[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: InverseJeuDeTaquin  ..  Irreducible


InverseJeuDeTaquin

   InverseJeuDeTaquin(~t, i, j) : Tbl, RngIntElt, RngIntElt ->

InverseKrawchouk

   InverseKrawchouk(A, K, n) : RngUPolElt, FldFin, RngIntElt -> RngUPolElt

InverseMattsonSolomonTransform

   InverseMattsonSolomonTransform(A, n) : RngUPolElt, RngIntElt -> RngUPolElt

InverseMod

   Modinv(E, M) : RngOrdElt, RngOrdIdl -> RngOrdElt
   InverseMod(E, M) : RngOrdElt, RngIntElt -> RngOrdElt
   Modinv(n, m) : RngIntElt, RngIntElt -> RngIntElt

InverseRoot

   InverseRoot(x, n) : RngPadElt, RngIntElt -> RngPadElt
   InverseRoot(x, y, n) : RngPadElt, RngPadElt, RngIntElt -> RngPadElt

InverseRowInsert

   InverseRowInsert(~t, i, j) : Tbl, RngIntElt, RngIntElt ->

InverseRSKCorrespondenceDoubleWord

   InverseRSKCorrespondenceDoubleWord(t1, t2) : Tbl, Tbl -> MonOrdElt, MonOrdElt

InverseRSKCorrespondenceMatrix

   InverseRSKCorrespondenceMatrix(t1, t2) : Tbl, Tbl -> Mat

InverseRSKCorrespondenceSingleWord

   InverseRSKCorrespondenceSingleWord(t1, t2) : Tbl, Tbl -> MonOrdElt

InverseSqrt

   InverseSqrt(x) : RngPadElt -> RngPadElt
   InverseSquareRoot(x) : RngPadElt -> RngPadElt
   InverseSquareRoot(x, y) : RngPadElt, RngPadElt -> RngPadElt

InverseSquareRoot

   InverseSqrt(x) : RngPadElt -> RngPadElt
   InverseSquareRoot(x) : RngPadElt -> RngPadElt
   InverseSquareRoot(x, y) : RngPadElt, RngPadElt -> RngPadElt

InverseWordMap

   InverseWordMap(G) : GrpMat -> Map
   InverseWordMap(G) : GrpPerm -> Map

Invertible

   IsInvertible(f) : MapSch -> Bool, MapSch
   IsInvertible(f) : MapSchGrph -> BoolElt, MapSchGrph

invform

   Invariant Forms (POLAR SPACES)

Involution

   Involution(P) : PtHyp -> PtHyp
   - P : PtHyp -> PtHyp
   AtkinLehnerInvolution(CN,N,d) : Crv, RngIntElt, RngIntElt -> MapAutSch
   CanonicalInvolution(X) : CrvMod -> MapSch
   CentraliserOfInvolution(G, g : parameters) : GrpMat,GrpMatElt -> GrpMat
   CentraliserOfInvolution(G, g, w : parameters) : GrpMat,GrpMatElt, GrpSLPElt -> GrpMat, []
   DualStarInvolution(M) : ModSym -> AlgMatElt
   Involution(a) : AlgGrpElt -> AlgGrpElt
   InvolutionClassicalGroupEven (G : parameters) : GrpMat[FldFin] ->GrpMatElt[FldFin], GrpSLPElt, RngIntElt
   StarInvolution(M) : ModSym -> AlgMatElt

InvolutionClassicalGroupEven

   InvolutionClassicalGroupEven (G : parameters) : GrpMat[FldFin] ->GrpMatElt[FldFin], GrpSLPElt, RngIntElt

Involutions

   AreInvolutionsConjugate(G, x, wx, y, wy : parameters) : GrpMat,GrpMatElt, GrpSLPElt, GrpMatElt, GrpSLPElt -> BoolElt, GrpMatElt, GrpSLPElt

invquadform

   FldForms_invquadform (Example H29E21)

invts

   Invariants (ALGEBRAIC SURFACES)

IO

   INPUT AND OUTPUT

io

   Socket I/O (INPUT AND OUTPUT)

Iroot

   Iroot(a, n) : RngIntElt, RngIntElt -> RngIntElt

irred

   Irreducible Characters (REPRESENTATIONS OF SYMMETRIC GROUPS)

IrredMat

   GrpData_IrredMat (Example H66E19)

Irreducibility

   DimensionOfFieldOfGeometricIrreducibility(C): Crv -> RngIntElt
   FieldOfGeometricIrreducibility(C) : Crv -> Rng, Map

irreducibility

   Factorization and Irreducibility (MULTIVARIATE POLYNOMIAL RINGS)
   Factorization and Irreducibility (UNIVARIATE POLYNOMIAL RINGS)

