[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: IsHomomorphism  ..  IsInner


IsHomomorphism

   IsHomomorphism(G, H, Q) : GrpMat, GrpMat, SeqEnum[GrpMatElt] -> Bool, Map
   IsHomomorphism(G, H, L) : GrpPC, GrpPC, SeqEnum -> BoolElt, Map
   IsHomomorphism(G, H, Q) : GrpPerm, GrpPerm, SeqEnum[GrpPermElt] -> Bool, Map

IsHyperbolic

   IsHyperbolic(W) : GrpFPCox -> BoolElt

IsHyperelliptic

   IsGeometricallyHyperelliptic(C) : Crv -> BoolElt, Crv, MapSch
   IsHyperelliptic(C) : Crv -> BoolElt, CrvHyp, MapSch

IsHyperellipticCurve

   IsHyperellipticCurve(X) : Sch -> BoolElt,CrvHyp
   IsHyperellipticCurve([f, h]) : [ RngUPolElt ] -> BoolElt, CrvHyp

IsHyperellipticCurveOfGenus

   IsHyperellipticCurveOfGenus(g, [f, h]) : RngIntElt, [RngUPolElt] -> BoolElt, CrvHyp

IsHyperellipticWeierstrass

   IsHyperellipticWeierstrass(C) : Crv -> BoolElt

IsHypersurface

   IsHypersurface(X) : Sch -> BoolElt, RngMPolElt

IsHypersurfaceDivisor

   IsHypersurfaceDivisor(D) : DivCrvElt -> BoolElt, RngElt, RngIntElt

IsHypersurfaceSingularity

   IsHypersurfaceSingularity(p,prec) : Pt, RngIntElt -> BoolElt, RngMPolElt, SeqEnum, Rec

IsId

   IsIdentity(g) : GrpElt -> BoolElt
   IsId(g) : GrpElt -> BoolElt
   IsId(g) : GrpPermElt -> BoolElt
   IsId(w) : GrpRWSElt -> BoolElt
   IsId(w) : GrpRWSElt -> BoolElt
   IsId(w) : MonRWSElt -> BoolElt
   IsId(P) : PtEll -> BoolElt
   IsIdentity(u) : GrpAbElt -> BoolElt
   IsIdentity(g) : GrpGPCElt -> BoolElt
   IsIdentity(g) : GrpMatElt -> BoolElt
   IsIdentity(g) : GrpPCElt -> BoolElt
   IsIdentity(u: parameters) : GrpBrdElt -> BoolElt

IsIdeal

   IsIdeal(A, S) : AlgBas, ModTupFld -> Bool
   IsIdeal(S) : AlgGrpSub -> BoolElt

IsIdempotent

   IsIdempotent(a) : AlgGenElt -> BoolElt
   IsIdempotent(x) : RngElt -> BoolElt

IsIdentical

   IsIdentical(R, F) : RngDiff, RngDiff -> BoolElt
   IsIdentical(R, F) : RngDiffOp, RngDiffOp -> BoolElt
   IsIdentical(f, g) : RngSerElt, RngSerElt -> BoolElt

IsIdenticalPresentation

   IsIdenticalPresentation(G, H) : GrpGPC, GrpGPC -> BoolElt
   IsIdenticalPresentation(G, H) : GrpPC, GrpPC -> BoolElt

IsIdentity

   IsIdentity(g) : GrpElt -> BoolElt
   IsId(g) : GrpElt -> BoolElt
   IsId(g) : GrpPermElt -> BoolElt
   IsId(w) : GrpRWSElt -> BoolElt
   IsId(w) : GrpRWSElt -> BoolElt
   IsId(w) : MonRWSElt -> BoolElt
   IsId(P) : PtEll -> BoolElt
   IsIdentity(u) : GrpAbElt -> BoolElt
   IsIdentity(g) : GrpGPCElt -> BoolElt
   IsIdentity(g) : GrpMatElt -> BoolElt
   IsIdentity(g) : GrpPCElt -> BoolElt
   IsIdentity(f) : Map -> BoolElt
   IsIdentity(u: parameters) : GrpBrdElt -> BoolElt
   IsIdentity(f) : QuadBinElt -> BoolElt
   IsZero(P) : JacHypPt -> BoolElt

IsInArtinSchreierRepresentation

   IsInArtinSchreierRepresentation(K) : FldFun -> BoolElt, FldFunElt

IsInCorootSpace

   IsInCorootSpace(R,v) : RootDtm, ModTupFldElt -> BoolElt
   IsInRootSpace(R,v) : RootDtm, ModTupFldElt -> BoolElt

IsIndecomposable

   IsIndecomposable(M, B) : ModBrdt, RngIntElt -> BoolElt

IsIndefinite

   IsIndefinite(A) : AlgQuat -> BoolElt
   IsDefinite(A) : AlgQuat -> BoolElt

IsIndependent

   IsIndependent(Q) : [ AlgGen ] -> BoolElt
   IsIndependent(Q) : [ AlgLieElt ] -> BoolElt
   IsIndependent(Q) : [ ModTupFldElt ] -> BoolElt
   IsIndependent(S) : { ModTupFldElt } -> BoolElt

IsIndivisibleRoot

   IsIndivisibleRoot(R, r) : RootStr, RngIntElt -> BoolElt
   IsIndivisibleRoot(R, r) : RootSys, RngIntElt -> BoolElt

IsInduced

   IsInduced(AmodB) : GGrp -> BoolElt, GGrp, GGrp, Map, Map

IsInert

   IsInert(P) : RngFunOrdIdl -> BoolElt
   IsInert(P, O) : RngFunOrdIdl, RngFunOrd -> BoolElt
   IsInert(P) : RngOrdIdl -> BoolElt
   IsInert(P, O) : RngOrdIdl, RngOrd -> BoolElt

IsInertial

   IsInertial(f) : RngUPolElt -> BoolElt

IsInfinite

   IsInfinite(G) : GrpAb -> BoolElt
   IsInfinite(p) : PlcNumElt -> BoolElt, RngIntElt
   IsInfinite(p) : PlcNumElt -> BoolElt, RngIntElt
   IsInfinite(z) : SpcHypElt -> BoolElt

IsInflectionPoint

   IsFlex(C,p) : Sch,Pt -> BoolElt,RngIntElt
   IsInflectionPoint(p) : Sch,Pt -> BoolElt,RngIntElt

IsInImage

   IsInImage(f, p) : Map, RngMPolElt -> [ BoolElt ]

IsInjective

   IsInjective(f) : MapChn -> BoolElt
   IsInjective(phi) : MapModAbVar -> BoolElt
   IsInjective(M) : ModAlg -> BoolElt, SeqEnum
   IsInjective(a) : ModMatRngElt -> BoolElt
   IsInjective(f) : ModMPolHom -> BoolElt

IsInKummerRepresentation

   IsInKummerRepresentation(K) : FldFun -> BoolElt, FldFunElt

IsInner

   IsInner(f) : GrpAutoElt -> BoolElt, GrpElt
   IsInner(R) : RootDtm -> BoolElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012