HANDBOOK OF MAGMA FUNCTIONS

Volume 9

Commutative Algebra and Algebraic (Geometry

John Cannon Wieb Bosma
Claus Fieker Allan Steel

Editors

Version 2.19
Sydney
December 17, 2012

ii

MAGMA

COMPUTER®ALGEBRA

HANDBOOK OF MAGMA FUNCTIONS

Editors:
John Cannon Wieb Bosma Claus Fieker Allan Steel

Handbook Contributors:

Geoff Bailey, Wieb Bosma, Gavin Brown, Nils Bruin, John
Cannon, Jon Carlson, Scott Contini, Bruce Cox, Brendan
Creutz, Steve Donnelly, Tim Dokchitser, Willem de Graaf,
Andreas-Stephan Elsenhans, Claus Fieker, Damien Fisher,
Volker Gebhardt, Sergei Haller, Michael Harrison, Florian
Hess, Derek Holt, David Howden, Al Kasprzyk, Markus
Kirschmer, David Kohel, Axel Kohnert, Dimitri Leemans,
Paulette Lieby, Graham Matthews, Scott Murray, Eamonn
O’Brien, Dan Roozemond, Ben Smith, Bernd Souvignier,
William Stein, Allan Steel, Damien Stehlé, Nicole Suther-
land, Don Taylor, Bill Unger, Alexa van der Waall, Paul
van Wamelen, Helena Verrill, John Voight, Mark Watkins,
Greg White

Production Editors:

Wieb Bosma Claus Fieker Allan Steel Nicole Sutherland

HTML Production:
Claus Fieker Allan Steel

VOLUME 9: OVERVIEW

XIv. COMMUTATIVE ALGEBRA 3175
105 GROBNER BASES 3177
106 POLYNOMIAL RING IDEAL OPERATIONS 3221
107 LOCAL POLYNOMIAL RINGS 3269
108 AFFINE ALGEBRAS 3283
109 MODULES OVER MULTIVARIATE RINGS 3299
110 INVARIANT THEORY 3351
111 DIFFERENTIAL RINGS 3397
XV ALGEBRAIC GEOMETRY 3465
112 SCHEMES 3467
113 COHERENT SHEAVES 3597
114 ALGEBRAIC CURVES 3629
115 RESOLUTION GRAPHS AND SPLICE DIAGRAMS 3735
116 ALGEBRAIC SURFACES 3751
117 HILBERT SERIES OF POLARISED VARIETIES 3817

118 TORIC VARIETIES 3851

vi

XIV

105

106

VOLUME 9: CONTENTS

VOLUME 9: CONTENTS

COMMUTATIVE ALGEBRA

GROBNER BASES

105.1 Introduction

105.2 Representation and Monomial Orders

105.2.1 Lexicographical: lex

105.2.2 Graded Lexicographical: glex

105.2.3 Graded Reverse Lexicographical: grevlex
105.2.4 Graded Reverse Lexicographical (Weighted): grevlexw
105.2.5 Elimination (k): elim

105.2.6 Elimination List: elim

105.2.7 Inverse Block: invblock

105.2.8 Univariate: univ

105.2.9 Weight: weight

105.3 Polynomial Rings and Ideals

105.3.1 Creation of Polynomial Rings and Accessing their Monomial Orders
105.3.2 Creation of Graded Polynomial Rings
105.3.3 Element Operations Using the Grading
105.3.4 Creation of Ideals and Accessing their Bases
105.4 Grébner Bases

105.4.1 Grobner Bases over Fields

105.4.2 Grobner Bases over Euclidean Rings

105.4.3 Construction of Grobner Bases

105.4.4 Related Functions

105.4.5 Grobner Bases of Boolean Polynomial Rings
105.4.6 Verbosity

105.4.7 Degree-d Grobner Bases

105.5 Changing Coefficient Ring

105.6 Changing Monomial Order

105.7 Hilbert-driven Grébner Basis Construction
105.8 SAT solver

105.9 Bibliography

POLYNOMIAL RING IDEAL OPERATIONS

106.1 Introduction

106.2 Creation of Polynomial Rings and their Ideals
106.3 First Operations on Ideals

106.3.1 Simple Ideal Constructions

106.3.2 Basic Commutative Algebra Operations
106.3.3 Ideal Predicates

106.3.4 Element Operations with Ideals

106.4 Computation of Varieties

106.5 Multiplicities

106.6 Elimination

106.6.1 Construction of Elimination Ideals
106.6.2 Univariate Elimination Ideal Generators
106.6.3 Relation Ideals

106.7 Variable Extension of Ideals

106.8 Homogenization of Ideals

3175

3177

3179
3179
3180
3180
3180
3181
3181
3181
3182
3182
3182
3183
3183
3185
3186
3189
3190
3190
3190
3192
3197
3199
3200
3212
3214
3214
3216
3218
3219

3221

3223
3224
3224
3224
3224
3227
3229
3231
3233
3234
3234
3236
3239
3240
3241

107

108

106.9
106.10
106.11
106.11.1
106.11.2
106.11.3
106.11.4
106.12
106.12.1
106.12.2
106.13
106.14
106.15
106.16
106.17
106.18

VOLUME 9: CONTENTS

Extension and Contraction of Ideals
Dimension of Ideals
Radical and Decomposition of Ideals
Radical
Primary Decomposition
Triangular Decomposition
Equidimensional Decomposition
Normalisation and Noether Normalisation
Noether Normalisation
Normalisation
Hilbert Series and Hilbert Polynomial
Syzygies
Maps between Rings
Symmetric Polynomials
Functions for Polynomial Algebra and Module Generators
Bibliography

LOCAL POLYNOMIAL RINGS

107.1
107.2
107.2.1
107.2.2
107.2.3
107.3
107.3.1
107.3.2
107.4
107.4.1
107.5
107.5.1
107.5.2
107.5.3
107.6
107.7
107.8
107.9

Introduction
Elements and Local Monomial Orders

Local Lexicographical: 1lex

Local Graded Lexicographical: 1glex

Local Graded Reverse Lexicographical: 1lgrevlex
Local Polynomial Rings and Ideals

vii

3241
3242
3243
3243
3244
3250
3252
3253
3253
3254
3257
3260
3261
3262
3263
3266

3269

3271
3271
3272
3272
3272
3273

Creation of Local Polynomial Rings and Accessing their Monomial Orders 3273

Creation of Ideals and Accessing their Bases
Standard Bases

Construction of Standard Bases
Operations on Ideals

Basic Operations

Ideal Predicates

Operations on Elements of Ideals
Changing Coefficient Ring
Changing Monomial Order
Dimension of Ideals
Bibliography

AFFINE ALGEBRAS

108.1
108.2
108.3
108.4
108.5
108.6
108.7

Introduction

Creation of Affine Algebras

Operations on Affine Algebras

Maps between Affine Algebras

Finite Dimensional Affine Algebras

Affine Algebras which are Fields

Rings and Fields of Fractions of Affine Algebras

3274
3275
3276
3278
3278
3279
3281
3281
3282
3282
3282

3283

3285
3285
3287
3290
3290
3292
3294

viii

109

110

VOLUME 9: CONTENTS

MODULES OVER MULTIVARIATE RINGS .

109.1
109.2
109.3
109.3.1
109.3.2
109.3.3
109.3.4
109.3.5
109.3.6
109.4
109.4.1
109.4.2
109.4.3
109.4.4
109.4.5
109.4.6
109.5
109.6
109.6.1
109.6.2
109.7
109.8
109.9
109.10
109.11
109.12
109.12.1
109.12.2
109.13
109.14
109.15
109.16

Introduction
Module Basics: Embedded and Reduced Modules
Monomial Orders
Term Over Position: TOP
Term Over Position (Weighted): TOPW
Position Over Term: POT
Position Over Term (Permutation): POTPERM
Block TOP-TOP: TOPTOP
Block TOP-POT: TOPPOT
Basic Creation and Access
Creation of Ambient Embedded Modules
Creation of Reduced Modules
Localization
Basic Invariants
Creation of Module Elements
Element Operations
The Homomorphism Type
Submodules and Quotient Modules
Creation
Module Bases
Basic Module Constructions
Predicates
Module Operations
Changing Ring
Hilbert Series
Free Resolutions
Constructing Free Resolutions
Betti Numbers and Related Invariants
The Hom Module and Ext
Tensor Products and Tor
Cohomology Of Coherent Sheaves
Bibliography

INVARIANT THEORY

110.1
110.2
110.2.1
110.2.2
110.3
110.4
110.5
110.6
110.7
110.8
110.9
110.10
110.11
110.12
110.13
110.14
110.15
110.16

Introduction
Invariant Rings of Finite Groups

Creation

Access
Group Actions on Polynomials
Permutation Group Actions on Polynomials
Matrix Group Actions on Polynomials
Algebraic Group Actions on Polynomials
Verbosity
Construction of Invariants of Specified Degree
Construction of G-modules
Molien Series
Primary Invariants
Secondary Invariants
Fundamental Invariants
The Module of an Invariant Ring
The Algebra of an Invariant Ring and Algebraic Relations
Properties of Invariant Rings

3299

3301
3301
3303
3304
3304
3304
3305
3305
3305
3305
3305
3306
3306
3307
3308
3309
3313
3316
3316
3317
3320
3321
3322
3324
3324
3326
3326
3330
3340
3343
3345
3349

3351

3353
3354
3354
3354
3355
3355
3356
3357
3357
3357
3361
3362
3363
3364
3366
3371
3372
3376

111

VOLUME 9: CONTENTS

110.17 Steenrod Operations
110.18 Minimalization and Homogeneous Module Testing
110.19 Attributes of Invariant Rings and Fields

110.20 Invariant Rings of Linear Algebraic Groups
110.20.1 Creation

110.20.2 Access

110.20.3 Functions

110.21 Invariant Fields

110.21.1 Creation

110.21.2 Access

110.21.3 Functions for Invariant Fields

110.22 Invariants of the Symmetric Group
110.23 Bibliography

DIFFERENTIAL RINGS

111.1 Introduction

111.2 Differential Rings and Fields

111.2.1 Creation

111.2.2 Creation of Differential Ring Elements
111.3 Structure Operations on Differential Rings
111.3.1 Category and Parent

111.3.2 Related Structures

111.3.3 Derivation and Differential

111.3.4 Numerical Invariants

111.3.5 Predicates and Booleans

111.3.6 Precision

111.4 Element Operations on Differential Ring Elements
111.4.1 Category and Parent

111.4.2 Arithmetic

111.4.3 Predicates and Booleans

111.4.4 Coefficients and Terms

111.4.5 Conjugates, Norm and Trace

111.4.6 Derivatives and Differentials

111.5 Changing Related Structures

111.6 Ring and Field Extensions

111.7 Ideals and Quotient Rings

111.7.1 Defining Ideals and Quotient Rings
111.7.2 Boolean Operations on Ideals

111.8 Wronskian Matrix

111.9 Differential Operator Rings

111.9.1 Creation

111.9.2 Creation of Differential Operators
111.10 Structure Operations on Differential Operator Rings
111.10.1 Category and Parent

111.10.2 Related Structures

111.10.3 Derivation and Differential

111.10.4 Predicates and Booleans

111.10.5 Precision

111.11 Element Operations on Differential Operators
111.11.1 Category and Parent

111.11.2 Arithmetic

111.11.3 Predicates and Booleans

111.11.4 Coefficients and Terms

111.11.5 Order and Degree

111.11.6 Related Differential Operators

X

3377
3378
3381
3383
3384
3384
3384
3390
3390
3391
3391
3394
3396

3397

3401
3402
3402
3404
3405
3405
3405
3407
3407
3408
3409
3411
3411
3411
3412
3413
3414
3415
3415
3419
3424
3424
3425
3425
3426
3426
3427
3428
3428
3428
3428
3429
3430
3431
3431
3431
3432
3432
3433
3434

111.11.7
111.12
111.13
111.14
111.14.1
111.14.2
111.14.3
111.15
111.16
111.16.1
111.16.2
111.17
111.18
111.19
111.20
111.21
111.21.1
111.21.2
111.21.3
111.22

VOLUME 9: CONTENTS

Application of Operators

Related Maps

Changing Related Structures

Euclidean Algorithms, GCDs and LCMs
FEuclidean Right and Left Division
Greatest Common Right and Left Divisors
Least Common Left Multiples

Related Matrices

Singular Places and Indicial Polynomials
Singular Places
Indicial Polynomials

Rational Solutions

Newton Polygons

Symmetric Powers

Differential Operators of Algebraic Functions

Factorisation of Operators over Differential Laurent Series Rings
Slope Valuation of an Operator
Coprime Index 1 and LCLM Factorisation
Right Hand Factors of Operators

Bibliography

3435
3436
3437
3441
3441
3442
3443
3444
3445
3445
3447
3448
3449
3451
3452
3452
3453
3454
3459
3464

XV

112

VOLUME 9: CONTENTS

ALGEBRAIC GEOMETRY

SCHEMES .
112.1 Introduction and First Examples
112.1.1 Ambient Spaces
112.1.2 Schemes
112.1.3 Rational Points
112.1.4 Projective Closure
112.1.5 Maps
112.1.6 Linear Systems
112.1.7 Aside: Types of Schemes
112.2 Ambients
112.2.1 Affine and Projective Spaces
112.2.2 Scrolls and Products
112.2.3 Functions and Homogeneity on Ambient Spaces
112.24 Prelude to Points
112.3 Constructing Schemes
112.4 Different Types of Scheme
112.5 Basic Attributes of Schemes
112.5.1 Functions of the Ambient Space
112.5.2 Functions of the Equations
112.6 Function Fields and their Elements
112.7 Rational Points and Point Sets
112.8 Zero-dimensional Schemes
112.9 Local Geometry of Schemes
112.9.1 Point Conditions
112.9.2 Point Computations
112.9.3 Analytically Hypersurface Singularities
112.10 Global Geometry of Schemes
112.11 Base Change for Schemes
112.12 Affine Patches and Projective Closure
112.13 Arithmetic Properties of Schemes and Points
112.13.1 Height
112.13.2 Restriction of Scalars
112.13.3 Local Solubility
112.13.4 Searching for Points
112.14 Maps between Schemes
112.14.1 Creation of Maps
112.14.2 Basic Attributes
112.14.3 Maps and Points
112.14.4 Maps and Schemes
112.14.5 Maps and Closure
112.14.6 Automorphisms
112.14.7 Scheme Graph Maps
112.15 Tangent and Secant Varieties and Isomorphic Projections
112.15.1 Tangent Varieties
112.15.2 Secant Varieties
112.15.3 Isomorphic Projection to Subspaces
112.16 Linear Systems
112.16.1 Creation of Linear Systems
112.16.2 Basic Algebra of Linear Systems
112.16.3 Linear Systems and Maps
112.17 Divisors
112.17.1 Divisor Groups

112.17.2

Creation Of Divisors

x1

3465

3467

3473
3474
3475
3476
3478
3479
3481
3482
3483
3483
3485
3487
3488
3490
3495
3496
3496
3497
3499
3502
3506
3508
3509
3509
3509
3512
3515
3517
3520
3520
3520
3521
3524
3525
3526
3536
3538
3540
3543
3545
3555
3559
3559
3560
3561
3563
3564
3570
3575
3575
3576
3576

xil

113

114

112.17.3
112.17.4
112.17.5
112.17.6
112.17.7
112.18

112.19

112.19.1
112.19.2
112.20

VOLUME 9: CONTENTS

Ideals and Factorisations
Basic Divisor Predicates
Arithmetic of Divisors
Further Divisor Properties
Riemann-Roch Spaces
Isolated Points on Schemes
Advanced Examples
A Pair of Twisted Cubics
Curves in Space
Bibliography

COHERENT SHEAVES

113.1
113.2
113.3
113.4
113.5
113.6
113.7
113.8
113.9
113.10

Introduction

Creation Functions

Accessor Functions

Basic Constructions

Sheaf Homomorphisms

Divisor Maps and Riemann-Roch Spaces
Predicates

Miscellaneous

Examples

Bibliography

ALGEBRAIC CURVES

114.1

114.1.1
114.1.2
114.1.3
114.1.4
114.1.5
114.1.6
114.2

114.3

114.3.1
114.3.2
114.3.3
114.3.4
114.3.5
114.3.6
114.4

114.4.1
114.4.2
114.4.3
114.4.4
114.4.5
114.4.6
114.5

114.5.1
114.5.2
114.5.3
114.6

114.6.1
114.6.2
114.7

First Examples

Ambients

Curves

Projective Closure

Points

Choosing Coordinates

Function Fields and Divisors
Ambient Spaces
Algebraic Curves

Creation

Base Change

Basic Attributes

Basic Invariants

Random Curves

Ordinary Plane Curves
Local Geometry

Creation of Points on Curves

Operations at a Point

Singularity Analysis

Resolution of Singularities

Log Canonical Thresholds

Local Intersection Theory
Global Geometry

Genus and Singularities

Projective Closure and Affine Patches

Special Forms of Curves
Maps and Curves

Elementary Maps

Maps Induced by Morphisms
Automorphism Groups of Curves

3578
3579
3580
3580
3582
3583
3591
3591
3594
3595

3597

3599
3600
3603
3605
3607
3608
3612
3615
3616
3627

3629

3635
3635
3636
3637
3638
3639
3640
3643
3645
3645
3647
3649
3651
3651
3653
3657
3657
3658
3659
3660
3662
3665
3667
3667
3668
3670
3672
3672
3674
3675

115

114.7.1
114.7.2
114.7.3
114.7.4
114.7.5
114.8
114.8.1
114.8.2
114.8.3
114.9
114.9.1
114.9.2
114.9.3
114.9.4
114.9.5
114.10
114.10.1
114.10.2
114.10.3
114.11
114.11.1
114.11.2
114.12
114.12.1
114.12.2
114.12.3
114.13
114.13.1
114.13.2
114.13.3
114.14

RESOLUTION GRAPHS AND SPLICE DIAGRAMS

115.1
115.2
115.2.1
115.2.2
115.2.3
115.2.4
115.2.5
115.2.6
115.3
115.3.1
115.3.2
115.4
115.4.1
115.5

VOLUME 9: CONTENTS

Group Creation Functions
Automorphisms
Automorphism Group Operations
Pullbacks and Pushforwards
Quotients of Curves
Function Fields
Function Fields
Representations of the Function Field
Differentials
Divisors
Places
Divisor Group
Creation of Divisors
Arithmetic of Divisors
Other Operations on Divisors
Linear Equivalence of Divisors
Linear Equivalence and Class Group
Riemann—Roch Spaces
Index Calculus
Advanced Examples
Trigonal Curves
Algebraic Geometric Codes
Curves over Global Fields
Finding Rational Points
Regular Models of Arithmetic Surfaces
Minimization and Reduction
Minimal Degree Functions and Plane Models
General Functions and Clifford Index One
Small Genus Functions
Small Genus Plane Models
Bibliography

Introduction
Resolution Graphs

Graphs, Vertices and Printing

Creation from Curve Singularities

Creation from Pencils

Creation by Hand

Modifying Resolution Graphs

Numerical Data Associated to a Graph
Splice Diagrams

Creation of Splice Diagrams

Numerical Functions of Splice Diagrams
Translation Between Graphs

Splice Diagrams from Resolution Graphs
Bibliography

xiii

3676
3677
3678
3679
3683
3687
3687
3692
3693
3697
3698
3702
3703
3706
3708
3709
3709
3711
3714
3717
3717
3719
3721
3721
3722
3723
3725
3725
3727
3731
3734

3735

3737
3737
3738
3740
3742
3743
3744
3745
3746
3746
3748
3749
3749
3750

Xiv

116

117

VOLUME 9: CONTENTS

ALGEBRAIC SURFACES

116.1

116.2

116.2.1
116.2.2
116.2.3
116.2.4
116.2.5
116.2.6
116.2.7
116.3

116.3.1
116.3.2
116.3.3
116.3.4
116.3.5
116.3.6
116.3.7
116.3.8
116.4

116.4.1
116.4.2
116.4.3
116.4.4
116.4.5
116.4.6
116.4.7
116.4.8
116.5

Introduction
General Surfaces

Introduction

Creation Functions

Invariants

Singularity Properties
Kodaira-Enriques Classification
Minimal Models

Special Surfaces in Projective 4-space

Surfaces in P3

Introduction

Embedded Formal Desingularization of Curves

Formal Desingularization of Surfaces

Adjoint Systems and Birational Invariants

Classification and Parameterization of Rational Surfaces
Reduction to Special Models

Parametrization of Rational Surfaces

Parametrization of Special Surfaces

Del Pezzo Surfaces

Introduction

Creation of General Del Pezzos
Parametrization of Del Pezzo Surfaces
Minimization and Reduction of Surfaces
Cubic Surfaces over Finite Fields
Construction of Cubic Surfaces
Invariant Theory of Cubic Surfaces

The Pentahedron of a Cubic Surface

Bibliography

HILBERT SERIES OF POLARISED VARIETIES

117.1

117.1.1
117.1.2
117.2

117.2.1
117.2.2
117.3

117.3.1
117.3.2
117.3.3
117.3.4
117.4

117.4.1
117.4.2
117.5

117.5.1
117.5.2
117.6

117.6.1
117.6.2
117.6.3
117.7

117.7.1
117.7.2

Introduction

Key Warning and Disclaimer
Overview of the Chapter

Hilbert Series and Graded Rings

Hilbert Series and Hilbert Polynomials
Interpreting the Hilbert Numerator

Baskets of Singularities

Point Singularities

Curve Singularities

Baskets of Singularities
Curves and Dissident Points

Generic Polarised Varieties

Accessing the Data
Generic Creation, Checking, Changing

Subcanonical Curves

Creation of Subcanonical Curves
Catalogue of Subcanonical Curves

K3 Surfaces

Creating and Comparing K3 Surfaces
Accessing the Key Data
Modifying K3 Surfaces

The K3 Database

Searching the K3 Database
Working with the K3 Database

3751

3753
3754
3754
3754
3755
3758
3760
3761
3771
3773
3773
3773
3777
3781
3783
3784
3788
3792
3795
3795
3795
3796
3805
3807
3809
3809
3813
3814

3817

3819
3819
3821
3822
3822
3824
3827
3828
3830
3832
3834
3834
3835
3836
3837
3837
3838
3838
3838
3839
3839
3840
3840
3843

118

117.8
117.8.1
117.8.2
117.9
117.10
117.10.1
117.10.2
117.11

VOLUME 9: CONTENTS

Fano 3-folds

Creation: f=1,20r > 3

A Preliminary Fano Database
Calabi—Yau 3-folds
Building Databases

The K3 Database

Making New Databases
Bibliography

TORIC VARIETIES

118.1
118.1.1
118.1.2
118.1.3
118.2
118.2.1
118.2.2
118.2.3
118.2.4
118.3
118.4
118.4.1
118.4.2
118.4.3
118.4.4
118.5
118.5.1
118.5.2
118.5.3
118.6
118.6.1
118.6.2
118.6.3
118.6.4
118.6.5
118.7
118.7.1
118.7.2
118.8
118.8.1
118.8.2
118.8.3
118.9
118.9.1
118.10

