[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: SelfComplementaryGraphDatabase  ..  Semisimple


SelfComplementaryGraphDatabase

   SelfComplementaryGraphDatabase(n) : RngIntElt -> DB

SelfDual

   CodeFld_SelfDual (Example H152E17)

SelfDualZ4

   CodeRng_SelfDualZ4 (Example H155E28)

SelfIntersection

   SelfIntersection(D) : DivSchElt -> FldRatElt

Selfintersection

   ModifySelfintersection(~v,n) : GrphResVert,RngIntElt ->

SelfIntersections

   SelfIntersections(g) : GrphRes -> SeqEnum

SelfOrthogonal

   CodeFld_SelfOrthogonal (Example H152E18)

Selmer

   FakeIsogenySelmerSet(C,phi) : Crv, MapSch -> RngIntElt
   LocalTwoSelmerMap(P) : RngOrdIdl -> Map
   LocalTwoSelmerMap(A, P) : RngUPolRes, RngOrdIdl -> Map, SeqEnum
   NineSelmerSet(C) : Crv -> RngIntElt
   PhiSelmerGroup(f,q) : RngUPolElt, RngIntElt -> GrpAb, Map
   SelmerGroup(phi) : Map -> GrpAb, Map, Map, SeqEnum, SetEnum
   ThreeIsogenySelmerGroups(E : parameters) : CrvEll -> GrpAb, Map, GrpAb, Map, MapSch
   ThreeSelmerElement(E, C) : CrvEll, RngMPolElt -> Tup
   ThreeSelmerGroup(E : parameters) : CrvEll -> GrpAb, Map
   TwoIsogenySelmerGroups(E) : CrvEll[FldFunG] -> GrpAb, GrpAb, MapSch, MapSch
   TwoSelmerGroup(E) : CrvEll -> GrpAb, Map, SetEnum, Map, SeqEnum
   TwoSelmerGroup(E) : CrvEll[FldFunG] -> GrpAb, MapSch
   TwoSelmerGroup(J) : JacHyp -> GrpAb, Map, Any, Any

selmer

   Auxiliary Functions for Etale Algebras (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
   Selmer Groups (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
   The 2-Selmer Group (HYPERELLIPTIC CURVES)
   Two-Selmer Set of a Curve (HYPERELLIPTIC CURVES)
   CrvEllQNF_selmer (Example H122E35)

selmer-etale

   CrvEllQNF_selmer-etale (Example H122E40)

selmer-famous-example

   CrvEllQNF_selmer-famous-example (Example H122E15)

Selmer-group

   FldAb_Selmer-group (Example H39E3)

selmer2

   CrvEllQNF_selmer2 (Example H122E36)

selmer3

   CrvEllQNF_selmer3 (Example H122E37)

selmer4

   CrvEllQNF_selmer4 (Example H122E38)

SelmerGroup

   SelmerGroup(phi) : Map -> GrpAb, Map, Map, SeqEnum, SetEnum

semantics

   MAGMA SEMANTICS

Semi

   IsNegativeSemiDefinite(F) : ModMatRngElt -> BoolElt
   IsPositiveSemiDefinite(F) : ModMatRngElt -> BoolElt
   IsSemiLinear(G) : GrpMat -> BoolElt
   SemiInvariantBilinearForms(G) : GrpMat -> SeqEnum
   SemiInvariantQuadraticForms(G) : GrpMat -> SeqEnum
   SemiInvariantSesquilinearForms(G) : GrpMat -> SeqEnum
   SemiLinearGroup(G, S) : GrpMat, FldFin -> GrpMat
   SemiOrthogonalBasis(V) : ModTupFld) -> SeqEnum

semi-orthog

   RepSym_semi-orthog (Example H92E2)

Semidir

   Semidir(G, Q) : GrpMat, SeqEnum -> GrpPerm

Semidirect

   SemidirectProduct(K, H, f: parameters) : Grp, Grp, Map -> Grp, Map, Map

SemidirectProduct

   SemidirectProduct(K, H, f: parameters) : Grp, Grp, Map -> Grp, Map, Map

Semigroup

   FreeSemigroup(n) : RngIntElt -> SgpFP
   Semigroup< generators | relations > : SgpFPElt, ..., SgpFPElt, Rel, ...Rel -> SgpFP

semiinv

   FldForms_semiinv (Example H29E24)

SemiInvariantBilinearForms

   SemiInvariantBilinearForms(G) : GrpMat -> SeqEnum

SemiInvariantQuadraticForms

   SemiInvariantQuadraticForms(G) : GrpMat -> SeqEnum

SemiInvariantSesquilinearForms

   SemiInvariantSesquilinearForms(G) : GrpMat -> SeqEnum

semiinvform

   Semi-invariant Forms (POLAR SPACES)

Semilinear

   SemilinearDual(M, mu) : ModGrp,Map -> ModGrp
   TwistedSemilinearDual(M, lambda, mu) : ModGrp, Map, Map -> ModGrp

SemilinearDual

   SemilinearDual(M, mu) : ModGrp,Map -> ModGrp

SemiLinearGroup

   SemiLinearGroup(G, S) : GrpMat, FldFin -> GrpMat

Semilinearity

   GrpMatFF_Semilinearity (Example H60E3)

semilinearity

   Semilinearity (MATRIX GROUPS OVER FINITE FIELDS)

Seminormal

   SymmetricRepresentationSeminormal(pa, pe) : SeqEnum,GrpPermElt -> AlgMatElt

SemiOrthogonalBasis

   SemiOrthogonalBasis(V) : ModTupFld) -> SeqEnum

Semiregular

   IsSemiregular(G, Y) : GrpPerm, GSet -> BoolElt
   IsSemiregular(G, Y, S) : GrpPerm, GSet, SetEnum -> BoolElt

Semisimple

   IsSemisimple(A) : AlgGen -> BoolElt
   IsSemisimple(L) : AlgLie -> BoolElt
   IsSemisimple(G) : GrpLie-> BoolElt
   IsSemisimple(x) : GrpLieElt -> BoolElt
   IsSemisimple(W) : GrpPermCox -> BoolElt
   IsSemisimple(M) : ModAlg -> BoolElt, SeqEnum
   IsSemisimple(M) : ModGrp -> BoolElt
   IsSemisimple(R) : RootStr -> BoolElt
   IsSemisimple(R) : RootSys-> BoolElt
   SemisimpleDecomposition(D) : PhiMod -> AlgMatElt, AlgMatElt, SeqEnum, SeqEnum
   SemisimpleEFAModuleMaps(G) : GrpGPC -> [ModGrp]
   SemisimpleEFAModules(G) : GrpGPC -> [ModGrp]
   SemisimpleEFASeries(G) : GrpGPC -> [GrpGPC]
   SemisimpleGeneratorData(A) : AlgMat -> SeqEnum
   SemisimpleRank(G) : GrpLie -> RngIntElt
   SemisimpleType(L) : AlgLie -> MonStgElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012