[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: PlotkinAsymptoticBound  ..  Point


PlotkinAsymptoticBound

   PlotkinAsymptoticBound(K, delta) : FldFin, FldPrElt -> FldPrElt

PlotkinBound

   PlotkinBound(K, n, d) : FldFin, RngIntElt, RngIntElt -> RngIntElt

PlotkinSum

   PlotkinSum(C, D) : Code, Code -> Code
   PlotkinSum(C, D) : Code, Code -> Code
   PlotkinSum(C1, C2) : Code, Code -> Code
   PlotkinSum(C1, C2) : Code, Code -> Code
   PlotkinSum(A, B) : Mtrx, Mtrx -> Mtrx
   PlotkinSum(C1, C2, C3: parameters) : Code, Code, Code -> Code
   PlotkinSum(C1, C2, C3: parameters) : Code,Code,Code -> Code

Plurigenus

   Plurigenus(S,n) : Srfc -> RngIntElt
   PlurigenusOfDesingularization(S,m) : Srfc, RngIntElt -> RngIntElt

PlurigenusOfDesingularization

   PlurigenusOfDesingularization(S,m) : Srfc, RngIntElt -> RngIntElt

Plus

   COPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
   ConformalOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
   GeneralOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
   OmegaPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
   PGOPlus(arguments)
   PSOPlus(arguments)
   ProjectiveOmegaPlus(arguments)
   SpecialOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
   SpinPlus(n, q) : RngIntElt, RngIntElt -> GrpMat

pMap

   pMap(L) : AlgLie -> Map
   RestrictionMap(L) : AlgLie -> Map

pmap

   pmap< A -> B | x : -> e(x) > : Str, Str -> Map
   pmap< A -> B | x : -> e(x), y : -> i(y) > : Str, Str -> Map
   pmap< A -> B | G > : Str, Str -> Map

pmat

   Basis of a Pseudo Matrix (MODULES OVER DEDEKIND DOMAINS)
   Construction of a Pseudo Matrix (MODULES OVER DEDEKIND DOMAINS)
   Elementary Functions (MODULES OVER DEDEKIND DOMAINS)
   Operations with Pseudo Matrices (MODULES OVER DEDEKIND DOMAINS)
   Predicates (MODULES OVER DEDEKIND DOMAINS)
   Pseudo Matrices (MODULES OVER DEDEKIND DOMAINS)

pmat-basis

   Basis of a Pseudo Matrix (MODULES OVER DEDEKIND DOMAINS)

pmat-construct

   Construction of a Pseudo Matrix (MODULES OVER DEDEKIND DOMAINS)

pmat-elementary

   Elementary Functions (MODULES OVER DEDEKIND DOMAINS)

pmat-ops

   Operations with Pseudo Matrices (MODULES OVER DEDEKIND DOMAINS)

pmat-predicates

   Predicates (MODULES OVER DEDEKIND DOMAINS)

pMatrix

   pMatrixRing(A, p) : AlgQuat, RngOrdIdl -> AlgMat, Map, Map

pMatrixRing

   pMatrixRing(A, p) : AlgQuat, RngOrdIdl -> AlgMat, Map, Map

pMaximal

   pMaximalOrder(O, p) : AlgQuatOrd, RngElt -> AlgQuatOrd, RngIntElt
   pMaximalOrder(O, p) : RngFunOrd, RngFunOrdIdl -> RngFunOrd
   pMaximalOrder(O, p) : RngFunOrd, RngFunOrdIdl -> RngFunOrd
   pMaximalOrder(O, p) : RngOrd, RngIntElt -> RngOrd

pMaximalOrder

   pMaximalOrder(O, p) : AlgQuatOrd, RngElt -> AlgQuatOrd, RngIntElt
   pMaximalOrder(O, p) : RngFunOrd, RngFunOrdIdl -> RngFunOrd
   pMaximalOrder(O, p) : RngFunOrd, RngFunOrdIdl -> RngFunOrd
   pMaximalOrder(O, p) : RngOrd, RngIntElt -> RngOrd

