[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: TangentLine  ..  tensor


TangentLine

   TangentLine(p) : Pt -> Crv

Tangents

   AllTangents(P, A) : Plane, { PlanePt } -> { PlaneLn }
   AllTangents(P, U) : Plane, { PlanePt } -> { PlaneLn }

TangentSheaf

   TangentSheaf(X) : Sch -> ShfCoh

TangentSpace

   TangentSpace(p) : Sch,Pt -> Sch

TangentVariety

   TangentVariety(X) : Sch -> Sch
   Scheme_TangentVariety (Example H112E48)

Tanh

   Tanh(r) : FldReElt -> FldReElt
   Tanh(f) : RngSerElt -> RngSerElt
   Tanh(f) : RngSerElt -> RngSerElt

Tanner

   TannerGraph(C) : Code -> Grph

TannerGraph

   TannerGraph(C) : Code -> Grph

Taquin

   InverseJeuDeTaquin(~t, i, j) : Tbl, RngIntElt, RngIntElt ->
   JeuDeTaquin(~t) : Tbl ->
   JeuDeTaquin(~t, i, j) : Tbl, RngIntElt, RngIntElt ->

Target

   SetTargetRing(~chi, e) : GrpDrchNFElt, RngElt ->
   TargetRestriction(G, C) : GrpDrchNF, FldCyc -> GrpDrchNF

TargetRestriction

   TargetRestriction(G, C) : GrpDrchNF, FldCyc -> GrpDrchNF

Tate

   ArtinTateFormula(f, q, h20) : RngUPolElt, RngIntElt, RngIntElt -> RngIntElt, RngIntElt
   CasselsTatePairing(C, D) : Crv, CrvHyp -> RngIntElt
   CasselsTatePairing(C, D) : CrvHyp, CrvHyp -> RngIntElt
   ReducedTatePairing(P, Q, n) : PtEll, PtEll, RngIntElt -> RngElt
   TateLichtenbaumPairing(D1, D2, m) : DivFunElt, DivFunElt, RngIntElt -> RngElt
   TatePairing(P, Q, n) : PtEll, PtEll, RngIntElt -> RngElt

tate

   The Cassels-Tate Pairing (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
   The Cassels-Tate Pairing (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
   FldFunG_tate (Example H42E40)

TateLichtenbaumPairing

   TateLichtenbaumPairing(D1, D2, m) : DivFunElt, DivFunElt, RngIntElt -> RngElt

TatePairing

   TatePairing(P, Q, n) : PtEll, PtEll, RngIntElt -> RngElt

Tau

   AntiAutomorphismTau(U) : AlgQUE -> Map

TCParameters

   SetGlobalTCParameters(: parameters) : ->
   UnsetGlobalTCParameters() : ->

teich

   Teichmüller Lifts (p-ADIC RINGS AND THEIR EXTENSIONS)

teich-lift

   Teichmüller Lifts (p-ADIC RINGS AND THEIR EXTENSIONS)

Teichmueller

   TeichmuellerLift(u, R) : FldFinElt, RngPadResExt -> RngPadResExtElt
   TeichmuellerSystem(R) : Any -> [RngLocElt]

TeichmuellerLift

   TeichmuellerLift(u, R) : FldFinElt, RngPadResExt -> RngPadResExtElt

TeichmuellerSystem

   TeichmuellerSystem(R) : Any -> [RngLocElt]

Tell

   Tell(F) : File -> RngIntElt

Temp

   GetTempDir() : -> MonStgElt

TEMP_

   MAGMA_TEMP_DIR

Tempname

   Tempname(P) : MonStgElt -> MonStgElt

Tensor

   Tensor Products and Tor (MODULES OVER MULTIVARIATE RINGS)
   IsTensor(G: parameters) : GrpMat -> BoolElt
   IsTensorInduced(G : parameters) : GrpMat -> BoolElt
   LittlewoodRichardsonTensor(p, q) : ModTupRngElt, ModTupRngElt -> SeqEnum, SeqEnum[RngIntElt]
   TensorBasis(G) : GrpMat -> GrpMatElt
   TensorFactors(G) : GrpMat -> GrpMat, GrpMat
   TensorInducedAction(G, g) : GrpMat, GrpMatElt -> GrpPermElt
   TensorInducedBasis(G) : GrpMat -> GrpMatElt
   TensorInducedPermutations(G) : GrpMat -> SeqEnum
   TensorPower(M, n) : ModGrp, RngIntElt -> ModGrp
   TensorPower(R, n, v) : RootDtm, RngIntElt, ModTupRngElt -> LieRepDec
   TensorProduct(A, B) : AlgBas, AlgBas-> AlgBas
   TensorProduct(A, B) : AlgMat, AlgMat -> AlgMat
   TensorProduct(a, b) : AlgMatElt, AlgMatElt -> AlgMatElt
   TensorProduct(G, H) : GrphDir, GrphDir -> GrphDir
   TensorProduct(L, M) : Lat, Lat -> Lat
   TensorProduct(D, E) : LieRepDec, LieRepDec -> .
   TensorProduct(L1, L2, ExcFactors) : LSer, LSer, [<>] -> LSer
   TensorProduct(C, N) : ModCpx, ModMPol -> ModMPol
   TensorProduct(M, N) : ModGrp, ModGrp -> ModGrp
   TensorProduct(M, N) : ModMPol, ModMPol -> ModMPol, Map
   TensorProduct(U, V) : ModTupFld, ModTupFld -> FldElt
   TensorProduct(u, v) : ModTupFldElt, ModTupFldElt -> FldElt
   TensorProduct(R, v, w) : RootDtm, ModTupRngElt, ModTupRngElt -> .
   TensorProduct(Q) : SeqEnum -> ModAlg, Map
   TensorProduct(Q) : SeqEnum -> ModAlg, Map
   TensorProduct(Q) : SeqEnum -> ModAlg, Map
   TensorProduct(S, T) : ShfCoh, ShfCoh -> ShfCoh
   TensorProduct(Q) : [LieRepDec] -> LieRepDec
   TensorWreathProduct(G, H) : GrpMat, GrpPerm -> GrpMat
   GrpMatFF_Tensor (Example H60E4)

tensor

   Tensor Products (MATRIX GROUPS OVER FINITE FIELDS)
   Tensor Products of K[G]-Modules (K[G]-MODULES AND GROUP REPRESENTATIONS)
   Tensor-induced Groups (MATRIX GROUPS OVER FINITE FIELDS)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012