[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: ree-sylow .. Reflection
GrpASim_ree-sylow (Example H65E20)
ReeConjugacyClasses(G) : GrpMat -> SeqEnum
ReedMullerCode(r, m) : RngIntElt, RngIntElt -> Code
ReedMullerCodeRMZ4(s, r, m) : RngIntElt, RngIntElt, RngIntElt -> CodeLinRng, Mtrx
ReedMullerCodeZ4(r, m) : RngIntElt, RngIntElt -> Code
ReedMullerCodeZ4(r, m) : RngIntElt, RngIntElt -> CodeLinRng
ReedMullerCodesLRMZ4(r, m) : RngIntElt, RngIntElt -> SeqEnum
ReedMullerCodesRMZ4(s, m) : RngIntElt, RngIntElt -> Tup
ReedSolomonCode(K, d, b) : FldFin, RngIntElt, RngIntElt -> Code
ReedSolomonCode(n, d) : RngIntElt, RngIntElt -> Code
Reed--Solomon and Justesen Codes (LINEAR CODES OVER FINITE FIELDS)
Reed--Solomon and Justesen Codes (LINEAR CODES OVER FINITE FIELDS)
ReedMullerCode(r, m) : RngIntElt, RngIntElt -> Code
CodeFld_ReedMullerCode (Example H152E7)
ReedMullerCodeQRMZ4(r, m) : RngIntElt, RngIntElt -> CodeLinRng
ReedMullerCodeZ4(r, m) : RngIntElt, RngIntElt -> CodeLinRng
ReedMullerCodeRMZ4(s, r, m) : RngIntElt, RngIntElt, RngIntElt -> CodeLinRng, Mtrx
ReedMullerCodesLRMZ4(r, m) : RngIntElt, RngIntElt -> SeqEnum
ReedMullerCodesRMZ4(s, m) : RngIntElt, RngIntElt -> Tup
ReedMullerCodeZ4(r, m) : RngIntElt, RngIntElt -> Code
ReedMullerCodeZ4(r, m) : RngIntElt, RngIntElt -> CodeLinRng
ReedSolomonCode(K, d, b) : FldFin, RngIntElt, RngIntElt -> Code
ReedSolomonCode(n, d) : RngIntElt, RngIntElt -> Code
ReeElementToWord(G, g) : GrpMat, GrpMatElt -> BoolElt, GrpSLPElt
ReeGroup(q) : RngIntElt -> GrpMat
ReeIrreducibleRepresentation(F, twists : parameters) : FldFin, SeqEnum[RngIntElt] -> GrpMat
ReeMaximalSubgroups(G) : GrpMat -> SeqEnum, SeqEnum
ReeMaximalSubgroupsConjugacy(G, R, S) : GrpMat, GrpMat, GrpMat -> GrpMatElt, GrpSLPElt
ReesIdeal(P, I): RngMPol, RngMPol -> RngMPol, Map
ReesIdeal(P, I): RngMPol, RngMPol -> RngMPol, Map
ReeSylow(G, p) : GrpMat, RngIntElt -> GrpMat, SeqEnum
ReeSylowConjugacy(G, R, S, p) : GrpMat, GrpMat, GrpMat, RngIntElt -> GrpMatElt, GrpSLPElt
GrpRfl_ref-group (Example H99E2)
CremonaReference(D, E) : CrvEll -> MonStgElt
Reference Arguments (MAGMA SEMANTICS)
Reference Arguments (MAGMA SEMANTICS)
RefineSection(G, M, N) : GrpPerm, GrpPerm, GrpPerm -> [ GrpPerm ]
IsPartitionRefined(G: parameters) : Grph -> BoolElt
RefineSection(G, M, N) : GrpPerm, GrpPerm, GrpPerm -> [ GrpPerm ]
Construction of Finite Complex Reflection Groups (REFLECTION GROUPS)
Construction of Real Reflection Groups (REFLECTION GROUPS)
Construction of Reflection Groups (REFLECTION GROUPS)
Reflections (ROOT DATA)
Reflections (ROOT SYSTEMS)
ComplexReflectionGroup(X, n) : MonStgElt, RngIntElt -> GrpMat, Map
ComplexReflectionGroup(C) : Mtrx -> GrpMat, Map
IrreducibleReflectionGroup(X, n) : MonStgElt, RngIntElt -> GrpMat
IsPseudoReflection(r) : Mtrx -> BoolElt, ModTupRngElt, ModTupRngElt
IsRealReflectionGroup(G) : GrpMat -> BoolElt, [], []
