[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: point .. Points
Eltseq(P): PtEll -> [ RngElt ]
Access Operations (ELLIPTIC CURVES)
Arithmetic (ELLIPTIC CURVES)
Associated Structures (ELLIPTIC CURVES)
Creating Points and Blocks (INCIDENCE STRUCTURES AND DESIGNS)
Creation of Points (ELLIPTIC CURVES)
Creation of Points (MODULAR CURVES)
Creation Predicates (ELLIPTIC CURVES)
Finding Points (RATIONAL CURVES AND CONICS)
Operations on Points (ELLIPTIC CURVES)
Operations on Points and Blocks (INCIDENCE STRUCTURES AND DESIGNS)
Point Order (ELLIPTIC CURVES)
Points (ALGEBRAIC CURVES)
Predicates on Points (ELLIPTIC CURVES)
Searching for Points (SCHEMES)
The Point-Set and Block-Set of an Incidence Structure (INCIDENCE STRUCTURES AND DESIGNS)
The Point-Set and Line-Set of a Plane (FINITE PLANES)
The Set of Points and Set of Lines (FINITE PLANES)
Using the Point-Set and Line-Set to Create Points and Lines (FINITE PLANES)
Eltseq(P): PtEll -> [ RngElt ]
Access Operations (ELLIPTIC CURVES)
Arithmetic (ELLIPTIC CURVES)
Creating Points and Blocks (INCIDENCE STRUCTURES AND DESIGNS)
The Point-Set and Block-Set of an Incidence Structure (INCIDENCE STRUCTURES AND DESIGNS)
Curve(P) : SetPtEll -> CrvEll
Associated Structures (ELLIPTIC CURVES)
Scheme_point-count (Example H112E25)
Creation of Points (ELLIPTIC CURVES)
Creation of Points (MODULAR CURVES)
Creation Predicates (ELLIPTIC CURVES)
Finding Points (RATIONAL CURVES AND CONICS)
The Set of Points and Set of Lines (FINITE PLANES)
Using the Point-Set and Line-Set to Create Points and Lines (FINITE PLANES)
The Point-Set and Line-Set of a Plane (FINITE PLANES)
Point Order (ELLIPTIC CURVES)
Predicates on Points (ELLIPTIC CURVES)
Searching for Points (SCHEMES)
ElementToSequence(P) : PtHyp -> SeqEnum
Access Operations (HYPERELLIPTIC CURVES)
Access Operations (HYPERELLIPTIC CURVES)
Access Operations (HYPERELLIPTIC CURVES)
ElementToSequence(P) : PtHyp -> SeqEnum
Access Operations (HYPERELLIPTIC CURVES)
Involution(P) : PtHyp -> PtHyp
Arithmetic of Points (HYPERELLIPTIC CURVES)
Point Counting (ELLIPTIC CURVES OVER FINITE FIELDS)
Creation of Points (HYPERELLIPTIC CURVES)
CrvHyp_point_creation_jacobian (Example H125E15)
CrvHyp_point_creation_jacobian2 (Example H125E16)
CrvHyp_point_creation_jacobian3 (Example H125E17)
Enumeration and Counting Points (HYPERELLIPTIC CURVES)
Order of Points on the Jacobian (HYPERELLIPTIC CURVES)
Predicates on Points (HYPERELLIPTIC CURVES)
IsIdentity(P) : JacHypPt -> BoolElt
Booleans and Predicates for Points (HYPERELLIPTIC CURVES)
Predicates on Points (HYPERELLIPTIC CURVES)
Point Reduction (RATIONAL CURVES AND CONICS)
Rational Points and Group Structure over Finite Fields (HYPERELLIPTIC CURVES)
CrvEll_PointArithmetic1 (Example H120E22)
CrvEll_PointArithmetic2 (Example H120E23)
PointDegree(D, p) : Inc, IncPt -> RngIntElt
PointDegrees(D) : Inc -> [ RngIntElt ]
CrvHyp_PointEnumeration (Example H125E9)
CrvCon_PointFinding (Example H119E9)
PointGraph(D) : Inc -> Grph
PointGraph(D) : Inc -> GrphUnd
PointGraph(P) : Plane -> GrphUnd;
AutomorphismGroup(P) : Plane -> GrpPerm, GSet, GSet, PowMap, Map
PointGroup(P) : Plane -> GrpPerm, GSet, GSet, PowMap, Map
CollineationGroup(P) : Plane -> GrpPerm, GSet, GSet, PowMap, Map
PointGroup(D) : Inc -> GrpPerm, GSet
PointOnRegularModel(M, x) : CrvRegModel, Pt -> SeqEnum, SeqEnum, Tup
CrvEll_PointPredicates (Example H120E26)
CrvCon_PointReduction (Example H119E8)
BasePoints(L) : LinearSys -> SeqEnum
BasePoints(f) : MapSch -> SetEnum
CanonicalDissidentPoints(C) : GRCrvS -> SeqEnum
DefiningPoints(N) : NwtnPgon -> SeqEnum
