[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: Fibration .. Field
RandomEllipticFibration_d10g10(P) : Prj -> Srfc
RandomEllipticFibration_d7g6(P) : Prj -> Srfc
RandomEllipticFibration_d8g7(P) : Prj -> Srfc
RandomEllipticFibration_d9g7(P) : Prj -> Srfc
RationalPointsByFibration(X) : Sch -> SetIndx
IsMoriFibreSpace(X,i) : TorVar,RngIntElt -> BoolElt
HasIrregularFibres(s) : GrphSpl -> BoolElt
FixedField(A, U) : FldAb, GrpAb -> FldAb
AbelianSubfield(A, U) : FldAb, GrpAb -> FldAb
AbsoluteField(F) : FldAlg -> FldAlg
AbsoluteField(F) : FldNum -> FldNum
AbsoluteFunctionField(F) : FldFunG -> FldFunG
AbsoluteModuleOverMinimalField(M) : ModGrp -> ModGrp
AbsoluteModuleOverMinimalField(M, F) : ModGrp, FldFin -> ModGrp
AbsoluteModulesOverMinimalField(Q, F) : [ ModGrp ], FldFin -> [ ModGrp ]
AlgorithmicFunctionField(F) : FldFunFracSch -> FldFun, Map
Alphabet(C) : Code -> Rng
Alphabet(C) : Code -> Rng
BaseField(A) : AlgQuat -> Fld
BaseField(D) : DB -> FldFin
BaseField(A) : FldAC -> Fld
BaseField(A) : FldFunAb -> FldFunG
BaseField(Q) : FldRat -> FldRat
BaseField(A) : JacHyp -> Fld
BaseField(J) : JacHyp -> Fld
BaseField(M) : ModFrmBianchi ->
BaseField(M) : ModFrmHil ->
BaseField(f) : ModFrmHilElt -> Fld
BaseField(R) : RngDiff -> Rng
BaseField(R) : RootSys -> Fld
BaseField(C) : Sch -> Fld
BaseField(X) : Sch -> Fld
BaseField(K) : SrfKum -> Fld
BaseRing(F) : FldFun -> Rng
BaseRing(FF) : FldFunOrd -> Rng
BaseRing(L) : RngPad -> RngPad
BaseRing(W) : RngWitt -> Fld
BaseRing(C) : Sch -> Rng
ChangeField(A,K) : ArtRep, FldNum -> ArtRep, BoolElt
ClassField(m, G) : Map, GrpAb -> FldAb
CoefficientField(x) : AlgChtrElt -> Rng
CoefficientField(C) : Code -> Rng
CoefficientField(V) : ModTupFld -> Fld
CoefficientRing(A) : FldAb -> Fld
CoefficientRing(M) : ModTupRng -> Rng
CoefficientRing(R) : RngInvar -> Grp
ComplexField() : -> FldCom
ComplexField(R) : FldRe -> FldCom
ComplexField(p) : RngIntElt -> FldCom
ConstantField(F) : FldFunG -> Rng
ConstantField(R) : RngDiff -> Rng
ConstantFieldExtension(F, E) : FldFun, Rng -> FldFun, Map
ConstantFieldExtension(F, C) : RngDiff, Fld -> RngDiff, Map
ConstantFieldExtension(R, C) : RngDiffOp,Fld -> RngDiffOp, Map
CyclotomicField(m) : RngIntElt -> FldCyc
CyclotomicRelativeField(k, K) : FldCyc, FldCyc -> FldNum
DecompositionField(p, A) : PlcNumElt, FldAb -> FldAb
DecompositionField(p) : RngOrdIdl -> FldNum, Map
DecompositionField(p, A) : RngOrdIdl, FldAb -> FldAb
DegreeOfExactConstantField(m) : DivFunElt -> RngIntElt
DegreeOfExactConstantField(m, U) : DivFunElt, GrpAb -> RngIntElt
DegreeOfExactConstantField(A) : FldFunAb -> RngIntElt
DegreeOfFieldExtension(G) : GrpMat -> RngIntElt
DifferentialFieldExtension(L) : RngDiffOpElt, -> RngDiff
DimensionOfExactConstantField(F) : FldFunG -> RngIntElt
DimensionOfFieldOfGeometricIrreducibility(C): Crv -> RngIntElt
ExactConstantField(F) : FldFunG -> Rng, Map
ExactConstantField(F) : RngDiff -> RngDiff, Map
