[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: divisor  ..  Domain


divisor

   Arithmetic of Divisors (ALGEBRAIC CURVES)
   Creation of Divisors (ALGEBRAIC CURVES)
   Divisor Group (ALGEBRAIC CURVES)
   Divisors (RING OF INTEGERS)
   Functions related to Divisor Class Groups of Global Function Fields (ALGEBRAIC FUNCTION FIELDS)
   Greatest Common Divisors (QUADRATIC FIELDS)
   Other Operations on Divisors (ALGEBRAIC CURVES)

divisor-arithmetic

   Arithmetic of Divisors (ALGEBRAIC CURVES)

divisor-class-group

   Functions related to Divisor Class Groups of Global Function Fields (ALGEBRAIC FUNCTION FIELDS)

divisor-class-group-example

   Crv_divisor-class-group-example (Example H114E33)

divisor-creation

   Creation of Divisors (ALGEBRAIC CURVES)

divisor-equations

   Crv_divisor-equations (Example H114E28)

divisor-group

   Div1 ne Div2 : DivCrv, DivCrv -> BoolElt
   Divisor Group (ALGEBRAIC CURVES)

divisor-other

   Other Operations on Divisors (ALGEBRAIC CURVES)

divisor1

   Crv_divisor1 (Example H114E29)

divisor2

   Crv_divisor2 (Example H114E30)

DivisorClassGroup

   DivisorClassGroup(C) : RngCox -> TorLat

DivisorClassLattice

   DivisorClassLattice(C) : RngCox -> TorLat
   DivisorClassLattice(X) : TorVar -> TorLat

DivisorGroup

   DivisorGroup(C) : Crv -> DivCrv
   DivisorGroup(D) : DivCrvElt -> DivCrv
   DivisorGroup(F) : FldFun -> DivFun
   DivisorGroup(F) : FldFun -> DivFun
   DivisorGroup(F) : FldFunG -> DivFun
   DivisorGroup(X) : Sch -> DivSch
   DivisorGroup(X) : TorVar -> DivTor
   Places(K) : FldNum -> PlcNum
   Places(K) : FldNum -> PlcNum

DivisorIdeal

   DivisorIdeal(I) : AlgFP -> AlgFr
   DivisorIdeal(I) : RngMPolRes -> RngMPol

DivisorMap

   DivisorMap(D) : DivCrvElt -> MapSch
   DivisorMap(S) : ShfCoh -> Map,Sch

DivisorOfDegreeOne

   DivisorOfDegreeOne(C) : Crv[FldFin] -> DivCrvElt
   DivisorOfDegreeOne(F) : FldFunG -> DivFunElt

Divisors

   Divisors (ALGEBRAIC FUNCTION FIELDS)
   Divisors(n) : RngIntElt -> [ RngIntElt ]
   Divisors(a) : RngOrdElt -> SeqEnum[RngOrdElt]
   Divisors(I) : RngOrdIdl -> [<RngOrdIdl, RngIntElt>]
   ElementaryDivisors(a) : AlgMatElt -> [RngElt]
   ElementaryDivisors(M, N) : ModDed, ModDed -> SeqEnum
   ElementaryDivisors(A) : Mtrx -> [RngElt]
   ElementaryDivisors(A) : MtrxSprs -> [RngElt]
   NegativePrimeDivisors(D) : DivSchElt -> SeqEnum
   NumberOfDivisors(n) : RngIntElt -> RngIntElt
   NumberOfSmoothDivisors(n, m, P) : RngIntElt, RngIntElt, SeqEnum[RngElt] -> RngElt
   PrimeBasis(n) : RngIntElt -> [RngIntElt]
   PrimeBasis(n) : RngIntElt -> [RngIntElt]
   SumOfDivisors(n) : RngIntElt -> RngIntElt

divisors

   Divisors (ALGEBRAIC CURVES)
   Divisors (SCHEMES)
   Elementary Divisors (Smith Form) (SPARSE MATRICES)
   Invariant Divisors and Riemann-Roch Spaces (TORIC VARIETIES)
   Places and Divisors (NUMBER FIELDS)
   Places and Divisors (ORDERS AND ALGEBRAIC FIELDS)
   SUPERSINGULAR DIVISORS ON MODULAR CURVES
   FldFunG_divisors (Example H42E36)

divisors-class

   FldFunG_divisors-class (Example H42E39)

divisors-simple_rel

   FldFunG_divisors-simple_rel (Example H42E35)

DivisorSigma

   DivisorSigma(i, n) : RngIntElt, RngIntElt -> RngIntElt

DivisorToSheaf

   RiemannRochBasis(X, I) : Sch, RngMPol -> SeqEnum, RngMPolElt, ShfCoh
   DivisorToSheaf(X, I) : Sch, RngMPol -> ShfCoh

Dodecacode

   Dodecacode() : -> CodeQuantum

DodecacodeQuant

   QECC_DodecacodeQuant (Example H157E7)

Dold

   PolylogDold(m, s) : RngIntElt, FldComElt -> FldComElt
   PolylogP(m, s) : RngIntElt, FldComElt -> FldComElt
   PolylogD(m, s) : RngIntElt, FldComElt -> FldComElt

Domain

   DisplayFareySymbolDomain(FS,file) : SymFry, MonStgElt -> SeqEnum
   Domain(G) : GrpDrchNF -> FldNum
   Domain(G) : GrpHecke -> PowIdl
   Domain(A) : GrpLieAuto -> GrpLie
   Domain(H) : HomModAbVar -> ModAbVar
   Domain(f) : Map -> Grp
   Domain(f) : Map -> Grp
   Domain(f) : Map -> Grp
   Domain(f) : Map -> Grp
   Domain(f) : Map -> Str
   Domain(f) : MapIsoSch -> CrvHyp
   Domain(phi) : MapModAbVar -> ModAbVar
   Domain(f) : MapSch -> Sch
   Domain(f) : ModMatFldElt -> ModAlg
   Domain(S) : ModMatRng -> ModTupRng
   Domain(a) : ModMatRngElt -> ModTupRng
   Domain(a) : ModMatRngElt -> ModTupRng
   Domain(f) : ModMPolHom -> ModMPol
   Domain(P) : PowMap -> Str
   Domain(s) : RngPowAlgElt -> RngMPol
   Domain(f) : ShfHom -> ShfCoh
   FundamentalDomain(G) : GrpPSL2 -> SeqEnum
   FundamentalDomain(G) : GrpPSL2 -> SeqEnum
   FundamentalDomain(G,D) : GrpPSL2, SpcHyd -> SeqEnum
   FundamentalDomain(FS) : SymFry -> SeqEnum
   IsDomain(R) : Rng -> BoolElt
   IsDomain(R) : RngDiff -> BoolElt
   IsEuclideanDomain(F) : FldAlg -> BoolElt
   IsEuclideanDomain(F) : FldNum -> BoolElt
   IsEuclideanDomain(R) : Rng -> BoolElt
   IsPID(R) : Rng -> BoolElt
   IsUFD(R) : Rng -> BoolElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012