Irreducible

   AbsolutelyIrreducibleConstituents(M) : ModGrp -> [ ModGrp ]
   AbsolutelyIrreducibleModule(M) : ModRng -> ModRng
   AbsolutelyIrreducibleModulesBurnside(G, K : parameters ) : Grp, FldFin -> [ ModGrp ]
   AbsolutelyIrreducibleRepresentationProcessDelete(~P) : SolRepProc ->
   AbsolutelyIrreducibleRepresentationsInit(G, F : parameters) : GrpPC, Fld -> SolRepProc
   AbsolutelyIrreducibleRepresentationsSchur(G, k: parameters) : GrpPC, Rng -> List[Map]
   AllIrreduciblePolynomials(F, m) : FldFin, RngIntElt -> { RngUPolElt }
   IrreducibleCartanMatrix(X, n) : MonStgElt, RngIntElt -> AlgMatElt
   IrreducibleCoxeterGraph(X, n) : MonStgElt, RngIntElt -> GrpUnd
   IrreducibleCoxeterGroup(GrpFPCox, X, n) : Cat, MonStgElt, RngIntElt -> GrpFPCox
   IrreducibleCoxeterMatrix(X, n) : MonStgElt, RngIntElt -> AlgMatElt
   IrreducibleDynkinDigraph(X, n) : MonStgElt, RngIntElt -> GrphDir
   IrreducibleLowTermGF2Polynomial(n) : RngIntElt -> RngUPolElt
   IrreducibleMatrixGroup(k, p, n) : RngIntElt, RngIntElt, RngIntElt -> GrpMat
   IrreducibleModule(B, i) : AlgBas, RngIntElt -> ModAlg
   IrreducibleModules(G, K : parameters) : Grp, Fld -> SeqEnum
   IrreducibleModules(G, K : parameters) : Grp, Fld -> SeqEnum
   IrreducibleModules(G, Q : parameters) : Grp, FldRat -> SeqEnum, SeqEnum
   IrreducibleModulesBurnside(G, K : parameters ) : Grp, FldFin -> [ ModGrp ]
   IrreducibleModulesSchur(G, K: parameters) : GrpPC, Rng -> List[GModule]
   IrreduciblePolynomial(F, n) : FldFin, RngIntElt -> RngUPolElt
   IrreducibleReflectionGroup(X, n) : MonStgElt, RngIntElt -> GrpMat
   IrreducibleRepresentationsSchur(G, k: parameters) : GrpPC, Rng -> List[Map]
   IrreducibleRootDatum(X, n) : MonStgElt, RngIntElt -> RootDtm
   IrreducibleRootSystem(X, n) : MonStgElt, RngIntElt -> RootSys
   IrreducibleSecondaryInvariants(R) : RngInvar -> [ RngMPolElt ]
   IrreducibleSimpleSubalgebraTreeSU(Q, d) : SeqEnum[SeqEnum[Tup]], RngIntElt -> GrphDir
   IrreducibleSimpleSubalgebrasOfSU(N) : RngIntElt -> SeqEnum
   IrreducibleSolubleSubgroups(n, q) : RngIntElt, RngIntElt -> SeqEnum
   IrreducibleSparseGF2Polynomial(n) : RngIntElt -> RngUPolElt
   IrreducibleSubgroups(n, q) : RngIntElt, RngIntElt -> SeqEnum
   IsAbsolutelyIrreducible(C) : Crv -> BoolElt
   IsAbsolutelyIrreducible(G) : GrpMat -> BoolElt
   IsAbsolutelyIrreducible(M) : ModRng -> BoolElt, AlgMatElt, RngIntElt
   IsAbsolutelyIrreducible(R) : RootStr -> BoolElt
   IsAnalyticallyIrreducible(p) : CrvPln,Pt -> BoolElt
   IsCoxeterIrreducible(C) : AlgMatElt -> BoolElt
   IsCoxeterIrreducible(M) : AlgMatElt -> BoolElt
   IsIrreducible(x) : AlgChtrElt -> BoolElt
   IsIrreducible(A) : ArtRep -> BoolElt
   IsIrreducible(W) : GrpFPCox -> BoolElt
   IsIrreducible(G) : GrpMat -> BoolElt, ModGrp
   IsIrreducible(M) : ModRng -> BoolElt, ModRng, ModRng
   IsIrreducible(M) : ModSym -> BoolElt
   IsIrreducible(x) : RngElt -> BoolElt
   IsIrreducible(f) : RngMPolElt -> BoolElt
   IsIrreducible(f) : RngUPolElt -> BoolElt
   IsIrreducible(f) : RngUPolElt -> BoolElt
   IsIrreducible(R) : RootStr -> BoolElt
   IsIrreducible(R) : RootSys -> BoolElt
   IsIrreducible(C) : Sch -> BoolElt
   IsIrreducible(X) : Sch -> BoolElt
   IsIrreducibleFiniteNilpotent(G : parameters): GrpMat -> BoolElt, Any
   IsProjectivelyIrreducible(R) : RootStr -> BoolElt
   IsProjectivelyIrreducible(R) : RootSys -> BoolElt
   NumberOfIrreducibleMatrixGroups(k, p) : RngIntElt, RngIntElt -> RngIntElt
   RandomIrreduciblePolynomial(F, n) : FldFin, RngIntElt -> RngUPolElt
   ReeIrreducibleRepresentation(F, twists : parameters) : FldFin, SeqEnum[RngIntElt] -> GrpMat
   SparseRootDatum(N) : MonStgElt -> RootDtmSprs
   SuzukiIrreducibleRepresentation(F, twists : parameters) : FldFin, SeqEnum[RngIntElt] -> GrpMat

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012