[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: LMGFitting  ..  Local


LMGFitting

   LMGFittingSubgroup(G) : GrpMat -> GrpMat, GrpPC, Map

LMGFittingSubgroup

   LMGFittingSubgroup(G) : GrpMat -> GrpMat, GrpPC, Map

LMGIndex

   LMGIndex(G, H) : GrpMat, GrpMat -> RngIntElt

LMGInitialise

   LMGInitialise(G : parameters) : GrpMat ->
   LMGInitialize(G : parameters) : GrpMat ->

LMGInitialize

   LMGInitialise(G : parameters) : GrpMat ->
   LMGInitialize(G : parameters) : GrpMat ->

LMGIs

   LMGIsConjugate(G, H, K) : GrpMat, GrpMat, GrpMat -> BoolElt, GrpMatElt
   LMGIsConjugate(G, g, h) : GrpMat, GrpMatElt, GrpMatElt -> BoolElt, GrpMatElt
   LMGIsIn(G, x) : GrpMat, GrpMatElt -> BoolElt
   LMGIsNilpotent(G) : GrpMat -> BoolElt
   LMGIsNormal(G, H) : GrpMat, GrpMat -> BoolElt
   LMGIsSoluble(G) : GrpMat -> BoolElt
   LMGIsSubgroup(G, H) : GrpMat, GrpMat -> BoolElt

LMGIsConjugate

   LMGIsConjugate(G, H, K) : GrpMat, GrpMat, GrpMat -> BoolElt, GrpMatElt
   LMGIsConjugate(G, g, h) : GrpMat, GrpMatElt, GrpMatElt -> BoolElt, GrpMatElt

LMGIsIn

   LMGIsIn(G, x) : GrpMat, GrpMatElt -> BoolElt

LMGIsNilpotent

   LMGIsNilpotent(G) : GrpMat -> BoolElt

LMGIsNormal

   LMGIsNormal(G, H) : GrpMat, GrpMat -> BoolElt

LMGIsSoluble

   LMGIsSolvable(G) : GrpMat -> BoolElt
   LMGIsSoluble(G) : GrpMat -> BoolElt

LMGIsSolvable

   LMGIsSolvable(G) : GrpMat -> BoolElt
   LMGIsSoluble(G) : GrpMat -> BoolElt

LMGIsSubgroup

   LMGIsSubgroup(G, H) : GrpMat, GrpMat -> BoolElt

LMGMaximal

   LMGMaximalSubgroups(G) : GrpMat -> SeqEnum

LMGMaximalSubgroups

   LMGMaximalSubgroups(G) : GrpMat -> SeqEnum

LMGNormal

   LMGNormalClosure(G, H) : GrpMat, GrpMat -> GrpMat

LMGNormalClosure

   LMGNormalClosure(G, H) : GrpMat, GrpMat -> GrpMat

LMGNormaliser

   LMGNormalizer(G, H) : GrpMat, GrpMat -> GrpMat
   LMGNormaliser(G, H) : GrpMat, GrpMat -> GrpMat

LMGNormalizer

   LMGNormalizer(G, H) : GrpMat, GrpMat -> GrpMat
   LMGNormaliser(G, H) : GrpMat, GrpMat -> GrpMat

LMGOrder

   LMGOrder(G) : GrpMat[FldFin] -> RngIntElt

LMGRadical

   LMGRadicalQuotient(G) : GrpMat -> GrpPerm, Map, GrpMat

LMGRadicalQuotient

   LMGRadicalQuotient(G) : GrpMat -> GrpPerm, Map, GrpMat

LMGSchreier

   SetLMGSchreierBound(n) : RngIntElt ->

LMGSocle

   LMGSocleStar(G) : GrpMat -> GrpMat
   LMGSocleStarAction(G) : GrpMat -> Map, GrpPerm, GrpMat
   LMGSocleStarActionKernel(G) : GrpMat -> GrpMat, GrpPC, Map
   LMGSocleStarFactors(G) : GrpMat -> SeqEnum, SeqEnum
   LMGSocleStarQuotient(G) : GrpMat -> GrpPerm, Map, GrpMat

