C) 5207
156.3.3 The Code Space. 5207
GeneratorMatrix(C) 5207
BasisMatrix(C) 5207
Basis (C) 5207
Generators(C) 5207
. 5207
156.3.4 The Dual Space 5207
Dual(C) 5207
ParityCheckMatrix(C) 5207
156.4 Operations on Codewords . 5208
156.4.1 Construction of a Codeword . . 5208
1 5208
elt< > 5208
! 5208
1 5208
Random(C) 5208
156.4.2 Arithmetic Operations on Code-
words 5208
5208
5208

- 5208
* 5208
Normalize (u) 5208
156.4.3 Distance and Weight. 5209
Distance(u, v) 5209
Weight (u) 5209
156.4.4 Vector Space and Related Opera-
tions. 5209
(u, v) 5209
InnerProduct (u, v) 5209
TraceInnerProduct (K, u, v) 5209
Support (w) 5209
Coordinates(C, u) 5209
Parent (w) 5209
Rotate(u, k) 5209
Rotate(~u, k) 5209
Trace(u, S) 5209
Trace (u) 5209
156.4.5 Predicates for Codewords. . . . 5210
eq 5210
ne 5210
IsZero(u) 5210
156.4.6 Accessing Components of a Code-
word.5210
uli] 5210
ulil := x; 5210
156.5 Subcodes. 5210
156.5.1 The Subcode Constructor . . . 5210
sub< > 5210
Subcode(C, k) 5210
Subcode(C, S) 5211
SubcodeBetweenCode(C1, C2, k) 5211
SubcodeWordsO0fWeight (C, w) 5211
SubcodeWordsOfWeight (C, S) 5211
156.5.2 Sum, Intersection and Dual . . . 5212
+ 5212
meet 5212
Dual(C) 5212
156.5.3 Membership and Equality . . . 5213
in 5213
notin 5213
subset 5213
notsubset 5213
eq 5213
ne 5213
156.6 Properties of Codes 5213
IsSelfDual(C) 5213
IsSelfOrthogonal (C) 5213

IsPerfect(C) 5213

5200 CODING THEORY

IsProjective(C)
IsAdditiveProjective(C)

156.7 The Weight Distribution .

156.7.1 The Minimum Weight .

MinimumWeight (C: -)
MinimumDistance(C: -)

156.7.2 The Weight Distribution .

WeightDistribution(C)
DualWeightDistribution(C)
156.7.3 The Weight Enumerator .
WeightEnumerator (C)

CompleteWeightEnumerator (C)
CompleteWeightEnumerator(C, u)

156.7.4 The MacWilliams Transform
MacWilliamsTransform(n, k, q, W)
156.7.5 Words .

Words(C, w: -)
Number0fWords(C, w)
WordsOfBoundedWeight(C, 1, u: -)

156.8 Families of Linear Codes .

156.8.1 Cyclic Codes .

AdditiveCyclicCode(v)
AdditiveCyclicCode (K, v)
AdditiveCyclicCode(Q)
AdditiveCyclicCode (K, Q)
AdditiveCyclicCode(n, f)
AdditiveCyclicCode(K, n, f)
AdditiveCyclicCode(n, Q)
AdditiveCyclicCode(X, n, Q)
AdditiveCyclicCode(v4, v2)

5213
5214

5214

. 5214

5214
5214

. 5217

5217
5217

. 5217

5217
5217
5218

. 5218

5218

. 5218

5218
5218
5219

5219

. 5219

5219
5219
5219
5219
5219
5219
5219
5219
5220

Part XXII
AdditiveCyclicCode(n, f4, £2) 5220
156.8.2 Quasicyclic Codes . . 5220
AdditiveQuasiCyclicCode(n, Q) 5220
AdditiveQuasiCyclicCode (K, n, Q) 5220
AdditiveQuasiCyclicCode(n, Q, h) 5220
AdditiveQuasiCyclicCode(X, n, Q, h) 5220
AdditiveQuasiCyclicCode(Q) 5220
AdditiveQuasiCyclicCode (K, Q) 5220
AdditiveQuasiCyclicCode(Q, h) 5220
AdditiveQuasiCyclicCode (XK, Q, h) 5220
156.9 New Codes from Old 5221
156.9.1 Standard Constructions . 5221
AugmentCode (C) 5221
CodeComplement (C, S) 5221
DirectSum(C, D) 5221
DirectSum(Q) 5221
DirectProduct(C, D) 5221
ExtendCode (C) 5221
ExtendCode(C, n) 5221
PadCode(C, n) 5221
PlotkinSum(C1, C2) 5221
PlotkinSum(C1, C2, C3: -) 5222
PunctureCode(C, i) 5222
PunctureCode(C, S) 5222
ShortenCode(C, i) 5222
ShortenCode(C, S) 5222
156.9.2 Combining Codes . . 5222
cat 5222
Juxtaposition(C1l, C2) 5222
156.10 Automorphism Group 5223
AutomorphismGroup (C) 5223
PermutationGroup(C) 5223

Chapter 156
ADDITIVE CODES

156.1 Introduction

The concept of a linear codes over a finite field (see Chapter 152) can be generalized to
the notion of an additive code. Given a finite field F' and the space of all n-tuples of F', an
additive code is a subset of F(™ which is a K-linear subspace for some subfield K C F.

Additive codes have become increasingly important recently due to their application
to the construction of quantum error-correcting codes, though they are also of interest in
their own right. A MAGMA package for quantum error-correcting codes is built on the
machinery for additive codes.

In MAGMA an additive code has both an alphabet F' and a coefficient field K, which
is a subfield of F. An error-correcting code is considered to be defined by its wordset, so
there may be several different ways of presenting a given code using different coefficient
fields.

Since a given code may be presented over different coefficient rings, the dimension k of
an additive code is defined relative to the alphabet of the code, #C = (#F)¥, leading to
possibility of fractional dimensions. Consequently, the number of generators of an additive
code will not equal its dimension, there being [F' : K| times as many generators. So a
length n K-additive code over F' has between zero and n x [F' : K| generators.

For example, consider the two length 3 vectors over Fy: (1,0,w?),(0,w,0). The lin-
ear code generated by these vectors consists of all scalar multiples and sums, resulting
in a total of 42 = 16 vectors. But the Fs-additive code generated by these two vec-
tors contains only their sums, resulting in a total of 22 = 4 vectors. These vectors are
(0,0,0), (1,0,w?), (0,w,0), (1,w,w?). The alphabet of this code is Fy, its coefficient field is
F5, it has 2 generators and is of dimension 1.

A length n, dimension k£ K-additive code over F' with k, generators is represented
in MAGMA as an [n,k : k4] K-additive code over F. The concepts of weight, distance
and their respective distributions and enumerators transfer directly from linear codes. An
n,k : kg,d] K-additive code over F' is a K-linear subset of F™ which has fractional
dimension k, k, generators and a minimum weight of d.

As a general rule, additive and linear codes may be used interchangeably. Indeed any
linear code can be expressed as an additive code, using either its alphabet or any subfield
as its coefficient field. So any linear code over a finite field, of type CodeLinF1d, is in fact
also an additive code, of type CodeAdd. The theory of purely linear codes is more general
than that of additive codes so unfortunately not all operations are transferable.

5202 CODING THEORY Part XXII

156.2 Construction of Additive Codes

156.2.1 Construction of General Additive Codes
AdditiveCode< F, K, n | L >

Create the K-additive code in F(™ of length n which is generated by the elements
specified by the list L, where K is a subfield of F' and L is one or more items of the
following types:

(a) An element of F(");

(b) A set or sequence of elements of F(™);

(c) A sequence of n elements of F, defining an element of F(");
(d) A set or sequence of sequences of type (c);

(e) A subcode of F(™);

AdditiveCode (G)
AdditiveCode (K, G)

Given a matrix G over a field F' and a subfield K of F, return the K-additive code
over F' generated by the rows of G. If no coefficient field K is specified, then the
prime field of F' is used.

Example H156E1

Starting with two linearly independent vectors in Ff), we compare the linear code over Fj they
generate with the corresponding F-additive code.

> F<w> := GF(4);

> G := Matrix(, 2, 3, [1,0,v"2,0,w,0]);
> G;

[1 0 w2]

[0 w 0]

> C1 := LinearCode(G);

> C2 := AdditiveCode(GF(2), G);
> #C1;

16

> #C2;

4

> C2 subset C1;

true

The codewords of C5 are arise only through addition of the generators: scalar multiplication is
not permitted.

>{ v : v in C2 };
{

(1 ww?2),
(o o 0,
(1 0 w2),

Ch. 156 ADDITIVE CODES 5203

Example H156E2

We define an Fa-additive code over Fg by constructing a random matrix and considering the code
generated by its rows. Note that the number of generators exceeds the length of the code.

> K<w> := GF(8);

> M := KMatrixSpace(K, 5, 4);
> C := AdditiveCode(GF(2), Random(M));
> C;

[4, 1 2/3 : 5] GF(2)-Additive Code over GF(2°3)
Generator matrix:

[1 1 w2 0]

[ww'2 w 1]

w2 w2w?2 1]

[0w'4 w4 w'5]

[0O 0 1 0]

> WeightDistribution(C) ;

[<0, 1>, <1, 1>, <2, 2>, <3, 9>, <4, 19>]

> C;

[4, 1 2/3 : 5, 1] GF(2)-Additive Code over GF(2°3)
Generator matrix:

[1 1 w2 0]

[ww'2 w 1]

w2 w2w?2 1]

[0w'4 w4 w'5]

[0O 0 1 0]

AdditiveCode(K, C)

Given a code (linear or additive) C' over some finite field F', and a subfield K of F
such that the wordset of C' forms a K-linear subspace, then return C' as a K-additive
code.

Example H156E3

Any linear code can be regarded as an additive code with respect to a subfield of its alphabet.

> C := RandomLinearCode(GF(4), 8, 3);

> C:Minimal;

[8, 3, 4] Linear Code over GF(2°2)

> A1 := AdditiveCode(GF(4), C);

> Al1:Minimal;

[8, 3 : 3, 4] GF(2"2)-Additive Code over GF(272)
>{v:vinC1}eq{v : v in Al };

true

5204 CODING THEORY Part XXII

>

> A2 := AdditiveCode(GF(2), C);

> A2:Minimal;

[8, 3 : 6, 4] GF(2)-Additive Code over GF(2°2)
>{v :vinC2} eq{v : v in A2 };

true

Example H156E4

A K-additive code over F' can be viewed as an F-additive code for any subfield £ C K.

> C4 := RandomAdditiveCode(GF(16), GF(4), 8, 5);
> C4:Minimal;

[8, 2 1/2 : 5] GF(2"2)-Additive Code over GF(274)
>

> C2 := AdditiveCode(GF(2), C4);

> C2:Minimal;

[8, 2 1/2 : 10] GF(2)-Additive Code over GF(274)
>{v:vinC2 } eq {v : v in C4 };

true

But for any E such that K C E C F' we can create an E-additive code if and only if the wordset
is in fact an F-linear subspace.

> C2:Minimal;

[8, 2 1/2 : 10] GF(2)-Additive Code over GF(274)
> Al := AdditiveCode(GF(4), C2);

> Al eq C4;
true
> A2 := AdditiveCode(GF(16), C2);

>> A2 ¢

AdditiveCode (GF(16), C2);

Runtime error in ’AdditiveCode’: Code is not additive over given field

156.2.2 Some Trivial Additive Codes

AdditiveZeroCode(F, K, n)

Given a field F' and subfield K C F along with a positive integer n, return the
[n,0,n] code consisting of only the zero code word, (where the minimum weight is
by convention equal to n).

AdditiveRepetitionCode(F, K, n)

Given a field F' and subfield K C F along with a positive integer n, return the
[n,1,n] code consisting of all repeating codewords.

Ch. 156 ADDITIVE CODES 5205

AdditiveZeroSumCode(F, K, n)

Given a field F' and subfield K C F along with a positive integer n, return the
[n,n — 1,2] K-additive code over F' such that for all codewords (c1,ca,...,¢y,), we
have) . ¢; = 0.

AdditiveUniverseCode(F, K, n)

Given a field F' and subfield K C F along with a positive integer n, return the
[n,n, 1] K-additive code over F consisting of all possible codewords.

RandomAdditiveCode(F, K, n, k)

Given a field F' and subfield K C F' along with positive integers n and k, such that
0 <k <nx[F: K], and k, return a random K-additive code of length n and k
generators over the field F.

Example H156E5

Over any finite field chain K C F, the zero code of length n is contained in every code of length
n, and similarly every code of length n is contained in the universe code of length n.

>F := GF(9);

> K := GF(3);

> U := AdditiveUniverseCode(F, K, 5);
> Z := AdditiveZeroCode(F, K, 5);

> R := RandomAdditiveCode(F, K, 5, 2);
> (Z subset R) and (R subset U);

true

156.3 Invariants of an Additive Code

156.3.1 The Ambient Space and Alphabet

A length n additive code has an alphabet F' and coefficient field K C F'. The code consists
of codewords which are a K-linear subspace of F(").

Alphabet (C)
Field(C)

The underlying field (or alphabet) of the codewords of the additive code C'. A length
n additive code with alphabet F' consists of codewords from F(™).

CoefficientField(C) |

The field over which the codewords of the additive code C are considered linear.
This will be a subfield of the alphabet of C.

5206 CODING THEORY Part XXII

AmbientSpace(C)

The ambient space of the additive code C, i.e. the generic R-space V in which C' is
contained.

Generic(C) |

Given a length n additive code C, return the generic [n,n,1] code in which C' is
contained.

Example H156E6
A code can often be represented using several different coefficient fields.

> F<w> := GF(5,4);

> K := GF(5,2);

> C := RandomAdditiveCode(F, K, 12, 5);
> C:Minimal;

[12, 2 1/2 : 5] GF(572)-Additive Code over GF(574)
> #C;

9765625

> Alphabet(C);

Finite field of size 574

> CoefficientField(C);

Finite field of size 572

>

> C1 := AdditiveCode(GF(5), C);

> C1:Minimal;

[12, 2 1/2 : 10] GF(5)-Additive Code over GF(574)
> #C1;

9765625

> Alphabet(C1);

Finite field of size 574

> CoefficientField(C1);

Finite field of size 5

156.3.2 Basic Numerical Invariants

Length(C)
Return the block length n of an additive code C.

Dimension(C) |

The (rational) dimension k of C. If the alphabet of C' is F', then the dimension is
defined by the equation #C = (#F).

Note that since any basis of the additive code C' is relative to the coefficient field
K, this dimension is not necessarily equal to the number of generators of C' and is
not even necessarily integral.

Ch. 156 ADDITIVE CODES 5207

NumberOfGenerators (C) |
Ngens (C)

The number of generators of the additive code C. Note that if the coefficient ring
of C' is not the same as its alphabet then this will be different from the dimension
of C.

Given an additive code C, return the number of codewords belonging to C.

| InformationRate (C)

The information rate of the [n, k] code C. This is the ratio k/n.

156.3.3 The Code Space

| GeneratorMatrix(C) |

| BasisMatrix(C) |

The generator matrix for an [n, k(k,)] K-additive code C over F'is a kg, X n matrix
over I, whose k, rows form a basis for C' when considered as vectors over K.

Basis(C)

| Generators(C) |

A basis for the K-additive code C, returned as a sequence of codewords over the
alphabet of C', which generate the code over K.

Given an [n, k(k,)] K-additive code C' and a positive integer 7, 1 < i < kg, return
the i-th element of the current basis of C over K.

156.3.4 The Dual Space

The code that is dual to the code C'. For an additive code C, this is the nullspace
with respect to the trace inner product of the coefficient field.

ParityCheckMatrix (C)

The parity check matrix for the code C, returned as an element of Hom(V, U).

5208 CODING THEORY Part XXII

156.4 Operations on Codewords

156.4.1 Construction of a Codeword

c! [a;, ..., ap]

elt< C | a;, ..., a, >
Given a length n additive code C' with alphabet F', then the codewords of C' lie in
F(")_ Given elements ay, . .., a, belonging to F, construct the codeword (a1,...,an)
of C. A check is made that the vector (ay,...,a,) is an element of C.

C'!'au

Given an additive code C' which is defined as a subset of the F-space V = F(™ and
an element u belonging to V, create the codeword of C corresponding to u. The
function will fail if © does not belong to C.

c!o
The zero word of the additive code C.

| Random(C) |

A random codeword of the additive code C.

156.4.2 Arithmetic Operations on Codewords

u+t+ v

Sum of the codewords u and v, where v and v belong to the same linear code C'.

H

Additive inverse of the codeword u belonging to the linear code C.

u - v

Difference of the codewords u and v, where u and v belong to the same linear code

a *x u

I.Q

Given an element a belonging to the alphabet F', and a codeword u belonging to
the additive code C, return the codeword a * u.

| Normalize (u) |

Normalize a codeword u of an additive code C', returning a scalar multiple of u such
that its first non-zero entry is 1.

Ch. 156 ADDITIVE CODES 5209

156.4.3 Distance and Weight

Distance(u, v)

The Hamming distance between the codewords u and v, where u and v belong to
the same additive code C.

