[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: Crystal  ..  Curve


Crystal

   CrystalGraph(R, hw) : RootDtm, SeqEnum -> GrphDir, SeqEnum

CrystalGraph

   CrystalGraph(R, hw) : RootDtm, SeqEnum -> GrphDir, SeqEnum

Crystallographic

   IsCrystallographic(C) : AlgMatElt -> BoolElt
   IsCrystallographic(W) : GrpMat -> BoolElt
   IsCrystallographic(W) : GrpPermCox -> BoolElt
   IsCrystallographic(R) : RootStr -> BoolElt
   IsCrystallographic(R) : RootSys -> BoolElt

CrystGrph

   AlgQEA_CrystGrph (Example H102E12)

CSp

   CSp(n, q) : RngIntElt, RngIntElt -> GrpMat
   ConformalSymplecticGroup(n, q) : RngIntElt, RngIntElt -> GrpMat

css

   CSS Codes (QUANTUM CODES)

css-codes

   CSS Codes (QUANTUM CODES)

CSSCode

   CalderbankShorSteaneCode(C1, C2) : Code, Code -> CodeQuantum
   CSSCode(C1, C2) : Code, Code -> CodeQuantum

CSSQuantConstr

   QECC_CSSQuantConstr (Example H157E9)

CU

   CU(n, q) : RngIntElt, RngIntElt -> GrpMat
   ConformalUnitaryGroup(n, q) : RngIntElt, RngIntElt -> GrpMat

Cubic

   ClassicalCovariantsOfCubicSurface(f) : RngMPolElt -> SeqEnum
   ContravariantsOfCubicSurface(f) : RngMPolElt -> SeqEnum
   CubicFromPoint(E, P) : CrvEll, PtEll -> RngMPolElt, MapSch, Pt
   CubicSurfaceByHexahedralCoefficients(p) : RngUPolElt -> RngMPolElt
   CubicSurfaceFromClebschSalmon(inv) : SeqEnum -> RngMPolElt
   IsIsomorphicCubicSurface(f,g) : MPolElt, MPolElt -> BoolElt, List
   MinimizeCubicSurface(f, p) : RngMPolElt, RngIntElt -> RngMPolElt, Mtrx
   MinimizeReduceCubicSurface(f) : MPolElt -> RngMPolElt, Mtrx
   NumberOfPointsOnCubicSurface(f) : RngMPolElt -> RngIntElt, RngIntElt
   PointsCubicModel(C, B : parameters) : Crv, RngIntElt -> SeqEnum
   ReduceCubicSurface(f) : RngMPolElt -> RngMPolElt, Mtrx
   ThreeDescentCubic(E, α: parameters) : CrvEll, Tup -> Crv, MapSch
   ThreeIsogenyDescentCubic(φ, α) : MapSch, Any -> Crv, MapSch

cubic_ff

   Cubic Surfaces over Finite Fields (ALGEBRAIC SURFACES)

CubicFromPoint

   CubicFromPoint(E, P) : CrvEll, PtEll -> RngMPolElt, MapSch, Pt

Cubics

   AddCubics(cubic1, cubic2 : parameters) : RngMPolElt, RngMPolElt -> RngMPolElt
   AddCubics(cubic1, cubic2 : parameters) : RngMPolElt, RngMPolElt -> RngMPolElt

CubicSurfaceByHexahedralCoefficients

   CubicSurfaceByHexahedralCoefficients(p) : RngUPolElt -> RngMPolElt

CubicSurfaceFromClebschSalmon

   CubicSurfaceFromClebschSalmon(inv) : SeqEnum -> RngMPolElt

Cunningham

   Cunningham(b, k, c) : RngIntElt, RngIntElt, RngIntElt -> SeqEnum

Current

   Current(p) : Process -> Grp
   Current(p) : Process -> GrpMat
   Current(p) : Process -> GrpPerm, MonStgElt
   Current(p) : Process -> GrpPerm, MonStgElt
   CurrentLabel(p) : Process -> RngIntElt, RngIntElt
   CurrentLabel(p) : Process -> RngIntElt, RngIntElt
   CurrentLabel(p) : Process -> RngIntElt, RngIntElt
   CurrentLabel(p) : Process -> RngIntElt, RngIntElt, RngIntElt
   GetCurrentDirectory() : ->
   GetCurrentDirectory() : ->
   PlaceEnumCurrent(R) : PlcEnum -> PlcFunElt

