[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: Margulis  ..  Matrix


Margulis

   MargulisCode(p) : RngIntElt -> Code

MargulisCode

   MargulisCode(p) : RngIntElt -> Code

Mark

   MarkGroebner(I) : AlgFr ->
   MarkGroebner(I) : RngMPol ->

MarkGroebner

   MarkGroebner(I) : AlgFr ->
   MarkGroebner(I) : RngMPol ->

Mass

   Mass(S) : AlgAssVOrd -> FldRatElt

Massey

   ConnectionPolynomial(S) : SeqEnum -> RngUPolElt, RngIntElt
   CharacteristicPolynomial(S) : SeqEnum -> RngUPolElt, RngIntElt
   BerlekampMassey(S) : SeqEnum -> RngUPolElt, RngIntElt
   MasseyProduct(Aoo,terms) : Rec, SeqEnum[RngElt] -> RngElt

MasseyProduct

   HighProduct(Aoo,terms) : Rec, SeqEnum[RngElt] -> RngElt
   MasseyProduct(Aoo,terms) : Rec, SeqEnum[RngElt] -> RngElt

Mat

   MatRep(K) : DBAtlasKeyMatRep -> SeqEnum[GrpMatElt]
   MatRepCharacteristics(A) : GrpAtlas -> SetEnum[RngIntElt]
   MatRepDegrees(A) : GrpAtlas -> SetEnum[RngIntElt]
   MatRepFieldSizes(A) : GrpAtlas -> SetEnum[RngIntElt]
   MatRepKeys(A) : GrpAtlas -> SeqEnum[DBAtlasKeyMatRep]

mat

   MATRICES
   The Burnside Algorithm (K[G]-MODULES AND GROUP REPRESENTATIONS)

Match

   Match(u, v, f) : GrpFPElt, GrpFPElt, RngIntElt -> BoolElt, RngIntElt
   Match(u, v, f) : SgpFPElt, SgpFPElt, RngIntElt -> BoolElt, RngIntElt

Matching

   AutomorphismGroupMatchingIdempotents(A) : AlgBas -> AlgBas, ModMatFldElt
   GradedAutomorphismGroupMatchingIdempotents(A) : AlgBas -> GrpMat, SeqEnum, SecEnum
   MaximumMatching(G) : GrphUnd -> [ { GrphEdge } ]
   MaximumMatching(G : parameters) : GrphMultUnd -> [ { GrphEdge rbrace ]

mathieu-monodromy

   Scheme_mathieu-monodromy (Example H112E60)

MatRep

   MatRep(K) : DBAtlasKeyMatRep -> SeqEnum[GrpMatElt]

MatRepCharacteristics

   MatRepCharacteristics(A) : GrpAtlas -> SetEnum[RngIntElt]

MatRepDegrees

   MatRepDegrees(A) : GrpAtlas -> SetEnum[RngIntElt]

MatRepFieldSizes

   MatRepFieldSizes(A) : GrpAtlas -> SetEnum[RngIntElt]

MatRepKeys

   MatRepKeys(A) : GrpAtlas -> SeqEnum[DBAtlasKeyMatRep]

Matrices

   BasicRootMatrices(C) : Mtrx -> AlgMatElt, AlgMatElt
   ComplexRootMatrices(k) : RngIntElt -> AlgMatElt, AlgMatElt, AlgMatElt, RngElt, RngIntElt
   CondensationMatrices(A) : AlgMat -> Tup
   IsIsogenousPeriodMatrices(P1, P2) : Mtrx, Mtrx -> Bool, Mtrx
   IsIsomorphicBigPeriodMatrices(P1, P2) : Mtrx, Mtrx -> Bool, Mtrx, Mtrx
   IsIsomorphicSmallPeriodMatrices(t1,t2) : Mtrx, Mtrx -> Bool, Mtrx
   Matrices(D, n) : DB, RngIntElt -> [ AlgMatElt ]
   Matrices(model) : ModelG1 -> [ AlgMatElt ]
   NumberOfMatrices(D, n) : DB, RngIntElt -> RngIntElt
   ReflectionMatrices(W) : GrpMat -> [AlgMatElt]
   ReflectionMatrices(W) : GrpPermCox -> []
   ReflectionMatrices(R) : RootDtm -> []
   ReflectionMatrices(R) : RootSys -> []
   SimpleReflectionMatrices(W) : GrpMat -> [AlgMatElt]
   SimpleReflectionMatrices(W) : GrpPermCox -> []
   SimpleReflectionMatrices(R) : RootDtm -> []
   SimpleReflectionMatrices(R) : RootSys -> []
   StandardFormConjugationMatrices(A) : AlgMat -> Tup
   ThreeTorsionMatrices(E, C) : CrvEll, RngMPolElt -> Tup
   GrpMatGen_Matrices (Example H59E2)
   ModFld_Matrices (Example H28E4)

