[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: point  ..  Points


point

   Eltseq(P): PtEll -> [ RngElt ]
   Access Operations (ELLIPTIC CURVES)
   Arithmetic (ELLIPTIC CURVES)
   Associated Structures (ELLIPTIC CURVES)
   Creating Points and Blocks (INCIDENCE STRUCTURES AND DESIGNS)
   Creation of Points (ELLIPTIC CURVES)
   Creation of Points (MODULAR CURVES)
   Creation Predicates (ELLIPTIC CURVES)
   Finding Points (RATIONAL CURVES AND CONICS)
   Operations on Points (ELLIPTIC CURVES)
   Operations on Points and Blocks (INCIDENCE STRUCTURES AND DESIGNS)
   Point Order (ELLIPTIC CURVES)
   Points (ALGEBRAIC CURVES)
   Predicates on Points (ELLIPTIC CURVES)
   Searching for Points (SCHEMES)
   The Point-Set and Block-Set of an Incidence Structure (INCIDENCE STRUCTURES AND DESIGNS)
   The Point-Set and Line-Set of a Plane (FINITE PLANES)
   The Set of Points and Set of Lines (FINITE PLANES)
   Using the Point-Set and Line-Set to Create Points and Lines (FINITE PLANES)

point-access

   Eltseq(P): PtEll -> [ RngElt ]
   Access Operations (ELLIPTIC CURVES)

point-arithmetic

   Arithmetic (ELLIPTIC CURVES)

point-block

   Creating Points and Blocks (INCIDENCE STRUCTURES AND DESIGNS)

point-block-set

   The Point-Set and Block-Set of an Incidence Structure (INCIDENCE STRUCTURES AND DESIGNS)

point-category

   Curve(P) : SetPtEll -> CrvEll
   Associated Structures (ELLIPTIC CURVES)

point-count

   Scheme_point-count (Example H112E25)

point-creation

   Creation of Points (ELLIPTIC CURVES)
   Creation of Points (MODULAR CURVES)

point-creation_predicates

   Creation Predicates (ELLIPTIC CURVES)

point-finding

   Finding Points (RATIONAL CURVES AND CONICS)

point-line

   The Set of Points and Set of Lines (FINITE PLANES)
   Using the Point-Set and Line-Set to Create Points and Lines (FINITE PLANES)

point-line-set

   The Point-Set and Line-Set of a Plane (FINITE PLANES)

point-order

   Point Order (ELLIPTIC CURVES)

point-predicates

   Predicates on Points (ELLIPTIC CURVES)

point-search

   Searching for Points (SCHEMES)

point_access_curve

   ElementToSequence(P) : PtHyp -> SeqEnum
   Access Operations (HYPERELLIPTIC CURVES)

point_access_jacobian

   Access Operations (HYPERELLIPTIC CURVES)
   Access Operations (HYPERELLIPTIC CURVES)

point_access_kummer

   ElementToSequence(P) : PtHyp -> SeqEnum
   Access Operations (HYPERELLIPTIC CURVES)

point_arithmetic_curve

   Involution(P) : PtHyp -> PtHyp
   Arithmetic of Points (HYPERELLIPTIC CURVES)

point_counting

   Point Counting (ELLIPTIC CURVES OVER FINITE FIELDS)

point_creation_jacobian

   Creation of Points (HYPERELLIPTIC CURVES)
   CrvHyp_point_creation_jacobian (Example H125E15)

point_creation_jacobian2

   CrvHyp_point_creation_jacobian2 (Example H125E16)

point_creation_jacobian3

   CrvHyp_point_creation_jacobian3 (Example H125E17)

point_enumeration_curve

   Enumeration and Counting Points (HYPERELLIPTIC CURVES)

point_order_jacobian

   Order of Points on the Jacobian (HYPERELLIPTIC CURVES)

point_predicates

   Predicates on Points (HYPERELLIPTIC CURVES)

point_predicates_jacobian

   IsIdentity(P) : JacHypPt -> BoolElt
   Booleans and Predicates for Points (HYPERELLIPTIC CURVES)

point_predicates_kummer

   Predicates on Points (HYPERELLIPTIC CURVES)

point_reduction

   Point Reduction (RATIONAL CURVES AND CONICS)

point_structures_jacobian

   Rational Points and Group Structure over Finite Fields (HYPERELLIPTIC CURVES)