CurrentLabel

   CurrentLabel(p) : Process -> RngIntElt, RngIntElt
   CurrentLabel(p) : Process -> RngIntElt, RngIntElt
   CurrentLabel(p) : Process -> RngIntElt, RngIntElt
   CurrentLabel(p) : Process -> RngIntElt, RngIntElt, RngIntElt

curv

   Creation of Subcanonical Curves (HILBERT SERIES OF POLARISED VARIETIES)

Curve

   AdjointLinearSystemForNodalCurve(C, d) : Crv -> LinearSys
   AdjointIdealForNodalCurve(C) : Crv -> RngMPol
   AssociatedEllipticCurve(qi) : Crv -> CrvEll, Map
   AssociatedEllipticCurve(f) : RngUPolElt -> CrvEll, Map
   BaseCurve(X) : CrvMod -> CrvMod, MapSch
   CanonicalCurve(H) : HypGeomData -> Crv
   CryptographicCurve(F) : FldFin -> CrvEll, PtEll, RngIntElt, RngIntElt
   Curve(C) : Code -> Crv
   Curve(S) : DiffCrv -> Crv
   Curve(a) : DiffCrvElt -> Crv
   Curve(Div) : DivCrv -> Crv
   Curve(D) : DivCrvElt -> Crv
   Curve(F) : FldFunFracSch -> Crv
   Curve(d,p,m) : FldRatElt,GRPtS,FldRatElt -> GRCrvS
   Curve(A) : GrpAutCrv -> Crv
   Curve(J) : JacHyp -> CrvHyp
   Curve(model) : ModelG1 -> Crv
   Curve(P) : PlcCrv -> Crv
   Curve(P) : PlcCrvElt -> Crv
   Curve(p) : Pt -> Crv
   Curve(p) : Pt -> Crv
   Curve(X) : Sch -> Crv
   Curve(X) : Sch -> Crv
   Curve(A,I) : Sch, RngMPol -> Crv
   Curve(A,f) : Sch, RngMPolElt -> CrvPln
   Curve(X,S) : Sch, SeqEnum -> Crv
   Curve(G) : SchGrpEll -> CrvEll
   Curve(P) : SetPt -> Crv
   Curve(P) : SetPt -> Crv
   Curve(H) : SetPtEll -> CrvEll
   CurveQuotient(G): GrpAutCrv -> Crv, MapSch
   EllipticCurve(C) : Crv -> CrvEll, MapSch
   EllipticCurve(C, pl) : Crv, PlcCrvElt -> CrvEll, MapSch
   EllipticCurve(C, P) : Crv, Pt -> CrvEll, MapSch
   EllipticCurve(D, S): DB, MonStgElt -> CrvEll
   EllipticCurve(D, N, I, J): DB, RngIntElt, RngIntElt, RngIntElt -> CrvEll
   EllipticCurve(H) : HypGeomData -> CrvEll
   EllipticCurve(A) : ModAbVar -> CrvEll
   EllipticCurve(f) : ModFrmElt -> CrvEll
   EllipticCurve(M) : ModSym -> CrvEll
   EllipticCurve(f) : RngUPolElt -> CrvEll
   EllipticCurve(C) : Sch -> CrvEll, MapSch
   EllipticCurve([a, b]) : [ RngElt ] -> CrvEll
   EllipticCurveDatabase(: parameters) : -> DB
   EllipticCurveFromPeriods(om: parameters) : [ FldComElt ] -> CrvEll
   EllipticCurveFromjInvariant(j) : RngElt -> CrvEll
   EllipticCurveSearch(N, Effort) : RngOrdIdl, RngIntElt -> SeqEnum
   EllipticCurveSearch(N, Effort) : [], RngIntElt -> SeqEnum
   EmbedPlaneCurveInP3(C) : Crv -> Sch, MapSch
   ExistsModularCurveDatabase(t) : MonStgElt -> BoolElt
   FunctionFieldPlace(p) : PlcCrvElt -> PlcFunElt
   Genus5PlaneCurveModel(C) : Crv -> BoolElt, MapSch
   Genus6PlaneCurveModel(C) : Crv -> BoolElt, MapSch
   HilbertPolynomialOfCurve(g,m) : RngIntElt,RngIntElt -> RngUPolElt
   HyperellipticCurve(E) : CrvEll -> CrvHyp, Map
   HyperellipticCurve(H) : HypGeomData -> CrvHyp