Introduction and First Examples
The Projective Plane as a Toric Variety
Resolution of a Nonprojective Toric Variety
The Cox Ring of a Toric Variety
Fans in Toric Lattices
Construction of Fans
Components of Fans
Properties of Fans
Maps of Fans
Geometrical Properties of Cones and Polyhedra
Toric Varieties
Constructors for Toric Varieties
Toric Varieties and Their Fans
Properties of Toric Varieties
Affine Patches on Toric Varieties
Cox Rings
The Cox Ring of a Toric Variety
Cox Rings in Their Own Right
Recovering a Toric Variety From a Cox Ring
Invariant Divisors and Riemann-Roch Spaces
Divisor Group
Constructing Invariant Divisors
Properties of Divisors
Linear Equivalence of Divisors
Riemann—Roch Spaces of Invariant Divisors
Maps of Toric Varieties
Maps from Lattice Maps
Properties of Toric Maps
The Geometry of Toric Varieties
Resolution of Singularities and Linear Systems
Mori Theory of Toric Varieties
Decomposition of Toric Morphisms
Schemes in Toric Varieties
Construction of Subschemes
Bibliography

XV

3844
3845
3846
3846
3847
3847
3848
3849

3851

3855
3855
3857
3858
3861
3861
3864
3866
3867
3868
3870
3871
3872
3873
3874
3874
3874
3876
3877
3879
3880
3880
3882
3885
3885
3888
3888
3889
3890
3890
3890
3895
3897
3898
3900

105

106

107

108

109

110

111

PART XIV
COMMUTATIVE ALGEBRA

GROBNER BASES

POLYNOMIAL RING IDEAL OPERATIONS
LOCAL POLYNOMIAL RINGS

AFFINE ALGEBRAS

MODULES OVER MULTIVARIATE RINGS
INVARIANT THEORY

DIFFERENTIAL RINGS

3177

3221

3269

3283

3299

3351

3397

105 GROBNER BASES

105.1 Introduction 3179

105.2 Representation and Monomial
Orders 3179

105.2.1 Lexicographical: 1lex 3180

105.2.2 Graded Lexicographical: glex . 3180
105.2.3 Graded Reverse Lexicographical:

grevlex 3180
105.2.4 Graded Reverse Lexicographical

(Weighted): grevlexw 3181
105.2.5 Elimination (k): elim 3181
105.2.6 Elimination List: elim 3181
105.2.7 Inverse Block: invblock . . . 3182
105.2.8 Univariate: univ 3182
105.2.9 Weight: weight 3182

105.3 Polynomial Rings and Ideals 3183

105.3.1 Creation of Polynomial Rings and
Accessing their Monomial Orders 3183

PolynomialRing(R, n) 3183
PolynomialAlgebra(R, n) 3183
PolynomialRing(R, n, order) 3183
PolynomialAlgebra(R, n, order) 3183
PolynomialRing(R, n, T) 3184
PolynomialAlgebra(R, n, T) 3184
MonomialOrder (P) 3184
MonomialOrderWeightVectors (P) 3184
105.3.2 Creation of Graded Polynomial

Rings 3185
PolynomialRing(R, Q) 3186
PolynomialAlgebra(R, Q) 3186
Grading(P) 3186
VariableWeights(P) 3186
105.3.3 Element Operations Using the

Grading Ce . 3186
Degree(f) 3186
WeightedDegree (f) 3186
LeadingWeightedDegree (£) 3186
IsHomogeneous (f) 3187
HomogeneousComponent (£, d) 3187
HomogeneousComponents (f) 3187
MonomialsOfDegree (P, d) 3187
MonomialsOfWeightedDegree(P, d) 3187
105.3.4 Creation of Ideals and Accessing

their Bases 3189
ideal< > 3189
Ideal(B) 3189

Ideal () 3189
IdealWithFixedBasis(B) 3189
Basis(I) 3190
BasisElement (I, i) 3190
105.4 Grobner Bases 3190
105.4.1 Grébner Bases over Fields . . . 3190
105.4.2 Grobner Bases over Euclidean

Rings 3190
105.4.3 Construction of Grobner Bases . 3192
Groebner (I: -) 3192
GroebnerBasis(I: -) 3196
GroebnerBasis(S: -) 3196
GroebnerBasisUnreduced(S: -) 3196
GroebnerBasis(S, d4: -) 3196
105.4.4 Related Functions 3197
HasGroebnerBasis (1) 3197
EasyIdeal(I) 3197
EasyBasis(I) 3197
SmallBasis (I) 3197
MarkGroebner (1) 3197
IsGroebner (S) 3197
IsGroebner (S) 3197
Coordinates(I, f) 3198
CoordinateMatrix(I) 3198
NormalForm(f, I) 3198
NormalForm(f, S) 3198
SPolynomial(f, g) 3198
Reduce (S) 3198
ReduceGroebnerBasis(S) 3199
105.4.5 Grobner Bases of Boolean Polyno-

mial Rings 3199
BooleanPolynomialRing(n) 3199
BooleanPolynomialRing(n, order) 3199
BooleanPolynomialRing(B, Q) 3200
105.4.6 Verbosity. 3200
SetVerbose("Groebner", v) 3200
SetVerbose ("Buchberger", v) 3200
SetVerbose ("Faugere", v) 3200
SetVerbose ("FGLM", v) 3200
SetVerbose ("GroebnerWalk", v) 3201
105.4.7 Degree-d Grobner Bases 3212
GroebnerBasis(S, 4 : -) 3212

105.5 Changing Coefficient Ring . 3214

ChangeRing (I, S) 3214
105.6 Changing Monomial Order . 3214
ChangeOrder (I, Q) 3214
ChangeOrder (I, order) 3215

ChangeOrder (I, T) 3215

3178 COMMUTATIVE ALGEBRA

105.7 Hilbert-driven Grobner Basis

Construction 3216
HilbertGroebnerBasis (S, H) 3216
HilbertGroebnerBasis(S, N) 3216

SetVerbose("HilbertGroebner", v) 3217

105.8 SAT solver .
SAT(B)

105.9 Bibliography

Part XV

3218
3218

3219

Chapter 105
GROBNER BASES

105.1 Introduction

This chapter describes the basics for configuring MAGMA’s powerful Grobner basis ma-
chinery, which lies at the heart of computations with ideals and modules over multivariate
polynomial rings. Later chapters will describe the many functions and operations available
to the user for working with ideal and modules.

Grobner bases were introduced by Bruno Buchberger [Buc65] and at the heart of the
theory is the Buchberger algorithm which computes a Grobner basis of an ideal starting
from an arbitrary basis (generating set) of the ideal. The two books Ideals, Varieties and
Algorithms [CLO96] and Grébner Bases [BW93] have also inspired much of the design and
presentation of ideals of multivariate polynomial rings in MAGMA.

Since V2.11 (May 2004), MAGMA also contains a highly optimized implementation of
the Faugere Fy algorithm [Fau99], based on sparse linear algebra techniques, which usually
performs dramatically better than the Buchberger algorithm (see [Ste04]).

Chapter 24 deals with the basics of multivariate polynomial rings and their elements
(for which there are very many functions), so it is recommended that that chapter be
perused before reading this one.

Permutation and matrix groups have a natural action on multivariate polynomial rings.
This leads to the subject of invariant rings of finite groups, which is covered in Chapter 110.
See also the chapters on affine algebras (Chapter 108) and on modules over affine algebras
(Chapter 109), and the chapter on algebraically closed fields (Chapter 40), which allows
one to compute the variety of an ideal over the algebraic closure of the base field.

105.2 Representation and Monomial Orders

Let P be the polynomial ring R[z1,...,z,| of rank n over a ring R. A monomial (or power
product) of P is a product of powers of the variables (or indeterminates) of P, that is,

an expression of the form z{* - .-zt with e; > 0 for 1 < i < n. Multivariate polynomials

n

in MAGMA are stored efficiently in distributive form, using arrays of coefficient-monomial
pairs, where the coefficient is in the base ring R. The word ‘term’ will always refer to a
coefficient multiplied by a monomial.

Monomial orders are of critical importance when dealing with Grobner bases. Let M
be the set of all monomials of P. A monomial ordering on M is a total order < on M
such that 1 < s for all s € M, s <t implies su < tu for all s,t,u € M, and M is a well-
ordering (every non-empty subset of M possesses a minimal element w.r.t. <). Monomial
orders can be naturally specified in terms of weight vectors: a vector W from Q" with
non-negative entries is called a weight vector since it weights a monomial s by the product

s.W (defined to be the dot product of the exponent vector of s with W); any sequence of

3180 COMMUTATIVE ALGEBRA Part XV

n linearly-independent weight vectors determines a monomial order on M (see the weight
order below [subsection 105.2.9]). All monomial orderings can in fact be represented in
terms of weight vectors.

Multivariate polynomial rings are constructed in MAGMA such that the monomials of
any polynomial are sorted with respect to a specified monomial order, with the great-
est monomial first. Grobner basis computations are dramatically affected by the choice
of monomial order. MAGMA provides an extensive choice of monomial orders. Cur-
rently, the intrinsic functions PolynomialRing (or PolynomialAlgebra), ChangeOrder
and VariableExtension expect a monomial order; it is specified by a string giving the
name, optionally followed by extra arguments for that order.

We now describe each of the monomial orders available in MAGMA. We suppose that
s and t are monomials from P which has rank n. Any order on the monomials is then
fully defined by just specifying exactly when s < ¢ with respect to that order. In the
following, the argument(s) are described for an order as a list of expressions; that means
that the expressions (without the parentheses) should be appended to any base arguments
when any particular intrinsic function is called which expects a monomial order. See also
[CLO96, Chap. 2, §2] for more details about the first three orders.

105.2.1 Lexicographical: lex

Definition: s < t iff there exists 1 < ¢ < n such that the first ¢ — 1 exponents of s and ¢ are
equal but the i-th exponent of s is less than the ¢-th exponent of ¢. The order is specified
by the argument ("lex").

The order is called “lexicographical” since it orders the monomials as if they were words
in a dictionary. The i-th variable is greater than the (i + 1)-th variable for 1 <7 < n so
the first variable is the greatest variable. A Grébner basis of an ideal with respect to the
lexicographical order usually represents the most information about the ideal but can be
hard to compute.

105.2.2 Graded Lexicographical: glex

Definition: s < t iff the total degree of s is less than the total degree of ¢ or the total
degree of s is equal to the total degree of ¢t and s < ¢t with respect to the lexicographical
order. The order is specified by the argument ("glex").

The order is called “graded lexicographical” since it first grades the monomials by total
degree, and then decides ties by the lexicographical order. The i-th variable is greater
than the (i + 1)-th variable for 1 < i < n so the first variable is the greatest variable. This
order is rarely used because the grevlex order below is usually a better degree order (i.e.,
yields smaller Grobner bases).

105.2.3 Graded Reverse Lexicographical: grevlex

Definition: s < t iff the total degree of s is less than the total degree of ¢ or the total
degree of s is equal to the total degree of ¢t and s > ¢ with respect to the lexicographical
order applied to the exponents of s and ¢ in reverse order. The order is specified by the
argument ("grevlex").

Ch. 105 GROBNER BASES 3181

The order is called “graded reverse lexicographical” since it first grades the monomials
by total degree, and then decides ties by the negation of the lexicographical order applied
to the variables in reverse order. Again, the i-th variable is greater than the (i + 1)-th
variable for 1 < ¢ < n so the first variable is the greatest variable. A Grobner basis of
an ideal with respect to the graded reverse lexicographical order is usually the easiest to
compute so it is recommended that this order be used when just any Grobner basis for an
ideal is desired.

105.2.4 Graded Reverse Lexicographical (Weighted): grevlexw

Definition (given a sequence W of n positive integer weights): s < t iff the total weighted
degree ds of s w.r.t. W is less than the total degree d; of t w.r.t. W or dy = d; and s > t
with respect to the lexicographical order applied to the exponents of s and ¢ in reverse
order. The order is specified by the arguments ("grevlexw", W).

The order is called “graded reverse lexicographical (weighted)” since it first grades the
monomials by weighted degree w.r.t. W, and then decides ties by the negation of the
lexicographical order applied to the variables in reverse order. If W = [1,1,...,1], then
this order is equal to the grevlex order. Again, the i-th variable is greater than the
(i + 1)-th variable for 1 < i < n so the first variable is the greatest variable.

This order is similar to the grevlex order, but is useful if an ideal is homogeneous with
respect to the grading given by W, since the Grébner basis of the ideal will tend to be
smaller with this order.

105.2.5 Elimination (k): elim

Definition (given k with 1 < k < n —1): s < t iff s < t; with respect to the grevlex
order or s = t; and sy < tps with respect to the grevlex order where my denotes the
monomial consisting of the first k£ exponents of m and mj, denotes the monomial consisting
of the last n — k exponents of m (this order is thus the concatenation of two block grevlex
orders). The order is specified by the arguments ("elim", k).

The order is called “elimination” since the first k variables are “eliminated”: if G is a
Grobner basis of an ideal I of the polynomial ring K|z, ..., x,] with respect to this order,
then GNK [xk41,. .., Ty] is a Grobner basis of the k-th elimination ideal INK [xgy1, ..., Zp].
(It is usually easier to compute a Grobner basis with respect to this order for any & than
with respect to the full lexicographical order.) Again, the i-th variable is greater than the
(7 + 1)-th variable for 1 < i < n so the first variable is the greatest variable.

105.2.6 Elimination List: elim

Definition (given sequences U and V such that U and V' contain distinct integers in the
range 1 to n and the sum of the lengths of U and V is n and U and V are disjoint):
s < t iff sy < ty with respect to the grevlex order or sy = ty and sy < ty with
respect to the grevlex order where my denotes the monomial consisting of the exponents
of m corresponding to the entries of L in order. The order is specified by the arguments
("elim", U, V). V may be omitted if desired so the arguments are just ("elim", U); in
this case V' is chosen to be an appropriate sequence to complement U.

3182 COMMUTATIVE ALGEBRA Part XV

The order is called “elimination” since the variables in U are “eliminated”. The order
of the elements in U and V' are significant since the ordering on the variables makes U[1]
greatest, then U|[2], etc., then V[1], V2], etc.

105.2.7 Inverse Block: invblock

Definition (given sequences U and V such that U and V' contain distinct integers in the
range 1 to n and the sum of the lengths of U and V is n and U and V are disjoint): s < ¢
iff sy, < ty with respect to the grevlex order or sy =ty and sy < ty with respect to the
grevlex order. The order is specified by the arguments ("invblock", U, V). V may be
omitted if desired so the arguments are just ("invblock", U); in this case V' is chosen to
be an appropriate sequence to complement U.

The order is called “inverse block” since it applies a block ordering on the exponents
on V then U which inverts the lists supplied to the elimination list order. Thus this is
the same as the elimination order except that the lists U and V are swapped. See [BW93,
p. 390] for the motivation for this order.

105.2.8 Univariate: univ

Definition (given ¢ with 1 < i < n): s < t iff s;, < ¢, with respect to the grevlex order
or s;, = t;, and the i-th exponent of s is less than the i-th exponent of ¢, where L is the
sequence [1 .. n] with ¢ deleted. The order is specified by the arguments ("univ", i).

The order is called “univariate” since when monomials are compared, any monomial not
containing the ¢-th variable is greater than any monomial containing the i-th variable. Thus
all variables but the i-th are “eliminated” so that a Grobner basis of a zero-dimensional
ideal I with this ordering will contain the unique monic generator of the elimination ideal
consisting of all the polynomials in I containing the i-th variable alone. The j-th variable
is greater than the (j + 1)-th variable for 1 < j < and i < 7 < n and the j-th variable is
greater than the i-th variable for any j # 1.

105.2.9 Weight: weight

Definition (given n weight vectors Wy, ... W,, from Q"): s < ¢ iff there exists 1 < i <n
such that s.W; = t.W; for 1 < j < ¢ and s.W; < t.W;. The order is specified by the
arguments ("weight", Q) where Q is a sequence of n? non-negative integers or rationals
describing the n weight vectors of length n (in row major order).

The n weight vectors must describe a vector space basis of Q™ (i.e., be linearly-
independent), since otherwise this would not yield a total ordering on the monomials.
The weight order allows one to specify any possible monomial order; any of the mono-
mial orders mentioned above can be specified by an appropriate choice of weight vectors.
However, using the in-built versions of the specialized orders above is much faster than con-
structing versions of them based on weight vectors. The next section contains an example
in which a polynomial ring is constructed with a weight order for the monomials.

Ch. 105 GROBNER BASES 3183

105.3 Polynomial Rings and Ideals

105.3.1 Creation of Polynomial Rings and Accessing their Monomial
Orders

Multivariate polynomial rings are created from a coefficient ring, the number of variables,
and a monomial order. If no order is specified, the monomial order is taken to be the
lexicographical order. This section is briefly repeated from the section 24.2.1 in the mul-
tivariate polynomial rings chapter, so as to show how one can set up the polynomial ring
in which to create an ideal.

Please note that the Grobner basis of an ideal with respect to the lexicographical order
is often much more complicated and difficult to compute than the Grébner basis of the
same ideal with respect to other monomial orders (e.g. the grevlex order), so it may be
preferable to use another order if the Grobner basis with respect to any order is desired
(see also the function EasyIdeal below). Yet the lexicographical order is the most natural
order and is often the desired order so that is why it is used by default if no specific order
is given.

PolynomialRing(R, n)

PolynomialAlgebra(R, n)

Global BooLELT Default : false

Create a multivariate polynomial ring in n > 0 variables over the ring R. The ring
is regarded as an R-algebra via the usual identification of elements of R and the
constant polynomials. The lexicographical ordering on the monomials is used for
this default construction (see next function).

By default, a non-global polynomial ring will be returned; if the parameter
Global is set to true, then the unique global polynomial ring over R with n variables
will be returned. This may be useful in some contexts, but a non-global result is
returned by default since one often wishes to have several rings with the same num-
bers of variables but with different variable names (and create mappings between
them, for example). Explicit coercion is always allowed between polynomial rings
having the same number of variables (and suitable base rings), whether they are
global or not, and the coercion maps the i-variable of one ring to the i-th variable
of the other ring.

PolynomialRing(R, n, order)

PolynomialAlgebra(R, n, order)

Create a multivariate polynomial ring in n > 0 variables over the ring R with the
given order order on the monomials. See the section on monomial orders for the
valid values for the argument order.

3184 COMMUTATIVE ALGEBRA Part XV

PolynomialRing(R, n, T)

PolynomialAlgebra(R, n, T)

Create a multivariate polynomial ring in n > 0 variables over the ring R with the
order given by the tuple 7" on the monomials. 7" must be a tuple whose components
match the valid arguments for the monomial orders in Section 105.2 (or a tuple
returned by the following function MonomialOrder).

MonomialOrder (P) |

Given a polynomial ring P (or an ideal thereof), return a description of the monomial
order of P. This is returned as a tuple which matches the relevant arguments listed
for each possible order in Section 105.2, so may be passed as the third argument to
the function PolynomialRing above.

MonomialOrderWeightVectors(P)

Given a polynomial ring P of rank n (or an ideal thereof), return the weight vectors
of the underlying monomial order as a sequence of n sequences of n rationals. See,
for example, [CLO98, p. 153] for more information.

Example H105E1

We show how one can construct different polynomial rings with different orders.

> Z := IntegerRing();

> // Construct polynomial ring with DEFAULT lex order
> P<a,b,c,d> := PolynomialRing(Z, 4);

> MonomialOrder(P);

<"lex">
> MonomialOrderWeightVectors(P);
[
[1, 0, 0,01,
(o0, 1,0,01,
Lo, 0,1,01,
L0, 0, 0, 1]
]

> // Construct polynomial ring with grevlex order
> P<a,b,c,d> := PolynomialRing(Z, 4, "grevlex");
> MonomialOrder (P);

<"grevlex">

> MonomialOrderWeightVectors(P) ;

L

s b s

-

b b

b b b

-

L B e Y e B e |
—_ e e
-

1
1,
1
1

O r KB~
O O = =
O O O -

b b s

]

> // Construct polynomial ring with block elimination and a >d > b > ¢

Ch. 105 GROBNER BASES 3185

> P<a,b,c,d> := PolynomialRing(Z, 4, "elim", [1, 4], [2, 3]);
> MonomialOrder (P);

<"elim", [1, 41, [2, 31>

> MonomialOrderWeightVectors(P) ;

[
[1, 0, 0, 11,
[1, 0, 0, 01,
(o, 1,1, 01,
[0, 1, 0, 0]
]

>a+b+c + d;

a+d+b+c

>a+d’10 + b + c710;

d”10 + a + c”10 + b

>a+d’10 + b + c;

d"10 + a + b + ¢

> // Construct polynomial ring with weight order and x > y > z
> P<x, y, z> := PolynomialRing(Z, 3, "weight", [100,10,1, 1,10,100, 1,1,11);
> MonomialOrder (P);

<"weight", [100, 10, 1, 1, 10, 100, 1, 1, 1 I>

> MonomialOrderWeightVectors(P);

L

X+y+z

> (x+y~2+z73)74;

X"4 + 4xx73%y"2 + 4%x73%z73 + 6xx72%y"4 + 12%x"2%y"2%xz"3 +
6*xx"2%z"6 + 4*x*y~6 + 12%xx*xy 4*z"3 + 12%xx*y~2*%z"6 +
4xx*z"9 + y 8 + 4xy~6*z"3 + 6%y 4%z"6 +
dxy~2xz"9 + z712

105.3.2 Creation of Graded Polynomial Rings

It is possible within MAGMA to assign weights to the variables of a multivariate polynomial
ring. This means that monomials of the ring then have a weighted degree with respect
to the weights of the variables. Such a multivariate polynomial ring is called graded or
weighted. A polynomial of the ring whose monomials all have the same weighted degree is
called homogeneous. The polynomial ring can be decomposed as the direct sum of graded
homogeneous components.

Suppose a polynomial ring P has n variables x1, ..., x, and the weights for the variables
are di,...,d, respectively. Then for a monomial m = z7*-- -zt of P (with e; > 0 for

n

1 <14 <n), the weighted degree of m is defined to be > . e;d;.

3186 COMMUTATIVE ALGEBRA Part XV

A polynomial ring created without a specific weighting (using the default version of the
PolynomialRing function or similar) has weight 1 for each variable so the weighted degree
coincides with the total degree.

The following functions allow one to create and operate on elements of polynomial rings
with specific weights for the variables.

PolynomialRing(R, Q)

PolynomialAlgebra(R, Q)

Given aring R and a non-empty sequence () of positive integers, create a multivariate
polynomial ring in n = #(@) variables over the ring R with the weighted degree of the
i-th variable set to be Q[i] for each i. The rank n of the polynomial is determined
by the length of the sequence Q. (The angle bracket notation can be used to assign
names to the variables, just like in the usual invocation of the PolynomialRing
function.)

As of V2.15, the default monomial order chosen is the grevlexw order with
weights given by @), since the Grobner basis of an ideal w.r.t. this order tends to be
smaller if the ideal is homogeneous w.r.t. the grading.

Grading(P)

VariableWeights(P)

Given a graded polynomial ring P (or an ideal thereof), return the variable weights
of P as a sequence of n integers where n is the rank of P. If P was constructed
without specific weights, the sequence containing n copies of the integer 1 is returned.

105.3.3 Element Operations Using the Grading

Degree(f)

WeightedDegree (f)

Given a polynomial f of the graded polynomial ring P, this function returns the
weighted degree of f, which is the maximum of the weighted degrees of all monomials
that occur in f. The weighted degree of a monomial m depends on the weights
assigned to the variables of the polynomial ring P — see the introduction of this
section for details. Note that this is different from the natural total degree of f
which ignores any weights.

LeadingWeightedDegree (f)

Given a polynomial f of the graded polynomial ring P, this function returns the
leading weighted degree of f, which is the weighted degree of the leading monomial
of f. The weighted degree of a monomial m depends on the weights assigned to the
variables of the polynomial ring P — see the introduction of this section for details.