IsReflection(w) : GrpFPElt -> BoolElt
IsReflection(r) : Mtrx -> BoolElt, ModTupRngElt, ModTupRngElt
IsReflectionGroup(G) : GrpMat -> BoolElt
IsReflectionGroup(G) : GrpMat -> BoolElt
IsReflectionSubgroup(W, H) : GrpPermCox, GrpPermCox -> BoolElt
OrthogonalReflection(a) : ModTupFldElt -> AlgMatElt
OrthogonalReflection(a) : ModTupFldElt -> AlgMatElt
PseudoReflection(a, b) : ModTupRngElt, ModTupRngElt -> AlgMatElt
PseudoReflectionGroup(A, B) : Mtrx, Mtrx -> GrpMat, Map
Reflection(G, r) : GrpLie, RngIntElt -> GrpLieElt
Reflection(W, r) : GrpPermCox, RngIntElt -> GrpPermElt
Reflection(a, b) : ModTupRngElt, ModTupRngElt -> AlgMatElt
ReflectionFactors(V, f) : ModTupFld, Mtrx) -> SeqEnum
ReflectionGroup(M) : AlgMatElt -> GrpMat
ReflectionGroup(M) : AlgMatElt -> GrpMat
ReflectionGroup(W) : Cat, GrpPermCox -> GrpMat, Map
ReflectionGroup(W) : GrpFPCox -> GrpMat, Map
ReflectionGroup(W) : GrpFPCox -> GrpMat, Map
ReflectionGroup(W) : GrpPermCox -> GrpMat
ReflectionGroup(W) : GrpPermCox -> GrpMat, Map
ReflectionGroup(W) : GrpPermCox -> GrpMat, Map
ReflectionGroup(N) : MonStgElt -> GrpMat
ReflectionGroup(R) : RootDtm -> GrpMat
ReflectionGroup(R) : RootSys -> GrpMat
ReflectionGroup(R) : RootSys -> GrpMat
ReflectionMatrices(W) : GrpMat -> [AlgMatElt]
ReflectionMatrices(W) : GrpPermCox -> []
ReflectionMatrices(R) : RootDtm -> []
ReflectionMatrices(R) : RootSys -> []
ReflectionMatrix(W, r) : GrpMat, RngIntElt -> AlgMatElt
ReflectionMatrix(W, r) : GrpPermCox, RngIntElt -> []
ReflectionMatrix(R, r) : RootDtm, RngIntElt -> []
ReflectionMatrix(R, r) : RootSys, RngIntElt -> []
ReflectionPermutation(W, r) : GrpMat, RngIntElt -> []
ReflectionPermutation(R, r) : RootDtm, RngIntElt -> []
ReflectionPermutation(R, r) : RootSys, RngIntElt -> []
ReflectionPermutations(W) : GrpMat -> []
ReflectionPermutations(R) : RootDtm -> []
ReflectionPermutations(R) : RootSys -> []
ReflectionSubgroup(W, a) : GrpPermCox, () -> GrpPermCox
ReflectionSubgroup(W, s) : GrpPermCox, [] -> GrpPermCox
ReflectionWord(W, r) : GrpMat, RngIntElt -> []
ReflectionWord(W, r) : GrpPermCox, RngIntElt -> []
ReflectionWord(R, r) : RootDtm, RngIntElt -> []
ReflectionWord(R, r) : RootSys, RngIntElt -> []
ReflectionWords(W) : GrpMat -> []
ReflectionWords(W) : GrpPermCox -> []
ReflectionWords(R) : RootDtm -> []
ReflectionWords(R) : RootSys -> []
ShephardTodd(m, p, n) : RngIntElt, RngIntElt, RngIntElt -> GrpMat, Fld
SimpleReflectionMatrices(W) : GrpMat -> [AlgMatElt]
SimpleReflectionMatrices(W) : GrpPermCox -> []
SimpleReflectionMatrices(R) : RootDtm -> []
SimpleReflectionMatrices(R) : RootSys -> []
SimpleReflectionPermutations(W) : GrpMat -> []
SimpleReflectionPermutations(W) : GrpPermCox -> [GrpPermElt]
SimpleReflectionPermutations(R) : RootDtm -> []
SimpleReflectionPermutations(R) : RootSys -> []
UnitaryReflection(a, zeta) : ModTupRngElt, FldElt -> AlgMatElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012