Weight (u)

The Hamming weight of the codeword wu, i.e., the number of non-zero components
of u.

156.4.4 Vector Space and Related Operations

(u, v)

InnerProduct (u, v)

Inner product of the vectors u and v with respect to the Euclidean norm, where «
and v belong to the parent vector space of the code C.

TraceInnerProduct (K, u, v)

Given vectors u and v defined over a finite field L and a subfield K of L, this function
returns the trace of the inner product of the vectors v and v with respect to K.

Support (w)

Given a word w belonging to the [n, k] code C, return its support as a subset of
the integer set {1..n}. The support of w consists of the coordinates at which w has
non-zero entries.

Coordinates(C, u)

Given an [n, k : k4| K-additive code C' and a codeword u of C return the coordinates
of u with respect to the current basis of C'. The coordinates of u are returned as a
sequence QQ = [a1, ..., ak,] of elements from K such that u = a1 *C.14. . .4-ap, *C.ky.

Parent (w) |

Given a word w belonging to the code C, return the ambient space V' of C.

Rotate(u, k)

Given a vector u, return the vector obtained from u by cyclically shifting its com-
ponents to the right by k£ coordinate positions.

Rotate(~u, k)

Given a vector u, destructively rotate u by k coordinate positions.

Trace(u, S)

Trace(u)

Given a vector u with components in K, and a subfield S of K, construct the vector
with components in .S obtained from u by taking the trace of each component with
respect to S. If S is omitted, it is taken to be the prime field of K.

5210 CODING THEORY Part XXII

156.4.5 Predicates for Codewords

ueq v

The function returns true if and only if the codewords u and v belonging to the
same additive code are equal.

u ne v

The function returns true if and only if the codewords v and v belonging to the
same additive code are not equal.

| IsZero(u) |

The function returns true if and only if the codeword u is the zero vector.

156.4.6 Accessing Components of a Codeword

Given a codeword w belonging to the code C' defined over the ring R, return the
i-th component of u (as an element of R).

uli] = x;

Given an element u belonging to a subcode C' of the full R-space V = R", a positive
integer i, 1 < ¢ < n, and an element x of R, this function returns a vector in V'
which is u with its i-th component redefined to be z.

156.5 Subcodes

156.5.1 The Subcode Constructor

| sub< C | L >|

Given a K-additive linear code C over F', construct the subcode of C, generated
(over K) by the elements specified by the list L, where L is a list of one or more
items of the following types:

a) An element of C;

b) A set or sequence of elements of C;

d) A set or sequence of sequences of type (c);

(
(
(c) A sequence of n elements of F', defining an element of C;
(
(e) A subcode of C;

Subcode(C, k)

Given an additive code C' and an integer k, where k is less than the number of
generators of C, then return a subcode of C' with k£ generators.

Ch. 156 ADDITIVE CODES 5211

Subcode(C, S)

Suppose C' is an additive code and S is a set of positive integers, each of which is
less than the number of generators of C. The function returns the subcode of C
generated by the generators of C' indexed by S.

SubcodeBetweenCode (C1, C2, k)

Given an additive code C'; and a subcode C5 of 7, return a subcode of C'; with k
generators containing Cl.

SubcodeWords0fWeight (C, w)

Given a length n additive code C' and an integer which lies in the range [1,n], return
the subcode of C' generated by those words of C' of weight w.

SubcodeWords0fWeight (C, S)

Given a length n additive code C' and a set S of integers, each of which lies in the
range [1,n], return the subcode of C' generated by those words of C' whose weights
lie in S.

Example H156E7

We give an example of how SubcodeBetweenCode may be used to create a code nested in between
a subcode pair.

> F<w> := GF(8);

> Cl1 := AdditiveRepetitionCode(F, GF(2), 6);

> C1;

[6, 1 : 3, 6] GF(2)-Additive Code over GF(2°3)
Generator matrix:

[1 1 1 1 1 1]

[v w w W w w]

w2 w2 w2w?2w2w2]

> C3 := AdditiveZeroSumCode(F, GF(2), 6);

> C3;

[6, 5 : 15, 2] GF(2)-Additive Code over GF(2°3)
Generator matrix:

1 0 0

m

1]
w]
w™2]
1]
W]
w™2]
1]
w]
w™2]
1]
W]
w™2]

)

=

O OO O OO OO ONTSE

)

=
O OO O0OOONSsE » OO

)

=
O ooONg O OO OO

=
N ,r OOOOO OO OoOOo

L e e T e T e T e T e T e B s Y e B
O O O O O O O OO o oo

)

5212 CODING THEORY Part XXII

O 0 ©O 1 1]

0O 0 O w wj

[0O 0 0 O0w2uw?2]

> C1 subset C3;

true

> C2 := SubcodeBetweenCode(C3, C1, 11);

> C2;

[6, 3 2/3 : 11] GF(2)-Additive Code over GF(2°3)
Generator matrix:

[1 0 0 0 1 0]
[w 0] 0 0 W 0]
[w2 0 O0vw2vw2w2]
[O 1 0 0 0 1]
[O W 0 0 0 w]
[Ow2 0 0 0 w2]
[©O 0 1 0 0 1]
[L O 0 w O 0 wl
[O 0 w2 0 0 w™2]
[O 0 0 1 0 1]

[O 0 0 w 0 w]
> (C1 subset C2) and (C2 subset C3);
true

156.5.2 Sum, Intersection and Dual

For the following operators, C' and D are additive codes defined as subsets (or subspaces)
of the same R-space F™.

Given two additive codes which have the same length, which are defined over the
same alphabet, and which have the same coefficient ring F', return the sum of these
two codes with respect to F'.

The intersection of the additive codes C and D.

The code that is dual to the code C. For an additive code C, this is the code
generated by the nullspace of C, relative to the trace inner product.

Ch. 156 ADDITIVE CODES 5213

156.5.3 Membership and Equality

u in C

Return true if and only if the vector u of V' belongs to the additive code C', where
V' is the generic vector space containing C.

| u notin C |

Return true if and only if the vector u does not belong to the additive code C,
where V' is the generic vector space containing C.

| C subset D |

Return true if and only if the wordset of the code C is a subset of the wordset of
the code D. (Either code may possibly be additive).

| C notsubset D |

Return true if and only if the wordset of the code C' is not a subset of the wordset
of the code D. (Either code may possibly be additive).

CeqgD

Return true if and only if the codes C' and D have the same wordsets. (Either code
may possibly be additive).

Return true if and only if the codes C' and D have different wordsets. (Either code
may possibly be additive).

156.6 Properties of Codes

For the following operators, C' and D are codes defined as a subset (or subspace) of the
vector space V.

| IsSelfDual(C) |

Return true if and only if the linear code C is self-dual (or self-orthogonal) (i.e. C
equals the dual of C).

IsSelfOrthogonal (C)

Return true if and only if the linear code C' is self-orthogonal (i.e. C' is contained
in the dual of ().

IsPerfect(C) |

Return true if and only if the linear code C' is perfect; that is, if and only if the
cardinality of C' is equal to the size of the sphere packing bound of C'

IsProjective(C)

Returns true if and only if the (non-quantum) code C'is projective over its alphabet.

5214 CODING THEORY Part XXII

IsAdditiveProjective(C)

Returns true if and only if the additive code C' is projective over its coefficient field.
It is possible that some of the columns may not be independent with respect to the
alphabet of the code.

156.7 The Weight Distribution

156.7.1 The Minimum Weight

An adaptation of the minimum weight algorithm for linear codes (see Section 152.8.1) has
been developed for additive codes by Markus Grassl and Greg White.

From a user’s perspective, the description given in 152.8.1 is sufficient to understand the
additive case. The algorithm is still new, and has yet to be optimised to its full potential.

MinimumWeight (C: parameters)

MinimumDistance (C: parameters)

RankLowerBound RNGINTELT Default : 0
MaximumTime RNGRESUBELT Default : oo

Determine the minimum weight of the words belonging to the code C', which is also
the minimum distance between any two codewords. The parameter RankLowerBound
sets a minimum rank on the informations sets used in the calculation, while the
parameter MaximumTime sets a time limit (in seconds of “user time”) after which
the calculation is aborted.

By setting the verbose flag "Code", information about the progress of the compu-
tation can be printed. An example to demonstrate the interpretation of the verbose
output follows:

> SetVerbose("Code", true);

> SetSeed(1);

> MinimumWeight (RandomAdditiveCode (GF(4),GF(2),82,39));
GF(2)-Additive code over GF(4) of length 82 with 39 generators.
Is not cyclic

Lower Bound: 1, Upper Bound: 64

Constructed 5 distinct generator matrices

Total Ranks: 21 20 20 20 20
Relative Ranks: 21 20 20 20 1
Starting search for low weight codewords... 0.020

Discarding non-contributing rank 1 matrix
Enumerating using 1 generator at a time:

New codeword identified of weight 48, time 0.020

New codeword identified of weight 46, time 0.020

New codeword identified of weight 44, time 0.020

New codeword identified of weight 42, time 0.020

Ch. 156 ADDITIVE CODES

Completed Matrix 1: 1lower = 5, upper
New codeword identified of weight 41,
Completed Matrix 2: 1lower = 6, upper
Completed Matrix 3: lower 7, upper
New codeword identified of weight 40,
Completed Matrix 4: 1lower = 8, upper
Enumerating using 2 generators at a time:
New codeword identified of weight 37,
Completed Matrix 1: 1lower = 9, upper
Completed Matrix 2: Ilower 10, upper
Completed Matrix 3: 1lower = 11, upper
New codeword identified of weight 36,
Completed Matrix 4: 1lower = 12, upper
Enumerating using 3 generators at a time:
New codeword identified of weight 34,
Completed Matrix 1: 1lower = 13, upper
New codeword identified of weight 33,
Completed Matrix 2: 1lower = 14, upper
Completed Matrix 3: 1lower = 15, upper
Completed Matrix 4: 1lower = 16, upper
Enumerating using 4 generators at a time:
New codeword identified of weight 32,
Completed Matrix 1: 1lower = 17, upper
Completed Matrix 2: 1lower = 18, upper
Completed Matrix 3: 1lower = 19, upper
Completed Matrix 4: 1lower = 20, upper
Termination predicted with 7 generators at
Enumerating using 5 generators at a time:
Completed Matrix 1: Ilower = 21, upper
Completed Matrix 2: lower = 22, upper
Completed Matrix 3: 1lower = 23, upper
Completed Matrix 4: 1lower = 24, upper

Termination predicted at 118 s (1 m 57 s) with 7

Enumerating using 6 generators at a time:
Completed Matrix 1: 1lower = 25, upper

Completed Matrix 2: 1lower = 26, upper
Completed Matrix 3: 1lower = 27, upper
Completed Matrix 4: 1lower = 28, upper

Termination predicted at 114 s (1 m 54 s) with 7

Enumerating using 7 generators at a time:

Completed Matrix 1: 1lower = 29, upper =

Completed Matrix 2: 1lower = 30, upper
Completed Matrix 3: 1lower = 31, upper
Completed Matrix 4: 1lower = 32, upper

= 42, Time
time 0.030
= 41. Time
= 41. Time
time 0.040
= 40. Time
time 0.050
= 37. Time
= 37. Time
= 37. Time
time 0.060
= 36. Time
time 0.070
= 34. Time
time 0.080
= 33. Time
= 33. Time
= 33. Time
time 0.120
= 32. Time
= 32. Time
= 32. Time
= 32. Time
matrix 4

= 32. Time
= 32. Time
= 32. Time
= 32. Time

= 32. Time
= 32. Time
= 32. Time
= 32. Time

32. Time
= 32. Time
= 32. Time
= 32. Time

SO

SO
SO

510}

So
SO
510}

SO

SO

SO
SO
510}

SO
510}
SO
SO

SO
SO
SO
SO

SO
So
510}
SO

So
510}
SO
SO

far:

far:
far:

far:

far:
far:
far:

far:

far:

far:
far:
far:

far:
far:
far:
far:

far:
far:
far:
far:
generators at matrix 4

far:
far:
far:
far:
generators at matrix 4

far:
far:
far:
far:

0.030

0.030
0.040

0.040

0.050

0.050

0.060

0.060

0.070

0.090
.100
0.110

o

.170
.250
.320
.390

O O O O

.960
.570
.160
. 750

NN+~ O

6.680

10.969
15.149
19.440

41.739
66.239
90.780
115.510

9215

5216 CODING THEORY Part XXII

Final Results: lower = 32, upper = 32, Total time: 115.510
32

Verbose output can be invaluable in the case of lengthy minimum weight calculations.

The algorithm constructs different (equivalent) generator matrices, each of which has
pivots in different column positions of the code, called its information set. The relative
rank of a generator matrix is the size of its information set independent of the previously
constructed matrices.

When enumerating all generators taken r at a time, once r exceeds the difference
between the total rank of a matrix, and its relative rank, the lower bound on the minimum
weight will be incremented by 1 for that step.

The upper bound on the minimum weight is determined by the minimum weight of
codewords that are enumerated. As soon as these bounds become equal, the computation
is complete.

Example H156E8

We illustrate the much greater efficiency of the minimum weight algorithm compared to computing
the full weight distribution.

> SetVerbose("Code",true);

> C := RandomAdditiveCode(GF(9),GF(3),39,25);

> MinimumWeight (C) ;

GF(3)-Additive code over GF(9) of length 39 with 25 generators. Is not cyclic
Lower Bound: 1, Upper Bound: 28

Constructed 4 distinct generator matrices

Total Ranks: 13 13 13 13
Relative Ranks: 13 13 12 1
Starting search for low weight codewords... 0.009

Discarding non-contributing rank 1 matrix
Enumerating using 1 generator at a time:
New codeword identified of weight 25, time 0.009
New codeword identified of weight 23, time 0.009
New codeword identified of weight 21, time 0.009
Completed Matrix 1: 1lower = 3, upper = 21. Time so far: 0.009
Completed Matrix 2: 1lower = 4, upper = 21. Time so far: 0.009
Completed Matrix 3: 1lower = b5, upper = 21. Time so far: 0.009
Enumerating using 2 generators at a time:
New codeword identified of weight 20, time 0.009
New codeword identified of weight 19, time 0.009
New codeword identified of weight 18, time 0.009
Completed Matrix 1: 1lower = 6, upper 18. Time so far: 0.009
Completed Matrix 2: 1lower = 7, upper = 18. Time so far: 0.019
Completed Matrix 3: Ilower 8, upper = 18. Time so far: 0.019
Enumerating using 3 generators at a time:
New codeword identified of weight 17, time 0.070
Completed Matrix 1: 1lower = 9, upper = 17. Time so far: 0.089
Completed Matrix 2: 1lower = 10, upper = 17. Time so far: 0.149

o

o

Ch. 156 ADDITIVE CODES 5217

Completed Matrix 3: 1lower = 11, upper 17. Time so far: 0.210
Enumerating using 4 generators at a time:
Completed Matrix 1: 1lower = 12, upper = 17. Time so far: 1.379
Completed Matrix 2: 1lower = 13, upper 17. Time so far: 2.539
Completed Matrix 3: Ilower 14, upper 17. Time so far: 3.719
Termination predicted at 49 s with 5 generators at matrix 3
Enumerating using 5 generators at a time:
Completed Matrix 1: 1lower = 15, upper = 17. Time so far: 19.409
Completed Matrix 2: 1lower = 16, upper = 17. Time so far: 35.019
Completed Matrix 3: Ilower 17, upper = 17. Time so far: 50.649
Final Results: lower = 17, upper = 17, Total time: 50.649
17
> time WeightDistribution(C);
[<0, 1>, <17, 2>, <18, 58>, <19, 496>, <20, 4000>, <21, 29608>, <22, 194760>,
<23, 1146680>, <24, 6126884>, <25, 29400612>, <26, 126624092>, <27, 487889854>,
<28, 1672552654>, <29, 5075315756>, <30, 13534236754>, <31, 31434430104>, <32,
62869109200>, <33, 106686382216>, <34, 150616653852>, <35, 172132748756>, <36,
1563007413552>, <37, 99247655566>, <38, 41788710876>, <39, 8571983110>]
Time: 224142.820

156.7.2 The Weight Distribution

WeightDistribution(C)

This function determines the weight distribution for the code C'. The distribution
is returned in the form of a sequence of tuples, where the i-th tuple contains the
i-th weight, w; say, and the number of codewords having weight w;.

DualWeightDistribution(C)

The weight distribution of the code which is dual to the additive code C (see
WeightDistribution).

156.7.3 The Weight Enumerator

WeightEnumerator (C)

The (Hamming) weight enumerator We(x,y) for the additive code C. The weight
enumerator is defined by

WO(%’,Z/) _ Z xn—wt(u)ywt(u)‘

ueC

CompleteWeightEnumerator(C)

The complete weight enumerator We (2o, . . ., 24—1) for the additive code C' where ¢ is
the size of the alphabet E of C'. Let the g elements of E be denoted by wy, ... ,wy—1.

