[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: Superlattices .. SupportingCone
MinimalSuperlattices(e) : LatLatElt -> [ LatLatElt ] , [ RngIntElt ]
MinimalSupermodules(e) : SubModLatElt -> { SubModLatElt }
SuperScheme(X) : Sch -> Sch
IsProbablySupersingular(E) : CrvEll -> BoolElt
IsSupersingular(E : parameters) : CrvEll -> BoolElt
SupersingularEllipticCurve(K) : FldFin -> CrvEll
SupersingularModule(p,N : parameters) : RngIntElt, RngInt -> ModSS
SupersingularModule(p) : RngIntElt -> ModForm
SupersingularPolynomial(p) : RngIntElt -> RngUPolElt
SUPERSINGULAR DIVISORS ON MODULAR CURVES
SUPERSINGULAR DIVISORS ON MODULAR CURVES
Supersingular Curves (ELLIPTIC CURVES OVER FINITE FIELDS)
SupersingularEllipticCurve(K) : FldFin -> CrvEll
SupersingularModule(p,N : parameters) : RngIntElt, RngInt -> ModSS
SupersingularModule(p) : RngIntElt -> ModForm
SupersingularPolynomial(p) : RngIntElt -> RngUPolElt
SuperSummitCanonicalLength(u: parameters) : GrpBrdElt -> RngIntElt
SuperSummitInfimum(u: parameters) : GrpBrdElt -> RngIntElt
SuperSummitProcess(u: parameters) : GrpBrdElt -> GrpBrdClassProc
SuperSummitRepresentative(u: parameters) : GrpBrdElt -> GrpBrdElt, GrpBrdElt
SuperSummitSet(u: parameters) : GrpBrdElt -> SetIndx
SuperSummitSupremum(u: parameters) : GrpBrdElt -> RngIntElt
Plane_supp (Example H141E3)
HasSupplement(G, M) : GrpPerm, GrpPerm -> BoolElt, GrpPerm
Supplements(G, M) : GrpPerm, GrpPerm -> [ GrpPerm ]
Supplements(G, M, N) : GrpPerm, GrpPerm, GrpPerm -> [ GrpPerm ]
ChangeSupport(~G, S) : Grph, SetIndx ->
ChangeSupport(G, S) : Grph, SetIndx -> Grph, GrphVertSet, GrphEdgeSet
ChangeSupport(~G, S) : GrphMult, SetIndx ->
ChangeSupport(G, S) : GrphMult, SetIndx -> GrphMult, GrphVertSet, GrphEdgeSet
GeometricSupport(C) : Code -> DivCrvElt
IdealOfSupport(D) : DivSchElt -> RngMPol
IsInSupport(v,F) : TorLatElt,TorFan -> BoolElt,RngIntElt
PermutationSupport(A) : GrpAuto -> SetIndx
Support(a) : AlgGenElt -> SetEnum
Support(a) : AlgGrpElt -> SeqEnum
Support(a) : AlgLieElt -> SetEnum
Support(s) : AlgSymElt -> [SeqEnum], [RngElt]
Support(D) : DivCrvElt -> SeqEnum, SeqEnum
Support(D) : DivFunElt -> [ PlcFunElt ]
Support(D) : DivFunElt -> [ PlcFunElt ], [ RngIntElt ]
Support(D) : DivNumElt -> SeqEnum, SeqEnum
Support(D) : DivNumElt -> SeqEnum, SeqEnum
Support(D) : DivSchElt -> Sch
Support(G) : Grph -> SetIndx
Support(G) : GrphMult -> SetIndx
Support(G, Y) : GrpPerm, GSet -> { Elt }
Support(g, Y) : GrpPermElt, GSet -> { Elt }
Support(D) : Inc -> { Elt }
Support(B) : IncBlk -> { Elt }
Support(v) : LatElt -> SetEnum
Support(u) : ModRngElt -> { RngIntElt }
Support(u) : ModTupFldElt -> { RngElt }
Support(u) : ModTupRngElt -> { RngElt }
Support(w) : ModTupRngElt -> { RngIntElt }
Support(w) : ModTupRngElt -> { RngIntElt }
Support(w) : ModTupRngElt -> { RngIntElt }
Support(A) : MtrxSprs -> [ <RngIntElt, RngIntElt, RngElt> ]
Support(A, i) : MtrxSprs, RngIntElt -> [RngIntElt]
Support(P) : Plane -> { Elt }
Support(P, p) : Plane, PlanePt -> .
Support(l) : PlaneLn -> SetEnum
Support(I) : RngOrdFracIdl -> RngOrdIdl
Support(p) : RngUPolElt -> [RngIntElt], [RngElt]
Support(L) : [RngOrdFracIdl] -> RngOrdIdl
A Pair of Twisted Cubics (SCHEMES)
Operations on the Support (GRAPHS)
Operations on the Support (MULTIGRAPHS)
The Defining Points of a Plane (FINITE PLANES)
The Support (MATRIX GROUPS OVER GENERAL RINGS)
AlgSym_support (Example H146E11)
FaceSupportedBy(C,H) : TorCon,TorLatElt -> TorCon
IsSupportingHyperplane(v,h,P) : TorLatElt,FldRatElt,TorPol -> BoolElt,RngIntElt
SupportingCone(P,v) : TorPol,TorLatElt -> TorCon
SupportingCone(P,v) : TorPol,TorLatElt -> TorCon
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012