LMGSocleStar

   LMGSocleStar(G) : GrpMat -> GrpMat

LMGSocleStarAction

   LMGSocleStarAction(G) : GrpMat -> Map, GrpPerm, GrpMat

LMGSocleStarActionKernel

   LMGSocleStarActionKernel(G) : GrpMat -> GrpMat, GrpPC, Map

LMGSocleStarFactors

   LMGSocleStarFactors(G) : GrpMat -> SeqEnum, SeqEnum

LMGSocleStarQuotient

   LMGSocleStarQuotient(G) : GrpMat -> GrpPerm, Map, GrpMat

LMGSoluble

   LMGSolvableRadical(G) : GrpMat -> GrpMat, GrpPC, Map
   LMGSolubleRadical(G) : GrpMat -> GrpMat, GrpPC, Map

LMGSolubleRadical

   LMGSolvableRadical(G) : GrpMat -> GrpMat, GrpPC, Map
   LMGSolubleRadical(G) : GrpMat -> GrpMat, GrpPC, Map

LMGSolvable

   LMGSolvableRadical(G) : GrpMat -> GrpMat, GrpPC, Map
   LMGSolubleRadical(G) : GrpMat -> GrpMat, GrpPC, Map

LMGSolvableRadical

   LMGSolvableRadical(G) : GrpMat -> GrpMat, GrpPC, Map
   LMGSolubleRadical(G) : GrpMat -> GrpMat, GrpPC, Map

LMGSylow

   LMGSylow(G,p) : GrpMat, RngIntElt -> GrpMat

LMGUnipotent

   LMGUnipotentRadical(G) : GrpMat -> GrpMat, GrpPC, Map

LMGUnipotentRadical

   LMGUnipotentRadical(G) : GrpMat -> GrpMat, GrpPC, Map

load

   Loading a Program File (INPUT AND OUTPUT)
   load "filename";

loc

   loc< R | a1, ..., ar > : Rng, RngElt, ..., RngElt -> Rng, Map

Local

   LocalFactorization(f) : RngUPolElt -> [ < RngUPolElt, RngIntElt >]
   Factorization(f) : RngUPolElt -> [ < RngUPolElt, RngIntElt > ]
   IsLocalNorm(A, x) : FldAb, RngOrdElt -> BoolElt
   IsLocalNorm(A, x, p) : FldAb, RngOrdElt, PlcNumElt -> BoolElt
   IsLocalNorm(A, x, i) : FldAb, RngOrdElt, RngIntElt -> BoolElt
   IsLocalNorm(A, x, p) : FldAb, RngOrdElt, RngOrdIdl -> BoolElt
   LocalComponent(M, p) : ModSym, RngIntElt -> RepLoc
   LocalCoxeterGroup(H) : GrpPermCox -> GrpPermCox, Map
   LocalDegree(P) : PlcNumElt -> RngIntElt
   LocalDegree(P) : PlcNumElt -> RngIntElt
   LocalField(L, f) : FldPad, RngUPolElt -> RngLocA
   LocalGenera(G) : SymGen -> Lat
   LocalHeight(P, Pl : parameters) : PtEll, PlcNumElt -> FldPrElt
   LocalHeight(P, Pl) : PtEll, PlcFunElt -> FldPrElt
   LocalHeight(P, p) : PtEll, RngIntElt -> FldComElt
   LocalInformation(E) : CrvEll -> [ < Tup > ]
   LocalInformation(E) : CrvEll -> [ Tup ]
   LocalInformation(E, p) : CrvEll, RngIntElt -> <RngIntElt, RngIntElt, RngIntElt, RngIntElt, SymKod, BoolElt>, CrvEll
   LocalInformation(E) : CrvEll, RngIntElt -> [ Tup ]
   LocalInformation(E) : CrvEll, RngOrdIdl -> Tup, CrvEll
   LocalInformation(E, P) : CrvEll, RngOrdIdl -> Tup, CrvEll
   LocalInformation(E, Pl) : CrvEll[FldFun], PlcFunElt -> Tup, CrvEll
   LocalPolynomialRing(K, n) : Rng, RngIntElt -> RngMPolLoc
   LocalPolynomialRing(K, n, order) : Rng, RngIntElt, MonStgElt, ... -> RngMPolLoc
   LocalPolynomialRing(K, n, T) : Rng, RngIntElt, Tup -> RngMPolLoc
   LocalRing(P, prec) : RngOrdIdl, RngIntElt -> RngLoc, Map
   LocalRing(P, k) : RngOrdIdl, RngIntElt -> RngPad, Map
   LocalRing(W) : RngWitt -> RngLoc, Map
   LocalTwoSelmerMap(P) : RngOrdIdl -> Map
   LocalTwoSelmerMap(A, P) : RngUPolRes, RngOrdIdl -> Map, SeqEnum
   LocalUniformizer(P) : PlcFunElt -> FldFunGElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012