[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: other-ideal .. Over
Other Functions on Ideals (UNIVARIATE POLYNOMIAL RINGS)
Other Operations (UNIVARIATE POLYNOMIAL RINGS)
Other Operations on Cohomology Modules (COHOMOLOGY AND EXTENSIONS)
Other Properties of Linear Groups (MATRIX GROUPS OVER INFINITE FIELDS)
Other Functions on Quotients (UNIVARIATE POLYNOMIAL RINGS)
Other Tensor Products (L-FUNCTIONS)
ModAlg_OtherMod (Example H89E16)
New Groups From Others (MATRIX GROUPS OVER Q AND Z)
DivideOutIntegers(phi) : MapModAbVar -> MapModAbVar, RngIntElt
MaximumOutDegree(G) : GrphDir -> RngIntElt, GrphVert
MaximumOutDegree(G) : GrphMultDir -> RngIntElt, GrphVert
MinimumOutDegree(G) : GrphDir -> RngIntElt, GrphVert
MinimumOutDegree(G) : GrphMultDir -> RngIntElt, GrphVert
OutDegree(u) : GrphVert -> RngIntElt
OutDegree(u) : GrphVert -> RngIntElt
OutNeighbours(u) : GrphVert -> { GrphVert }
OutNeighbours(u) : GrphVert -> { GrphVert }
OutDegree(u) : GrphVert -> RngIntElt
OutDegree(u) : GrphVert -> RngIntElt
IsOuter(R) : RootDtm -> BoolElt
IsInner(R) : RootDtm -> BoolElt
OuterFPGroup(A) : GrpAuto -> GrpFP, Map
OuterFaces(N) : NwtnPgon -> SeqEnum
OuterOrder(A) : GrpAuto -> RngIntElt
OuterVertices(N) : NwtnPgon -> SeqEnum
Shape(t) : Tbl -> SeqEnum[RngIntElt]
OuterFaces(N) : NwtnPgon -> SeqEnum
OuterFPGroup(A) : GrpAuto -> GrpFP, Map
OuterOrder(A) : GrpAuto -> RngIntElt
OuterShape(t) : Tbl -> SeqEnum
Shape(t) : Tbl -> SeqEnum[RngIntElt]
OuterVertices(N) : NwtnPgon -> SeqEnum
OutNeighbors(u) : GrphVert -> { GrphVert }
OutNeighbours(u) : GrphVert -> { GrphVert }
OutNeighbours(u) : GrphVert -> { GrphVert }
OutNeighbors(u) : GrphVert -> { GrphVert }
OutNeighbours(u) : GrphVert -> { GrphVert }
OutNeighbours(u) : GrphVert -> { GrphVert }
Verbose Output (BRANDT MODULES)
HasOutputFile() : -> BoolElt
SetOutputFile(F) : MonStgElt ->
SetOutputFile(F) : MonStgElt ->
UnsetOutputFile() : ->
Redirecting Output (INPUT AND OUTPUT)
OvalDerivation(q: parameters) : RngIntElt -> PlaneAff, PlanePtSet, PlaneLnSet
OvalDerivation(q: parameters) : RngIntElt -> PlaneAff, PlanePtSet, PlaneLnSet
AbsoluteModuleOverMinimalField(M) : ModGrp -> ModGrp
AbsoluteModuleOverMinimalField(M, F) : ModGrp, FldFin -> ModGrp
AbsoluteModulesOverMinimalField(Q, F) : [ ModGrp ], FldFin -> [ ModGrp ]
AlgebraOverCenter(A) : Alg -> AlgAss, Map;
AutomorphismGroupOverCyclotomicExtension(CN,N,n): Crv, RngIntElt, RngIntElt -> GrpAutCrv
AutomorphismGroupOverExtension(CN,N,n,u): Crv, RngIntElt, RngIntElt, RngElt -> GrpAutCrv
AutomorphismGroupOverQ(CN,N): Crv, RngIntElt -> GrpAutCrv
DirichletCharacterOverNF(chi) : GrpDrchElt -> GrpDrchNFElt
FactorizationOverSplittingField(f) : RngUPolElt[FldFin] -> [<RngUPolElt, RngIntElt>], FldFin
GHomOverCentralizingField(M, N) : ModGrp, ModGrp -> ModMatGrp
GeneratorsOverBaseRing(K) : FldNum -> FldNumElt
GeneratorsSequenceOverBaseRing(K) : FldNum -> [FldNumElt]
HasPointsOverExtension(X) : Sch -> BoolElt
HasSingularPointsOverExtension(C) : Sch -> BoolElt
IntegralMatrixOverQ(phi) : MapModAbVar -> ModMatFldElt
IsIsomorphicOverQt(K, L) : FldFun, FldFun -> BoolElt, Map
IsOverQ(H) : HomModAbVar -> HomModAbVar
IsOverSmallerField (G : parameters) : GrpMat -> BoolElt, GrpMat
IsOverSmallerField(G, k : parameters) : GrpMat -> BoolElt, GrpMat
IsRealisableOverSmallerField(M) : ModGrp -> BoolElt, ModGrp
IsRealisableOverSubfield(M, F) : ModGrp, FldFin -> BoolElt, ModGrp
LiftDescendant(C) : CrvHyp -> SeqEnum[ CrvHyp ], List, MapSch
LogCanonicalThresholdOverExtension(C) : Sch -> FldRatElt
ModuleOverSmallerField(M, F) : ModGrp, FldFin -> ModGrp
ModulesOverCommonField(M, N) : ModGrp, ModGrp -> ModGrp, ModGrp
ModulesOverSmallerField(Q, F) : SeqEnum, FldFin -> ModGrp
NumberOfPlacesOfDegreeOneECFBound(C) : Crv -> RngIntElt
NumberOfPlacesOfDegreeOneECFBound(F) : FldFunG -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField(C) : Crv[FldFin] -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField(F, m) : FldFun, RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField(F) : FldFunG -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantField(F, m) : FldFunG, RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOneOverExactConstantFieldBound(F, m) : FldFun, RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOverExactConstantField(C, m) : Crv[FldFin], RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOverExactConstantField(F, m) : FldFun, RngIntElt -> RngIntElt
NumberOfPlacesOfDegreeOverExactConstantField(F, m) : FldFunG, RngIntElt -> RngIntElt
OverDimension(V) : ModTupFld -> RngIntElt
OverDimension(u) : ModTupFldElt -> RngIntElt
OverDimension(M) : ModTupRng -> RngIntElt
OverDimension(u) : ModTupRngElt -> RngIntElt
PointsOverSplittingField(Z) : Clstr -> SetEnum
VarietySizeOverAlgebraicClosure(I) : RngMPol -> RngIntElt
WeilPolynomialOverFieldExtension(f, deg) : RngUPolElt, RngIntElt -> RngUPolElt
WriteGModuleOver(M, K) : ModGrp, FldAlg -> ModGrp
WriteOverLargerField(G) : GrpMat -> GrpMat, GrpAb, SeqEnum
WriteOverSmallerField(G, F) : GrpMat, FldFin -> GrpMat, Map
WriteOverSmallerField(M, F) : ModGrp, FldFin -> ModGrp, Map
WriteRepresentationOver(R, K) : Map, FldAlg -> Map
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012