[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: SuzukiSylowConjugacy .. Symbol
SuzukiSylowConjugacy(G, R, S, p) : GrpMat, GrpMat, GrpMat, RngIntElt -> GrpMatElt, GrpSLPElt
SVPermutation(G, i, a) : GrpPerm, RngIntElt, Elt -> GrpPermElt
SVWord(G, i, a) : GrpPerm, RngIntElt, Elt -> GrpFPElt
SwapColumns(~a, i, j) : AlgMatElt, RngIntElt, RngIntElt ->
SwapColumns(A, i, j) : Mtrx, RngIntElt, RngIntElt -> Mtrx
SwapColumns(A, i, j) : MtrxSprs, RngIntElt, RngIntElt -> MtrxSprs
SwapRows(~a, i, j) : AlgMatElt, RngIntElt, RngIntElt ->
SwapRows(A, i, j) : Mtrx, RngIntElt, RngIntElt -> Mtrx
SwapRows(A, i, j) : MtrxSprs, RngIntElt, RngIntElt -> MtrxSprs
SwapColumns(~a, i, j) : AlgMatElt, RngIntElt, RngIntElt ->
SwapColumns(A, i, j) : Mtrx, RngIntElt, RngIntElt -> Mtrx
SwapColumns(A, i, j) : MtrxSprs, RngIntElt, RngIntElt -> MtrxSprs
SwapRows(~a, i, j) : AlgMatElt, RngIntElt, RngIntElt ->
SwapRows(A, i, j) : Mtrx, RngIntElt, RngIntElt -> Mtrx
SwapRows(A, i, j) : MtrxSprs, RngIntElt, RngIntElt -> MtrxSprs
SwinnertonDyerPolynomial(n) : RngIntElt -> RngUPolElt
Swinnerton-Dyer Polynomials (UNIVARIATE POLYNOMIAL RINGS)
Swinnerton-Dyer Polynomials (UNIVARIATE POLYNOMIAL RINGS)
FldAC_SwinnertonDyer (Example H40E2)
SwinnertonDyerPolynomial(n) : RngIntElt -> RngUPolElt
RngPol_SwinnertonDyerPolynomial (Example H23E6)
Switch(u) : GrphVert -> GrphUnd
Switch(S) : { GrphVert } -> Grph
Vertex Insertion, Contraction (MULTIGRAPHS)
Constructing Complements, Line Graphs; Contraction, Switching (GRAPHS)
Hall π-Subgroups and Sylow Systems (FINITE SOLUBLE GROUPS)
ClassicalSylow(G,p) : GrpMat, RngIntElt -> GrpMat
ClassicalSylowConjugation(G,P,S) : GrpMat, GrpMat, GrpMat -> GrpMatElt
ClassicalSylowNormaliser(G,P) : GrpMat, GrpMat -> GrpMatElt
ClassicalSylowToPC(G,P) : GrpMat, GrpMat -> GrpPC, UserProgram, Map
LargeReeSylow(G, p) : GrpMat, RngIntElt -> GrpMat, SeqEnum
PrintSylowSubgroupStructure(G) : GrpLie ->
ReeSylow(G, p) : GrpMat, RngIntElt -> GrpMat, SeqEnum
ReeSylowConjugacy(G, R, S, p) : GrpMat, GrpMat, GrpMat, RngIntElt -> GrpMatElt, GrpSLPElt
SuzukiSylow(G, p) : GrpMat, RngIntElt -> GrpMat, SeqEnum
SuzukiSylowConjugacy(G, R, S, p) : GrpMat, GrpMat, GrpMat, RngIntElt -> GrpMatElt, GrpSLPElt
Sylow(J, p) : JacHyp, RngIntElt -> GrpAb, Map, Eseq
SylowBasis(G) : GrpPC -> [GrpPC]
SylowSubgroup(G, p) : GrpFin, RngIntElt -> GrpFin
SylowSubgroup(G, p) : GrpLie, RngIntElt -> List
SylowSubgroup(G, p) : GrpMat, RngIntElt -> GrpMat
SylowSubgroup(G, p) : GrpPC, RngIntElt -> GrpPC
SylowSubgroup(G, p) : GrpPerm, RngIntElt -> GrpPerm
SylowSubgroup(G, p : parameters) : GrpAb, RngIntElt -> GrpAb
SylowSystem(G : parameters) : GrpMat[FldFin] -> []
Sylow Subgroups (GROUPS OF LIE TYPE)
Sylow Subgroups of Exceptional Groups (ALMOST SIMPLE GROUPS)
Sylow Subgroups of the Classical Groups (ALMOST SIMPLE GROUPS)
Sylow Subgroups (GROUPS OF LIE TYPE)
GrpASim_sylow_ex (Example H65E18)
SylowBasis(G) : GrpPC -> [GrpPC]
Sylow(G, p) : GrpFin, RngIntElt -> GrpFin
SylowSubgroup(G, p) : GrpFin, RngIntElt -> GrpFin
SylowSubgroup(G, p) : GrpLie, RngIntElt -> List
SylowSubgroup(G, p) : GrpMat, RngIntElt -> GrpMat
SylowSubgroup(G, p) : GrpPC, RngIntElt -> GrpPC
SylowSubgroup(G, p) : GrpPerm, RngIntElt -> GrpPerm
SylowSubgroup(G, p : parameters) : GrpAb, RngIntElt -> GrpAb
SylowSystem(G : parameters) : GrpMat[FldFin] -> []
SymmetricGroup(GrpPerm, n) : Cat, RngIntElt -> GrpPerm
Sym(GrpPerm, n) : Cat, RngIntElt -> GrpPerm
Sym(n) : RngIntElt -> GrpPerm
Sym(X) : Set -> GrpPerm
SymmetricGroup(C, n) : Cat, RngIntElt -> GrpFin
SymmetricGroup(GrpFP, n) : Cat, RngIntElt -> GrpFP
GrpPerm_Sym (Example H58E1)
Operations Related to the Symmetric Group (REPRESENTATIONS OF LIE GROUPS AND ALGEBRAS)
RngMPol_Sym_Bi_Linear (Example H24E7)
BiquadraticResidueSymbol(a, b) : RngQuadElt, RngQuadElt -> RngQuadElt
ConvertFromManinSymbol(M, x) : ModSym, Tup -> ModSymElt
DisplayFareySymbolDomain(FS,file) : SymFry, MonStgElt -> SeqEnum
FareySymbol(G) : GrpPSL2 -> SymFry
HilbertSymbol(a, b, p) : FldRatElt, FldRatElt, RngIntElt -> RngIntElt
HilbertSymbol(a, b, p : parameters) : FldRatElt, FldRatElt, RngIntElt -> RngIntElt
JacobiSymbol(n, m) : RngIntElt, RngIntElt -> RngIntElt
JacobiSymbol(a,b) : RngUPol, RngUPol -> RngIntElt
KodairaSymbol(E, p) : CrvEll, RngIntElt -> SymKod
KodairaSymbol(s) : MonStgElt -> SymKod
KroneckerSymbol(n, m) : RngIntElt, RngIntElt -> RngIntElt
LegendreSymbol(n, m) : RngIntElt, RngIntElt -> RngIntElt
ManinSymbol(x) : ModSymElt -> SeqEnum
ModularSymbolToIntegralHomology(A, x) : ModAbVar, SeqEnum -> ModTupFldElt
ModularSymbolToRationalHomology(A, x) : ModAbVar, ModSymElt -> ModTupFldElt
NormResidueSymbol(a, b, p) : FldRatElt, FldRatElt, RngIntElt -> RngIntElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012