PointArithmetic1

   CrvEll_PointArithmetic1 (Example H120E22)

PointArithmetic2

   CrvEll_PointArithmetic2 (Example H120E23)

PointDegree

   PointDegree(D, p) : Inc, IncPt -> RngIntElt

PointDegrees

   PointDegrees(D) : Inc -> [ RngIntElt ]

PointEnumeration

   CrvHyp_PointEnumeration (Example H125E9)

PointFinding

   CrvCon_PointFinding (Example H119E9)

PointGraph

   PointGraph(D) : Inc -> Grph
   PointGraph(D) : Inc -> GrphUnd
   PointGraph(P) : Plane -> GrphUnd;

PointGroup

   AutomorphismGroup(P) : Plane -> GrpPerm, GSet, GSet, PowMap, Map
   PointGroup(P) : Plane -> GrpPerm, GSet, GSet, PowMap, Map
   CollineationGroup(P) : Plane -> GrpPerm, GSet, GSet, PowMap, Map
   PointGroup(D) : Inc -> GrpPerm, GSet

PointOnRegularModel

   PointOnRegularModel(M, x) : CrvRegModel, Pt -> SeqEnum, SeqEnum, Tup

PointPredicates

   CrvEll_PointPredicates (Example H120E26)

PointReduction

   CrvCon_PointReduction (Example H119E8)