5218 CODING THEORY Part XXII

If F is a prime field, we let w; be i (i.e. take the natural representation of each
number). If F is a non-prime field, we let wy be the zero element of E and let w; be
a’~!fori=1...qg—1 where « is the primitive element of . Now for a codeword u
of C, let s;(u) be the number of components of u equal to w;. The complete weight
enumerator is defined by

Welzo,- 0 2g-1) = Y 200 L zg_q),
ueC

CompleteWeightEnumerator(C, u)

The complete weight enumerator Weyy, (20, - . . , 24—1) for the coset C + u, where u
is an element of the generic vector space for the code C.

156.7.4 The MacWilliams Transform

MacWilliamsTransform(n, k, q, W)

Let C' be a hypothetical [n,k| linear code over a finite field of cardinality g.
Let W be the weight distribution of C' (in the form as returned by the function
WeightDistribution). This function applies the MacWilliams transform to W to
obtain the weight distribution W’ of the dual code of C'. The transform is a combi-
natorial algorithm based on n, k, ¢ and W alone. Thus C' itself need not exist—the
function simply works with the sequence of integer pairs supplied by the user. Fur-
thermore, if W is not the weight distribution of an actual code, the result W’ will
be meaningless and even negative weights may be returned.

156.7.5 Words

The functions in this section only apply to codes over finite fields.

Words(C, w: parameters)

Cutoff RNGINTELT Default : oo
StoreWords BooLELT Default : true

Given a linear code C defined over a finite field, return the set of all words of C'
having weight w. If Cutoff is set to a non-negative integer c¢, then the algorithm
will terminate after a total of ¢ words have been found. If StoreWords is true then
the words generated will be stored internally.

NumberOfWords (C, w)

Given a linear code C defined over a finite field, return the number of words of C'
having weight w.

Ch. 156 ADDITIVE CODES 5219

Words0fBoundedWeight (C, 1, u: parameters)

Cutoff RNGINTELT Default : oo
StoreWords BooLELT Default : true

Given a linear code C defined over a finite field, return the set of all words of C'
having weight between [and u, inclusive. If Cutoff is set to a non-negative integer
¢, then the algorithm will terminate after a total of ¢ words have been found. If
StoreWords is true then any words of a single weight generated will be stored
internally.

156.8 Families of Linear Codes

156.8.1 Cyclic Codes

While cyclic linear codes are always generated by a single generating polynomial (vector),
this is not the case for additive codes. Cyclic additive codes may be created in MAGMA
using either a single generator, or a sequence of generators.

In the important case of GF(2)-additive vectors over GF4, all cyclic codes can be
described in terms of two generators with one generator taken over GF'(4) and the other
over GF'(2). A special function is provided for this construction.

AdditiveCyclicCode(v)

AdditiveCyclicCode (K, v)

AdditiveCyclicCode(Q)

AdditiveCyclicCode (K, Q)

Given either a single vector v or sequence of vectors () over some finite field F,
return the K-additive code over F' generated by all shifts of the inputs. The field
K must be a subfield of F' and if it is the prime subfield of F', it may be omitted.

AdditiveCyclicCode(n, f)

AdditiveCyclicCode(K, n, f)

AdditiveCyclicCode(n, Q)

AdditiveCyclicCode(K, n, Q)

Given either a single polynomial f or sequence) of polynomials over some finite
field F', return the K-additive code of length n over F' generated by all shifts of the
inputs. The field K must be a subfield of F', and if it is the prime subfield of F', it
may be omitted.

5220 CODING THEORY Part XXII

AdditiveCyclicCode(v4, v2)

Given two vectors of equal length n, where vy is over GF(4) and vy is over GF(2),
return the Fhr—additive code generated by all of their cyclic shifts. Note that for
the case of GF(2)-additive codes over GF'(4), two generators suffice to generate any
such code.

AdditiveCyclicCode(n, f4, £2)

Given two polynomials f4 and fo, where fy is over GF(4) and f5 is over GF(2),
return the Fy—additive code of length n generated by all of their cyclic shifts. The
degree of the polynomials f; and fo must not exceed n—1. Note that for the case of
GF(2)-additive codes over GF'(4), two generators suffice to generate any such code.

156.8.2 Quasicyclic Codes

Quasicyclic codes are a generalisation of cyclic codes. In MAGMA quasicyclic codes consist
of horizontally joined cyclic blocks.

AdditiveQuasiCyclicCode(n, Q)

AdditiveQuasiCyclicCode(X, n, Q)

Given an integer n, and a sequence () of polynomials over some finite field F,
return the K—additive quasicyclic code, whose cyclic blocks are generated by the
polynomials in (). The field K must be a subfield of F', and if it is the prime subfield
of F, it may be omitted.

AdditiveQuasiCyclicCode(n, Q, h)

AdditiveQuasiCyclicCode(K, n, Q, h)

Given an integer n, and a sequence () of polynomials over some finite field F', and
an integer h, then return the K—additive quasicyclic code, whose cyclic blocks are
generated by the polynomials in) and stacked 2-dimensionally of height h. The
field K must be a subfield of F, and if it is the prime subfield of F', it may be
omitted.

AdditiveQuasiCyclicCode(Q)

AdditiveQuasiCyclicCode (X, Q)

Given a sequence @) of vectors over some finite field F', then return the K—additive
quasicyclic code, whose cyclic blocks are generated by the vectors in). The field
K must be a subfield of F', and if it is the prime subfield of F, it may be omitted.

AdditiveQuasiCyclicCode(Q, h)

AdditiveQuasiCyclicCode (K, Q, h)

Given a sequence @ of vectors over some finite field F', and an integer h, then return
the K—additive quasicyclic code, whose cyclic blocks are generated by the vectors
in @ and stacked 2-dimensionally of height h. The field K must be a subfield of F’,
and if it is the prime subfield of F', it may be omitted.

Ch. 156 ADDITIVE CODES 5221

156.9 New Codes from Old

The operations described here produce a new code by modifying in some way the codewords
of a given code.

156.9.1 Standard Constructions

AugmentCode (C)

Construct a new additive code by including the all-ones vector with the words of
the additive code C.

CodeComplement (C, S)

Given a subcode S of the code C, return a code C’ such that C' = S + C’. Both C
and S must be defined over the same field.

DirectSum(C, D)

Given codes C' and D, form the code that is direct sum of C' and D. The direct sum
consists of all vectors u|v, where u € C' and v € D.

DirectSum(Q)

Given a sequence of codes Q = [C1,...,C,], all defined over the same field F,
construct the direct sum of the Cj.

DirectProduct(C, D)

Given an [nq, k1] code C and an [ng, ka] code D, both over the same ring R, construct
the direct product of C'and D. The direct product has length n-ny and its generator
matrix is the Kronecker product of the basis matrices of C' and D.

ExtendCode (C) |

Given an [n,k,d] additive code C, form a new code C’ from C by adding the
appropriate extra coordinate to each vector of C' such that the sum of the coordinates
of the extended vector is zero.

ExtendCode(C, n)

Return the code obtained by extending the code C' extended n times.

PadCode(C, n)
Add n zeros to the end of each codeword of the code C.

PlotkinSum(C1, C2)

Given codes C7 and (5 defined over the same alphabet, return the code consisting
of all vectors of the form u|u 4+ v, where u € C'1 and v € C2. Zeros are appended
where needed to make up any length differences in the two codes.

5222

CODING THEORY Part XXII

PlotkinSum(C1, C2, C3: parameters)

a

FLDFINELT Default : —1

Given three codes (', Cs and ('35 defined over the same alphabet K, return the code
consisting of all vectors of the form u|u+ a*v|u+ v+ w, where u € C1, v € C2 and
w € (3. The default value of the multiplier a is a primitive element of K. Zeros
are appended where needed to ensure that every codeword has the same length.

PunctureCode(C, i)

Given an [n, k] code C, and an integer i, 1 < i < n, construct a new code C’ by
deleting the i-th coordinate from each code word of C.

PunctureCode(C, S)

Given an [n, k] code C and a set S of distinct integers {iy,---,i,} each of which lies
in the range [1,n], construct a new code C’ by deleting the components i1, - - -, i,
from each code word of C.

ShortenCode(C, i)

Given an [n, k| code C and an integer ¢, 1 < ¢ < n, construct a new code from C
by selecting only those codewords of C' having a zero as their i-th component and
deleting the ¢-th component from these codewords. Thus, the resulting code will
have length n — 1.

ShortenCode(C, S)

Given an [n, k] code C and a set S of distinct integers {i1, - - -, i, }, each of which lies
in the range [1,n], construct a new code from C' by selecting only those codewords
of C' having zeros in each of the coordinate positions iq,---,%,, and deleting these

components. Thus, the resulting code will have length n — r.

156.9.2 Combining Codes

| C1 cat C2 |

Given codes C'1 and C'2, both defined over the same field K, return the concatenation
C of C'1 and C2. The generators of the resultant code are the concatenations of the
generators of C'1 and C2.

Juxtaposition(Cl, C2)

Given an [ny, k,d;] code C1 and an [nq, k, d3] code C2 of the same dimension, where
both codes are defined over the same field K, this function returns a [ny + no, k, >
dy + ds] code whose generator matrix is HorizontalJoin(A, B), where A and B
are the generator matrices for codes C'1 and C'2, respectively.

Ch. 156 ADDITIVE CODES 5223

156.10 Automorphism Group

AutomorphismGroup (C)

The automorphism group of the additive code C. Currently, this function is only
available for additive codes over GF'(4).

PermutationGroup(C)

The subgroup of the automorphism group of the additive code C' consisting of per-

mutations of the coordinates. Currently, this function is only available for additive
codes over GF(4).

157 QUANTUM CODES

157.1 Introduction 5227

157.2 Constructing Quantum Codes 5229
157.2.1 Construction of General Quantum

Codes 5229
QuantumCode (S) 5229
QuantumCode (M) 5232
QuantumCode (G) 5233
RandomQuantumCode (F, n, k) 5233
Subcode(Q, k) 5234
157.2.2 Construction of Special Quantum

Codes5234
Hexacode () 5234
Dodecacode () 5234
157.2.3 CSSCodes 5234
CSSCode(C1, C2) 5234
CalderbankShorSteaneCode(C1, C2) 5234
157.2.4 Cyclic Quantum Codes. 5235
QuantumCyclicCode (v) 5235
QuantumCyclicCode (Q) 5235
QuantumCyclicCode(n, f) 5236
QuantumCyclicCode(n, Q) 5236
QuantumCyclicCode (v4, v2) 5237
157.2.5 Quasi-Cyclic Quantum Codes . . 5238
QuantumQuasiCyclicCode(n, Q) 5238
QuantumQuasiCyclicCode(Q) 5238
157.3 Access Functions 5239
QuantumBasisElement (F) 5239
StabilizerCode (Q) 5239
StabiliserCode(Q) 5239
StabilizerMatrix(Q) 5239
StabiliserMatrix(Q) 5239
NormalizerCode(Q) 5239
NormaliserCode(Q) 5239
NormalizerMatrix(Q) 5239
NormaliserMatrix(Q) 5239
157.3.1 Quantum Error Group 5240
QuantumErrorGroup(p, n) 5240
QuantumBinaryErrorGroup (n) 5240
QuantumErrorGroup (Q) 5241
StabilizerGroup(Q) 5241
StabiliserGroup(Q) 5241
StabilizerGroup(Q, G) 5241
StabiliserGroup(Q, G) 5241
157.4 Inner Products and Duals . 5242
SymplecticInnerProduct(vl, v2) 5242
SymplecticDual(C) 5242
IsSymplecticSelfDual(C) 5243

IsSymplecticSelfOrthogonal (C) 5243

157.5 Weight Distribution and Mini-

mum Weight

WeightDistribution(Q)
MinimumWeight (Q)
IsPure(Q)

157.6 New Codes From Old

DirectSum(Q1, Q2)
ExtendCode (Q)
ExtendCode(Q, m)
PunctureCode(Q, i)
PunctureCode(Q, I)
ShortenCode(Q, i)
ShortenCode (Q, I)

157.7 Best Known Quantum Codes

QECC(F, n, k)
BKQC(F, n, k)
BestKnownQuantumCode(F, n, k)

157.8 Best Known Bounds .

QECCLowerBound (F, n, k)
QECCUpperBound (F, n, k)

157.9 Automorphism Group

AutomorphismGroup(Q)
PermutationGroup (Q)

157.10 Hilbert Spaces

HilbertSpace(F, n)
Field(H)
Number0fQubits (H)
Nqubits (H)

Dimension(H)
IsDenselyRepresented (H)
eq

ne

157.10.1 Creation of Quantum States

QuantumState(H, v)
QuantumState(H, v)

!

!
SetPrintKetsInteger (b)

157.10.2 Manipulation of Quantum States

*

+

Normalisation(e)
Normalisation(~e)
Normalization(e)
Normalization(~e)
NormalisationCoefficient (e)
NormalizationCoefficient (e)

5244

5244
5245
5246

5247

5247
5247
5247
5247
5247
5247
5247

5248

5249
5249
5249

5251

5251
5251

5252

5252
5252

5254

5254
5254
5254
5254
5254
5254
5254
5254

. 5255

5255
5255
5255
5255
5255

5257

5257
5257
5257
5257
5257
5257
5257
5257
5257
5257

5226 CODING THEORY

eq 5257
ne 5257
157.10.3 Inner Product and Probabilities of
Quantum States. 5258
InnerProduct(el, e2) 5258
ProbabilityDistribution(e) 5258
Probability(e, i) 5258
Probability(e, v) 5258
PrintProbabilityDistribution(e) 5258

PrintSortedProbabilityDistribution(e) 5259

157.10.4 Unitary Transformations on Quan-
tum States 5261

BitFlip(e, k) 5261

BitFlip(~e, k)
BitFlip(e, B)
BitFlip(~e, B)
PhaseFlip(e, k)
PhaseFlip(~e, k)
PhaseFlip(e, B)
PhaseFlip(~e, B)
ControlledNot(e, B, k)
ControlledNot(~e, B, k)
HadamardTrasformation(e)
HadamardTrasformation(~e)

157.11 Bibliography

Part XXII

5261
5261
5261
5261
5261
5261
5261
5261
5261
5261
5261

5262

Chapter 157
QUANTUM CODES

157.1 Introduction

Interest in quantum computing has grown rapidly following the discovery by Peter Shor
in 1994 of a polynomial-time algorithm for integer factorization [Sho94]. In a classical
computer a sequence of N binary digits defines one specific configuration among the 2V
possible values. However, in a quantum computer a collection of N “qubits” has a state
function (in ‘ket’ notation) |¢) in a Hilbert space, which can be in a superposition of all
2N possible values

W)= > aulv), aveC, Y jaP=1

vezg

A basic theorem in quantum information theory states that it is impossible to clone a
quantum state. Since this implies that it is not possible to copy quantum information, it
was initially believed that error-correction would be impossible on a quantum computer.
However, in 1995 Shor showed that it was possible to encode quantum information in
such a way that errors can be corrected, assuming an error model in which errors occur
independently in distinct qubits [Sho95].

Following this discovery, an class of quantum error-correcting codes known as stabi-
lizer codes were developed. In [CRSS98| (which is the major reference for this chapter of
the MAacMA Handbook), it was shown that stabilizer codes can be represented in terms
of additive codes over finite fields (see chapter 156 for a description of additive codes).
This remarkable result reduces the problem of constructing fault-tolerant encodings on a
continuous Hilbert space to that of constructing certain discrete codes, allowing the use of
many of the tools developed in classical coding theory.

The current MAGMA package for quantum codes deals exclusively with finite field rep-
resentations of stabilizer codes. It is important to keep in mind that, although a quantum
code is represented by a code over a finite field, an actual quantum code is in fact a totally
different object. The full theory behind quantum stabilizer codes will not be described
here, for that the reader should consult the main reference [CRSS98]. A brief synopsis will
outline how the finite field representation of a stabilizer code is to be interpreted, and the
specifics of this representation in MAGMA.

Many of the conventions and functions for classical error-correcting code types in
MAGMA can be ambiguous in the context of quantum codes. For this reason the handbook
should be carefully consulted before assuming that any particular aspect of a quantum
code follows naturally from classical coding theory definitions.

The reduction of the problem of continuous errors on a Hilbert space to a problem
employing a discrete finite field representation is achieved by confining attention to a

5228 CODING THEORY Part XXII

finite error group. An element of the error group, acting on the N qubits, is expressed
as a combination of bit flip errors, designated by the operator X, and phase shift errors,
designated by the operator Z (as well as an overall phase factor that will be ignored here):

X(@)Z(b)lv) = (=1)""|v +a)

The error group is given by the set {X (a)Z(b) : a,b € Z7} and its elements can be written
as length 2N binary vectors (a|b). An error represented by such a vector in MAGMA is
said to be in extended format which is distinct from the default representation. A more
common (and practical) representation is as the element w of FiN) given by w = a + wb,
where w is a primitive element of GF'(4). This representation is referred to as the compact
format, and is the default format used in MAGMA for quantum codes. Note that this is
slightly different to the representation w = wa + wb used in [CRSS98] for binary quantum
codes, but they are equivalent: w = W * w.

The MAGMA package also supports non-binary quantum codes, which are obtained by
generalizing from the binary case in a natural way. For quantum codes based on qubits
over GF(q), the compact format in GF(¢?) will be w = a+ Ab, where) is a fixed element
returned by the function QuantumBasisElement(GF(q?)).

