[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: generators  ..  Genus


generators

   Addition of Extra Generators (GROUPS OF STRAIGHT-LINE PROGRAMS)
   Cohomology Generators (BASIC ALGEBRAS)
   Generators and Presentations (MATRIX ALGEBRAS)
   Generators of Cones (CONVEX POLYTOPES AND POLYHEDRA)

generators-presentations

   Generators and Presentations (MATRIX ALGEBRAS)

GeneratorsOverBaseRing

   GeneratorsOverBaseRing(K) : FldNum -> FldNumElt

GeneratorsSequence

   GeneratorsSequence(K): FldNum -> [FldNumElt]
   GeneratorsSequence(G) : GrpPerm -> [ GrpPermElt ]

GeneratorsSequenceOverBaseRing

   GeneratorsSequenceOverBaseRing(K) : FldNum -> [FldNumElt]

GeneratorStructure

   GeneratorStructure(P) : GrpPCpQuotientProc ->

Generic

   Generic(M) : ModMPol -> ModMPol
   Ambient(M) : ModMPol -> ModMPol
   Curve(G) : SchGrpEll -> CrvEll
   Generic(I) : AlgFr -> AlgFr
   Generic(R) : AlgMat -> AlgMat
   Generic(M) : AlgMatLie -> AlgMatLie
   Generic(C) : Code -> Code
   Generic(C) : Code -> Code
   Generic(C) : Code -> Code
   Generic(G) : Grp -> Grp
   Generic(G) : GrpMat -> GrpMat
   Generic(G) : GrpPerm -> GrpPerm
   Generic(V) : ModFld -> ModFld
   Generic(M) : ModRng -> ModRng
   Generic(I) : RngMPol -> RngMPol
   Generic(I) : RngMPolLoc -> RngMPolLoc
   GenericAbelianGroup(U: parameters) : . -> GrpAbGen
   GenericGroup(X) : [] -> GrpFp, Map
   GenericModel(n) : RngIntElt -> ModelG1
   GenericPoint(X) : Sch -> Pt

generic

   Ngens(A) : GrpAbGen -> RngIntElt
   Accessing Generators (ABELIAN GROUPS)
   Construction of a Generic Abelian Group (ABELIAN GROUPS)
   Generic Creation Function (ALMOST SIMPLE GROUPS)
   Generic Element Functions and Predicates (REAL AND COMPLEX FIELDS)
   Generic Groups (CLASS FIELD THEORY)
   Generic Ring Functions (INTRODUCTION TO RINGS [BASIC RINGS])
   Parent and Category (ALGEBRAICALLY CLOSED FIELDS)
   Parent and Category (FINITE FIELDS)
   Parent and Category (GALOIS RINGS)
   Parent and Category (INTEGER RESIDUE CLASS RINGS)
   Parent and Category (NEARFIELDS)
   Parent and Category (RATIONAL FIELD)
   Parent and Category (RING OF INTEGERS)
   Properties (p-ADIC RINGS AND THEIR EXTENSIONS)
   Related Structures (FINITELY PRESENTED ALGEBRAS)
   Related Structures (MULTIVARIATE POLYNOMIAL RINGS)
   Related Structures (RATIONAL FIELD)
   Related Structures (SYMMETRIC FUNCTIONS)
   Related Structures (UNIVARIATE POLYNOMIAL RINGS)
   Specification of a Generic Abelian Group (ABELIAN GROUPS)
   pAdicGalois_generic (Example H93E1)

generic-abelian

   Construction of a Generic Abelian Group (ABELIAN GROUPS)

generic-access

   Ngens(A) : GrpAbGen -> RngIntElt
   Accessing Generators (ABELIAN GROUPS)

generic-groups

   Generic Groups (CLASS FIELD THEORY)

generic-model

   CrvG1_generic-model (Example H124E1)

generic-specification

   Specification of a Generic Abelian Group (ABELIAN GROUPS)

GenericAbelianGroup

   GenericAbelianGroup(U: parameters) : . -> GrpAbGen

GenericCurve

   CrvEll_GenericCurve (Example H120E11)

GenericGroup

   GenericGroup(X) : [] -> GrpFp, Map

GenericModel

   GenericModel(n) : RngIntElt -> ModelG1

GenericPoint

   GenericPoint(X) : Sch -> Pt
   CrvEll_GenericPoint (Example H120E24)

GenericSubgroupCreation

   GrpAb_GenericSubgroupCreation (Example H69E9)

gens

   Definition of Subgroups by Generators (FINITE SOLUBLE GROUPS)

Genuine

   IsGenuineWeightedDynkinDiagram( L, wd ) : AlgLie, SeqEnum -> BoolElt, SeqEnum

Genus

   ArithmeticGenus(C) : Crv -> RngIntElt
   ArithmeticGenus(X) : Sch -> RngIntElt
   ArithmeticGenus(S) : Srfc -> RngIntElt
   ArithmeticGenusOfDesingularization(S) : Srfc -> RngIntElt
   Dimension(A) : AnHcJac -> RngIntElt
   DoubleGenusOneModel(model) : ModelG1 -> ModelG1
   FanoBaseGenus(X) : GRFano -> RngIntElt
   FanoGenus(X) : GRFano -> RngIntElt
   Genus(C) : Crv -> RngIntElt
   Genus(C) : Crv -> RngIntElt
   Genus(C) : CrvHyp -> RngIntElt
   Genus(X) : CrvMod -> RngIntElt
   Genus(m, U) : DivFunElt, GrpAb -> RngIntElt
   Genus(A) : FldFunAb -> RngIntElt
   Genus(F) : FldFunG -> RngIntElt
   Genus(X) : GRK3 -> RngIntElt
   Genus(G) : GrpPSL2 -> RngIntElt
   Genus(L) : Lat -> SymGen
   GenusAndCanonicalMap(C) : Crv -> RngIntElt, BoolElt, MapSch
   GenusContribution(g) : GrphRes -> RngIntElt
   GenusField(A): FldAb -> FldAb
   GenusOneModel(C) : Crv -> ModelG1
   GenusOneModel(mat) : Mtrx -> ModelG1
   GenusOneModel(n, E) : RngIntElt, CrvEll -> ModelG1, Crv, MapSch, MapSch
   GenusOneModel(n, seq) : RngIntElt, [ RngElt ] -> ModelG1
   GenusOneModel(f) : RngMPolElt -> ModelG1
   GenusOneModel(mats) : [ AlgMatElt ] -> ModelG1
   GenusRepresentatives(L) : Lat -> [ Lat ]
   GeometricGenus(S) : Srfc -> RngIntElt
   GeometricGenusOfDesingularization(S) : Srfc -> RngIntElt
   HyperellipticCurveOfGenus(g, f, h) : RngIntElt, RngUPolElt, RngUPolElt -> CrvHyp
   IsGenus(G) : SymGen -> BoolElt
   IsGenusOneModel(f) : RngMPolElt -> BoolElt, ModelG1
   IsHyperellipticCurveOfGenus(g, [f, h]) : RngIntElt, [RngUPolElt] -> BoolElt, CrvHyp
   IsSpinorGenus(G) : SymGen -> BoolElt
   RandomCurveByGenus(g, K) : RngIntElt, Fld -> Crv
   RandomGenusOneModel(n) : RngIntElt -> ModelG1
   SpinorGenus(L) : Lat -> SymGen
   TwoGenus(X) : GRK3 -> RngIntElt
   WeilDescentGenus(E,k) : FldFun, FldFin -> RngIntElt
   WeilDescentGenus(E, k, c) : FldFun, FldFin, FldFinElt -> RngIntElt
   Lat_Genus (Example H30E20)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012