[____] [____] [_____] [____] [__] [Index] [Root]
Subindex: symmetric .. Symplectic
Construction of Elements (GROUPS)
Creation of a Permutation Group (PERMUTATION GROUPS)
Creation of Symmetric Functions (SYMMETRIC FUNCTIONS)
Invariants of the Symmetric Group (INVARIANT THEORY)
Symmetric Polynomials (POLYNOMIAL RING IDEAL OPERATIONS)
Symmetric Powers (DIFFERENTIAL RINGS)
AlgSym_symmetric polynomials and symmetric functions (Example H146E12)
Creation of Symmetric Functions (SYMMETRIC FUNCTIONS)
Symmetric Group Character (SYMMETRIC FUNCTIONS)
AlgSym_symmetric-polynomials-and-symmetric-functions (Example H146E16)
Symmetric Powers (DIFFERENTIAL RINGS)
GrpFP_1_Symmetric1 (Example H70E5)
GrpFP_1_Symmetric2 (Example H70E6)
GrpGPC_Symmetric2 (Example H72E5)
SymmetricBilinearForm(G: parameters) : GrpMat -> BoolElt, AlgMatElt, MonStgElt [,SeqEnum]
SymmetricBilinearForm(f) : RngMPolElt -> ModMatRngElt
SymmetricCharacter(sf): AlgSymElt -> AlgChtrElt
SymmetricCharacter(pa) : SeqEnum -> AlgChtrElt
SymmetricCharacterTable(d) : RngIntElt -> SeqEnum
SymmetricCharacterValue(pa, pe) : SeqEnum, GrpPermElt -> RngElt
SymmetricComponents(x, n) : AlgChtrElt, RngIntElt -> SetEnum
SymmetricElementToWord (G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt
SymmetricElementToWord (G, g) : Grp, GrpElt -> BoolElt, GrpSLPElt
SymmetricForms(G) : GrpMat -> [ AlgMatElt ]
AntisymmetricForms(G) : GrpMat -> [ AlgMatElt ]
InvariantForms(G) : GrpMat -> [ AlgMatElt ]
InvariantForms(G, n) : GrpMat, RngIntElt -> [ AlgMatElt ]
SymmetricForms(L) : Lat -> [ AlgMatElt ]
SymmetricForms(L, n) : Lat, RngIntElt -> [ AlgMatElt ]
SFA(R) : Rng -> AlgSym
SymmetricFunctionAlgebra(R) : Rng -> AlgSym
SFAElementary(R) : Rng -> AlgSym
SymmetricFunctionAlgebraElementary(R) : Rng -> AlgSym
SFAHomogeneous(R) : Rng -> AlgSym
SymmetricFunctionAlgebraHomogeneous(R) : Rng -> AlgSym
SFAMonomial(R) : Rng -> AlgSym
SymmetricFunctionAlgebraMonomial(R) : Rng -> AlgSym
SFAPower(R) : Rng -> AlgSym
SymmetricFunctionAlgebraPower(R) : Rng -> AlgSym
SFASchur(R) : Rng -> AlgSym
SymmetricFunctionAlgebraSchur(R) : Rng -> AlgSym
SymmetricGroup(GrpPerm, n) : Cat, RngIntElt -> GrpPerm
Sym(GrpPerm, n) : Cat, RngIntElt -> GrpPerm
Sym(n) : RngIntElt -> GrpPerm
Sym(X) : Set -> GrpPerm
SymmetricGroup(C, n) : Cat, RngIntElt -> GrpFin
SymmetricGroup(GrpFP, n) : Cat, RngIntElt -> GrpFP
SymmetricMatrix(R, Q) : Rng, [ RngElt ] -> Mtrx
SymmetricMatrix(f) : RngMPolElt -> Mtrx
SymmetricMatrix(Q) : [ RngElt ] -> Mtrx
SymmetricNormaliser(G) : GrpPerm -> GrpPerm
SymmetricNormalizer(G) : GrpPerm -> GrpPerm
SymmetricNormaliser(G) : GrpPerm -> GrpPerm
SymmetricNormalizer(G) : GrpPerm -> GrpPerm
SymmetricPower(a,r) : AlgMatElt, RngIntElt -> AlgMatElt
SymmetricPower(L, m) : LSer, RngIntElt -> LSer
SymmetricPower(V, n) : ModAlg, RngIntElt -> ModAlg, Map
SymmetricPower(V, n) : ModAlg, RngIntElt -> ModAlg, Map
SymmetricPower(L, m) : RngDiffOpElt, RngIntElt -> RngDiffOpElt
SymmetricPower(R, n, v) : RootDtm, RngIntElt, ModTupRngElt -> LieRepDec
SymmetricRepresentation(B) : GrpBrd -> Map
SymmetricRepresentation(pa, pe) : SeqEnum, GrpPermElt -> AlgMatElt
SymmetricRepresentationOrthogonal(pa, pe) : SeqEnum,GrpPermElt -> AlgMatElt
SymmetricRepresentationSeminormal(pa, pe) : SeqEnum,GrpPermElt -> AlgMatElt
SymmetricSquare(a) : AlgMatElt -> AlgMatElt
SymmetricSquare(L) : Lat -> Lat
SymmetricSquare(M) : ModGrp -> ModGrp
SymmetricSquarePreimage (G, g) : GrpMat, GrpMatElt -> GrpMatElt
SymmetricToQuadraticForm(J) : AlgMatElt -> AlgMatElt
SymmetricWeightEnumerator(C): Code -> RngMPolElt
Symmetrization(x, p) : AlgChtrElt, [ RngIntElt ] -> AlgChtrElt
Symmetrization (CHARACTERS OF FINITE GROUPS)
Symmetry and Regularity Properties of Graphs (GRAPHS)
Transitivity Properties (FINITE PLANES)
Symmetry and Regularity Properties of Graphs (GRAPHS)
Transitivity Properties (FINITE PLANES)
CSp(n, q) : RngIntElt, RngIntElt -> GrpMat
ConformalSymplecticGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
IsPseudoSymplecticSpace(W) : ModTupFld -> BoolElt
IsSymplecticGroup(G) : GrpMat -> BoolElt
IsSymplecticMatrix(A) : Mtrx -> BoolElt
IsSymplecticSelfDual(C) : CodeAdd -> BoolElt
IsSymplecticSelfOrthogonal(C) : CodeAdd -> BoolElt
IsSymplecticSpace(W) : ModTupFld -> BoolElt
ProjectiveSigmaSymplecticGroup(arguments)
ProjectiveSymplecticGroup(arguments)
RandomSymplecticMatrix(g, m) : RngIntElt, RngIntElt -> Mtrx
SymplecticComponent(x, p) : AlgChtrElt, [ RngIntElt ] -> AlgChtrElt
SymplecticComponents(x, n) : AlgChtrElt, RngIntElt -> SetEnum
SymplecticDual(C) : CodeAdd -> CodeAdd
SymplecticForm(G: parameters) : GrpMat -> BoolElt, AlgMatElt [,SeqEnum]
SymplecticGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
SymplecticInnerProduct(v1, v2) : ModTupFldElt, ModTupFldElt -> FldFinElt
SymplecticMatrixGroupDatabase() : -> DB
SymplecticSpace(J) : AlgMatElt -> ModTupRng
SymplecticTransvection(a, alpha) : ModTupRngElt, FldElt -> AlgMatElt
GrpASim_Symplectic (Example H65E1)
GrpData_Symplectic (Example H66E18)
[____] [____] [_____] [____] [__] [Index] [Root]
Version: V2.19 of
Mon Dec 17 14:40:36 EST 2012