A symplectic inner product is defined on the group of errors, in its representation as a
set of GF'(q)-vectors. For vectors in extended format this is defined by

(a1|by) * (az|bz) =a; -by —az - by
In compact format (over GF'(4)) the equivalent inner product is defined by
w1 *x wy = Trace(wy - Wa).
Since the commutator of two errors is given by
|(X(a1)Z(b1)) (X (a2) Z (b2)) — (X (a2) Z(bo)) (X (1) Z (b1)) | |v)
(—1)vPer R by gy 4 ap) + (—1)VPEVERD Py Ay 4+ ay)
(1t — (] Py)

|:1 - 6a1-b2,a2~b1] T

then clearly errors will commute if and only if their finite field representations are orthog-
onal with respect to the symplectic inner product.

A quantum stabilizer code is defined by an abelian subgroup of the error group. In
the context of its finite field representation this translates to a self-orthogonal additive
code under the symplectic inner product. So a quantum stabilizer code @) is defined by a
symplectic self-orthogonal additive code S, which is (with some redundancy) termed the
stabilizer code of Q.

Ch. 157 QUANTUM CODES 5229

The error-correcting capability of a code is determined by the set of errors which can
not be detected. For classical linear codes these undetectable errors are precisely the non-
zero codewords of the code, while for a quantum code, the undetectable errors are given
by the set S+\.S, where S+ is the symplectic dual of S.

The most important measure of the ability of a quantum code to correct errors is its
minimum weight, that is, is the minimum of the weights of the words of S+\S. An excep-
tion to this definition occurs in the case of quantum codes having dimension zero, which
are defined by symplectic self-dual stabilizer codes. These are termed “self-dual quantum
codes” and are defined to have a minimum weight equal to the (classical) minimum weight
of their stabilizer code.

157.2 Constructing Quantum Codes

A quantum code of length n over GF(q) is defined in terms of a symplectic self-orthogonal
stabilizer code, which is given either as a length n additive code over GF(¢?) (compact
format) or as a length 2n additive code over GF'(q) (extended format). If @ is a quantum
code with generator matrix G; in compact format, and generator matrix Go = (A|B) in
extended format, then

G, =A+)\B,

where) is a fixed element returned by the function QuantumBasisElement(GF(q¢?)). By
default MAGMA assumes the compact format. However, the extended format can be flagged
by setting the variable argument ExtendedFormat to true.

An [n, k] symplectic self-orthogonal linear code over GF(q¢?) will generate an [[n,n/2 —
k]] quantum stabilizer code. A (compact format) additive symplectic self-orthogonal code
C over GF(¢?) will give a quantum code of the same length and “dimension” log,(N),
where N is the number of code words in C.

157.2.1 Construction of General Quantum Codes

QuantumCode (S)

ExtendedFormat BooLELT Default : false

Given an additive code S which is self-orthogonal with respect to the symplectic
inner product, return the quantum code defined by S. By default, S is interpreted
as being in compact format, that is, a length n additive code over GF(q?). If
ExtendedFormat is set true, then S is interpreted as being in extended format, that
is, a length 2n additive code over GF(q).

Example H157E1

A linear code over GF'(4) that is even is symplectic self-orthogonal. Note that when a quantum
code is printed in Macma, an additive stabilizer matrix over GF(¢?) is displayed.

> F<w> := GF(4);
> M := Matrix(F, 2, 6, [1,0,0,1,w,w, 0,1,0,w,w,1]);

5230 CODING THEORY

> C := LinearCode(M);

> C;

[6, 2, 4] Linear Code over GF(2°2)
Generator matrix:

[1 0O 0 1 w w]

[0O 1 0 w w 1]

> IsEven(C);

true

> IsSymplecticSelfOrthogonal(C);
true

> Q := QuantumCode(C);

> Q;

[[6, 2]] Quantum code over GF(272), stabilized by:

Example H157E2

[1 0 0 1 w w]
[w 0 0 ww?2w?2]
[0o 1 0 w w 1]
[0 w Ow2w2 wl
> MinimumWeight (Q) ;

1

> Q;

[[6, 2, 1]1] Quantum code over GF(2°2), stabilized by:
[1 0 0 1 W w]
[w 0 0 ww2uw2l
[O 1 0 w w 1]
[0O w Ow2w2 wl

Part XXII

Any stabilizer code used to construct a quantum code, may be expressed in either compact or
extended format. The length 6 quaternary additive code S in the previous example (H157E1) is

equivalent to a length 12 binary additive code in extended format.
Note that the code will still be displayed in compact format.

> F<w> := GF(4);
> C := LinearCode<GF(2), 12 |

> [1, 0, 0, 0, O, 1, 1, 1, 0, O, 1, 11,
> o, 1,0, 0,0,1, 0, 0, 0,1, 1, 01,
> [o,o0,o0,1, 0,1, 1,1, 0, 0, 0, 01,
> [0, 0,0,0,1,1, 1,0, 0, 1, 1, 11 >;
> C;

[12, 4, 4] Linear Code over GF(2)
Generator matrix:

[T0OO0O0OO0O1110011]
[01 000100011 0]
[O0O010111000 0]
[b0O0O0O11100111]
> Q := QuantumCode(C : ExtendedFormat := true);

> Q;

Ch. 157 QUANTUM CODES 5231

[6, 2]] Quantum code over GF(272), stabilized by:
0 0 1 W W]
0 0 ww2vw2]
1 0 w w 1]
W

[
[
[
[
[0O w2 w?2 wl

O O 5 =

Example H157E3

Any self-orthogonal code which has a rate of 1/2 must be self-dual, and gives rise to a dimension
zero quantum code (which is also termed self-dual). In this example we construct the hexacode,
which is the unique extremal length 6 self-dual quantum code of minimum weight 4.

> F<w> := GF(4);

>M := Matrix(F, 3, 6, [0,0,1,1,1,1, 0,1,0,1,w,w"2, 1,0,0,1,w"2,w]);
> C := LinearCode(M);

> C;

[6, 3, 4] Linear Code over GF(2°2)
Generator matrix:

[1 0 0 1 w2 W]

[0 1 0 1 ww2]

[0O 0 1 1 1 1]

> IsSymplecticSelfOrthogonal (C) ;
true

> Q := QuantumCode(C);

> MinimumWeight (Q) ;

4

> Q;

[[6, 0, 4]] self-dual Quantum code over GF(272), stabilized by:
[1 0 0 1 w2 W]

[w 0 0 w 1w2]

[L 0o 1 0 1 ww?2]

[0O w 0 ww2 1]

[O 0 1 1 1 1]

[0 0 w w w wj

Example H157E4

Stabilizer codes neither have to be linear nor even and indeed any additive code which is symplectic
self-orthogonal will generate a quantum code. The following code was randomly generated.

> F<w> := GF(4);

> M := Matrix(F, 3, 7, [1,w,w,w,0,0,1, w,0,1,0,w"2,0,1, O,w"2,w,w 2,w,0,0]);
> C := AdditiveCode(GF(2),M);

> C;

[7, 1 1/2 : 3, 4] GF(2)-Additive Code over GF(2°2)

Generator matrix:

[1 w w w O 0 1]

[w 0 1 0 w™2 0 1]

5232 CODING THEORY Part XXII

[Ow?2 ww?2 w 0 0]
> IsSymplecticSelfOrthogonal(C);
true

The code C can be shown to be neither linear nor even: in fact it has the same number of even
and odd codewords.

> IsLinear(C);

false

> {* Weight(v) mod 2 : v in C *};
{* 0°~4, 1~4 %}

>

> Q := QuantumCode(C);

> MinimumWeight (Q) ;

1

> Q;

[[7, 4, 11] Quantum code over GF(2°2), stabilized by:
[1 w w w O 0 1]

[w 0 1 0 w™2 0 1]

[Ow2 ww2 w O 0]

QuantumCode (M)

ExtendedFormat BooLELT Default : false

Given a matrix M over GF(q?) for which the GF(q) additive span of its rows is
a self-orthogonal code S with respect to the symplectic inner product, return the
quantum code defined by S. By default, M is interpreted as being in compact
format, that is, a matrix whose rows are length n vectors over GF(q?). However,
if ExtendedFormat is set true, then M will be interpreted as being in extended
format, that is, a matrix whose rows are length 2n vectors over GF(q).

Example H157E5

A quantum code can be constructed directly from an additive stabilizer matrix, thereby avoiding

creation of the stabilizer code. The quantum code given in example H157E4 could have also been
constructed as follows:

> F<w> := GF(4);

>M := MatriX(F, 3’ 7, [1’WaW,W,O’O’1’ W,O,l,O,Wﬁ2,0,1, O’WA2’W’WA2’W’O’O]);
> Q := QuantumCode (M) ;
> Q;

[[7, 4]] Quantum code over GF(272), stabilized by:
[1 w w w O 0 1]
[w 0 1 0 w™2 0 1]
[Ow2 ww2 w O 0]

Ch. 157 QUANTUM CODES 5233

QuantumCode (G)

Given a graph G, return the self-dual (dimension 0) quantum code defined by the
adjacency matrix of G.

Example H157E6

The unique extremal [[6, 0, 4]] hexacode can be defined in terms of a graph representing a 5—spoked
wheel. The graph is specified by listing the edges comprising its circumference, followed by the
spokes radiating out from the center.

> G := Graph<6 | {1,2},{2,3},{3,4},{4,5},{5,1}, <6, {1,2,3,4,5}> >;
> Q := QuantumCode(G);

> Q:Minimal;

[[6, 0]] self-dual Quantum code over GF(2°2)

> MinimumWeight (Q) ;

4

> Q:Minimal;

[[6, 0, 4]] self-dual Quantum code over GF(2°2)

Example H157E7

The unique extremal [[12,0, 6]] dodecacode can also be described by a graph with a nice math-
ematical structure. The graph construction is derived from the diagram given by Danielson in
[Dan05]. In order to employ modular arithmetic, the graph vertices are numbered from 0 to 11.

>SS :={@ i : iin [0 .. 11] @};

> G := Graph<S |

> { {4xk+i,4xk+i+2} : i in [0..1], k in [0..2] },
> { {4xk+i,4%k+(i+1) mod 4} : i in [0..3], k in [0..2] },
> { {4%k+i,4*%((k+1) mod 3)+(i+1) mod 4} : i imn [0..3], k in [0..2] } >;
> Q := QuantumCode(G);

> MinimumWeight (Q) ;

6

> Q:Minimal;

[[12, 0, 6]] self-dual Quantum code over GF(2°2)

RandomQuantumCode(F, n, k)

Let F' be a degree 2 extension of a finite field GF(q). Given positive integers n and
k such that n > k, this function returns a random [[n, k]| quantum stabilizer code
over I'. The field F' is assumed to be given in compact format.

5234 CODING THEORY Part XXII

Example H157ES8

We construct a random [[10, 6]] quantum code over GF'(4).

> F<w> := GF(4);

> Q := RandomQuantumCode(F, 10, 6);

> Q;

[[10, 6]] Quantum code over GF(2°2), stabilized by:
[w 0 0 w 1 1 ww?2 ww2l

W 1 w2 w2 1 w Wl

1 1 0 w2 0 0 0]
1

[O 1 0
[0 w 1
[O 0 w 1 0 1 w2 1 w)

Subcode(Q, k)

Given a quantum code @ of dimension kg > k then return a subcode of @ of
dimension k.

157.2.2 Construction of Special Quantum Codes

| Hexacode () |

Return the [[6, 0, 4]] self-dual quantum hexacode.

| Dodecacode () |

Return the [[12, 0, 6]] self-dual quantum dodecacode.

157.2.3 CSS Codes

CSSCode(C1, C2)

CalderbankShorSteaneCode(C1, C2)

Given two classical linear binary codes C7 and C5 of length n such that Cs is a
subcode of C7, form a quantum code using the construction of Calderbank, Shor
and Steane [CS96, Ste96a, SteI6b].

Ch. 157 QUANTUM CODES 5235

Example H157E9

Let Ci denote the [7,4, 3] Hamming code and C5 denote its dual. Observing that C contains Cs,
we may apply the CSS construction using C; and C2 to obtain a [[7, 1, 3]] code.

> F<w> := GF(4);

> C1 := HammingCode(GF(2), 3);

> C1;

[7, 4, 3] "Hamming code (r = 3)" Linear Code over GF(2)
Generator matrix:

[100O0110]

[01 0001 1]

[001011 1]

[000110 1]

> C2 := Dual(Cl);

> C2;

[7, 3, 4] Cyclic Linear Code over GF(2)
Generator matrix:

[100101 1]

[0101110]

[001011 1]

> C2 subset Ci;

true

> @ := CSSCode(C1, C2);

> MinimumWeight (Q) ;

3

> Q;

[[7, 1, 3]] CSS Quantum code over GF(272), stabilised by:
[1 0 0 1 0 1 1]

[w 0 O w 0 w w]

[0O 1 0 1 1 1 0]

[0O w 0 w w w 0]

[O 0 1 0 1 1 1]

[0 0 w O w w wj

157.2.4 Cyclic Quantum Codes

Cyclic quantum codes are those having cyclic stabilizer codes. Conditions are listed in
[CRSS98] for generating polynomials which give rise to symplectic self-orthogonal stabilizer
codes.

QuantumCyclicCode (v)

QuantumCyclicCode(Q)

LinearSpan BooLELT Default : false

Given either a single vector v or sequence of vectors () defined over a finite field F',
return the quantum code generated by the span of the cyclic shifts of the supplied

5236 CODING THEORY Part XXII

vectors. The span must be self-orthogonal with respect to the symplectic inner
product. By default, the additive span is taken over the prime field, but if the
variable argument LinearSpan is set to true, then the linear span will be taken.

Example H157E10

A large number of good cyclic quantum codes exist. For example, the best known binary self-dual
quantum code of length 15 is cyclic.

> F<w> := GF(4);

> v := VectorSpace(F, 15) ! [w,1,1,0,1,0,1,0,0,1,0,1,0,1,1];
> Q := QuantumCyclicCode(v);

> MinimumWeight (Q) ;
6
>
[

Q:Minimal;
[15, 0, 6]] self-dual Quantum code over GF(2°2)

QuantumCyclicCode(n, f)

QuantumCyclicCode(n, Q)

LinearSpan BooLELT Default : false

Let n be a positive integer. Given either a single polynomial f or a sequence
of polynomials () over some finite field F', return the quantum code of length n
generated by the additive span of their cyclic shifts. The additive span must be
symplectic self-orthogonal. By default, the additive span is taken over the prime
field, but if the variable argument LinearSpan is set to true, then the linear span
will be taken.

Example H157E11

Since classical cyclic codes correspond to factors of cyclotomic polynomials it is frequently conve-
nient to specify a cyclic code in terms of polynomials. Here we construct the best known binary
quantum codes with parameters [[23,12,4]] and [[25, 0, 8]].

[23, 12, 4]] Quantum code over GF(272)

f x"12 + x711 + x710 + x°8 + w*xx"6 + x°4 + x72 + x + 1;
Q := QuantumCyclicCode(25, £f);
MinimumWeight (Q) ;

> F<w> := GF(4);

> P<x> := PolynomialRing(F);

>f :=x716 + x715 + x713 + w*xx"12 + x"11 + w*x"10 + x79 + X"8 + W™ 2*x"7 +
> X6 + X”5 + wkx"4 + wT2%x"3 + wkx"2 + w2*%x + w'2;
> Q := QuantumCyclicCode(23, f);

> MinimumWeight (Q) ;

4

> Q:Minimal;

[

>

>

>

>

Ch. 157 QUANTUM CODES 5237

8
> Q:Minimal;
[[25, 0, 8]] self-dual Quantum code over GF(2°2)

QuantumCyclicCode(v4, v2)

In the important case of GF'(2)-additive codes over GF'(4), any cyclic code can be
specified by two generators. Given vectors v4 and v2 both of length n, where vy
is over GF'(4) and vqy is over GF(2), this function returns the length n quantum
code generated by the additive span of their cyclic shifts. This span must be self-
orthogonal with respect to the symplectic inner product.

Example H157E12

Any cyclic binary quantum code of length n is determined by a cyclic stabilizer code, which can be
defined uniquely in terms of an n-dimensional vector over GF'(4) together with an n-dimensional
vector over GF'(2). We construct the best known [[21, 0, 8]] and [[21, 5, 6]] cyclic binary quantum
codes.