ExponentialFieldExtension(F, f) : RngDiff, RngDiffElt -> RngDiff
ExtendField(C, L) : Code, FldFin -> Code, Map
ExtendField(G, L) : GrpMat, FldFin -> GrpMat, Map
ExtendField(V, L) : ModTupFld, Fld -> ModTupFld, MapHom
ExtensionField<F, x | P> : FldFin, ... -> FldFin, Map
FactorizationOverSplittingField(f) : RngUPolElt[FldFin] -> [<RngUPolElt, RngIntElt>], FldFin
Field(A) : ArtRep -> FldNum
Field(H) : HilbSpc -> FldCom
Field(P) : Plane -> FldFin
FieldAutomorphism(G, sigma) : GrpLie, Map -> Map
FieldMorphism(f) : Map -> Map
FieldOfDefinition(H) : HomModAbVar -> ModAbVar
FieldOfDefinition(phi) : MapModAbVar -> ModAbVar
FieldOfDefinition(A) : ModAbVar -> Fld
FieldOfDefinition(x) : ModAbVarElt -> ModTupFldElt
FieldOfDefinition(G) : ModAbVarSubGrp -> Fld
FieldOfFractions(Q) : FldRat -> FldRat
FieldOfFractions(R) : RngDiff -> RngDiff, Map
FieldOfFractions(O) : RngFunOrd -> FldFunOrd
FieldOfFractions(Z) : RngInt -> FldRat
FieldOfFractions(O) : RngOrd -> FldOrd
FieldOfFractions(R) : RngPad -> FldPad
FieldOfFractions(R) : RngSer -> RngSerLaur
FieldOfFractions(E) : RngSerExt -> RngSerExt
FieldOfFractions(P) : RngUPol -> FldFunRat
FieldOfFractions(V) : RngVal -> Rng
FieldOfGeometricIrreducibility(C) : Crv -> Rng, Map
FiniteField(q) : RngIntElt -> FldFin
FiniteField(p, n) : RngIntElt, RngIntElt -> FldFin
FixedField(K, U) : FldAlg, GrpPerm -> FldNum, Map
FixedField(K, S) : FldAlg, [Map] -> FldNum, Map
FixedField(L, G) : RngLocA, GrpPerm -> RngLocA
FixedField(V) : SSGalRep -> RngSerLaur
FunctionField(A) : Aff -> FldFunFracSch
FunctionField(C) : Crv -> FldFunFracSch
FunctionField(X) : CrvMod -> FldFun
FunctionField(D) : DiffFun -> FldFun
FunctionField(d) : DiffFunElt -> FldFun
FunctionField(G) : DivFun -> FldFun
FunctionField(D) : DivFunElt -> FldFun
FunctionField(A) : FldFunAb -> FldFun
FunctionField(F) : FldInvar -> FldFunRat
FunctionField(f : parameters) : RngMPolElt -> FldFun
FunctionField(S) : PlcFun -> FldFun
FunctionField(P) : PlcFunElt -> FldFun
FunctionField(R) : Rng -> FldFunG
FunctionField(R) : Rng -> FldFunRat
FunctionField(R, r) : Rng, RngIntElt -> FldFunRat
FunctionField(O) : RngFunOrd -> FldFun
FunctionField(e) : RngWittElt -> FldFun, Map
FunctionField(A) : Sch -> FldFunFracSch
FunctionField(C) : Sch -> FldFunG
FunctionField(S) : [RngMPolElt] -> FldFun
FunctionField(S) : [RngUPolElt] -> FldFun
FunctionFieldDatabase(q, d) : RngIntElt, RngIntElt -> DB
FunctionFieldPlace(p) : PlcCrvElt -> PlcFunElt
GHomOverCentralizingField(M, N) : ModGrp, ModGrp -> ModMatGrp
GaloisSplittingField(f) : RngUPolElt -> FldNum, [FldNumElt], GrpPerm, [[FldNumElt]]
GenusField(A): FldAb -> FldAb
GetDefaultRealField() : -> FldRe
GroundField(F) : FldAlg -> Fld
GroundField(F) : FldFin -> FldFin
GroundField(F) : FldNum -> Fld
HeckeEigenvalueField(M) : ModFrmHil -> Fld
HeckeEigenvalueField(M) : ModSym -> Fld, Map
HermitianFunctionField(p, d) : RngIntElt, RngIntElt -> FldFun
HilbertClassField(K) : FldAlg -> FldAb
