[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: SolubleQuotient1 .. SolvableQuotient
GrpFP_1_SolubleQuotient1 (Example H70E39)
GrpFP_1_SolubleQuotient2 (Example H70E40)
SolubleRadical(G) : GrpMat -> GrpMat
SolvableRadical(G) : GrpMat -> GrpMat
Radical(G) : GrpMat -> GrpMat
Radical(G) : GrpPerm -> GrpPerm
SolubleRadical(L) : AlgLie -> AlgLie
SolubleRadical(G) : GrpLie -> GrpLie
SolvableResidual(G) : GrpFin -> GrpFin
SolubleResidual(G) : GrpFin -> GrpFin
SolubleResidual(G) : GrpMat -> GrpMat
SolubleResidual(G) : GrpPerm -> GrpPerm
SolvableSchreier(G: parameters) : GrpPerm : ->
SolubleSchreier(G: parameters) : GrpPerm : ->
SolvableSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
SolubleSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
IntegerSolutionVariables(L) : LP -> SeqEnum
MaximalIntegerSolution(LHS, relations, RHS, objective) : Mtrx, Mtrx, Mtrx, Mtrx -> Mtrx, RngIntElt
MaximalSolution(LHS, relations, RHS, objective) : Mtrx, Mtrx, Mtrx, Mtrx -> Mtrx, RngIntElt
MaximalZeroOneSolution(LHS, relations, RHS, objective) : Mtrx, Mtrx, Mtrx, Mtrx -> Mtrx, RngIntElt
MinimalIntegerSolution(LHS, relations, RHS, objective) : Mtrx, Mtrx, Mtrx, Mtrx -> Mtrx, RngIntElt
MinimalSolution(LHS, relations, RHS, objective) : Mtrx, Mtrx, Mtrx, Mtrx -> Mtrx, RngIntElt
MinimalZeroOneSolution(LHS, relations, RHS, objective) : Mtrx, Mtrx, Mtrx, Mtrx -> Mtrx, RngIntElt
ModularSolution(A, M) : MtrxSprs, RngIntElt -> ModTupRng
SetIntegerSolutionVariables(L, I, m) : LP, SeqEnum[RngIntElt], BoolElt ->
Solution(L) : LP -> Mtrx, RngIntElt
Solution(A, W) : ModMatRngElt, ModTupRng -> ModTupRngElt, ModTupRng
Solution(A, w) : ModMatRngElt, ModTupRng -> ModTupRngElt, ModTupRng
Solution(A, Q) : ModMatRngElt, [ ModTupRng ] -> [ ModTupRngElt ], ModTupRng
Solution(A, W) : ModMatRngElt, [ ModTupRng ] -> [ ModTupRngElt ], ModTupRng
Solution(a, b, m) : RngIntElt, RngIntElt, RngIntElt -> RngIntElt, RngIntElt
Solution(a, b) : RngIntResElt, RngIntResElt -> RngIntResElt
Solution(A, B, N) : [RngIntElt], [RngIntElt],[RngIntElt] -> RngIntElt
Mat_Solution (Example H26E8)
Linear Systems (Structured Gaussian Elimination) (SPARSE MATRICES)
Nullspace and Rowspace (SPARSE MATRICES)
Nullspaces and Solutions of Systems (MATRICES)
Solutions of Systems of Linear Equations (MATRIX ALGEBRAS)
Nullspace and Rowspace (SPARSE MATRICES)
Nullspaces and Solutions of Systems (MATRICES)
Solutions of Systems of Linear Equations (MATRIX ALGEBRAS)
HasRationalSolutions(L, g) : RngDiffOpElt, RngElt -> BoolElt, RngElt, SeqEnum
RationalSolutions(L) : RngDiffOpElt, -> SeqEnum
Solutions(t, a) : Thue, RngIntElt -> [ [ RngIntElt, RngIntElt ] ]
AllSolvableLieAlgebras(F, d) : Fld, RngIntElt -> SeqEnum
IsLocallySolvable(X, p) : Sch, RngOrdIdl -> BoolElt, Pt
IsSoluble(L) : AlgLie -> BoolElt
IsSoluble(D, o, n) : DB, RngIntElt, RngIntElt -> Grp
IsSoluble(A) : GrpAuto -> BoolElt
IsSoluble(G) : GrpFin -> BoolElt
IsSoluble(G) : GrpGPC -> BoolElt
IsSoluble(G) : GrpMat -> BoolElt
IsSoluble(G) : GrpPC -> BoolElt
IsSoluble(G) : GrpPerm -> BoolElt
IsSolubleAutomorphismGroupPGroup(A) : GrpAuto -> BoolElt
LMGIsSoluble(G) : GrpMat -> BoolElt
Radical(G) : GrpMat -> GrpMat
Radical(G) : GrpPerm -> GrpPerm
SolubleQuotient(G) : Grp -> GrpPC, Map
SolubleQuotient(F, n : parameters): GrpFP, RngIntElt -> GrpPC, Map, SeqEnum, MonStgElt
SolubleRadical(L) : AlgLie -> AlgLie
SolubleResidual(G) : GrpFin -> GrpFin
SolubleResidual(G) : GrpMat -> GrpMat
SolubleResidual(G) : GrpPerm -> GrpPerm
SolubleSchreier(G: parameters) : GrpPerm : ->
SolubleSubgroups(G: parameters) : GrpFin -> [ rec< Grp, RngIntElt, RngIntElt, GrpFP> ]
SolvableLieAlgebra( F, n, k : parameters) : Fld, RngIntElt, RngIntElt -> AlgLie
SolvableQuotient(G): GrpMat -> GrpPC, Map
SolvableQuotient(G): GrpPerm, RngIntElt -> GrpPC, Map, SeqEnum, MonStgElt
SolvableQuotient(G : parameters): GrpFP, RngIntElt -> GrpPC, Map, SeqEnum, MonStgElt
SolvableQuotient(F, n : parameters): GrpFP, RngIntElt -> GrpPC, Map, SeqEnum, MonStgElt
SolvableSubgroups(G: parameters) : GrpPerm -> [ rec< GrpPerm, RngIntElt, RngIntElt, GrpFP> ]
Solvable and Nilpotent Lie Algebras Classification (LIE ALGEBRAS)
Solvable and Nilpotent Lie Algebras Classification (LIE ALGEBRAS)
SolvableLieAlgebra( F, n, k : parameters) : Fld, RngIntElt, RngIntElt -> AlgLie
SolvableQuotient(G) : Grp -> GrpPC, Map
SolubleQuotient(G) : Grp -> GrpPC, Map
SolubleQuotient(F, n : parameters): GrpFP, RngIntElt -> GrpPC, Map, SeqEnum, MonStgElt
SolvableQuotient(G): GrpMat -> GrpPC, Map
SolvableQuotient(G): GrpPerm, RngIntElt -> GrpPC, Map, SeqEnum, MonStgElt
SolvableQuotient(G : parameters): GrpFP, RngIntElt -> GrpPC, Map, SeqEnum, MonStgElt
SolvableQuotient(F, n : parameters): GrpFP, RngIntElt -> GrpPC, Map, SeqEnum, MonStgElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012