[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: IsIsomorphicBigPeriodMatrices .. IsMaximal
IsIsomorphicBigPeriodMatrices(P1, P2) : Mtrx, Mtrx -> Bool, Mtrx, Mtrx
IsIsomorphicCubicSurface(f,g) : MPolElt, MPolElt -> BoolElt, List
IsIsomorphicOverQt(K, L) : FldFun, FldFun -> BoolElt, Map
IsIsomorphicSmallPeriodMatrices(t1,t2) : Mtrx, Mtrx -> Bool, Mtrx
IsIsomorphicSolubleGroup(G, H: parameters) : GrpPC, GrpPC -> BoolElt, Map
IsIsomorphicWithTwist(S, T) : ShfCoh, ShfCoh -> BoolElt, RngIntElt, ShfHom
IsIsomorphic(S, T) : ShfCoh, ShfCoh -> BoolElt, ShfHom
IsIsomorphism(I) : Map -> BoolElt, Map
IsIsomorphism(f) : MapChn -> BoolElt
IsIsomorphism(phi) : MapModAbVar -> BoolElt
IsIsomorphism(f) : MapSch -> BoolElt, IsoSch
IsIsomorphism(m) : Map[AlgLie, AlgLie] -> BoolElt
IsKEdgeConnected(G, k) : Grph, RngIntElt -> BoolElt
IsKEdgeConnected(G, k : parameters) : GrphMult, RngIntElt -> BoolElt
IsKnownIsomorphic(L, M) : AlgLie, AlgLie -> BoolElt, BoolElt, .
IsKnuthEquivalent(w1, w2) : MonOrdElt, MonOrdElt -> BoolElt
IsKVertexConnected(G, k) : Grph, RngIntElt -> BoolElt
IsKVertexConnected(G, k : parameters) : GrphMult, RngIntElt -> BoolElt
IsLabelled(e) : GrphEdge -> BoolElt
IsLabelled(E) : GrphEdgeSet -> BoolElt
IsLabelled(u) : GrphVert -> BoolElt
IsLabelled(V) : GrphVertSet -> BoolElt
IsLargeReeGroup(G) : GrpMat -> BoolElt, RngIntElt
IsLDPC(C) : Code -> BoolElt
CodeLDPC_IsLDPC (Example H154E1)
CodeLDPC_IsLDPC (Example H154E2)
IsLE(u, v: parameters) : GrpBrdElt, GrpBrdElt -> BoolElt
IsLe(u, v: parameters) : GrpBrdElt, GrpBrdElt -> BoolElt
u ≤v : GrpBrdElt, GrpBrdElt -> BoolElt
IsLE(u, v: parameters) : GrpBrdElt, GrpBrdElt -> BoolElt
IsLe(u, v: parameters) : GrpBrdElt, GrpBrdElt -> BoolElt
u ≤v : GrpBrdElt, GrpBrdElt -> BoolElt
IsLeaf(m) : AlgFPLieElt -> BoolElt, AlgFPLieElt, AlgFPLieElt
AlgLie_IsLeaf (Example H100E5)
IsRightIdeal(I) : AlgAssVOrdIdl -> BoolElt
IsTwoSidedIdeal(I) : AlgAssVOrdIdl -> BoolElt
IsLeftIdeal(I) : AlgAssVOrdIdl -> BoolElt
IsLeftIdeal(A,S) : AlgBas, ModTupFld -> Bool
IsLeftIdeal(S) : AlgGrpSub -> BoolElt
IsRightIsomorphic(I, J) : AlgAssVOrdIdl[RngOrd], AlgAssVOrdIdl[RngOrd] -> BoolElt, AlgQuatElt
IsLeftIsomorphic(I, J) : AlgAssVOrdIdl[RngOrd], AlgAssVOrdIdl[RngOrd] -> BoolElt, AlgQuatElt
IsLeftIsomorphic(I, J) : AlgQuatOrdIdl, AlgQuatOrdIdl -> BoolElt, Map, AlgQuatElt
IsLeftModule(M): ModAlg -> BoolElt
IsLexicographicallyOrdered(w1, w2) : MonOrdElt, MonOrdElt -> boolean
IsLie(A) : AlgGen -> BoolElt
IsLinear(x) : AlgChtrElt -> BoolElt
