[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: coverings  ..  Coxeter


coverings

   Genus One Models as Coverings (MODELS OF GENUS ONE CURVES)

CoveringStructure

   CoveringStructure(S, T) : Str, Str -> Str

Covers

   PartitionCovers(P1, P2) : SeqEnum, SeqEnum -> BoolElt

covers

   Cyclic Covers of P1 (HYPERELLIPTIC CURVES)
   Projective Covers and Resolutions (BASIC ALGEBRAS)

Coweight

   CoweightLattice(R) : RootDtm -> Lat
   WeightLattice(G) : GrpLie -> Lat
   WeightLattice(W) : GrpMat -> Lat
   WeightLattice(W) : GrpPermCox -> Lat

CoweightLattice

   CoweightLattice(R) : RootDtm -> Lat
   WeightLattice(G) : GrpLie -> Lat
   WeightLattice(W) : GrpMat -> Lat
   WeightLattice(W) : GrpPermCox -> Lat

Coweights

   FundamentalCoweights(R) : RootDtm -> Mtrx
   FundamentalWeights(G) : GrpLie -> Mtrx
   FundamentalWeights(W) : GrpMat -> Mtrx
   FundamentalWeights(W) : GrpPermCox -> SeqEnum

Cox

   CoxMonomialLattice(C) : RngCox -> TorLat
   CoxMonomialLattice(X) : TorVar -> TorLat
   CoxRing(k,F) : Fld,TorFan -> RngCox
   CoxRing(R,B,Z,Q) : RngMPol,SeqEnum,SeqEnum,SeqEnum -> RngCox
   CoxRing(X) : TorVar -> RngCox

cox

   WeilToClassLatticesMap(C) : RngCox -> Map
   Cox Rings (TORIC VARIETIES)
   Cox Rings in Their Own Right (TORIC VARIETIES)
   Recovering a Toric Variety From a Cox Ring (TORIC VARIETIES)
   The Cox Ring of a Toric Variety (TORIC VARIETIES)
   The Cox Ring of a Toric Variety (TORIC VARIETIES)
   The Coxeter Group (ROOT DATA)

cox-ring-example

   The Cox Ring of a Toric Variety (TORIC VARIETIES)
   Toric_cox-ring-example (Example H118E3)

cox-rings

   WeilToClassLatticesMap(C) : RngCox -> Map
   Cox Rings (TORIC VARIETIES)

