[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: SelfComplementaryGraphDatabase .. Semisimple
SelfComplementaryGraphDatabase(n) : RngIntElt -> DB
CodeFld_SelfDual (Example H152E17)
CodeRng_SelfDualZ4 (Example H155E28)
SelfIntersection(D) : DivSchElt -> FldRatElt
ModifySelfintersection(~v,n) : GrphResVert,RngIntElt ->
SelfIntersections(g) : GrphRes -> SeqEnum
CodeFld_SelfOrthogonal (Example H152E18)
FakeIsogenySelmerSet(C,phi) : Crv, MapSch -> RngIntElt
LocalTwoSelmerMap(P) : RngOrdIdl -> Map
LocalTwoSelmerMap(A, P) : RngUPolRes, RngOrdIdl -> Map, SeqEnum
NineSelmerSet(C) : Crv -> RngIntElt
PhiSelmerGroup(f,q) : RngUPolElt, RngIntElt -> GrpAb, Map
SelmerGroup(phi) : Map -> GrpAb, Map, Map, SeqEnum, SetEnum
ThreeIsogenySelmerGroups(E : parameters) : CrvEll -> GrpAb, Map, GrpAb, Map, MapSch
ThreeSelmerElement(E, C) : CrvEll, RngMPolElt -> Tup
ThreeSelmerGroup(E : parameters) : CrvEll -> GrpAb, Map
TwoIsogenySelmerGroups(E) : CrvEll[FldFunG] -> GrpAb, GrpAb, MapSch, MapSch
TwoSelmerGroup(E) : CrvEll -> GrpAb, Map, SetEnum, Map, SeqEnum
TwoSelmerGroup(E) : CrvEll[FldFunG] -> GrpAb, MapSch
TwoSelmerGroup(J) : JacHyp -> GrpAb, Map, Any, Any
Auxiliary Functions for Etale Algebras (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
Selmer Groups (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
The 2-Selmer Group (HYPERELLIPTIC CURVES)
Two-Selmer Set of a Curve (HYPERELLIPTIC CURVES)
CrvEllQNF_selmer (Example H122E35)
CrvEllQNF_selmer-etale (Example H122E40)
CrvEllQNF_selmer-famous-example (Example H122E15)
FldAb_Selmer-group (Example H39E3)
CrvEllQNF_selmer2 (Example H122E36)
CrvEllQNF_selmer3 (Example H122E37)
CrvEllQNF_selmer4 (Example H122E38)
SelmerGroup(phi) : Map -> GrpAb, Map, Map, SeqEnum, SetEnum
MAGMA SEMANTICS
IsNegativeSemiDefinite(F) : ModMatRngElt -> BoolElt
IsPositiveSemiDefinite(F) : ModMatRngElt -> BoolElt
IsSemiLinear(G) : GrpMat -> BoolElt
SemiInvariantBilinearForms(G) : GrpMat -> SeqEnum
SemiInvariantQuadraticForms(G) : GrpMat -> SeqEnum
SemiInvariantSesquilinearForms(G) : GrpMat -> SeqEnum
SemiLinearGroup(G, S) : GrpMat, FldFin -> GrpMat
SemiOrthogonalBasis(V) : ModTupFld) -> SeqEnum
RepSym_semi-orthog (Example H92E2)
Semidir(G, Q) : GrpMat, SeqEnum -> GrpPerm
SemidirectProduct(K, H, f: parameters) : Grp, Grp, Map -> Grp, Map, Map
SemidirectProduct(K, H, f: parameters) : Grp, Grp, Map -> Grp, Map, Map
FreeSemigroup(n) : RngIntElt -> SgpFP
Semigroup< generators | relations > : SgpFPElt, ..., SgpFPElt, Rel, ...Rel -> SgpFP
FldForms_semiinv (Example H29E24)
SemiInvariantBilinearForms(G) : GrpMat -> SeqEnum
SemiInvariantQuadraticForms(G) : GrpMat -> SeqEnum
SemiInvariantSesquilinearForms(G) : GrpMat -> SeqEnum
Semi-invariant Forms (POLAR SPACES)
SemilinearDual(M, mu) : ModGrp,Map -> ModGrp
TwistedSemilinearDual(M, lambda, mu) : ModGrp, Map, Map -> ModGrp
SemilinearDual(M, mu) : ModGrp,Map -> ModGrp
SemiLinearGroup(G, S) : GrpMat, FldFin -> GrpMat
GrpMatFF_Semilinearity (Example H60E3)
Semilinearity (MATRIX GROUPS OVER FINITE FIELDS)
SymmetricRepresentationSeminormal(pa, pe) : SeqEnum,GrpPermElt -> AlgMatElt
SemiOrthogonalBasis(V) : ModTupFld) -> SeqEnum
IsSemiregular(G, Y) : GrpPerm, GSet -> BoolElt
IsSemiregular(G, Y, S) : GrpPerm, GSet, SetEnum -> BoolElt
IsSemisimple(A) : AlgGen -> BoolElt
IsSemisimple(L) : AlgLie -> BoolElt
IsSemisimple(G) : GrpLie-> BoolElt
IsSemisimple(x) : GrpLieElt -> BoolElt
IsSemisimple(W) : GrpPermCox -> BoolElt
IsSemisimple(M) : ModAlg -> BoolElt, SeqEnum
IsSemisimple(M) : ModGrp -> BoolElt
IsSemisimple(R) : RootStr -> BoolElt
IsSemisimple(R) : RootSys-> BoolElt
SemisimpleDecomposition(D) : PhiMod -> AlgMatElt, AlgMatElt, SeqEnum, SeqEnum
SemisimpleEFAModuleMaps(G) : GrpGPC -> [ModGrp]
SemisimpleEFAModules(G) : GrpGPC -> [ModGrp]
SemisimpleEFASeries(G) : GrpGPC -> [GrpGPC]
SemisimpleGeneratorData(A) : AlgMat -> SeqEnum
SemisimpleRank(G) : GrpLie -> RngIntElt
SemisimpleType(L) : AlgLie -> MonStgElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012