[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: integer  ..  Integral


integer

   Ideals of Z (INTEGER RESIDUE CLASS RINGS)
   INTEGER RESIDUE CLASS RINGS
   Polynomials over the Integers (MULTIVARIATE POLYNOMIAL RINGS)
   Polynomials over the Integers (UNIVARIATE POLYNOMIAL RINGS)
   RING OF INTEGERS

integer-ideals

   Ideals of Z (INTEGER RESIDUE CLASS RINGS)

integer-literal

   a1a2...ar

integer-literal-hexadecimal

   0xa1a2...ar

integer-residue

   INTEGER RESIDUE CLASS RINGS

IntegerRing

   Integers() : -> RngInt
   RingOfIntegers(Q) : FldRat -> RngInt
   IntegerRing() : -> RngInt
   IntegerRing(F) : FldFunRat -> RngPol
   IntegerRing(F) : FldPad -> RngPad
   IntegerRing(F) : RngFrac -> Rng
   IntegerRing(R) : RngSer -> RngSerPow
   IntegerRing(E) : RngSerExt -> RngSerExt
   Integers(O) : RngOrd -> RngOrd
   MaximalOrder(F) : FldAlg -> RngOrd
   MaximalOrder(F) : FldNum -> RngOrd
   MaximalOrder(F) : FldQuad -> RngQuad
   MaximalOrder(Q) : FldRat -> RngInt
   ResidueClassRing(m) : RngIntElt -> RngIntRes
   ResidueClassRing(Q) : RngIntEltFact -> RngIntRes

Integers

   DivideOutIntegers(phi) : MapModAbVar -> MapModAbVar, RngIntElt
   IntegerRing() : -> RngInt
   IntegerRing(F) : FldFunRat -> RngPol
   IntegerRing(F) : FldPad -> RngPad
   IntegerRing(F) : RngFrac -> Rng
   IntegerRing(R) : RngSer -> RngSerPow
   IntegerRing(E) : RngSerExt -> RngSerExt
   Integers(O) : RngOrd -> RngOrd
   MaximalOrder(F) : FldAlg -> RngOrd
   MaximalOrder(F) : FldNum -> RngOrd
   MaximalOrder(F) : FldQuad -> RngQuad
   MaximalOrder(Q) : FldRat -> RngInt
   ResidueClassRing(m) : RngIntElt -> RngIntRes
   ResidueClassRing(Q) : RngIntEltFact -> RngIntRes
   RingOfIntegers(R) : RngPad -> RngPad
   RngInt_Integers (Example H18E2)

integers

   Creation of Orders with given Discriminant over the Integers (QUATERNION ALGEBRAS)

IntegerSolutionVariables

   IntegerSolutionVariables(L) : LP -> SeqEnum

IntegerToSequence

   Intseq(n, b) : RngIntElt, RngIntElt -> [RngIntElt]
   IntegerToSequence(n, b) : RngIntElt, RngIntElt -> [RngIntElt]

IntegerToString

   IntegerToString(n) : RngIntElt -> ModStgElt
   IntegerToString(n) : RngIntElt -> MonStgElt
   IntegerToString(n, b) : RngIntElt, RngIntElt -> ModStgElt
   IntegerToString(n, b) : RngIntElt, RngIntElt -> MonStgElt

