[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: AlgGroup2 .. Alpha
RngInvar_AlgGroup2 (Example H110E21)
Constructing Lie Algebras Generated by Extremal Elements (LIE ALGEBRAS)
Instances of Lie Algebras Generated by Extremal Elements (LIE ALGEBRAS)
Lie Algebras Generated by Extremal Elements (LIE ALGEBRAS)
Properties of Lie Algebras Generated by Extremal Elements (LIE ALGEBRAS)
Studying the Parameter Space (LIE ALGEBRAS)
Constructing Lie Algebras Generated by Extremal Elements (LIE ALGEBRAS)
Instances of Lie Algebras Generated by Extremal Elements (LIE ALGEBRAS)
Properties of Lie Algebras Generated by Extremal Elements (LIE ALGEBRAS)
Studying the Parameter Space (LIE ALGEBRAS)
AlgLie_AlgLieExtrBasis (Example H100E12)
AlgLie_AlgLieExtrConstr (Example H100E11)
AlgLie_AlgLieExtrfVal (Example H100E15)
AlgLie_AlgLieExtrMultInstance (Example H100E14)
AlgLie_AlgLieExtrMultTable (Example H100E13)
AlgLie_AlgLieExtrVarietyDims (Example H100E16)
Construction of Algebra Modules (MODULES OVER AN ALGEBRA)
Construction of Algebra Modules (MODULES OVER AN ALGEBRA)
ModAlg_AlgModCreate (Example H89E14)
HasAdditionAlgorithm(J) : JacHyp -> Bool
Computing the Class Invariants (BRAID GROUPS)
Magma's Evaluation Process (MAGMA SEMANTICS)
Overview of Facilities (FINITELY PRESENTED GROUPS)
Sketch of the Algorithm (FINITELY PRESENTED ALGEBRAS)
AlgorithmicFunctionField(F) : FldFunFracSch -> FldFun, Map
AlgorithmicFunctionField(F) : FldFunFracSch -> FldFun, Map
Algorithms (MODULAR FORMS OVER IMAGINARY QUADRATIC FIELDS)
Algorithms and the Jacquet-Lang-lands Correspondence (HILBERT MODULAR FORMS)
Euclidean Algorithms, GCDs and LCMs (DIFFERENTIAL RINGS)
AlgQEA_AlgQEATP (Example H102E7)
FldFunG_AlgReln1 (Example H42E37)
FldFunG_AlgReln2 (Example H42E38)
AllCliques(G : parameters) : GrphUnd -> SeqEnum
AllCliques(G, k : parameters) : GrphUnd, RngIntElt -> SeqEnum
AllCliques(G, k, m : parameters) : GrphUnd, RngIntElt, BoolElt -> SeqEnum
AllCompactChainMaps(PR) : Rec -> Rec
AllCones(F) : TorFan -> SeqEnum
AllDefiningPolynomials(f) : MapSch -> SeqEnum
Alldeg(G, n) : GrphDir, RngIntElt -> { GrphVert }
Alldeg(G, n) : GrphMultDir, RngIntElt -> { GrphVert }
Alldeg(G, n) : GrphMultUnd, RngIntElt -> { GrphVert }
Alldeg(G, n) : GrphUnd, RngIntElt -> { GrphVert }
AllExtensions(R, n) : RngPad, RngIntElt -> [RngPad]
AllFaces(N) : NwtnPgon -> SeqEnum
Homomorphisms(G, H) : GrpAb, GrpAb -> [Map]
AllHomomorphisms(G, H) : GrpAb, GrpAb -> [Map]
AllInformationSets(C) : Code -> [ [ RngIntElt ] ]
AllInverseDefiningPolynomials(f) : MapSch -> SeqEnum
AllIrreduciblePolynomials(F, m) : FldFin, RngIntElt -> { RngUPolElt }
AllLinearRelations(q,p): SeqEnum, RngIntElt -> Lat
AllNilpotentLieAlgebras(F, d) : Fld, RngIntElt -> SeqEnum
AllPairsShortestPaths(G : parameters) : Grph -> SeqEnum, SeqEnum
AllParallelClasses(D) : Inc -> SeqEnum
AllParallelisms(D) : Inc -> SeqEnum
AllPartitions(G) : GrpPerm -> SetEnum
AllPassants(P, A) : Plane, { PlanePt } -> { PlaneLn }
ExternalLines(P, A) : Plane, { PlanePt } -> { PlaneLn }
AllRays(F) : TorFan -> SeqEnum
AllResolutions(D) : Inc -> SeqEnum
AllResolutions(D, λ) : Inc, RngIntElt -> SeqEnum
AllRoots(a, n) : FldFinElt, RngIntElt -> SeqEnum
AllSecants(P, A) : Plane, { PlanePt } -> { PlaneLn }
LowerSlopes(N) : NwtnPgon -> SeqEnum
AllSlopes(N) : NwtnPgon -> SeqEnum
InnerSlopes(N) : NwtnPgon -> SeqEnum
AllSolvableLieAlgebras(F, d) : Fld, RngIntElt -> SeqEnum
AllSqrts(a) : RngIntResElt -> [ RngIntResElt ]
AllSquareRoots(a) : RngIntResElt -> [ RngIntResElt ]
AllSqrts(a) : RngIntResElt -> [ RngIntResElt ]
AllSquareRoots(a) : RngIntResElt -> [ RngIntResElt ]
AllTangents(P, A) : Plane, { PlanePt } -> { PlaneLn }
AllTangents(P, U) : Plane, { PlanePt } -> { PlaneLn }
AllVertices(N) : NwtnPgon -> SeqEnum
AlmostSimpleGroupDatabase() : -> DB
IdentifyAlmostSimpleGroup(G) : GrpPerm -> Map, GrpPerm
NumberOfPrimitiveGroups(d) : RngIntElt -> RngIntElt
Set_AlmostFermat (Example H9E2)
Set_AlmostFermatIndexed (Example H9E3)
AlmostSimpleGroupDatabase() : -> DB
AlphaBetaData(H) : HypGeomData -> SeqEnum, SeqEnum
MurphyAlphaApproximation(F, b) : RngMPolElt, RngIntElt -> FldReElt
SimplexAlphaCodeZ4(k) : RngIntElt -> Code
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012