[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: bound .. braid
Asymptotic Bounds on the Information Rate (LINEAR CODES OVER FINITE FIELDS)
Bounds (LINEAR CODES OVER FINITE FIELDS)
Bounds on the Minimum Distance (LINEAR CODES OVER FINITE FIELDS)
Boundary(X) : SmpCpx -> SmpCpx
BoundaryIntersection(x) : [SpcHydElt] -> [FldComElt]
BoundaryMap(C, n) : ModCpx, RngIntElt -> ModMatRngElt
BoundaryMap(M) : ModSym -> ModMatFldElt
BoundaryMaps(C) : ModCpx -> List
BoundaryMatrix(X, q, A) : SmpCpx, RngIntElt, Rng -> Mtrx
IsBoundary(N, p) : NwtnPgon,Tup -> BoolElt
LayerBoundary(G,i,j,k) : GrpPC, RngIntElt, RngIntElt, RngIntElt -> RngIntElt
MinorBoundary(G,i,j) : GrpPC, RngIntElt, RngIntElt -> RngIntElt
NilpotentBoundary(G,i) : GrpPC, RngIntElt -> RngIntElt
Points(P) : TorPol -> SeqEnum[TorLatElt]
TriangulationOfBoundary(P) : TorPol -> SetEnum
SmpCpx_boundary (Example H140E6)
BoundaryIntersection(x) : [SpcHydElt] -> [FldComElt]
BoundaryMap(C, n) : ModCpx, RngIntElt -> ModMatRngElt
BoundaryMap(M) : ModSym -> ModMatFldElt
ModSym_BoundaryMap (Example H133E12)
BoundaryMaps(C) : ModCpx -> List
BoundaryMatrix(X, q, A) : SmpCpx, RngIntElt, Rng -> Mtrx
InteriorPoints(P) : TorPol -> SeqEnum[TorLatElt]
BoundaryPoints(P) : TorPol -> SeqEnum[TorLatElt]
Points(P) : TorPol -> SeqEnum[TorLatElt]
BoundedFSubspace(epsilon, k, degrees) : GrpDrchElt, RngIntElt, [RngIntElt] -> [ ModSym ]
OrbitActionBounded(G, T, b) : GrpMat, Elt, RngIntElt -> BoolElt, Hom(Grp), GrpPerm, GrpMat
OrbitBounded(G, y, b) : GrpMat, Elt, RngIntElt -> BoolElt, SetEnum
OrbitImageBounded(G, T, b) : GrpMat, Set, RngIntElt -> BoolElt, GrpPerm
OrbitKernelBounded(G, T, b) : GrpMat, Set, RngIntElt -> BoolElt, GrpMat
WordsOfBoundedLeeWeight(C, l, u) : Code, RngIntElt, RngIntElt -> SetEnum
WordsOfBoundedWeight(C, l, u: parameters) : Code, RngIntElt, RngIntElt -> { ModTupFldElt }
WordsOfBoundedWeight(C, l, u: parameters) : Code, RngIntElt, RngIntElt -> { ModTupFldElt }
BoundedFSubspace(epsilon, k, degrees) : GrpDrchElt, RngIntElt, [RngIntElt] -> [ ModSym ]
MinimumWeightBounds(C) : Code -> RngIntElt, RngIntElt
PhiSelmerGroup(f,q) : RngUPolElt, RngIntElt -> GrpAb, Map
RankBound(J) : JacHyp -> RngIntElt
RankBounds(E) : CrvEll[FldFunG] -> RngIntElt, RngIntElt
RankBounds(H: parameters) : SetPtEll -> RngIntElt, RngIntElt
ResetMinimumWeightBounds(C) : Code ->
SetClassGroupBounds(n) : Any ->
UnsetBounds(L) : LP ->
CrvEllQNF_Bounds (Example H122E8)
Best Known Bounds (QUANTUM CODES)
Best Known Bounds for Linear Codes (LINEAR CODES OVER FINITE FIELDS)
Setting the Class Group Bounds Globally (ORDERS AND ALGEBRAIC FIELDS)
NaturalBlackBoxGroup(H) : Grp -> GrpBB
BQPlotkinSum(D, E, F) : Code, Code, Code -> Code
BQPlotkinSum(A, B, C) : Mtrx, Mtrx, Mtrx -> Mtrx
BQPlotkinSum(D, E, F) : Code, Code, Code -> Code
BQPlotkinSum(A, B, C) : Mtrx, Mtrx, Mtrx -> Mtrx
{* e1, e2, ..., en *} : Elt, ..., Elt -> SetMulti
{* *} : Null -> SetMulti
{* U | *} : Str -> SetMulti
{* U | e1, e2, ..., em *} : Str, Elt, ..., Elt -> SetMulti
{* e(x) : x in E | P(x) *}
{* U | e(x) : x in E | P(x) *}
{* e(x1,...,xk) : x1 in E1, ..., xkin Ek | P(x1, ..., xk) *}
{* U | e(x1,...,xk) : x1 in E1, ...,xk in Ek | P(x1, ..., xk) *}
(a, b) : AlgAssElt, AlgAssElt -> AlgAssElt
LieBracket(a, b) : AlgAssElt, AlgAssElt -> AlgAssElt
BraidGroup(GrpFP, n) : Cat, RngIntElt -> GrpFP
BraidGroup(W) : GrpFPCox -> GrpFP, Map
BraidGroup(n: parameters) : RngIntElt -> GrpBrd
PureBraidGroup(W) : GrpFPCox -> GrpFP, Map
Accessing Information (BRAID GROUPS)
Arithmetic Operators and Functions for Elements (BRAID GROUPS)
Automatic Conversions (BRAID GROUPS)
Boolean Predicates for Elements (BRAID GROUPS)
BRAID GROUPS
Braid Groups (COXETER GROUPS)
Computing Class Invariants Interactively (BRAID GROUPS)
Computing Minimal Simple Elements (BRAID GROUPS)
Computing Normal Forms of Elements (BRAID GROUPS)
Computing the Class Invariants (BRAID GROUPS)
Conjugacy Testing and Conjugacy Search (BRAID GROUPS)
Conjugacy Testing and Conjugacy Search (BRAID GROUPS)
Constructing and Accessing Braid Groups (BRAID GROUPS)
Creating Elements of a Braid Group (BRAID GROUPS)
Default Presentations (BRAID GROUPS)
Definition of the Class Invariants (BRAID GROUPS)
Introduction (BRAID GROUPS)
Invariants of Conjugacy Classes (BRAID GROUPS)
Lattice Operations (BRAID GROUPS)
Lattice Structure and Simple Elements (BRAID GROUPS)
Mixed Canonical Form and Lattice Operations (BRAID GROUPS)
Normal Form for Elements of a Braid Group (BRAID GROUPS)
Printing of Elements (BRAID GROUPS)
Representation Used for Group Operations (BRAID GROUPS)
Representing Elements of a Braid Group (BRAID GROUPS)
Working with Elements of a Braid Group (BRAID GROUPS)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012