Ch. 105 GROBNER BASES 3187

IsHomogeneous (f)

Given a polynomial f of the graded polynomial ring P, this function returns whether
f is homogeneous with respect to the weights on the variables of P (i.e., whether
the weighted degrees of the monomials of f are all equal).

HomogeneousComponent (f, d)

Given a polynomial f of the graded polynomial ring P, this function returns the
weighted degree-d homogeneous component of f which is the sum of all the terms of
f whose monomials have weighted degree d. d must be greater than or equal to 0.
If f has no terms of weighted degree d, then the result is 0.

HomogeneousComponents (f)

Given a polynomial f of the graded polynomial ring P, this function returns the
weighted degree-d homogeneous component of f which is the sum of all the terms of
f whose monomials have weighted degree d. d must be greater than or equal to 0.
If f has no terms of weighted degree d, then the result is 0.

MonomialsOfDegree (P, d)

Given a polynomial ring P and a non-negative integer d, return an indexed set
consisting of all monomials in P with total degree d. If P is graded, the grading is
ignored.

MonomialsOfWeightedDegree (P, d)

Example H105E2

Given a graded polynomial ring P and a non-negative integer d, return an indexed
set consisting of all monomials in P with weighted degree d. If P has the trivial
grading, then this function is equivalent to the function MonomialsOfDegree.

We create a simple graded polynomial ring and perform various simple operations on it.

>
>

P<x, y, z> := PolynomialRing(RationalField(), [1, 2, 4]1);
P;

Graded Polynomial ring of rank 3 over Rational Field
Order: Grevlex with weights [1, 2, 4]

Variables: x, y, z

Variable weights: [1, 2, 4]

>

[

vV & VNV LV

VariableWeights(P) ;
1, 2, 4]

Degree (x) ;
Degree(y);
Degree(z);

Degree(x"2xy*z~3); // Weighted total degree

3188 COMMUTATIVE ALGEBRA

16
> TotalDegree(x~2xy*z~3); // Natural total degree
6
> IsHomogeneous (x);
true
> IsHomogeneous(x + y);
false
> IsHomogeneous(x"2 + y);
true
> I := ideal<P | x"2*y + z, (x74 + 2)72, y~2 + z>;
> IsHomogeneous(I);
true
> MonomialsOfDegree(P, 4);
{e

x"4,

X" 3%y,

X" 3%z,

X"2%y"2,

X" 2%y*z,

X"2%z272,

x*y~3,

x*y " 2%z,

X*y*z"2,

x*z"3,

y4,

y~3%*z,

yT2%z72,

y*z~3,

z"4
e}
> MonomialsOfWeightedDegree(P, 4);
{e

x4,

X" 2%y,

y2,

z

e}

Part XV

Ch. 105 GROBNER BASES 3189

105.3.4 Creation of Ideals and Accessing their Bases

Within the general context of ideals of polynomial rings, the term “basis” will refer to
an ordered sequence of polynomials which generate an ideal. (Thus a basis can contain
duplicates and zero elements so is not like a basis of a vector space.)

One normally creates an ideal by the ideal constructor or Ideal function, de-
scribed below. But it is also possible to create an ideal with a specific basis U and
then find the coordinates of polynomials from the polynomial ring with respect to U
(see the function Coordinates below). This is done by specifying a fized basis with
the IdealWithFixedBasis intrinsic function. In this case, when MAGMA computes the
Grobner basis of the ideal (see below), extra information is stored so that polynomials of
the ideal can be rewritten in terms of the original fixed basis. However, the use of this
feature makes the Grobner basis computation much more expensive so an ideal should
usually not be created with a fixed basis.

ideal< P | L >|

Given a multivariate polynomial ring P, return the ideal of P generated by the
elements of P specified by the list L. Each term of the list L must be an expression
defining an object of one of the following types:

(a) An element of P;

(b) A set or sequence of elements of P;
(c) An ideal of P;
(

d) A set or sequence of ideals of P.

Ideal(B)

Given a set or sequence B of polynomials from a polynomial ring P, return the ideal
of P generated by the elements of B with the given basis B. This is equivalent to
the above ideal constructor, but is more convenient when one simply has a set or
sequence of polynomials.

Ideal (f)

Given a polynomial f from a polynomial ring P, return the principal ideal of P
generated by f.

| IdealWithFixedBasis(B) |

Given a sequence B of polynomials from a polynomial ring P, return the ideal of
P generated by the elements of B with the given fixed basis B. When the function
Coordinates is called, its result will be with respect to the entries of B instead
of the Grobner basis of I. WARNING: this function should only be used when
it is desired to express polynomials of the ideal in terms of the elements of B, as
the computation of the Grobner basis in this case is very expensive, so it should be
avoided if these expressions are not wanted.

3190 COMMUTATIVE ALGEBRA Part XV

Basis(I)

Given an ideal I, return the current basis of I. If I has a fixed basis, that is returned;
otherwise the current basis of I (whether it has been converted to a Grébner basis
or not — see below) is returned.

BasisElement (I, i)

Given an ideal I together with an integer ¢, return the i-th element of the current
basis of 1. This the same as Basis(I) [i].

105.4 Grobner Bases

Computation in ideals of multivariate polynomial rings is possible because of the construc-
tion of Grobner bases of such ideals. In MAGMA, it is possible to create ideals and compute
their Grobner bases for polynomial rings defined not only over fields but also over general
Euclidean rings.

Different monomial orderings give different Grobner bases for a fixed ideal. When an
ideal I is created from a polynomial ring P or another ideal J, then the monomial order
of I is taken to be the monomial order of P or J. Ideals can only be compatible if they
have the same monomial order.

105.4.1 Grobner Bases over Fields

Grobner bases of ideals defined over fields have been studied for some time now, and there
is a large literature concerning them.

For ideals defined over fields, a basis is called minimal if each polynomial in it is monic
and not contained in the ideal generated by all the other polynomials [CLO96, Chap. 2, §7,
Def. 4]. A basis is called reduced if each polynomial in it is monic and, for every monomial
of each polynomial in the basis, that monomial is not divisible by the leading monomial
of any other polynomial in the basis (equivalently, each leading monomial does not divide
any monomial in any of the other polynomials) [CLO96, Chap. 2, §7, Def. 5].

For a given fixed monomial ordering, every ideal of a polynomial ring over a field
possesses a unique sorted minimal reduced Grébner basis (GB) [CLO96, Chap. 2, §7,
Prop. 7]. This unique Grébner basis (with respect to the order defined by the user) will
be computed automatically when needed by MAGMA. Before this happens, an ideal will
usually possess a basis which is not a Grobner basis, but that will be changed into the
unique Grobner basis when needed. Thus the original basis will be discarded. See the
procedure Groebner below for details on the algorithms available.

105.4.2 Grobner Bases over Euclidean Rings

Since V2.8 (July 2001), MAGMA provides facilities for computing with Grébner bases of
ideals of polynomial rings over Euclidean rings (including the important case of the integer
ring Z). Such Grobner bases are computed in MAGMA by an extension, due to Allan Steel
(unpublished), of Jean-Charles Faugere’s F algorithm [Fau99], which uses sparse linear
algebra.

Ch. 105 GROBNER BASES 3191

The current Euclidean rings in MAGMA supported are: the integer ring Z, the integer
residue class rings Z,,,, the univariate polynomial rings K[z] over any field K, Galois rings,
p-adic quotient rings, and valuation rings.

We first outline some of the things which are peculiar to Grobner bases defined over
a Fuclidean ring. Let I be an ideal of a polynomial ring defined over a Euclidean ring
R. A subset G of I is called a Grobner basis for I in MAGMA if, for every f € I, there
exists a ¢ € G such that the leading term of g divides the leading term of f. Recall
that “leading term” here means the leading coefficient times the leading monomial, so the
leading coefficient of ¢ must divide the leading coefficient of f in the base ring R. If R
were a field, then obviously the leading coefficients would be insignificant and the Grobner
basis elements could be normalized (made monic) to yield an equivalent Grébner basis.
But if R is not a field, the leading coefficients are quite significant. For example, over the
ring Z, the set {22, 2z} is a Grobner basis and the polynomial 22 is not redundant since 2
does not divide 1, but over Q, the polynomial 22 would be redundant.

Note that the definition here for a Grobner basis in MAGMA is actually what some
authors (e.g., [AL94, Def. 4.5.6]) call a strong Grobner basis. Weak Grobner bases have
also been defined, but strong Grobner bases satisfy stronger conditions, yield a simple
effective normal form algorithm, provide more information about the ideal, are easier to get
into a unique form, and are no more difficult to compute using the algorithm implemented
in MAGMA. Thus MAGMA always computes a strong Grobner basis, so the distinction
between weak and strong is ignored. MAGMA also effectively computes a D-Grobner basis
as defined in [BW93, Def. 10.4, Table 10.1], although MAGMA also allows Euclidean rings
which are not integral domains (i.e., which have zero divisors).

Over Euclidean rings, the definition of a minimal basis is practically the same as for
fields (there must be no polynomial in the ideal generated by the others and each polyno-
mial must be normalized), but the definition of a reduced basis is more subtle. A basis is
called reduced if each polynomial in it is normalized and if, for every term c - s of every
polynomial in the basis (where c is the coefficient and s is the monomial), then if some
other polynomial in the basis has leading term d - ¢, with ¢ dividing s, then the Euclidean
quotient of ¢ by d must be zero (the remainder will be non-zero of course). Informally, this
means that each polynomial is reduced modulo all the other polynomials, where each coef-
ficient must be reduced modulo all other appropriate leading coefficients. As an example,
suppose fi1 = x? + 14zy and fo = 5y +9 are in Z[z,y]. Then {f1, f2} is not reduced, since
the second term of f; can be reduced by f5 (y divides zy and the Euclidean quotient of 14
by 5 is 2, with remainder 4). But if we were to replace fi by f1 — 2z fy = 2% + 4zy — 18,
then { fi1, fo} would now be reduced.

MAGMA’s extension of Faugere’s algorithm depends on sparse linear algebra over Eu-
clidean rings. (Note also that the advanced criteria for eliminating useless pairs in [M6188])
are also implemented in this extension to work for general Euclidean rings as well.) MAGMA
now contains an algorithm for computing a unique echelon form of a sparse matrix over
such a ring; uniqueness is ensured because there is a unique Euclidean quotient-remainder
algorithm for each Euclidean ring (and zero divisors are also handled properly). Conse-
quently, based on this unique echelon form algorithm and some other techniques, MAGMA
ensures that a Grobner basis over a Euclidean ring is not only minimal (contains no re-

3192 COMMUTATIVE ALGEBRA Part XV

dundant polynomials), but it is also reduced, and unique.

Thus every ideal of a polynomial ring over a Euclidean ring possesses a unique sorted
minimal reduced Grobner basis (with respect to some fixed monomial ordering), just as
for ideals defined over fields. Also, as for ideals defined over fields, this unique Grobner
basis will be computed automatically when needed by MAGMA, and before this happens,
an ideal will usually possess a basis which is not a Grobner basis, but that will be changed
into the unique Grobner basis when needed.

The uniqueness of the Grobner basis also ensures that the normal form of an element
with respect to an ideal for a fixed monomial order is always unique. All of this holds even
for Euclidean rings which have zero divisors.

See the examples below for illustrations of the points made above, and also how one
can effectively compute with Grébner bases of ideals defined over rings which are not even
Fuclidean.

105.4.3 Construction of Grobner Bases

The following functions and procedures allow one to construct Grobner bases. Note that a
Grobner basis for an ideal will be automatically generated when necessary; the Groebner
procedure below simply allows control of the algorithms used to compute the Grobner
basis.

NOTE: MAGMA applies a special monomial representation and a special variant of the
F, algorithm if the ideal I is defined over F5 and the polynomials x;2 4 z; for all i are
present in the input basis of the ideal I. So if one wishes to solve a system of equations
over Fy, then one should include these polynomials in the input basis (they can be at any
place and in any order; as long as there is at least one copy of z;? + z; present for each
i). Alternatively (since V2.15), one can create a boolean polynomial ring (via the function
BooleanPolynomialRing below) and construct the ideal within this. See also Example
H105E5 below.

Groebner (I: parameters)

(Procedure.) Explicitly force a Grobner basis (GB) for the ideal I to be constructed.
This procedure is normally not necessary, as MAGMA will automatically compute
the GB when needed, but it does allow one to control how the GB is constructed
by various parameters.

By default, the parameters are set to default values which tend to work best for
the particular kinds of inputs which are given, but there exist many inputs for which
setting at least one of the parameters to a non-default value will lead to a dramatic
improvement. (A general strategy for the computation of GBs is very difficult to
design.)

If I is defined over a Euclidean ring, then MAGMA always uses the extension of
the Faugere algorithm directly, and of the parameters given below, only Homogenize
is applicable. So the rest of this description assumes that I is defined over a field.

We call a GB algorithm direct if it takes the initial basis of the ideal I (with
no structure) and computes the unique minimal reduced GB of I with respect to

Ch. 105 GROBNER BASES 3193

some monomial order. Since V2.11 (May 2004), MAGMA has two direct algorithms
for computing GBs over fields:

(1) The Faugere F, algorithm [Fau99], which works by specialized sparse linear al-
gebra and is applicable to ideals defined over a finite field or the rational field;

(2) The Buchberger algorithm [CLO96, Chap. 2, §7] for ideals defined over any field.

Both direct algorithms use the advanced criteria for eliminating useless pairs in
[M6188]. MAGMA also uses two order change algorithms which both change the
GB of an ideal with respect to one monomial order to the GB with respect to another
monomial order:

(1) The FGLM algorithm [FGLM93], which works by efficient linear algebra and is
only applicable if I is zero-dimensional;

(2) The Grobner Walk algorithm [CKM97].

This parameter affects the main strategy:
Al MoNSTGELT Default : “Default”

The parameter A1 may be set to one of: "Default", "Direct", "FGLM" or "Walk".
The value "Direct" specifies that MAGMA should compute the GB of I (with respect
to the order of I) by a direct algorithm alone, so that an order-conversion algorithm
is not used (the parameter Faugere below controls which direct algorithm is used).

The alternative strategy is to compute the GB first with respect to an “easy”
order, and then to convert this to the GB with respect to the order of I. Setting
Al to the values "FGLM" or "Walk" will cause this strategy to be used, where the
order change algorithm will be the FGLM algorithm or Grébner Walk algorithm,
respectively.

If no algorithm is specified, or if "Default" is specified, an appropriate strat-
egy is chosen by MAGMA, which is usually the FGLM method if the ideal is zero-
dimensional and over a finite field or the rational field, and the Walk method oth-
erwise.

The following parameters affect the direct algorithms:

Faugere BooLELT Default : true
HomogeneousWeights BooLELT Default : true
Homogenize BooLELT Default : true
DegreeStart RNGINTELT Default : true

If the parameter Faugere is set to true, then the Faugere F algorithm will be
used (if the field is a finite field or the rational field); otherwise the Buchberger
algorithm is used.

The current implementation of the Faugere algorithm is usually very much faster
than the Buchberger algorithm and usually does not take much more memory, so
that it is why it is now selected by default. However, there may be examples for

3194

COMMUTATIVE ALGEBRA Part XV

which it may be more desirable to use the Buchberger algorithm (particularly to
save some memory).}

Since V2.12, if the input basis is not homogeneous, then MAGMA first attempts
to find a weight vector W with respect to which the ideal is homogeneous; if such
a W is found, then the “easy” order used internally for the direct algorithm (ac-
cessed by EasyIdeal) is taken to be the grevlexw order with respect to W (see
subsection 105.2.4), since the GB is likely to be smaller with respect to this or-
der. The selection of such an order may be suppressed by setting the parameter
HomogeneousWeights to false.

If no appropriate grevlexw order is used, then setting Homogenization to true
specifies that the ideal should first be homogenized: a GB of the homogenization
of the ideal is computed and then the homogenization variable is removed and the
final basis reduced. This parameter has the default value of true over the rational
field and false over all other fields, since most computations are improved by these
defaults.

If the parameter DegreeStart is set to an integer d, then any S-polynomial pairs
of degree less than d will be ignored.

The following parameters affect the Faugere F algorithm:

AllPairs BooLELT Default : false
PairsLimit BooLELT Default : 0
ReversePairs BooLELT Default : false
HFE BooLELT Default : false
Boolean BooLELT Default : false
Nthreads RNGINTELT Default : 1

By default, the Faugere Fj algorithm includes all pairs of the next degree at
each step (see [Fau99, Sec.2.5]), since this usually produces the best performance.
However, setting the parameter A11Pairs to true will cause the algorithm to include
all pairs currently in the queue at each new step; this generally makes the matrix
larger and is usually less efficient, but for some inputs (e.g., inhomogeneous ideals
where there are only a small number of pairs for each degree at each step) this option
may yield a significant improvement.

Alternatively, setting the parameter PairsLimit to a positive integer n will cause
the algorithm to include at most n pairs from the queue at each step; this will usually
make the matrix smaller, thus saving memory, but will often also make the running
time longer. Setting also the parameter ReversePairs to true will reverse the list
of pairs of the current degree from which the restricted set of pairs is taken: this
may help a lot for certain types of input, since this may lead to new polynomials
of lower degree being found more quickly. (If there is no pairs limit, then the value

T If you encounter an example where the Faugere algorithm is significantly slower than
the Buchberger algorithm, then please mail it to us (magma@maths.usyd.edu.au)!

Ch. 105 GROBNER BASES 3195

of ReversePairs is irrelevant since all pairs of the current degree are taken at each
step.)

If the input basis is an HFE system over F5 such that the secret degree d is less
than or equal to 127, then one should set the HFE parameter to true. In this case,
MAGMA can apply various optimizations which save memory and time (only pairs of
degree of most 4 are considered, as this is sufficient for systems for which d < 127).

Since V2.18, if the base ring is the finite field F,, where p is a prime with 2 < p <
2235 then a multi-threaded version of the algorithm is available if POSIX threads are
enabled in the current Magma version. In this case, setting the parameter Nthreads
to a positive integer n will cause the F); algorithm to use n threads within the linear
algebra phase of each step. One can alternatively use the procedure SetNthreads
to set the global number of threads to a value n so that n threads are always used
by default in this algorithm (unless overridden by the Nthreads parameter).

The following parameters affect the Buchberger algorithm:

ReducelInitial BOOLELT Default : true
RemoveRedundant BooLELT Default : true
ReduceByNew BooLELT Default : true

Setting ReduceInitial to true specifies that the basis of the ideal should be
first reduced (see the function Reduce) before any S-polynomial pairs are considered.
Setting RemoveRedundant to true specifies that redundant polynomials in the input
(which reduce to zero with respect to the other polynomials) should first be removed.
Setting ReduceByNew to true specifies that when a new polynomial f is inserted
into the current GB being constructed, the current basis should be reduced by f
(thus the basis stays close to being fully reduced throughout the algorithm).

Each of these control parameters usually have the default values of true (it
depends on the coefficient ring).

The following parameters affect the Walk algorithm:

SigmaEpsilon FLDRATELT Default : 1/2
TauEpsilon FLDRATELT Default : 1/n
SigmaVectors RNGINTELT Default : n
TauVectors RNGINTELT Default : [n/2]

The parameters SigmaEpsilon and TauEpsilon control the factor € which is used in
the Walk algorithm to perturb the initial weight vector o and the final weight vector
T respectively. The parameters SigmaVectors and TauVectors determine how many
weight vectors of the initial and final orders are used to perturb the initial weight
vector ¢ and the final weight vector 7 respectively. By default, the e factor and
number of weight vectors for o are determined dynamically to be “optimal”, while
the e factor for 7 is taken to be 1/n and the number of weight vectors for 7 is taken
to be [n/2], where n is the rank of I.

3196 COMMUTATIVE ALGEBRA Part XV

GroebnerBasis(I: parameters)

Given an ideal I, force the Grobner basis of I to be computed, and then return that.
The parameters are the same as those for the procedure Groebner.

See also the function GroebnerBasis(S,d) below, which creates a truncated
degree-d Grobner basis.

GroebnerBasis(S: parameters)

Given a set or sequence S of polynomials, return the unique Grobner basis of the
ideal generated by S as a sorted sequence. This function is useful for computing
Grobner bases without the need to construct ideals. The parameters are the same
as those for the procedure Groebner.

See also the function GroebnerBasis(S,d) below, which creates a truncated
degree-d Grobner basis.

GroebnerBasisUnreduced(S: parameters)

Homogenize BooLELT Default : true
ReducelInitial BooLELT Default : true
ReduceByNew BooLELT Default : true

Given a set or sequence S of polynomials, return an unreduced Grobner basis of
the ideal generated by S as a sorted sequence. This function is useful for comput-
ing Grobner bases without the need to construct ideals and when the reduction of
the Grobner basis is very expensive. The parameters behave the same as for the
procedure Groebner.

GroebnerBasis(S, d: parameters)

Given a set or sequence S of polynomials, return the degree-d Grébner basis of the
ideal generated by S, which is the truncated Grobner basis obtained by ignoring
S-polynomial pairs whose total degree is greater than d.

If the ideal is homogeneous, then it is guaranteed that the result G4 is equal to
the set of all polynomials in the full Grobner basis of the ideal whose total degree
is less than or equal to d, and thus a polynomial whose total degree is less than or
equal to d is in the ideal iff its normal form with respect to the degree-d Grobner
basis G4 is zero. But if the ideal is not homogeneous, these last properties may not
hold, but it may be still useful to construct the truncated basis.

The parameters are the same as those for the procedure Groebner. See the
section on graded polynomial rings below for an example. See also [BW93, section
10.2], for further discussion.

Ch. 105 GROBNER BASES 3197

105.4.4 Related Functions

The following functions and procedures perform operations related to Grobner bases.

HasGroebnerBasis(I) |

Given an ideal I, return whether the Grobner basis of I can be computed. This
depends on the type of base ring of I: the base ring must currently be a field or a
FEuclidean ring.

EasyIdeal(I)

Given an ideal I, return the ideal E which is mathematically equal to I but whose
basis is the Grobner basis of I with respect to an “easy” order, together with an
isomorphism f from I onto E. The easy order is usually the grevlex order or
grevlexw order with suitable weights, and the easy basis (the Grobner basis of the
easy ideal) of I is used extensively by MAGMA in many of its internal algorithms;
this function allows one to access this “easy” Grobner basis directly.

EasyBasis(I)

Given an ideal I, return the Groebner basis of the easy ideal of I.

SmallBasis(I) |

Given an ideal I, return the basis of I with shortest length which is currently known.
This may be the original basis with which I was constructed, or a Grébner basis,
but the result is always has the the same monomial order as the main monomial
order of I.

| MarkGroebner (I) |

(Procedure.) Given an ideal I, mark the current basis of I to be the Grobner basis
of the ideal w.r.t. the monomial order of the ideal. Note that the current basis must
exactly equal the unique (reverse) sorted minimal reduced Grébner basis for the
ideal, as returned by the function GroebnerBasis. This procedure is useful when
one creates an ideal with a basis known to be the Grobner basis of the ideal from
a previous computation or for other reasons. If the basis is not the unique Grébner
basis, the results are unpredictable.

| IsGroebner(8) |
| IsGroebner(S) |

Given a set or sequence S of polynomials describing a basis of an ideal, return
whether the basis is itself a (not necessarily minimal or reduced) Grébner basis of
the ideal.

