[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: canonical .. Cartan
Canonical Forms (MATRICES)
Canonical Forms (MATRIX ALGEBRAS)
Canonical Forms over Euclidean Domains (MATRICES)
Canonical Forms over Fields (MATRICES)
Canonical Forms over General Rings (MATRICES)
Log Canonical Thresholds (ALGEBRAIC CURVES)
Mixed Canonical Form and Lattice Operations (BRAID GROUPS)
Canonical Forms over Euclidean Domains (MATRICES)
Canonical Forms over Fields (MATRICES)
Canonical Forms (MATRIX ALGEBRAS)
Crv_canonical-map (Example H114E34)
HypGeomMot_canonical-schemes-and-curves (Example H126E4)
Crv_canonical_divisor (Example H114E31)
CanonicalBasis(V) : ModAlg -> SeqEnum
CanonicalClass(g) : GrphRes -> SeqEnum
CanonicalClass(X) : TorVar -> DivTorElt
CanonicalCoordinateIdeal(S) : Srfc -> RngMPol
CanonicalCurve(H) : HypGeomData -> Crv
CanonicalDissidentPoints(C) : GRCrvS -> SeqEnum
CanonicalDivisor(C) : Crv -> DivCrvElt
CanonicalDivisor(F) : FldFunG -> DivFunElt
CanonicalDivisor(X) : Sch -> DivSchElt
CanonicalDivisor(X) : TorVar -> DivTorElt
CanonicalElements(U, w) : AlgQUE, SeqEnum -> SeqEnum
CFP(u: parameters) : GrpBrdElt -> Tup
CanonicalFactorRepresentation(u: parameters) : GrpBrdElt -> Tup
AlgMat_CanonicalForms (Example H83E8)
Mat_CanonicalForms (Example H26E9)
CanonicalGraph(G) : Grph -> Grph
CanonicalHeight(P: parameters) : JacHypPt -> FldPrElt
Height(P: parameters) : JacHypPt -> FldPrElt
Height(P: parameters) : PtEll -> NFldComElt
CanonicalImage(C, phi) : Crv, MapSch -> Crv, BoolElt
AtkinLehnerInvolution(X,N) : CrvMod, RngIntElt -> MapSch
CanonicalInvolution(X) : CrvMod -> MapSch
CanonicalLength(u: parameters) : GrpBrdElt -> RngIntElt
AdjointLinearSystem(C) : Crv -> LinearSys
Adjoints(C,d) : Crv, RngIntElt -> LinearSys
CanonicalLinearSystem(C) : Crv -> LinearSys
CanonicalLinearSystemFromIdeal(I, d) : RngMPol, RngIntElt -> LinearSys
CanonicalMap(C) : Crv -> MapSch
CanonicalModularPolynomial(N) : RngIntElt -> RngMPolElt
CanonicalScheme(H) : HypGeomData -> Sch
CanonicalSheaf(X) : Sch -> ShfCoh
CanonicalWeightedModel(S) : Srfc -> Map, BoolElt
MinimalModelGeneralType(S) : Srfc -> Map, BoolElt
CanRedoEnumeration(P) : GrpFPCosetEnumProc -> BoolElt
CanSignNormalize(F) : RngUPolTwstElt -> BoolElt, RngUPolTwstElt, RngElt
CanteautChabaudsAttack(C, v, e, p, l) : Code, ModTupFldElt, RngIntElt, RngIntElt,RngIntElt -> ModTupFldElt
CanteautChabaudsAttack(C, v, e, p, l) : Code, ModTupFldElt, RngIntElt, RngIntElt,RngIntElt -> ModTupFldElt
BuildHomomorphismFromGradedCap(A, B, phi) : AlgBas, AlgBas, ModMatFldElt -> ModMatFldElt
GradedCapHomomorphism(A) : AlgBas -> ModMatFldElt
GradedCapHomomorphism(A, B, mu) : AlgBas, AlgBas, ModMatFldElt -> ModMatFldElt
IsCapacitated(E) : GrphEdgeSet -> BoolElt
IsEdgeCapacitated(G) : GrphMult -> BoolElt
AssignCapacities(~G, D) : GrphMult, [RngIntElt] ->
AssignWeights(~G, D) : GrphMult, [RngElt] ->
AssignEdgeLabels(~G, D) : GrphMult, SeqEnum ->
AssignLabels(~G, S, D) : GrphMult, [GrphEdge], SeqEnum ->
DeleteEdgeLabels(~G) : GrphMult ->
