[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: differential  ..  DihedralGroup


differential

   Coprime Index 1 and LCLM Factorisation (DIFFERENTIAL RINGS)
   Derivation and Differential (DIFFERENTIAL RINGS)
   Derivation and Differential (DIFFERENTIAL RINGS)
   Derivatives and Differentials (DIFFERENTIAL RINGS)
   Right Hand Factors of Operators (DIFFERENTIAL RINGS)
   Slope Valuation of an Operator (DIFFERENTIAL RINGS)

differential-operators-coprimeindex1-factorisation

   Coprime Index 1 and LCLM Factorisation (DIFFERENTIAL RINGS)

differential-operators-right-hand-factors

   Right Hand Factors of Operators (DIFFERENTIAL RINGS)

differential-operators-slope-valuation

   Slope Valuation of an Operator (DIFFERENTIAL RINGS)

DifferentialBasis

   DifferentialBasis(D) : DivCrvElt -> SeqEnum
   DifferentialBasis(D) : DivCrvElt -> [DiffCrvElt]
   DifferentialBasis(D) : DivFunElt -> [DiffFunElt]
   DifferentialBasis(D) : DivFunElt -> [DiffFunElt]

DifferentialFieldExtension

   DifferentialFieldExtension(L) : RngDiffOpElt, -> RngDiff

DifferentialIdeal

   DifferentialIdeal(L) : [RngDiffElt] -> RngMPol

DifferentialLaurentSeriesRing

   DifferentialLaurentSeriesRing(C) : Fld -> RngDiff

DifferentialOperator

   DifferentialOperator(f) : RngUPolElt -> RngDiffOpElt

DifferentialOperatorRing

   DifferentialOperatorRing(F) : RngDiff -> RngDiffOp

DifferentialRing

   DifferentialRing(P, f, C) : Rng, Map, Rng -> RngDiff

DifferentialRingExtension

   DifferentialRingExtension(L) : RngDiffOpElt -> RngDiff

Differentials

   BasisOfHolomorphicDifferentials(C) : Crv -> [DiffCrvElt]
   BasisOfDifferentialsFirstKind(C) : Crv -> [DiffCrvElt]
   BasisOfDifferentialsFirstKind(F) : FldFunG -> SeqEnum[DiffFunElt]
   SheafOfDifferentials(X) : Sch -> ShfCoh
   SpaceOfDifferentialsFirstKind(C) : Crv -> ModFld, Map
   SpaceOfDifferentialsFirstKind(F) : FldFunG -> ModFld, Map

differentials

   Differentials (ALGEBRAIC FUNCTION FIELDS)

DifferentialSpace

   DifferentialSpace(C) : Crv -> DiffCrv
   DifferentialSpace(D) : DivCrvElt -> ModFld, Map
   DifferentialSpace(D) : DivCrvElt -> ModFld,Map
   DifferentialSpace(D) : DivFunElt -> ModFld, Map
   DifferentialSpace(D) : DivFunElt -> ModFld, Map
   DifferentialSpace(F) : FldFun -> DiffFun
   DifferentialSpace(F) : FldFunG -> DiffFun

Differentiation

   Differentiation(x, a) : FldFunGElt, FldFunGElt -> FldFunGElt
   Differentiation(x, n, a) : FldFunGElt, RngIntElt, FldFunGElt -> FldFunGElt
   DifferentiationSequence(x, n, a) : FldFunGElt, RngIntElt, FldFunGElt -> SeqEnum

differentiation

   Numerical Derivatives (REAL AND COMPLEX FIELDS)

DifferentiationSequence

   DifferentiationSequence(x, n, a) : FldFunGElt, RngIntElt, FldFunGElt -> SeqEnum

diffrings

   DIFFERENTIAL RINGS

Digraph

   CompleteDigraph(n) : RngIntElt -> GrphDir
   Digraph< n | edges : parameters> : RngIntElt, List -> GrphDir
   DynkinDigraph(C) : AlgMatElt -> GrphDir
   DynkinDigraph(G) : GrpLie -> GrphUnd
   DynkinDigraph(W) : GrpMat -> GrphDir
   DynkinDigraph(W) : GrpPermCox -> GrphDir
   DynkinDigraph(N) : MonStgElt -> GrphDir
   DynkinDigraph(R) : RootStr -> GrphDir
   DynkinDigraph(R) : RootSys -> GrphDir
   EmptyDigraph(n : parameters) : RngIntElt -> GrphDir
   IncidenceDigraph(A) : ModMatRngElt -> GrphDir
   IrreducibleDynkinDigraph(X, n) : MonStgElt, RngIntElt -> GrphDir
   IsDynkinDigraph(D) : GrphDir -> BoolElt
   MultiDigraph<n | edges > : RngIntElt, List -> GrphMultDir, GrphVertSet, GrphEdgeSet
   RandomDigraph(n, r : parameters) : RngIntElt, FldReElt -> GrphDir
   UnderlyingDigraph(G) : Grph -> GrphDir
   UnderlyingDigraph(G) : GrphMult-> GrphDir, GrphVertSet, GrphEdgeSet
   UnderlyingMultiDigraph(G) : Grph -> GrphMultDir, GrphVertSet, GrphEdgeSet

digraph

   Adjacency and Degree Functions for a Digraph (GRAPHS)
   Connectedness in a Multidigraph (MULTIGRAPHS)
   Connectedness in a Digraph (GRAPHS)
   Construction of a General Digraph (GRAPHS)
   Construction of a Standard Digraph (GRAPHS)
   Construction of Graphs and Digraphs (GRAPHS)
   Converting between Graphs and Digraphs (GRAPHS)

Dihedral

   DihedralForms(M) : ModFrm -> List
   DihedralGroup(C, n) : Cat, RngIntElt -> GrpFin
   DihedralGroup(GrpFP, n) : Cat, RngIntElt -> GrpFP
   DihedralGroup(GrpGPC, n) : Cat, RngIntElt -> GrpGPC
   DihedralGroup(GrpPC, n) : Cat, RngIntElt -> GrpPC
   DihedralGroup(GrpPerm, n) : Cat, RngIntElt -> GrpPerm
   DihedralSubspace(M) : ModFrm -> ModFrm

DihedralForms

   DihedralForms(M) : ModFrm -> List

DihedralGroup

   DihedralGroup(C, n) : Cat, RngIntElt -> GrpFin
   DihedralGroup(GrpFP, n) : Cat, RngIntElt -> GrpFP
   DihedralGroup(GrpGPC, n) : Cat, RngIntElt -> GrpGPC
   DihedralGroup(GrpPC, n) : Cat, RngIntElt -> GrpPC
   DihedralGroup(GrpPerm, n) : Cat, RngIntElt -> GrpPerm

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012