3198 COMMUTATIVE ALGEBRA Part XV

Coordinates(I, f)

Given an ideal I of a polynomial ring P, together with a polynomial f in I, and
supposing that I has basis by, .. ., b, return a sequence [g1, . .., gk] of elements of P
so that f = g1 *xby + ...+ g * bg. If I was created by IdealWithFixedBasis(DB),
then the fixed basis B is used as the basis by, .. ., bg; otherwise the (unique) Grobner
basis of I is used as the basis by, ...,b;. The resulting sequence is not necessarily
unique.

CoordinateMatrix(I) |

Given an ideal I such that I has a fixed basis (i.e., such that I was created via the
function IdealWithFixedBasis), return the coordinate matrix C of I. The i-th row
of C' gives the coordinates of the i-th element of the Groebner basis of I w.r.t. the
fixed basis of I. The Groebner basis of [is first computed if it has not been already.

NormalForm(f, I)

Given a polynomial f from a polynomial ring P, together with an ideal I of P,
return the unique normal form of f with respect to (the Grébner basis of) I. The
normal form of f is zero if and only if f is in I.

NormalForm(f, S)

Given a polynomial f from a polynomial ring P, together with a set or sequence S
of polynomials from P, return a normal form g of f with respect to S. (This is not
unique in general. If the normal form of f is zero then f is in the ideal generated
by S, but the converse is false in general. In fact, the normal form is unique if and
only if S forms a Grébner basis.) If S is a sequence, one may also assign a second
return value C' which gives the coordinates of the reduction, so that C[i] - S[i] is
subtracted from f for each i to yield g.

SPolynomial(f, g)

Given elements f and g from a polynomial ring P, return the S-polynomial of f and
g.

Reduce(S) |

Given a set or sequence S of polynomials, return the sequence consisting of the
reduction of S. The reduction is obtained by reducing to normal form each element
of S with respect to the other elements and sorting the resulting non-zero elements
left. Note that all Grobner bases returned by MAGMA are automatically reduced so
that this function would usually only be used just to simplify a set or sequence of
polynomials which is not a Grobner basis.

Ch. 105 GROBNER BASES 3199

ReduceGroebnerBasis(S) |

Given a set or sequence S of polynomials which is assumed to be a (not necessarily
minimal or reduced) Grébner basis for an ideal, return the sequence consisting of
the reduction of S. The reduction is obtained by first removing each redundant
polynomial whose leading term is a multiple of another leading term and then re-
ducing the remaining polynomials as in the function Reduce. This function would
usually only be used to reduce a set or sequence of polynomials which is known to be
a non-reduced Grobner basis (created in some way other than by one of MAGMA’s
internal Grobner basis construction algorithms).

105.4.5 Grobner Bases of Boolean Polynomial Rings

Since V2.15, a special type of polynomial ring is available: the boolean polynomial
ring in n variables. Such a ring is a multivariate polynomial ring defined over Fy but
such that all monomials are reduced modulo the field relations x? = w; for each i (so a
bit vector representation can be used for monomials). Technically, the ring is thus the
quotient algebra

Folzy,...,z0] /(2] + 21,..., 020 + 2,).

Besides the basic creation and access functions for elements and ideals of such a ring,
the main interest is to compute and examine a Grobner basis of an ideal. Since the field
relations are always present, an ideal represents a zero-dimensional system of multivariate
polynomial equations over Fo with the solution components always lying in Fs; these are
particularly of interest for algebraic attacks on cryptosystems. Otherwise, there are not
many other operations applicable to such rings and their elements.

Note that if one creates an ideal I of Fy[zy,...,x,] such that the basis of I includes
the field polynomials (x? + z; for each i), then MAGMA automatically uses the boolean
polynomial ring representation internally, so this is basically equivalent to using the boolean
polynomial ring type, except that MAGMA will have to move back to the original ring
Fs[z1,...,x,] at the end, and this may take much more time and memory. So it is
preferable to use the boolean polynomial ring from the outset if one wishes to create the
Grobner basis of such an ideal and examine it (particularly if it does not collapse down to
a sequence of linear polynomials).

See example H105E5 below for simple uses of boolean polynomial rings.

BooleanPolynomialRing(n)

Create the boolean polynomial ring with n variables (whose coefficients lie in Fs).
The default monomial order chosen is the lexicographical (1ex) order.

BooleanPolynomialRing(n, order)

Create the boolean polynomial ring with n variables (whose coefficients lie in Fs)
and with the given order order on the monomials. Currently, order must be one of
the following strings: "lex", "grevlex", "glex".

3200 COMMUTATIVE ALGEBRA Part XV

BooleanPolynomialRing(B, Q)

Given a boolean polynomial ring B of rank n and a sequence @ of integers, create
the boolean polynomial in B whose monomials are given by the entries of): each
integer must be in the range [0 . ..2"—1] and its binary expansion gives the exponents
of the monomial in order (the resulting monomials are sorted w.r.t. the monomial
order of B, so may be given in any order and duplicate monomials are added).

This function is simply provided so that boolean polynomials may be stored and
read back in a compact form; otherwise, one can create a boolean polynomial in the
usual way from the generators of B after B is created. Note also that if one prints
B, an ideal of B, or an element of B with the Magma print level, then this function
will be used to print the elements in a compact form.

105.4.6 Verbosity

This subsection describes the verbose flags available for the Grobner basis algorithms.
There are separate verbose flags for each algorithm (Buchberger, etc.), but the all-
encompassing verbose flag Groebner includes all these flags implicitly.

For each procedure provided for setting one of these flags, the value false is equivalent
to level 0 (nothing), and true is equivalent to level 1 (minimal verbosity). For each
Set- procedure, there is also a corresponding Get- function to return the value of the
corresponding flag.

SetVerbose("Groebner", v)

(Procedure.) Change the verbose printing level for all Grobner basis algorithms
to be v. This includes all of the algorithms whose verbosity is controlled by flags
subsequently listed, as well as some other minor related algorithms. Currently the
legal levels are 0, 1, 2, 3, or 4. One would normally set this flag to 1 for minimal
verbosity for Grobner basis-type computations, and possibly also set one or more of
the following flags to levels higher than 1 for more verbosity.

SetVerbose ("Buchberger", v)

(Procedure.) Change the verbose printing level for the Buchberger algorithm to be
v. Currently the legal levels are 0, 1, 2, 3, or 4. If the value w of the Groebner
verbose flag is greater than v, then w is taken to be the current value of this flag.

SetVerbose ("Faugere", v)

(Procedure.) Change the verbose printing level for the Faugere algorithm to be v.
Currently the legal levels are 0, 1, 2, or 3. If the value w of the Groebner verbose
flag is greater than v, then w is taken to be the current value of this flag.

SetVerbose ("FGLM", v)

(Procedure.) Change the verbose printing level for the FGLM order change algo-
rithm to be v. Currently the legal levels are 0, 1, 2, or 3. If the value w of the
Groebner verbose flag is greater than v, then w is taken to be the current value of
this flag.

Ch. 105 GROBNER BASES 3201

SetVerbose("GroebnerWalk", v)

(Procedure.) Change verbose printing for the Grébner Walk order change algorithm
to be v. Currently the legal levels are 0, 1, 2, or 3. If the value w of the Groebner
verbose flag is greater than v, then w is taken to be the current value of this flag.

Example H105E3

We compute the Grobner basis of the “Cyclic-6” ideal with respect to the lexicographical order.
The ideal is an ideal of the polynomial ring Q(z,y, z,t,u,v). We also note that the last poly-
nomial in the Grobner basis is univariate (since, in fact, the ideal is zero-dimensional and the
monomial order is lexicographical) and observe that it has a nice factorization. Note especially
that in this example, homogenizing at first and keeping the Grobner basis reduced makes this
computation very fast; without using these features (i.e., if the parameters Homogenize := false
or ReduceByNew := false are given), the computation is much more expensive (takes hundreds
of seconds on the same computer).

> @ := RationalField();
> P<x, y, z, t, u, v> := PolynomialRing(Q, 6);
> I := ideal<P |

> x+y+z+t+u+yv,
> X*y + y*xz + z*¥t + txu + ukv + vkx,
> Xky*z + ykz*kt + zktku + tHRukv + wkvix + vEkx*y,
> Xkykzxt + ykziktiku + zxtxukv + CRuKVRX + ukvExky + ViXky*z,
> Xkykzxtxu + yhRzitkukxv + zEktFRukvikx + TRUkUERXRY + WRVRXXky*Z + VRXKky*kzZXxt,
> xXky*zrtruky - 1>;
> time B := GroebnerBasis(I);
Time: 1.140
> #B;
17
> B[17];
v~48 - 2554%vy~42 - 399710%v~36 - 499722%v~30 + 499722xv~18 + 399710*v~12 +
2554*%v~6 - 1
> time Factorization(B[17]);
[
<v - 1, 1>,
<v + 1, 1>,
v"2 + 1, 1>,
<v™2 - 4xv + 1, 1>,
<v72 - v + 1, 1>,
<v’2 + v + 1, 1>,
<v72 + 4xv + 1, 1>,

<v’4 - v"2 + 1, 1>,

<v™4 - 4xy~3 + 16*%v72 - 4xv + 1, 1>,

<v"4 + 4%v~3 + 15xv"2 + 4xv + 1, 1>,

<v~8 4%y~6 - 6xv"4 + 4*xv™2 + 1, 1>,

<v™8 - 6xv"7 + 16%v"6 — 24%v"5 + 27*%v"4 - 24%v~3 +
16xv~2 - 6*%xv + 1, 1>,

<v™8 + 6xv"7 + 16%v"6 + 24%v"5 + 27*v"4 + 24%v~3 +

3202 COMMUTATIVE ALGEBRA Part XV

16*xv™2 + 6%v + 1, 1>
]
Time: 0.060

Example H105E4

We solve the system of equations Runge-Kutta 2 from the paper “Some Examples for Solving
Systems of Algebraic Equations by Calculating Groebner Bases” by Boege, Gebauer, and Kredel
(J. Symbolic Computation (1986) 1, 83-98). The coefficient field K is the rational function field
Q(c2,¢3), and the polynomial ring K|[c4, b4,b3,b2,b1,a21,a31,a32,a4l,ad2,a43] has 11 variables
with the lexicographical ordering on monomials. The resulting Grébner basis contains a linear
polynomial for each variable so there is exactly one solution to the system.

> K<c2, ¢3> := FunctionField(IntegerRing(), 2);

> P<c4, b4, b3, b2, bl, a2l, a31l, a32, adl, a42, a43> := PolynomialRing(K, 11);

> I := ideal<P |

bl + b2 + b3 + b4 - 1,

b2%c2 + b3*c3 + bdxcd - 1/2,

b2*c272 + b3*c372 + bdxcd"2 - 1/3,

b3*a32*c2 + bd*ad2*c2 + b4*ad3*xc3 - 1/6,

b2*c2”3 + b3*c3"3 + bdxc4~3 - 1/4,

b3*c3*a32*%c2 + bd*xcd*ad2*xc2 + bdxcd*xad3*xc3 - 1/8,

b3*a32*c2”2 + bd*ad2*xc2”2 + bdxad3*c3"2 - 1/12,

b4*ad3*xal32%c2 - 1/24,

c2 - a21,

c3 - a3l - a32,

> c4 - adl - a42 - a4d3>;

> time Groebner(I);

Time: 0.110

> TI;

Ideal of Polynomial ring of rank 11 over Multivariate rational function field
of rank 2 over Integer Ring

Order: Lexicographical

Variables: c4, b4, b3, b2, bl, a21, a31l, a32, a4l, a42, a43

Inhomogeneous, Dimension O

Groebner basis:

V VV V V V V V V YV

L
c4d -1,
b4 + (-6%c2*c3 + 4*c2 + 4%c3 - 3)/(12%c2%c3 - 12%c2 - 12%c3 + 12),
b3 + (2%c2 - 1)/(12*%c2%c372 — 12%c2*xc3 - 12*%c3°3 + 12%c372),
b2 + (-2*xc3 + 1)/(12*%c273 - 12*c272*%c3 - 12*%c2"2 + 12*c2*c3),
bl + (-6*%c2*c3 + 2%c2 + 2%c3 - 1)/(12*c2%*c3),

a2l - c2,

a3l + (-4*c272%c3 + 3*c2*xc3 - ¢c372)/(4*c272 - 2%c2),

a32 + (-c2*c3 + ¢c372)/(4*c272 - 2%c2),

adl + (-12%c272%c372 + 12*%c272*%c3 - 4*c272 + 12*%c2*c372 - 15*c2*c3 + 6*c2 -
4%c372 + 5%c3 - 2)/(12%c272%c372 — 8%c272*c3 - 8*c2*c372 + 6%c2%*c3),

ad2 + (-c272 + 4*c2%c372 — 5*c2*c3 + 3*c2 - 4*c372 + 5%xc3 - 2)/(12%c273*%c3 -

Ch. 105 GROBNER BASES 3203

8%c273 - 12*%c272%c372 + 6%c272 + 8%c2*c372 - 6%c2xc3),
a43 + (-2%c272%c3 + 2%c272 + 3%c2*%c3 - 3%c2 - c3 + 1)/(6%c2"2%c3"2 -
4xc2"2%c3 - 6%c2*xc3"3 + 3%c2*c3 + 4%c3"3 - 3*%c372)

Example H105E5

We demonstrate how one can solve a system of multivariate equations over Fz. We construct
a sequence B of 4 polynomials in 5 variables, and note that the Grobner basis of B contains
monomials having degrees greater than 1.

> P<a,b,c,d,e> := PolynomialRing(GF(2), 5);

> B := [axb + c*d + 1, a*cke + d¥e, axbxe + c*e, b*c + ckdxe + 1];
> GroebnerBasis(B);
[

a + c™2xd + ¢ + d"2%*e,

bkc + d"3*xe”2 + d"3%e + d"2*%e"2 + d*e + e + 1,

bxe + d*e”2 + d*xe + e,

c¥e + d"3%e”2 + d"3%e + d"2%e”2 + dxe,

d"4*e”2 + d"4*xe + d"3*%e + d"2*%e"2 + d"2*%e + d*xe + e

]

If one wanted to consider solutions over an algebraic closure of Fa, then one would have to work
with this ideal. But to solve over Fy itself, one can add the field polynomials a® + a, b*> + b, etc.
MaGMA recognizes these extra polynomials and uses an optimized representation; this makes the
computation much faster for larger examples. The resulting polynomials (besides any remaining
field polynomials) will always have degree at most 1 in each variable. In this example, we see that
there are 2 solutions over F for the system.

>L :=[P.i"2 + P.i: i in [1 .. Rank(P)]];
> BB := B cat L;
> BB;
[
a*b + cxd + 1,
axc*e + dxe,
axbxe + c*e,
b*c + c*dxe + 1,
+ a,
+ b,
+ c,
+ d,
+ e

]
> GroebnerBasis(BB) ;
[

a+d+ 1,

b+ 1,

c + 1,

d"2 + d,

3204 COMMUTATIVE ALGEBRA Part XV

]

> I := ideal<P|BB>;

> Variety(I);

[<0, 1,1, 1, 0>, <1, 1, 1, 0, 0>]

Since V2.15, an alternative way to solve the system over F is to use the boolean polynomial ring
type as follows.

> P<a,b,c,d,e> := BooleanPolynomialRing(5, "grevlex");

> B := [a*b + c*d + 1, axck*e + d*e, axbke + c*e, bkc + ckxdxe + 1];
> I := Ideal(B);

> I;

Ideal of Boolean polynomial ring of rank 5 over GF(2)
Order: Graded Reverse Lexicographical (bit vector word)
Variables: a, b, c, d, e
Basis:
L

a*b + cxd + 1,

akxckxe + dxe,

axbxe + c*e,

ckd*e + b*c + 1

]
> GroebnerBasis(I);
[
a+d+ 1,
b+ 1,
c + 1,
e
]

> Variety(I);
[<0, 1, 1, 1, 0>, <1, 1, 1, 0, 0> 1]

In general, if one wishes to solve a system over Fs from the outset, it is best to use the boolean
polynomial ring type so as to save memory (and to avoid internal conversion to and from the bit
vector representation for monomials). Note also that because of the implicit field relations, the
Grobner basis of an ideal generated by only one polynomial may have several polynomials. In
the following example, the Grobner basis of an ideal generated by just one polynomial has linear
polynomials alone.

> R<[x]> := BooleanPolynomialRing(10, "grevlex");

> R;

Boolean polynomial ring of rank 10 over GF(2)

Order: Graded Reverse Lexicographical (bit vector word)

Variables: x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], x[9], x[10]

> f := x[2]*x[3]*x[6]*x[7] + x[2]*x[4]*x[5]*x[8] + x[3]*x[4]*x[5]*x[9] +

> x[3]*x[6]*x[7]*x[9] + x[2]*x[3]*x[5] + x[2]*x[4]*x[5] + x[2]*x[3]*x[7] +
x[2]*x[6]*x[7] + x[3]*x[5]*x[7] + x[3]*x[6]*x[7] + x[2]*x[4]*x[8] +
x[2]*x[6]*x[8] + x[4]*x[6]*x[8] + x[3]*x[6]*x[9] + x[3]*x[7]*x[9] +
x[6]*x[7]*x[9] + x[2]*x[3] + x[2]*x[4] + x[3]*x[56] + x[4]*x[5] +

VvV V V

Ch. 105 GROBNER BASES 3205

> x[31*x[6] + x[2]*x[7] + x[6]*x[7] + x[6]1*x[7] + x[2]*x[8] + x[4]*x[8] +
> x[5]1*x[8] + x[3]1*x[9] + x[6]*x[9] + x[7]1*x[9] + x[1]*x[10] + x[1] + x[4]
> + x[6] + x[8] + x[9] + x[10];

> I := Ideal([f]);

> G := GroebnerBasis(I);
> #G;

38

> [Length(f): £ in G];

[188, 50, 80, 82, 26, 22, 20, 26, 20, 20, 26, 32, 8, 8, 8, 8, 32, 32, 8, 8, 8,

8, 8, 8, 8,8, 8, 32,8, 8, 8, 8, 40, 5, 8, 8, 8, 81

> G[38];

x[1]*x[4]*x[71*x[10] + x[1]1*x[5]*x[7]*x[10] + x[1]*x[4]*x[7] + x[1]1*x[5]*x[7] +
x[4]*x[71*x[10] + x[5]*x[71*x[10] + x[41*x[7] + x[5]*x[7]

Example H105E6

This simple example illustrates some of the peculiarities of Grobner bases over Euclidean rings.
We first create a simple ideal I in Z[z,y, z] and compute its Grobner basis.

> P<x, y, z> := PolynomialRing(IntegerRing(), 3);
> I := ideal<P| x"2 - 1, y~2 - 1, 2xx*y - 2z>;
> GroebnerBasis(I);

L
x"2 -1,
X*Z - 2%y,
2%x - y*z,
y2 - 1,
z"2 - 4

]

Notice that the Grébner basis contains polynomials whose leading terms are z?, zz and 2z, but
the third cannot eliminate the first two since the leading coeflicient 2 does not divide the other
leading coefficients 1 and 1.

When we compute normal forms modulo I, x is clearly not reducible by any polynomial, while 2z
can be reduced by the 2z — yz polynomial.

> NormalForm(x, I);
X

> NormalForm(2*x, I);
y*z

If we compute the normal form of (—z) modulo I, then even though the x monomial cannot be
reduced, the result is NOT the negative of the normal form of z, since one can use the 2z — yz
polynomial and the fact that ((—1) mod 2) is 1 to reduce the polynomial to a unique normal form.
This behaviour differs from that for ideals defined over fields, where the normal form of —f will
always be the negative of the normal form of f.

> NormalForm(-x, I);

3206 COMMUTATIVE ALGEBRA Part XV

X - y*z

If we reduce the Grébner basis modulo various primes, we obtain familiar Grobner bases over

fields:
> GroebnerBasis(ChangeRing(I, GF(2)));

L

x"2 1,

"2 1,

]
> GroebnerBasis(ChangeRing(I, GF(3)));
L

X + y*z,

y 2 + 2,

z72 + 2
]

But if we reduce modulo 4, using the ring of integers modulo 4, then the Grobner basis still has
a structure not encountered when working over fields:

> GroebnerBasis(ChangeRing(I, IntegerRing(4)));

L
x"2 + 3,
X*z + 2%y,
2*%x + y*z,
y 2 + 3,
z"2,
2%z

]

In fact, the new polynomial 2z has been included in this Grobner basis.

Example H105E7

This example shows how one can use Grobner bases over the integers to find the primes modulo
which a system of equations has a solution, when the system has no solutions over the rationals.

We first form a certain ideal I in Z[z,y, 2|, and note that the Grobner basis of I over QQ contains
1, so there are no solutions over Q or an algebraic closure of it (this is not surprising as there are
4 equations in 3 unknowns).

> P<x, y, z> := PolynomialRing(IntegerRing(), 3);
> I := ideal<P | x72 - 3%y, y™3 - x*xy, z°3 - x, x"4 - y*z + 1>;
> GroebnerBasis(ChangeRing(I, RationalField()));
L
1
]

However, when we compute the Grobner basis of I (defined over Z), we note that there is a certain
integer in the ideal which is not 1.

> GroebnerBasis(I);

Ch. 105 GROBNER BASES 3207

L
x + 170269749119,
y + 2149906854,
z + 170335012540,
282687803443

]

Now for each prime p dividing this integer 282687803443, the Grobner basis of I modulo p will
be non-trivial and will thus give a solution of the original system modulo p.

> Factorization(282687803443);
[<101, 1>, <103, 1>, <27173681, 1>]
> GroebnerBasis(ChangeRing (I, GF(101)));

[
x + 19,
y + 48,
z + 68
]
> GroebnerBasis(ChangeRing(I, GF(103)));
[
x + 39,
y+8,
z + 85
]
> GroebnerBasis(ChangeRing(I, GF(27173681)));
L
x + 26637654,
y + 3186055,
z + 10380032
]

Of course, modulo any other prime the Grobner basis is trivial so there are no other solutions.
For example:

> GroebnerBasis(ChangeRing(I, GF(3)));
[

1
]

Note that the problem can also be solved by using resultants, but this may yield many extraneous
potential primes, while the Grobner basis technique yields the exact list of primes for which there
are modular solutions.

Example H105E8

This example shows how one can effectively compute in Magma with Grébner bases over a ring
which is not Euclidean (and may not even be a principal ideal ring), by starting with Z and adding
appropriate defining relations. The input for this example is based on [AL94, Ex. 4.2.13].

Let R = Z[v/—5]. R is the maximal order of Q(v/—5) and is NOT a PIR. We consider the ideal
I of R[z,y] generated by fi = 2zy + /=5y and fo = (1 4+ v/=5)2? — 2y. To work over R, we

3208 COMMUTATIVE ALGEBRA Part XV

simply compute over Z, introduce a new variable S to represent y/—5, make sure that S is less
than both z and y in the monomial order, and include the polynomial (S +5) in the ideal I. We
then print out the Grébner basis of 1.

> P<x, y, S> := PolynomialRing(IntegerRing(), 3);
> f1 := 2¥x*y + Sxy;

> £2 = (1 + S)*x"2 - x*y;

> I := ideal<P | f1, £2, 872 + 5>;

> GroebnerBasis(I);

L

X72%S + x72 + Bxy~3 + 13%y*xS - 2bxy,
6*x"2 + Bxy~2 + 3xyxS - 10xy,
x*xy + Bxy~3 + 13%y*S - 26%y,
y~2*S + bxy~2 - 1bxy,
10*y~2 + bxy*S - 2bxy,
S°2 + 5
]

In [AL94, p. 224], a (weak) Grobner basis for the ideal is given as {f2, fs, f7, fo}, where f5 =
(5 +v=5)y* — 15y, fr = —2/=5y> + 5(1 + v/=5)y, and fo = zy + v/—5y> — 5v/—5y* + 8/ —5y.
We can easily verify that the ideal J generated by these 4 polynomials describes the same ideal
as I (and so has the same Grobner basis in MAGMA).

