[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: complete .. complex-multiplication-over-Q
Construction of a Group Algebra (GROUP ALGEBRAS)
Construction of the Complete Matrix Algebra (MATRIX ALGEBRAS)
Construction of a Group Algebra (GROUP ALGEBRAS)
Construction of the Complete Matrix Algebra (MATRIX ALGEBRAS)
CompleteClassGroup(O) : RngOrd ->
CompleteDigraph(n) : RngIntElt -> GrphDir
CompleteGraph(n) : RngIntElt -> GrphUnd
CompleteKArc(P, k) : Plane, RngIntElt -> SetEnum
IsCompletelyReducible(G : parameters) : GrpMat -> BoolElt
CompleteTheSquare(model) : ModelG1 -> ModelG1
CompleteUnion(G, H) : GrphDir, GrphDir -> GrphDir
CompleteWeightEnumerator(C): Code -> RngMPolElt
CompleteWeightEnumerator(C): Code -> RngMPolElt
CompleteWeightEnumerator(C, u): Code, ModTupFldElt -> RngMPolElt
CompleteWeightEnumerator(C, u): Code, ModTupFldElt -> RngMPolElt
CompleteWeightEnumerator(C): CodeAdd -> RngMPolElt
Completion(K, P) : FldAlg, PlcNumElt -> FldLoc, Map
Completion(K, P) : FldAlg, RngOrdIdl -> FldLoc, Map
Completion(F, p) : FldFun, PlcFunElt -> RngSerLaur, Map
Completion(F, p) : FldFunFracSch[Crv], PlcCrvElt -> RngSer, Map
Completion(K, P) : FldNum, PlcNumElt -> FldLoc, Map
Completion(K, P) : FldNum, RngOrdIdl -> FldLoc, Map
Completion(Q, P) : FldRat, RngInt -> FldLoc, Map
Completion(R, P) : Rng, Rng -> Rng, Map
Completion(F, p) : RngDiff, PlcFunElt -> RngDiff, Map
Completion(R, p) : RngDiffOp, PlcFunElt -> RngDiffOp, Map
Completion(O, P) : RngOrd, RngOrdIdl -> RngPad, Map
Completion (INTRODUCTION TO RINGS [BASIC RINGS])
Completion at Places (ALGEBRAIC FUNCTION FIELDS)
Completions (p-ADIC RINGS AND THEIR EXTENSIONS)
RngLoc_completion (Example H47E23)
ChainComplex(X, A) : SmpCpx, Rng -> ModCpx
Complex(L, d) : List, RngIntElt -> ModCpx
Complex(f, d) : Map, RngIntElt -> ModCpx
ComplexCartanMatrix(k) : RngIntElt -> AlgMatElt
ComplexConjugate(x) : FldAlgElt -> FldAlgElt
ComplexConjugate(a) : FldCycElt -> FldCycElt
ComplexConjugate(x) : FldNumElt -> FldNumElt
ComplexConjugate(a) : FldQuadElt -> FldQuadElt
ComplexConjugate(q) : FldRatElt -> FldRatElt
ComplexConjugate(r) : FldReElt -> FldReElt
ComplexConjugate(n) : RngIntElt -> RngIntElt
ComplexEmbeddings(f) : ModFrmElt -> List
ComplexField() : -> FldCom
ComplexField(R) : FldRe -> FldCom
ComplexField(p) : RngIntElt -> FldCom
ComplexReflectionGroup(X, n) : MonStgElt, RngIntElt -> GrpMat, Map
ComplexReflectionGroup(C) : Mtrx -> GrpMat, Map
ComplexRootDatum(k) : RngIntElt -> SeqEnum, SeqEnum, Map, GrpMat, AlgMatElt
ComplexRootMatrices(k) : RngIntElt -> AlgMatElt, AlgMatElt, AlgMatElt, RngElt, RngIntElt
ComplexToPolar(c) : FldComElt -> FldReElt, FldReElt
ComplexValue(z) : SpcHydElt -> FldComElt
ComplexValue(x) : SpcHypElt -> FldComElt
FlagComplex(G) : Grph -> SmpCpx
HasComplexConjugate(K) : FldAlg -> BoolElt, Map
HasComplexConjugate(K) : FldNum -> BoolElt, Map
HasComplexMultiplication(E) : CrvEll -> BoolElt, RngIntElt
HasComplexMultiplication(E) : CrvEll -> BoolElt, RngIntElt
Homology(C) : ModCpx -> SeqEnum
IsComplex(p) : PlcNumElt -> BoolElt
IsComplex(p) : PlcNumElt -> BoolElt
IsZeroComplex(C) : ModCpx -> BoolElt
PolarToComplex(m, a) : FldReElt, FldReElt -> FldComElt
SimplicialComplex(G) : Grph -> SmpCpx
SimplicialComplex(f) : SeqEnum[SetEnum] -> SmpCpx
ZeroComplex(A, m, n) : AlgBas, RngIntElt, RngIntElt -> ModCpx
Complex Multiplication (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
Complex Multiplication (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
Construction of Finite Complex Reflection Groups (REFLECTION GROUPS)
REAL AND COMPLEX FIELDS
Real and Complex Valued Functions (NUMBER FIELDS)
Real and Complex Valued Functions (ORDERS AND ALGEBRAIC FIELDS)
The Associated Complex Torus (MODULAR SYMBOLS)
Complex Multiplication (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
Complex Multiplication (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012