F<w> := GF(4);

v4 := RSpace(F, 21) ! [w"2,w"2,1,wv,0,0,1,1,1,1,0,1,0,1,1,0,1,1,0,0,0];
v2 := RSpace(GF(2),21) ! [1,0,1,1,1,0,0,1,0,1,1,1,0,0,1,0,1,1,1,0,0];
Q := QuantumCyclicCode(v4,v2);

MinimumWeight (Q) ;

>
>
>
>
>
8
> Q:Minimal;

[[21, 0, 8]] self-dual Quantum code over GF(2°2)
>

>

>

>

>

6

>

[

v4 := RSpace(F, 21) ! [w,0,w"2,w"2,w,w"2,w"2,0,w,1,0,0,1,0,0,0,0,1,0,0,1];
v2 := RSpace(GF(2), 21) ! [1,0,1,1,1,0,0,1,0,1,1,1,0,0,1,0,1,1,1,0,0];

Q := QuantumCyclicCode(v4,v2);

MinimumWeight (Q) ;

Q:Minimal;
[21, 5, 6]] Quantum code over GF(2°2)

5238 CODING THEORY Part XXII

157.2.5 Quasi-Cyclic Quantum Codes
Quasi-cyclic quantum codes are those having quasi-cyclic stabilizer codes.

QuantumQuasiCyclicCode(n, Q)

LinearSpan BooLELT Default : false

Given an integer n, and a sequence () of polynomials over some finite field F, let .S
be the quasi-cyclic classical code generated by the span of the set of vectors formed
by concatenating cyclic blocks generated by the polynomials in (). Assuming that S
is self-orthogonal with respect to the symplectic inner product, this function returns
the quasi-cyclic quantum code with stabiliser code S. If the span of the vectors is
not symplectic self-orthogonal, an error will be flagged.

By default the additive span is taken over the prime field, but if the variable
argument LinearSpan is set to true, then the linear span will be taken.

QuantumQuasiCyclicCode(Q)

LinearSpan BooLELT Default : false

Given a sequence () of vectors, return the quantum code whose additive stabilizer
matrix is constructed from the length n cyclic blocks generated by the cyclic shifts
of the vectors in (). If the variable argument LinearSpan is set to true, then the
linear span of the shifts will be used, else the additive span will be used (default).

Example H157E13

Most quasi-cyclic quantum codes currently known are linear, since this is where most research on
quasi-cyclic codes has been focused. In this example we construct the best known quasi-cyclic
binary quantum codes with parameters [[14, 0, 6]] and [[18, 6, 5]].

> F<w> := GF(4);

> V7 := VectorSpace(F, 7);

>yl :=V7 ' [1,0,0,0,0,0,0];

>v2 :=V7 ! [w2,1,vw2,w,0,0,w];

> Q := QuantumQuasiCyclicCode([vl, v2] : LinearSpan := true);
> MinimumWeight (Q) ;

6

> Q:Minimal;

[[14, 0, 6]] self-dual Quantum code over GF(2°2)

>

> V6 := VectorSpace(F, 6);

>vl :=Ve ! [1,1,0,0,0,0];

>v2 :=V6 ! [1,0,1,w"2,0,0];

>v3 :=Ve ! [1,1,w,1,w,0];

> Q := QuantumQuasiCyclicCode([vl, v2, v3] : LinearSpan := true);
> MinimumWeight (Q) ;

5

> Q:Minimal;
[[18, 6, 5]] Quantum code over GF(2°2)

Ch. 157 QUANTUM CODES 5239

157.3 Access Functions

QuantumBasisElement (F)

Given a degree 2 extension field F = GF(¢?), return the element A € F which
acts to connect the extended and compact formats. For a vector (alb) in extended
format, the corresponding compact format of this vector will be w = a + Ab.

StabilizerCode(Q)
StabiliserCode(Q)
ExtendedFormat BooLELT Default : false

The additive stabiliser code S which defines the quantum code). By default S is re-
turned in the compact format of a length n code over GF(¢?), but if ExtendedFormat

is set to true, then it will be returned in extended format as a length 2n code over
GF(q).

StabilizerMatrix(Q)

StabiliserMatrix(Q)

ExtendedFormat BooLELT Default : false

Given a quantum code () return the additive stabiliser matrix M defining (). By
default M is returned in the compact format of a length n code over GF(¢?), but if
ExtendedFormat is set to true, then it will be returned in the extended format as
a length 2n code over GF(q).

NormalizerCode (Q)

NormaliserCode (Q)

ExtendedFormat BooLELT Default : false

The additive normalizer code N which defines the quantum code). By default
N is returned in the compact format of a length n code over GF(q?), but if
ExtendedFormat is set to true, then it will be returned in extended format as
a length 2n code over GF(q).

NormalizerMatrix (Q)

NormaliserMatrix(Q)

ExtendedFormat BooLELT Default : false

Given a quantum code @ return the additive normalizer matrix M defining Q). By
default M is returned in the compact format of a length n code over GF(¢?), but if
ExtendedFormat is set to true, then it will be returned in the extended format as
a length 2n code over GF(q).

5240 CODING THEORY Part XXII

157.3.1 Quantum Error Group

As described in the introduction to this chapter, vectors over a finite field used to describe
a quantum stabilizer code actually represent elements of the corresponding quantum error
group. For a p-ary N qubit system (where p is prime) this error group is the extra-special
group with order 22! consisting of combinations of N bit-flip errors, N phase flip errors,
and an overall phase shift. All groups in this section use a polycyclic group representation.

QuantumErrorGroup(p, n)

Return the abelian group representing all possible errors for a length n p-ary qubit
system, which is an extra-special group of order p?"*! with 2n 4 1 generators. The
generators correspond to the qubit-flip operators X (i), the phase-flip operators Z (i),
and an overall phase multiplication W by the p-th root of unity. The generators
appear in the order X(1),Z(1),...,X(n),Z(n), W.

QuantumBinaryErrorGroup (n)

Return the abelian group representing all possible errors on a length n binary qubit
system, which is an extra special group of order 2271,

Example H157E14

The image of a vector in the error group is easily obtained from its extended format representation.
We illustrate the connection between symplectic orthogonality as a vector, and commutativity as
an element of the error group.

>n :=5
> VSn VectorSpace(GF(2), n);

> VS2n := VectorSpace(GF(2), 2*n);
>

>

>

[

E := QuantumBinaryErrorGroup(n);
BitFlips := [E.1 : i in [1..2#n] | Is0dd(i) 1;
PhaseFlips := [E.i : i in [1..2#n] | IsEven(i)];

We first take two vectors which are not orthogonal and show their images in the error group do
not commute.

> via := VSn ! [0,1,1,0,1]; vib := VSn ! [0,1,1,0,1];
> vl := VS2n ! HorizontalJoin(via, vib);

> v2a := VSn ! [1,0,1,1,0]; v2b := VSn ! [0,1,0,1,1];
> v2 := VS2n ! HorizontalJoin(v2a, v2b);

> SymplecticInnerProduct(vl,v2 : ExtendedFormat := true);
1

>

> el := &x[BitFlips[il i in Support(via)] *

> &+ [PhaseFlips[i] i in Support(vib) 1J;

> e2 := &x[BitFlips[i] i in Support(v2a)] *

> &*[PhaseFlips[i] : i in Support(v2b)];

> el*e2 eq e2xel;

Ch. 157

false

QUANTUM CODES

Next a pair of orthogonal vectors is shown to commute.

:= VSn ! [0,0,1,1,0];

:= VSn ! [0,1,1,1,0];

: ExtendedFormat := true);

in
in
in
in

Support(via) 1 *
Support (vib) 1;
Support(v2a)] *
Support (v2b) 1;

> vla := VSn ! [1,1,0,1,0]; vib

> vl := VS2n ! HorizontalJoin(vla, vib);
> vy2a := VSn ! [0,1,1,1,0]; v2b

> v2 := VS2n ! HorizontalJoin(v2a, v2b);
> SymplecticInnerProduct(vl,v2

0

>

> el := &x[BitFlips[i] i

> &*[PhaseFlips[i] i

> e2 := &x[BitFlips[il i

> &*[PhaseFlips[i] : i

> elxe2 eq e2xel;

true

5241

QuantumErrorGroup (Q)

For a quantum code @) of length n, return the group of all errors on n qubits. This

is the full error group, the ambient space containing all possible errors.

StabilizerGroup(Q)

StabiliserGroup(Q)

Return the abelian group of errors that defines the quantum code @), which is a

subgroup of the group returned by QuantumErrorGroup(Q).

StabilizerGroup(Q, G)

StabiliserGroup(Q, G)

Example H157E15

The stabilizer group of any quantum stabilizer code over GF'(4) will be abelian.

Given a quantum code @ with error group G (an extra-special group), return the
abelian group of errors of () as a subgroup of G.

> F<w> := GF(4);

> Q
> G

> IsAbelian(G);
true

:= RandomQuantumCode(F, 10, 6);
:= StabilizerGroup(Q);

5242 CODING THEORY Part XXII

Example H157E16

In order to make stabilizer groups from distinct codes compatible with one another, the groups
must be created within the same super-structure. This is done by first creating a copy of the full
error group, and then generating each instance of a stabilizer group as a subgroup.

In this example, the intersection of the stabilizer groups of two random codes is formed. An error
group F which will be a common over group for the two stabilizer groups is first created.

> F<w> := GF(4);

> Q1 := RandomQuantumCode(F, 15, 8);
> Q2 := RandomQuantumCode(F, 15, 8);
>

> E := QuantumErrorGroup(Q1);

> S1 := StabilizerGroup(Ql, E);

> 82 := StabilizerGroup(Q2, E);

> #(S1 meet S2);

2

157.4 Inner Products and Duals

The functions described in this section use the symplectic inner product defined for quan-
tum codes.

SymplecticInnerProduct(vl, v2)

ExtendedFormat BooLELT Default : false

Let v1 and v2 be two vectors belonging to the vector space K (), where K is a
finite field. This function returns the inner product of v1 and v2 with respect to
the symplectic inner product. The symplectic inner product in extended format is
defined by (a|b)*(c|d) = ad—bc, and its definition transfers naturally to the compact
format.

For binary quantum codes whose compact format is over GF(4), the symplectic
inner product is given by Trace(v; - U3).

SymplecticDual (C)

ExtendedFormat BooLELT Default : false

The dual of the additive (or possibly linear) code C' with respect to the symplectic
inner product. By default, C' is interpreted as being in the compact format (a
length n code over GF(q?)), but if ExtendedFormat is set to true, then it will be
interpreted as being in extended format (a code of length 2n over GF(q)).

Ch. 157 QUANTUM CODES 5243

IsSymplecticSelfDual(C)
ExtendedFormat BooLELT Default : false

Return true if the code C' is equal to its symplectic dual and false otherwise.
By default, C is interpreted as being in the compact format (a length n code over
GF(q?)), but if ExtendedFormat is set to true, then it will be interpreted as being
in extended format (a code of length 2n over GF(q)).

IsSymplecticSelfOrthogonal (C)

ExtendedFormat BoOoOLELT Default : false

Return true if the code C is contained in its symplectic dual. By default, C is
interpreted as being in the compact format (a length n code over GF(q?)), but if
ExtendedFormat is set to true, then it will be interpreted as being in extended
format (a code of length 2n over GF(q)).

Example H157E17

Vectors which are symplectically orthogonal to one another can be used to construct symplectic
self-orthogonal codes.

> F<w> := GF(4);

> V5 := VectorSpace(F, 5);

> vs ' [1,0,w,0,1];

> Vs ' [w,1,0,w,w];

> SymplecticInnerProduct(v,w);
0

>

>

v ol

w

C := AdditiveCode<F, GF(2), 5 | v, w>;
C;
[6, 1 : 2] GF(2)-Additive Code over GF(272)
Generator matrix:
[1 0 w 0 1]
[w 1 0 w wl
> D := SymplecticDual(C);
> D;
[5, 4 : 8] GF(2)-Additive Code over GF(2°2)
Generator matrix:

[1 0 0 0 1]
[w 0 0 O wl
[O 1 0 0 0]
[0 w 0O o0 1]
[O 0 1 0 W]
[0 0 w 0 0]
[O 0 0 1 1]
[O 0 0 w 0]
> C subset D;

true

> Q := QuantumCode(C);
> Q;

5244 CODING THEORY

[[5, 3]] Quantum code over GF(272), stabilised by:

[1 0 W 0 1]
[w 1 0 w wj]

Example H157E18

Part XXII

Any vector over GF(4) will be symplectically orthogonal to itself.

> V5 := VectorSpace(GF(4), 5);

> { SymplecticInnerProduct(v, v) : v in V5 };
{01}

157.5 Weight Distribution and Minimum Weight

The weight distribution of a quantum code) consists of three separate distributions:

e The weight distribution of the stabilizer code S.

e The weight distribution of the symplectic dual S+ of S.

e The weight distribution of the codewords in S+\S. Note that this set is not a linear

space.

For a quantum code) with stabilizer code S, the weights of the undetectable errors

are the weights of the codewords in S+\S.

For a quantum code to be considered pure, its minimum weight must be less than or

equal to the weight of its stabilizer code.

WeightDistribution(Q)

Given a quantum code) with stabiliser code S, return its weight distribution.
Recall that the quantum weight distribution comprises the weight distributions of
S, S+ and S+\S. The function returns each distribution as a separate value. Each
weight distribution is returned in the form of a sequence of tuples consisting of a

weight and the number of code words of that weight.

Example H157E19

Looking at a small quantum code from the database of best known codes. Its first weight dis-
tribution is of its stabilizer code S, the second of its normalizer code S+, and the final weight

distribution is of those non-zero codewords in S*\S.

> F<w> := GF(4);
> Q;

[[6, 3, 2]] Quantum code over GF(2°2), stabilised by:

[1 0 1 1 1 0]
[w w w w w W]
[O 1 0 0 0 1]

Ch. 157 QUANTUM CODES 5245

> WD_S, WD_N, WD := WeightDistribution(Q);

> WD_S eq WeightDistribution(StabiliserCode(Q));
true

> WD_N eq WeightDistribution(NormaliserCode(Q));
true

> WD;

[<2, 28>, <3, 56>, <4, 154>, <5, 168>, <6, 98>]

MinimumWeight (Q)
Method MONSTGELT Default : “Auto”
RankLowerBound RNGINTELT Default : 0
MaximumTime RNGRESUBELT Default : oo

For the quantum code @) with stabilizer code S, return the minimum weight of @,
which is the minimum weight of the codewords in S+\S. For self-dual quantum
codes (those of dimension 0), the minimum weight is defined to be the minimum
weight of S. The default algorithm is based on the minimum weight algorithm for
classical linear codes which is described in detail in section 152.8.1. For a descrip-
tion of the algorithm and its variable argument parameters please consult the full
description provided there. The minimum weight may alternatively be calculated by
finding the complete weight distribution. This algorithm may be selected by setting
the value of the variable argument Method to “Distribution”.

Example H157E20

The verbose output can be used in long minimum weight calculations to estimate the remaining
running time. The algorithm terminates once the lower bound reaches the upper bound. The
example below finishes in a very short period of time.

> F<w> := GF(4);

> V5 := VectorSpace(F, 5);

> gens := [V5| [0,0,1,w,w], [0,1,1,w,1], [0,0,1,0,w"2],

> (0,0,1,w,1], [0,0,1,0,1], [1,w,1,w,w"2],

> [(1,1,1,w"2,w], [0,1,w,1,w"2] 1;

> Q := QuantumQuasiCyclicCode(gens : LinearSpan := true);

> Q:Minimal;

[[40, 30]] Quantum code over GF(2°2)

> SetVerbose("Code",true);

> MinimumWeight (Q) ;

Quantum GF(2)-Additive code over GF(4) of length 40 with 70 generators.
Lower Bound: 1, Upper Bound: 40

Constructed 2 distinct generator matrices

Total Ranks: 35 356

Relative Ranks: 35 5

Time Taken: 0.14

Starting search for low weight codewords... (reset timings)

5246 CODING THEORY Part XXII

Enumerating using 1 generator at a time:
New codeword identified of weight 6, time 0.00
New codeword identified of weight 4, time 0.00
Discarding non-contributing rank 5 matrix
New Total Ranks: 35
New Relative Ranks: 35
Completed Matrix 1: 1lower = 2, upper = 4. Elapsed: 0.00s
Termination predicted with 3 generators at matrix 1
Enumerating using 2 generators at a time:
Completed Matrix 1: 1lower = 3, upper = 4. Elapsed: 0.00s
Termination predicted with 3 generators at matrix 1
predicting enumerating (1820) 60725 vectors (0.000000% of 40 40 code)
Enumerating using 3 generators at a time:
Completed Matrix 1: 1lower = 4, upper = 4. Elapsed: 0.03s
Final Results: lower = 4, upper = 4, Total time: 0.03
4

IsPure(Q)

Return true if @ is a pure quantum code. That is, if the minimum weight of @) is
less than or equal to the minimum weight of its stabiliser code.

Example H157E21

Many good codes are impure, the purity of best known quantum codes of length 15 are investigated.

> F<w> := GF(4);

>n := 15;

> time {* IsPure(QECC(F, n, k)) : k in [1..n] =*J};
{* false~"10, true~"5 *}

Time: 0.410

Ch. 157 QUANTUM CODES 5247

157.6 New Codes From Old

DirectSum(Q1, Q2)

Given an [[ni, k1, d1]] quantum code @1, and an [[no, k2, dz2]] quantum code Qo,
return the [[n1+n,, k1 +k2, min{d;, d2 }|] quantum code which is their direct product.

ExtendCode (Q)

Given an [[n, k, d]] quantum code @, return the extended [[n+1, k, d]] quantum code.

ExtendCode(Q, m)

Perform m extensions on the [[n,k,d]] quantum code @, returning the extended
[[n +m, k, d]] quantum code.

