[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: IsConnected  ..  IsDifferentialLaurentSeriesRing


IsConnected

   IsConnected(G) : GrphMultUnd -> BoolElt
   IsConnected(G) : GrphUnd -> BoolElt

IsConsistent

   IsConsistent(G) : GrpGPC -> BoolElt
   IsConsistent(G) : GrpPC -> BoolElt
   IsConsistent(A, w) : ModMatRngElt, ModTupRng -> BoolElt, ModTupRngElt, ModTupRng
   IsConsistent(A, W) : ModMatRngElt, [ ModTupRng ] -> BoolElt, [ ModTupRngElt ], ModTupRng
   IsConsistent(A, W) : Mtrx, Mtrx -> BoolElt, Mtrx, ModTupRng
   IsConsistent(A, Q) : Mtrx, [ ModTupRng ] -> BoolElt, [ ModTupRngElt ], ModTupRng
   GrpPC_IsConsistent (Example H63E3)

isconsistent

   Possibly Inconsistent Presentations (FINITE SOLUBLE GROUPS)

IsConstant

   IsConstant(a) : FldFunGElt -> BoolElt, RngElt
   IsZero(I) : Map -> BoolElt

IsConstantCurve

   IsConstantCurve(E) : CrvEll[FldFunRat] -> BoolElt, CrvEll

IsConway

   IsConway(F) : FldFin -> BoolElt

IsCorootSpace

   IsCorootSpace(v) : ModTupFldElt -> BoolElt
   IsInRootSpace(v) : ModTupFldElt -> BoolElt
   IsRootSpace(V) : ModTupFld -> BoolElt

IsCoxeterAffine

   IsCoxeterAffine(M) : AlgMatElt -> BoolElt

IsCoxeterCompactHyperbolic

   IsCoxeterCompactHyperbolic(M) : AlgMatElt -> BoolElt
   IsCoxeterHyperbolic(M) : AlgMatElt -> BoolElt
   IsCoxeterHyperbolic(G) : GrphUnd -> BoolElt

IsCoxeterFinite

   IsCoxeterFinite(M) : AlgMatElt -> BoolElt

IsCoxeterGraph

   IsCoxeterGraph(G) : GrphUnd -> BoolElt

IsCoxeterHyperbolic

   IsCoxeterCompactHyperbolic(M) : AlgMatElt -> BoolElt
   IsCoxeterHyperbolic(M) : AlgMatElt -> BoolElt
   IsCoxeterHyperbolic(G) : GrphUnd -> BoolElt

IsCoxeterIrreducible

   IsCoxeterIrreducible(C) : AlgMatElt -> BoolElt
   IsCoxeterIrreducible(M) : AlgMatElt -> BoolElt

IsCoxeterIsomorphic

   IsCoxeterIsomorphic(C1, C2) : AlgMatElt, AlgMatElt -> RngIntElt
   IsCoxeterIsomorphic(M1, M2) : AlgMatElt, AlgMatElt -> RngIntElt
   IsCoxeterIsomorphic(W1, W2) : GrpFPCox, GrpFPCox -> BoolElt
   IsCoxeterIsomorphic(W1, W2) : GrpMat, GrpMat -> BoolElt
   IsCoxeterIsomorphic(N1, N2) : MonStgElt, MonStgElt -> BoolElt

IsCoxeterMatrix

   IsCoxeterMatrix(M) : AlgMatElt -> BoolElt

IsCrystallographic

   IsCrystallographic(C) : AlgMatElt -> BoolElt
   IsCrystallographic(W) : GrpMat -> BoolElt
   IsCrystallographic(W) : GrpPermCox -> BoolElt
   IsCrystallographic(R) : RootStr -> BoolElt
   IsCrystallographic(R) : RootSys -> BoolElt

IsCurve

   IsCurve(X) : Sch -> BoolElt,Crv
   IsCurve(X) : Sch -> BoolElt,Crv

IsCusp

   IsCusp(p) : Crv,Pt -> BoolElt
   IsCusp(z) : SpcHypElt -> BoolElt

IsCuspidal

   IsCuspidal(M) : ModBrdt -> BoolElt
   IsCuspidal(M) : ModFrm -> BoolElt
   IsCuspidal(M) : ModFrmHil -> BoolElt
   IsCuspidal(M) : ModSym -> BoolElt

IsCyclic

   IsCyclic(C) : Code -> BoolElt
   IsCyclic(C) : Code -> BoolElt
   IsCyclic(F) : FldAlg -> BoolElt
   IsCyclic(F) : FldNum -> BoolElt
   IsCyclic(G) : GrpAb -> BoolElt
   IsCyclic(G) : GrpFin -> BoolElt
   IsCyclic(G) : GrpGPC -> BoolElt
   IsCyclic(G) : GrpMat -> BoolElt
   IsCyclic(G) : GrpPC -> BoolElt
   IsCyclic(G) : GrpPerm -> BoolElt

IsDecomposable

   IsDecomposable(M) : ModRng -> BoolElt, ModRng, ModRng

IsDefault

   IsDefault(F) : FldFin -> BoolElt

IsDeficient

   IsDeficient(C, p) : CrvHyp, RngIntElt -> BoolElt

IsDefined

   IsDefined(A, x) : Assoc, Elt -> Bool, Elt
   IsDefined(L, i) : List, RngIntElt -> Elt
   IsDefined(S, i) : SeqEnum, RngIntElt -> BoolElt

IsDefinite

   IsIndefinite(A) : AlgQuat -> BoolElt
   IsDefinite(A) : AlgQuat -> BoolElt
   IsDefinite(M) : ModFrmHil -> BoolElt

IsDegenerate

   IsDegenerate(N) : NwtnPgon -> BoolElt
   IsDegenerate(F) : NwtnPgonFace -> BoolElt

IsDelPezzo

   IsDelPezzo(Y) : Sch -> BoolElt, SrfDelPezzo, MapSch

IsDenselyRepresented

   IsDenselyRepresented(H) : HilbSpc -> RngIntElt

IsDesarguesian

   IsDesarguesian(P) : Plane -> BoolElt

IsDesign

   IsDesign(D, t: parameters) : Inc, RngIntElt -> BoolElt, RngIntElt

IsDiagonal

   IsDiagonal(a) : AlgMatElt -> BoolElt
   IsDiagonal(A) : Mtrx -> BoolElt
   IsDiagonal(A) : MtrxSprs -> BoolElt

IsDifferenceSet

   IsDifferenceSet(B) : SetEnum -> BoolElt, RngIntElt

IsDifferentialField

   IsDifferentialField(R) : Rng -> BoolElt

IsDifferentialIdeal

   IsDifferentialIdeal(R, I) : RngDiff, RngMPol -> BoolElt

IsDifferentialLaurentSeriesRing

   IsDifferentialLaurentSeriesRing(R) : Rng -> BoolElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012