[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: access-algebra .. Action
The Algebra (MODULES OVER AN ALGEBRA)
Access and Modification Functions (RECORDS)
Accessing and Modifying Sets (SETS)
The Underlying Vector Space (MODULES OVER AN ALGEBRA)
Sheaf_access_exs (Example H113E2)
Access Operations (ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES)
Accessor Functions (COHERENT SHEAVES)
Accessors and Expansion (ALGEBRAIC POWER SERIES RINGS)
RngPowAlg_accessors (Example H52E2)
GrpFP_2_ACEProc1 (Example H71E3)
GrpFP_2_ACEProc2 (Example H71E4)
GrpFP_2_ACEProc3 (Example H71E5)
GrpFP_2_ACEProc4 (Example H71E6)
GrpFP_2_ACEProcCosetSpace (Example H71E8)
GrpFP_2_ACEProcTransversal (Example H71E7)
ActingGroup(A) : GGrp -> Grp
ActingGroup(G) : GrpLie -> Grp, Map
ActingWord(G, x, y) : GrpPerm, Elt, Elt -> GrpFPElt
ActingGroup(A) : GGrp -> Grp
ActingGroup(G) : GrpLie -> Grp, Map
ActingWord(G, x, y) : GrpPerm, Elt, Elt -> GrpFPElt
Action(V) : GrpFPCos -> Map
Action(A, Y) : GrpPerm, GSet -> Hom(Grp), GrpPerm, GrpPerm
Action(G, Y) : GrpPerm, GSet -> Hom(Grp), GrpPerm, GrpPerm
Action(G, Y) : GrpPerm, GSet -> Hom(Grp), GrpPerm, GrpPerm
Action(G, Y) : GrpPerm, GSet -> Hom(Grp), GrpPerm, GrpPerm
Action(Y) : GSet -> Map
Action(M) : ModAlg -> AlgMat
Action(M) : ModRng -> AlgMat
ActionGenerator(B, i) : AlgBas, RngIntElt -> SeqEnum
ActionGenerator(L, i) : Lat, RngIntElt -> GrpMat
ActionGenerator(M, i) : ModGrp, RngIntElt -> AlgMatElt
ActionGenerator(M, i) : ModRng, RngIntElt -> AlgMatElt
ActionGenerators(M) : ModGrp -> [ AlgMatElt ]
ActionGroup(M) : ModGrp -> GrpMat
ActionImage(A, Y) : GrpPerm, GSet -> GrpPerm
ActionImage(G, Y) : GrpPerm, GSet -> GrpPerm
ActionImage(G, Y) : GrpPerm, GSet -> GrpPerm
ActionImage(G, Y) : GrpPerm, GSet -> GrpPerm
ActionKernel(A, Y) : GrpPerm, GSet -> GrpPerm
ActionKernel(G, Y) : GrpPerm, GSet -> GrpPerm
ActionKernel(G, Y) : GrpPerm, GSet -> GrpPerm
ActionKernel(G, Y) : GrpPerm, GSet -> GrpPerm
ActionMatrix(A,x) : AlgBas, Mtrx -> ModMatFldElt
ActionMatrix(M, a): ModAlg, AlgElt -> AlgMatElt
AffineAction(G) : GrpPerm -> Hom, GrpPerm, GrpPerm
BlocksAction(G, P) : GrpPerm, Any -> Hom(GrpPerm), GrpPerm, GrpPerm
CosetAction(G, H) : Grp, Grp -> Hom(Grp), GrpPerm, Grp
CosetAction(G, H) : Grp, Grp -> Hom(Grp), GrpPerm, Grp
CosetAction(G, H) : Grp, Grp -> Hom(Grp), GrpPerm, Grp
CosetAction(G, H) : Grp, Grp -> Hom(Grp), GrpPerm, GrpPC
CosetAction(V) : GrpFPCos, Grp -> Hom(Grp), GrpPerm
CosetAction(P) : GrpFPCosetEnumProc -> Map, GrpPerm, GrpFP
CosetAction(G, H) : GrpGPC, GrpGPC -> Map, GrpPerm, GrpGPC
CosetAction(G, H) : GrpMat, GrpMat -> Hom(Grp), GrpPerm, GrpMat
CosetAction(G, H: parameters) : Grp, Grp -> Hom(Grp), GrpPerm, GrpPerm
ExtraSpecialAction(G, g) : GrpMat, GrpMatElt -> GrpMatElt
FrobeniusActionOnPoints(S, q : parameters) : [ PtEll ], RngIntElt -> AlgMatElt
FrobeniusActionOnReducibleFiber(L) : < Tup > -> AlgMatElt
FrobeniusActionOnTrivialLattice(E) : CrvEll -> AlgMatElt
GModuleAction(M) : ModGrp -> Map(Hom)
GammaAction(A) : GGrp -> Map[Grp, GrpAuto]
GammaAction(R) : RootDtm -> Rec
GammaActionOnSimples(R) : RootDtm -> HomGrp
IdempotentActionGenerators(B, i) : AlgBas, RngIntElt -> SeqEnum
ImprimitiveAction(G, g) : GrpMat, GrpMatElt -> GrpPermElt
LMGSocleStarAction(G) : GrpMat -> Map, GrpPerm, GrpMat
LMGSocleStarActionKernel(G) : GrpMat -> GrpMat, GrpPC, Map
NaturalActionGenerator(L, i) : Lat, RngIntElt -> GrpMat
NonIdempotentActionGenerators(B, i) : AlgBas, RngIntElt -> SeqEnum
NumberOfActionGenerators(L) : Lat -> RngIntElt
NumberOfActionGenerators(M) : ModGrp -> RngIntElt
NumberOfActionGenerators(M) : ModRng -> RngIntElt
OrbitAction(G, T) : GrpMat, Elt -> Hom(Grp), GrpPerm, GrpMat
OrbitAction(G, T) : GrpPerm, GSet -> Hom(Grp), GrpPerm, GrpPerm
OrbitActionBounded(G, T, b) : GrpMat, Elt, RngIntElt -> BoolElt, Hom(Grp), GrpPerm, GrpMat
QuotientModuleAction(G, S) : GrpMat -> Map, GrpMat
RModuleWithAction(H) : HomModAbVar -> ModED
RModuleWithAction(H, p) : HomModAbVar, RngIntElt -> ModED
RootAction(W) : GrpPermCox -> Map
SUnitAction(SU, Act, S) : Map, Map, SeqEnum[RngOrdIdl] -> Map
SUnitAction(SU, Act, S) : Map, SeqEnum[Map], SeqEnum[RngOrdIdl] -> [Map]
SocleAction(G) : GrpPerm -> Hom, GrpPerm, GrpPerm
StandardAction(W) : GrpFPCox -> Map
StandardAction(W) : GrpMat -> Map
StandardActionGroup(W) : GrpFPCox -> GrpPerm, Map
StandardActionGroup(W) : GrpMat -> GrpPerm, Map
SubmoduleAction(G, S) : GrpMat -> Map, GrpMat
TensorInducedAction(G, g) : GrpMat, GrpMatElt -> GrpPermElt
GrpCox_Action (Example H98E23)
GrpRfl_Action (Example H99E25)
ModAlg_Action (Example H89E15)
RootDtm_Action (Example H97E20)
RootSys_Action (Example H96E12)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012