[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: Coefficients .. Cohomological
Coefficients(f) : AlgFrElt -> [ RngElt ]
Coefficients(a) : AlgGrpElt -> SeqEnum
Coefficients(u) : AlgPBWElt -> SeqEnum
Coefficients(u) : AlgQUEElt -> SeqEnum
Coefficients(f) : RngMPolElt -> [ RngElt ]
Coefficients(f, i) : RngMPolElt, RngIntElt -> [ RngElt ]
Coefficients(s, n) : RngPowLazElt, RngIntElt -> [RngElt]
Coefficients(f) : RngSerElt -> [ RngElt ], RngIntElt, RngIntElt
Coefficients(e) : RngSerExtElt -> [ RngElt ]
Coefficients(p) : RngUPolElt -> [ RngElt ]
CoefficientsAndMonomials(f) : RngMPolElt -> [ RngElt ], [ RngMPolElt ]
CoefficientsNonSpiral(s, n) : RngPowLazElt, [RngIntElt] -> SeqEnum
CubicSurfaceByHexahedralCoefficients(p) : RngUPolElt -> RngMPolElt
EhrhartCoefficients(P,l) : TorPol,RngIntElt -> [RngIntElt]
ElementToSequence(x) : RngPadElt -> [ RngElt ]
Eltseq(L) : RngDiffOpElt -> SeqEnum
HilbertCoefficients(D,l) : DivTor,RngIntElt -> [RngIntElt]
InitialCoefficients(X) : GRSch -> SeqEnum
LGetCoefficients(L, N) : LSer, RngIntElt -> List
LSetCoefficients(L,cffun) : LSer, Any ->
TorsionCoefficients(X, q) : SmpCpx, RngIntElt -> SeqEnum[RngElt]
TruncateCoefficients(L) : RngDiffOpElt -> RngDiffOpElt
aInvariants(E) : CrvEll -> [ RngElt ]
RngMPol_Coefficients (Example H24E4)
Coefficients and Terms (DIFFERENTIAL RINGS)
Coefficients and Terms (DIFFERENTIAL RINGS)
CoefficientsAndMonomials(f) : RngMPolElt -> [ RngElt ], [ RngMPolElt ]
CoefficientsNonSpiral(s, n) : RngPowLazElt, [RngIntElt] -> SeqEnum
CoefficientSpace(L) : LinearSys -> ModTupFld
Finding Coefficients of Lazy Series (LAZY POWER SERIES RINGS)
ModDed_coerce-quo (Example H55E7)
A ! f : AlgSym, RngMPolElt -> AlgSymElt
IsCoercible(A, f) : AlgSym, RngMPolElt -> BoolElt, AlgSymElt
IsCoercible(X,Q) : Sch,SeqEnum -> BoolElt,Pt
IsCoercible(S, x) : Str, Elt -> Bool, Elt
Bang(D, C) : Str, Str -> Map
Coercion(D, C) : Str, Str -> Map
FldRat_Coercion (Example H20E1)
RngIntRes_Coercion (Example H19E3)
Coercion (ALGEBRAICALLY CLOSED FIELDS)
Coercion (GROUPS)
Coercion (INTEGER RESIDUE CLASS RINGS)
Coercion (INTRODUCTION TO RINGS [BASIC RINGS])
Coercion (PERMUTATION GROUPS)
Coercion (RATIONAL FIELD)
Coercion (REAL AND COMPLEX FIELDS)
Coercion (RING OF INTEGERS)
Coercion (STATEMENTS AND EXPRESSIONS)
Coercion between Matrix Structures (MATRIX GROUPS OVER GENERAL RINGS)
Coercion Maps (MAPPINGS)
Coercions Between Groups and Subgroups (ABELIAN GROUPS)
Coercions Between Groups and Subgroups (POLYCYCLIC GROUPS)
Coercions Between Related Groups (BLACK-BOX GROUPS)
Coercions Between Related Groups (GROUPS OF STRAIGHT-LINE PROGRAMS)
Membership and Coercion (FINITE SOLUBLE GROUPS)
Predicates for Permutations (PERMUTATION GROUPS)
Properties of Permutations (PERMUTATION GROUPS)
GrpPC_coercion (Example H63E14)
ModSym_Coercion-spaces (Example H133E9)
Class Group Coercions (BINARY QUADRATIC FORMS)
Cofactor(M, i, j) : Mtrx, RngIntElt, RngIntElt -> RngElt
Cofactors(M) : Mtrx, RngIntElt -> SeqEnum
Cofactors(M, r) : Mtrx, RngIntElt -> SeqEnum
CohenCoxeterName(k) : RngIntElt -> MonStgElt, RngIntElt
IsArithmeticallyCohenMacaulay(S) : ShfCoh -> BoolElt
IsCohenMacaulay(R) : RngInvar -> BoolElt
IsCohenMacaulay(X) : Sch -> BoolElt
CohenCoxeterName(k) : RngIntElt -> MonStgElt, RngIntElt
COHERENT SHEAVES
COHERENT SHEAVES
GrpCoh_coho-example (Example H68E2)
GrpCoh_coho-module1 (Example H68E1)
PMod_cohom (Example H109E17)
CohomologicalDimension(G, M, i) : GrpFin, ModRng, RngIntElt -> RngIntElt
CohomologicalDimension(G, M, i) : GrpPerm, ModRng, RngIntElt -> RngIntElt
CohomologicalDimension(G, M, n) : GrpPerm, ModRng, RngIntElt -> RngIntElt
CohomologicalDimension(CM, n) : ModCoho, RngIntElt -> RngIntElt
CohomologicalDimension(M, n) : ModGrp, n -> RngIntElt
CohomologicalDimension(M, n) : ModGrp, n -> RngIntElt
CohomologicalDimensions(M, n) : ModGrp, n -> RngIntElt
CohomologicalDimensions(M, n) : ModGrp, n -> RngIntElt
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012