[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: ideal-two .. Identical
RngOrd_ideal-two (Example H37E29)
AlgQuat_Ideal_Bases (Example H86E17)
AlgQuat_Ideal_Enumeration (Example H86E19)
AlgQuat_Ideal_Enumeration (Example H86E20)
AlgQuat_Ideal_Enumeration (Example H86E21)
Ideal_IdealArithmetic (Example H106E1)
RngMPolLoc_IdealArithmetic (Example H107E4)
IdealFactorisation(D) : DivSchElt -> SeqEnum
Idealizer(S) : AlgGrpSub -> AlgGrpSub
Idealiser(S) : AlgGrpSub -> AlgGrpSub
Idealizer(A, B: parameters) : AlgAss, AlgAss -> AlgAss
Idealizer(S) : AlgGrpSub -> AlgGrpSub
Idealiser(S) : AlgGrpSub -> AlgGrpSub
Idealizer(A, B: parameters) : AlgAss, AlgAss -> AlgAss
IdealOfSupport(D) : DivSchElt -> RngMPol
IdealQuotient(I, J) : RngMPol, RngMPol -> RngMPol
ColonIdeal(I, J) : RngMPol, RngMPol -> RngMPol
ColonIdeal(I, f) : RngMPol, RngMPolElt -> RngMPol, RngIntElt
ColonIdeal(I, J) : RngOrdIdl, RngOrdIdl -> RngOrdIdl
IdealQuotient(I, J) : RngFunOrdIdl, RngFunOrdIdl -> RngFunOrdIdl
CoefficientIdeals(P): PMat -> SeqEnum
CoefficientIdeals(O) : RngFunOrd -> [RngFunOrdIdl]
CoefficientIdeals(O) : RngOrd -> [RngOrdFracIdl]
CoefficientIdeals(I) : RngOrdFracIdl -> [RngOrdFracIdl]
CoefficientIdeals(I) : RngOrdFracIdl -> [RngOrdFracIdl]
DegreeOnePrimeIdeals(O, B) : RngOrd, RngIntElt -> [ RngOrdIdl ]
FittingIdeals(M) : ModMPol, RngIntElt -> RngMPol
Ideals(D) : DivFunElt -> RngFunOrdIdl, RngFunOrdIdl
Ideals(D) : DivFunElt -> RngFunOrdIdl, RngFunOrdIdl
Ideals(M) : ModBrdt -> []
L2Ideals(I) : RngMPol -> SeqEnum[RngMPol]
MaximalIdeals(L : parameters) : AlgLie -> [ AlgLie ], BoolElt
MaximalLeftIdeals(O, p) : AlgQuatOrd, RngElt -> [AlgQuatOrdIdl]
MaximalLeftIdeals(A : parameters) : AlgGen -> [ AlgGen ], BoolElt
MinimalIdeals(L : parameters) : AlgLie -> [ AlgLie ], BoolElt
MinimalLeftIdeals(A : parameters) : AlgGen -> [ AlgGen ], BoolElt
QuaternionOrder(M) : ModBrdt -> AlgQuatOrd
RngOrd_Ideals (Example H37E26)
Creation of Ideals (ALGEBRAIC FUNCTION FIELDS)
Creation of Ideals and Accessing their Bases (GRÖBNER BASES)
Creation of Ideals and Accessing their Bases (LOCAL POLYNOMIAL RINGS)
Functions on Prime Ideals (ALGEBRAIC FUNCTION FIELDS)
Ideals (ALGEBRAIC FUNCTION FIELDS)
Ideals and Gröbner Bases (FINITELY PRESENTED ALGEBRAS)
Ideals and their Construction (BASIC ALGEBRAS)
Ideals of Orders (ASSOCIATIVE ALGEBRAS)
Ideals of Z (INTEGER RESIDUE CLASS RINGS)
Isomorphisms of Ideals (QUATERNION ALGEBRAS)
Roots of Ideals (ALGEBRAIC FUNCTION FIELDS)
Special Functions for Ideals (QUADRATIC FIELDS)
FldFunG_ideals (Example H42E31)
Creation of Ideals (ALGEBRAIC FUNCTION FIELDS)
Functions on Prime Ideals (ALGEBRAIC FUNCTION FIELDS)
Roots of Ideals (ALGEBRAIC FUNCTION FIELDS)
IdealWithFixedBasis(B) : [ RngMPolElt ] -> RngMPol
Idempotent(C) : Code -> RngUPolElt
IdempotentActionGenerators(B, i) : AlgBas, RngIntElt -> SeqEnum
IdempotentGenerators(B) : AlgBas -> SeqEnum
IdempotentPositions(B) : AlgBas -> SeqEnum
IsIdempotent(a) : AlgGenElt -> BoolElt
IsIdempotent(x) : RngElt -> BoolElt
MaximalIdempotent(A, S) : AlgBas, SeqEnum -> AlgBasElt
NonIdempotentActionGenerators(B, i) : AlgBas, RngIntElt -> SeqEnum
NonIdempotentGenerators(B) : AlgBas -> SeqEnum
PrimitiveIdempotentData(A) : AlgMat -> SeqEnum, Map, SeqEnum
IdempotentActionGenerators(B, i) : AlgBas, RngIntElt -> SeqEnum
IdempotentGenerators(B) : AlgBas -> SeqEnum
IdempotentPositions(B) : AlgBas -> SeqEnum
AutomorphismGroupMatchingIdempotents(A) : AlgBas -> AlgBas, ModMatFldElt
CentralIdempotents(A) : AlgAssV -> SeqEnum, SeqEnum
ChangeIdempotents(A, S) : AlgBas, SeqEnum -> AlgBas, Map
GradedAutomorphismGroupMatchingIdempotents(A) : AlgBas -> GrpMat, SeqEnum, SecEnum
Idempotents(I, J) : RngOrdIdl, RngOrdIdl -> BoolElt, RngOrdElt, RngOrdElt
PrimitiveIdempotents(A) : AlgMat -> SeqEnum
RanksOfPrimitiveIdempotents(A) : AlgMat -> SeqEnum
Minimal Forms and Gradings (BASIC ALGEBRAS)
Quotients and Idempotents (MATRIX ALGEBRAS)
AreIdentical(u, v: parameters) : GrpBrdElt, GrpBrdElt -> BoolElt
IsIdentical(R, F) : RngDiff, RngDiff -> BoolElt
IsIdentical(R, F) : RngDiffOp, RngDiffOp -> BoolElt
IsIdentical(f, g) : RngSerElt, RngSerElt -> BoolElt
IsIdenticalPresentation(G, H) : GrpGPC, GrpGPC -> BoolElt
IsIdenticalPresentation(G, H) : GrpPC, GrpPC -> BoolElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012