[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: bruhat  ..  by


bruhat

   Bruhat Normalisation (GROUPS OF LIE TYPE)
   Twisted Groups of Lie type (GROUPS OF LIE TYPE)

BruhatDescendants

   BruhatDescendants(x) : GrpPermElt -> SetEnum
   BruhatDescendants(X) : SetEnum -> SetEnum
   GrpCox_BruhatDescendants (Example H98E11)

BruhatLessOrEqual

   BruhatLessOrEqual(x, y) : GrpPermElt, GrpPermElt -> BoolElt

BSD

   ModSym_BSD (Example H133E23)

BSD389A

   ModSym_BSD389A (Example H133E27)

BSFS-2

   GrpPerm_BSFS-2 (Example H58E42)

BSGS

   Base and Strong Generating Set (MATRIX GROUPS OVER GENERAL RINGS)
   Base and Strong Generating Set (PERMUTATION GROUPS)
   BSGS(G) : GrpMat ->
   BSGS(G) : GrpPerm ->
   GrpPerm_BSGS (Example H58E41)

BSGS-base-strong-generator

   Base and Strong Generating Set (MATRIX GROUPS OVER GENERAL RINGS)
   Base and Strong Generating Set (PERMUTATION GROUPS)

BString

   BString(s) : MonStgElt -> BStgElt
   BinaryString(s) : MonStgElt -> BStgElt

Buffer

   SetBufferSize(D, n) : DB, RngIntElt ->

Build

   BuildHomomorphismFromGradedCap(A, B, phi) : AlgBas, AlgBas, ModMatFldElt -> ModMatFldElt

BuildHomomorphismFromGradedCap

   BuildHomomorphismFromGradedCap(A, B, phi) : AlgBas, AlgBas, ModMatFldElt -> ModMatFldElt

Building

   ObstructionDescentBuildingBlock(M) : ModSym -> SeqEnum

building

   Building blocks (MODULAR ABELIAN VARIETIES)
   Building Permutation Groups (PERMUTATION GROUPS)

building-blocks

   Building blocks (MODULAR ABELIAN VARIETIES)

building-groups

   Building Permutation Groups (PERMUTATION GROUPS)

BuildSubgroups

   GrpFP_1_BuildSubgroups (Example H70E58)

builtin

   Built-in L-series (L-FUNCTIONS)

Bundle

   HorrocksMumfordBundle(P) : Prj -> ShfCoh

Burau

   BurauRepresentation(B) : GrpBrd -> Map
   BurauRepresentation(B, p) : GrpBrd, RngIntElt -> Map

BurauRepresentation

   BurauRepresentation(B) : GrpBrd -> Map
   BurauRepresentation(B, p) : GrpBrd, RngIntElt -> Map

Burnside

   AbsolutelyIrreducibleModulesBurnside(G, K : parameters ) : Grp, FldFin -> [ ModGrp ]
   BurnsideMatrix(G) : GrpPC -> AlgMatElt
   DisplayBurnsideMatrix(G) : GrpPC ->
   IrreducibleModulesBurnside(G, K : parameters ) : Grp, FldFin -> [ ModGrp ]

BurnsideMatrix

   BurnsideMatrix(G) : GrpPC -> AlgMatElt

By

   ApproximateByTorsionGroup(G : parameters) : ModAbVarSubGrp -> ModAbVarSubGrp
   ApproximateByTorsionPoint(x : parameters) : ModAbVarElt -> ModAbVarElt
   ConeQuotientByLinearSubspace(C) : TorCon -> TorCon,Map,Map
   CubicSurfaceByHexahedralCoefficients(p) : RngUPolElt -> RngMPolElt
   DimensionByFormula(M) : ModFrm -> RngIntElt
   DimensionByFormula(N, k) : RngIntElt, FldRatElt -> RngIntElt
   EvaluateByPowerSeries(m, P) : MapSch, Pt -> Pt
   FaceSupportedBy(C,H) : TorCon,TorLatElt -> TorCon
   HilbertSeriesMultipliedByMinimalDenominator(p,V) : RngUPolElt, SeqEnum -> RngUPolElt, SeqEnum
   IsAbelianByFinite(G : parameters) : GrpMat -> BoolElt
   IsCentralByFinite(G : parameters) : GrpMat -> BoolElt
   IsDivisibleBy(a, b) : FldFunElt, FldFunElt -> BoolElt, FldFunElt
   IsDivisibleBy(P, n) : PtEll, RngIntElt -> BoolElt, PtEll
   IsDivisibleBy(n, d) : RngIntElt, RngIntElt -> BoolElt, RngIntElt
   IsDivisibleBy(a, b) : RngMPolElt, RngMPolElt -> BoolElt, RngMPolElt
   IsDivisibleBy(a, b) : RngUPolElt, RngUPolElt -> BoolElt, RngUPolElt
   IsNilpotentByFinite(G : parameters) : GrpMat -> BoolElt
   IsPolycyclicByFinite(G : parameters) : GrpMat -> BoolElt
   IsSolubleByFinite(G : parameters) : GrpMat -> BoolElt
   JacobianOrdersByDeformation(Q, Y) : RngMPolElt, SeqEnum -> SeqEnum
   ModByPowerOf2(n, b) : RngIntElt, RngIntElt -> RngIntElt
   MultiplicationByMMap(E, m) : CrvEll, RngIntElt -> Map
   MultiplyByTranspose(v, A) : ModTupRng, MtrxSprs -> ModTupRng
   ProfilePrintByTotalCount(G): GrphDir ->
   ProfilePrintByTotalTime(G): GrphDir ->
   ProfilePrintChildrenByCount(G, n): GrphDir, GrphVert ->
   ProfilePrintChildrenByTime(G, n): GrphDir, GrphVert ->
   RandomCurveByGenus(g, K) : RngIntElt, Fld -> Crv
   RandomIdealGeneratedBy(A, n) : AlgBas, RngIntElt -> ModTupFld
   RationalPointsByFibration(X) : Sch -> SetIndx
   RingGeneratedBy(H) : HomModAbVar -> HomModAbVar
   SolveByRadicals(f) : RngUPolElt -> FldNum, [FldNumElt], [FldNumElt]
   SplitAllByValues(P, V) : StkPtnOrd, SeqEnum[RngIntElt] -> BoolElt, RngIntElt
   SplitCellsByValues(P, C, V) : StkPtnOrd, SeqEnum[RngIntElt], SeqEnum[RngIntElt] -> BoolElt, RngIntElt
   ThreeDescentByIsogeny(E) : CrvEll -> [ Crv ], [ Map ]

by

   Call by Value Evaluation (MAGMA SEMANTICS)
   Creation by Hand (RESOLUTION GRAPHS AND SPLICE DIAGRAMS)
   Definition of Subgroups by Generators (FINITE SOLUBLE GROUPS)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012