[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: approximants .. arith
Approximants (RATIONAL FUNCTION FIELDS)
ApproximateByTorsionGroup(G : parameters) : ModAbVarSubGrp -> ModAbVarSubGrp
ApproximateByTorsionPoint(x : parameters) : ModAbVarElt -> ModAbVarElt
ApproximateOrder(x) : ModAbVarElt -> RngIntElt
ApproximateStabiliser(G, A, U: parameters) : GrpMat, GrpMat, ModTupFld -> GrpMat, GrpMat, RngIntElt, RngIntElt, RngIntElt
ApproximateByTorsionGroup(G : parameters) : ModAbVarSubGrp -> ModAbVarSubGrp
ApproximateByTorsionPoint(x : parameters) : ModAbVarElt -> ModAbVarElt
ApproximateOrder(x) : ModAbVarElt -> RngIntElt
ApproximateStabiliser(G, A, U: parameters) : GrpMat, GrpMat, ModTupFld -> GrpMat, GrpMat, RngIntElt, RngIntElt, RngIntElt
BernoulliApproximation(n) : RngIntElt -> FldPrElt
BernoulliApproximation(n) : RngIntElt -> FldReElt
BestApproximation(r, n) : FldReElt, RngIntElt -> FldReElt
ClassNumberApproximation(F, e) : FldFunG, FldReElt -> FldReElt
ClassNumberApproximationBound(q, g, e) : RngIntElt, RngIntElt, RngIntElt, -> RngIntElt
HilbertSeriesApproximation(R, n) : RngInvar, RngIntElt -> RngSerLaurElt
MolienSeriesApproximation(G, n) : GrpPerm, RngIntElt -> RngSerLaurElt
MurphyAlphaApproximation(F, b) : RngMPolElt, RngIntElt -> FldReElt
StrongApproximation(m, S): DivFunElt, [<PlcFunElt, FldFunElt>] -> FldFunElt
AQInvariants(G) : GrpFP -> [ RngIntElt ]
AbelianQuotientInvariants(G) : GrpFP -> [ RngIntElt ]
AbelianQuotientInvariants(H) : GrpFP -> [ RngIntElt ]
AbelianQuotientInvariants(G, n) : GrpFP, RngIntElt -> [ RngIntElt ]
AbelianQuotientInvariants(H, n) : GrpFP, RngIntElt -> [ RngIntElt ]
AbelianQuotientInvariants(G) : GrpGPC -> [ RngIntElt ]
AbelianQuotientInvariants(G) : GrpPC -> SeqEnum
General K[G]-Modules (K[G]-MODULES AND GROUP REPRESENTATIONS)
GENERAL LOCAL FIELDS
General K[G]-Modules (K[G]-MODULES AND GROUP REPRESENTATIONS)
FixedArc(g,H) : GrpPSL2Elt, SpcHyp -> SeqEnum
IsArc(P, A) : Plane, { PlanePt } -> BoolElt
Arcs (FINITE PLANES)
Arccos(r) : FldReElt -> FldReElt
Arccos(f) : RngSerElt -> RngSerElt
Arccos(f) : RngSerElt -> RngSerElt
Arccosec(r) : FldReElt -> FldReElt
Arccot(r) : FldReElt -> FldReElt
Plane_arcs (Example H141E10)
Arcsec(r) : FldReElt -> FldReElt
Arcsin(r) : FldReElt -> FldReElt
Arcsin(f) : RngSerElt -> RngSerElt
Arcsin(f) : RngSerElt -> RngSerElt
Arctan(r) : FldReElt -> FldReElt
Arctan(x, y) : FldReElt, FldReElt -> FldReElt
Arctan(f) : RngSerElt -> RngSerElt
Arctan(f) : RngSerElt -> RngSerElt
Arctan2(x, y) : FldReElt, FldReElt -> FldReElt
Arctan(x, y) : FldReElt, FldReElt -> FldReElt
AreCohomologous(alpha, beta) : OneCoC, OneCoC -> BoolElt, GrpElt
AreIdentical(u, v: parameters) : GrpBrdElt, GrpBrdElt -> BoolElt
AreInvolutionsConjugate(G, x, wx, y, wy : parameters) : GrpMat,GrpMatElt, GrpSLPElt, GrpMatElt, GrpSLPElt -> BoolElt, GrpMatElt, GrpSLPElt
AreLinearlyEquivalent(D,E) : DivTorElt,DivTorElt -> BoolElt
AreProportional(P,Q) : TorLatElt,TorLatElt -> BoolElt, FldRatElt
SetOrderUnitsAreFundamental(O) : RngOrd ->
AreCohomologous(alpha, beta) : OneCoC, OneCoC -> BoolElt, GrpElt
AreIdentical(u, v: parameters) : GrpBrdElt, GrpBrdElt -> BoolElt
AreInvolutionsConjugate(G, x, wx, y, wy : parameters) : GrpMat,GrpMatElt, GrpSLPElt, GrpMatElt, GrpSLPElt -> BoolElt, GrpMatElt, GrpSLPElt
IsLinearlyEquivalent(D,E) : DivTorElt,DivTorElt -> BoolElt
AreLinearlyEquivalent(D,E) : DivTorElt,DivTorElt -> BoolElt
AreProportional(P,Q) : TorLatElt,TorLatElt -> BoolElt, FldRatElt
ArfInvariant(V) : ModTupFld -> RngIntElt
ArfInvariant(V) : ModTupFld -> RngIntElt
Arg(c) : FldComElt -> FldReElt
Argument(c) : FldComElt -> FldReElt
Argcosech(s) : FldReElt -> FldReElt
Argcosh(r) : FldReElt -> FldReElt
Argcosh(f) : RngSerElt -> RngSerElt
Argcosh(f) : RngSerElt -> RngSerElt
Argcoth(s) : FldReElt -> FldReElt
Argsech(s) : FldReElt -> FldReElt
Argsinh(r) : FldReElt -> FldReElt
Argsinh(f) : RngSerElt -> RngSerElt
Argsinh(f) : RngSerElt -> RngSerElt
Argtanh(s) : FldReElt -> FldReElt
Argtanh(f) : RngSerElt -> RngSerElt
Argtanh(f) : RngSerElt -> RngSerElt
Arg(c) : FldComElt -> FldReElt
Argument(c) : FldComElt -> FldReElt
Argument(z) : SpcHydElt -> FldReElt
Reference Arguments (MAGMA SEMANTICS)
Arithmetic (ALGEBRAIC POWER SERIES RINGS)
Arithmetic (GENERAL LOCAL FIELDS)
Arithmetic of Divisors (SCHEMES)
Arithmetic of Points (HYPERELLIPTIC CURVES)
Arithmetic Operators (ALGEBRAIC FUNCTION FIELDS)
Arithmetic with Elements (MODULES OVER DEDEKIND DOMAINS)
Arithmetic with Lazy Series (LAZY POWER SERIES RINGS)
Arithmetic with Modules (MODULES OVER DEDEKIND DOMAINS)
Arithmetic with Places and Divisors (NUMBER FIELDS)
Arithmetic with Places and Divisors (ORDERS AND ALGEBRAIC FIELDS)
Curves over Global Fields (ALGEBRAIC CURVES)
Minimal Degree Functions and Plane Models (ALGEBRAIC CURVES)
Modular Degree and Torsion (MODULAR SYMBOLS)
RngPowAlg_arith (Example H52E3)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012