HilbertClassField(K, p) : FldFun, PlcFunElt -> FldFunAb
ISABaseField(F,G) : Fld, Fld -> BoolElt
IdentityFieldMorphism(F) : Fld -> Map
InertiaField(p) : RngOrdIdl -> FldNum, Map
InvariantField(G, K) : GrpPerm, Fld -> FldInvar
IsAbsoluteField(K) : FldAlg -> BoolElt
IsAbsoluteField(K) : FldNum -> BoolElt
IsAlgebraicDifferentialField(R) : Rng -> BoolElt
IsDifferentialField(R) : Rng -> BoolElt
IsField(H) : HomModAbVar -> BoolElt, Fld, Map, Map
IsField(R) : Rng -> BoolElt
IsField(R) : RngDiff -> BoolElt
IsOverSmallerField (G : parameters) : GrpMat -> BoolElt, GrpMat
IsOverSmallerField(G, k : parameters) : GrpMat -> BoolElt, GrpMat
IsPrimeField(F) : Fld -> BoolElt
IsRationalFunctionField(F) : FldFunG -> BoolElt
IsRealisableOverSmallerField(M) : ModGrp -> BoolElt, ModGrp
IsSplittingField(K, A) : Fld, AlgQuat -> BoolElt, AlgQuatElt, Map
IsolGroupOfDegreeFieldSatisfying(d, p, f) : RngIntElt, RngIntElt, Any -> GrpMat
IsolGroupsOfDegreeFieldSatisfying(d, p, f) : RngIntElt, RngIntElt, Any -> SeqEnum
IsolNumberOfDegreeField(n, p) : RngIntElt, RngIntElt -> RngIntElt
IsolProcessOfDegreeField(d, p) : ., . -> Process
IsolProcessOfField(p) : . -> Process
LocalField(L, f) : FldPad, RngUPolElt -> RngLocA
LogarithmicFieldExtension(F, f) : RngDiff, RngDiffElt -> RngDiff
MatRepFieldSizes(A) : GrpAtlas -> SetEnum[RngIntElt]
MinimalField(a) : FldRatElt -> FldRat
MinimalField(q) : FldRatElt -> FldRat
MinimalField(G) : GrpMat -> FldFin
MinimalField(M) : ModRng -> FldFin
MinimalField(S) : SetEnum -> FldRat
MinimalField(S) : [ FldCycElt ] -> FldCyc
ModuleOverSmallerField(M, F) : ModGrp, FldFin -> ModGrp
ModulesOverCommonField(M, N) : ModGrp, ModGrp -> ModGrp, ModGrp
ModulesOverSmallerField(Q, F) : SeqEnum, FldFin -> ModGrp
NumberField(A) : FldAb -> FldNum
NumberField(F) : FldOrd -> FldNum
NumberField(P) : PlcNum -> FldNum
NumberField(P) : PlcNum -> FldNum
NumberField(P) : PlcNumElt -> FldNum
NumberField(P) : PlcNumElt -> FldNum
NumberField(O) : RngOrd -> FldNum
NumberField(O) : RngQuad -> FldQuad
NumberField(f) : RngUPolElt -> FldNum
NumberField(f) : RngUPolElt -> FldNum
NumberField(e) : SubFldLatElt -> FldNum
NumberField(s) : [ RngUPolElt ] -> FldNum
NumberField(s) : [ RngUPolElt ] -> FldNum
NumberFieldDatabase(d) : RngIntElt -> DB
NumberFieldSieve(n, F, m1, m2) : RngIntElt, RngMPolElt, RngIntElt, RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOneECFBound(C) : Crv -> RngIntElt
NumberOfPlacesOfDegreeOneECFBound(F) : FldFunG -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField(C) : Crv[FldFin] -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField(F, m) : FldFun, RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField(F) : FldFunG -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField(F, m) : FldFunG, RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantFieldBound(F, m) : FldFun, RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOverExactConstantField(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOverExactConstantField(F, m) : FldFun, RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOverExactConstantField(F, m) : FldFunG, RngIntElt -> RngIntElt