> £f5 := (5 + S)*y~2 - 1bxy;

> f7 := -2%Sxy~2 + (5 + 5*3)x*y;

> f9 := x¥xy + S*y~3 - 5*5*y~2 + 8*5x*y;

> J := ideal<P | f£2, f5, f7, £f9, S72 + 5>;
> 1 eq J;

true

> GroebnerBasis(I) eq GroebnerBasis(J);
true

We can even write f5, f7r and fo as combinations of the Grobner basis elements of I, as follows.

> Coordinates(I, £f5);

[

0, 0, 0, 1, 0, O
]
> Coordinates(I, £f7);
[

0, 0, 0, -2, 1, O
]
> Coordinates(I, f9);
[

0, 0,1, y, -y-1,0
]

We can see that these elements are fairly trivially derived from the Grobner basis which Macma
computes for I. But if we now create J again using the IdealWithFixedBasis function and the
sequence Q = [f2, fs, f7, fo, S® + 5], then we can see the coordinates of any element of I = J as a

Ch. 105 GROBNER BASES 3209

linear combination of the elements of (). We find the coordinates of the second element of MacgMmA’s
original Grobner basis of I with respect to (). The resulting coordinates are rather non-trivial.

> Q := [f2, f5, f7, f9, S°2 + 5];
> J := IdealWithFixedBasis(Q);

> J eq I;

true

> g := GroebnerBasis(I) [2];

> g;

6*xx"2 + Bxy~2 + 3xy*S - 10*y
> C := Coordinates(J, g);

> C;
L
-S + 1,
—5*y + 1,
-X — yT2%S + T*y*S - 2%y - 7*S - 2,
—2%y*S + 4%5 + 6,
X"2 + bxy~3 - 13%y"2 + 3%y
]

We check that multiplying out the expression recovers g.

> &+[C[i1*Q[il: i in [1 .. #C]] eq g;
true

Note that in the terminology of Adams and Loustaunau, MacMma is here computing a “strong”
Grobner basis (for this representation which uses an extra variable for v/—5), while these authors
show that {f2, fs, f7, fo} constitutes a “weak” Grobmner basis for I over the ring Z[v/—5]. The
fact that the coordinates of g with respect to @ are rather non-trivial shows that Macma’s strong
Grobner basis computation has computed a lot more information than the weak Grobner basis
(i-e., g, which must be included in the strong Grobner basis, is not trivially derived from Q).

Most importantly of all, the fact that we have done all this by defining things over Z with the
extra variable S has been no less powerful: we can still do full membership testing, normal
forms, coordinate computations, etc. with this representation. Also, see below for an elimination
computation which continues this example.

Grobner bases over very many other general rings can be effectively handled in just the same way
as that presented in this example! For example, if we need a = (1 4+ v/5)/2, we can introduce a
variable new A and the polynomial (24 — 1)* — 5.

Example H105E9

We construct an ideal I of the polynomial ring P = Q[z, y] with a specific fixed basis S, determine
that I is the full polynomial ring P, and then find coordinates of the polynomial 1 of P with respect
to S. Note that we use the function IdealWithFixedBasis to construct the ideal so that the fixed
basis will be remembered.

> P<x, y> := PolynomialRing(RationalField(), 2);
>8 = [x"2 -y, x73 +y72, xxy"3 - 1];
> I := IdealWithFixedBasis(S);

3210 COMMUTATIVE ALGEBRA Part XV

>1 in I;

true

> C := Coordinates(I, P!1);
> C;

[

-1/2*%x72%y"3 - 1/2*%x72%y"2 + 1/2*%x"2%y + 1/2*%x"2 + 1/2xx*xy~3 +
1/2*X*y"2 - 1/2*X*y - 1/2*y“4 - 1/2*y"3 + 1/2*y"2 + 1/2*y,
1/2xx*y~3 + 1/2xx*y~2 - 1/2%x*xy - 1/2%x - 1/2%xy"3 - 1/2*%y~2 + 1/2xy,
~1/2%y"2 + 1
]

Now we check that multiplying out by the coordinates gives 1.

> C[1]*S[1] + C[2]1%S[2] + C[3]1*S[3];
1

Now we move the problem to being over the integer ring Z.
> P<x, y> := PolynomialRing(IntegerRing(), 2);

>8 :=[x"2 -y, x73 + y72, xxy~3 - 1];

> I := IdealWithFixedBasis(S);

>1 in I;

false

> GroebnerBasis(I);

[
+ 1,

]

We note that 1 is not in the ideal this time, but 2 is! So we compute the coordinates of 2 with
respect to I this time.

> C := Coordinates(I, P!2);

> C;

L
XT2%yT2 - x72%y - x72 - xxy"2 + xxy +x +y4+y3-y2-y-1,
“X*¥yT2 + x¥y + x +y3+y2-y-1,
-X"2 - x¥y +y - 2

]

Note that C' is the same as above, except that each polynomial has been scaled by 2 to make it
integral. Finally we check again that multiplying out by the coordinates gives 2.

> C[1]1*S[1] + C[2]*S[2] + C[3]1*S[3];
2

Incidentally, we can see from the Grobner basis of I over Z that the only solution to the system
of equations described by S is the local solution x = y = 1 over Fs.

Ch. 105 GROBNER BASES 3211

Example H105E10

Grobner bases can be constructed over any exact Euclidean ring in Maama, not just the ring of
integers and its residue class rings.

We construct an ideal I of the polynomial ring P = Q[z, y] with a specific fixed basis .S, determine
that I is the full polynomial ring P, and then find coordinates of the polynomial 1 of P with respect
to S. Note that we use the function IdealWithFixedBasis to construct the ideal so that the fixed
basis will be remembered.

> P<x, y> := PolynomialRing(RationalField(), 2);
>8 = [x72 -y, x73 + y72, xxy~3 - 1];

> I := IdealWithFixedBasis(S);

>1 in I;

true

> C := Coordinates(I, P!1);

> C;

[
-1/2%x72%y"3 - 1/2%x"2%y"2 + 1/2%x"2%y + 1/2*%x"2 + 1/2%xxy~3 +

1/2%x%y~2 - 1/2%x*xy - 1/2xy~4 - 1/2%y~3 + 1/2%y"2 + 1/2xy,

1/2xx*y~3 + 1/2xx*y~2 - 1/2%x*xy - 1/2%x - 1/2%xy"3 - 1/2*%y~2 + 1/2xy,
-1/2%xy"2 + 1

]

Now we check that multiplying out by the coordinates gives 1.

> C[1]1*S[1] + C[2]*S[2] + C[3]1*S[3];
1

Now we move the problem to being over the integer ring Z.

> P<x, y> := PolynomialRing(IntegerRing(), 2);
>8 = [x"2 -y, x73 + y72, xxy~3 - 1];

> I := IdealWithFixedBasis(S);

>1 in I;

false

> GroebnerBasis(I);

[
+ 1,

]

We note that 1 is not in the ideal this time, but 2 is! So we compute the coordinates of 2 with
respect to I this time.

> C := Coordinates(I, P!2);
> C;
L
XT2%y"2 - x72%y - xX72 - x¢y"2 + ¢y + x +y4 +y3-y2-y-1,

“X*y"2 + xxy + x + y3+y2-y-1,
-X"2 - xxy +y - 2

3212 COMMUTATIVE ALGEBRA Part XV

]

Note that C' is the same as above, except that each polynomial has been scaled by 2 to make it
integral. Finally we check again that multiplying out by the coordinates gives 2.

> C[1]1*S[1] + C[2]*S[2] + C[3]*S[3];
2

Incidentally, we can see from the Grobner basis of I over Z that the only solution to the system
of equations described by S is the local solution £ = y = 1 over Fa.

105.4.7 Degree-d Grobner Bases

GroebnerBasis(S, d : parameters)

Given a set or sequence S of polynomials from a graded polynomial ring P, return the
weighted degree-d Grobner basis of the ideal generated by S, which is the truncated
Grobner basis obtained by ignoring S-polynomial pairs whose weighted degree (with
respect to the grading on P) is greater than d.

If the ideal is homogeneous, then it is guaranteed that the result is equal to the
set of all polynomials in the full Grobner basis of the ideal whose weighted degree
is less than or equal to d, and a polynomial whose weighted degree is less than or
equal to d is in the ideal iff its normal form with respect to this truncated basis is
zero. But if the ideal is not homogeneous, these last properties may not hold, but
it may be still useful to construct the truncated basis.

The parameters are the same as those for the procedure Groebner. See also
[BW93, section 10.2] for further discussion. Note that the base ring may be a field
or Euclidean ring.

Example H105E11

We create a graded polynomial ring and compute the degree-d Grobner basis of a sequence L of
homogeneous polynomials for various d. Since the polynomials are homogeneous (with respect to
the grading), we check that the result for each d contains the set of all polynomials in the full
Grobner basis of L having weighted degree less than or equal to d.

P<a,b,c,d> := PolynomialRing(RationalField(), [4,3,2,11);
L := [axb - ¢c"2*%d"3, b*c*xd + c~3, c™2xd - d°5, a*d - b*c];
[IsHomogeneous(f): f in L];

true, true, true, true]

[Degree(f): f in L];

7, 6, 5, 5]

G:=GroebnerBasis(L);

G;

—m VvV VAV —V VYV

axb - 477,
axc”3 + 4710,
axd - b*c,

Ch. 105

]
>

10

>
L
>
>
>
>
>
D
D
D
D
D
D
D
D
D
D
>
L

b~ 2%c
b*c~3
bxc*xd
b*xd~5
c’5 -
c~2xd
cxd”7

#G;

+
+
+

d-8,
d-9,
c”3,
c"4,

d~10,

d°5,
d~9

[Degree(f): f in G];
7, 10, 5, 8, 9, 6, 8, 10, 5, 9 1]

for D :
T :

printf "D = %o, #GB = %o, contains all degree-D polynomials: %o\n",

end for;
1, #GB

, #GB

]
00 N O O d WN

1 to

10 do

GroebnerBasis(L, D);

GROBNER BASES

D, #T, {f: £ in G | Degree(f) le D} subset T;

, #GB =
, #GB =
, #GB =

, #GB =
, #GB =
, #GB =
= 9, #GB =

b

-

-

- - -

I
fo N N N NN

-

8,

contains
contains
contains
contains
contains
contains
contains
contains
contains

GroebnerBasis (L, 5);

axb - 477,
axd - bxc,
b*cxd + c~3,
c™2%d - d7b

GroebnerBasis(L, 8);

a*xb -
axd -
b~ 2*c
b*xc*xd
b*xd~5
c”2%d

d
b

+
+

~7,

*C,
d-8,
c”3,
c™4,
d~s

all
all
all
all
all
all
all
all
all

degree-D
degree-D
degree-D
degree-D
degree-D
degree-D
degree-D
degree-D
degree-D

polynomials:
polynomials:
polynomials:
polynomials:
polynomials:
polynomials:
polynomials:
polynomials:
polynomials:
= 10, #GB = 10, contains all degree-D polynomials: true

true
true
true
true
true
true
true
true
true

3213

3214 COMMUTATIVE ALGEBRA Part XV

105.5 Changing Coefficient Ring

The ChangeRing function enables the changing of the coefficient ring of a polynomial ring
or ideal.

ChangeRing (I, S)

Given an ideal I of a polynomial ring P = R[x1,...,x,] of rank n with coefficient
ring R, together with a ring S, construct the ideal J of the polynomial ring Q) =
S[z1,...,x,] obtained by coercing the coefficients of the elements of the basis of

I into S. It is necessary that all elements of the old coefficient ring R can be
automatically coerced into the new coefficient ring S. If R and S are fields and R
is known to be a subfield of S and the current basis of I is a Grobner basis, then
the basis of J is marked automatically to be a Grobner basis of J.

Example H105E12

It is better to find the Grobner basis of an ideal over the smallest subfield possible (e.g. Q), then
use ChangeRing to create the equivalent ideal over a splitting field to find the variety.

> P<x, y, z, t, u> := PolynomialRing(RationalField(), 5);
> I := ideal<P |

> x+y+z+t+u,

> X*y + y*z + z¥t + t*xu + u*x,

> X*y*z + y*xz*kt + zxtxu + tRukx + wkxxky,

> x*y*z*t + y*z*t*u + zxtxu*xx + t*u*x*y + u*x*y*z,
> xkykzrtru - 1>;

> Groebner(I);

> K<W> := CyclotomicField(5);

> J := ChangeRing(I, K);

>V := Variety(J);

> #V;

70

105.6 Changing Monomial Order

Often one wishes to change the monomial order of an ideal. MAGMA allows one to do this
by use of the ChangeOrder function.

ChangeOrder (I, Q)

Given an ideal I of the polynomial ring P = R|x1, ..., x,], together with a polyno-
mial ring @ of rank n (with possibly a different order to that of P), return the ideal
J of Q) corresponding to I and the isomorphism f from P to). The map f simply
maps P.i to Q).i for each 1.

The point of the function is that one can change the order on monomials of I to
be that of (). When a Grobner basis of J is needed to be calculated, MAGMA uses
a conversion algorithm starting from a Grobner basis of I if possible—this usually

Ch. 105 GROBNER BASES 3215

makes order conversion much more efficient than by computing a Grébner basis of
J from scratch.

ChangeOrder (I, order)

Given an ideal I of the polynomial ring P = R|z1,...,z,], together with a monomial
order order (see Section 105.2), construct the polynomial ring @ = R[zy,...,z,]
with order order, and then return the ideal J of @) corresponding to I and the
isomorphism f from P to (). See the section on monomial orders for the valid
values for the argument order. The map f simply maps P.i to ().i for each i.

ChangeOrder (I, T)

Given an ideal I of the polynomial ring P = R[z1,...,x,], together with a tuple T,
construct the polynomial ring Q = R[x1, ..., %,] with the monomial order given by
the tuple T on the monomials, and then return the ideal J of) corresponding to I
and the isomorphism f from P to). T must be a tuple whose components match
the valid arguments for the monomial orders in Section 105.2 (or a tuple returned
by the function MonomialOrder).

Example H105E13

We write a function univgen which, given a zero-dimensional ideal defined over a field, computes
the univariate elimination ideal generator for a particular variable by changing order to the ap-
propriate univariate order. Note that this function is the same as (and is in fact implemented
in exactly the same way as) the intrinsic function UnivariateEliminationIdealGenerator. We
then find the appropriate univariate polynomials for a particular ideal.

> function univgen(I, i)

> // Make sure I has a Groebner basis so that

> // the conversion algorithm will be used when

> // constructing a Groebner basis of J

> Groebner(I);

> J := ChangeOrder (I, "univ", i);

> Groebner (J);

> return rep{f: f in Basis(J) | IsUnivariate(f, i)};

> end function;

>

> P<x, y, z> := PolynomialRing(RationalField(), 3, "grevlex");
> I := ideal<P |

> 1 - x + xxy™2 - x%xz72,

> 1 -y + y*xx™2 + yxz~2,

> 1 -z - zxx™2 + zxy~2 >;

>
>

univgen(I, 1);

x"21 - x720 - 2*x"19 + 4xx~18 - 5/2*%x~17 - 5/2*%x"16 + 4%x~15 -
15/2%x~14 + 129/16*x~13 + 11/16*x~12 - 103/8*x"11 +
131/8*x710 - 49/16*x"9 - 171/16%x"8 + 12*x"7 - 3*x"6 -
29/8xx"5 + 15/4*x~4 - 17/16%x"3 - 5/16*x"2 + 5/16*x - 1/16

3216 COMMUTATIVE ALGEBRA Part XV

> univgen(I, 2);

y~14 - y~13 - 13/2%y~12 + 8xy~11 + 53/4xy~10 - 97/4xy"9 -
45/8%y"8 + 33%y"T - 25/2%y"6 - 18%y~5 + 107/8%y~4 + 5/8%y"3 -
27/8%y~2 + 9/8*y - 1/8

> univgen(I, 3);

z"21 - z720 - 2*x2719 + 4%z~18 - 5/2%z"17 - 5/2%z"16 + 4*xz~15 -
15/2*xz~14 + 129/16*z"13 + 11/16%z"12 - 103/8*xz"11 +
131/8*z~10 - 49/16*z"9 - 171/16%z"8 + 12%z"7 - 3%z"6 -
29/8%z°5 + 15/4*z~4 - 17/16%z"3 - 5/16*xz"2 + 5/16*%z - 1/16

105.7 Hilbert-driven Grobner Basis Construction

MAGMA incorporates an implementation of the Hilbert-driven Buchberger Algorithm
[Tra96]. This algorithm constructs the Grobner basis of an homogeneous ideal I whose
Hilbert series is known. The algorithm is often much more efficient than the conventional
Buchberger algorithm since knowledge of the Hilbert series eliminates many unnecessary
reductions of S-polynomials. The algorithm can also be used as an alternative to the
Grobner Walk algorithm for changing order since one can compute the Hilbert series of
the ideal with respect to an easy monomial order, and then start again with the Hilbert-
driven algorithm to compute the Grobner basis with respect to the desired final order.
Furthermore, the algorithm can sometimes be used to test whether an ideal has a partic-
ular Hilbert series and abort early if this is proven to be false. The algorithm is also used
extensively internally in the Invariant Theory algorithms of MAGMA.

HilbertGroebnerBasis (S, H)

HilbertGroebnerBasis(S, N)

Let S be a set or sequence of homogeneous polynomials from the multivariate poly-
nomial ring P = K|[x1,...,2,], where K is a field, and let I be the ideal of P
generated by S. Let either H be the Hilbert series Hp/;(t) of I (as a rational
function in Z(t)) or let N € Z[t] be a univariate integer polynomial such that the
weighted numerator of the Hilbert series of I is N. This function attempts to con-
struct the (reduced) Grobner basis of I using the given Hilbert series. The weighted
numerator of the Hilbert series of I is the Hilbert series Hp,;(t) of I, multiplied by
the denominator []}" ;1 — td where d; is the weighted degree of the i-th variable
x; (this denominator is thus (1 — ¢)™ if P has the default grading).

If the function returns false, then H (or N) cannot be the correct Hilbert series
(or weighted numerator of the Hilbert series) of I. Otherwise, the function returns
true and a sequence B of polynomials which generates the same ideal as S; if H or
N is correct, B will be the (reduced) Grébner basis of 1.

In more detail, let fy be the power series corresponding to the true Hilbert
series of I and let fy be the power series corresponding to N/([]j_; 1 — t%). If
fu = fn, then the function returns true and the correct (reduced) Grobner basis
of I. Otherwise, consider the first term at which fy and fgy differ: if the coefficient

Ch. 105 GROBNER BASES 3217

of fn is greater than that of f, then the function returns false (since it will not
be able to construct the extra Grobner basis polynomials needed), otherwise the
function will return true with a partial Grobner basis (since it concludes that it has
enough Grobner basis polynomials when it hasn’t). Consequently, the algorithm is
usually used when the correct Hilbert series or weighted numerator of the Hilbert
series is known, or when there is a weighted numerator which is known to be greater
than or equal to the correct weighted numerator of the Hilbert series.

SetVerbose("HilbertGroebner", v)

Change verbose printing for the Hilbert-driven Buchberger algorithm to be v. Cur-
rently the legal values for v are true, false, 0, or 1.

Example H105E14

We illustrate a subalgorithm of the Invariant Theory module of Macma which uses the Hilbert-
driven Buchberger Algorithm.

Let R be the invariant ring of the (permutation) cyclic group G of order 4 over the field K = Fs.
Suppose we have a sequence L of 4 homogeneous invariants of degrees 1,2,2, and 4 respectively.
We wish to determine efficiently whether the polynomials of L constitute primary invariants for
R. To check this, the ideal generated by L must be zero-dimensional and the elements of L must
be algebraically independent. This is equivalent to the condition that the weighted numerator of
the Hilbert series of the ideal is the product (1 — #)(1 — t*)*(1 — ¢*). If that is not the correct
weighted numerator, it will be less than the correct weighted numerator so the algorithm will
return whether the polynomials L do constitute primary invariants for R.

K := GF(2);
P<a,b,c,d> := PolynomialRing(K, 4);
L :=[

a+b+c+d,

axb + axd + b*xc + cx*d,

axc + bxd,

axbxcx*xd

1;

// Form potential Hilbert series weighted numerator
T<t> := PolynomialRing(IntegerRing());

N := &*[1 - t"Degree(f): f in L];

N;

t79 - t78 - 2%t77 + 2%t76 + 2%t73 - 2%t72 - t + 1
> time 1, B := HilbertGroebnerBasis(L, N);

Time: 0.000

> 1;

true

> // Examine Groebner basis B of L:

> B;

L

V VV V V V V V V V VYV

a+b+c+d,
b"2 + 472,
b*c + b*d + ¢c”2 + cxd,

3218 COMMUTATIVE ALGEBRA Part XV

c™3 + ¢c”2x%d + c*d"2 + 473,
d~4

105.8 SAT solver

MAGMA V2.16 contains an interface to the MiniSat satisfiability (SAT) solver. Such a
solver is given a system of boolean expressions in conjunctive normal form and determines
whether there is an assignment in the variables such that all the expressions are satisfied.
MaGMA supplies a function by which one may transform a system of boolean polynomial
equations into an equivalent boolean system, and solve this via the SAT solver.

To use the interface function, the MiniSat program must currently be installed as a
command external to MAGMA. At the time of writing (November 2009), the latest version
of MiniSat can be installed as follows on most Unix/Linux systems:

(1) Download http://minisat.se/downloads/minisat2-070721.zip from the MiniSat
website (minisat.se).

(2) Use the command unzip minisat2-070721.zip or equivalent to unzip the files.
(3) Change directory into minisat/core and run make there.

(4) Copy the produced executable minisat into a place which is in the current path when
MAGMA is run.

Exclude [RNGMPOLELT | Default : []
Verbose BooLELT Default : true

Given a sequence B of boolean polynomials in a rank-n boolean polynomial ring (or
a rank-n polynomial ring over Fs), call MiniSat on the associated boolean system
and return whether the system is satisfiable, and if so, return also a solution S as a
length-n sequence of elements of F5. (This assumes that MiniSat is in the executable
path of external commands; see above for instructions for installing MiniSat).

The parameter Exclude may be set to a sequence [ey,...ex|, where each e; is
a sequence of n elements of Fy, specifying that the potential solutions in e; are to
be excluded (this is done by adding new relations to the system to exclude the e;).
The verbose information printed by MiniSat may be controlled by the parameter
Verbose.

Ch. 105 GROBNER BASES 3219

Example H105E15

In Example H105E5, we solved a boolean polynomial system via the standard Groébner basis
method (which the function Variety uses). Here we solve the same system via the SAT solver.
Each time we obtain a solution, we can call the function again, but excluding the solution(s)
already found. We can thus find all the solutions to the system. Of course, this is not worth doing
when there are large numbers of solutions, but it may be of interest to find all solutions when it
is expected there is a small number of solutions.

