[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: descent .. DFSTree
Descent (HYPERELLIPTIC CURVES)
Descent on the Jacobian (HYPERELLIPTIC CURVES)
Eight-Descent (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
Invariants (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
Partial Descent (HYPERELLIPTIC CURVES)
Six and Twelve Descent (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
Three-Descent (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
Two Descent (ELLIPTIC CURVES OVER FUNCTION FIELDS)
Two Descent (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
Two Descent Using Isogenies (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
DescentInformation(E: parameters) : CrvEll -> [RngIntElt], [PtEll], [Tup]
MordellWeilShaInformation(E: parameters) : CrvEll -> [RngIntElt], [PtEll], [Tup]
MordellWeilShaInformation(E: parameters) : CrvEll -> [RngIntElt], [PtEll], [Tup]
CasselsMap(phi) : Map -> Map, Map
DescentMaps(phi) : Map -> Map, Map
GrpCox_DescentSets (Example H98E15)
GrpRfl_DescentSets (Example H99E20)
PrimitiveGroupDescription(d, n) : RngIntElt, RngIntElt -> MonStgElt
TransitiveGroupDescription(G) : GrpPerm -> MonStgElt
TransitiveGroupDescription(d, n) : RngIntElt, RngIntElt -> MonStgElt
COXETER SYSTEMS
Descriptions of Coxeter Groups (INTRODUCTION TO LIE THEORY [LIE THEORY])
Highest Weight Representations (INTRODUCTION TO LIE THEORY [LIE THEORY])
Lie Algebras and Groups of Lie Type (INTRODUCTION TO LIE THEORY [LIE THEORY])
Root Systems and Root Data (INTRODUCTION TO LIE THEORY [LIE THEORY])
Universal Enveloping Algebras and Quantum Groups (INTRODUCTION TO LIE THEORY [LIE THEORY])
Design(I, t) : Inc, RngIntElt -> Dsgn
Design< t, v | X : parameters > : RngIntElt, RngIntElt, List -> Dsgn
Design(P) : Plane -> Dsgn, SetIncPt, SetIncBlk
HadamardColumnDesign(H, i) : AlgMatElt, RngIntElt -> Dsgn
HadamardRowDesign(H, i) : AlgMatElt, RngIntElt -> Dsgn
IsDesign(D, t: parameters) : Inc, RngIntElt -> BoolElt, RngIntElt
WittDesign(n) : RngIntElt -> Dsgn
Construction from Groups, Codes and Designs (GRAPHS)
Elementary Invariants of a Design (INCIDENCE STRUCTURES AND DESIGNS)
Graphs Constructed from Designs (GRAPHS)
INCIDENCE STRUCTURES AND DESIGNS
Design_design-invar (Example H147E6)
Elementary Invariants of a Design (INCIDENCE STRUCTURES AND DESIGNS)
GoppaDesignedDistance(C) : Code -> RngIntElt
Associated 3--Designs (HADAMARD MATRICES)
Planes and Designs (FINITE PLANES)
Plane_designs (Example H141E17)
ArithmeticGenusOfDesingularization(S) : Srfc -> RngIntElt
GeometricGenusOfDesingularization(S) : Srfc -> RngIntElt
PlurigenusOfDesingularization(S,m) : Srfc, RngIntElt -> RngIntElt
Detach(F) : MonStgElt ->
DetachSpec(S) : MonStgElt ->
Attaching and Detaching Package Files (FUNCTIONS, PROCEDURES AND PACKAGES)
DetachSpec(S) : MonStgElt ->
INTRODUCTION TO AGGREGATES [SETS, SEQUENCES, AND MAPPINGS]
INTRODUCTION TO MODULES [MODULES]
INTRODUCTION TO RINGS [BASIC RINGS]
MAPPINGS
SEQUENCES
SETS
Determinant(A) : AlgMatElt -> RngElt
Determinant(A) : ArtRep -> ArtRep
Determinant(g) : GrphRes -> RngElt
Determinant(g) : GrpMatElt -> RngElt
Determinant(L) : Lat -> RngElt
Determinant(M) : ModDed -> RngOrdIdl
Determinant(A: parameters) : Mtrx -> RngElt
Determinant(A: parameters) : MtrxSprs -> RngElt
Determinant(G) : SymGen -> Lat
Determinant(G) : SymGenLoc -> RngIntElt
EdgeDeterminant(u,v) : GrphSplVert,GrphSplVert -> RngIntElt
MooreDeterminant(M) : Mtrx -> Mtrx
WronskianDeterminant(L) : [RngDiffElt] -> RngDiffElt, AlgMatElt
Determinant and Other Properties (SPARSE MATRICES)
CanDetermineIsomorphism(A, B) : ModAbVar, ModAbVar -> BoolElt, BoolElt, MapModAbVar
Design_DevelopDifferenceSet (Example H147E5)
Development(B) : { RngElt } -> Inc
Development(T) : { { Elt } } -> Inc
Difference Sets and their Development (INCIDENCE STRUCTURES AND DESIGNS)
DFSTree(u) : GrphVert -> Grph, GrphVertSet, GrphEdgeSet, SeqEnum
DepthFirstSearchTree(u) : GrphVert -> Grph, GrphVertSet, GrphEdgeSet, SeqEnum
DepthFirstSearchTree(u) : GrphVert -> GrphMult, GrphVertSet, GrphEdgeSet, SeqEnum
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012