[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: polynomial .. polytope-example
Action on a Polynomial Ring (K[G]-MODULES AND GROUP REPRESENTATIONS)
Defining Polynomial (FINITE FIELDS)
Indicial Polynomials (DIFFERENTIAL RINGS)
LOCAL POLYNOMIAL RINGS
Minimal and Characteristic Polynomial (FINITE FIELDS)
Minimal Polynomial, Norm and Trace (ALGEBRAICALLY CLOSED FIELDS)
MULTIVARIATE POLYNOMIAL RINGS
Polynomials for Finite Fields (FINITE FIELDS)
The Bernoulli Polynomial (UNIVARIATE POLYNOMIAL RINGS)
The Generator Polynomial (LINEAR CODES OVER FINITE FIELDS)
UNIVARIATE POLYNOMIAL RINGS
Action on a Polynomial Ring (K[G]-MODULES AND GROUP REPRESENTATIONS)
PolynomialRing(R) : Rng -> RngUPol
PolynomialAlgebra(R) : Rng -> RngUPol
PolynomialRing(R, n) : Rng, RngIntElt -> RngMPol
PolynomialRing(R, n) : Rng, RngIntElt -> RngMPol
PolynomialRing(R, n, order) : Rng, RngIntElt, MonStgElt, ... -> RngMPol
PolynomialRing(R, n, order) : Rng, RngIntElt, MonStgElt, ... -> RngMPol
PolynomialRing(R, n, T) : Rng, RngIntElt, Tup -> RngMPol
PolynomialRing(R, Q) : Rng, [ RngIntElt ] -> RngMPol
PolynomialCoefficient(s, i) : RngPowLazElt, RngIntElt -> RngPowLazElt
PolynomialMap(L) : LinearSys -> RngMPolElt
PolynomialRing(R) : Rng -> RngUPol
PolynomialAlgebra(R) : Rng -> RngUPol
PolynomialRing(model) : ModelG1 -> RngMPol
PolynomialRing(R, n) : Rng, RngIntElt -> RngMPol
PolynomialRing(R, n) : Rng, RngIntElt -> RngMPol
PolynomialRing(R, n, order) : Rng, RngIntElt, MonStgElt, ... -> RngMPol
PolynomialRing(R, n, order) : Rng, RngIntElt, MonStgElt, ... -> RngMPol
PolynomialRing(R, n, T) : Rng, RngIntElt, Tup -> RngMPol
PolynomialRing(R, Q) : Rng, [ RngIntElt ] -> RngMPol
PolynomialRing(R) : RngInvar -> RngMPol
Multivariate Polynomials (SYMMETRIC FUNCTIONS)
AllDefiningPolynomials(f) : MapSch -> SeqEnum
AllInverseDefiningPolynomials(f) : MapSch -> SeqEnum
AllIrreduciblePolynomials(F, m) : FldFin, RngIntElt -> { RngUPolElt }
CentrePolynomials(G) : GrpLie ->
DefiningPolynomials(F) : FldFun -> [RngUPolElt]
DefiningPolynomials(H) : HypGeomData -> RngUPolElt, RngUPolElt
DefiningPolynomials(f) : MapSch -> SeqEnum
DefiningPolynomials(X) : Sch -> SeqEnum
FactoredDefiningPolynomials(f) : MapSch -> SeqEnum
FactoredInverseDefiningPolynomials(f) : MapSch -> SeqEnum
FactoredMinimalAndCharacteristicPolynomials(A: parameters) : Mtrx -> [<RngUPolElt, RngIntElt>], [<RngUPolElt, RngIntElt>]
FrobeniusTracesToWeilPolynomials(tr, q, i, deg) : SeqEnum, RngIntElt, RngIntElt, RngIntElt -> SeqEnum
HessePolynomials(n, r, invariants : parameters) : RngIntElt, RngIntElt, [RngElt] -> RngElt, RngElt, RngElt
HyperellipticPolynomials(E) : CrvEll -> RngUPolElt, RngUPolElt
HyperellipticPolynomials(C) : CrvHyp -> RngUPolElt, RngUPolElt
HyperellipticPolynomialsFromShiodaInvariants(JI) : SeqEnum -> SeqEnum, GrpPerm
InverseDefiningPolynomials(f) : MapSch -> SeqEnum
IsolatedPointsLiftToMinimalPolynomials(S,P) : Sch, SeqEnum -> BoolElt, SeqEnum
MinimalAndCharacteristicPolynomials(A: parameters) : Mtrx -> RngUPolElt, RngUPolElt
NewtonPolynomials(L) : RngDiffOpElt -> SeqEnum, SeqEnum
NumberOfPrimePolynomials(q, d) : RngIntElt, RngIntElt -> RngIntElt
PrimePolynomials(R, d) : RngUPol, RngIntElt -> SeqEnum[ RngUPolElt ]
RubinSilverbergPolynomials(n, J : parameters) : RngIntElt, RngElt -> RngElt, RngElt
TwistedPolynomials(R) : Rng -> RngUPolTwst
RngPol_Polynomials (Example H23E2)
Orthogonal Polynomials (UNIVARIATE POLYNOMIAL RINGS)
Permutation Polynomials (FINITE FIELDS)
Permutation Polynomials (UNIVARIATE POLYNOMIAL RINGS)
Polynomials (p-ADIC RINGS AND THEIR EXTENSIONS)
Polynomials Associated with Newton Polygons (NEWTON POLYGONS)
Polynomials over Series Rings (POWER, LAURENT AND PUISEUX SERIES)
Polynomials over Series Rings (POWER, LAURENT AND PUISEUX SERIES)
Special Families of Polynomials (UNIVARIATE POLYNOMIAL RINGS)
The Ring of Twisted Polynomials (CLASS FIELD THEORY FOR GLOBAL FUNCTION FIELDS)
PolynomialSieve(F, m, J0, J1,MaxAlpha) : RngMPolElt, RngIntElt, RngIntElt, RngIntElt, FldReElt -> List
FldForms_polyquad (Example H29E12)
Hilbert Series and Hilbert Polynomials (HILBERT SERIES OF POLARISED VARIETIES)
CrossPolytope(L) : TorLat -> TorPol
CyclicPolytope(L,n) : TorLat,RngIntElt -> TorPol
Polytope(Q) : SeqEnum -> TorPol
RandomPolytope(L,n,k) : TorLat,RngIntElt,RngIntElt -> TorPol
RiemannRochPolytope(D) : DivTorElt -> TorPol
Polyhedra_polytope-automorphism-example (Example H143E5)
Polyhedra_polytope-example (Example H143E1)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012