[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: TangentLine .. tensor
TangentLine(p) : Pt -> Crv
AllTangents(P, A) : Plane, { PlanePt } -> { PlaneLn }
AllTangents(P, U) : Plane, { PlanePt } -> { PlaneLn }
TangentSheaf(X) : Sch -> ShfCoh
TangentSpace(p) : Sch,Pt -> Sch
TangentVariety(X) : Sch -> Sch
Scheme_TangentVariety (Example H112E48)
Tanh(r) : FldReElt -> FldReElt
Tanh(f) : RngSerElt -> RngSerElt
Tanh(f) : RngSerElt -> RngSerElt
TannerGraph(C) : Code -> Grph
TannerGraph(C) : Code -> Grph
InverseJeuDeTaquin(~t, i, j) : Tbl, RngIntElt, RngIntElt ->
JeuDeTaquin(~t) : Tbl ->
JeuDeTaquin(~t, i, j) : Tbl, RngIntElt, RngIntElt ->
SetTargetRing(~chi, e) : GrpDrchNFElt, RngElt ->
TargetRestriction(G, C) : GrpDrchNF, FldCyc -> GrpDrchNF
TargetRestriction(G, C) : GrpDrchNF, FldCyc -> GrpDrchNF
ArtinTateFormula(f, q, h20) : RngUPolElt, RngIntElt, RngIntElt -> RngIntElt, RngIntElt
CasselsTatePairing(C, D) : Crv, CrvHyp -> RngIntElt
CasselsTatePairing(C, D) : CrvHyp, CrvHyp -> RngIntElt
ReducedTatePairing(P, Q, n) : PtEll, PtEll, RngIntElt -> RngElt
TateLichtenbaumPairing(D1, D2, m) : DivFunElt, DivFunElt, RngIntElt -> RngElt
TatePairing(P, Q, n) : PtEll, PtEll, RngIntElt -> RngElt
The Cassels-Tate Pairing (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
The Cassels-Tate Pairing (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
FldFunG_tate (Example H42E40)
TateLichtenbaumPairing(D1, D2, m) : DivFunElt, DivFunElt, RngIntElt -> RngElt
TatePairing(P, Q, n) : PtEll, PtEll, RngIntElt -> RngElt
AntiAutomorphismTau(U) : AlgQUE -> Map
SetGlobalTCParameters(: parameters) : ->
UnsetGlobalTCParameters() : ->
Teichmüller Lifts (p-ADIC RINGS AND THEIR EXTENSIONS)
Teichmüller Lifts (p-ADIC RINGS AND THEIR EXTENSIONS)
TeichmuellerLift(u, R) : FldFinElt, RngPadResExt -> RngPadResExtElt
TeichmuellerSystem(R) : Any -> [RngLocElt]
TeichmuellerLift(u, R) : FldFinElt, RngPadResExt -> RngPadResExtElt
TeichmuellerSystem(R) : Any -> [RngLocElt]
Tell(F) : File -> RngIntElt
GetTempDir() : -> MonStgElt
MAGMA_TEMP_DIR
Tempname(P) : MonStgElt -> MonStgElt
Tensor Products and Tor (MODULES OVER MULTIVARIATE RINGS)
IsTensor(G: parameters) : GrpMat -> BoolElt
IsTensorInduced(G : parameters) : GrpMat -> BoolElt
LittlewoodRichardsonTensor(p, q) : ModTupRngElt, ModTupRngElt -> SeqEnum, SeqEnum[RngIntElt]
TensorBasis(G) : GrpMat -> GrpMatElt
TensorFactors(G) : GrpMat -> GrpMat, GrpMat
TensorInducedAction(G, g) : GrpMat, GrpMatElt -> GrpPermElt
TensorInducedBasis(G) : GrpMat -> GrpMatElt
TensorInducedPermutations(G) : GrpMat -> SeqEnum
TensorPower(M, n) : ModGrp, RngIntElt -> ModGrp
TensorPower(R, n, v) : RootDtm, RngIntElt, ModTupRngElt -> LieRepDec
TensorProduct(A, B) : AlgBas, AlgBas-> AlgBas
TensorProduct(A, B) : AlgMat, AlgMat -> AlgMat
TensorProduct(a, b) : AlgMatElt, AlgMatElt -> AlgMatElt
TensorProduct(G, H) : GrphDir, GrphDir -> GrphDir
TensorProduct(L, M) : Lat, Lat -> Lat
TensorProduct(D, E) : LieRepDec, LieRepDec -> .
TensorProduct(L1, L2, ExcFactors) : LSer, LSer, [<>] -> LSer
TensorProduct(C, N) : ModCpx, ModMPol -> ModMPol
TensorProduct(M, N) : ModGrp, ModGrp -> ModGrp
TensorProduct(M, N) : ModMPol, ModMPol -> ModMPol, Map
TensorProduct(U, V) : ModTupFld, ModTupFld -> FldElt
TensorProduct(u, v) : ModTupFldElt, ModTupFldElt -> FldElt
TensorProduct(R, v, w) : RootDtm, ModTupRngElt, ModTupRngElt -> .
TensorProduct(Q) : SeqEnum -> ModAlg, Map
TensorProduct(Q) : SeqEnum -> ModAlg, Map
TensorProduct(Q) : SeqEnum -> ModAlg, Map
TensorProduct(S, T) : ShfCoh, ShfCoh -> ShfCoh
TensorProduct(Q) : [LieRepDec] -> LieRepDec
TensorWreathProduct(G, H) : GrpMat, GrpPerm -> GrpMat
GrpMatFF_Tensor (Example H60E4)
Tensor Products (MATRIX GROUPS OVER FINITE FIELDS)
Tensor Products of K[G]-Modules (K[G]-MODULES AND GROUP REPRESENTATIONS)
Tensor-induced Groups (MATRIX GROUPS OVER FINITE FIELDS)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012