[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: field  ..  file


field

   Affine Algebras which are Fields (AFFINE ALGEBRAS)
   ALGEBRAIC FUNCTION FIELDS
   ALGEBRAICALLY CLOSED FIELDS
   Arithmetic (NUMBER FIELDS)
   Arithmetic (ORDERS AND ALGEBRAIC FIELDS)
   Canonical Forms for Matrices over a Field (MATRIX ALGEBRAS)
   Canonical Forms over Fields (MATRICES)
   Changing the Coefficient Field (VECTOR SPACES)
   CLASS FIELD THEORY FOR GLOBAL FUNCTION FIELDS
   FINITE FIELDS
   Invariant Fields (INVARIANT THEORY)
   NUMBER FIELDS
   ORDERS AND ALGEBRAIC FIELDS
   RATIONAL FUNCTION FIELDS
   Residue Class Fields (INTRODUCTION TO RINGS [BASIC RINGS])
   Rings and Fields of Fractions of Affine Algebras (AFFINE ALGEBRAS)
   Z as a Number Field Order (INTEGER RESIDUE CLASS RINGS)

field-element

   Arithmetic (NUMBER FIELDS)
   Arithmetic (ORDERS AND ALGEBRAIC FIELDS)

field_forms

   POLAR SPACES

field_near

   NEARFIELDS

FieldAutomorphism

   FieldAutomorphism(G, sigma) : GrpLie, Map -> Map

FieldMorphism

   FieldMorphism(f) : Map -> Map

FieldOfDefinition

   FieldOfDefinition(H) : HomModAbVar -> ModAbVar
   FieldOfDefinition(phi) : MapModAbVar -> ModAbVar
   FieldOfDefinition(A) : ModAbVar -> Fld
   FieldOfDefinition(x) : ModAbVarElt -> ModTupFldElt
   FieldOfDefinition(G) : ModAbVarSubGrp -> Fld

FieldOfFractions

   FieldOfFractions(Q) : FldRat -> FldRat
   FieldOfFractions(R) : RngDiff -> RngDiff, Map
   FieldOfFractions(O) : RngFunOrd -> FldFunOrd
   FieldOfFractions(Z) : RngInt -> FldRat
   FieldOfFractions(O) : RngOrd -> FldOrd
   FieldOfFractions(R) : RngPad -> FldPad
   FieldOfFractions(R) : RngSer -> RngSerLaur
   FieldOfFractions(E) : RngSerExt -> RngSerExt
   FieldOfFractions(P) : RngUPol -> FldFunRat
   FieldOfFractions(V) : RngVal -> Rng
   RingOfFractions(Q) : RngMPolRes -> RngFunFrac
   AlgAff_FieldOfFractions (Example H108E7)

FieldOfGeometricIrreducibility

   FieldOfGeometricIrreducibility(C) : Crv -> Rng, Map

Fields

   NumberOfFields(D) : DB -> RngIntElt
   # D : DB -> RngIntElt
   # D : DB -> RngIntElt
   FunctionFields(D) : DB -> [ FldFunG ]
   MergeFields(F, L) : FldAlg, FldAlg -> SeqEnum
   MergeFields(F, L) : FldNum, FldNum -> SeqEnum
   NumberFields(D) : DB -> [ FldNum ]
   NumberFields(D, d) : DB, RngIntElt -> [ FldNum ]
   NumberOfFields(D, d) : DB, RngIntElt -> RngIntElt

fields

   Class Field Theory (p-ADIC RINGS AND THEIR EXTENSIONS)
   Class Fields (p-ADIC RINGS AND THEIR EXTENSIONS)
   Creation (DIFFERENTIAL RINGS)
   Creation of Algebraic Function Fields (ALGEBRAIC FUNCTION FIELDS)
   Creation of Class Fields (CLASS FIELD THEORY FOR GLOBAL FUNCTION FIELDS)
   Gröbner Bases over Fields (GRÖBNER BASES)
   Jacobians over Number Fields or Q (HYPERELLIPTIC CURVES)
   p-adic Fields (p-ADIC RINGS AND THEIR EXTENSIONS)
   The Record Fields (DATABASES OF GROUPS)

FILE

   MAGMA_STARTUP_FILE

File

   CreateCharacterFile(P) : NFSProc -> .
   CreateCharacterFile(P, cc) : NFSProc, RngIntElt -> .
   CreateCycleFile(P) : NFSProc -> .
   HasOutputFile() : -> BoolElt
   OpenGraphFile(s, f, p): MonStgElt, RngIntElt, RngIntElt -> File
   PrintFile(F, x) : MonStgElt, Any ->
   PrintFile(F, x, L) : MonStgElt, Any, MonStgElt ->
   PrintFileMagma(F, x) : MonStgElt, Any ->
   SetLogFile(F) : MonStgElt ->
   SetLogFile(F) : MonStgElt ->
   SetOutputFile(F) : MonStgElt ->
   SetOutputFile(F) : MonStgElt ->
   UnsetLogFile() : ->
   UnsetOutputFile() : ->

file

   External Files (INPUT AND OUTPUT)
   Opening Files (INPUT AND OUTPUT)
   Printing to a File (INPUT AND OUTPUT)
   Reading a Complete File (INPUT AND OUTPUT)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012