matrices

   Matrices as Words (MATRIX GROUPS OVER GENERAL RINGS)
   Transition Matrices (SYMMETRIC FUNCTIONS)
   Transition Matrices from Monomial Basis (SYMMETRIC FUNCTIONS)
   Transition Matrices from Elementary Basis (SYMMETRIC FUNCTIONS)
   Transition Matrices from Homogeneous Basis (SYMMETRIC FUNCTIONS)
   Transition Matrices from Power Sum Basis (SYMMETRIC FUNCTIONS)
   Transition Matrices from Schur Basis (SYMMETRIC FUNCTIONS)

matrices-from-elem

   Transition Matrices from Elementary Basis (SYMMETRIC FUNCTIONS)

matrices-from-homo

   Transition Matrices from Homogeneous Basis (SYMMETRIC FUNCTIONS)

matrices-from-monomial

   Transition Matrices from Monomial Basis (SYMMETRIC FUNCTIONS)

matrices-from-power

   Transition Matrices from Power Sum Basis (SYMMETRIC FUNCTIONS)

matrices-from-schur

   Transition Matrices from Schur Basis (SYMMETRIC FUNCTIONS)

matrices-words

   Matrices as Words (MATRIX GROUPS OVER GENERAL RINGS)

MatricesAndGraphs

   Cartan_MatricesAndGraphs (Example H95E12)