> P<a,b,c,d,e> := BooleanPolynomialRing(5, "grevlex");

> B := [axb + cxd + 1, a*c*e + d*e, axb*e + c*xe, b*c + cxd*e + 1];
> 1, S := SAT(B);

> 1;

true

> S;

[1, 1,1, 0, 0]

> Universe(S);

Finite field of size 2

> [Evaluate(f, S): f in B];

[0, 0, 0, 01

> 1, S2 := SAT(B: Exclude := [S]);
> 1;

true

S2;

0, 1, 1, 1, 0]

[Evaluate(f, S2): f in B];

0, 0, 0, 01

1, S3 := SAT(B: Exclude := [S, S2]);
> 1;

false

A\

VvV —/, VvV M

105.9 Bibliography

[AL94] William Adams and Philippe Loustaunau. An introduction to Grébner bases,
volume 3 of Graduate studies in mathematics. American Mathematical Society, Provi-
dence, R.I., 1994.

[Buc65] Bruno Buchburger. Fin Algorithmus zum Auffinden der Basiselemente des
Restklassenringes nach einem nulldimensionalen Polynomideal. PhD thesis, University
of Innsbruck, Austria, 1965.

[BW93] Thomas Becker and Volker Weispfenning. Grobner Bases. Graduate Texts
in Mathematics. Springer, New York—Berlin—Heidelberg, 1993.

[CKM97] Stephane Collart, Michael Kalkbrener, and Daniel Mall. Converting Bases
with the Grobner Walk. J. Symbolic Comp., 24(3):465-469, 1997.

3220 COMMUTATIVE ALGEBRA Part XV

[CLO96] David Cox, John Little, and Donal O’Shea. Ideals, Varieties and Algorithms.
Undergraduate Texts in Mathematics. Springer, New York-Berlin—Heidelberg, 2nd
edition, 1996.

[CLO98] David Cox, John Little, and Donal O’Shea. Using Algebraic Geometry.
Graduate Texts in Mathematics. Springer, New York-Berlin—Heidelberg, 1998.

[Fau99] Jean-Charles Faugere. A new efficient algorithm for computing Grébner bases
(Fy). Journal of Pure and Applied Algebra, 139 (1-3):61-88, 1999.

[FGLM93] Jean-Charles Faugere, Patrizia Gianni, Daniel Lazard, and Teo Mora. Ef-
ficient computations of zero-dimensional Grobner bases by change of ordering. J.
Symbolic Comp., 16:329-344, 1993.

[MG188] H.M. Moller. On the construction of Grébner bases using syzygies. J.
Symbolic Comp., 6:345-359, 1988.

[Ste04] Allan Steel. Grobner Basis Timings Page.
URL:http://magma.maths.usyd.edu.au/users/allan/gb/, 2004.

[Tra96] Carlo Traverso. Hilbert Functions and the Buchberger Algorithm. J. Sym-
bolic Comp., 22(4):355-376, 1996.

106.1 Introduction 3223

106.2 Creation of Polynomial Rings
and their Ideals 3224

106.3 First Operations on Ideals . 3224

106.3.1 Simple Ideal Constructions . . . 3224
+ 3224
* 3224
- 3224
/ 3224
106.3.2 Basic Commutative Algebra Oper-
ations 3224
QuotientDimension(I) 3224
ColonIdeal (I, J) 3225
IdealQuotient (I, J) 3225
ColonIdeal (I, f) 3225
IdealQuotient (I, f) 3225
ColonIdealEquivalent (I, f) 3225
Saturation(I, f) 3225
Saturation(I, J) 3225
Saturation(I) 3225
Generic(I) 3225
LeadingMonomialIdeal (I) 3225
meet 3226
&meet S 3226
RegularSequence (I) 3226
ReesIdeal (P, I) 3226
ReesIdeal (P, J, I) 3226
ReesIdeal (R, I) 3226
106.3.3 Ideal Predicates 3227
eq 3227
ne 3227
notsubset 3227
subset 3227
IsZero(I) 3227
IsProper(I) 3227
IsHomogeneous (I) 3227
IsPrincipal(I) 3227
IsPrimary(I) 3227
IsPrime(I) 3228
IsMaximal (I) 3228
IsRadical(I) 3228
IsZeroDimensional (I) 3228
HasGrevlexOrder (I) 3228
106.3.4 Element Operations with Ideals . 3229
in 3229
notin 3230
IsInRadical(f, I) 3230
JacobianIdeal (f) 3230
106.4 Computation of Varieties . . 3231

Variety(I) 3231

106 POLYNOMIAL RING IDEAL OPERATIONS

Variety (I, L) 3231
VarietySequence(I) 3231
VarietySequence(I, L) 3231
VarietySizeOverAlgebraicClosure(I) 3232
106.5 Multiplicities 3233
MilnorNumber (f) 3233
TjurinaNumber (f) 3233
106.6 Elimination. 3234
106.6.1 Construction of Elimination Ideals3234
EliminationIdeal(I, k: -) 3234
EliminationIdeal(I, S) 3234
EliminationIdeal(I, S) 3234
106.6.2 Univariate Elimination Ideal Gen-
erators 3236
UnivariateElimination
IdealGenerator (I, i) 3236
UnivariateElimination
IdealGenerators(I) 3236
106.6.3 Relation Ideals 3239
RelationIdeal(Q) 3239
RelationIdeal(Q, T) 3239
106.7 Variable Extension of Ideals 3240
VariableExtension(I, k, b) 3240
VariableExtension(I, k, b, order) 3240

106.8 Homogenization of Ideals . . 3241

Homogenization(I, b) 3241
Homogenization(I, b, order) 3241
Homogenization(I) 3241
Homogenization(I, order) 3241
106.9 Extension and Contraction of
Ideals 3241
Extension(I, U) 3241
106.10 Dimension of Ideals 3242
Dimension(I) 3242
106.11 Radical and Decomposition of
Ideals 3243
106.11.1 Radical 3243
Radical(I) 3243
106.11.2 Primary Decomposition 3244
PrimaryDecomposition(I) 3244
RadicalDecomposition(I) 3244
ProbableRadicalDecomposition(I) 3245
MinimalDecomposition(S) 3245
SetVerbose ("Decomposition", v) 3245
106.11.3 Triangular Decomposition . . . 3250
TriangularDecomposition(I) 3250

3222 COMMUTATIVE ALGEBRA

106.11.4 Equidimensional Decomposition .

EquidimensionalPart (I)
EquidimensionalDecomposition(I)
FineEquidimensionalDecomposition(I)

106.12 Normalisation and Noether
Normalisation .

106.12.1 Noether Normalisation .

NoetherNormalisation(I)
NoetherNormalization(I)

106.12.2 Normalisation .

Normalisation(I)
Normalization(I)

106.13 Hilbert Series and Hilbert
Polynomial .

HilbertSeries(I)

HilbertSeries(I, p)

HilbertDenominator (I)

HilbertNumerator (I)

HilbertPolynomial (I)

106.14 Syzygies

3252

3252
3252
3252

3253

. 3253

3253
3253

. 3254

3254
3254

3257

3258
3258
3258
3258
3258

3260

Part XV
SyzygyMatrix(Q) 3260
106.15 Maps between Rings. . . . 3261
PolyMapKernel (f) 3261
IsInImage(f, p) 3261
IsSurjective(f) 3261
Extension(phi, I) 3261
Implicitization(phi) 3261
106.16 Symmetric Polynomials . . 3262
ElementarySymmetricPolynomial(P, k) 3262
IsSymmetric(f) 3262
IsSymmetric(f, S) 3262

106.17 Functions for Polynomial Alge-
bra and Module Generators 3263

MinimalAlgebraGenerators (L) 3263
HomogeneousModuleTest (P, S, F) 3264
HomogeneousModuleTest (P, S, L) 3264

HomogeneousModuleTestBasis(P, S, L) 3265

106.18 Bibliography 3266

Chapter 106
POLYNOMIAL RING IDEAL OPERATIONS

106.1 Introduction

This chapter describes the MAGMA functionality for ideals over polynomial rings. For
the basics on multivariate polynomial rings and their elements, see Chapter 24. Most of
the significant operations with ideals construct or utilise a previously-constructed Grobner
basis. The monomial ordering used for this basis can greatly affect the speed and memory
usage of these operations. This ordering is attached to the polynomial ring in which the
ideals are created. For information on Grobner bases and the creation of polynomial rings
with specified orders, see Chapter 105. That chapter also tells the user how to compute
and return a Grobner basis, or just to compute it internally for later use in the operations
described below, with many additional configuration parameters to optimise the computa-
tion. Users may ignore the issue when creating the ambient polynomial rings by allowing
MAGMA to make default choices. It is, however, highly recommended that users who wish
to work with complicated ideals thoroughly acquaint themselves with the options available.
MAGMA has an extremely powerful Grobner basis engine and often makes sophisticated
choices internally of alternative monomial orders for particular computations. Ultimately,
however, the user may significantly speed up his work by a judicious choice of order. We
note here that the default order is the lexicographical one, a total elimination order well
suited to finding solutions of zero-dimensional systems of polynomial equations but tend-
ing to produce very large bases that can take much time and memory to compute. For
homogeneous ideals of rings with the standard weighting (all variables have weight one),
the grevlex order is usually the best in practise and there is theoretical justification for
this. In the case that the ring has a different weighting and the ideal is homogeneous with
respect to that, the weighted grevlex order is the best choice. In any case, the EasyIdeal
and EasyBasis intrinsics of the Grobner basis chapter return to the user a basis for an
internally chosen good order and these “easy” bases are used in many internal functions
if a basis with respect to the polynomial ring order has not already been computed and
stored.

The functions and operations described here cover a wide range of commutative algebra
functionality. This includes sums and intersections, colon ideals and saturations, elimina-
tion, radicals and primary decompositions, Noether normalisations and computation of
Hilbert polynomials and Hilbert series.

Related chapters including other polynomial ring functionality relying on Grobner bases
are the chapter on invariant rings of finite group actions, Chapter 110, and the chapters
on affine algebras (Chapter 108) and on modules over affine algebras (Chapter 109). The
chapter on algebraically closed fields (Chapter 40) describes functions that allows one to
compute the variety of an ideal over the algebraic closure of the base field. And, of course,
the Algebraic Geometry component of MAGMA and parts of the Arithmetic Geometry are
built upon the commutative algebra here.

3224 COMMUTATIVE ALGEBRA Part XV

106.2 Creation of Polynomial Rings and their Ideals

As noted in the introduction, for the basics on multivariate polynomial rings and their
elements, including their creation, the user should refer to Chapter 24. For creation of
polynomial rings with non-default (currently lexicographic) monomial ordering, the user
should refer to Chapter 105. Similarly, the basic creation functions for ideals and additional
basis options are described in Chapter 105. The commonest creation methods are the ideal
constructor and the Ideal function.

106.3 First Operations on Ideals

In the following, note that since ideals of a full polynomial ring P are regarded as subrings
of P, the ring P itself is a valid ideal as well (the ideal containing 1).

106.3.1 Simple Ideal Constructions
The following basic constructions involve no Grobner basis computation.

I+

Given ideals I and J of the same polynomial ring P, return the sum of I and J,
which is the ideal generated by the generators of I and those of .J.

I xJ

Given ideals I and J of the same polynomial ring P, return the product of I and J,
which is the ideal generated by the products of the generators of I and those of J.

I "k
Given an ideal I of the polynomial ring P, and an integer k, return the k-th power
of I.

I1/3J

Given an ideal I of a polynomial ring P over a field and an ideal J of P, such that
J C I, return the affine algebra I/J.

106.3.2 Basic Commutative Algebra Operations

The following important basic operations on ideals involve Grébner basis computation
and use the standard algorithms as described in Chapter 1.8 of [GP02], for example, unless
otherwise stated.

QuotientDimension(I)

Given an ideal I of a polynomial ring P over a field K, return the dimension of P/I
as a K-vector space. Note that this is quite different from the function Dimension
below (which returns the Krull dimension of an ideal). If I is not of Krull dimension
0 then the vector space is infinite and Infinity is returned.

Ch. 106 POLYNOMIAL RING IDEAL OPERATIONS 3225

ColonIdeal(I, J)
IdealQuotient (I, J)

Given ideals I and J of the same polynomial ring P, return the colon ideal I : J (or
ideal quotient of I by .J), consisting of the polynomials f of P such that f x g is in
I for all g in J.

ColonIdeal(I, f)
IdealQuotient (I, f)

Given an ideal I and an element f of a polynomial ring P, return the saturation
(colon) ideal I : f°°, consisting of the polynomials g of P such that there exists
an i > 1 with f®x g € I. An integer s with s > 1 is also returned such that
I: f> =1:f° Note that if s is not needed, only one return value of the function
should be expected which increases the efficiency enormously. Note also that this
function is not equivalent to taking the ideal quotient of I by the ideal of P generated
by f. It is in some ways a more natural operation mathematically, corresponding
to taking the full inverse image of the localised ideal Iy under the localisation map
P — Py¢, and can be faster than the I : f computation, if s is not required. In
this case, the computation goes by the elimination of extra variable ¢ from the ideal
<I,1—fxt>.

ColonIdealEquivalent (I, f)

Saturation(I, f)

Given an ideal I and an element f of a polynomial ring P, return the saturation
(colon) ideal C' =1 : f°°, and a polynomial g € P such that C' = I : (g) and g is
of minimal degree. The irreducible factors of g will be a subset of the irreducible
factors of f (and the corresponding multiplicities may be greater or lesser, depending
on how often an irreducible factor divides the ideal I).

Saturation(I, J)

Given ideals I and J of some polynomial ring P, return the saturation (I : J*):
that is, the ideal {f € P :3n > 0, f*J C I}.

Saturation(I) |

Given an ideal I of a polynomial ring P, return the saturation of I with respect
to the irrelevant ideal of P — that is, the ideal of all elements of P having positive
degree.

Generic(I)

Given an ideal I of a generic polynomial ring P, return P.

LeadingMonomialIdeal(I)

Given an ideal I, return the leading monomial ideal of I; that is, the ideal generated
by all the leading monomials of 1.

3226

COMMUTATIVE ALGEBRA Part XV

Given ideals I and J of the same polynomial ring P, return the intersection of [
and J.

&meet S

Given a set or sequence S of ideals of the same polynomial ring P, return the
intersection of all the ideals of S.

RegularSequence (1)

Homogeneous BooLELT Default : true

Given an ideal I of a polynomial ring P over a field, computes and returns a max-
imal regular sequence in I. The algorithm used is that of Eisenbud and Sturmfels
([ES94]) that tries to construct a regular sequence of fairly sparse polynomials. If
parameter Homogeneous is true (the default), and I is a homogeneous ideal with re-
spect to the variable weights, then the regular sequence constructed will also consist
of homogeneous polynomials.

ReesIdeal (P, I)

ReesIdeal (P, J, I)

a RNGMPoOLELT Default : 1
ReesIdeal (R, I)
a RNGMPOLELT Default : 1

In each case P is a multivariate polynomial ring and I is an ideal of P. In the third
case R is an affine quotient algebra of the form P/J. In the second case J is another
ideal of P and we write R for the affine algebra P/J. In the first case, let R = P.

The Rees algebra R(I) is the finitely-generated, graded polynomial algebra iso-
morphic to the algebra

RololPolPe...

where I gives the first graded part, I? the second etc. and the multiplication
is the obvious one. Here [is thought of as an ideal of R, rather than P for the
second and third signatures. Proj of this algebra represents the blow-up of the
affine scheme Spec(R) along the closed subscheme defined by I (see Chapter 2,
Section 7 of [Har77]).

The function returns the Rees ideal, K, such that, if R; is the generic polynomial
ring of K, then R;/K is an affine algebra isomorphic to R(I)/ < a — torsion >,
where a is an element of P (or R in the third case) that gives a non-zero divisor in R
and is 1 by default. In the first case, any such a remains a non-zero divisor in R(I),
so is redundant. However, in the second and third cases, a can be specified to be
not equal to 1 by use of the a parameter. Geometrically, dividing out by a-torsion
gives the coordinate ring of the maximal closed subscheme of the blow-up that is
flat over the generic point and the codimension one points defined by the vanishing
of a, if these points are regular.

Ch. 106 POLYNOMIAL RING IDEAL OPERATIONS 3227

106.3.3 Ideal Predicates

I eqld

Given two ideals I and J of the same polynomial ring P, return whether I and J
are equal. Involves the use of a Grobner basis for each ideal.

Given two ideals I and J of the same polynomial ring P, return whether I and J
are not equal. Involves the use of a Grobner basis for each ideal.

| I notsubset J |

Given two ideals I and J in the same polynomial ring P return whether I is not
contained in J. Involves the use of a Grobner basis for J.

| I subset J |

Given two ideals I and J in the same polynomial ring P return whether I is contained
in J. Involves the use of a Grébner basis for J.

| IsZero(I) |

Given an ideal I of the polynomial ring P, return whether [is the zero ideal (contains
zero alone).

IsProper(I)

Given an ideal I of the polynomial ring P, return whether I is proper; that is,
whether [is strictly contained in P, or whether the Grobner basis of I does not
contain 1 alone.

IsHomogeneous (I)

Given an ideal I of the polynomial ring P, this function returns whether I is homo-
geneous with respect to the weights on the variables of P (i.e., whether I possesses
a basis consisting of homogeneous polynomials alone). Checks whether the current
basis of I consists of homogeneous polynomials and, if not and the current basis isn’t
Grobner, then whether an easy Grobner basis consists of homogeneous elements.

IsPrincipal(I)

Given an ideal I of the polynomial ring P, return whether I is principal, and if so,
return also a generator of I. This will be true if and only if an arbitrary Grobner
basis consists of a single (generating) element.

IsPrimary(I)

Given an ideal I of the polynomial ring P, return whether I is primary. An ideal
I is primary if and only if for all ab € I, either a € I or b" € I for some n > 1.
The restrictions on I are the same as for the function PrimaryDecomposition—see
the description of that function. In general, this function computes or retrieves the
primary decomposition and checks whether it has a unique element.

3228

COMMUTATIVE ALGEBRA Part XV

IsPrime(I) |

Given an ideal I of the polynomial ring P, return whether I is prime. An ideal I
is prime if and only if for all ab € I, either a € I or b € I. The restrictions on
I are the same as for the function PrimaryDecomposition—see the description of
that function. Again, this function computes the primary decomposition or uses the
already stored one.

IsMaximal (I) |

Given an ideal I of the polynomial ring P, return whether I is maximal. The
restrictions on I are the same as for the function PrimaryDecomposition—see the
description of that function. Checks first whether I is zero-dimensional (see below)
and, if so, then checks whether it is prime. NB: given that I is of dimension 0, the
prime/primary decomposition computation is relatively fast.

IsRadical(I) |

Given an ideal I of the polynomial ring P, return whether I is radical; that is,
whether the radical of I is I itself. The restrictions on I are the same as for the
function Radical—see the description of that function. The function computes the
radical or uses the already stored one.

IsZeroDimensional (I) |

Given an ideal I of the polynomial ring P, defined over a field, return whether I is
zero-dimensional (so the quotient of P by I has non-zero finite dimension as a vector
space over the coefficient field — see the section on dimension for further details).
Note that the full polynomial ring P as an ideal of itself has dimension —1, so it is
not zero-dimensional.

HasGrevlexOrder(I) |

Example H106E1

Given an ideal I of the polynomial ring P, return whether the monomial order of I
is the grevlex order.

We construct some ideals in Q[z,y, z] and perform basic arithmetic on them.

> P<x,
>1:
> J
>
>

A ;=
A;
Ideal
Order:
Variab
Basis:

[

x*

y,z> := PolynomialRing(RationalField(), 3);
ideal<P | x*y - 1, x"3*z"2 - y72, x*z"3 - x - 1>;
ideal<P | x*y - 1, x"2*%z - y, x*%2"3 - x - 1>;

I x J;

of Polynomial ring of rank 3 over Rational Field

Lexicographical
les: x, y, z

2%y~2 - 2%xxy + 1,

Ch. 106 POLYNOMIAL RING IDEAL OPERATIONS 3229

X" 3*y*z - x"2%z - x*y"2 + vy,
X"2%y*z"3 - x"2%y - x¥y - x*z"3 + x + 1,
X"4xy*z"2 - x"3%z"2 - x*xy"3 + y~2,
X"b*z"3 - X"3*y*z”"2 - x"2%xy 2%z + y~3,
X"4%z"5 - x74%z72 - x"3%z72 - xxy"2*%z"3 + x*y"2 + y~2,
X"2%y*z"3 - X72%y - x*y - x*z"3 + x + 1,
x"3%z"74 - x"3%z - X 2%z - x*y*z"3 + x*y + y,
XT2%Z76 — 2*x72*%z"3 + x72 - 2*x*z”3 + 2*%x + 1
]
>M := 1 meet J;
> M;
Ideal of Polynomial ring of rank 3 over Rational Field
Order: Lexicographical
Variables: x, y, z
Basis:
L
X4 + X3 - x*%z272 + 2712 - 4%z79 + 6%z"6 - z74 - 4%z"3 + z + 1,
X5 + x74 - x72%z72 + 279 - 3%z76 + 3%xz"3 - z - 1,
x*z"3 - x - 1,
y-z"3+1
]
> A eq M;
true
> QuotientDimension(A);
24
> ColonlIdeal(I, J);
Ideal of Polynomial ring of ramnk 3 over Rational Field
Order: Lexicographical
Variables: x, y, z
Inhomogeneous, Dimension O
Basis:
L
xxy - 1,
xX"3%z"2 - y°2,
x*z"3 - x - 1

106.3.4 Element Operations with Ideals

Given a polynomial f from a polynomial ring P, together with an ideal I of P,
return whether f is in I. The function computes the normal form of f relative to
some Grobner basis of I and checks if this is zero.

3230 COMMUTATIVE ALGEBRA Part XV

| f notin I |

Given a polynomial f from a polynomial ring P, together with an ideal I of P,
return whether f is not in /. As with in, this performs a normal form computation.

IsInRadical(f, I)

Given a polynomial f from a polynomial ring P, together with an ideal I of P, return
whether f is in the radical of I. Note that using this function is much quicker in
general than actually computing the radical of I. It uses the algorithm described in
section 1.8.6 of [GP02].

JacobianIdeal (f) |

Return the ideal generated by all first partial derivatives of the polynomial f.

Example H106E2
We demonstrate the element operations with respect to an ideal of Qz,y, z].

> P<x, y, z> := PolynomialRing(RationalField(), 3);
> 1 :=ideal<P | (x + y)73, (y - 2)72, y 2%z + z>;
> NormalForm(y~2*z + z, I);
0
>

NormalForm(x~3, I);
—-3%x"2%y - 3*x*z"4 - 6*xx*z"2 + 1/2%2"3 + 3/2%z
> NormalForm(z~4 + y~2, I);
2%z74 + 2%z"2
>x +y in I;
false
> IsInRadical(x + y, I);
true
> IsInRadical((x + y)~2, I);
true
> IsInRadical(z, I);
false
> SPolynomial(x"4 +y - z, xX"2 +y - 2);
-X7T2%y + X72%z + y - z

Ch. 106 POLYNOMIAL RING IDEAL OPERATIONS 3231

106.4 Computation of Varieties

The slightly non-standard term variety in this section refers to the (finite) solution set of
the system of polynomials that make up a zero-dimensional ideal. It can also be thought
of as the set of points of a zero-dimensional affine scheme over a specified field extension
of the polynomial ring base field. For more general functionality for schemes of arbitrary
dimension, see the chapters on Algebraic and Arithmetic Geometry. The functions here
also work for higher-dimensional ideals if the base field is finite, when the solution set is
again finite (over the base or a finite extension of the base).

The functions compute solutions over the base field of the polynomial ring or over an
extension field L. MAGMA’s algebraically closed fields (see Chapter 40) may be used to
get all solutions if so desired when an explicit splitting field is not known for the system.
L should be an exact field over which MAGMA has a root-finding algorithm for univariate
polynomials or a real or complex field.