Coxeter

   Implicit Invocation of the Todd- Coxeter Algorithm (FINITELY PRESENTED GROUPS)
   Index of a Subgroup: The Todd- Coxeter Algorithm (FINITELY PRESENTED GROUPS)
   # w : GrpFPCoxElt -> RngIntElt
   CohenCoxeterName(k) : RngIntElt -> MonStgElt, RngIntElt
   CoxeterDiagram(M) : AlgMatElt ->
   CoxeterDiagram(W) : GrpFPCox ->
   CoxeterDiagram(G) : GrpLie ->
   CoxeterDiagram(W) : GrpMat ->
   CoxeterDiagram(R) : RootStr ->
   CoxeterDiagram(R) : RootSys ->
   CoxeterElement(W) : GrpFPCox -> SeqEnum
   CoxeterElement(G) : GrpLie -> GrpPermElt
   CoxeterElement(W) : GrpMat -> SeqEnum
   CoxeterForm(W) : GrpPermCox -> AlgMatElt
   CoxeterForm(R) : RootDtm -> AlgMatElt
   CoxeterForm(R) : RootSys -> AlgMatElt
   CoxeterGraph(M) : AlgMatElt -> GrphUnd
   CoxeterGraph(W) : GrpFPCox -> GrphUnd
   CoxeterGraph(G) : GrpLie -> GrphUnd
   CoxeterGraph(W) : GrpMat -> GrphUnd
   CoxeterGraph(N) : MonStgElt -> GrpUnd
   CoxeterGraph(R) : RootStr -> GrphUnd
   CoxeterGraph(R) : RootSys -> GrphUnd
   CoxeterGroup(GrpFPCox, C) : Cat, AlgMatElt -> GrpFPCox
   CoxeterGroup(GrpFPCox, M) : Cat, AlgMatElt -> GrpFPCox
   CoxeterGroup(GrpFPCox, M) : Cat, AlgMatElt -> GrpFPCox
   CoxeterGroup(GrpPermCox, M) : Cat, AlgMatElt -> GrpPermCox
   CoxeterGroup(M) : Cat, AlgMatElt -> GrpPermCox
   CoxeterGroup(GrpFP, W) : Cat, GrpFPCox -> GrpFP, Map
   CoxeterGroup(GrpFP, W) : Cat, GrpFPCox -> GrpFP, Map
   CoxeterGroup(GrpPerm, W) : Cat, GrpFPCox -> GrpPerm, Map
   CoxeterGroup(GrpPermCox, W) : Cat, GrpFPCox -> GrpPermCox, Map
   CoxeterGroup(GrpFPCox, D) : Cat, GrphDir -> GrpFPCox
   CoxeterGroup(GrpFPCox, G) : Cat, GrphUnd -> GrpFPCox
   CoxeterGroup(GrpFPCox, W) : Cat, GrpMat -> GrpFPCox
   CoxeterGroup(GrpFPCox, W) : Cat, GrpMat -> GrpPermCox
   CoxeterGroup(GrpPermCox, W) : Cat, GrpMat -> GrpPermCox
   CoxeterGroup(GrpFP, W) : Cat, GrpMat -> GrpPermCox, Map
   CoxeterGroup(GrpPerm, W) : Cat, GrpMat -> GrpPermCox, Map
   CoxeterGroup(GrpPermCox, W) : Cat, GrpMat -> GrpPermCox, Map
   CoxeterGroup(GrpFP, W) : Cat, GrpPermCox -> GrpFP, Map
   CoxeterGroup(GrpFP, W) : Cat, GrpPermCox -> GrpFPCox
   CoxeterGroup(GrpFPCox, W) : Cat, GrpPermCox -> GrpFPCox, Map
   CoxeterGroup(GrpPerm, W) : Cat, GrpPermCox -> GrpPerm, Map
   CoxeterGroup(GrpFP, t) : Cat, MonStgElt -> GrpFP
   CoxeterGroup(GrpFPCox, N) : Cat, MonStgElt -> GrpFPCox
   CoxeterGroup(GrpFPCox, R) : Cat, RootDtm -> GrpFPCox
   CoxeterGroup(GrpFPCox, R) : Cat, RootSys -> GrpFPCox
   CoxeterGroup(GrpFPCox, R) : Cat, RootSys -> RngIntElt
   CoxeterGroup(A, B) : Mtrx, Mtrx -> GrpPermCox
   CoxeterGroup(R) : RootDtm -> GrpPermCox
   CoxeterGroup(R) : RootSys -> RngIntElt
   CoxeterGroupOrder(C) : AlgMatElt -> .
   CoxeterGroupOrder(M) : AlgMatElt -> .
   CoxeterGroupOrder(D) : GrphDir -> .
   CoxeterGroupOrder(G) : GrphUnd -> .
   CoxeterGroupOrder(N) : MonStgElt -> .
   CoxeterGroupOrder(R) : RootStr -> RngIntElt
   CoxeterGroupOrder(R) : RootSys -> RngIntElt
   CoxeterMatrix(W) : GrpFPCox -> AlgMatElt
   CoxeterMatrix(G) : GrphUnd -> AlgMatElt
   CoxeterMatrix(G) : GrpLie -> AlgMatElt
   CoxeterMatrix(W) : GrpMat -> AlgMatElt
   CoxeterMatrix(N) : MonStgElt -> AlgMatElt
   CoxeterMatrix(R) : RootStr -> AlgMatElt
   CoxeterMatrix(R) : RootSys -> AlgMatElt
   CoxeterNumber(W) : GrpFPCox -> SeqEnum
   CoxeterNumber(G) : GrpLie -> RngIntElt
   CoxeterNumber(W) : GrpMat -> SeqEnum
   HyperbolicCoxeterGraph(i) : RngIntElt -> GrphUnd
   HyperbolicCoxeterMatrix(i) : RngIntElt -> AlgMatElt
   IrreducibleCoxeterGraph(X, n) : MonStgElt, RngIntElt -> GrpUnd
   IrreducibleCoxeterGroup(GrpFPCox, X, n) : Cat, MonStgElt, RngIntElt -> GrpFPCox
   IrreducibleCoxeterMatrix(X, n) : MonStgElt, RngIntElt -> AlgMatElt
   IsCoxeterAffine(M) : AlgMatElt -> BoolElt
   IsCoxeterFinite(M) : AlgMatElt -> BoolElt
   IsCoxeterGraph(G) : GrphUnd -> BoolElt
   IsCoxeterHyperbolic(M) : AlgMatElt -> BoolElt
   IsCoxeterHyperbolic(G) : GrphUnd -> BoolElt
   IsCoxeterIrreducible(C) : AlgMatElt -> BoolElt
   IsCoxeterIrreducible(M) : AlgMatElt -> BoolElt
   IsCoxeterIsomorphic(C1, C2) : AlgMatElt, AlgMatElt -> RngIntElt
   IsCoxeterIsomorphic(M1, M2) : AlgMatElt, AlgMatElt -> RngIntElt
   IsCoxeterIsomorphic(W1, W2) : GrpFPCox, GrpFPCox -> BoolElt
   IsCoxeterIsomorphic(W1, W2) : GrpMat, GrpMat -> BoolElt
   IsCoxeterIsomorphic(N1, N2) : MonStgElt, MonStgElt -> BoolElt
   IsCoxeterMatrix(M) : AlgMatElt -> BoolElt
   Length(w) : GrpMatElt -> RngIntElt
   LocalCoxeterGroup(H) : GrpPermCox -> GrpPermCox, Map
   ReflectionGroup(W) : GrpFPCox -> GrpMat, Map
   ReflectionGroup(W) : GrpPermCox -> GrpMat
   ReflectionGroup(W) : GrpPermCox -> GrpMat, Map
   ReflectionGroup(R) : RootDtm -> GrpMat
   ReflectionGroup(R) : RootSys -> GrpMat
   ToddCoxeter(G, H: parameters) : GrpFP, GrpFP -> RngIntElt, Map, RngIntElt, RngIntElt
   ToddCoxeterSchreier(G) : GrpMat : ->
   ToddCoxeterSchreier(G: parameters) : GrpPerm : ->
   GrpFP_1_Coxeter (Example H70E10)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012