Matrix

   AbsoluteCartanMatrix(G, K) : Grp, FldFin -> AlgMatElt
   AbsoluteRepresentationMatrix(a) : FldAlgElt -> AlgMatElt
   AbsoluteRepresentationMatrix(a) : FldNumElt -> NumMatElt
   ActionMatrix(A,x) : AlgBas, Mtrx -> ModMatFldElt
   ActionMatrix(M, a): ModAlg, AlgElt -> AlgMatElt
   AddScaledMatrix(~A, s, B) : Mtrx, RngElt, Mtrx ->
   AddScaledMatrix(A, s, B) : Mtrx, RngElt, Mtrx -> Mtrx
   AdjacencyMatrix(G) : Grph -> AlgMatElt
   AdjacencyMatrix(G,p) : SymGen, RngIntElt -> AlgMatElt
   AdjointMatrix(L, x) : AlgLie, AlgLieElt -> AlgMatLieElt
   AmbientMatrix(f) : ModMPolHom -> ModMatRngElt
   AntisymmetricMatrix(R, Q) : Rng, [ RngElt ] -> Mtrx
   AntisymmetricMatrix(Q) : [ RngElt ] -> Mtrx
   BaseChangeMatrix(A) : AlgBas -> ModAlg
   BasicAlgebra(A): AlgMat -> AlgBas
   BasisMatrix(I) : AlgAssVOrdIdl -> AlgMatElt
   BasisMatrix(S) : AlgGrpSub -> ModMatRngElt
   BasisMatrix(S) : AlgQuatOrd -> AlgMatElt
   BasisMatrix(L) : Lat -> ModMatRngElt
   BasisMatrix(M) : ModMPol -> ModMatRngElt
   BasisMatrix(V) : ModTupFld -> ModMatElt
   BasisMatrix(O) : RngFunOrd -> AlgMatElt
   BasisMatrix(I) : RngFunOrdIdl -> AlgMatElt
   BasisMatrix(O) : RngOrd -> AlgMatElt
   BasisMatrix(I) : RngOrdFracIdl -> MtrxSpcElt
   BasisMatrix(e) : SubModLatElt -> Mtrx
   BigPeriodMatrix(A) : AnHcJac -> AlgMatElt
   BlockMatrix(m, n, blocks) : RngIntElt, RngIntElt, [ Mtrx ] -> Mtrx
   BlockMatrix(m, n, rows) : RngIntElt, RngIntElt, [ [ Mtrx ] ] -> Mtrx
   BoundaryMatrix(X, q, A) : SmpCpx, RngIntElt, Rng -> Mtrx
   BurnsideMatrix(G) : GrpPC -> AlgMatElt
   CambridgeMatrix(t, K, n, Q) : RngIntElt, FldFin, RngIntElt, [ ] -> AlgMatElt
   CartanMatrix(L) : AlgKac -> AlgMatElt
   CartanMatrix(A) : AlgMat -> ModMatRngElt
   CartanMatrix(M) : AlgMatElt -> AlgMatElt
   CartanMatrix(G, K) : Grp, FldFin -> AlgMatElt
   CartanMatrix(D) : GrphDir -> AlgMatElt
   CartanMatrix(g) : GrphRes -> Mtrx
   CartanMatrix(G) : GrpLie -> GrphUnd
   CartanMatrix(W) : GrpMat -> AlgMatElt
   CartanMatrix(W) : GrpPermCox -> AlgMatElt
   CartanMatrix(N) : MonStgElt -> AlgMatElt
   CartanMatrix(R) : RootStr -> AlgMatElt
   CartanMatrix(R) : RootSys -> AlgMatElt
   CentralisingMatrix(G) : GrpMat -> AlgMatElt
   ChangeOfBasisMatrix(G, S) : GrpMat, ModGrp -> AlgMatElt
   ChangeRing(A, R) : Mtrx, Rng -> Mtrx
   ChangeRing(A, R) : MtrxSprs, Rng -> MtrxSprs
   CloseVectorsMatrix(L, w, u) : Lat, ModTupRngElt, RngElt -> ModMatRngElt
   ClosestVectorsMatrix(L, w) : Lat, ModTupRngElt -> ModMatRngElt, RngElt
   CompanionMatrix(L) : RngDiffOpElt -> AlgMatElt
   CompanionMatrix(f) : RngUPolElt -> AlgMatElt
   CompanionMatrix(p) : RngUPolElt -> AlgMatElt
   ComplexCartanMatrix(k) : RngIntElt -> AlgMatElt
   CoordinateMatrix(I) : RngMPol -> Matrix
   CoxeterMatrix(W) : GrpFPCox -> AlgMatElt
   CoxeterMatrix(G) : GrphUnd -> AlgMatElt
   CoxeterMatrix(G) : GrpLie -> AlgMatElt