PunctureCode(Q, i)

Given a [[n, k,d]] quantum code @, and a coordinate position 4, return the [[n —
1,k,d >= d — 1]] quantum code produced by puncturing at position i.

PunctureCode(Q, I)

Given a [[n, k,d]] quantum code @, and a set of coordinate positions I of size s,
return the [[n — s,k,d" >= d — s]] quantum code produced by puncturing at the
positions in 1.

ShortenCode(Q, i)

Given a [[n, k,d]] quantum code @, and a coordinate position 4, return the [[n —
1,k >=k —1,d >= d]] quantum code produced by shortening at position .

This process will not necessarily result in a valid (symplectic self-orthogonal)
quantum code, and an error will be given if it fails.

ShortenCode(Q, I)

Given a [[n, k,d]] quantum code @, and a set of coordinate positions I of size s,
return the [[n — s, k" >=k — s,d’ >= d]] quantum code produced by shortening at
the positions in I.

This process will not necessarily result in a valid (symplectic self-orthogonal)
quantum code, and an error will be given if it fails.

5248 CODING THEORY Part XXII

Example H157E22

Good quantum codes can be created by combining stabilizer codes, using methods which are not
general enough to warrant a specific quantum code function. This example creates a [[28, 8, 6]]
quantum code from [[14, 8, 3]] and [[14, 0, 6]] quantum codes using a Plotkin sum. It relies on the
stabilizer codes forming a subcode chain, as described in Theorem 12 in [CRSS98].

> F<w> := GF(4);

> V7 := VectorSpace(F, 7);

>vyl :=V7 ' [1,0,0,0,0,0,0];

>v2 :=V7 ! [w2,1,w2,w,0,0,w];

> Q1 := QuantumQuasiCyclicCode([vl, v2] : LinearSpan := true);
> _ := MinimumWeight (Q1);

> Q1:Minimal;

[[14, 0, 6]] self-dual Quantum code over GF(2°2)

>

>vl :=V7 ! [1,0,1,1,1,0,0];

>v2 :=V7 ! [1,w"2,w,w,1,0,w"2];

> Q2 := QuantumQuasiCyclicCode([vl, v2] : LinearSpan := true);
> _ := MinimumWeight (Q2);

> Q2:Minimal;

[[14, 8, 3]] Quantum code over GF(2°2)

>

> 81 := StabilizerCode(Q1);
> S2 := StabilizerCode(Q2);
> S2 subset S1;

true

>

> 83 := PlotkinSum(SymplecticDual(S1), S2);
> Q3 := QuantumCode(S3);

> _ := MinimumWeight (Q3) ;

> Q3:Minimal;

[[28, 8, 6]] Quantum code over GF(2°2)

157.7 Best Known Quantum Codes

An [[n, k]] quantum stabiliser code @ is said to be a best known [[n, k|| quantum code
(BKQQC) if C has the highest minimum weight among all known [[n, k]] quantum codes. The
acronym QECC (Quantum Error Correcting Code) will be used to more easily distinguish
from the best known linear codes database (BKLC).

MAGMA currently has a database for binary quantum codes, though it should be noted
that these codes are considered to be over the alphabet GF(4), not GF(2). The database
for codes over GF'(4) currently contains constructions of all best known quantum codes of
length 35. This includes self-dual quantum codes up to length 35, which are stored in the
database as dimension 0 quantum codes.

Ch. 157 QUANTUM CODES 5249

Quantum codes of length up to 12 are optimal, in the sense that their minimum weights
meet the upper bound. Thus the user has access to 665 best-known binary quantum codes.

The MAacMA QECC database uses the tables of bounds and constructions compiled by
Markus Grassl (Karlsruhe), available online at [Gra], which are based on the results in
[CRSS98]. Good codes have also been contributed by Eric Rains and Zlatko Varbanov.

The user can display the method used to construct a particular QECC code through
use of a verbose mode, triggered by the verbose flag BestCode. When it is set to true, all
of the functions in this section will output the steps involved in each code they construct.

QECC(F, n, k)
BKQC(F, n, k)

BestKnownQuantumCode (F, n, k)

Given a finite field F', and positive integers n and k such that k& < n, return an [[n, k]
quantum code over F which has the largest minimum weight among all known [[n, k]
quantum codes. A second boolean return value signals whether or not the desired
code exists in the database.

The database currently exists for GF'(4) (which are in fact binary quantum codes)
up to length 35.

Example H157E23

The weight distribution of a small best known quantum code is calculated, verifying its minimum
weight. Note that the larger the dimension of a quantum code, the easier it is to calculate its
weight distribution.

> F<w> := GF(4);

> Q := QECC(F,25,16);

> Q:Minimal;

[[25, 16, 3]] Quantum code over GF(2°2)

> time WD_S, WD_N, WD := WeightDistribution(Q);

Time: 0.010

> WD_S;

[<0, 1>, <1, 2>, <2, 1>, <14, 4>, <15, 16>, <16, 38>, <17, 79>, <18, 126>, <19,
129>, <20, 77>, <21, 27>, <22, 9>, <23, 3>]

> WD_N;

[<0, 1>, <1, 2>, <2, 1>, <3, 399>, <4, 6527>, <5, 75363>, <6, 707543>, <7,
5404369>, <8, 34084490>, <9, 180107319>, <10, 804255370>, <11, 3052443894>, <12,
9883860222>, <13, 27348684334>, <14, 64649758926>, <15, 130286413858>, <16,
222912028997>, <17, 321704696752>, <18, 387985433701>, <19, 385943417035>, <20,
310898936275>, <21, 197566276671>, <22, 95232787563>, <23, 32688613821>, <24,
7109768160>, <25, 735493959>]

> WD;

[<3, 399>, <4, 6527>, <5, 75363>, <6, 707543>, <7, 5404369>, <8, 34084490>, <9,
180107319>, <10, 804255370>, <11, 3052443894>, <12, 9883860222>, <13,
27348684334>, <14, 64649758922>, <15, 130286413842>, <16, 222912028959>, <17,
321704696673>, <18, 387985433575>, <19, 385943416906>, <20, 310898936198>, <21,

5250 CODING THEORY Part XXII

197566276644>, <22, 95232787554>, <23, 32688613818>, <24, 7109768160>, <25,
735493959>]

So the [[25, 16]] code is impure, and has a minimum distance of 3.

Example H157E24

Unlike linear codes, dimension 0 quantum codes are non-trivial and are the subject of much study.
These are the self-dual quantum codes, which form a special subclass of quantum stabilizer codes.
It can be seen that a length n self-dual code is described by a n X n generator matrix, an indication
of the non-triviality of its structure.

> F<w> := GF(4);
> C := QECC(GF(4),8, 0);

> C;

[[8, 0, 4]] self-dual Quantum code over GF(272), stabilised by:
[1 0 0 1 0 1 1 0]

[w 0 O w O w w 0]

[0O 1 0 1 0 1 0 1]

[O w 0 w 0 w 0 wl

[0O 0 1 1 0 0 1 1]

[0 0 w w O 0 w wl

[© 0 0 0 1 1 1 1]

[0 0 0 O w w w wl

Example H157E25

The verbose flag BestCode will show the method by which the best code is constructed in the
database. In this example the construction of a [[25,11,4]] quantum code is described.

> SetVerbose("BestCode",true);

> F<w> := GF(4);

> Q := QECC(F,25,11);

Construction of a [[25 , 11 , 4]] Quantum Code:

[11: [[40, 30, 4]] Quantum code over GF(272)
QuasiCyclicCode of length 40 stacked to height 2 with generating
polynomials: 1, w™2*%x"4 + w*x"3 + w™2*%x"2 + wxx + w'2, x74 + w2%x"2 +
Wo2%x + w2, x4 + wxx"3 + x72, wkx"4 + x"3 + w2*x, wxx"4 + x"3 +
X2 + x, W2*x™4 + x72 + wkx, X4 + wT2*x"3 + w2xx"2 +x + 1, w,
X4 + w2%xx"3 + x72 + w2xx + 1, wkx"4 + x72 + x + 1, wxx"4 + wT2*%x"3
+ WkXx"2, W 2%x"4 + wxx"3 + x, W 2*Xx"4 + wk¥x"3 + wkx"2 + w¥x, x4 +
WxX"2 + W2%x, WwWkx"4 + x"3 + Xx72 + wxx + w

[2]: [[21, 11, 4]1] Quantum code over GF(272)
Shortening of [1] at { 2, 3, 4, 6, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19,
21, 24, 28, 34, 37 }

[3]: [[25, 11, 4]] Quantum code over GF(272)
ExtendCode [2] by 4

> Q:Minimal;

Ch. 157 QUANTUM CODES 5251

[[25, 11, 4]] Quantum code over GF(2°2)

157.8 Best Known Bounds

Along with the database of best known quantum codes in the previous section, there is
also a database of best known upper and lower bounds on the maximal possible minimum
weights of quantum codes. The upper bounds are not currently known with much accuracy,
while the lower bounds match the minimum weights of the best known quantum codes
database.

QECCLowerBound(F, n, k)

Return the best known lower bound on the maximal minimum distance of [[n, k||
quantum codes over F. The bounds are currently available for binary quantum
codes (which corresponds to F' = GF(4)) up to length 35.

QECCUpperBound (F, n, k)

Return the best known upper bound on the minimum distance of [[n, k]] quantum
codes over F. The bounds are currently available for binary quantum codes (which
corresponds to F' = GF(4)) up to length 35.

Example H157E26

The best known lower bound on the minimum weight will always correspond to the best known
quantum code from the MacMma database. In this example the first code is in fact optimal, while
the second one does not meet the upper bound, and so there is a theoretical possibility of an
improvement.

> F<w> := GF(4);

> Q1 := QECC(F, 20, 10);

> Q1:Minimal;

[[20, 10, 4]] Quantum code over GF(2°2)
> QECCLowerBound(F, 20, 10);

4
> QECCUpperBound(F, 20, 10);

4

>

> Q2 := QECC(F, 25, 13);

> Q2:Minimal;

[[25, 13, 4]] Quantum code over GF(2°2)
> QECCLowerBound(F, 25, 13);

4

> QECCUpperBound(F, 25, 13);
5

5252 CODING THEORY Part XXII

157.9 Automorphism Group

Automorphisms acting on a quantum code are a slight generalization of those which act
on the underlying additive stabilizer code. Automorphisms consists of both a permutation
action on the columns of a stabilizer code, combined with a monomial action on the
individual columns which permute the values.

The automorphism group of a length n additive stabilizer code over F, is a subgroup
of Z31 Sym(n) of order 3 * n!. However the automorphism group of the quantum code it
generates is a subgroup of Sym(3) 1 Sym(n) of order 3! x n! because of the more general
action on the values in the columns.

In MAGMA automorphisms are returned as permutations, either as length 3n permu-
tations for the full monomial action on a code, or as length n permutations when the
automorphism is restricted to only the permutation action on the columns.

AutomorphismGroup (Q)

The automorphism group of the quantum code (). Currently this function only
applies to binary quantum codes.

PermutationGroup(Q)

The subgroup of the automorphism group of the quantum code) consisting of
those automorphisms which permute the coordinates of codewords. Currently this
function only applies to binary quantum codes.

Example H157E27

The full automorphism group and its subgroup of coordinate permutations are calculated for the
dodecacode.

> F<w> := GF(4);

> Q := Dodecacode();

> Q;

[[12, 0, 6]] self-dual Quantum code over GF(2°2), stabilised by:

[1 0O 0 O O OoOw2w2 0 w 1 wl
[w 0 O O O O w 0 w w w 1]
[O 1 0 0 0 0 1 0 1 w2 w2 1]
[O w 0 O O O 0 w 1 w w wl
[O 0 1 0 0 0 0 1 1 1 w2 w2]
[0 0 w O O Ow2 1w2 w w 0]
[0O 0 0 1 0 0 w w 1 1 0 1]
[O 0 0O w O 0 w 1 ww2 w2 0]
[o 0 0 0 1 O w w w 0 1 wl
[O 0 0 0 w 0 w™2 1 1 w2 0 w]
[0O 0 0 O O 1w2w2w2 1 0w2]
[o 0 0 O O w w 1 o0 1 w v

\4

> AutomorphismGroup(Q) ;
Permutation group acting on a set of cardinality 36
Order = 648 = 273 * 374

Ch. 157 QUANTUM CODES 5253

(1, 4, 32)(2, 5, 33)(3, 6, 31)(7, 13, 29)(8, 14, 30)(9, 15, 28)(10, 35, 22)
(11, 36, 23)(12, 34, 24)(16, 19, 26) (17, 20, 27)(18, 21, 25)
(4, 23, 8, 29, 10, 20, 18, 36, 32)(5, 24, 9, 30, 11, 21, 16, 34, 33)
(6, 22, 7, 28, 12, 19, 17, 35, 31)(13, 14, 15)(25, 27, 26)
(7, 35)(8, 36)(9, 34) (10, 20) (11, 21)(12, 19) (13, 26) (14, 27)(15, 25)
(16, 30) (17, 28) (18, 29)(22, 31) (23, 32)(24, 33)
(4, 29, 18)(5, 30, 16)(6, 28, 17)(7, 19, 31)(8, 20, 32)(9, 21, 33)
(10, 36, 23)(11, 34, 24)(12, 35, 22)
> PermutationGroup(Q) ;
Permutation group acting on a set of cardinality 12
1, 7,9, 3,5, 11)(2, 8, 10, 4, 6, 12)
1, 2)@, 46, 1006, 97, 12)(8, 11)
(2, (5, 96, 12)(7, 11)(8, 10)

Example H157E28

The automorphism group for a quantum code is larger than that of its stabilizer code. In this
example that is shown for the Hexacode.

> F<w> := GF(4);
> Q := Hexacode();
> Q:Minimal;
[[6, 0, 4]] self-dual Quantum code over GF(2°2)
> A_Q := AutomorphismGroup(Q);
> A_Q;
Permutation group A_Q acting on a set of cardinality 18
Order = 2160 = 274 * 373 * 5
(1, 4)(2, 6)(3, 5)(7, 8)(10, 12)(13, 14)(17, 18)
(2, 3)(5, 6)(7, 8)(10, 18)(11, 16) (12, 17)(13, 14)
(4, 7(5, 8)(6, 9)(13, 17)(14, 16)(15, 18)
(7, 13)(8, 14)(9, 15)(10, 17) (11, 16) (12, 18)
(7, 12)(8, 10)(9, 11)(13, 18)(14, 17)(15, 16)
> S := StabilizerCode(QR);
> A_S := AutomorphismGroup(S);
> A_S;
Permutation group A_S acting on a set of cardinality 18
Order = 180 = 272 * 372 * 5
(1, 4)(2, 5)(@3, 6)(7, 13)(8, 14)(9, 15)
(4, 7, 12)(5, 8, 10)(6, 9, 11)(13, 15, 14)(16, 18, 17)
(4, 6, 5)(7, 14, 11)(8, 15, 12)(9, 13, 10)(16, 18, 17)
> A_S subset A_Q;
true

5254 CODING THEORY Part XXII

157.10 Hilbert Spaces

In this first release, MAGMA offers a basic package for creating and computing with quan-
tum Hilbert spaces. A Hilbert space in MAGMA can either be densely or sparsely repre-
sented, depending on how many qubits are required and how dense the desired quantum
states will be. While a dense representation has a speed advantage in computations, the
sparse representation uses less memory. Currently there are capabilities for doing basic
unitary transformations and manipulations of quantum states.

In future versions, functionality will be added for more complex unitary transforma-
tions and measurements, allowing for a more general simulation of quantum computations.
There will also be machinery for encoding quantum states using quantum error correcting
codes, and testing their effectiveness by simulating a noisy quantum channel and decoding
the results.

HilbertSpace(F, n)

IsDense BooLELT Default :

Given a complex field F' and a positive integer n, return then quantum Hilbert Space
on n qubits over F'.

If the variable argument IsDense is set to either true or false then return a
densely or sparsely represented quantum space respectively. If no value is set for
IsDense then MAGMA will decide automatically.

Field(H)

Given a Hilbert space H, return the complex field over which the coefficients of
states of H are defined.

NumberO0fQubits (H)
Nqubits (H)

Given a Hilbert space H, return the number of qubits which comprises the space.

Dimension(H) |

Given a Hilbert space H, return its dimension. This is 2", where n is the number
of qubits of H.

IsDenselyRepresented (H)

Return true if the quantum Hilbert space H uses a dense representation.

H1 eq H2

Return true if the Hilbert spaces are equal.

H1 ne H2

Return true if the Hilbert spaces are not equal.

Ch. 157 QUANTUM CODES 5255

Example H157E29

A Hilbert space over 5 qubits will by default be a densely represented quantum space. It can
however be manually chosen to use a sparse representation, it can be seen that these two space
are not considered equal.

