[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: Eigenforms .. Element
Eigenforms(M) : ModFrmHil -> List
Eigenspace Decomposition and Eigenforms (HILBERT MODULAR FORMS)
Eigenspace(A, e) : AlgMatElt, FldElt -> ModTup
Eigenspace(a, e) : AlgMatElt, FldElt -> ModTup
Eigenspace(p) : GRPtS -> RngIntElt
CommonEigenspaces(A) : AlgMat -> [**], [[FldElt]]
CommonEigenspaces(Q) : [AlgMatElt] -> [**], [[FldElt]]
HeckeEigenvalue(f, p) : ModBrdtElt, RngElt -> RngElt
HeckeEigenvalue(f, P) : ModFrmHilElt, RngOrdIdl -> FldAlgElt
HeckeEigenvalueBound(M, P) : ModFrmHil, RngOrdIdl -> RngIntElt
HeckeEigenvalueField(M) : ModFrmHil -> Fld
HeckeEigenvalueField(M) : ModSym -> Fld, Map
HeckeEigenvalueRing(M : parameters) : ModSym -> Rng, Map
Eigenvalues(a) : AlgMatElt -> { <FldElt, RngIntElt> }
Eigenvalues(A) : Mtrx -> { <FldElt, RngIntElt> }
SystemOfEigenvalues(M, prec) : ModSym, RngIntElt -> SeqEnum
NumericalEigenvectors(M, e) : Mtrx, FldComElt -> SeqEnum
QuaternionOrder(M) : ModBrdt -> AlgQuatOrd
EightDescent(C : parameters) : CrvEll -> [ Crv ], [ MapSch ]
Eight-Descent (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
Eight-Descent (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
EightDescent(C : parameters) : CrvEll -> [ Crv ], [ MapSch ]
Eisenstein(k, t) : RngIntElt, FldComElt -> FldComElt
Eisenstein(k, F) : RngIntElt, QuadBinElt -> RngSerElt
Eisenstein(k, f) : RngIntElt, QuadBinElt -> RngSerElt
Eisenstein(k, z) : RngIntElt, RngSerElt -> RngSerElt
Eisenstein(k, L) : RngIntElt, SeqEnum -> FldComElt
EisensteinData(f) : ModFrmElt -> Tup
EisensteinProjection(f) : ModFrmElt -> ModFrmElt
EisensteinSeries(M) : ModFrm -> List
EisensteinSubspace(M) : ModBrdt -> ModBrdt
EisensteinSubspace(M) : ModFrm -> ModFrm
EisensteinSubspace(M) : ModSS -> ModSS
EisensteinSubspace(M) : ModSym -> ModSym
EisensteinTwo(E, p) : CrvEll, RngIntElt -> FldPadElt
IsEisenstein(M) : ModBrdt -> BoolElt
IsEisenstein(M) : ModFrm -> BoolElt
IsEisenstein(M) : ModSym -> BoolElt
IsEisenstein(f) : RngUPolElt -> BoolElt
IsEisensteinSeries(f) : ModFrmElt -> BoolElt
IsEisensteinSeries(f) : ModFrmElt -> BoolElt
FldRe_Eisenstein (Example H25E7)
FldRe_Eisenstein (Example H25E8)
Eisenstein Series (MODULAR FORMS)
Eisenstein Series (REAL AND COMPLEX FIELDS)
Eisenstein Series (MODULAR FORMS)
EisensteinData(f) : ModFrmElt -> Tup
CuspidalProjection(f) : ModFrmElt -> ModFrmElt
EisensteinProjection(f) : ModFrmElt -> ModFrmElt
EisensteinSeries(M) : ModFrm -> List
ModFrm_EisensteinSeries (Example H132E14)
EisensteinSubspace(M) : ModBrdt -> ModBrdt
EisensteinSubspace(M) : ModFrm -> ModFrm
EisensteinSubspace(M) : ModSS -> ModSS
EisensteinSubspace(M) : ModSym -> ModSym
EisensteinTwo(E, p) : CrvEll, RngIntElt -> FldPadElt
Elementary Operations (FINITE PLANES)
AlgGrp_el-creation (Example H84E2)
Elementary Operations (FINITE PLANES)
RngLoc_el_creation_map (Example H47E4)
RngLoc_el_creation_padic (Example H47E1)
RngLoc_el_creation_ram (Example H47E3)
RngLoc_el_creation_unram (Example H47E2)
Elementary Invariants and Predicates for Multigraphs (MULTIGRAPHS)
Transition Matrices from Elementary Basis (SYMMETRIC FUNCTIONS)
Creation of Elements (BRANDT MODULES)
Operations on Elements (BRANDT MODULES)
N ! x : Nfd, FldFinElt -> NfdElt
R . 1 : RngSer, RngInt -> RngSerElt
AlternatingElementToWord (G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt
AlternatingElementToWord (G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt
BaseElement(P) : GrpBrdClassProc -> GrpBrdElt
BasisElement(I, i) : AlgFr, RngIntElt -> AlgFrElt
BasisElement(A, i) : AlgGen, RngIntElt -> AlgGenElt
BasisElement(A, i) : AlgLie, RngIntElt -> AlgLieElt
BasisElement(R, i) : AlgMat, RngIntElt -> AlgMatElt
BasisElement(M, i) : ModMPol, RngIntElt -> RngMPolElt
BasisElement(V, i) : ModTupFld, RngIntElt -> ModTupFldElt
BasisElement(I, i) : RngMPol, RngIntElt -> RngMPolElt
BasisElement(I, i) : RngMPolLoc, RngIntElt -> RngMPolLocElt
ClassicalElementToWord(G, g): GrpMat[FldFin], GrpMatElt[FldFin] -> BoolElt, GrpSLPElt
Coefficients(f) : RngSerElt -> [ RngElt ], RngIntElt, RngIntElt
Coefficients(e) : RngSerExtElt -> [ RngElt ]
Coefficients(p) : RngUPolElt -> [ RngElt ]
CohomologyElementToChainMap(P, d, n) : ModCpx ,RngIntElt, RngIntElt -> MapChn
CohomologyElementToCompactChainMap(PR, d, n): Rec, RngIntElt, RngIntElt -> ModMatFldElt
CompositionTreeElementToWord(G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt
CoordinatesToElement(L, C) : Lat, [ RngIntElt ] -> LatElt
CoxeterElement(W) : GrpFPCox -> SeqEnum
CoxeterElement(G) : GrpLie -> GrpPermElt
CoxeterElement(W) : GrpMat -> SeqEnum
Element(x) : ModAbVarElt -> ModTupFldElt
ElementSequence(G) : GrpPC -> SeqEnum
ElementSet(G, H) : GrpPerm, GrpPerm -> { GrpPermElt }
ElementToSequence(x) : AlgAssVOrdElt -> SeqEnum
ElementToSequence(a) : AlgGenElt -> SeqEnum
ElementToSequence(a) : AlgGrpElt -> SeqEnum
ElementToSequence(a) : AlgLieElt -> SeqEnum
ElementToSequence(a) : AlgMatElt -> [ RngElt ]
ElementToSequence(x) : AlgQuatElt -> SeqEnum
ElementToSequence(s) : BStgElt -> [ BStgElt ]
ElementToSequence(a) : FldAlgElt -> [ FldAlgElt ]
ElementToSequence(a) : FldFinElt -> [ FldFinElt ]
ElementToSequence(a, E) : FldFinElt, FldFin -> [ FldFinElt ]
ElementToSequence(a) : FldFunElt -> SeqEnum[FldElt]
ElementToSequence(a) : FldNumElt -> [ FldNumElt ]
ElementToSequence(a) : FldRatElt -> [FldRatElt]
ElementToSequence(chi) : GrpDrchElt -> SeqEnum
ElementToSequence(w) : GrpFPElt -> [ RngIntElt ]
ElementToSequence(x) : GrpGPCElt -> [RngIntElt]
ElementToSequence(g) : GrpMatElt -> [ RngElt ]
ElementToSequence(x) : GrpPCElt -> [RngIntElt]
ElementToSequence(g) : GrpPermElt -> [ Elt ]
ElementToSequence(u) : GrpRWSElt -> [ RngIntElt ]
ElementToSequence(u) : GrpRWSElt -> [ RngIntElt ]
ElementToSequence(v) : LatElt -> [ RngElt ]
ElementToSequence(a) : ModDedElt -> SeqEnum
ElementToSequence(u) : ModRngElt -> [RngElt]
ElementToSequence(u) : ModTupFldElt -> [RngElt]
ElementToSequence(u) : ModTupRngElt -> [RngElt]
ElementToSequence(w) : MonOrdElt -> SeqEnum
ElementToSequence(u) : MonRWSElt -> [ RngIntElt ]
ElementToSequence(s) : MonStgElt -> [ MonStgElt ]
ElementToSequence(A) : Mtrx -> [ <RngIntElt, RngIntElt, RngElt> ]
ElementToSequence(A) : Mtrx -> [ RngElt ]
ElementToSequence(x) : NfdElt) -> SeqEnum
ElementToSequence(l) : PlaneLn -> [ FldFinElt ]
ElementToSequence(p) : PlanePt -> [ FldFinElt ]
ElementToSequence(P): PtEll -> [ RngElt ]
ElementToSequence(a) : RngGalElt -> [ RngIntResElt ]
ElementToSequence(x) : RngPadElt -> [ RngElt ]
ElementToSequence(u) : SgpFPElt -> [ SgpFPElt ]
ElementType(S) : Str -> Cat
Eltseq(P) : PtHyp -> SeqEnum
Eltseq(P) : PtHyp -> SeqEnum, RngIntElt
Eltseq(f) : QuadBinElt -> SeqEnum[RngIntElt]
Eltseq(f) : RngIntEltFact -> SeqEnum
Eltseq(a) : RngOrdResElt -> []