pMinimal

   pMinimalWeierstrassModel(C, p) : CrvHyp, RngIntElt -> CrvHyp, MapIsoSch

pMinimalWeierstrassModel

   pMinimalWeierstrassModel(C, p) : CrvHyp, RngIntElt -> CrvHyp, MapIsoSch

pMinimise

   pMinimise(f, p) : RngMPolElt, RngIntElt -> RngMPolElt, AlgMatElt

pMinus1

   pMinus1(n, B1) : RngIntElt, RngIntElt -> RngIntElt

pMultiplicator

   pMultiplicator(G, p) : GrpFin, RngIntElt -> [ RngIntElt ]
   pMultiplicator(G, p) : GrpPerm, RngIntElt -> [ RngIntElt ]
   pMultiplicator(G, p) : GrpPerm, RngIntElt -> [ RngIntElt ]
   pMultiplicatorRank(G) : GrpPC -> RngIntElt

pMultiplicatorRank

   pMultiplicatorRank(G) : GrpPC -> RngIntElt

pNormal

   pNormalModel(C, p) : CrvHyp, RngIntElt -> CrvHyp, MapIsoSch

pNormalModel

   pNormalModel(C, p) : CrvHyp, RngIntElt -> CrvHyp, MapIsoSch

Point

   PointSet(E, m) : CrvEll, Map -> SetPtEll
   E(m) : CrvEll, Map -> SetPtEll
   E(L) : CrvEll, Rng -> SetPtEll
   ApproximateByTorsionPoint(x : parameters) : ModAbVarElt -> ModAbVarElt
   BaseLocus(D) : DivSchElt -> Sch
   BasePoint(G, i) : GrpMat, RngIntElt -> Elt
   BasePoint(G, i) : GrpPerm, RngIntElt -> Elt
   CollineationGroup(P) : Plane -> GrpPerm, GSet, GSet, PowMap, Map
   CubicFromPoint(E, P) : CrvEll, PtEll -> RngMPolElt, MapSch, Pt
   EquivalentPoint(x) : SpcHypElt -> SpcHypElt, GrpPSL2Elt
   FormalPoint(P) : Pt -> Pt
   GenericPoint(X) : Sch -> Pt
   HasNonsingularPoint(X) : Sch -> BoolElt,Pt
   HasPoint(f,q,v) : RngUPolElt, RngIntElt, RngIntElt -> BoolElt, SeqEnum
   HasRationalPoint(C) : CrvCon -> BoolElt, Pt
   HeegnerPoint(E : parameters) : CrvEll -> BoolElt, PtEll
   HeegnerPoint(C : parameters) : CrvHyp -> BoolElt, PtHyp
   IsBasePointFree(L) : LinearSys -> BoolElt
   IsDoublePoint(p) : Pt -> BoolElt
   IsInflectionPoint(p) : Sch,Pt -> BoolElt,RngIntElt
   IsPoint(C, S) : CrvHyp, SeqEnum -> BoolElt, PtHyp
   IsPoint(N,p) : NwtnPgon,Tup -> BoolElt
   IsPoint(H, x) : SetPtEll, RngElt -> BoolElt, PtEll
   IsPoint(H, S) : SetPtEll, [ RngElt ] -> BoolElt, PtEll
   IsPoint(K, S) : SrfKum, [RngElt] -> BoolElt, SrfKumPt
   IsPointRegular(D) : IncNsp -> BoolElt, RngIntElt
   IsPointTransitive(D) : Inc -> BoolElt
   IsPointTransitive(P) : Plane -> BoolElt
   LiftPoint(P, n) : Pt, RngIntElt -> Pt
   Point(D, i) : Inc, RngIntElt -> IncPt
   Point(r,n,Q) : RngIntElt, RngIntElt, SeqEnum -> GRPtS
   PointDegree(D, p) : Inc, IncPt -> RngIntElt
   PointDegrees(D) : Inc -> [ RngIntElt ]
   PointGraph(D) : Inc -> Grph
   PointGraph(D) : Inc -> GrphUnd
   PointGraph(P) : Plane -> GrphUnd;
   PointGroup(D) : Inc -> GrpPerm, GSet
   PointOnRegularModel(M, x) : CrvRegModel, Pt -> SeqEnum, SeqEnum, Tup
   PointSearch(S,H : parameters) : Sch[FldRat], RngIntElt -> SeqEnum
   PointSet(D) : Inc -> IncPtSet
   PointSet(P) : Plane -> PlanePtSet
   ProjectionFromNonsingularPoint(X,p) : Sch,Pt -> Sch,MapSch,Sch
   RationalPoint(C) : CrvCon -> Pt
   RepresentativePoint(P) : PlcCrv -> Pt
   X(L) : Sch,Rng -> SetPt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012