[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: GaloisGroupInvariant  ..  GammaRootSpace


GaloisGroupInvariant

   GaloisGroupInvariant(G, H) : GrpPerm, GrpPerm -> RngSLPolElt

GaloisGroups

   FldFunG_GaloisGroups (Example H42E13)
   RngOrdGal_GaloisGroups (Example H38E4)

GaloisGroups2

   FldFunG_GaloisGroups2 (Example H42E14)

GaloisImage

   GaloisImage(x, i) : RngPadElt, RngIntElt -> RngPadElt

GaloisOrbit

   GaloisOrbit(x) : AlgChtrElt -> { AlgChtrElt }

GaloisProof

   GaloisProof(f, S) : RngUPolElt, GaloisData -> BoolElt

GaloisQuotient

   GaloisQuotient(K, Q) : FldNum, GrpPerm -> SeqEnum[FldNum]

GaloisRepresentation

   WeilRepresentation(pi) : RepLoc -> GrpPerm, Map, RngPad, ModGrp
   GaloisRepresentation(pi) : RepLoc -> GrpPerm, Map, RngPad, ModGrp

GaloisRing

   GR(q, d) : RngIntElt, RngIntElt -> RngGal
   GaloisRing(q, d) : RngIntElt, RngIntElt -> RngGal
   GaloisRing(p, a, d) : RngIntElt, RngIntElt, RngIntElt -> RngGal
   GaloisRing(p, a, D) : RngIntElt, RngIntElt, RngUPol -> RngGal
   GaloisRing(q, D) : RngIntElt, RngUPol -> RngGal

GaloisRoot

   GaloisRoot(i, S) : RngIntElt, GaloisData -> RngElt
   GaloisRoot(f, i, S) : RngUPolElt, RngIntElt, GaloisData -> RngElt

GaloisSplittingField

   GaloisSplittingField(f) : RngUPolElt -> FldNum, [FldNumElt], GrpPerm, [[FldNumElt]]

GaloisSubfieldTower

   GaloisSubfieldTower(S, L) : GaloisData, [GrpPerm] -> FldNum, [Tup<RngSLPolElt, RngUPolElt, [GrpPermElt]>], UserProgram, UserProgram

GaloisSubgroup

   GaloisSubgroup(K, U) : FldNum, GrpPerm -> FldNum, UserProgram

Gamma

   AGammaL(arguments)
   AffineGammaLinearGroup(arguments)
   EulerGamma(R) : FldRe -> FldReElt
   Gamma(r) : FldReElt -> FldReElt
   Gamma(r, s) : FldReElt, FldReElt -> FldReElt
   Gamma(f) : RngSerElt -> RngSerElt
   GammaAction(A) : GGrp -> Map[Grp, GrpAuto]
   GammaAction(R) : RootDtm -> Rec
   GammaActionOnSimples(R) : RootDtm -> HomGrp
   GammaArray(H) : HypGeomData -> SeqEnum
   GammaD(s) : FldReElt -> FldReElt
   GammaFactors(L) : LSer -> Seqenum
   GammaGroup(k, G) : Fld, GrpLie -> GGrp
   GammaGroup(k, A) : Fld, GrpLieAuto -> GGrp
   GammaGroup(Gamma, A, action) : Grp, Grp, Map[Grp, GrpAuto] -> GGrp
   GammaGroup(alpha) : OneCoC -> GGrp
   GammaList(H) : HypGeomData -> List
   GammaOrbitOnRoots(R,r) : RootDtm, RngIntElt -> GSetEnum
   GammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
   GammaOrbitsRepresentatives(R, delta) : RootDtm, RngIntElt -> SeqEnum
   GammaRootSpace(R) : RootDtm, RngIntElt -> GSetEnum
   GammaUpper0(N) : RngIntElt -> GrpPSL2
   GammaUpper1(N) : RngIntElt -> GrpPSL2
   InducedGammaGroup(A, B) : GGrp, Grp -> GGrp
   LogGamma(r) : FldReElt -> FldReElt
   LogGamma(f) : RngSerElt -> RngSerElt
   ProjectiveGammaLinearGroup(arguments)
   ProjectiveGammaUnitaryGroup(arguments)

gamma

   Creation of Gamma-groups (COHOMOLOGY AND EXTENSIONS)
   Gamma, Bessel and Associated Functions (REAL AND COMPLEX FIELDS)

gamma-bessel

   KBessel2(n, s) : FldReElt, FldReElt -> FldReElt
   Gamma, Bessel and Associated Functions (REAL AND COMPLEX FIELDS)

gamma-groups

   Creation of Gamma-groups (COHOMOLOGY AND EXTENSIONS)

Gamma0

   DimensionCuspFormsGamma0(N, k) : RngIntElt, RngIntElt -> RngIntElt
   DimensionNewCuspFormsGamma0(N, k) : RngIntElt, RngIntElt -> RngIntElt
   Gamma0(N) : RngIntElt -> GrpPSL2
   IsGamma0(G) : GrpPSL2 -> BoolElt
   IsGamma0(M) : ModFrm -> BoolElt

Gamma1

   DimensionCuspFormsGamma1(N, k) : RngIntElt, RngIntElt -> RngIntElt
   DimensionNewCuspFormsGamma1(N, k) : RngIntElt, RngIntElt -> RngIntElt
   Gamma1(N) : RngIntElt -> GrpPSL2
   IsGamma1(G) : GrpPSL2 -> BoolElt
   IsGamma1(M) : ModFrm -> BoolElt

GammaAction

   GammaAction(A) : GGrp -> Map[Grp, GrpAuto]
   GammaAction(R) : RootDtm -> Rec

GammaActionOnSimples

   GammaActionOnSimples(R) : RootDtm -> HomGrp

GammaArray

   GammaArray(H) : HypGeomData -> SeqEnum

GammaCorootSpace

   GammaCorootSpace(R) : RootDtm, RngIntElt -> GSetEnum
   GammaRootSpace(R) : RootDtm, RngIntElt -> GSetEnum

GammaD

   GammaD(s) : FldReElt -> FldReElt

GammaFactors

   GammaFactors(L) : LSer -> Seqenum

GammaGroup

   GammaGroup(k, G) : Fld, GrpLie -> GGrp
   GammaGroup(k, A) : Fld, GrpLieAuto -> GGrp
   GammaGroup(Gamma, A, action) : Grp, Grp, Map[Grp, GrpAuto] -> GGrp
   GammaGroup(alpha) : OneCoC -> GGrp

GammaList

   GammaList(H) : HypGeomData -> List

GammaOrbitOnRoots

   GammaOrbitOnRoots(R,r) : RootDtm, RngIntElt -> GSetEnum

GammaOrbitsOnRoots

   PositiveGammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
   NegativeGammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
   ZeroGammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]
   GammaOrbitsOnRoots(R) : RootDtm -> SeqEnum[GSetEnum]

GammaOrbitsRepresentatives

   GammaOrbitsRepresentatives(R, delta) : RootDtm, RngIntElt -> SeqEnum

GammaRootSpace

   GammaCorootSpace(R) : RootDtm, RngIntElt -> GSetEnum
   GammaRootSpace(R) : RootDtm, RngIntElt -> GSetEnum

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012