IsLinear(f) : MapSch -> BoolElt
IsLinear(X) : Sch -> BoolElt
IsLinearGroup(G) : GrpMat -> BoolElt
IsLinearlyIndependent(points) : [PtEll] -> BoolElt, ModTupRngElt
IndependentGenerators(points) : [PtEll] -> [PtEll]
IsLinearlyDependent(points) : [PtEll] -> BoolElt, ModTupRngElt
IsLinearlyEquivalent(D,E) : DivTorElt,DivTorElt -> BoolElt
AreLinearlyEquivalent(D,E) : DivTorElt,DivTorElt -> BoolElt
IsLinearlyEquivalent(D1,D2) : DivCrvElt,DivCrvElt -> BoolElt
IsLinearlyEquivalent(D,E) : DivSchElt, DivSchElt -> BoolElt, FldFunFracSchElt
IsLinearlyEquivalentToCartier(D) : DivTorElt -> BoolElt, DivTorElt
IsLinearlyIndependent(points) : [PtEll] -> BoolElt, ModTupRngElt
IndependentGenerators(points) : [PtEll] -> [PtEll]
IsLinearlyDependent(points) : [PtEll] -> BoolElt, ModTupRngElt
IsLinearlyIndependent(P, Q) : PtEll, PtEll -> BoolElt, ModTupElt
IsLinearlyIndependent(P, Q, n) : PtEll, PtEll, RngIntElt -> BoolElt
IsLinearlyIndependent(S) : [ PtEll ] -> BoolElt, ModTupElt
IsLinearlyIndependent(S, n) : [ PtEll ], RngIntElt -> BoolElt
IsLinearSpace(D) : Inc -> BoolElt
IsLinearSystemNonEmpty(D) : DivSchElt -> BoolElt, DivSchElt
IsLineRegular(D) : IncNsp -> BoolElt, RngIntElt
IsLineTransitive(P) : Plane -> BoolElt
IsLittlewoodRichardson(t) : Tbl -> BoolElt
IsLocallyFree(S) : ShfCoh -> BoolElt, RngIntElt
IsLocallySolvable(X, p) : Sch, RngOrdIdl -> BoolElt, Pt
Is2T1(C) : CosetGeom -> BoolElt
IsLocallyTwoTransitive(C) : CosetGeom -> BoolElt
IsLocalNorm(A, x) : FldAb, RngOrdElt -> BoolElt
IsLocalNorm(A, x, p) : FldAb, RngOrdElt, PlcNumElt -> BoolElt
IsLocalNorm(A, x, i) : FldAb, RngOrdElt, RngIntElt -> BoolElt
IsLocalNorm(A, x, p) : FldAb, RngOrdElt, RngOrdIdl -> BoolElt
IsLongRoot(G, r) : GrpLie, RngIntElt -> BoolElt
IsLongRoot(W, r) : GrpPermCox, RngIntElt -> BoolElt
IsLongRoot(R, r) : RootStr, RngIntElt -> BoolElt
IsLongRoot(R, r) : RootSys, RngIntElt -> BoolElt
IsLowerTriangular(A) : Mtrx -> BoolElt
IsLowerTriangular(A) : MtrxSprs -> BoolElt
IsMagmaEuclideanRing(R) : Rng -> BoolElt
IsMatrixRing(A) : AlgQuat -> BoolElt, AlgMat, Map
IsMaximal(O) : AlgAssVOrd -> BoolElt
IsMaximal(G, H) : GrpAb, GrpAb -> BoolElt
IsMaximal(G, H) : GrpFin, GrpFin -> BoolElt
IsMaximal(G, H) : GrpFP, GrpFP -> BoolElt
IsMaximal(G, H) : GrpMat, GrpMat -> BoolElt
IsMaximal(G, H) : GrpPC, GrpPC -> BoolElt
IsMaximal(G, H: parameters) : GrpPerm, GrpPerm -> BoolElt
IsMaximal(O) : RngFunOrd -> BoolElt
IsMaximal(I) : RngMPol -> BoolElt
IsMaximal(O) : RngOrd -> BoolElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012