[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: invariants  ..  InverseDefiningPolynomials


invariants

   nauty Invariants (GRAPHS)
   Accessing the Invariants (L-FUNCTIONS)
   Basic Invariants (ALGEBRAIC CURVES)
   Basic Invariants (ARTIN REPRESENTATIONS)
   Basic Invariants (BINARY QUADRATIC FORMS)
   Basic Invariants (MODULES OVER MULTIVARIATE RINGS)
   Basic Numerical Invariants (ADDITIVE CODES)
   Basic Numerical Invariants (LINEAR CODES OVER FINITE FIELDS)
   Construction of Invariants of Specified Degree (INVARIANT THEORY)
   Elementary Invariants (ELLIPTIC CURVES)
   Elementary Invariants (p-ADIC RINGS AND THEIR EXTENSIONS)
   Elementary Properties (SPARSE MATRICES)
   Invariants (CLASS FIELD THEORY)
   Invariants (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
   Invariants (GALOIS THEORY OF NUMBER FIELDS)
   Invariants for Genus One Models (MODELS OF GENUS ONE CURVES)
   Invariants of Isomorphisms (HYPERELLIPTIC CURVES)
   Local Invariants (QUADRATIC FORMS)
   Numerical Invariants (DIFFERENTIAL RINGS)
   Numerical Invariants (FINITE SOLUBLE GROUPS)

Invariants to Read

   CrvEllFldFin_Invariants to Read (Example H121E4)

invariants-isomorphisms

   Invariants of Isomorphisms (HYPERELLIPTIC CURVES)

InvariantSesquilinearForms

   InvariantSesquilinearForms(G) : GrpMat -> SeqEnum[AlgMatElt]

InvariantsMetacyclicPGroup

   InvariantsMetacyclicPGroup (P) : Grp -> Tup

InvariantsOfDegree

   InvariantsOfDegree(R, d) : RngInvar, RngIntElt -> [ RngMPolElt ]
   InvariantsOfDegree(R, d) : RngInvar, RngIntElt -> [ RngMPolElt ]
   InvariantsOfDegree(R, d, k) : RngInvar, RngIntElt, RngIntElt -> [ RngMPolElt ]
   RngInvar_InvariantsOfDegree (Example H110E2)
   RngInvar_InvariantsOfDegree (Example H110E3)

invblock

   Inverse Block: invblock (GRÖBNER BASES)

invcubsurf

   Invariant Theory of Cubic Surfaces (ALGEBRAIC SURFACES)

Inverse

   AllInverseDefiningPolynomials(f) : MapSch -> SeqEnum
   EulerPhiInverse(m) : RngIntElt -> RngIntElt
   FactoredEulerPhiInverse(n) : RngIntElt -> RngIntEltFact
   FactoredInverseDefiningPolynomials(f) : MapSch -> SeqEnum
   GeneralisedRowReduction(ρ) : Map -> Map
   HasInverse(f) : Map -> MonStgElt, Map
   HasKnownInverse(f) : MapSch -> Bool
   Inverse(f) : GrpAutCrvElt -> GrpAutCrvElt
   Inverse(~u) : GrpBrdElt ->
   Inverse(u) : GrpBrdElt -> GrpBrdElt
   Inverse(w) : GrpRWSElt -> GrpRWSElt
   Inverse(w) : GrpRWSElt -> GrpRWSElt
   Inverse(m) : Map -> Map
   Inverse(f) : MapIsoSch -> MapIsoSch
   Inverse(phi) : MapModAbVar -> MapModAbVar, RngIntElt
   Inverse(f) : MapSch -> MapSch
   Inverse(a) : NfdElt -> NfdElt
   InverseDefiningPolynomials(f) : MapSch -> SeqEnum
   InverseJeuDeTaquin(~t, i, j) : Tbl, RngIntElt, RngIntElt ->
   InverseKrawchouk(A, K, n) : RngUPolElt, FldFin, RngIntElt -> RngUPolElt
   InverseMattsonSolomonTransform(A, n) : RngUPolElt, RngIntElt -> RngUPolElt
   InverseMod(E, M) : RngOrdElt, RngIntElt -> RngOrdElt
   InverseRSKCorrespondenceDoubleWord(t1, t2) : Tbl, Tbl -> MonOrdElt, MonOrdElt
   InverseRSKCorrespondenceMatrix(t1, t2) : Tbl, Tbl -> Mat
   InverseRSKCorrespondenceSingleWord(t1, t2) : Tbl, Tbl -> MonOrdElt
   InverseRoot(x, n) : RngPadElt, RngIntElt -> RngPadElt
   InverseRoot(x, y, n) : RngPadElt, RngPadElt, RngIntElt -> RngPadElt
   InverseRowInsert(~t, i, j) : Tbl, RngIntElt, RngIntElt ->
   InverseSquareRoot(x) : RngPadElt -> RngPadElt
   InverseSquareRoot(x, y) : RngPadElt, RngPadElt -> RngPadElt
   InverseWordMap(G) : GrpMat -> Map
   InverseWordMap(G) : GrpPerm -> Map
   LeftInverse(phi : parameters) : MapModAbVar -> MapModAbVar, RngIntElt
   LeftInverseMorphism(phi : parameters) : MapModAbVar -> MapModAbVar
   Modinv(n, m) : RngIntElt, RngIntElt -> RngIntElt
   RightInverse(phi : parameters) : MapModAbVar -> MapModAbVar, RngIntElt
   RightInverseMorphism(phi : parameters) : MapModAbVar -> MapModAbVar
   g ^ -1 : GrpLieElt -> GrpLieElt

inverse

   Inverse (MAPPINGS)
   Inverse Hyperbolic Functions (REAL AND COMPLEX FIELDS)
   Inverse Trigonometric Functions (REAL AND COMPLEX FIELDS)

inverse-hyperbolic

   Inverse Hyperbolic Functions (REAL AND COMPLEX FIELDS)

inverse-trigonometric

   Inverse Trigonometric Functions (REAL AND COMPLEX FIELDS)

InverseDefiningPolynomials

   InverseDefiningPolynomials(f) : MapSch -> SeqEnum

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012