DivisionPoints(P, n) : PtEll, RngIntElt -> [ PtEll ]
EllipticPoints(G) : GrpPSL2, SpcHyp -> [SpcHypElt]
FixedPoints(g,D) : GrpPSL2Elt, SpcHyd -> SeqEnum
FixedPoints(g,H) : GrpPSL2Elt, SpcHyp -> SeqEnum
Flexes(C) : Sch -> Sch
FrobeniusActionOnPoints(S, q : parameters) : [ PtEll ], RngIntElt -> AlgMatElt
GoodBasePoints(G, str : parameters) : Grp, MonStgElt -> BoolElt, SeqEnum
GoodBasePoints(G: parameters) : GrpMat -> []
HasPointsEverywhereLocally(f,q) : RngUPolElt, RngIntElt -> BoolElt
HasPointsOverExtension(X) : Sch -> BoolElt
HasSingularPointsOverExtension(C) : Sch -> BoolElt
HeegnerPoints(E, D : parameters) : CrvEll[FldRat], RngIntElt -> Tup, PtEll
IntegralPoints(E) : CrvEll -> [ PtEll ], [ Tup ]
IntegralQuarticPoints(Q) : [ RngIntElt ] -> [ SeqEnum ]
IntegralQuarticPoints(Q, P) : [ RngIntElt ], [ RngIntElt ] -> [ SeqEnum ]
IsolatedPointsFinder(S,P) : Sch, SeqEnum -> List
IsolatedPointsLiftToMinimalPolynomials(S,P) : Sch, SeqEnum -> BoolElt, SeqEnum
IsolatedPointsLifter(S,P) : Sch, SeqEnum -> BoolElt, Pt
ModuliPoints(X,E) : CrvMod, CrvEll -> SeqEnum
NonCuspidalQRationalPoints(CN,N) : Crv, RngIntElt -> SeqEnum
NumberOfPoints(D) : Inc -> RngInt
NumberOfPoints(P) : Plane -> RngIntElt
NumberOfPoints(P) : TorPol -> RngIntElt
NumberOfPointsAtInfinity(C) : CrvHyp -> RngIntElt
NumberOfPointsOnCubicSurface(f) : RngMPolElt -> RngIntElt, RngIntElt
NumberOfPointsOnSurface(E, e) : CrvEll, RngIntElt -> RngIntElt
NumberOfRationalPoints(A) : ModAbVar -> RngIntElt, RngIntElt
NumbersOfPointsOnSurface(E, e) : CrvEll, RngIntElt -> [ RngIntElt ], [ RngIntElt ]
Points(E) : CrvEll -> @ PtEll @
Points(C) : CrvHyp -> SetIndx
Points(C, x) : CrvHyp, RngElt -> SetIndx
Points(B) : GRBskt -> SeqEnum
Points(D) : Inc -> { IncPt }
Points(D) : IncGeom -> SetIndx
Points(J) : JacHyp -> SetIndx
Points(J) : JacHyp -> SetIndx
Points(J, a, d) : JacHyp, RngUPolElt, RngIntElt -> SetIndx
Points(J, P) : JacHyp, SrfKumPt -> SetIndx
Points(C : parameters) : CrvCon -> SetIndx
Points(C : parameters) : CrvHyp -> [Pt]
Points(P) : Plane -> { PlanePt }
Points(G) : SchGrpEll -> SetIndx
Points(H, x) : SetPtEll, RngElt -> [ PtEll ]
Points(K,[x1, x2, x3]) : SrfKum, [RngElt] -> SetIndx
Points(C,H,h) : TorCon,TorLatElt,FldRatElt -> SetEnum
Points(P) : TorPol -> SeqEnum[TorLatElt]
PointsAtInfinity(C) : Crv -> SetEnum
PointsAtInfinity(C) : CrvHyp -> SetIndx
PointsAtInfinity(C) : CrvHyp -> SetIndx
PointsAtInfinity(H) : SetPtEll -> @ PtEll @
PointsCubicModel(C, B : parameters) : Crv, RngIntElt -> SeqEnum
PointsKnown(C) : CrvHyp -> BoolElt
PointsOverSplittingField(Z) : Clstr -> SetEnum
PointsQI(C, H) : Crv, RngIntElt -> [Pt]
PointsQI(C, B : parameters) : Crv, RngIntElt -> [Pt]
PossibleCanonicalDissidentPoints(C) : GRCrvS -> SeqEnum
PossibleSimpleCanonicalDissidentPoints(C) : GRCrvS -> SeqEnum
RationalPoints(f,q) : RngUPolElt, RngIntElt -> SetIndx
RationalPoints(Z) : Sch -> SetEnum
RationalPoints(X) : Sch -> SetIndx
RationalPoints(K, Q) : SrfKum, [RngElt] -> SetIndx
RationalPointsByFibration(X) : Sch -> SetIndx
SIntegralDesbovesPoints(Q, S) : [ RngIntElt ], [ RngIntElt ] -> [ SeqEnum ]
SIntegralLjunggrenPoints(Q, S) : [ RngIntElt ], [ RngIntElt ] -> [ SeqEnum ]
SIntegralPoints(E, S) : CrvEll, SeqEnum -> [ PtEll ], [ Tup ]
SIntegralQuarticPoints(Q, S) : [ RngIntElt ], [ RngIntElt ] -> [ SeqEnum ]
SimpleCanonicalDissidentPoints(C) : GRCrvS -> SeqEnum
SingularPoints(C) : Sch -> SetIndx
ThreeTorsionPoints(E : parameters) : CrvEll -> Tup
WeierstrassPlaces(D) : DivCrvElt -> SeqEnum
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012