[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: IsogenyMapPsiMulti .. Isometry
IsogenyMapPsiMulti(I) : Map -> RngUPolElt
IsogenyMapPsiSquared(I) : Map -> RngUPolElt
Parametrized Structures (SMALL MODULAR CURVES)
Group(D, n, p, i) : DB, RngIntElt, RngIntElt, RngIntElt -> GrpMat
IsolGroup(n, p, i) : RngIntElt, RngIntElt, RngIntElt -> GrpMat
IsolGroupDatabase() : -> DB
IsolGroupOfDegreeFieldSatisfying(d, p, f) : RngIntElt, RngIntElt, Any -> GrpMat
IsolGroupOfDegreeSatisfying(d, f) : RngIntElt, Any -> GrpMat
IsolGroupSatisfying(f) : Any -> GrpMat
IsolGroupsOfDegreeFieldSatisfying(d, p, f) : RngIntElt, RngIntElt, Any -> SeqEnum
IsolGroupsOfDegreeSatisfying(d, f) : RngIntElt, Any -> SeqEnum
IsolGroupsSatisfying(f) : Any -> SeqEnum
IsolGuardian(n, p, i) : RngIntElt, RngIntElt, RngIntElt -> GrpMat
IsolInfo(n, p, i) : RngIntElt, RngIntElt, RngIntElt -> MonStgElt
IsolIsPrimitive(n, p, i) : RngIntElt, RngIntElt, RngIntElt -> BoolElt
IsolMinBlockSize(n, p, i) : RngIntElt, RngIntElt, RngIntElt -> RngIntElt
IsolNumberOfDegreeField(n, p) : RngIntElt, RngIntElt -> RngIntElt
IsolOrder(n, p, i) : RngIntElt, RngIntElt, RngIntElt -> RngIntElt
IsolProcess() : -> Process
IsolProcessOfDegree(d) : . -> Process
IsolProcessOfDegreeField(d, p) : ., . -> Process
IsolProcessOfField(p) : . -> Process
IsIsolated(B) : GRBskt -> BoolElt
IsIsolated(p) : GRPtS -> BoolElt
IsolatedPointsFinder(S,P) : Sch, SeqEnum -> List
IsolatedPointsLiftToMinimalPolynomials(S,P) : Sch, SeqEnum -> BoolElt, SeqEnum
IsolatedPointsLifter(S,P) : Sch, SeqEnum -> BoolElt, Pt
Isolated Points on Schemes (SCHEMES)
IsolatedPointsFinder(S,P) : Sch, SeqEnum -> List
IsolatedPointsLifter(S,P) : Sch, SeqEnum -> BoolElt, Pt
IsolatedPointsLiftToMinimalPolynomials(S,P) : Sch, SeqEnum -> BoolElt, SeqEnum
Basic Functions (DATABASES OF GROUPS)
Database of Soluble Irreducible Groups (DATABASES OF GROUPS)
Database of Soluble Irreducible Groups (DATABASES OF GROUPS)
Group(D, n, p, i) : DB, RngIntElt, RngIntElt, RngIntElt -> GrpMat
IsolGroup(n, p, i) : RngIntElt, RngIntElt, RngIntElt -> GrpMat
GrpData_IsolGroup (Example H66E20)
IsolGroupDatabase() : -> DB
IsolGroupOfDegreeFieldSatisfying(d, p, f) : RngIntElt, RngIntElt, Any -> GrpMat
IsolGroupOfDegreeSatisfying(d, f) : RngIntElt, Any -> GrpMat
IsolGroupSatisfying(f) : Any -> GrpMat
IsolGroupsOfDegreeFieldSatisfying(d, p, f) : RngIntElt, RngIntElt, Any -> SeqEnum
IsolGroupsOfDegreeSatisfying(d, f) : RngIntElt, Any -> SeqEnum
IsolGroupsSatisfying(f) : Any -> SeqEnum
IsolGuardian(n, p, i) : RngIntElt, RngIntElt, RngIntElt -> GrpMat
IsolInfo(n, p, i) : RngIntElt, RngIntElt, RngIntElt -> MonStgElt
IsolIsPrimitive(n, p, i) : RngIntElt, RngIntElt, RngIntElt -> BoolElt
IsolMinBlockSize(n, p, i) : RngIntElt, RngIntElt, RngIntElt -> RngIntElt
IsolNumberOfDegreeField(n, p) : RngIntElt, RngIntElt -> RngIntElt
IsolOrder(n, p, i) : RngIntElt, RngIntElt, RngIntElt -> RngIntElt
IsolProcess() : -> Process
IsolProcessOfDegree(d) : . -> Process
IsolProcessOfDegreeField(d, p) : ., . -> Process
IsolProcessOfField(p) : . -> Process
GLat_Isom (Example H31E4)
Automorphism Group and Isometry Testing (LATTICES WITH GROUP ACTION)
Automorphism Group and Isometry Testing over Fq[t] (LATTICES WITH GROUP ACTION)
Isometries and Similarities (POLAR SPACES)
Isometries and Similarities (POLAR SPACES)
IsIsomorphic(L, M) : Lat, Lat -> BoolElt, AlgMatElt
IsIsometric(L, M) : Lat, Lat -> BoolElt, AlgMatElt
IsIsometric(L, F1, M, F()2) : Lat, [ AlgMatElt ], Lat, [ AlgMatElt ] -> BoolElt, AlgMatElt
IsIsometric(V, W) : ModTupFld, ModTupFld -> BoolElt, Map
IsIsometric(G1, G2) : Mtrx[RngUPol], Mtrx[RngUPol] -> BoolElt, Mtrx, FldFin
IsIsometric(F1, F()2) : [ AlgMatElt ], [ AlgMatElt ] -> BoolElt, AlgMatElt
IsometricCircle(g) : GrpPSL2Elt -> RngElt, RngElt
IsometricCircle(g,D) : GrpPSL2Elt, SpcHyd -> RngElt, RngElt
FldForms_isometric (Example H29E14)
IsometricCircle(g) : GrpPSL2Elt -> RngElt, RngElt
IsometricCircle(g,D) : GrpPSL2Elt, SpcHyd -> RngElt, RngElt
ExtendIsometry(V, U, f) : ModTupFld, ModTupFld, Map -> Map
IsIsometry(f) : Map -> BoolElt
IsIsometry(U, V, f) : ModTupFld, ModTupFld, Map -> BoolElt
IsIsometry(V, g) : ModTupFld, Mtrx -> BoolElt
IsometryGroup(V) : ModTupFld) -> GrpMat
IsometryGroup(F : parameters) : AlgMatElt -> GrpMat
IsometryGroup(S : parameters) : SeqEnum -> GrpMat
WallIsometry(V, I, mu) : ModTupFld, ModTupFld, Map -> Mtrx
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012