[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: primary  ..  PrimeIdeal


primary

   Primary Decomposition (POLYNOMIAL RING IDEAL OPERATIONS)
   Primary Invariants (INVARIANT THEORY)

primary-decomposition

   Primary Decomposition (POLYNOMIAL RING IDEAL OPERATIONS)

PrimaryAlgebra

   PrimaryAlgebra(R) : RngInvar -> RngMPol

PrimaryComponents

   PrimaryComponents(X) : Sch -> SeqEnum

PrimaryDecomposition

   PrimaryDecomposition(I) : RngMPol -> [ RngMPol ], [ RngMPol ]
   PrimaryDecomposition(I) : RngMPolRes -> [ RngMPolRes ], [ RngMPolRes ]
   Ideal_PrimaryDecomposition (Example H106E10)

PrimaryIdeal

   PrimaryIdeal(R) : RngInvar -> RngMPol

PrimaryInvariantFactors

   PrimaryInvariantFactors(a) : AlgMatElt -> [ <RngUPolElt, RngIntElt ]
   PrimaryInvariantFactors(A) : Mtrx -> [ <RngUPolElt, RngIntElt> ]

PrimaryInvariants

   R`PrimaryInvariants
   PrimaryInvariants(A) : GrpAb -> [ RngIntElt ]
   PrimaryInvariants(R) : RngInvar -> [ RngMPolElt ]

PrimaryRationalForm

   PrimaryRationalForm(a) : AlgMatElt -> AlgMatElt, AlgMatElt, [ <RngUPolElt, RngIntElt ]
   PrimaryRationalForm(A) : Mtrx -> AlgMatElt, AlgMatElt, [ <RngUPolElt, RngIntElt ]

Prime

   ClassGroupPrimeRepresentatives(O, I) : RngOrd, RngOrdIdl -> Map
   ComputePrimeFactorisation(~D) : DivSchElt ->
   DegreeOnePrimeIdeals(O, B) : RngOrd, RngIntElt -> [ RngOrdIdl ]
   IsFactorisationPrime(D) : DivSchElt -> BoolElt
   IsPrime(D) : DivSchElt -> BoolElt
   IsPrime(x) : RngElt -> BoolElt
   IsPrime(I) : RngFunOrdIdl -> BoolElt
   IsPrime(n) : RngIntElt -> BoolElt
   IsPrime(n) : RngIntElt -> BoolElt
   IsPrime(I) : RngMPol -> BoolElt
   IsPrime(I) : RngMPolRes -> BoolElt
   IsPrime(I) : RngOrdIdl -> BoolElt, RngOrdIdl
   IsPrimeField(F) : Fld -> BoolElt
   IsPrimePower(n) : RngIntElt -> BoolElt, RngIntElt, RngIntElt
   IsProbablePrime(n: parameter) : RngIntElt -> BoolElt
   NegativePrimeDivisors(D) : DivSchElt -> SeqEnum
   NextPrime(n) : RngIntElt -> RngIntElt
   NthPrime(n) : RngIntElt -> RngIntElt
   NumberOfPrimePolynomials(q, d) : RngIntElt, RngIntElt -> RngIntElt
   PreviousPrime(n) : RngIntElt -> RngIntElt
   PrimalityCertificate(n) : RngIntElt -> List
   Prime(M) : ModSS -> RngIntElt
   Prime(L) : RngLocA -> RngElt
   Prime(L) : RngPad -> RngIntElt
   Prime(G) : SymGenLoc -> RngIntElt
   PrimeBasis(n) : RngIntElt -> [RngIntElt]
   PrimeBasis(n) : RngIntElt -> [RngIntElt]
   PrimeComponents(X) : Sch -> SeqEnum
   PrimeField(F) : Fld -> Fld
   PrimeField(F) : FldFin -> FldFin
   PrimeField(N) : Nfd -> FldFin
   PrimeForm(Q, p) : QuadBin, RngIntElt -> QuadBinElt
   PrimeIdeal(S, p) : AlgQuatOrd, RngElt -> AlgQuatOrdIdl
   PrimePolynomials(R, d) : RngUPol, RngIntElt -> SeqEnum[ RngUPolElt ]
   PrimePowerRepresentation(x, k, a) : FldFunGElt, RngIntElt, FldFunGElt -> SeqEnum
   PrimeRing(F) : FldFun -> Rng
   PrimeRing(R) : Rng -> Rng
   PrimeRing(L) : RngPad -> RngPad
   RandomPrime(n: parameter) : RngIntElt -> RngIntElt
   RandomPrime(n: parameter) : RngIntElt -> RngIntElt
   RandomPrime(n, a, b, x: parameter) :RngIntElt, RngIntElt, RngIntElt -> BoolElt, RngIntElt
   RandomPrime(n, a, b, x: parameter) :RngIntElt, RngIntElt, RngIntElt -> BoolElt, RngIntElt
   RandomPrimePolynomial(R, d) : RngUPol, RngIntElt -> RngUPolElt

prime

   Functions on Prime Ideals (ALGEBRAIC FUNCTION FIELDS)
   Predicates on Prime Ideals (ALGEBRAIC FUNCTION FIELDS)
   Primes and Primality Testing (RING OF INTEGERS)

PrimeBasis

   PrimeDivisors(n) : RngIntElt -> [RngIntElt]
   PrimeBasis(n) : RngIntElt -> [RngIntElt]
   PrimeBasis(n) : RngIntElt -> [RngIntElt]

PrimeComponents

   PrimeComponents(X) : Sch -> SeqEnum

PrimeDivisors

   PrimeDivisors(n) : RngIntElt -> [RngIntElt]
   PrimeBasis(n) : RngIntElt -> [RngIntElt]
   PrimeBasis(n) : RngIntElt -> [RngIntElt]

PrimeFactorisation

   PrimeFactorisation(D) : DivSchElt -> SeqEnum
   ComputePrimeFactorisation(~D) : DivSchElt ->

PrimeField

   PrimeField(F) : Fld -> Fld
   PrimeField(F) : FldFin -> FldFin
   PrimeField(N) : Nfd -> FldFin
   PrimeRing(F) : FldFun -> Rng
   PrimeRing(L) : RngPad -> RngPad

PrimeForm

   PrimeForm(Q, p) : QuadBin, RngIntElt -> QuadBinElt

PrimeIdeal

   PrimeIdeal(S, p) : AlgQuatOrd, RngElt -> AlgQuatOrdIdl

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012