[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: decomposition .. Defined
Accessing the Decomposition Information (MATRIX GROUPS OVER FINITE FIELDS)
Canonical Decomposition (ABELIAN GROUPS)
Composition and Decomposition (CHARACTERS OF FINITE GROUPS)
Decomposition (MODULAR SYMBOLS)
Decomposition of Toric Morphisms (TORIC VARIETIES)
Decompositions with Respect to a Normal Subgroup (MATRIX GROUPS OVER FINITE FIELDS)
Equidimensional Decomposition (POLYNOMIAL RING IDEAL OPERATIONS)
Primary Decomposition (POLYNOMIAL RING IDEAL OPERATIONS)
Radical and Decomposition of Ideals (POLYNOMIAL RING IDEAL OPERATIONS)
Triangular Decomposition (POLYNOMIAL RING IDEAL OPERATIONS)
DecompositionField(p, A) : PlcNumElt, FldAb -> FldAb
DecompositionField(p) : RngOrdIdl -> FldNum, Map
DecompositionField(p, A) : RngOrdIdl, FldAb -> FldAb
DecompositionGroup(P) : PlcNumElt -> GrpPerm
DecompositionGroup(P) : PlcNumElt -> GrpPerm
DecompositionGroup(p, A) : PlcNumElt, FldAb -> GrpAb
DecompositionGroup(p) : RngIntElt -> GrpPerm
DecompositionGroup(p, A) : RngIntElt, FldAb -> GrpAb
DecompositionGroup(L) : RngLocA -> GrpPerm
DecompositionMatrix(G, K) : Grp, FldFin -> AlgMatElt
DecompositionMultiset(V) : ModAlg -> LieRepDec
DecompositionMultiset(V) : ModAlg -> LieRepDec
Decompositions of *-Algebras (ALGEBRAS WITH INVOLUTION)
DecompositionType(m, U, p) : DivFunElt, GrpAb, PlcFunElt -> [<f,e>]
DecompositionType(A, p) : FldAb, PlcNumElt -> [Tpl]
DecompositionType(A, p) : FldAb, RngIntElt -> [Tpl]
DecompositionType(A, p) : FldAb, RngOrdIdl -> [Tpl]
DecompositionType(F, P) : FldFun, PlcFunElt -> [ <RngIntElt, RngIntElt> ]
DecompositionType(A, p) : FldFunAb, PlcFunElt -> [<f,e>]
DecompositionType(O) : RngFunOrd -> [ <RngIntElt, RngIntElt> ]
DecompositionType(O, p) : RngFunOrd, RngElt -> [ <RngIntElt, RngIntElt> ]
DecompositionType(O, p) : RngOrd, RngIntElt -> [<RngIntElt, RngIntElt>]
DecompositionTypeFrequency(A, a, b) : FldAb, RngIntElt, RngIntElt -> Mset
DecompositionTypeFrequency(A, l) : FldAb, [ ] -> Mset
Plane_decon (Example H141E8)
Deconstruction Functions (FINITE PLANES)
Deconstruction of a Vector (VECTOR SPACES)
Deconstruction of Elements (FREE MODULES)
Deconstruction of Module Elements (MODULES OVER AN ALGEBRA)
DeleteCapacities(~G) : GrphMult ->
DeleteWeights(~G) : GrphMult ->
Edge Decorations (MULTIGRAPHS)
Vertex and Edge Decorations (MULTIGRAPHS)
Vertex Decorations: Labels (MULTIGRAPHS)
AssignCapacities(~G, D) : GrphMult, [RngIntElt] ->
AssignWeights(~G, D) : GrphMult, [RngElt] ->
Assigning Edge Decorations (MULTIGRAPHS)
Deleting Edge Decorations (MULTIGRAPHS)
Reading Edge Decorations (MULTIGRAPHS)
Testing for Edge Decorations (MULTIGRAPHS)
Unlabelled, or Uncapacitated, or Unweighted Graphs (MULTIGRAPHS)
Decycle(~u: parameters) : GrpBrdElt ->
Decycle(u: parameters) : GrpBrdElt -> GrpBrdElt
DedekindEta(s) : FldComElt -> FldComElt
DedekindEta(z) : RngSerElt -> RngSerElt
DedekindTest(p, m) : RngUPolElt, RngIntElt -> Boolelt
MODULES OVER DEDEKIND DOMAINS
The Jacobi θand Dedekind η- functions (REAL AND COMPLEX FIELDS)
MODULES OVER DEDEKIND DOMAINS
DedekindEta(s) : FldComElt -> FldComElt
DedekindEta(z) : RngSerElt -> RngSerElt
DedekindTest(p, m) : RngUPolElt, RngIntElt -> Boolelt
DeepHoles(L) : Lat -> [ ModTupFldElt ]
DeepHoles(L) : Lat -> [ ModTupFldElt ]
DefRing(G) : GrpLie -> Rng
Definition of Subgroups by Generators (FINITE SOLUBLE GROUPS)
Definition of Subgroups by Generators (FINITE SOLUBLE GROUPS)
Deformation Point Counting (HYPERELLIPTIC CURVES)
CrvHyp_def_hyp_pt_cnt_ex (Example H125E25)
GetDefaultRealField() : -> FldRe
IsDefault(F) : FldFin -> BoolElt
L`DefaultPrecision : RngPad -> RngIntElt
SetDefaultRealField(R) : FldRe ->
Default Presentations (BRAID GROUPS)
IsDeficient(C, p) : CrvHyp, RngIntElt -> BoolElt
HasDefinedModuleMap(C,n) : ModCpx, RngIntElt -> BoolElt
IsDefined(A, x) : Assoc, Elt -> Bool, Elt
IsDefined(L, i) : List, RngIntElt -> Elt
IsDefined(S, i) : SeqEnum, RngIntElt -> BoolElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012