Eltseq(P) : SrfKumPt -> SeqEnum
FrobeniusElement(K, p) : FldNum, RngIntElt -> GrpPermElt
FundamentalElement(B: parameters) : GrpBrd -> GrpBrdElt
GetElementPrintFormat(B) : GrpBrd -> MonStgElt
HeegnerTorsionElement(E) : CrvEll[FldRat], RngIntElt -> PtEll
InertialElement(L) : RngLocA -> RngLocAElt
LargeReeElementToWord(G, g) : GrpMat, GrpMatElt -> BoolElt, GrpSLPElt
LatticeElementToMonomial(D,v) : DivTorElt,TorLatElt -> RngMPolElt
LocalUniformizer(P) : PlcFunElt -> FldFunGElt
LongestElement(W) : GrpFPCox -> SeqEnum
LongestElement(W) : GrpMat -> SeqEnum
MatrixOfElement(CM, g) : ModCoho, GrpElt -> AlgMatElt
MinimalElementConjugatingToPositive(x, s: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
MinimalElementConjugatingToSuperSummit(x, s: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
MinimalElementConjugatingToUltraSummit(x, s: parameters) : GrpBrdElt, GrpBrdElt -> GrpBrdElt
NextElement(~P) : GrpBrdClassProc ->
NextElement(~P) : GrpFPHomsProc ->
NonNilpotentElement(L) : AlgLie -> AlgLieElt
NormalElement(F) : FldFin -> FldFinElt
NormalElement(F, E) : FldFin, FldFin -> FldFinElt
PhiModuleElement(x,D) : AlgMatElt, PhiMod -> PhiModElt
PrimitiveElement(F) : FldFin -> FldFinElt
PrimitiveElement(K) : FldNum -> FldNumElt
PrimitiveElement(K) : FldNum -> FldNumElt
PrimitiveElement(O) : RngFunOrd -> RngFunOrdElt
PrimitiveElement(R) : RngIntRes -> RngIntResElt
PrimitiveElement(O) : RngOrd -> RngOrdElt
PrimitiveElement(I) : RngOrdIdl -> RngOrdElt
QuantumBasisElement(F) : FldFin -> FldFinElt
RandomElementOfNormalClosure(G, N): Grp -> GrpElt
RandomElementOfOrder(G, n : parameters) : GrpMat, RngIntElt-> BoolElt, GrpMatElt, GrpSLPElt, BoolElt
ReeElementToWord(G, g) : GrpMat, GrpMatElt -> BoolElt, GrpSLPElt
RelativeRootElement(G,delta,t) : GrpLie, RngIntElt, [FldElt] -> GrpLieElt
Representation(g) : GrpAbGenElt -> [RngIntElt]
SL2ElementToWord(G, g) : GrpMat, GrpMatElt -> BoolElt, GrpSLPElt
SL3ElementToWord (G, g) : GrpMat, GrpMatElt -> BoolElt, GrpSLPElt
SeparatingElement(F) : FldFunG -> FldFunGElt
SeparatingElement(F) : RngDiff -> RngDiffElt
SequenceToElement(s, F) : [ FldFinElt ] -> FldFinElt
SetElementPrintFormat(~B, s) : GrpBrd, MonStgElt ->
SetPrimitiveElement(F, x) : FldFin, FldFinElt ->
SymmetricElementToWord (G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt
SymmetricElementToWord (G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt
SzElementToWord(G, g) : GrpMat, GrpMatElt -> BoolElt, GrpSLPElt
ThreeSelmerElement(E, C) : CrvEll, RngMPolElt -> Tup
TwistedWindingElement(M, i, eps) : ModSym, RngIntElt, GrpDrchElt -> ModSymElt
TwoElement(I) : RngFunOrdIdl -> RngElt, RngElt
TwoElement(I) : RngOrdFracIdl -> FldOrdElt, FldOrdElt
TwoElementNormal(I) : RngInt -> RngIntElt, RngIntElt
TwoElementNormal(I) : RngOrdIdl -> RngOrdElt, RngOrdElt, RngIntElt
UnderlyingElement(u) : GrpBBElt -> GrpElt
UniformizingElement(P) : PlcNumElt -> FldNumElt
UniformizingElement(P) : PlcNumElt -> FldNumElt
UniformizingElement(L) : RngLocA -> RngLocAElt
UniformizingElement(L) : RngPad -> RngPadElt
UniformizingElement(L) : RngPad -> RngPadElt
UniformizingElement(E) : RngSerExt -> RngSerExtElt
WindingElement(M) : ModSym -> ModSymElt
WindingElement(M, i) : ModSym, RngIntElt -> ModSymElt
WordToSequence(u: parameters) : GrpBrdElt -> SeqEnum
aInvariants(E) : CrvEll -> [ RngElt ]
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012