PointsOverSplittingField(Z) : Clstr -> SetEnum
PrimeField(F) : Fld -> Fld
PrimeField(F) : FldFin -> FldFin
PrimeField(N) : Nfd -> FldFin
PrimeRing(F) : FldFun -> Rng
PrimeRing(L) : RngPad -> RngPad
QuadraticField(m) : RngIntElt -> FldQuad
RamificationField(p) : RngOrdIdl -> FldNum, Map
RamificationField(p, i) : RngOrdIdl, RngIntElt -> FldNum, Map
RationalDifferentialField(C) : Fld -> RngDiff
Rationals() : -> FldRat
RationalsAsNumberField() : FldRat -> FldNum
RationalsAsNumberField() : FldRat -> FldNum
RayClassField(D) : DivNumElt -> FldAb
RayClassField(m) : Map -> FldAb
RealField() : -> FldRe
RealField(p) : RngIntElt -> FldRe
RelativeField(F, L) : FldAlg, FldAlg -> FldAlg
RelativeField(F, L) : FldNum, FldNum -> FldNum
RelativeField(L, m) : RngLocA, Map -> RngLocA, Map, Map
ResidueClassField(P) : PlcCrvElt -> Rng
ResidueClassField(P) : PlcFunElt -> Rng, Map
ResidueClassField(P) : PlcNumElt -> Fld
ResidueClassField(P) : PlcNumElt -> Fld
ResidueClassField(I) : Rng -> Fld, Map
ResidueClassField(I) : RngFunOrdIdl -> Rng, Map
ResidueClassField(L) : RngLocA -> Rng, Map
ResidueClassField(O, I) : RngOrd, RngOrdIdl -> FldFin, Map
ResidueClassField(L) : RngPad -> FldFin, Map
ResidueClassField(R) : RngSer -> Rng, Map
ResidueClassField(E) : RngSerExt -> FldFin
ResidueField(R) : RngGal -> FldFin
RestrictField(G, S) : GrpMat, FldFin -> GrpMat, Map
RestrictField(V, L) : ModTupFld, Fld -> ModTupFld, MapHom
RingOfFractions(Q) : RngMPolRes -> RngFunFrac
RootsInSplittingField(f) : RngUPolElt[FldFin] -> [<RngUPolElt, RngIntElt>], FldFin
SetDefaultRealField(R) : FldRe ->
SmallerField(G) : GrpMat -> FLdFin
SmallerFieldBasis(G) : GrpMat -> GrpMatElt
SmallerFieldImage(G, g) : GrpMat, GrpMatElt -> GrpMatElt
SplittingField(F) : FldAlg -> FldAlg, SeqEnum
SplittingField(F) : FldNum -> FldNum, SeqEnum
SplittingField(f) : RngUPolElt -> FldAlg
SplittingField(f) : RngUPolElt -> FldNum
SplittingField(S) : RngUPolElt[FldFin] -> FldFin
SplittingField(P) : RngUPolElt[FldFin] -> FldFin
SplittingField(f, R) : RngUPolElt[RngInt], RngPad -> RngPad
SplittingField(L) : [RngUPolElt] -> FldNum, [FldNumElt]
SplittingField(L) : [RngUPolElt] -> FldNum, [FldNumElt]
SubfieldSubcode(C, S) : Code, FldFin -> Code, Map
UnderlyingField(R) : RngDiff -> Rng
UnderlyingRing(F) : FldFunG -> FldFunG
WeilPolynomialOverFieldExtension(f, deg) : RngUPolElt, RngIntElt -> RngUPolElt
WriteOverLargerField(G) : GrpMat -> GrpMat, GrpAb, SeqEnum
WriteOverSmallerField(G, F) : GrpMat, FldFin -> GrpMat, Map
WriteOverSmallerField(M, F) : ModGrp, FldFin -> ModGrp, Map
ext< K | f > : FldFunRat, RngUPolElt -> FldFun
pAdicRing(p) : RngIntElt -> RngPad
pAdicRing(p, k) : RngIntElt, RngIntElt -> RngPad
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012