   CoxeterMatrix(W) : GrpMat -> AlgMatElt
   CoxeterMatrix(N) : MonStgElt -> AlgMatElt
   CoxeterMatrix(R) : RootStr -> AlgMatElt
   CoxeterMatrix(R) : RootSys -> AlgMatElt
   DecompositionMatrix(G, K) : Grp, FldFin -> AlgMatElt
   DefiningMatrix(f) : TorLatMap -> ModMatRngElt
   DefiniteGramMatrix(B) : SeqEnum[AlgQuatElt] -> FldReElt
   DegeneracyMatrix(M1, M2, d) : ModSym, ModSym, RngIntElt -> AlgMatElt
   DiagonalMatrix(R, Q) : AlgMat, [ RngElt ] -> AlgMatElt
   DiagonalMatrix(L, Q) : AlgMatLie, [RngElt] -> AlgMatLieElt
   DiagonalMatrix(R, n, Q) : Rng, RngIntElt, [ RngElt ] -> Mtrx
   DiagonalMatrix(R, Q) : Rng, [ RngElt ] -> Mtrx
   DiagonalMatrix(Q) : [ RngElt ] -> Mtrx
   DiagonalSparseMatrix(R, n, Q) : Rng, RngIntElt, [ RngElt ] -> MtrxSprs
   DiagonalSparseMatrix(R, Q) : Rng, [ RngElt ] -> MtrxSprs
   DiagonalSparseMatrix(Q) : [ RngElt ] -> MtrxSprs
   DisplayBurnsideMatrix(G) : GrpPC ->
   DistanceMatrix(G) : Grph -> AlgMatElt
   DotProductMatrix(W) : SeqEnum[ModTupFldElt] -> AlgMatElt
   ElementaryToHomogeneousMatrix(n): RngIntElt -> AlgMatElt
   ElementaryToMonomialMatrix(n): RngIntElt -> AlgMatElt
   ElementaryToPowerSumMatrix(n): RngIntElt -> AlgMatElt
   ElementaryToSchurMatrix(n): RngIntElt -> AlgMatElt
   FrobeniusMatrix(D) : PhiMod -> AlgMatElt
   FuchsianMatrixRepresentation(A) : AlgQuat -> Map
   GeneratorMatrix(C) : Code -> ModMatFldElt
   GeneratorMatrix(C) : Code -> ModMatFldElt
   GeneratorMatrix(C) : Code -> ModMatRngElt
   GramMatrix(S) : AlgQuatOrd -> AlgMatElt
   GramMatrix(L) : Lat -> AlgMatElt
   GramMatrix(L) : Lat -> Mtrx
   GramMatrix(M) : ModBrdt -> AlgMatElt
   GramMatrix(X) : ModMatRngElt : -> AlgMatElt
   GramMatrix(V) : ModTupRng -> AlgMatElt
   GramMatrix(f) : QuadBinElt -> AlgMatElt
   HadamardMatrixFromInteger(x, n) : RngIntElt, RngIntElt -> AlgMatElt
   HadamardMatrixToInteger(H) : AlgMatElt -> RngIntElt
   HeightPairingMatrix(S: parameters) : [PtEll] -> AlgMat
   HeightPairingMatrix(P : parameters) : [PtEll] -> AlgMatElt
   HeightPairingMatrix(S: Precision) : [JacHypPt] -> AlgMat
   HeightPairingMatrix(S) : SeqEnum[PtEll[FldFunG]] -> AlgMatElt
   HessianMatrix(X) : Sch -> ModMatRngElt
   HessianMatrix(C) : Sch -> Mtrx
   HomogeneousToElementaryMatrix(n): RngIntElt -> AlgMatElt
   HomogeneousToMonomialMatrix(n): RngIntElt -> AlgMatElt
   HomogeneousToPowerSumMatrix(n): RngIntElt -> AlgMatElt
   HomogeneousToSchurMatrix(n): RngIntElt -> AlgMatElt
   HyperbolicCoxeterMatrix(i) : RngIntElt -> AlgMatElt
   IdentitySparseMatrix(R, n) : Rng, RngElt -> MtrxSprs
   IncidenceMatrix(G) : Grph -> ModHomElt
   IncidenceMatrix(D) : Inc -> ModMatRngElt
   IncidenceMatrix(P) : Plane -> AlgMatElt
   IndexCalculusMatrix(D1, D2, D0, n, rr) : DivCrvElt, DivCrvElt, DivCrvElt, RngIntElt, RngIntElt -> MtrxSprs, SeqEnum, SeqEnum, DivCrvElt, DivCrvElt, RngIntElt, RngIntElt
