[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: error-correcting-quantum-code .. Euler
QUANTUM CODES
Error Handling Statements (STATEMENTS AND EXPRESSIONS)
error if boolexpr, expression, ..., expression;
The Error Objects (STATEMENTS AND EXPRESSIONS)
Quantum Error Group (QUANTUM CODES)
Erf(r) : FldReElt -> FldReElt
ErrorFunction(r) : FldReElt -> FldReElt
assert2 boolexpr;
assert3 boolexpr;
Error Checking and Assertions (STATEMENTS AND EXPRESSIONS)
DimensionsEstimate(L, g) : AlgLieExtr, UserProgram -> SeqEnum, SetMulti
EstimateOrbit(G, v: parameters) : GrpMat, ModTupFldElt -> RngIntElt, RngIntElt, RngIntElt
EstimateOrbit(G, v: parameters) : GrpMat, ModTupFldElt -> RngIntElt, RngIntElt, RngIntElt
McElieceEtAlAsymptoticBound(delta) : FldPrElt -> FldPrElt
DedekindEta(s) : FldComElt -> FldComElt
DedekindEta(z) : RngSerElt -> RngSerElt
Eta(A) : AlgGrp -> AlgGrpElt
EtaTPairing(P, Q, n, q) : PtEll, PtEll, RngIntElt, RngIntElt -> RngElt
ReducedEtaTPairing(P, Q, n, q) : PtEll, PtEll, RngIntElt, RngIntElt -> RngElt
IsEtale(D) : PhiMod -> BoolElt
Auxiliary Functions for Etale Algebras (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
EtaqPairing(P, Q, n, q) : PtEll, PtEll, RngIntElt, RngIntElt -> RngElt
EtaqPairing(P, Q, n, q) : PtEll, PtEll, RngIntElt, RngIntElt -> RngElt
EtaTPairing(P, Q, n, q) : PtEll, PtEll, RngIntElt, RngIntElt -> RngElt
Canonical Forms for Matrices over Euclidean Domains (MATRIX ALGEBRAS)
Euclidean Operations (GALOIS RINGS)
DualEuclideanWeightDistribution(C) : Code -> SeqEnum
EuclideanDistance(u, v) : ModTupRngElt, ModTupRngElt -> RngIntElt
EuclideanLeftDivision(D, N) : RngDiffOpElt, RngDiffOpElt -> RngDiffOpElt,RngDiffOpElt
EuclideanNorm(n) : RngIntElt -> RngIntElt
EuclideanNorm(p) : RngUPol -> RngIntElt
EuclideanNorm(v) : RngValElt -> RngIntElt
EuclideanRightDivision(N, D) : RngDiffOpElt, RngDiffOpElt -> RngDiffOpElt,RngDiffOpElt
EuclideanWeight(v) : ModTupRngElt -> RngIntElt
EuclideanWeight(a) : RngIntRes -> RngIntElt
EuclideanWeightDistribution(C) : Code -> SeqEnum
EuclideanWeightEnumerator(C): Code -> RngMPolElt
IsEuclideanDomain(F) : FldAlg -> BoolElt
IsEuclideanDomain(F) : FldNum -> BoolElt
IsEuclideanDomain(R) : Rng -> BoolElt
IsEuclideanRing(R) : Rng -> BoolElt
IsMagmaEuclideanRing(R) : Rng -> BoolElt
MinimumEuclideanWeight(C) : Code -> RngIntElt
Canonical Forms over Euclidean Domains (MATRICES)
Euclidean Algorithms, GCDs and LCMs (DIFFERENTIAL RINGS)
Euclidean Right and Left Division (DIFFERENTIAL RINGS)
Euclidean Weight (LINEAR CODES OVER FINITE RINGS)
Gröbner Bases over Euclidean Rings (GRÖBNER BASES)
Least Common Left Multiples (DIFFERENTIAL RINGS)
Euclidean Algorithms, GCDs and LCMs (DIFFERENTIAL RINGS)
CodeRng_euclidean-dist (Example H155E20)
Euclidean Right and Left Division (DIFFERENTIAL RINGS)
Least Common Left Multiples (DIFFERENTIAL RINGS)
Canonical Forms for Matrices over Euclidean Domains (MATRIX ALGEBRAS)
EuclideanDistance(u, v) : ModTupRngElt, ModTupRngElt -> RngIntElt
EuclideanLeftDivision(D, N) : RngDiffOpElt, RngDiffOpElt -> RngDiffOpElt,RngDiffOpElt
EuclideanNorm(n) : RngIntElt -> RngIntElt
EuclideanNorm(p) : RngUPol -> RngIntElt
EuclideanNorm(v) : RngValElt -> RngIntElt
EuclideanRightDivision(N, D) : RngDiffOpElt, RngDiffOpElt -> RngDiffOpElt,RngDiffOpElt
EuclideanWeight(v) : ModTupRngElt -> RngIntElt
EuclideanWeight(a) : RngIntRes -> RngIntElt
EuclideanWeightDistribution(C) : Code -> SeqEnum
EuclideanWeightEnumerator(C): Code -> RngMPolElt
EulerCharacteristic(s) : GrphSpl -> RngIntElt
EulerCharacteristic(X) : SmpCpx -> RngIntElt
EulerFactor(A, p) : ArtRep, RngIntElt -> RngUPolElt
EulerFactor(H, t, p) : HypGeomData, FldRatElt, RngIntElt -> RngUPolElt
EulerFactor(J) : JacHyp -> RngUPolElt
EulerFactor(J, K) : JacHyp, FldFin -> RngUPolElt
EulerFactor(L, p) : LSer, RngIntElt -> .var Degree : RngIntElt : var Precision: RngIntElt Default: desGiven an L-series and a prime p, this computes thepth Euler factor, either as a polynomial or a power series.The optional parameter Degree will truncate the series to that length,and the optional parameter Precision is of use when the series isdefined over the complex numbers.
EulerFactorModChar(J) : JacHyp -> RngUPolElt
EulerGamma(R) : FldRe -> FldReElt
EulerPhi(n) : RngIntElt -> RngIntElt
EulerPhiInverse(m) : RngIntElt -> RngIntElt
EulerProduct(O, B) : RngOrd, RngIntElt -> FldReElt
FactoredEulerPhi(n) : RngIntElt -> RngIntEltFact
FactoredEulerPhiInverse(n) : RngIntElt -> RngIntEltFact
JacobianOrdersByDeformation(Q, Y) : RngMPolElt, SeqEnum -> SeqEnum
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012