[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: group-action  ..  Groups


group-action

   Action of PSL2(R) on the Upper Half Plane (CONGRUENCE SUBGROUPS OF PSL2(R))
   Automorphism Groups (LINEAR CODES OVER FINITE FIELDS)
   Group Actions on Polynomials (INVARIANT THEORY)

group-actions

   Group Actions (LINEAR CODES OVER FINITE FIELDS)

group-algebra

   Group Algebras (ALGEBRAS WITH INVOLUTION)

group-Boolean

   General Group Properties (ABELIAN GROUPS)

group-boolean

   General Group Properties (POLYCYCLIC GROUPS)

group-braid

   Braid Groups (COXETER GROUPS)

group-code-design

   Construction from Groups, Codes and Designs (GRAPHS)

group-cohomology

   Finite Group Cohomology (COHOMOLOGY AND EXTENSIONS)

group-elt-op

   Operations on Elements (COXETER GROUPS)

group-identification

   Small Group Identification (FINITELY PRESENTED GROUPS)

group-op

   Operations on Coxeter Groups (COXETER GROUPS)

group-order

   Group Order (MATRIX GROUPS OVER GENERAL RINGS)
   Group Order (PERMUTATION GROUPS)

group-overview

   GROUPS

group-prop

   Properties of Coxeter Groups (COXETER GROUPS)

group-properties

   Basic Group Properties (FINITE SOLUBLE GROUPS)

group-props

   GrpPC_group-props (Example H63E4)

group-recognition

   Group Recognition (ALMOST SIMPLE GROUPS)

group-simple

   ALMOST SIMPLE GROUPS

group-theory

   Group Theoretic Functions (CLASS FIELD THEORY)

group-wgraphs

   W-graphs (COXETER GROUPS)

group_points

   The Order of the Group of Points (ELLIPTIC CURVES OVER FINITE FIELDS)

GroupActions

   RngInvar_GroupActions (Example H110E1)

GroupAlgebra

   GroupAlgebra(S) : AlgGrpSub -> AlgGrp
   GroupAlgebra( R, G: parameters ) : Rng, Grp -> AlgGrp
   GroupAlgebra(R, G) : Rng, Grp -> AlgGrp
   AlgBas_GroupAlgebra (Example H85E1)

GroupAlgebraAsStarAlgebra

   GroupAlgebraAsStarAlgebra(R, G) : Rng, Grp -> AlgGrp
   AlgInv_GroupAlgebraAsStarAlgebra (Example H87E3)

GroupComputation

   GrpAb_GroupComputation (Example H69E6)

GroupConstructors

   Grp_GroupConstructors (Example H57E4)

GroupData

   GroupData(D, i): DB, RngIntElt -> Rec

GroupIdeal

   GroupIdeal(F) : FldInvar -> RngMPol
   GroupIdeal(R) : RngInvar -> RngMPol

GroupOfLieType

   GroupOfLieType(L) : AlgLie -> GrpLie
   GroupOfLieType(C, k) : AlgMatElt, Rng -> GrpLie
   GroupOfLieType(W, k) : GrpMat, Rng -> GrpLie
   GroupOfLieType(W, k) : GrpPermCox, Rng -> GrpLie
   GroupOfLieType(W, R) : GrpPermCox, Rng -> GrpLie
   GroupOfLieType(W, q) : GrpPermCox, RngIntElt -> GrpLie
   GroupOfLieType(N, k) : MonStgElt, Rng -> GrpLie
   GroupOfLieType(N, q) : MonStgElt, RngIntElt -> GrpLie
   GroupOfLieType(C, k) : Mtrx, Rng -> GrpLie
   GroupOfLieType(C, q) : Mtrx, RngIntElt -> GrpLie
   GroupOfLieType(R, k) : RootDtm, Rng -> GrpLie
   GroupOfLieType(R, k) : RootDtm, Rng -> GrpLie
   GroupOfLieType(R, q) : RootDtm, RngIntElt -> GrpLie

GroupOfLieTypeFactoredOrder

   GroupOfLieTypeFactoredOrder(R, q) : RootDtm, RngElt -> RngIntElt

GroupOfLieTypeHomomorphism

   GroupOfLieTypeHomomorphism(phi, k) : Map, Rng -> .
   GroupOfLieTypeHomomorphism(phi, k) : Map, Rng -> GrpLie

GroupOfLieTypeOrder

   GroupOfLieTypeOrder(R, q) : RootDtm, RngElt -> RngIntElt
   RootDtm_GroupOfLieTypeOrder (Example H97E12)

GroupOrders

   Cartan_GroupOrders (Example H95E15)

Groups

   NumberOfGroups(D) : DB -> RngIntElt
   # D : DB -> RngIntElt
   # D : DB -> RngIntElt
   # D : DB -> RngIntElt
   # D : DB -> RngIntElt
   # D : DB -> RngIntElt
   AdmissableTriangleGroups() : -> SeqEnum
   GeneratepGroups (p, d, c : parameters) : RngIntElt, RngIntElt,RngIntElt -> [GrpPC], RngIntElt
   IsolGroupsOfDegreeFieldSatisfying(d, p, f) : RngIntElt, RngIntElt, Any -> SeqEnum
   IsolGroupsOfDegreeSatisfying(d, f) : RngIntElt, Any -> SeqEnum
   IsolGroupsSatisfying(f) : Any -> SeqEnum
   NumberOfGroups(D, d) : DB, RngIntElt -> RngIntElt
   NumberOfGroups(D, d) : DB, RngIntElt -> RngIntElt
   NumberOfGroups(D, d) : DB, RngIntElt -> RngIntElt
   NumberOfGroups(D, d) : DB, RngIntElt -> RngIntElt
   NumberOfGroups(D, o) : DB, RngIntElt -> RngIntElt
   NumberOfGroups(D, o1, o2): DB, RngIntElt, RngIntElt -> RngIntElt, RngIntElt
   NumberOfIrreducibleMatrixGroups(k, p) : RngIntElt, RngIntElt -> RngIntElt
   NumberOfPrimitiveGroups(d) : RngIntElt -> RngIntElt
   NumberOfSmallGroups(o) : RngIntElt -> RngIntElt
   NumberOfTransitiveGroups(d) : RngIntElt -> RngIntElt
   PrimitiveGroups(d: parameters) : RngIntElt -> [GrpPerm]
   PrimitiveGroups(d, f: parameters) : RngIntElt, Program -> [GrpPerm]
   PrimitiveGroups(S: parameters) : [RngIntElt] -> [GrpPerm]
   QuasisimpleMatrixGroups(): -> SeqEnum
   SmallGroups(o: parameters) : RngIntElt -> [* Grp *]
   SmallGroups(o, f: parameters) : RngIntElt, Program -> [* Grp *]
   SmallGroups(S: parameters) : [RngIntElt] -> [* Grp *]
   SmallGroups(S, f: parameters) : [RngIntElt], Program -> [* Grp *]
   ThreeIsogenySelmerGroups(E : parameters) : CrvEll -> GrpAb, Map, GrpAb, Map, MapSch
   TransitiveGroups(d: parameters) : RngIntElt -> [GrpPerm]
   TransitiveGroups(S: parameters) : [RngIntElt] -> [GrpPerm]
   TransitiveGroups(d, f) : RngIntElt, Program -> [GrpPerm]
   TransitiveGroups(S, f) : [RngIntElt], Program -> [GrpPerm]
   TwoIsogenySelmerGroups(E) : CrvEll[FldFunG] -> GrpAb, GrpAb, MapSch, MapSch
   WeilToClassGroupsMap(C) : RngCox -> Map

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012