For the corresponding functions with argument a zero-dimensional scheme which may
not be affine, see the Section 112.7 in the Schemes chapter.

Variety(I)

Variety(I, L)

Digits RNGINTELT Default : 38

Given a zero-dimensional ideal I of a polynomial ring P, return the variety of I over
its coefficient field K as a sequence of tuples. Each tuple is of length n, where n is
the rank of P, and corresponds to an assignment of the n variables of P (in order)
such that all polynomials in I vanish with this assignment.

If K is not a finite field then the ideal must be the full polynomial ring or be
zero-dimensional so that the variety is known to be finite. If a superfield L of K is
also given, the variety is computed over L instead, so the entries of the tuples lie in
L.

If the field over which the variety is computed is the free complex field, MAGMA
uses a special root finding algorithm to ensure the precision of the results; in this
case, the parameter Digits may be given (see the Roots function in the Real and
Complex Fields chapter (Chapter 25)).

The function works in the zero-dimensional case by first computing a triangular
or radical decomposition of I (see Section 106.11). This reduces the problem to
successively computing roots of univariate polynomials.

VarietySequence (I)

VarietySequence(I, L)

Digits RNGINTELT Default : 38

Given a zero-dimensional ideal I of a polynomial ring P whose order is of lexico-
graphic type, return the variety of I over its coefficient field K as a sequence of
sequences of elements of K. Each inner sequence is of length n, where n is the rank
of P, and corresponds to an assignment of the n variables of P (in order) such that
all polynomials in I vanish with this assignment.

3232

COMMUTATIVE ALGEBRA Part XV

If K is not a finite field then the ideal must be the full polynomial ring or be
zero-dimensional so that the variety is known to be finite. If a superfield L of K is
also given, the variety is computed over L instead, so the entries of the sequences
lie in L.

If the field over which the variety is computed is the free complex field, MAGMA
uses a special root finding algorithm to ensure the precision of the results; in this
case, the parameter Digits may be given (see the Roots intrinsic function in the
Real and Complex Fields chapter (Chapter 25)).

The function works in the zero-dimensional case by first computing a triangular
or radical decomposition of I (see Section 106.11). This reduces the problem to
successively computing roots of univariate polynomials.

VarietySizeOverAlgebraicClosure(I)

Example H106E3

Given a zero-dimensional ideal I of a polynomial ring P over a field K, return the
size of the variety of I over the algebraic closure K’ of K. The size is determined
by finding the (prime) radical decomposition of I and placing each component of
the decomposition into normal position so the size of the variety of the component
over K’ can be read off. Note that this function will usually be much faster than
actually computing the variety of I over a suitable extension field of K.

We construct an ideal I of the polynomial ring Far[x,y], and then find the variety V = V(I). We
then check that I vanishes on V.

> K<w> := GF(27);

> P<x, y> := PolynomialRing(K, 2);

> I := ideal<P | x"8 + y + 2, y~6 + xxy"5 + x72>;
> Groebner(I);

> I,

Ideal of Polynomial ring of rank 2 over GF(373)
Order: Lexicographical

Variables: x, y

Inhomogeneous, Dimension O

Groebner basis:

L

X + 2%xyT47 + 2xy~45 + y~44 + 2xy~43 + y~41 + 2xy~39 + 2%y~38 + 2%y~37 +

2%y~36 + y~35 + 2%y~34 + 2xy~33 + y~32 + 2%y~31 + y~30 + y~28 + y~27 +
Y26 + y©25 + 2%y~23 + y"22 + y~21 + 2%xy~19 + 2%xy~18 + 2*xy~16 + y~15 +
yT13 + y712 + 2xy"10 + y°O + y"8 + y°7 + 2%xy"6 + y*4 + y"3 + y"2 + y +
2,

y~48 + y~41 + 2xy~40 + y~37 + 2xy~36 + 2%xy~33 + y~32 + 2%xy~29 + y~28 +

]
>V
> V;
[

<w”

2%y~25 + y"24 + y"2 + y + 1

:= Variety(I);

14, w™12>, <w~16, w~ 10>, <w"22, w 4>]

Ch. 106 POLYNOMIAL RING IDEAL OPERATIONS 3233

// Check that the original polynomials vanish:
L

<x"8 + y + 2, y°6 + xxy~5 + x"2> where x is v[1] where y is v[2]: v in V

>

>

>

> 1;
[<0, 0>, <0, 0>, <0, 0> 1]

> // Note that the variety of I would be larger over an extension field of K:
> VarietySizeOverAlgebraicClosure(I);

48

106.5 Multiplicities

This section contains some useful invariants for an isolated singularity at the origin of a
hypersurface given by a multivariate polynomial f.

| MilnorNumber (f) |

Given a polynomial f € K[x1,...,x,], where K is a field, return the Milnor number
of f at the origin. This is the dimension of the quotient by the ideal generated
by the partials of f in the localization of Klzq,...,z,] at the origin. See [CLO9S,
p. 147] or [DL06, Remark 9.37].

TjurinaNumber (f)

Given a polynomial f € K[x1,...,x,], where K is a field, return the Tjurina number
of f at the origin. This is the dimension of the quotient by the ideal generated by f
and the partials of f in the localization of K|zq,...,z,] at the origin. See [CLO98,
p. 148] or [DL06, Def. 9.35].

Example H106E4

We compute some Milnor and Tjurina numbers, based on Exercise 12 of [CLO98, p. 177].

> P<x,y> := PolynomialRing(RationalField(), 2);

> MilnorNumber ((x72 + y~2)7"3 - 4*xx"2%y~2); // 4-leaved rose
13

> [MilnorNumber(y~"2 - x"n): n in [1 .. 5]];

(0,1, 2, 3, 4]

> P<x,y,z> := PolynomialRing(RationalField(), 3);

> [MilnorNumber(x*y*z + x™n + y'n + z°n): n in [1 .. 10]];
Lo, 1, 8, 11, 14, 17, 20, 23, 26, 29]
> [TjurinaNumber (x*y*z + x™n + y™n + z"n): n in [1 .. 10]];

(o, 1, 8 10, 13, 16, 19, 22, 25, 28]
A much larger example is given in [DLO06, p. 254].

> f 1= yo2 - 2%x°28ky — 4*x 21xy 17 + 4*x 14%y"33 - 8*x THy 49 +
> x"66 + 20*xy~65 + 4xx"49%y~16;

> time TjurinaNumber (f);

2260

3234 COMMUTATIVE ALGEBRA Part XV

Time: 0.010

106.6 Elimination

Elimination theory plays an important role when working with ideals of multivariate poly-
nomial rings. MAGMA provides an assortment of functions to perform various kinds of
elimination easily. Elimination of variables is accomplished by computing a Grobner ba-
sis with respect to a suitable elimination order (for more information about elimination
orders, see Section 105.2 as well as comments in the function descriptions below).

All of the functions in this section may be applied to ideals over general Euclidean
rings, not just over fields.

106.6.1 Construction of Elimination Ideals

EliminationIdeal (I, k: parameters)

Given an ideal I of a polynomial ring P of rank n with P = R[zq, ..., x,], together
with an integer k with 0 < k < n, return the k-th elimination ideal I} of I, which
is defined to be I N R[zk41,-..,x,]. Thus I} consists of all polynomials of I which
have the first k£ variables eliminated. If the elimination ideals I} are to be computed
for several different k, it is recommended first that a Grobner basis with respect
to lexicographical order for I first be computed as then the elimination ideals can
be determined trivially. If I does not have a Grobner basis stored with respect to
lexicographical order, then a Grobner basis computation will be necessary each time
an elimination ideal is desired.

If Kk = n, then I N R is returned, which, if R is a field, is always the full ring P or
the empty ideal, according to whether I is the full polynomial ring or not. But if R
is not a field, then this intersection will yield the ideal generated by the normalized
smallest element of R which is in I (according to the Euclidean norm), which could
be neither 0 nor 1.

The parameters are as for the Groebner procedure. Note that setting Al :=
"Direct" occasionally produces much better performance since the relevant elimi-
nation order may yield a better Grobner basis than the default method of going via
the grevlex order.

EliminationIdeal (I, S)

EliminationIdeal(I, S)

Given an ideal I of a polynomial ring P of rank n with P = R[zq, ..., x,], together
with a set S describing a subset U of the variables {z1, ...z, }, return the elimination
ideal Iy of I, which is defined to be I N R[U]. Thus Iy consists of all polynomials of
I which contain variables only found in U. U can be specified in two ways: either
as a set S of integers in the range 1...n such the integer i corresponds to the i-th
variable z;, or as a set .S of variables lying in P. S may be the empty set, in which
case this is equivalent to EliminationIdeal (I, n); see above.

Ch. 106 POLYNOMIAL RING IDEAL OPERATIONS 3235

Example H106E5

This example continues the example above which computed a Grobner basis over a ring which
was not even a PIR.

As before, R = Z[\/—5] and I is the ideal of R[x,y]| generated by fi = 2zy + v/—5by and fo» =
(1++/=5)z* —xy. As before, we compute over Z, introduce a new variable S and include (S? +5)
in I, so we can effectively work over R.

> P<x, y, S> := PolynomialRing(IntegerRing(), 3);
> f1 := 2*x*y + S*y;

> £2 = (1 + S)*x"2 - x*y;

> I := ideal<P | f1, f2, S°2 + 5>;

> GroebnerBasis(I);

L

X72%S + x72 + Bxy~3 + 13%y*xS - 2bxy,
6*x72 + bxy~2 + 3*xy*xS - 10x%y,
xxy + bxy~3 + 13%y*S - 2b%y,
y~2%3 + bxy~2 - 1b%y,
10*xy~2 + bxy*S - 2bxy,
S"2 + 5
]

In [AL94, Ex. 4.3.8], the elimination ideal E, = I N (Z[v/=5)[y] is shown to be generated by
fs = (5++vV=b)y* — 15y and fr = —2v/—b5y? + 5(1 + v—5)y. We can compute E, in MacMA
easily using EliminationIdeal. We must be careful to include S in the second argument (the
set of variables which we want), since S should be considered a ‘constant’ (member of R) in this
context.

> Ey := EliminationIdeal(I, {y, S});
> GroebnerBasis(Ey) ;

[
y2%S + 5ky~2 - 154y,
10%y°2 + B*y*S - 25xy,
S™2 + 5

]

Obviously, the polynomials yielded are simply the last 3 polynomials of the full Grébner basis
given above. We check also that the ideal generated by fs and f7 over R is the same as that given
by MAGMA.

> £ 5 = y72%5 + bxy~2 - 1bxy;

> £_7 := -2%y~2%3 + 5*y*S + bxy;

> E := ideal<P | f_5, £_7, S°2 + 5>;
> E eq Ey;

true

Finally, we also compute E, = I N (Z[\/—5)[z], which requires more effort this time, since it
cannot be read off the Grobner basis.

> Ex := EliminationIdeal(I, {x, S});
> GroebnerBasis(Ex);

3236 COMMUTATIVE ALGEBRA Part XV

L
2%x73%S + 2%x"3 + x"2%S - b*x"2,
12x%x73 + 6%x"2%S,
S72 + 5

]

From this, we see that E, is generated by (2 + 2¢/=5)z® + (=5 + v/=5)z* and 122° + 61/—5z>.

106.6.2 Univariate Elimination Ideal Generators

UnivariateEliminationIdealGenerator (I, i)

Given a zero-dimensional ideal I of a polynomial ring P of rank n with P =
Klxy,...,zy], together with an integer ¢ with 1 < i < n, return the unique monic
generator of the univariate elimination ideal I N K |[x;].

| UnivariateEliminationIdealGenerators(I) |

Given a zero-dimensional ideal I of a polynomial ring P of rank n with P =
Klxy,...,zy], return the sequence of length n whose i-th element is the unique
monic generator of the univariate elimination ideal I N K|z;].

Example H106E6

We construct an ideal I (derived from Neural networks theory) of the polynomial ring Q[z,y, 2],
and then find various elimination ideals of I.

> P<x, y, z> := PolynomialRing(RationalField(), 3);

> I := ideal<P |

1 - x + xxy™2 - x%xz72,

1 -y + y*xx™2 + y*xz~2,

1 -z - zxx™2 + zxy~2 >;

> UnivariateEliminationIdealGenerator(I, 1);

x721 - x720 - 2%x719 + 4%x718 - 5/2%x"17 - 5/2%x"16 + 4*xx~15 - 15/2%x"14 +
129/16%x713 + 11/16%x~12 - 103/8*x"11 + 131/8*x~10 - 49/16*x"9 -
171/16%x7"8 + 12%x77 - 3*x"6 - 29/8%x"5 + 15/4*x"4 - 17/16%x"3 - 5/16%x"2
+ 5/16%x - 1/16

> UnivariateEliminationIdealGenerator(I, 2);

y~14 - y~13 - 13/2xy~12 + 8xy~11 + 53/4%y~10 - 97/4*xy~9 - 45/8%y~8 + 33*y~7 -
25/2xy~6 - 18*%y~b5 + 107/8*y~4 + 5/8xy~3 - 27/8%y"2 + 9/8xy - 1/8

> E := EliminationIdeal(I, {y, z});

> E;

Ideal of Polynomial ring of rank 3 over Rational Field

Order: Lexicographical

Variables: x, y, z

Basis:

L

VvV V V

2721 - 2720 - 2*%z"19 + 4%z718 - 5/2%xz"17 - 5/2%z"16 + 4%z"~15 - 15/2%z"14 +
129/16%z713 + 11/16%z~12 - 103/8%z"11 + 131/8%z710 - 49/16%z"9 -

Ch. 106 POLYNOMIAL RING IDEAL OPERATIONS 3237

171/16%z"8 + 12%z"7 - 3%z"~6 - 29/8%z"5 + 15/4%xz~4 - 17/16%z"3 - 5/16%z"2
+ 5/16%z - 1/16,

y + 141944208/7806653*%z~20 - 42803108/7806653*z~19 - 290535348/7806653*z~18
+ 309392460/7806653*%z~17 - 164881460/7806653*z~16 -
331099258/7806653*z"15 + 203830442/7806653*%z~14 - 894960798/7806653*z"13
+ 622205873/7806653*%z~12 + 1352184655/31226612*xz"11 -
4746138097/31226612%xz"10 + 5122044359/31226612*%z"9 +
991547639/31226612*%z~8 - 830598655/7806653*z"7 + 1472712995/15613306*z"6
- 59983627/15613306*z"5 - 486698319/15613306*z"4 + 174173263/7806653*z"3
- 30672252/7806653*z"2 - 735083/664396*z + 30093391/31226612

Example H106E7

We write a simple function ZRadical to compute the radical of a zero dimensional ideal defined
over a field using the univariate elimination ideal generators. See [BW93, p. 345].

function ZRadical(I)
// Find radical of zero dimensional ideal I
P := Generic(I);

n := Rank(P);

G := UnivariateEliminationIdealGenerators(I);
N := {};

for i := 1 to n do

// Set FF to square-free part of the i-th univariate
// elimination ideal generator
F := G[i];
FF := F;
while true do

D := GCD(FF, Derivative(FF, 1, i));

if D eq 1 then

break;

end if;

FF := FF div D;
end while;
// Include FF in N if FF is a proper divisor of F
if FF ne F then

Include("N, FF);
end if;

end for;

// Return the sum of I and N
if #N eq O then

return I;
else

return ideal<P | I, N>;
end if;

VVVVVVVVVVVVVVVVVVVVVVVVVVYVYVYV\VYV

3238 COMMUTATIVE ALGEBRA Part XV

> end function;

We now apply ZRadical to an ideal of Qz,y, z].

> P<x, y, 2> := PolynomialRing(RationalField(), 3);
> I := ideal<P | (x+1)73xy~4, x*(y-z)~2+1, z"3-2"2>;
> R := ZRadical(I);

> Groebner(I);

> Groebner(R);

> I;

Ideal of Polynomial ring of rank 3 over Rational Field
Order: Lexicographical

Variables: x, y, z

Inhomogeneous, Dimension O, Non-radical

Groebner basis:

L
X - 4xy~9 + 21xy~8 - 32%xy”7 + Txy~6 + 432%xy~5*z"2 - 546*y~bxz + 120*y~5 -
137*y~4*xz~2 + 288*y~4*z — 146%¥y~4 - 956*y~3*z"2 + 1088*y~3*z - 128*y~3 +
393*y~2%z"2 - B76*xy 2%z + 186%y~2 + 498xy*z~2 - B40*y*z + 44*y - 220%z"2
+ 288*z - 67,
y~10 - 6%xy~9 + 12%y~8 - 8*y~7 + 288%y~b*z"2 - 348%y~b*z + 60*y~5 -
110%y~4*xz~2 + 192*%xy 4%z - 82%y~4 - 624%y~3*z"2 + 696*y 3%z - T72*y~3 +
273%y"2%z72 - 384xy 2%z + 111%xy~2 + 322*y*z~2 - 348*y*z + 26%y - 150%z"2
+ 192xz - 42,
yo6*z — yT6 - 6xy"b*z"2 + 6%y bxz - 3*yT4dxz + 3*xy~4 + 12%y"3*z"2 - 12*%y~3*z
+ 3%y~ 2%z - 3*%y~T2 - 6xy*z"2 + Gky*z - z + 1,
z"3 - 272
> R;

Ideal of Polynomial ring of rank 3 over Rational Field
Order: Lexicographical

Variables: x, y, z

Inhomogeneous, Dimension O, Radical

Groebner basis:

[
x + 1,
yT2 - 2%xyxz + z - 1,
z"2 - z

1

> I subset R;

true

> R subset I;

false

> IsInRadical(x + 1, I);
true

Ch. 106 POLYNOMIAL RING IDEAL OPERATIONS 3239

106.6.3 Relation Ideals

RelationIdeal (Q)

RelationIdeal(Q, T)

Example H106ES8

Given a sequence) of k polynomials of a polynomial ring P over a ring S (not neces-
sarily a field), return the relation ideal U of () which is an ideal of the polynomial ring
of rank k over S containing all algebraic relations between the elements of (). That
is, U consists of all polynomials r € S[y1, ..., yk] such that r(Q[1],...,Q[k]) = 0. If
U is desired to be an ideal of a particular polynomial ring T" of rank %k (to obtain
predetermined names of variables, for example), then 7' may be passed as a second
argument.

The computation is the same as that for the image of an affine polynomial map,
which this basically is, thinking of the polynomials in) as giving a map from n-
dimensional affine space (n = rank of P) to k-dimensional affine space. k new
variables y; and relations y; — Q[i] are added and then the original variables z; of
P are eliminated in the usual way.

We construct an ideal I of the polynomial ring Fa|x,y, 2|, and discover that the ideal is the full
polynomial ring. Suppose we then wish to write 1 € I as an (algebraic) expression in terms of the
original generators. We use RelationIdeal to find that expression.

P<x,
S :=
I :
Groe
I;

Ideal

V V V Vv V

y, z> := PolynomialRing(GF(2), 3, "grevlex");
[(x+y+2)"2, (x2+y72+2"2)"3+x+y+2z+1];
ideal<P | S>;

bner(I);

of Polynomial ring of rank 3 over GF(2)

Graded Reverse Lexicographical Order

Variab
Groebn

L

]

> Q<a,
> U :=
> U;
Ideal
Order:
Variab

les: x, y, 2
er basis:
b> := PolynomialRing(GF(2), 2);

RelationIdeal(S, Q);

of Polynomial ring of rank 2 over GF(2)
Lexicographical
les: a, b

Inhomogeneous, Dimension >0

Basis:

L

a~

6 +a+b2+1

3240

]

COMMUTATIVE ALGEBRA Part XV

Finally, we check the algebraic expression, evaluating it at the original polynomials:

> S[1]1°6 + S[1] + S[2]1"2;

1

106.7 Variable Extension of Ideals

Often one wishes to introduce new variables temporarily to a polynomial ring. MAGMA
allows one to do this by use of the VariableExtension function, and also to restrict again
to the original ring with elimination performed automatically.

VariableExtension(I, k, b)

VariableExtension(I, k, b, order)

Given an ideal I of the polynomial ring P = R|z1,...,z,], create a polynomial
ring) as a k-variable extension of P, the ideal J of @) corresponding to I, and the
embedding map f: P — @), and return J and f.

If the argument b (standing for “before”) is true, the k variables are inserted

before the current variables of P, so @ is defined to be R[y1,...,yk, Z1,...,%,] and
f maps P.i to Q.(k + 1) (so the x; variables of P are mapped to the x; variables of
Q).

If the argument b is false, the k variables are inserted after the current variables
of P, so @ is defined to be R[x1,...,2Zpn,Y1,--.,yx| and f maps P.i to Q.i (so the x;
variables of P are mapped to the z; variables of Q).

If the argument order is given, then () is constructed with the specified order;
otherwise, the grevlex order is used for () by default. See the section on monomial
orders (Section 105.2) for the valid values for the argument order.

The image under f of a polynomial of P is the corresponding polynomial of @),
while the image under f of an ideal of P is the corresponding ideal of (). The inverse
image under f of a polynomial of @) is only defined if none of the extension variables
of @ occur in that polynomial, in which case the inverse image is just the restriction
back to P, while the inverse image under f of an ideal H of () is always defined and
is the restriction back to P of the elimination ideal H N R[z1, ..., zy].

Ch. 106 POLYNOMIAL RING IDEAL OPERATIONS 3241

106.8 Homogenization of Ideals

MAGMA allows one to homogenize a polynomial ring or ideal by use of the Homogenization
function, and also to restrict again to the original ring with elimination performed auto-
matically.

Homogenization(I, b)

Homogenization(I, b, order)

Homogenization(I)

Homogenization(I, order)

Given an ideal I of the polynomial ring P = R[x1,...,z,], create a polynomial ring
H as a single variable extension of P, the homogenized ideal J of H corresponding
to I, and the homogenization map f : P — H, and return J and f.

If the argument b (standing for “before”) is true, the homogenization variable

is inserted before the current variables of P, so H is defined to be R[h,z1,...,x,]
and f maps P.i to H.(k+1) (so the x; variables of P are mapped to the z; variables
of H).

If the argument b is false, the homogenization variable is inserted after the
current variables of P, so H is defined to be R[x1,...,z,,h] and f maps P.i to H.i
(so the x; variables of P are mapped to the z; variables of H).

If the argument b is omitted, it is taken to be false, so the homogenization
variable is introduced after the current variables of P.

If the argument order is given, then H is constructed with the specified order;
otherwise, the grevlex order is used for H by default. See the section on monomial
orders (Section 105.2) for the valid values for the argument order.

The image under f of a polynomial of P is the homogenization of f in H, while
the image under f of an ideal of P is the homogenization ideal I in H. The inverse
image under f of a polynomial of H is the restriction back to P (obtained by setting
the homogenization variable to 1), while the inverse image under f of an ideal J of
H is the restriction back to P of the ideal obtained by setting the homogenization
variable to 1.

106.9 Extension and Contraction of Ideals

MAaGMA allows the extension to and contraction from the ring of quotients of an ideal,
defined over a field, with respect to certain variables. See [BW93, pp. 54-58 and 388-397]
for the relevant definitions and theory.

Extension(I, U)

Given an ideal I of the polynomial ring P = Klz1,...,x,], where K is a field,
together with a sequence U of integers each between 1 and n, create the (ring of
quotients) extension @ of P, and return the ideal J of @, together with the map

f:P—qQ.