> F<i> := ComplexField(4);

> H := HilbertSpace(F, 5);

> H;

A densely represented Hilbert Space on 5 qubits to precision 4
> Dimension(H);

32

> IsDenselyRepresented(H) ;

true

>

> H1 := HilbertSpace(F, 5 : IsDense := false);

> Hi;

A sparely represented Hilbert Space on 5 qubits to precision 4
> IsDenselyRepresented(H1);

false

> H eq H1;

false

157.10.1 Creation of Quantum States

QuantumState(H, v)

QuantumState(H, v)

Given a Hilbert space H and coefficients v (which can be either a dense or a sparse
vector), of length equal to the dimension of H, then return the quantum state in H
defined by v.

H!i

Return the i-th quantum basis state of the Hilbert space H. This corresponds to
the basis state whose qubits giving a binary representation of 1.

H! s

Given a sequence s of binary values, whose length is equal to the number of qubits
of the Hilbert space H, return the quantum basis state corresponding to s.

SetPrintKetsInteger (b)

Input is a boolean value b, which controls a global variable determining the way
quantum states are printed. If set to false (which is the default) then values in
basis kets will be printed as binary sequences such as |[1010). If set to true then
basis kets will be printed using integer values to represent the binary sequences, the
previous example becoming |5).

5256 CODING THEORY Part XXII

Example H157E30

One way to create a quantum state is to specify each coefficient of the state with a vector of length
equal to the dimension of the Hilbert space.

> F<i> := ComplexField(4);

> H := HilbertSpace(F, 4);

> KS := KSpace(F, Dimension(H));

> v := KS! [F| i, 1, 0, -i,

> 2, 0, 0, 1+i,

> -i-1, -3%i, 7, 0.5,

> 2.5%i, 0, 0, 1.2];

> v;

(1.000*%i 1.000 0.0000 -1.000*i 2.000 0.0000 0.0000 1.000 + 1.000%i
-1.000 - 1.000%i -3.000*i 7.000 0.5000 2.500%i 0.0000 0.0000
1.200)

e := QuantumState(H, Vv);

€;

.000%i|0000> + [1000> - 1.000%i[1100> + 2.000/0010> + (1.000 +
.000*1) [1110> - (1.000 + 1.000%i)|0001> - 3.000%i|1001> + 7.000/0101>
0.5000/1101> + 2.500%1|0011> + 1.200|1111>

+ = = VvV V

Example H157E31

Quantum states can be created by combining basis states, input as either integer values or binary
sequences.

> F<i> := ComplexField(4);

> H := HilbertSpace(F, 12);

> Dimension(H);

4096

> el := H!1 + (1+i)*(H!76) - H!3000;

> el;

[100000000000> + (1.000 + 1.000%i)|001100100000> - |000111011101>
> e2 :=H!(1,0,1,1,1,0,0,0,1,1,0,0] - H!'[1,1,0,1,0,0,0,0,1,1,0,1];
> e2;

[101110001100> - [110100001101>

By using the function SetPrintKetsInteger basis states can also be printed as either integer
values of binary sequences.

> SetPrintKetsInteger(true);

> el;

[1> + (1.000 + 1.000%i)|76> - |3000>
> e2;

797> - [2827>

Ch. 157 QUANTUM CODES 5257

Manipulation of Quantum States

Y
ot
a
ol
e
[\

a *x e

Given a complex scalar value a, multiply the coefficients of the quantum state e by
a.

Negate all coefficients of the quantum state e.

el + e2

el - e2

Addition and subtraction of the quantum states e; and es.

Normalisation(e) |

Normalisation(~e) |

Normalization(e) |

Normalization(~e) |

Normalize the coefficients of the quantum state e, giving an equivalent state whose
normalization coefficient is equal to one. Available either as a procedure or a func-
tion.

NormalisationCoefficient (e) |

NormalizationCoefficient (e) |

Return the normalisation coefficient of the quantum state e

el eq e2

Return true if and only if the quantum states e; and es are equal. States are still
considered equal if they have different normalizations.

Return true if and only if the quantum states e; and ey are not equal. States are
still considered equal if they have different normalizations.

5258 CODING THEORY Part XXII

Example H157E32

Although a quantum state can be expressed with any normalisation, in reality a quantum state
occupies a ray in a Hilbert space. So two quantum states are still considered equal if they lie on
the same ray.

>
>
>
>

F<i> := ComplexField(8);
H := HilbertSpace(F, 1);
e := H!0O + H!'1;

€;

0> + |1>

>

2
>
>
0.
>
0
>

NormalisationCoefficient (e);

.0000000

el := Normalisation(e);

el;

7071067810> + 0.70710678]|1>
NormalisationCoefficient(el);

.99999999

e eq el;

true

157.10.3 Inner Product and Probabilities of Quantum States

InnerProduct(el, e2)

Return the inner product of the quantum states e; and es.

ProbabilityDistribution(e)

Return the probability distribution of the quantum state as a vector over the reals.

Probability(e, i)

Return the probability of basis state ¢ being returned as the result of a measurement
on the quantum state e.

Probability(e, v)

Given a binary vector v of length equal to the number of qubits in the quantum
state e, return the probability of basis state corresponding to v being returned as
the result of a measurement on e.

PrintProbabilityDistribution(e)

Print the probability distribution of the quantum state.

Ch. 157 QUANTUM CODES 5259

PrintSortedProbabilityDistribution(e)

Max RNGINTELT Default : oo
MinProbability RNGINTELT Default : 0

Print the probability distribution of the quantum state in sorted order, with the
most probable states printed first.

If the variable argument Max is set to a positive integer, then it will denote the
maximum number of basis states to be printed.

If the variable argument MinProbability is set to some integer between 1 and
100, then it will denote the minimum probability of any basis state to be printed.
This is useful for investigating those basis states which will are the likely results of
any measurement.

Example H157E33

From a quantum state it is possible to either access the full probability distribution, or the
probabilities of individual basis states.

> F<i> := ComplexField(4);

> H := HilbertSpace(F, 3);

> e := -0.5%H!0 + 6%i*H!3 + 7*H!4 - (1+i)*H!7;

> ProbabilityDistribution(e);

(0.002865 0.0000 0.0000 0.4126 0.5616 0.0000 0.0000 0.02292)
> Probability(e, 0);

0.002865

> Probability(e, 1);

0.0000

It is also possible to print out the full probability distribution.

> PrintProbabilityDistribution(e);
Non-zero probabilities:

[000>: 0.2865%

[110>: 41.26%

[001>: 56.16%

[111>: 2.292%

Example H157E34

It is usually only those basis states with large probabilities that are of interest. With the function
PrintSortedProbabilitydistribution these basis states can be identified.

> F<i> := ComplexField(4);

> H := HilbertSpace(F, 4);

> KS := KSpace(F, 274);

> v := KS! [F| i, 11, 0, —-3%i,
> 2, 0, 0, 6+i,
> -i-1, -3%i, 7, -0.5,
> 2.5%i, 0, 0, 9.2];

5260

CODING THEORY Part XXII

e := QuantumState(H, v);

.000*1|0000> + 11.00/1000> - 3.000*i|1100> + 2.000/0010> + (6.000 +
.000*1) [1110> - (1.000 + 1.000%1i)|0001> - 3.000%i|1001> + 7.000/0101>

- 0.5000/1101> + 2.500*%1|0011> + 9.200|1111>

> PrintSortedProbabilityDistribution(e);

Non-zero probabilities:

37.45Y%

26.19%

15.16%

11.45Y%

>
> e;
1
1

[1000>:
[1111>:
[0101>:
[1110>:
[1100>:
[1001>:
[0011>:
[0010>:
[0001>:
[0000>:
[1101>:

2

O O O - = N

.785%
.785%
.9347%,
.238%
.61907%
.3095%,
.07737%

A useful way to isolate the important basis states is to provide a minimum cutoff probability.

> PrintSortedProbabilityDistribution(e: MinProbability := 15);
Non-zero probabilities:

37.45%

26.19%

15.16%

Reached Minimum Percentage

[1000>:
[1111>:
[0101>:

Another way is to supply the maximum number basis states that should be printed. A combination
of these methods can also be used

> PrintSortedProbabilityDistribution(e: Max := 6);
Non-zero probabilities:
37.45Y%
26.19%
15.16%
11.45Y%

[1000>:
[1111>:
[0101>:
[1110>:
[1100>:
[1001>:

2.
2.

785%
785%

Reached Maximum count

Ch. 157 QUANTUM CODES 5261

157.10.4 Unitary Transformations on Quantum States

In this first release MAGMA offers a small selection of unitary transformations on quantum
states. In future versions this list will be expanded to include more complex operations.

BitFlip(e, k)
BitFlip(~e, k)

Flip the value of the k-th qubit of the quantum state e.

BitFlip(e, B)
BitFlip(~e, B)

Given a set of positive integers B, flip the value of the qubits of the quantum state
e indexed by the entries in B.

PhaseFlip(e, k)
PhaseFlip(~e, k)

Flip the phase on the k-th qubit of the quantum state e.

PhaseFlip(e, B)
PhaseFlip(~e, B)

Given a set of positive integers B, flip the phase on the qubits of the quantum state
e indexed by the entries in B.

ControlledNot(e, B, k)
ControlledNot(~e, B, k)
Flip the k-th bit of the quantum state e if all bits contained in B are set to 1.

HadamardTrasformation(e)

HadamardTrasformation(~e) |

Perform a Hadamard transformation on the quantum state e, which must be densely
represented.

Example H157E35

The behaviours of several of the available unitary transformations are displayed on a quantum
state.

> F<i> := ComplexField(4);

> H := HilbertSpace(F, 4);

> e := H!O + H!3 + H!6 + H!15;

> PhaseFlip(Te, 4); e;

|0000> + |1100> + |0110> - |1111>
> ControlledNot(“e, {1,2}, 4); e;
|0000> + |0110> - [|1110> + |1101>
> BitFlip(“e, 2); e;

5262 CODING THEORY Part XXII

|0100> + |0010> - |1010> + |1001>
> ControlledNot(~e, {2}, 3); e;
|0010> - |1010> + |0110> + |1001>

157.11 Bibliography

[CRSS98] A. Robert Calderbank, Eric M. Rains, P. W. Shor, and Neil J. A. Sloane.
Quantum error correction via codes over GF(4). IEEE Trans. Inform. Theory, 44(4):
1369-1387, 1998.

[CS96] A. R. Calderbank and P. W. Shor. Good quantum error-correcting codes exist.
Phys. Rev. A, 54:2551-2577, 1996.

[Dan05] D. E. Danielsen. On-self dual quantum codes, graphs, and Boolean functions.
Master’s thesis, University of Bergen, 2005.

[Gra] Markus Grassl. Bounds on the minimum distance of quantum codes.
URL:http://iaks-www.ira.uka.de/home/grassl/QECC/.

[Sho94] Peter W. Shor. Algorithms for quantum computation: discrete logarithms and
factoring. In 35th Annual Symposium on Foundations of Computer Science (Santa Fe,
NM, 199/4), pages 124-134. IEEE Comput. Soc. Press, Los Alamitos, CA, 1994.

[Sho95] P. W. Shor. Scheme for reducing decoherence in quantum computer memory.
Phys. Rev. A, 52:2493-2496, 1995.

[Ste96a] A. M. Steane. Error correcting codes in quantum theory. Phys. Rev. Lett.,
77(5):793-797, 1996.

[Ste96b] Andrew Steane. Multiple-particle interference and quantum error correction.
Proc. Roy. Soc. London Ser. A, 452(1954):2551-2577, 1996.

PART XXII
CRYPTOGRAPHY

158 PSEUDO-RANDOM BIT SEQUENCES 5265

158 PSEUDO-RANDOM BIT SEQUENCES

158.1 Introduction 5267 RSAModulus (b) 5269
RSAModulus (b, e) 5269
158.2 Linear Feedback Shift Regis- RandomSequenceBlumBlumShub (b, t) 5269
ters Bb267 BlumBlumShub(b, t) 5269
LFSRSequence(C, S, t) 5267 RandomSequenceBlumBlumShub(n, s, t) 5269
LFSRStep(C, S) 5267 BlumBlumShub(n, s, t) 5269
BerlekampMassey (S) 5267 BBSModulus (b) 5270
ConnectionPolynomial(S) 5267 BlumBlumShubModulus (b) 5270
ChaI.‘ac‘FeristicPolynomial(S) 5267 158.4 Correlation Functions . . . 5270
ShrinkingGenerator

(c1, S1, C2, s2, t) 5268 AutoCorrelation(S, t) 5270
CrossCorrelation(S1, S2, t) 5271

158.3 Number Theoretic Bit Gener-
ators. 5268 158.5 Decimation 5271
RandomSequenceRSA(b, t) 5268 Decimation(S, f, d) 5271

RandomSequenceRSA(n, e, s, t) 5269 Decimation(S, f, d, t) 5271

Chapter 158
PSEUDO-RANDOM BIT SEQUENCES

158.1 Introduction

MAGMA provides some tools for the creation and analysis of pseudo-random bit sequences.
The universe of these sequences is generally F5. However, some functions, such as
BerlekampMassey, may be applied to sequences defined over arbitrary finite fields.

158.2 Linear Feedback Shift Registers

For a linear feedback shift register (LEFSR) of length L, initial state sg,...,sp—1 € Fy,

and connection polynomial C(D) =1+ ¢;D + caD? + ...+ ¢, D¥ (also over F,), the j’th

element of the sequence is computed as s; = — ZiL:1 cisj—; for j > L.

LFSRSequence(C, S, t)

Computes the first ¢ sequence elements of the LFSR with connection polynomial C'
and initial state the sequence S (thus, the length of the LFSR is assumed to be the
length of S). C' must be at least degree 1, its coefficients must come from the same
finite field as the universe of S, and its constant coefficient must be 1. Also, the
sequence S must have at least as many terms as the degree of C.

LFSRStep(C, S)

Computes the next state of the LFSR having connection polynomial C' and current
state the sequence S (thus, the length of the LFSR is assumed to be the length of
S). C must be at least degree 1, its coefficients must come from the same finite field
as the universe of S, and its constant coefficient must be 1. Also, the sequence S
must have at least as many terms as the degree of C.

BerlekampMassey (S)

ConnectionPolynomial (S)

CharacteristicPolynomial(S)

Given a sequence S of elements from F,, return the connection polynomial C'(D)
and the length L of a LFSR that generates the sequence S.

Note that it is possible that the BerlekampMassey will return a singular LFSR
(i.e. the degree of C'(D) is less than L), and therefore one must be sure to use the
first L elements of S to regenerate the sequence.

5268

Example H158E1

CRYPTOGRAPHY Part XXIII

We first create a sequence and then use BerlekampMassey to get the connection polynomial and
its length:

> S:=

[GF(2)| 1,1,0,1,0,1,1,1,0,0,1,0];

> C<D>, L := BerlekampMassey(S);

> C;

D"3 + D72 + 1

> L;
5

Now create a new sequence 1" containing the first L elements of S, and reconstruct the sequence
from C(D) and T

> T

:= S[1..L];

> LFSRSequence(C, T, #S);

(1,

1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0]

ShrinkingGenerator(C1, S1, C2, S2, t)

158.

Outputs a sequence of ¢ bits from the shrinking generator having connection poly-
nomials C7 and Cs and initial states sequences S7 and Sy (thus, the lengths of the
LFSRs are assumed to be the lengths of S7 and Ss). Bits are represented as elements
from F5. Polynomial coefficients and sequence elements must be from F5. The de-
grees of the connection polynomials must be at least 1 and their trailing coefficients
must be 1. The number of elements in the initial states must be at least as large as
the degrees of the corresponding connection polynomials.

3 Number Theoretic Bit Generators

RandomSequenceRSA (b, t)

Example H158E2

Generates a sequence of t bits using the RSA pseudo-random bit generator with an
RSA modulus of approximately b bits in length. The modulus n is computed by
finding (pseudo-)random primes with the RandomPrime function. If ged(¢(n), 3)
is 1, then the exponent 3 will be used. Otherwise, a (pseudo-)random exponent e
is chosen so that ged(¢(n), €) = 1. The seed is also chosen as a (pseudo-)random
number modulo n. Bits are represented as elements of Fs.

The code below counts the number of 1’s that appear in a sequence of 1000 bits generated from
a 100-bit RSA modulus.

> Z

:= Integers();

>&+[Z | b : b in RandomSequenceRSA(100, 1000)];

497

Ch. 158 PSEUDO-RANDOM BIT SEQUENCES 5269

RandomSequenceRSA(n, e, s, t)

Generates a sequence of t bits using the RSA pseudo-random bit generator with
modulus n, exponent e, and seed value s. Bits are represented as elements from Fs.
The integer n must be larger than 1.

RSAModulus (b) |

Returns an RSA Modulus n of b bits in length, and an exponent e such that
Gcd(EulerPhi(n),e)=1. The resulting values can be used to generate random bits
with the function RandomSequenceRSA. The argument b must be at least 16. Warn-
ing: RSA Moduli generated by MAGMA should not be used for real world cryp-
tographic applications. Such applications require a “true random” source to seed
the random number generator. MAGMA’s method of seeding may not be sufficiently
random to meet the requirements of cryptographic standards.