   InnerProductMatrix(L) : Lat -> AlgMatElt
   InnerProductMatrix(M) : ModBrdt -> AlgMatElt
   InnerProductMatrix(V) : ModTupRng -> AlgMatElt
   IntegralMatrix(phi) : MapModAbVar -> ModMatRngElt
   IntegralMatrixGroupDatabase() : -> DB
   IntegralMatrixOverQ(phi) : MapModAbVar -> ModMatFldElt
   IntersectionMatrix(M) : CrvRegModel -> Mtrx, SeqEnum
   IntersectionMatrix(G, P) : GrphUnd, { { GrphVert } } -> AlgMatElt
   InverseRSKCorrespondenceMatrix(t1, t2) : Tbl, Tbl -> Mat
   IrreducibleCartanMatrix(X, n) : MonStgElt, RngIntElt -> AlgMatElt
   IrreducibleCoxeterMatrix(X, n) : MonStgElt, RngIntElt -> AlgMatElt
   IrreducibleMatrixGroup(k, p, n) : RngIntElt, RngIntElt, RngIntElt -> GrpMat
   IsCartanMatrix(C) : AlgMatElt -> BoolElt
   IsCoxeterMatrix(M) : AlgMatElt -> BoolElt
   IsGeneralizedCartanMatrix(C) : AlgMatElt -> BoolElt
   IsMatrixRing(A) : AlgQuat -> BoolElt, AlgMat, Map
   IsSymplecticMatrix(A) : Mtrx -> BoolElt
   JacobianMatrix(C) : Sch -> ModMatRngElt
   JacobianMatrix(X) : Sch -> ModMatRngElt
   JacobianMatrix( [ f ] ) : [ RngMPolElt ] -> RngMPol
   KillingMatrix(L) : AlgLie -> ModMatFldElt
   LLLBasisMatrix(L) : Lat -> ModMatElt, AlgMatElt
   LLLGramMatrix(L) : Lat -> AlgMatElt, AlgMatElt
   LeftRepresentationMatrix(e) : AlgAssVOrdElt -> AlgMatElt
   LowerTriangularMatrix(R, Q) : Rng, [ RngElt ] -> Mtrx
   LowerTriangularMatrix(Q) : [ RngElt ] -> Mtrx
   Matrix(D, n, k) : DB, RngIntElt, RngIntElt -> AlgMatElt
   Matrix(g,D) : GrpPSL2Elt, SpcHyd -> AlgMatElt
   Matrix(phi) : MapModAbVar -> ModMatFldElt
   Matrix(f) : MapSch -> Mtrx
   Matrix(model) : ModelG1 -> Mtrx
   Matrix(A) : Mtrx -> Mtrx
   Matrix(A) : MtrxSprs -> Mtrx
   Matrix(P) : PMat -> Mtrx
   Matrix(R, m, n, Q) : Rng, RngIntElt, RngIntElt, [ RngElt ] -> Mtrx
   Matrix(R, n, Q) : Rng, RngIntElt, [ RngElt ] -> Mtrx
   Matrix(R, Q) : Rng, [ [ RngElt ] ] -> Mtrx
   Matrix(m, n, Q) : RngIntElt, RngIntElt, [ RngElt ] -> Mtrx
   Matrix(m, n, Q) : RngIntElt, RngIntElt, [ [ RngElt ] ] -> Mtrx
   Matrix(n, Q) : RngIntElt, [ RngElt ] -> Mtrx
   Matrix(Q) : [ Mtrx ] -> Mtrx
   Matrix(Q) : [ [ RngElt ] ] -> Mtrx
   MatrixAlgebra(A) : AlgAss -> AlgMat
   MatrixAlgebra(A) : AlgFP -> AlgMat, Map
   MatrixAlgebra(A, E) : AlgMat, FldFin -> AlgMat, Map
   MatrixAlgebra(F, E) : FldFin, FldFin -> AlgMat, Map
   MatrixAlgebra(H) : HomModAbVar -> AlgMat
   MatrixAlgebra(A, M : parameters) : AlgAss, AlgAss -> AlgMat, Map
   MatrixAlgebra(R, n) : Rng, RngInt -> AlgMat
   MatrixAlgebra(S, n) : Rng, RngIntElt -> AlgMat
   MatrixAlgebra<S, n | L> : Rng, RngIntElt, List -> AlgMat
   MatrixAlgebra(Q) : RngMPolRes -> AlgMat, Map
   MatrixGroup(K) : DBAtlasKeyMatRep -> GrpMat
   MatrixGroup(M) : ModGrp -> GrpMat
   MatrixGroup< n, R | L > : RngIntElt, Rng, List -> GrpMat
   MatrixLieAlgebra(A) : AlgMat -> AlgMatLie
