[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: TrailingCoefficient  ..  Transitive


TrailingCoefficient

   TrailingCoefficient(f) : AlgFrElt -> RngElt
   TrailingCoefficient(f) : RngMPolElt -> RngElt
   TrailingCoefficient(f, i) : RngMPolElt, RngIntElt -> RngElt
   TrailingCoefficient(p) : RngUPolElt -> RngElt

TrailingTerm

   TrailingTerm(f) : AlgFrElt -> RngElt
   TrailingTerm(f) : RngMPolElt -> RngElt
   TrailingTerm(f, i) : RngMPolElt, RngIntElt -> RngElt
   TrailingTerm(p) : RngUPolElt -> RngUPolElt

trans

   AlgSym_trans (Example H146E18)
   Plane_trans (Example H141E16)

transcendental

   Transcendental Extension (INTRODUCTION TO RINGS [BASIC RINGS])
   Transcendental Functions (POWER, LAURENT AND PUISEUX SERIES)
   Transcendental Functions (REAL AND COMPLEX FIELDS)

transcendental-extension

   Transcendental Extension (INTRODUCTION TO RINGS [BASIC RINGS])

Transfer

   NumericClebschTransfer(f, inv, p) : RngMPolElt, UserProgram, SeqEnum -> RngElt

transfer

   Transfer Between Group Categories (FINITE SOLUBLE GROUPS)
   Transfer Functions Between Group Categories (GROUPS)

transfer-functions

   Transfer Between Group Categories (FINITE SOLUBLE GROUPS)

Transform

   InverseMattsonSolomonTransform(A, n) : RngUPolElt, RngIntElt -> RngUPolElt
   KrawchoukTransform(f, K, n) : RngUPolElt, FldFin, RngIntElt -> RngUPolElt
   MacWilliamsTransform(n, k, K, W) : RngIntElt, RngIntElt, FldFin, RngMPol -> RngMPol
   MacWilliamsTransform(n, k, q, W) : RngIntElt, RngIntElt, RngIntElt, [ <RngIntElt, RngIntElt> ] -> [ <RngIntElt, RngIntElt> ]
   MacWilliamsTransform(n, k, q, W) : RngIntElt, RngIntElt, RngIntElt, [ <RngIntElt, RngIntElt> ] -> [ <RngIntElt, RngIntElt> ]
   MattsonSolomonTransform(f, n) : RngUPolElt, RngIntElt -> RngUPolElt
   TransformForm(form, type) : AlgMatElt, MonStgElt -> GrpMatElt
   TransformForm(G) : GrpMat -> GrpMatElt

transform

   FldForms_transform (Example H29E15)

transformalt

   FldForms_transformalt (Example H29E16)

Transformation

   ApplyTransformation(g, model) : Tup, ModelG1 -> ModelG1
   g * model : Tup, ModelG1 -> ModelG1
   IsTransformation(n, g) : RngIntElt, Tup -> BoolElt, RngElt
   QuadraticTransformation(P) : Prj -> MapSch
   QuadraticTransformation(X) : Sch -> Sch, MapIsoSch
   RandomTransformation(n : parameters) : RngIntElt -> Tup
   SiegelTransformation(u, v) : ModTupFldElt, ModTupFldElt -> AlgMatElt
   Transformation(C, t) : CrvHyp, [RngElt] -> CrvHyp, MapIsoSch
   TransformationMatrix(O1, O2) : RngFunOrd, RngFunOrd -> AlgMatElt, RngElt
   TransformationMatrix(I) : RngFunOrdIdl -> AlgMatElt, RngElt
   TransformationMatrix(O, P) : RngOrd, RngOrd -> AlgMatElt, RngIntElt
   TransformationMatrix(I) : RngOrdFracIdl -> MtrxSpcElt, RngIntElt
   CrvHyp_Transformation (Example H125E10)

transformation

   Operations with Linear Transformations (VECTOR SPACES)
   VECTOR SPACES

TransformationMatrix

   TransformationMatrix(O1, O2) : RngFunOrd, RngFunOrd -> AlgMatElt, RngElt
   TransformationMatrix(I) : RngFunOrdIdl -> AlgMatElt, RngElt
   TransformationMatrix(O, P) : RngOrd, RngOrd -> AlgMatElt, RngIntElt
   TransformationMatrix(I) : RngOrdFracIdl -> MtrxSpcElt, RngIntElt

Transformations

   ComposeTransformations(g1, g2) : Tup, Tup -> Tup
   g1 * g2 : Tup, Tup -> Tup

transformations

   Transformations between Genus One Models (MODELS OF GENUS ONE CURVES)
   Unitary Transformations on Quantum States (QUANTUM CODES)

TransformForm

   TransformForm(form, type) : AlgMatElt, MonStgElt -> GrpMatElt
   TransformForm(G) : GrpMat -> GrpMatElt

transforms

   Isomorphisms and Transformations (HYPERELLIPTIC CURVES)
   Transforms (LINEAR CODES OVER FINITE FIELDS)

transgp

   Database of Transitive Groups (DATABASES OF GROUPS)

transgp-data

   Database of Transitive Groups (DATABASES OF GROUPS)

Transitive

   IsBlockTransitive(D) : Inc -> BoolElt
   IsDistanceTransitive(G) : GrphUnd -> BoolElt
   IsEdgeTransitive(G) : GrphUnd -> BoolElt
   IsLineTransitive(P) : Plane -> BoolElt
   IsLocallyTwoTransitive(C) : CosetGeom -> BoolElt
   IsPointTransitive(D) : Inc -> BoolElt
   IsPointTransitive(P) : Plane -> BoolElt
   IsSharplyTransitive(G, Y, k) : GrpPerm, GSet, RngIntElt -> BoolElt
   IsTransitive(G) : GrphUnd -> BoolElt
   IsTransitive(G, Y) : GrpPerm, GSet -> BoolElt
   IsTransitive(G, Y, k) : GrpPerm, GSet, RngIntElt -> BoolElt
   NumberOfTransitiveGroups(d) : RngIntElt -> RngIntElt
   TransitiveGroup(d) : RngIntElt -> GrpPerm, MonStgElt
   TransitiveGroup(d, f) : RngIntElt, Program -> GrpPerm, MonStgElt
   TransitiveGroup(d, n) : RngIntElt, RngIntElt -> GrpPerm, MonStgElt
   TransitiveGroup(S, f) : [RngIntElt], Program -> GrpPerm, MonStgElt
   TransitiveGroupDatabaseLimit() : -> RngIntElt
   TransitiveGroupDescription(G) : GrpPerm -> MonStgElt
   TransitiveGroupDescription(d, n) : RngIntElt, RngIntElt -> MonStgElt
   TransitiveGroupIdentification(G) : GrpPerm -> RngIntElt, RngIntElt
   TransitiveGroupProcess(d) : RngIntElt -> Process
   TransitiveGroupProcess(d, f) : RngIntElt, Program -> Process
   TransitiveGroupProcess(S) : [RngIntElt] -> Process
   TransitiveGroupProcess(S, f) : [RngIntElt], Program -> Process
   TransitiveGroups(d: parameters) : RngIntElt -> [GrpPerm]
   TransitiveGroups(S: parameters) : [RngIntElt] -> [GrpPerm]
   TransitiveGroups(d, f) : RngIntElt, Program -> [GrpPerm]
   TransitiveGroups(S, f) : [RngIntElt], Program -> [GrpPerm]
   TransitiveQuotient(G) : GrpPerm -> GrpPerm, Hom, GrpPerm
   TwoTransitiveGroupIdentification(G) : GrpPerm -> Tup
   GrpData_Transitive (Example H66E9)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012