[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: lie  ..  Lift


lie

   RowReductionHomomorphism(ρ) : Map -> Map
   Inverse(ρ) : Map -> Map
   GROUPS OF LIE TYPE
   INTRODUCTION TO LIE THEORY [LIE THEORY]
   Properties of Finite Groups Of Lie Type (ALMOST SIMPLE GROUPS)
   REPRESENTATIONS OF LIE GROUPS AND ALGEBRAS
   Twisted Groups (GROUPS OF LIE TYPE)

lie-introduction

   INTRODUCTION TO LIE THEORY [LIE THEORY]

lie-reps

   REPRESENTATIONS OF LIE GROUPS AND ALGEBRAS

lie_alg

   LIE ALGEBRAS

lie_alg_km

   KAC-MOODY LIE ALGEBRAS

liealg

   AlgAss_liealg (Example H81E1)

LieAlgebra

   LieAlgebra(M) : AlgMatLie -> AlgLie, Map
   Algebra(M) : AlgMatLie -> AlgLie, Map
   LieAlgebra(A) : AlgAss -> AlgGen, Map
   LieAlgebra(A) : AlgAss -> AlgLie
   LieAlgebra(A) : AlgAss -> AlgLie, Map
   LieAlgebra(A) : AlgMat -> AlgLie
   LieAlgebra(C, k) : AlgMatElt, Rng -> AlgLie
   LieAlgebra(G) : GrpLie -> AlgLie, Map
   LieAlgebra(G) : GrpLie -> AlgLie, Map
   LieAlgebra(W, R) : GrpMat, Rng -> AlgLie
   LieAlgebra(W, R) : GrpPermCox, Rng -> AlgLie
   LieAlgebra(T, k) : MonStgElt, Rng -> AlgLie
   LieAlgebra(N, k, p) : MonStgElt, Rng, GrpPermElt -> AlgLie
   LieAlgebra<R, n | Q : parameters > : Rng, RngIntElt, SeqEnum -> AlgLie
   LieAlgebra<R, n | T : parameters > : Rng, RngIntElt, SeqEnum -> AlgLie
   LieAlgebra< t | T : parameters > : SeqEnum, SeqEnum -> AlgLie
   LieAlgebra< R, n | Q > : Rng, RngIntElt, SeqEnum -> AlgLie
   LieAlgebra(R, k) : RootDtm, Rng -> AlgLie
   LieAlgebra(R, k) : RootSys -> GrpMat
   LieAlgebra(R) : [ AlgFPLieElt ] -> AlgLie, SeqEnum, SeqEnum, Map
   AlgLie_LieAlgebra (Example H100E6)

LieAlgebraCons

   AlgLie_LieAlgebraCons (Example H100E1)

LieAlgebraHomorphism

   LieAlgebraHomorphism(phi,k) : Map, Rng -> AlgLie

LieAlgebraIsogeny

   AlgLie_LieAlgebraIsogeny (Example H100E18)

LieAlgebraOfDerivations

   LieAlgebraOfDerivations(L) : AlgLie -> AlgLie, Rec
   AlgLie_LieAlgebraOfDerivations (Example H100E42)

LieAlgebraQuotient

   AlgLie_LieAlgebraQuotient (Example H100E25)

LieAlgebraQuotientPullback

   AlgLie_LieAlgebraQuotientPullback (Example H100E26)

LieBracket

   (a, b) : AlgAssElt, AlgAssElt -> AlgAssElt
   LieBracket(a, b) : AlgAssElt, AlgAssElt -> AlgAssElt

LieCharacteristic

   LieCharacteristic(G : parameters) : Grp -> RngIntElt

LieConstant

   LieConstant_epsilon(R, r, s) : RootDtm, RngIntElt, RngIntElt -> RngIntElt
   LieConstant_eta(R, r, s) : RootDtm, RngIntElt, RngIntElt -> RngIntElt
   LieConstant_N(R, r, s) : RootDtm, RngIntElt, RngIntElt -> RngIntElt
   LieConstant_p(R, r, s) : RootDtm, RngIntElt, RngIntElt -> RngIntElt
   LieConstant_q(R, r, s) : RootDtm, RngIntElt, RngIntElt -> RngIntElt
   LieConstant_M(R, r, s, i) : RootDtm, RngIntElt, RngIntElt, RngIntElt -> RngIntElt
   LieConstant_C(R, i, j, r, s) : RootDtm, RngIntElt, RngIntElt, RngIntElt, RngIntElt -> RngIntElt

LiEMaximalSubgroups

   LiEMaximalSubgroups() : -> SeqEnum

LieModules

   LieReps_LieModules (Example H104E14)
   LieReps_LieModules (Example H104E4)

LieRepresentationDecomposition

   LieRepresentationDecomposition(R, v) : RootDtm, ModTupRngElt -> LieRepDec
   LieRepresentationDecomposition(R, Wt, Mp) : RootDtm, SeqEnum, SeqEnum -> LieRepDec
   TrivialLieRepresentationDecomposition(R) : RootDtm -> LieRepDec

LieRing

   AlgLie_LieRing (Example H100E7)

LieType

   LieType(G, p : parameters) : GrpMat, RngIntElt -> BoolElt, Tup

Lift

   HeckeLift(chi) : GrpDrchNFElt -> GrpHeckeElt, GrpHecke
   HenselLift(f, R, k) : RngUPolElt, FldReElt, RngIntElt -> FldReElt
   HenselLift(f, x) : RngUPolElt, RngPadElt -> RngPadElt
   HenselLift(f, s, P) : RngUPolElt, [ RngUPolElt ], RngUPol -> [ RngUPolElt ]
   HenselLift(f, s) : RngUPolElt, [RngUPolElt] -> [RngUPolElt]
   HenselLift(f, L) : RngUPolElt[RngSer], SeqEnum[RngUPolElt] -> [RngUPolElt]
   InflationMapImage(M, c) : Map, UserProgram -> UserProgram
   IsolatedPointsLiftToMinimalPolynomials(S,P) : Sch, SeqEnum -> BoolElt, SeqEnum
   Lift(a, P) : RngElt, PlcCrvElt -> FldFunFracSchElt
   Lift(a, P) : RngElt, PlcFunElt -> FldFunElt
   Lift(a, P) : RngElt, PlcFunElt -> FldFunElt
   LiftCharacter(c, f, G) : AlgChtrElt, Map, Grp -> AlgChtrElt
   LiftCharacters(T, f, G) : [AlgChtrElt], Map, Grp -> AlgChtrElt
   LiftDescendant(C) : CrvHyp -> SeqEnum[ CrvHyp ], List, MapSch
   LiftHomomorphism(x, n) : ModAlgElt, RngIntElt -> ModMatFldElt
   LiftHomomorphism(X, N) : SeqEnum[ModAlgElt], SeqEnum[RngIntElt] -> ModMatFldElt
   LiftMap(m, R) : Map, RngDiffOp -> Map
   LiftPoint(P, n) : Pt, RngIntElt -> Pt
   LiftToChainmap(P,f,d) : ModCpx, Mtrx, RngIntElt -> MapChn
   SubgroupsLift(G, A, B, Q: parameters) : GrpMat, GrpMat, GrpMat, SeqEnum -> SeqEnum
   SubgroupsLift(G, A, B, Q: parameters) : GrpPerm, GrpPerm, GrpPerm, SeqEnum -> SeqEnum
   TeichmuellerLift(u, R) : FldFinElt, RngPadResExt -> RngPadResExtElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012