RSAModulus (b, e)

Returns an RSA Modulus n of b bits in length such that Gecd(EulerPhi(n),e)=1.
The resulting value can be used with e for the exponent to generate random bits
with the function RandomSequenceRSA. The argument b must be at least 16. The
argument e must be odd and must also be in the range 1 < e < 2°. Warning:
RSA Moduli generated by MAGMA should not be used for real world cryptographic
applications. Such applications require a “true random” source to seed the random
number generator. MAGMA’s method of seeding may not be sufficiently random to
meet the requirements of cryptographic standards.

RandomSequenceBlumBlumShub (b, t)

BlumBlumShub (b, t)

Generates a sequence of ¢ bits using the Blum-Blum-Shub pseudo-random bit gen-
erator with a Blum-Blum-Shub modulus of approximately b bits in length. The
modulus n is computed within MAGMA by finding (pseudo-)random primes with
the RandomPrime function (the condition being that the primes are congruent to
3 mod 4). The seed is chosen as a (pseudo-)random number modulo n. Bits are
represented as elements from Fy. b must be at least 16.

RandomSequenceBlumBlumShub(n, s, t)

BlumBlumShub(n, s, t)

Generates a sequence of ¢ bits using the Blum-Blum-Shub pseudo-random bit gen-
erator with modulus n and seed value s. Bits are represented as elements from Fs.
The argument n must be larger than 1 and ged(s, n) must be 1.

5270 CRYPTOGRAPHY Part XXIII

| BBSModulus(b) |
| BlumBlumShubModulus (b)

Returns a Blum-Blum-Shub Modulus b bits in length. The resulting value can
be used to generate random bits with the function RandomSequenceBlumBlumShub.
The argument b must be at least 16. Warning: Blum-Blum-Shub Moduli generated
by MAGMA should not be used for real world cryptographic applications. Such ap-
plications require a “true random” source to seed the random number generator.
MAGMA’s method of seeding may not be sufficiently random to meet the require-
ments of cryptographic standards.

158.4 Correlation Functions

AutoCorrelation(S, t)

Computes the autocorrelation of a sequence S, where S must have universe Fy. The
autocorrelation is defined to be

L

C(t) _ Z(_I)S[i]-l-S[H—t}

=1

where L is the length of the sequence, and the values of S[i + t] wrap around to the
beginning of the sequence when ¢+t > L.

Example H158E3

It is well known that the LFSR’s with maximal periods have nice autocorrelation properties. This
is illustrated below.

> C<D> := PrimitivePolynomial (GF(2), 5);
> C;

D6 + D2 + 1

>s := [GF(2)I1,1,1,1,1];

> t := LFSRSequence(C, s, 31);

> t;

r+, 1¢,14, 1, 1,0,0,1, 1, 0,1, 0, 0,1, 0,0,0,0,1,0,1,0,1, 1,1, 0,
1, 1, 0, 0, 01

> AutoCorrelation (t, 2);
-1

Ch. 158 PSEUDO-RANDOM BIT SEQUENCES 5271

CrossCorrelation(S1, S2, t)

Computes the crosscorrelation of two binary sequences S7 and Sy, where S; and S5
must each have universe Fs, and they must have the same length L. The crosscor-
relation is defined to be:

L

C(t) _ Z(_1)51[i]+52[i+t]
i=1
and the values of S3[i 4+ t| wrap around to the beginning of the sequence when

t+t> L.

158.5 Decimation

Decimation(S, f, d)

Given a binary sequence S, and integers f and d, return the decimation of S. This
is the sequence containing elements S[f], S[f + d], S[f + 2d], ... where the indices
in S are interpreted with wrap-around as integers between 1 and #5S.

Decimation(S, f, d, t)

Decimation of the sequence S. Returns a new sequence containing the first ¢ elements
of S[f], S[f +d], S[f + 2d], ... where the indices in S are interpreted with wrap-
around as integers between 1 and #5S.

Example H158E4

Given a primitive polynomial over F,, one can obtain another primitive polynomial by decimating
an LFSR sequence obtained from the initial polynomial. This is demonstrated in the code below.

> K := GF(7);
> C<D> := PrimitivePolynomial(K, 2);
> C;

D"2 + 6xD + 3

In order to generate an LFSR sequence, we must first multiply this polynomial by a suitable
constant so that the trailing coefficient becomes 1.

> C := C * Coefficient(C,0)"-1;
> C;
5¥D"2 + 2%D + 1

We are now able to generate an LFSR sequence of length 72 — 1. The initial state can be anything
other than [0, 0].

> t := LFSRSequence (C, [K| 1,1], 48);
> t;
(1, 1, 0, 2, 3, 5, 3, 4, 5,5, 0, 3,1, 4, 1, 6, 4, 4, 0, 1, 5, 6, 5, 2, 6, 6,

5272 CRYPTOGRAPHY Part XXIII

0, 5, 4, 2, 4, 3, 2, 2, 0, 4, 6, 3, 6, 1, 3, 3, 0, 6, 2, 1, 2, 51
We decimate the sequence by a value d having the property ged(d, 48) = 1.

t := Decimation(t, 1, 5);

t;

i, 5, 0, 6, 5, 6, 4, 4, 3, 1, 0, 4, 1, 4, 5, 5, 2, 3, 0, 5, 3, 5, 1, 1, 6, 2,
, 1, 2,1, 3,3, 4,6, 0, 3,6, 3,2, 2,5, 4,0, 2, 4,2, 6, 61

B := BerlekampMassey(t);

> B;

3¥D"2 + 5xD + 1

VvV O m— V V

To get the corresponding primitive polynomial, we multiply by a constant to make it monic.

> B := B * Coefficient(B, 2)°-1;
> B;

D"2 + 4xD + 5

> IsPrimitive(B);

true

PART XXIII
OPTIMIZATION

159 LINEAR PROGRAMMING 5275

159 LINEAR PROGRAMMING

159.1 Introduction

5277

159.2 Explicit LP Solving Functions 5278

MaximalSolution

(LHS, relations, RHS, objective)
MinimalSolution

(LHS, relations, RHS, objective)
MaximalIntegerSolution

(LHS, relations, RHS, objective)
MinimalIntegerSolution

(LHS, relations, RHS, objective)
MaximalZeroOneSolution

(LHS, relations, RHS, objective)
MinimalZeroOneSolution

(LHS, relations, RHS, objective)

159.3 Creation of LP objects .
LPProcess(R, n)

159.4 Operations on LP objects

5278

5278

5278

5278

5278

5278

5280

5280

5280

AddConstraints(L, lhs, rhs)
NumberOfConstraints (L)
NumberOfVariables (L)
EvaluateAt(L, p)
Constraint(L, n)
IntegerSolutionVariables(L)
ObjectiveFunction(L)
IsMaximisingFunction(L)
RemoveConstraint (L, n)
SetIntegerSolution
Variables(L, I, m)
SetLowerBound(L, n, b)
SetMaximiseFunction(L, m)
SetObjectiveFunction(L, F)
SetUpperBound(L, n, b)
Solution(L)
UnsetBounds (L)

159.5 Bibliography

5280
5280
5280
5280
5281
5281
5281
5281
5281

5281
5281
5281
5281
5281
5281
5281

5283

Chapter 159
LINEAR PROGRAMMING

159.1 Introduction

A Linear Program in n variables z1,- - -, z, with m constraints of the form

n
E ajr; < ¢
Jj=1

(the relations in any of the constraints may also be = or >) may be represented in matrix

form as:
aix - Q1n X1 C1

(REL)

Am1 ** Qmn T, Cn
where (REL) represents a componentwise relation between vectors, with each element =,
<, or >.

Note that there is an additional implicit constraint, wherein all variables are assumed
to be nonnegative.

We wish to find a solution (x;) that maximises (or minimises) the objective function:

n
E 0; T4
i=1

MAGMA provides two methods for solving LP problems. The first is to set up suitable
constraint matrices and then use an explicit LP solving function to solve the problem. The
second involves creating an instance of the LP process, which is of category LP. Constraints
are added and options set before calling Solution to get a solution to the problem.

All functions that actually solve an LP problem return a solution vector together with
an integer code representing the state of the solution, provided by the lp_solve library. The
codes are:

Optimal Solution
Failure

Infeasible problem
Unbounded problem

- W NN = O

Failure

MAcMA supports LP problems over Integer, Rational, and Real rings. For Integer and
Real problems, the solutions will be provided as Integer and Real vectors respectively. For
LP problems provided in Rationals, the solution is a Real vector.

Linear programming in MAGMA is implemented using the lp_solve library writ-
ten by Michel Berkelaar (michel@ics.ele.tue.nl). The library source may be found at
ftp://ftp.ics.ele.tue.nl/pub/lp_solve/.

For further reference see [Naz87], [Chv83], [OH68] and [NWSS].

5278 OPTIMIZATION Part XXIV

159.2 Explicit LP Solving Functions

Each explicit LP solving function takes four arguments to represent an LP problem in n
variables with m constraints:

1
2

LHS : m X n matrix, representing the left-hand-side coefficients of the m constraints.

relations : m X 1 matrix over the same ring as LHS, representing the relations for
each constraint, with a positive entry representing >, a zero entry representing =, and
a negative entry representing <.

RHS : m x 1 matrix over the same ring as LHS, representing the right-hand-side values
of the m constraints.

objective : 1 X n matrix over the same ring as LHS, representing the coefficients of
the objective function to be optimised.

Each function returns a vector representing an optimal solution to the problem, and an
integer indicating the state of the solution, as described in the introduction.

MaximalSolution(LHS, relations, RHS, objective)

The vector maximising the LP problem, with an integer describing the state of the
solution.

MinimalSolution(LHS, relations, RHS, objective)

The vector minimising the LP problem, with an integer describing the state of the
solution.

MaximalIntegerSolution(LHS, relations, RHS, objective)

The integer vector maximising the LP problem, with an integer describing the state
of the solution.

MinimalIntegerSolution(LHS, relations, RHS, objective)

The integer vector minimising the LP problem, with an integer describing the state
of the solution.

MaximalZeroOneSolution(LHS, relations, RHS, objective)

The vector with each entry either zero or one maximising the LP problem, with an
integer describing the state of the solution.

MinimalZeroOneSolution(LHS, relations, RHS, objective)

The vector with each entry either zero or one minimising the LP problem, with an
integer describing the state of the solution.

Ch. 159 LINEAR PROGRAMMING 5279

Example H159E1

We solve the LP maximising
F(r,y)=8z+2y z,y€R

subject to the constraints
10z + 21y < 156

20 4y < 22
> R := RealField();
> lhs := Matrix(R, 2, 2, [10, 21, 2, 1]);
> rhs := Matrix(R, 2, 1, [156, 22]1);
> rel := Matrix(R, 2, 1, [-1, -11); // negative values - less-or-equal relation
> obj := Matrix(R, 1, 2, [8, 15]1);
> MaximalSolution(lhs, rel, rhs, obj);

[9.562500000000000000 2.875000000000000888]
0

Example H159E2

We find solutions to the LP maximising

F(x1, -+, x7) = 59221 + 381xa + 273x3 + 554 + 4875 + 37x6 + 2327
subject to the constraint

3534x1 + 23562 + 276723 + 589x4 + 528x5 + 451w 4 30427 < 119567

with (z1,---,z7) taking real values, integer values, and zero/one values.

> R := RealField();

> lhs := Matrix(R, 1, 7, [3534, 2356, 2767, 589, 528, 451, 304]);
> rhs := Matrix(R, 1, 1, [119567]);

> rel := Matrix(R, 1, 1, [-1]);

> obj := Matrix(R, 1, 7, [592, 381, 273, 55, 48, 37, 23]);

> MaximalSolution(lhs, rel, rhs, obj);

[33.83333333333333570 0.E-92 0.E-92 0.E-92 0.E-92 0.E-92 0.E-92]

0

> MaximalIntegerSolution(lhs, rel, rhs, obj);

[33.00000000000000000 1.000000000000000000 0.E-92 1.000000000000000000 0.E-92
0.E-92 0.E-92]

0

> MaximalZeroOneSolution(lhs, rel, rhs, obj);

[1.000000000000000000 1.000000000000000000 1.000000000000000000
1.000000000000000000 1.000000000000000000 1.000000000000000000
1.000000000000000000]

5280 OPTIMIZATION Part XXIV

159.3 Creation of LP objects

LPProcess(R, n)

A Linear Program over the ring R in n variables.

Example H159E3

We create an LP representing a problem in 2 real variables:

> R := RealField();
> L := LPProcess(R, 2);
> L;

LP <Real Field, 2 variables>
Minimising objective function: [0 0]
Subject to constraints:

Variables bounded above by: []
Variables bounded below by: []
Solving in integers for variables []

159.4 Operations on LP objects

AddConstraints(L, lhs, rhs)

Rel MoNSTGELT Default : “eq”

Add some constraints to the LP problem L. All constraints will have the same

relation, given by Rel, which may be set to "eq" for strict equality (the default),

"le" for less-or-equal constraints, or "ge" for greater-or-equal constraints.
Constraints are of the form

n
> 1hs;; Rel rhs;
=1

where [hs and rhs are described in Section 159.2.

| NumberOfConstraints (L) |

The number of constraints in the LP problem L.

| NumberOfVariables(L) |
The number of variables in the LP problem L.

EvaluateAt(L, p)

Evaluate the objective function of the LP problem L at the point p given by a
matrix.

Ch. 159 LINEAR PROGRAMMING 5281

Constraint(L, n)

The LHS, RHS and relation (—1 for <, 0 for =, 1 for >) of the n-th constraint of
the LP problem L.

IntegerSolutionVariables(L)

Sequence of indices of the variables in the LP problem L to be solved in integers.

ObjectiveFunction(L)
The objective function of the LP problem L.

IsMaximisingFunction(L)

Returns true if the LP problem L is set to maximise its objective function, false
if set to minimise.

RemoveConstraint (L, n)

Remove the n-th constraint from the LP problem L.

SetIntegerSolutionVariables(L, I, m)

Set the variables of the LP problem L indexed by elements of the sequence I to be
solved in integers if m is true, or in the usual ring if false.

SetLowerBound(L, n, b)

Set the lower bound on the n-th variable in the LP problem L to b.

Note that for all LP problems in MAGMA there is an implicit constraint that
all variables are > 0. This constraint is overridden if a lower bound is specified by
using this function (e.g., specifying a lower bound of —5 works as expected), but
the lower bound can currently not be completely removed.

SetMaximiseFunction(L, m)

Set the LP problem L to maximise its objective function if m is true, or to minimise
the objective function if m is false.

SetObjectiveFunction(L, F)
Set the objective function of the LP problem L to the matrix F'.

SetUpperBound(L, n, b)

Set the upper bound on the n-th variable in the LP problem L to b.

| Solution(L) |

Solve the LP problem L; returns a point representing an optimal solution, and an
integer representing the state of the solution.

| UnsetBounds (L) |

Remove any bounds on all variables in the LP problem L.
Note that this reactivates the implicit constraint that all variables are > 0.

5282 OPTIMIZATION Part XXIV

Example H159E4

We use an LP object to solve the LP maximising
F(x,y) =3z + 13y

subject to constraints
2z + 9y <=40

11z — 8y <= 82

> R := RealField();

> L := LPProcess(R, 2);

> SetObjectiveFunction(L, Matrix(R, 1, 2, [3,13]));
> lhs := Matrix(R, 2, 2, [2, 9, 11, -8]);

> rhs := Matrix(R, 2, 1, [40, 82]);

> AddConstraints(L, lhs, rhs : Rel := "le");

> SetMaximiseFunction(L, true);

> L;

LP <Real Field, 2 variables>
Maximising objective function: [3 13]
Subject to constraints:

1 : [2 9] <= [40]

2 : [11 -8] <= [82]

Variables bounded above by: []
Variables bounded below by: []
Solving in integers for variables []
> Solution(L);

[9.199999999999999289 2.400000000000000355]
0

Now, we place some bounds on y:

> SetUpperBound(L, 2, R!2);

> SetLowerBound(L, 2, R!'1);

> Solution(L);

[8.909090909090908283 2.000000000000000000]
0

And find integer solutions:

> SetIntegerSolutionVariables(L, [1,2], true);
> Solution(L);

[8.000000000000000000 2.000000000000000000]

0

Now, removing the 2nd constraint:

> RemoveConstraint (L, 2);
> L;
LP <Real Field, 2 variables>

Ch. 159 LINEAR PROGRAMMING 5283
Maximising objective function: [3 13]

Subject to constraints:

1 : [2 9] <= [40]

Variables bounded above by: [2:2]

Variables bounded below by: [2:1]

Solving in integers for variables [1, 2]

> Solution(L);

[11.00000000000000000 2.000000000000000000]

0

And removing the restriction to Integer values for y,

> SetIntegerSolutionVariables(L, [2], false);

> Solution(L);

[15.00000000000000000 1.111111111111111160]

0

159.5 Bibliography

[Chv83] V. Chvatal. Linear Programming. W.H. Freeman and Company, 1983.
[Naz87] John Lawrence Nazareth. Computer Solution of Linear Programs. Oxford

University Press, 1987.

[INWS88] G.L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial

Optimization. John Wiley & Sons, Inc., 1988.

[OH68] W. Orchard-Hays. Advanced linear—programming computing techniques.

McGraw—Hill, 1968.