Points

   BasePoints(L) : LinearSys -> SeqEnum
   BasePoints(f) : MapSch -> SetEnum
   CanonicalDissidentPoints(C) : GRCrvS -> SeqEnum
   DefiningPoints(N) : NwtnPgon -> SeqEnum
   DivisionPoints(P, n) : PtEll, RngIntElt -> [ PtEll ]
   EllipticPoints(G) : GrpPSL2, SpcHyp -> [SpcHypElt]
   FixedPoints(g,D) : GrpPSL2Elt, SpcHyd -> SeqEnum
   FixedPoints(g,H) : GrpPSL2Elt, SpcHyp -> SeqEnum
   Flexes(C) : Sch -> Sch
   FrobeniusActionOnPoints(S, q : parameters) : [ PtEll ], RngIntElt -> AlgMatElt
   GoodBasePoints(G, str : parameters) : Grp, MonStgElt -> BoolElt, SeqEnum
   GoodBasePoints(G: parameters) : GrpMat -> []
   HasPointsEverywhereLocally(f,q) : RngUPolElt, RngIntElt -> BoolElt
   HasPointsOverExtension(X) : Sch -> BoolElt
   HasSingularPointsOverExtension(C) : Sch -> BoolElt
   HeegnerPoints(E, D : parameters) : CrvEll[FldRat], RngIntElt -> Tup, PtEll
   IntegralPoints(E) : CrvEll -> [ PtEll ], [ Tup ]
   IntegralQuarticPoints(Q) : [ RngIntElt ] -> [ SeqEnum ]
   IntegralQuarticPoints(Q, P) : [ RngIntElt ], [ RngIntElt ] -> [ SeqEnum ]
   IsolatedPointsFinder(S,P) : Sch, SeqEnum -> List
   IsolatedPointsLiftToMinimalPolynomials(S,P) : Sch, SeqEnum -> BoolElt, SeqEnum
   IsolatedPointsLifter(S,P) : Sch, SeqEnum -> BoolElt, Pt
   ModuliPoints(X,E) : CrvMod, CrvEll -> SeqEnum
   NonCuspidalQRationalPoints(CN,N) : Crv, RngIntElt -> SeqEnum
   NumberOfPoints(D) : Inc -> RngInt
   NumberOfPoints(P) : Plane -> RngIntElt
   NumberOfPoints(P) : TorPol -> RngIntElt
   NumberOfPointsAtInfinity(C) : CrvHyp -> RngIntElt
   NumberOfPointsOnCubicSurface(f) : RngMPolElt -> RngIntElt, RngIntElt
   NumberOfPointsOnSurface(E, e) : CrvEll, RngIntElt -> RngIntElt
   NumberOfRationalPoints(A) : ModAbVar -> RngIntElt, RngIntElt
   NumbersOfPointsOnSurface(E, e) : CrvEll, RngIntElt -> [ RngIntElt ], [ RngIntElt ]
   Points(E) : CrvEll -> @ PtEll @
   Points(C) : CrvHyp -> SetIndx
   Points(C, x) : CrvHyp, RngElt -> SetIndx
   Points(B) : GRBskt -> SeqEnum
   Points(D) : Inc -> { IncPt }
   Points(D) : IncGeom -> SetIndx
   Points(J) : JacHyp -> SetIndx
   Points(J) : JacHyp -> SetIndx
   Points(J, a, d) : JacHyp, RngUPolElt, RngIntElt -> SetIndx
   Points(J, P) : JacHyp, SrfKumPt -> SetIndx
   Points(C : parameters) : CrvCon -> SetIndx
   Points(C : parameters) : CrvHyp -> [Pt]
   Points(P) : Plane -> { PlanePt }
   Points(G) : SchGrpEll -> SetIndx
   Points(H, x) : SetPtEll, RngElt -> [ PtEll ]
   Points(K,[x1, x2, x3]) : SrfKum, [RngElt] -> SetIndx
   Points(C,H,h) : TorCon,TorLatElt,FldRatElt -> SetEnum
   Points(P) : TorPol -> SeqEnum[TorLatElt]
   PointsAtInfinity(C) : Crv -> SetEnum
   PointsAtInfinity(C) : CrvHyp -> SetIndx
   PointsAtInfinity(C) : CrvHyp -> SetIndx
   PointsAtInfinity(H) : SetPtEll -> @ PtEll @
   PointsCubicModel(C, B : parameters) : Crv, RngIntElt -> SeqEnum
   PointsKnown(C) : CrvHyp -> BoolElt
   PointsOverSplittingField(Z) : Clstr -> SetEnum
   PointsQI(C, H) : Crv, RngIntElt -> [Pt]
   PointsQI(C, B : parameters) : Crv, RngIntElt -> [Pt]
   PossibleCanonicalDissidentPoints(C) : GRCrvS -> SeqEnum
   PossibleSimpleCanonicalDissidentPoints(C) : GRCrvS -> SeqEnum
   RationalPoints(f,q) : RngUPolElt, RngIntElt -> SetIndx
   RationalPoints(Z) : Sch -> SetEnum
   RationalPoints(X) : Sch -> SetIndx
   RationalPoints(K, Q) : SrfKum, [RngElt] -> SetIndx
   RationalPointsByFibration(X) : Sch -> SetIndx
   SIntegralDesbovesPoints(Q, S) : [ RngIntElt ], [ RngIntElt ] -> [ SeqEnum ]
   SIntegralLjunggrenPoints(Q, S) : [ RngIntElt ], [ RngIntElt ] -> [ SeqEnum ]
   SIntegralPoints(E, S) : CrvEll, SeqEnum -> [ PtEll ], [ Tup ]
   SIntegralQuarticPoints(Q, S) : [ RngIntElt ], [ RngIntElt ] -> [ SeqEnum ]
   SimpleCanonicalDissidentPoints(C) : GRCrvS -> SeqEnum
   SingularPoints(C) : Sch -> SetIndx
   ThreeTorsionPoints(E : parameters) : CrvEll -> Tup
   WeierstrassPlaces(D) : DivCrvElt -> SeqEnum

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012