Integral

   DawsonIntegral(r) : FldReElt -> FldReElt
   ExponentialIntegral(r) : FldReElt -> FldReElt
   ExponentialIntegralE1(r) : FldReElt -> FldReElt
   HalfIntegralWeightForms(chi, w) : GrpDrchElt, FldRatElt -> ModFrm
   HalfIntegralWeightForms(G, w) : GrpPSL2, FldRatElt -> ModFrm
   HalfIntegralWeightForms(N, w) : RngIntElt, FldRatElt -> ModFrm
   Integral(f, i) : RngMPolElt, RngIntElt -> RngMPolElt
   Integral(s) : RngPowLazElt -> RngPowLazElt
   Integral(f) : RngSerElt -> RngSerElt
   Integral(p) : RngUPolElt -> RngUPolElt
   IntegralBasis(F) : FldAlg -> [ FldAlgElt ]
   IntegralBasis(F) : FldNum -> [ FldNumElt ]
   IntegralBasis(Q) : FldRat -> [ FldRatElt ]
   IntegralBasis(M) : ModSym -> Lat
   IntegralBasis(L) : RngLocA -> SeqEnum
   IntegralBasisLattice(L) : Lat -> Lat, RngIntElt
   IntegralClosure(R, F) : Rng, FldFun -> RngFunOrd
   IntegralGroup(G) : GrpMat -> GrpMat, AlgMatElt
   IntegralHeckeOperator(M, n) : ModSym, RngIntElt -> AlgMatElt
   IntegralHomology(A) : ModAbVar -> Lat
   IntegralMapping(M) : ModSym -> Map
   IntegralMatrix(phi) : MapModAbVar -> ModMatRngElt
   IntegralMatrixGroupDatabase() : -> DB
   IntegralMatrixOverQ(phi) : MapModAbVar -> ModMatFldElt
   IntegralModel(E) : CrvEll -> CrvEll, Map, Map
   IntegralModel(C) : CrvHyp -> CrvHyp, MapIsoSch
   IntegralMultiple(D) : DivSchElt -> DivSchElt,RngIntElt
   IntegralNormEquation(a, N, O) : RngElt, Map, RngOrd -> BoolElt, [RngOrdElt]
   IntegralPart(P) : TorPol -> TorPol
   IntegralPoints(E) : CrvEll -> [ PtEll ], [ Tup ]
   IntegralQuarticPoints(Q) : [ RngIntElt ] -> [ SeqEnum ]
   IntegralQuarticPoints(Q, P) : [ RngIntElt ], [ RngIntElt ] -> [ SeqEnum ]
   IntegralSplit(a, O) : FldFunElt, RngFunOrd -> RngFunOrdElt, RngElt
   IntegralSplit(f, X) : FldFunFracSchElt, Sch -> RngMPolElt, RngMPolElt
   IntegralSplit(I) : RngFunOrdIdl -> RngFunOrdIdl, RngElt
   IntegralSplit(I) : RngOrdFracIdl -> RngOrdIdl, RngElt
   IntegralUEA(L) : AlgLie -> AlgIUE
   IntersectionPairingIntegral(A) : ModAbVar -> AlgMatElt
   IsDomain(R) : Rng -> BoolElt
   IsIntegral(C) : CrvHyp -> BoolElt
   IsIntegral(D) : DivSchElt -> BoolElt
   IsIntegral(a) : FldAlgElt -> BoolElt
   IsIntegral(a) : FldNumElt -> BoolElt, RngIntElt
   IsIntegral(q) : FldRatElt -> BoolElt
   IsIntegral(c) : FldReElt -> BoolElt
   IsIntegral(L) : Lat -> BoolElt
   IsIntegral(P) : PtEll -> BoolElt
   IsIntegral(I) : RngFunOrdIdl -> BoolElt
   IsIntegral(n) : RngIntElt -> BoolElt
   IsIntegral(a) : RngLocAElt -> BoolElt, SeqEnum
   IsIntegral(I) : RngOrdFracIdl -> BoolElt
   IsIntegral(x) : RngPadElt -> BoolElt
   IsIntegral(v) : TorLatElt -> BoolElt
   IsIntegralModel(E) : CrvEll -> BoolElt
   IsIntegralModel(E, P) : CrvEll, RngOrdIdl -> BoolElt
   IspIntegral(C, p) : CrvHyp, RngIntElt -> BoolElt
   LogIntegral(r) : FldReElt -> FldReElt
   ModularSymbolToIntegralHomology(A, x) : ModAbVar, SeqEnum -> ModTupFldElt
   QUAToIntegralUEAMap(U) : AlgQUE -> Map
   ThetaSeriesIntegral(L, n) : Lat, RngIntElt -> RngSerElt
   qIntegralBasis(M) : ModSym -> SeqEnum
   GrpData_Integral (Example H66E16)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012