   HyperellipticCurve(P, f, h) : Prj, RngUPolElt, RngUPolElt -> CrvHyp
   HyperellipticCurve(f, h) : RngUPolElt, RngUPolElt -> CrvHyp
   HyperellipticCurveFromG2Invariants(S) : SeqEnum[FldFin] -> CrvHyp, GrpFP
   HyperellipticCurveFromIgusaClebsch(S) : SeqEnum -> CrvHyp
   HyperellipticCurveFromShiodaInvariants(JI) : SeqEnum[FldFin] -> CrvHyp, GrpPerm
   HyperellipticCurveOfGenus(g, f, h) : RngIntElt, RngUPolElt, RngUPolElt -> CrvHyp
   IsConstantCurve(E) : CrvEll[FldFunRat] -> BoolElt, CrvEll
   IsCurve(X) : Sch -> BoolElt,Crv
   IsCurve(X) : Sch -> BoolElt,Crv
   IsEllipticCurve(C) : CrvHyp -> BoolElt, CrvEll, MapIsoSch, MapIsoSch
   IsEllipticCurve(C) : CrvHyp -> BoolElt, CrvEll, MapIsoSch, MapIsoSch
   IsEllipticCurve([a, b]) : [ RngElt ] -> BoolElt, CrvEll
   IsHyperellipticCurve(X) : Sch -> BoolElt,CrvHyp
   IsHyperellipticCurve([f, h]) : [ RngUPolElt ] -> BoolElt, CrvHyp
   IsHyperellipticCurveOfGenus(g, [f, h]) : RngIntElt, [RngUPolElt] -> BoolElt, CrvHyp
   IsInSmallModularCurveDatabase(N) : RngIntElt -> Boolelt
   IsModularCurve(X) : Sch -> BoolElt
   IsNodalCurve(C) : Crv-> BoolElt
   IsPlaneCurve(X) : Sch -> BoolElt, CrvPln
   IsRationalCurve(S) : Sch -> BoolElt, CrvRat
   IsRationalCurve(X) : Sch -> BoolElt,CrvRat
   IsSubcanonicalCurve(g,d,Q) : RngIntElt,RngIntElt,SeqEnum -> BoolElt,GRCrvK
   ModularCurve(D, N) : DB, RngIntElt -> CrvMod
   ModularCurve(X,t,N) : Sch, MonStgElt, RngIntElt -> CrvMod
   ModularCurveDatabase(t) : MonStgElt -> DB
   ModularCurveQuotient(N,A) : RngIntElt, [RngIntElt] -> Crv
   ModularHyperellipticCurve(B) : [ModSym] -> BoolElt, RngUPol
   ModularHyperellipticCurve(F) : [RngSerPowElt] -> BoolElt, RngUPol
   ModularNonHyperellipticCurveGenus3(F) : [RngSerPowElt] -> BoolElt, RngMPolElt
   NewModularHyperellipticCurve(B) : [ModSym] -> BoolElt, RngUPol
   NewModularHyperellipticCurve(F) : [RngSerPowElt] -> BoolElt, RngUPol
   NewModularNonHyperellipticCurveGenus3(B) : [ModSym] -> BoolElt, RngMPolElt
   NewModularNonHyperellipticCurveGenus3(F) : [RngSerPowElt] -> BoolElt, RngMPolElt
   Parametrization(C) : CrvCon -> MapSch
   RandomCurveByGenus(g, K) : RngIntElt, Fld -> Crv
   RandomNodalCurve(d, g, P) : RngIntElt, RngIntElt, Prj -> CrvPln
   RandomOrdinaryPlaneCurve(d, S, P) : RngIntElt, SeqEnum, Prj -> CrvPln, RngMPol
   RationalCurve(X, f) : Prj, RngMPolElt -> CrvRat
   ReducePlaneCurve(f) : MPolElt -> RngMPolElt, Mtrx
   ResolveAffineCurve(p) : RngMPolElt -> List, List, List, RngIntElt
   ResolveProjectiveCurve(p) : RngMPolElt -> List, List, List, RngIntElt
   Scheme(P) : SetPtEll -> CrvEll
   SmallModularCurve(N) : RngIntElt -> Crv
   SubcanonicalCurve(g,d,Q) : RngIntElt,RngIntElt,SeqEnum -> GRCrvK
   SupersingularEllipticCurve(K) : FldFin -> CrvEll

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012