[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: Homology-Invariants .. homomorphism
ModAbVar_Homology-Invariants (Example H136E45)
ModAbVar_Homology-Modular_Structure (Example H136E49)
ModAbVar_homology1 (Example H136E50)
ModAbVar_homology1 (Example H136E86)
HomologyBasis(A) : AnHcJac -> SeqEnum, SeqEnum, Mtrx
HomologyGenerators(X) : SmpCpx ->
SmpCpx_homologygenerators (Example H140E15)
HomologyGroup(X, q) : SmpCpx, RngIntElt -> ModRng
Maps on Homology (CHAIN COMPLEXES)
HomologyOfChainComplex(C) : ModCpx -> SeqEnum
Homology(C) : ModCpx -> SeqEnum
BuildHomomorphismFromGradedCap(A, B, phi) : AlgBas, AlgBas, ModMatFldElt -> ModMatFldElt
ConnectingHomomorphism(f, g, n) : MapChn, MapChn, RngIntElt -> ModMatRngElt
DefinesHomomorphism(P) : GrpFPHomsProc -> BoolElt
FormalGroupHomomorphism(phi, prec) : MapSch, RngIntElt -> RngSerPowElt
GeneralisedRowReduction(ρ) : Map -> Map
GradedCapHomomorphism(A) : AlgBas -> ModMatFldElt
GradedCapHomomorphism(A, B, mu) : AlgBas, AlgBas, ModMatFldElt -> ModMatFldElt
GroupOfLieTypeHomomorphism(phi, k) : Map, Rng -> .
GroupOfLieTypeHomomorphism(phi, k) : Map, Rng -> GrpLie
Homomorphism(A, B, X, Y) : Grp, Grp, [ GrpElt ], [ GrpElt ] -> Map
Homomorphism(P) : GrpFPHomsProc -> HomGrp
Homomorphism(M, N, A): ModMPol, ModMPol, Mtrx -> ModMPolHom
IdentityHomomorphism(G) : Grp -> Map
IdentityHomomorphism(G) : GrpPC -> Map
IsAlgebraHomomorphism(A, B, psi) : AlgBas, AlgBas, Map -> Bool
IsAlgebraHomomorphism(A, B, psi) : AlgBas, Mtrx -> Bool
IsAlgebraHomomorphism(psi): Map -> Bool
IsHomomorphism(G, H, Q) : GrpMat, GrpMat, SeqEnum[GrpMatElt] -> Bool, Map
IsHomomorphism(G, H, L) : GrpPC, GrpPC, SeqEnum -> BoolElt, Map
IsHomomorphism(G, H, Q) : GrpPerm, GrpPerm, SeqEnum[GrpPermElt] -> Bool, Map
IsModuleHomomorphism(f) : ModMatFldElt -> BoolElt
IsModuleHomomorphism(X) : ModMatFldElt -> BoolElt
IsRingHomomorphism(m) : Map -> BoolElt
IsRingHomomorphism(m) : Map -> BoolElt
LiftHomomorphism(x, n) : ModAlgElt, RngIntElt -> ModMatFldElt
LiftHomomorphism(X, N) : SeqEnum[ModAlgElt], SeqEnum[RngIntElt] -> ModMatFldElt
ModuleHomomorphism(f) : ShfHom -> ModMPolHom
SheafHomomorphism(S, T, h) : ShfCoh, ShfCoh, ModMPolHom -> ShfHom
AlgFP_Homomorphism (Example H82E1)
FldFunRat_Homomorphism (Example H41E2)
GrpFP_1_Homomorphism (Example H70E17)
GrpGPC_Homomorphism (Example H72E4)
GrpMatGen_Homomorphism (Example H59E5)
GrpPerm_Homomorphism (Example H58E6)
RngMPol_Homomorphism (Example H24E3)
RngPol_Homomorphism (Example H23E4)
Action on a G-Space (PERMUTATION GROUPS)
Algebraic Homomorphisms (GROUPS OF LIE TYPE)
Coset Spaces: Induced Homomorphism (FINITELY PRESENTED GROUPS)
Creating Homomorphisms (MODULES OVER AN ALGEBRA)
Creation of Homomorphisms (MAPPINGS)
Creation of Homomorphisms (NUMBER FIELDS)
Creation of Homomorphisms (ORDERS AND ALGEBRAIC FIELDS)
Elements of Mn as Homomorphisms (MATRIX ALGEBRAS)
Hom(M, N) (MODULES OVER AN ALGEBRA)
Homomorphisms (AUTOMATIC GROUPS)
Homomorphisms (BRAID GROUPS)
Homomorphisms (FINITE FIELDS)
Homomorphisms (FINITELY PRESENTED ALGEBRAS)
Homomorphisms (FINITELY PRESENTED GROUPS)
Homomorphisms (GROUPS DEFINED BY REWRITE SYSTEMS)
Homomorphisms (GROUPS)
Homomorphisms (INTEGER RESIDUE CLASS RINGS)
Homomorphisms (MAPPINGS)
Homomorphisms (MATRIX GROUPS OVER GENERAL RINGS)
Homomorphisms (MODULES OVER AN ALGEBRA)
Homomorphisms (MONOIDS GIVEN BY REWRITE SYSTEMS)
Homomorphisms (MULTIVARIATE POLYNOMIAL RINGS)
Homomorphisms (PERMUTATION GROUPS)
Homomorphisms (POLYCYCLIC GROUPS)
Homomorphisms (RATIONAL FIELD)
Homomorphisms (RATIONAL FUNCTION FIELDS)
Homomorphisms (REAL AND COMPLEX FIELDS)
Homomorphisms (RING OF INTEGERS)
Homomorphisms (UNIVARIATE POLYNOMIAL RINGS)
Subgroups, Quotient Groups, Homomorphisms and Extensions (POLYCYCLIC GROUPS)
Subspaces, Quotient Spaces and Homomorphisms (VECTOR SPACES)
FldRat_homomorphism (Example H20E2)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012