[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: EulerCharacteristic .. Even
EulerCharacteristic(s) : GrphSpl -> RngIntElt
EulerCharacteristic(X) : SmpCpx -> RngIntElt
EulerFactor(A, p) : ArtRep, RngIntElt -> RngUPolElt
EulerFactor(H, t, p) : HypGeomData, FldRatElt, RngIntElt -> RngUPolElt
EulerFactor(J) : JacHyp -> RngUPolElt
EulerFactor(J, K) : JacHyp, FldFin -> RngUPolElt
EulerFactor(L, p) : LSer, RngIntElt -> .var Degree : RngIntElt : var Precision: RngIntElt Default: desGiven an L-series and a prime p, this computes thepth Euler factor, either as a polynomial or a power series.The optional parameter Degree will truncate the series to that length,and the optional parameter Precision is of use when the series isdefined over the complex numbers.
EulerFactorModChar(J) : JacHyp -> RngUPolElt
EulerFactorsByDeformation(Q, Y) : RngMPolElt, SeqEnum -> SeqEnum
ZetaFunctionsByDeformation(Q, Y) : RngMPolElt, SeqEnum -> SeqEnum
JacobianOrdersByDeformation(Q, Y) : RngMPolElt, SeqEnum -> SeqEnum
EulerGamma(R) : FldRe -> FldReElt
EulerianGraphDatabase(n : parameters) : RngIntElt -> DB
EulerianNumber(n, r) : RngIntElt, RngIntElt -> RngIntElt
IsEulerian(G) : Grph -> BoolElt
EulerianGraphDatabase(n : parameters) : RngIntElt -> DB
EulerianNumber(n, r) : RngIntElt, RngIntElt -> RngIntElt
EulerPhi(n) : RngIntElt -> RngIntElt
EulerPhiInverse(m) : RngIntElt -> RngIntElt
EulerProduct(O, B) : RngOrd, RngIntElt -> FldReElt
RawEval(I, GR) : RngOrdFracIdl, GrossenChar -> FldNumElt, FldCycElt, FldCycElt
Grossencharacter(psi, chi, T) : GrpHeckeElt, GrpDrchNFElt, SeqEnum -> GrossenChar
Runtime Evaluation: the eval Expression (STATEMENTS AND EXPRESSIONS)
eval expression
RngLaz_eval (Example H50E9)
Runtime Evaluation: the eval Expression (STATEMENTS AND EXPRESSIONS)
State_eval1 (Example H1E17)
State_eval2 (Example H1E18)
f(p) : Pt, FldFunFracSchElt -> RngElt
Evaluate(f, p) : RngElt,Pt -> RngElt
p @ f : Pt, FldFunFracSchElt -> RngElt
p @ f : Pt, FldFunFracSchElt -> RngElt
P @ f : PtHyp, MapIsoSch -> PtHyp
Evaluate(f, s) : AlgFrElt, [ RngElt ] -> RngElt
Evaluate(a, P) : FldFunElt, PlcFunElt -> RngElt
Evaluate(a, P) : FldFunFracSchElt, PlcCrvElt -> RngElt
Evaluate(f, v, r) : FldFunRatMElt, RngIntElt, RngElt -> FldFunRatMElt
Evaluate(f, r) : FldFunRatUElt, RngElt -> FldFunRatUElt
Evaluate(x, p) : FldNumElt, PlcNumElt -> RngElt
Evaluate(x, p) : FldOrdElt, PlcNumElt -> RngElt
Evaluate(chi,n) : GrpDrchElt, RngIntElt -> RngElt
Evaluate(u, Q) : GrpSLPElt, [ GrpElt ] -> GrpElt
Evaluate(L, s0) : LSer, FldComElt -> FldComElt
Evaluate(a, P) : RngElt, PlcFunElt -> RngElt
Evaluate(f, i, r) : RngMPolElt, RngMPolElt, RngElt -> RngMPolElt
Evaluate(f, s) : RngMPolElt, [ RngElt ] -> RngElt
Evaluate(s, t) : RngPowLazElt, RngPowLazElt -> RngPowLazElt
Evaluate(f, s) : RngSerElt, RngElt -> RngElt
Evaluate(f, phi) : RngUPolElt, MapModAbVar -> MapModAbVar
Evaluate(p, r) : RngUPolElt, RngElt -> RngElt
Evaluate(t, a, b) : Thue, RngIntElt, RngIntElt -> RngIntElt
EvaluateAt(L, p) : LP, Mtrx -> RngIntElt
EvaluateByPowerSeries(m, P) : MapSch, Pt -> Pt
EvaluateClassGroup(O) : RngOrd -> BoolElt
EvaluatePolynomial(C, a, b, c) : CrvHyp, RngElt, RngElt, RngElt -> RngElt
L(s) : RngIntElt, ModAbVarLSer -> RngElt
SpecialEvaluate(F, x) : RngUPolElt, Any -> RngElt
SpecialEvaluate(F, x) : RngUPolTwstElt, RngElt -> RngElt
Evaluation (RATIONAL FUNCTION FIELDS)
Scheme_evaluate-funfld-example (Example H112E9)
EvaluateAt(L, p) : LP, Mtrx -> RngIntElt
EvaluateByPowerSeries(m, P) : MapSch, Pt -> Pt
EvaluateClassGroup(O) : RngOrd -> BoolElt
EvaluatePolynomial(C, a, b, c) : CrvHyp, RngElt, RngElt, RngElt -> RngElt
EvaluationPowerSeries(s, nu, v) : Tup, SeqEnum, SeqEnum -> RngPowAlgElt
GetEvaluationComparison(R) : RngSLPol -> FldFin, RngIntElt
SetEvaluationComparison(R, F, n) : RngSLPol, FldFin, RngIntElt ->
Evaluation (FINITELY PRESENTED ALGEBRAS)
Evaluation (INTEGER RESIDUE CLASS RINGS)
Evaluation and Derivative (POWER, LAURENT AND PUISEUX SERIES)
Evaluation in Magma (MAGMA SEMANTICS)
Evaluation, Interpolation (MULTIVARIATE POLYNOMIAL RINGS)
Evaluation, Interpolation (UNIVARIATE POLYNOMIAL RINGS)
The Evaluation Process Revisited (MAGMA SEMANTICS)
Evaluation and Derivative (POWER, LAURENT AND PUISEUX SERIES)
Evaluation, Interpolation (MULTIVARIATE POLYNOMIAL RINGS)
EvaluationPowerSeries(s, nu, v) : Tup, SeqEnum, SeqEnum -> RngPowAlgElt
EvenSublattice(L) : Lat -> Lat, Map
EvenWeightCode(n) : RngIntElt -> Code
EvenWeightSubcode(C) : Code -> Code
HasSquareSha(J) : JacHyp -> BoolElt
InvolutionClassicalGroupEven (G : parameters) : GrpMat[FldFin] ->GrpMatElt[FldFin], GrpSLPElt, RngIntElt
IsDoublyEven(C) : Code -> BoolElt
IsEven(C) : Code -> BoolElt
IsEven(chi) : GrpDrchElt -> BoolElt
IsEven(chi) : GrpDrchNFElt -> BoolElt
IsEven(G): GrpPerm -> BoolElt
IsEven(g) : GrpPermElt -> BoolElt
IsEven(L) : Lat -> BoolElt
IsEven(n) : RngIntElt -> BoolElt
IsTotallyEven(chi) : GrpDrchElt -> BoolElt
IsTotallyEven(chi) : GrpDrchNFElt -> BoolElt
RecogniseSp4Even(G, q) : Grp, RngIntElt, RngIntElt -> BoolElt, Map, Map
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012