   MatrixLieAlgebra(C, k) : AlgMatElt, Rng -> AlgLie
   MatrixLieAlgebra(T, k) : MonStgElt, Rng -> AlgLie
   MatrixLieAlgebra(R, n) : Rng, RngIntElt -> AlgMatLie
   MatrixLieAlgebra(R, k) : RootSys -> GrpMat
   MatrixOfElement(CM, g) : ModCoho, GrpElt -> AlgMatElt
   MatrixOfIsomorphism(f) : Map -> AlgMatElt
   MatrixRepresentation(A) : AlgQuat -> Map
   MatrixRepresentation(A) : GrpAutCrv -> Grpmat, Map, SeqEnum
   MatrixRing(A, eps) : AlgQuat, AlgQuatElt -> AlgMat, Map
   MatrixUnit(R, i, j) : AlgMat, RngIntElt, RngIntElt -> AlgMatElt
   MonomialToElementaryMatrix(n): RngIntElt -> AlgMatElt
   MonomialToHomogeneousMatrix(n): RngIntElt -> AlgMatElt
   MonomialToPowerSumMatrix(n): RngIntElt -> AlgMatElt
   MonomialToSchurMatrix(n): RngIntElt -> AlgMatElt
   NormalizerMatrix(Q) : CodeQuantum -> ModMatFldElt
   NullspaceMatrix(A) : Mtrx -> ModTupRng
   NullspaceMatrix(A) : MtrxSprs -> Mtrx
   NumberOfIrreducibleMatrixGroups(k, p) : RngIntElt, RngIntElt -> RngIntElt
   ParametrizationMatrix(C) : CrvCon -> ModMatRngElt
   ParityCheckMatrix(C) : Code -> ModMatFldElt
   ParityCheckMatrix(C) : Code -> ModMatFldElt
   ParityCheckMatrix(C) : Code -> ModMatRngElt
   PermutationGroup< X | L > : Set, List -> GrpPerm, Hom
   PermutationMatrix(R, x) : Rng, GrpPermElt -> Mtrx
   PermutationMatrix(R, Q) : Rng, [ RngIntElt ] -> Mtrx
   PowerSumToElementaryMatrix(n): RngIntElt -> AlgMatElt
   PowerSumToHomogeneousMatrix(n): RngIntElt -> AlgMatElt
   PowerSumToMonomialMatrix(n): RngIntElt -> AlgMatElt
   PowerSumToSchurMatrix(n): RngIntElt -> AlgMatElt
   PresentationMatrix(f) : ModMPolHom -> ModMatRngElt
   PseudoMatrix(I) : AlgAssVOrdIdl[RngOrd] -> PMat
   PseudoMatrix(O) : AlgAssVOrd[RngOrd]> -> PMat
   PseudoMatrix(M) : ModDed -> PMat
   PseudoMatrix(m) : Mtrx -> PMat
   PseudoMatrix(I, m) : [RngOrdFracIdl], MtrxSpcElt -> PMat
   QuadraticFormMatrix(V) : ModTupRng -> ModAlgElt
   QuasisimpleMatrixGroup(N, d, p : parameters) : MonStgElt, RngIntElt, RngIntElt ->GrpMat
   QuasisimpleMatrixGroups(): -> SeqEnum
   QuaternionOrder(M) : ModBrdt -> AlgQuatOrd
   QuaternionicMatrixGroupDatabase() : -> DB
   RandomMatrix(R, m, n) : Rng, RngIntElt, RngIntElt -> Mtrx
   RandomSymplecticMatrix(g, m) : RngIntElt, RngIntElt -> Mtrx
   RandomUnimodularMatrix(M, n) : RngIntElt, RngIntElt -> Mtrx
   RationalMatrixGroupDatabase() : -> DB
   RealMatrix(phi) : MapModAbVar -> ModMatFldElt
   ReducedGramMatrix(S) : AlgQuatOrd[RngInt] -> AlgMatElt
   ReducedGramMatrix(S) : AlgQuatOrd[RngUPol] -> AlgMatElt, SeqEnum
   ReflectionMatrix(W, r) : GrpMat, RngIntElt -> AlgMatElt
   ReflectionMatrix(W, r) : GrpPermCox, RngIntElt -> []
   ReflectionMatrix(R, r) : RootDtm, RngIntElt -> []
   ReflectionMatrix(R, r) : RootSys, RngIntElt -> []
   RelationMatrix(K, B) : FldNum, RngIntElt -> ModHomElt
   RelationMatrix(A) : GrpAb -> Mtrx
   RelationMatrix(M) : ModMPol -> ModMatRngElt