DeleteLabels(~G, S) : GrphMult, [GrphEdge] ->
EdgeLabels(G) : GrphMult -> SeqEnum
Labels(E) : GrphEdgeSet -> SeqEnum
Labels(S) : [GrphEdge] -> SeqEnum
AssignCapacity(~G, e, c) : GrphMult, GrphEdge, RngIntElt ->
AssignWeight(~G, e, w) : GrphMult, GrphEdge, RngElt ->
AssignLabel(~G, e, l) : GrphMult, GrphEdge, . ->
Capacity(e) : GrphEdge -> RngIntElt
DeleteLabel(~G, e) : GrphMult, GrphEdge ->
car< R1, ..., Rk > : Str, ..., Str -> SetCart
CodeFld_Card-Best-Comparison (Example H152E37)
Cardinality(N) : Nfd -> RngIntElt
Bounds on the Cardinality of a Largest Code (LINEAR CODES OVER FINITE FIELDS)
CarlitzModule(R, x) : RngUPolTwst, RngUPolElt -> RngUPolTwstElt
FldFunAb_carlitz-module (Example H43E4)
CarlitzModule(R, x) : RngUPolTwst, RngUPolElt -> RngUPolTwstElt
DerivedGroupMonteCarlo (G : parameters) : GrpMat -> GrpMat
HasOnlyOrdinarySingularitiesMonteCarlo(C) : CrvPln -> BoolElt, RngIntElt
NormalClosureMonteCarlo (G, H ) : GrpMat, GrpMat -> GrpMat
Monte Carlo Algorithms for Subgroups (MATRIX GROUPS OVER FINITE FIELDS)
CarmichaelLambda(n) : RngIntElt -> RngIntElt
FactoredCarmichaelLambda(n) : RngIntElt -> RngIntEltFact
CarmichaelLambda(n) : RngIntElt -> RngIntElt
AbsoluteCartanMatrix(G, K) : Grp, FldFin -> AlgMatElt
CartanInteger(R, r, s) : RootDtm, RngIntElt, RngIntElt -> RngIntElt
CartanMatrix(L) : AlgKac -> AlgMatElt
CartanMatrix(A) : AlgMat -> ModMatRngElt
CartanMatrix(M) : AlgMatElt -> AlgMatElt
CartanMatrix(G, K) : Grp, FldFin -> AlgMatElt
CartanMatrix(D) : GrphDir -> AlgMatElt
CartanMatrix(g) : GrphRes -> Mtrx
CartanMatrix(G) : GrpLie -> GrphUnd
CartanMatrix(W) : GrpMat -> AlgMatElt
CartanMatrix(W) : GrpPermCox -> AlgMatElt
CartanMatrix(N) : MonStgElt -> AlgMatElt
CartanMatrix(R) : RootStr -> AlgMatElt
CartanMatrix(R) : RootSys -> AlgMatElt
CartanName(L) : AlgKac -> MonStgElt
CartanName(M) : AlgMatElt -> MonStgElt
CartanName(W) : GrpFPCox -> List
CartanName(G) : GrpLie -> Mtrx
CartanName(W) : GrpMat -> List
CartanName(R) : RootStr -> MonStgElt
CartanName(R) : RootSys -> List
CartanSubalgebra(L) : AlgLie -> AlgLie
ComplexCartanMatrix(k) : RngIntElt -> AlgMatElt
IrreducibleCartanMatrix(X, n) : MonStgElt, RngIntElt -> AlgMatElt
IsCartanEquivalent(C1, C2) : AlgMatElt, AlgMatElt -> BoolElt
IsCartanEquivalent(G, H) : GrpLie, GrpLie -> BoolElt
IsCartanEquivalent(W1, W2) : GrpMat, GrpMat -> BoolElt
IsCartanEquivalent(W1, W2) : GrpPermCox, GrpPermCox -> BoolElt
IsCartanEquivalent(N1, N2) : MonStgElt, MonStgElt -> BoolElt
IsCartanEquivalent(R1, R2) : RootDtm, RootDtm -> BoolElt
IsCartanEquivalent(R1, R2) : RootSys, RootSys -> BoolElt
IsCartanMatrix(C) : AlgMatElt -> BoolElt
IsCartanSubalgebra(L, H) : AlgLie, AlgLie -> BoolElt
IsGeneralizedCartanMatrix(C) : AlgMatElt -> BoolElt
IsSplittingCartanSubalgebra(L, H) : AlgLie, AlgLie -> BoolElt
SemisimpleType(L) : AlgLie -> MonStgElt
SplittingCartanSubalgebra(L) : AlgLie -> AlgLie
TwistedCartanName(R) : RootDtm -> MonStgElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012