   RelationMatrix(O) : RngOrd -> ModHomElt
   RepresentationMatrix(a) : AlgAssVOrdElt -> AlgMatElt
   RepresentationMatrix(f) : AlgFPElt -> AlgMatElt
   RepresentationMatrix(a) : FldAlgElt -> AlgMatElt
   RepresentationMatrix(a) : FldFunGElt -> AlgMatElt
   RepresentationMatrix(a, R) : FldFunGElt, Rng -> AlgMatElt
   RepresentationMatrix(a) : FldNumElt -> NumMatElt
   RepresentationMatrix(a, M : parameters) : AlgAssElt, AlgAss -> AlgMatElt
   RepresentationMatrix(a) : RngLocAElt -> AlgMatElt
   RepresentationMatrix(f) : RngMPolResElt -> AlgMatElt
   RestrictionMatrix( G, k ) : GrphDir, RngIntElt ) -> AlgMatElt
   RestrictionMatrix(G, H) : MonStgElt, MonStgElt -> AlgMatElt
   RestrictionMatrix(R, S) : RootDtm, RootDtm -> AlgMatElt
   RestrictionMatrix(R, Q) : RootDtm, SeqEnum -> AlgMatElt
   ScalarMatrix(R, t) : AlgMat, RngElt -> AlgMatElt
   ScalarMatrix(L, r) : AlgMatLie, RngElt -> AlgMatLieElt
   ScalarMatrix(R, n, s) : Rng, RngIntElt, RngElt -> Mtrx
   ScalarMatrix(n, s) : RngIntElt, RngElt -> Mtrx
   ScalarSparseMatrix(R, n, s) : Rng, RngIntElt, RngElt -> MtrxSprs
   ScalarSparseMatrix(n, s) : RngIntElt, RngElt -> MtrxSprs
   SchurToElementaryMatrix(n): RngIntElt -> AlgMatElt
   SchurToHomogeneousMatrix(n): RngIntElt -> AlgMatElt
   SchurToMonomialMatrix(n): RngIntElt -> AlgMatElt
   SchurToPowerSumMatrix(n): RngIntElt -> AlgMatElt
   ShortVectorsMatrix(L, u) : Lat, RngElt -> ModMatRngElt
   ShortestVectorsMatrix(L) : Lat -> ModMatRngElt
   SmallPeriodMatrix(A) : AnHcJac -> AlgMatElt
   SparseMatrix(A) : Mtrx -> MtrxSprs
   SparseMatrix(R) : Rng -> MtrxSprs
   SparseMatrix(R, m, n) : Rng, RngIntElt, RngIntElt -> MtrxSprs
   SparseMatrix(R, m, n, Q) : Rng, RngIntElt, RngIntElt, [ <RngIntElt, RngIntElt, RngElt> ] -> MtrxSprs
   SparseMatrix(m, n) : RngIntElt, RngIntElt -> MtrxSprs
   SparseMatrixStructure(R) : [ Rng ] -> MtrxSprsStr
   StabilizerMatrix(Q) : CodeQuantum -> ModMatFldElt
   SymmetricMatrix(R, Q) : Rng, [ RngElt ] -> Mtrx
   SymmetricMatrix(f) : RngMPolElt -> Mtrx
   SymmetricMatrix(Q) : [ RngElt ] -> Mtrx
   SymplecticMatrixGroupDatabase() : -> DB
   SyzygyMatrix(Q) : [ RngMPolElt ] -> ModMatRngElt
   TraceMatrix(O) : RngOrd -> AlgMatElt
   TransformationMatrix(O1, O2) : RngFunOrd, RngFunOrd -> AlgMatElt, RngElt
   TransformationMatrix(I) : RngFunOrdIdl -> AlgMatElt, RngElt
   TransformationMatrix(O, P) : RngOrd, RngOrd -> AlgMatElt, RngIntElt
   TransformationMatrix(I) : RngOrdFracIdl -> MtrxSpcElt, RngIntElt
   UnipotentMatrixGroup(G) : GrpMat -> GrpMatUnip
   UpperTriangularMatrix(R, Q) : Rng, [ RngElt ] -> Mtrx
   UpperTriangularMatrix(Q) : [ RngElt ] -> Mtrx
   WronskianMatrix(L) : [RngDiffElt] -> AlgMatElt
   ZeroMatrix(R, m, n) : Rng, RngIntElt, RngIntElt -> Mtrx
   ModRng_Matrix (Example H54E10)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012