3242 COMMUTATIVE ALGEBRA Part XV

If U has length k and the values (in order) of U are wuy,...,u, then first

the rational function field F' = K(zy,,...,%,,) is constructed, then the list
V1,...,Un_k is constructed as the list 1,...,n with the u; removed, and finally
the extension @) of P is defined to be the polynomial ring Flx,,,..., 2Ty,] =
K(Tyy ooy Tup) [Toyy oo vy Tupy -

The map f is constructed in the obvious way so that x; is mapped to the ap-
propriate variable in F' if ¢ is in U, or the appropriate variable in () otherwise. The
image under f of an ideal of P is just the appropriate ideal of () whose basis is
obtained by taking the image under f of each of the polynomials in the basis of I.

The inverse image under f of a polynomial of @) is obtained by first making the
polynomial monic, then multiplying by the LCM of the denominators (“clearing the
denominators”), then mapping each variable back to the appropriate one in P—this
is possible since there are no proper denominators. The inverse image under f of
an ideal H of @) is defined to be the ideal of P generated by the inverse images
under f of the polynomials in the basis of H (note that this is not always equal to
the contraction of H—see [BW93, p. 389], for a simple algorithm to compute the
contraction of an ideal of Q).

106.10 Dimension of Ideals

Let I be an ideal of the polynomial ring P = K|z, ..., x,], where K is a field. Let X be
the set {x1,...,2,} of variables of P. A subset U of X is called independent modulo I if
INK[U] = 0. A subset U of X is called mazimally independent modulo I if U is independent
modulo I, and no proper superset of U is independent modulo I. The dimension of I is
defined to be the maximum of the cardinalities of all the independent sets modulo I. It
is not too hard to see in this case that this coincides with the more abstract commutative
algebra definition of the Krull dimension of the quotient algebra P/I as the maximal length
of a chain of prime ideals.

Note that the definition given above of zero-dimensionality (as the case when the quo-
tient of P by I has finite dimension as a vector space over the coefficient field) coincides
with the definition of zero-dimensionality as dimension 0.

Dimension(I) |

Given an ideal I of a polynomial ring P defined over a field, return the dimension d of
I, together with a (sorted) sequence U of integers of length d such that the variables
of P corresponding to the integers of U constitute a maximally independent set
modulo I. If I is the full polynomial ring P, the dimension is defined to be —1,
and the second return value is not set. The algorithm implemented is that given in
[BW93, p. 449].

Ch. 106 POLYNOMIAL RING IDEAL OPERATIONS 3243

106.11 Radical and Decomposition of Ideals

MAGMA has algorithms for computing the full radical and the primary decomposition of
ideals. See [BW93, chapter 8], for the relevant definitions and theory. The implementation
of the algorithms presented here in MAGMA was based on the algorithms presented in that
chapter. Currently these algorithms work only for ideals of polynomial rings over fields
(Euclidean rings will be supported in the future).

There are also functions for some easier decompositions than the full primary decom-
position: radical decompositions, equidimensional decompositions and triangular decom-
positions for zero-dimensional ideals. The theory behind these is discussed in the relevant
function description.

106.11.1 Radical

Radical(I)

Given an ideal I of a polynomial ring P over a field, return the radical of I. The
radical R of I is defined to be the set of all polynomials f € P such that f™ € [for
some n > 1. The radical R is also an ideal of P, containing I. The function works
for an ideal defined over any field over which polynomial factorization is available.

Example H106E9

We compute the radical of an ideal of Q[x,y, z,t,u] (which is not zero-dimensional).

P<x, y, z, t, u> := PolynomialRing(RationalField(), 5);
I := ideal<P |

X+y+z+t+ou,

X*y + y*z + zxt + t*u + uxx,

X*y*z + y*z*t + zxtxu + tixkukx + u*x*y,

x*y*z*t + y*z*t*u + zxtkuxx + t*u*x*y + u*x*y*z,
Xky*kzxtru>;

R := Radical(I);

Groebner (R) ;

R;

Ideal of Polynomial ring of rank 5 over Rational Field

V V V V V V V V V VvV

Order: Lexicographical
Variables: x, y, z, t, u
Homogeneous, Dimension >0, Radical
Groebner basis:
[

x+y+z+t+u,

y°2 + yxt - z¥u - u”2,

y*z,

y*u + z*u + u”2,

z"2%u + z¥u~2,

zxt,

t*u

3244

COMMUTATIVE ALGEBRA Part XV

> // Check that t*u is in the radical of I by another method:
> IsInRadical (t*u, I);

true

106.11.2 Primary Decomposition

PrimaryDecomposition(I)

Given an ideal I of a polynomial ring over a field, return the primary decomposition
of I, and also the sequence of associated prime ideals. See IsPrimary for the defini-
tion of a primary ideal. The primary decomposition of I is returned as two parallel
sequences () and P of ideals, both of length k, having the following properties:

(a) The ideals of @) are primary.
(b) The intersection of the ideals of @ is I.

(c) The ideals of P are the associated primes of Q); i.e., PJi] is the radical of Q]i] (so
Pli] is prime) for 1 <i < k.

(d)@ is minimal: no ideal of @) contains the intersection of the rest of the ideals of
() and the associated prime ideals in P are distinct.

(e) @ and P are sorted so that P is always unique and @ is unique if I is zero-
dimensional. If [is not zero-dimensional, then an embedded component of @)
(one whose associated prime contains another associated prime from P) will not
be unique in general. Yet MAGMA will always return the same values for) and
P, given the same I.

The function works for an ideal defined over any field over which polynomial
factorization is available (inseparable field extensions are handled by an algorithm
due to Allan Steel [Ste05]).

NB: if one only wishes to compute the prime components P, then the next
function RadicalDecomposition should be used, since this may be much more
efficient.

RadicalDecomposition(I)

Given an ideal I of a polynomial ring over a field, return the prime decomposition of
the radical of I. This is equivalent to applying the function PrimaryDecomposition
to the radical of I, but may be a much more efficient than using that method. The
(prime) radical decomposition of I is returned as a sequence P of ideals of length &
having the following properties:

(a) The ideals of P are prime.
(b) The intersection of the ideals of P is the radical of I.

(c) P is minimal: no ideal of P contains the intersection of the rest of the ideals of

P.

(e) P is sorted so that P is always unique. Thus MAGMA will always return the
same values for P, given the same I.

Ch. 106

POLYNOMIAL RING IDEAL OPERATIONS

3245

The function works for an ideal defined over any field over which polynomial factor-

ization is available.

ProbableRadicalDecomposition(I)

Given an ideal I of a polynomial ring P over a field, return a probabilistic prime
decomposition of the radical of I as a sequence of ideals of P. This function is like
the function RadicalDecomposition except that the ideals returned may not be

prime, but the time taken may be much less.

MinimalDecomposition(S)

Given a set or sequence S of ideals of a polynomial ring over a field, with I = NjcgJ
(so that S describes a decomposition of I), return a minimal decomposition M of I as
a subset of S such that I = NyeprJ also (so none of the ideals in the decomposition

M are redundant).

SetVerbose ("Decomposition", v)

Example H106E10

Change verbose printing for the (Primary/Radical) Decomposition algorithm to be

v. Currently the legal values for v are true, false, 0, 1, or 2.

We compute the primary decomposition of the same ideal of Q|z, vy, z,t,u] (which is not zero-
dimensional).

V V V V V V V V

P<x, y, z, t, u> := PolynomialRing(RationalField(), 5);
I := ideal<P |

x+y+z++t+au,

Xky + y*z + z*¥t + txu + u*x,

Xky*z + y*z*t + zZxt*xu + txu*xx + ukx*y,

X*y*z*t + y*z*t*u + zZxt*xu*xx + t*u*x*y + WkX*Y*Z,
Xky*z*ktru>;

IsZeroDimensional(I);

false

>

We next print out the primary components) and associated primes P.

>

L

Q, P := PrimaryDecomposition(I);

Q;

Ideal of Polynomial ring of rank 5 over Rational Field
Order: Lexicographical
Variables: x, y, z, t, u
Homogeneous, Dimension 1, Non-radical, Primary, Non-prime
Groebner basis:
[

X + 1/2%z + 1/2%u,

y + 1/2%z + 1/2%u,

z"2 + 2%xz¥xu + u”2,

3246 COMMUTATIVE ALGEBRA Part XV

1,

Ideal of Polynomial ring of rank 5 over Rational Field
Order: Lexicographical

Variables: x, y, z, t, u

Homogeneous, Dimension 1, Non-radical, Primary, Non-prime
Groebner basis:

[
X + 2%z + t,
y - =z,
z"2,
u

1,

Ideal of Polynomial ring of rank 5 over Rational Field
Order: Lexicographical

Variables: x, y, 2z, t, u

Homogeneous, Dimension 1, Non-radical, Primary, Non-prime
Groebner basis:

[
X + z + 2%u,
N
t - u,
u"2
1,

Ideal of Polynomial ring of rank 5 over Rational Field
Order: Lexicographical

Variables: x, y, 2z, t, u

Homogeneous, Dimension 1, Non-radical, Primary, Non-prime
Groebner basis:

L
X - u,
y + t + 2%u,
Z’
u~2
1,

Ideal of Polynomial ring of rank 5 over Rational Field
Order: Lexicographical

Variables: x, y, z, t, u

Homogeneous, Dimension 1, Non-radical, Primary, Non-prime
Groebner basis:

L
X,
y + 2%t + u,
z - t,
t72
1,

Ideal of Polynomial ring of rank 5 over Rational Field
Order: Lexicographical

Ch. 106 POLYNOMIAL RING IDEAL OPERATIONS 3247

Variables: x, y, z, t, u
Homogeneous, Dimension O, Non-radical, Primary, Non-prime
Size of variety over algebraically closed field: 1
Groebner basis:
[
X+y+z+t+u,
y©2 + yxt + 2kyxu - zxt + z¥u + u”2,
y*z"2 - yxz*t + y¥tiku - y¥u~2 + 272t - z72%u + ziktku - 2*kz*ku"2 + t72%u
+ t*xu"2 - u”3,
y*z*xt"2 - 2xyxzxu~2 + 3kxyxtxu”2 - 2xyxu”3 + z"3%t - z73%u - z72%t72 +
4xz"2xtxu — 4*z72%u”2 + zxt"2%xu + 2%z*ktxu”"2 - 5xz*xu”3 + 3xt"2xu"2 +
2*%t*xu~3 - 2*%xu~4,
yxzxtxu + yxzxu~2 - yxt"2%u - 4xyxtxu”2 + 3xy*u”3 - z"3%t + z"3%u +
Z72%t72 - 3xz"2xt¥u + 4*kxzT2*%u"2 - 2*z*xt¥xu”2 + 6xz*u~3 - t"3*u -
Bxt~2*%u”2 - 3xtxu~3 + 3*u”4,
y*z*u~3 - 5/2%yxt*u”3 + 3/2xy*u”4d + 1/4%z273%t72 + 1/2%z"3%xu"2 -
3/4%z72%t"3 + 5/4*z"2xt"2*%u - 1/4*z"2xt*xu”"2 + 9/4*%z"2%u"3 -
9/4%z*t"3%u + 1/4*z*t"2*%u"2 - 3/4*xzxt*u”3 + 13/4*z*u”~4d - t~3*u~2 -
5/2xt"2%u"~3 - 7/4*xtxu~4 + 3/2%u"5,
y*t~3%u - 17/4xy*t*xu”3 + 13/4*y*xu”4 + 1/8%z"3*%t"2 + 5/4%z"3*u”2 -
19/8%z"2%t"3 + 13/8%z 2%t~ 2*%u - 5/8*z"2xt*u~2 + 33/8*z"2*xu"~3 -
33/8*zxt"3xu - 7/8*z*t"2*u"2 - 31/8xz*t*u”~3 + 49/8*zxu”4 + t"4*u +
1/2%t"3*xu"2 - 15/4%t~2*xu~3 - 31/8*t*u~4 + 13/4%u"5,
y*tT2%xu"2 - 3/4xy*txu”3 - 1/4xy*u"4d + 3/8%z"3*%t"2 - 1/4%xz"3*%u"2 -
1/8%z72xt"3 + 7/8%z"2*%t"2%u + 1/8%z " 2xt*xu"2 - 5/8*z"2%u"3 -
3/8*zxt"3%u + 11/8%z*t"2*u"2 - 5/8*z*t*u~3 - 5/8*z*u"4 + 1/2%t"3*u"2
+ 3/4*t”2%u"3 - 5/8%t*u~4 - 1/4*u"5,
y¥txu~4d - 2/3%z72*%t74 + 13/15*%z"2%t"2%u"2 - 1/5%z72%t*u"3 -
31/15%z*t~4%u + 3/5%z*t~3%u"2 - 2/5*%z*t"2%u"3 + 23/15*z*xt*u”~4 -
3/5%t"4*xu~2 + 2/15%xt"3*xu"~3 - 1/3%t"2*u"4 + t*u"5,
y*¥u~5 - 1/2%z72%t74 - 1/2%z72%t72%u"2 + 1/2%z"2*%t*u"3 + 1/2%xz"2%u"4 -
3/2%z*t~4%u - 3*z*t"3*%u"2 + 5/2*zkt¥u4d + 3/2*%z¥u"5 - 1/2*t"4*xu"2 -
2%t"3%u"3 - 2*%t"2*%xu"4 + 1/2%t*u"b,
z"7,
Zz74xt - zT4xu - z"3*%t72 - 3*%z73*%u”2 + 2%z72%xt"3 + 2%z 2%t 2%u -
9%z 2%t*xu"2 - 3*%z72*%u”"3 + Txzxt"3%u + 2*%xz*xt"2%u”"2 - zxu"4 +
2%t"3*%u"2 - t72*xu"3 + t*u~4,
z74xu"2 + 7/3*%z"2%t"4 - 40/3*%z”2*xt72*xu"2 + 8xz 2xt*u"3 - 3*xz"2xu"4 +
22/3*z¥xt " 4*xu - 20*%z*xt"3*%ku"2 + 2kzxt"24u”~3 + 31/3*z¥xt*ku~4 - 2*zxu"5 +
t74*xu”2 - 41/3*%t"3%u"3 - 10/3*t"2¥u"4 + 2*t*u”5,
2"3%t73 + 1/3%z72%t74 + 2/3%z"2%t"2%u"2 + z"2%t*u”3 + 1/3*%z*t"4xu -
2%z*xt " 3%u"2 - z*t"2*%u”3 + 1/3*zxt*xu”4 - 2/3%t"3*xu"3 - 1/3*%t"2*%u"4,
z"3xtku — zT2%t73 + 3*kzT2*txu"2 - 3kz*xt"3%u + zxt*u~3 - t73*%u"2,
z73*%u"3 - 1/3%z72%xt"4 + T/3%z"2*xt"2*%u"2 - 2%z 2%t*u”~3 + 2%z 2%u"4 -
4/3%zxt"4¥xu + Txz*t~3*%u"2 - 2*z*xt~2*%u~3 - 13/3*z*xt*u"4 + z*u"5 +
14/3%t"3*u"3 + 4/3*%t"2*u"4 - t*xu"5,
Z"2%t"5 - 3kz¥tku"h5 + 17/2%t"5*u”2 + 33/2*%t"4*u"3 + 9kt~ 3*u"4 +
15/2%t~2*u"5,

3248 COMMUTATIVE ALGEBRA Part XV

—/, VvV =

Z72x%t7"3%xu - z"T2*%t"2*%u"2 + z*t"3*%u”2,

2" 2%t72*%u"3 - 4/5*z*t*u”5 + 16/5%t"5%u"2 + 59/10*%t"4%u~3 -
11/10%t~3*%u"4,

z72xt*u"~4 - 4/5*xzxt*u”5 + 47/10%t"5%u"2 + 42/5%xt"4*u~3 - 31/10%t"3*u~4 -
1/2%t~2*xu"5,

z72¥u"5 + 6xz*xt*xu”5 - 2*%t75*u"2 - 4*xt74xu”~3 - 4xt"3xu"4 - T*t"2*%u”h,

z¥t"5*u + z¥xt*xu~5 - 5/2%t"5%u"2 - 11/2%t"4%u"3 - 3*t"3*xu”4 -
5/2*t~2%u"5,

zxt"4*xu”2 + 2/5%zxt*xu”5 - 11/10*t"5%u”~2 - 17/10*%t"4*u~3 - 1/5*xt"3*u"~4 -
1/2%t~2*xu"5,

zxt"3*%u”~3 + 1/5*xz*t*xu”5 - 3/10%t"5xu”~2 - 3/5*xt"4*xu~3 - 1/10%t"3*%u~4 -
1/2*t~2*u"5,

z¥t"2%u"4 + 2/5*xz*xt¥u"5 - 8/5xt"5*xu"2 - 16/5%t"4*u"3 - 1/5*%t"3*u"4,

t76,

t75%xu”3,

t74*u”4,

t73*%u”5h,

u"6

Ideal of Polynomial ring of rank 5 over Rational Field
Order: Lexicographical

Variables: x, y, z, t, u

Homogeneous, Dimension 1, Radical, Prime

Groebner basis:

[
X,
Y
z + u,
t
1,

Ideal of Polynomial ring of ramnk 5 over Rational Field
Order: Lexicographical

Variables: x, y, 2z, t, u

Homogeneous, Dimension 1, Radical, Prime

Groebner basis:

[
x + t,
Yy
z,
u
1,

Ideal of Polynomial ring of rank 5 over Rational Field
Order: Lexicographical

Variables: x, y, 2z, t, u

Homogeneous, Dimension >0, Radical, Prime

Ch. 106 POLYNOMIAL RING IDEAL OPERATIONS 3249

Groebner basis:

[
X + z,
Y,
t,
u
1,

Ideal of Polynomial ring of rank 5 over Rational Field
Order: Lexicographical

Variables: x, y, 2z, t, u

Homogeneous, Dimension 1, Radical, Prime

Groebner basis:

L
X,
y*+e,
z,
u

1,

Ideal of Polynomial ring of rank 5 over Rational Field
Order: Lexicographical

Variables: x, y, 2z, t, u

Homogeneous, Dimension 1, Radical, Prime

Groebner basis:

[
X,
v+ ou,
z,
t

1,

Ideal of Polynomial ring of rank 5 over Rational Field
Order: Lexicographical

Variables: x, y, z, t, u

Homogeneous, Dimension O, Radical, Prime

Size of variety over algebraically closed field: 1
Groebner basis:

L
X,
B
z,
t,
u
]

]

Notice that P[6] contains other ideals of P so Q[6] is an embedded primary component of I. Thus
the first 5 ideals of Q would the same be in any primary decomposition of I, while Q[6] could be
different in another primary decomposition of /. Finally, notice that the prime decomposition of
the radical of I is the same as P except for the removal of P[6] to satisfy the uniqueness condition.

3250 COMMUTATIVE ALGEBRA Part XV

The structure of the variety of I can be easily understood by examining the prime decomposition
of the radical.

> RP := RadicalDecomposition(I);

> #RP;

5

> Set(RP) eq { P[i]l: i in [1 .. B] };
true

106.11.3 Triangular Decomposition

Let T be a zero-dimensional ideal of the polynomial ring K[x1,...,z,], where K is a
field. T is called triangular if its Grobner basis G has length n and the initial term of
the i-th polynomial of G is of the form ;" for each i. Any radical zero-dimensional ideal
has a decomposition as an intersection of triangular ideals. The algorithm in MAGMA for
primary decomposition now (since V2.4) first computes a triangular decomposition and
then decomposes each triangular component to primary ideals since the computation of a
triangular decomposition is usually fast. See [Laz92] for further discussion of triangular
ideals.

TriangularDecomposition(I)

Given a zero-dimensional ideal I of a polynomial ring over a field with lexicographical
order, return a triangular decomposition of I as a sequence () of ideals such that the
intersection of the ideals of @) equals I and for each ideal J of) which is radical,
J is triangular (see above for the definition of a triangular ideal). A second return
value indicates whether I is proven to be radical. If I is radical, all entries of @)
are triangular. Computing a triangular decomposition will often be faster than
computing the full primary decomposition and may yield sufficient information for
a specific problem. The algorithm implemented is that given in [Laz92].

Example H106E11

We compute the triangular decomposition of the (radical) Cyclic-5 roots ideal and compare it
with the full primary decomposition of the same ideal.

> R<x, y, 2z, t, u> := PolynomialRing(RationalField(), 5);
> I := ideal<R |

> x+y+z+t+u,

> X*y + y*z + z¥t + t*xu + u*x,

> X*y*z + y*xz*xt + zZxtku + tRukx + wkxxky,

> X*Y*Z*t + y*z*t*u + zZxtxukxx + t*u*x*y + Wkx*y*z,
> xky*zxtru - 1>;

> IsRadical(I);

true

> time T := TriangularDecomposition(I);

Time: 0.000

Ch. 106 POLYNOMIAL RING IDEAL OPERATIONS 3251

> time Q, P := PrimaryDecomposition(I);
Time: 0.010

> #T;

9

> #Q;

20

So we notice that although I decomposes into 9 triangular ideals, some of these ideals must
decompose further since the primary decomposition consists of 20 prime ideals. We examine the
first entry of T'. Notice that it is at least triangular (it has 5 polynomials and for each variable
there is a polynomial whose leading monomial is a power of that variable).

> T[1];

Ideal of Polynomial ring of rank 5 over Rational Field
Order: Lexicographical

Variables: x, y, z, t, u

Inhomogeneous, Dimension O

Groebner basis:

[
X - 6/5%t"5 - 4%t"4 - 3*t"3 - 3*t"2 - 3xt - 9/5,
y - 2/5%t"5 - 2%t~4 - 3%t"3 - 2*%t"2 - 2%t - 8/5,
z + 8/5*%t"5 + 6*%t"4 + 6*%t"3 + Lb*t"2 + 6%t + 22/5,
t76 + 4%xt”5 + Bxt74 + 5*t73 + 5*%t72 + 4xt + 1,
u-1

]

> IsPrimary(T[1]);

false

> D := PrimaryDecomposition(T[1]);

> #D;

2

> D;

L

Ideal of Polynomial ring of rank 5 over Rational Field
Order: Lexicographical

Variables: x, y, z, t, u

Inhomogeneous, Dimension O, Radical, Prime

Size of variety over algebraically closed field: 2
Groebner basis:

[
x -1,
y - 1,
z+t + 3,
t72 + 3%t + 1,
u-1
1,

Ideal of Polynomial ring of rank 5 over Rational Field
Order: Lexicographical

Variables: x, y, 2z, t, u

Inhomogeneous, Dimension O, Radical, Prime

3252

COMMUTATIVE ALGEBRA Part XV

Size of variety over algebraically closed field: 4

Groebner basis:

[

X+ t3+t2+t+1,

y - t73,

z - t72,

t74 + t73 + t72 +t + 1,
u-1

106.11.4 Equidimensional Decomposition

EquidimensionalPart (I)

EquidimensionalDecomposition(I)

FineEquidimensionalDecomposition(I)

Let I be an ideal of a polynomial ring P over a field. Currently for the two decom-
position functions, it is assumed that I has no embedded associated primes (e.g.,
when I is radical). In this case, it can be much faster to compute an equidimen-
sional decomposition rather than a full primary or radical one. The equidimensional
decomposition is the set of ideals which are the intersections of all primary compo-
nents of I associated to primes of the same dimension. This decomposition (often
trivial) is useful for certain constructions involving the Jacobian ideal.

The first function just computes the highest-dimensional decomposition compo-
nent. The second performs the straight decomposition. The third gives a slightly
finer decomposition for the convenience of some applications. In it, each equidi-
mensional component is possibly further split so that, for each final equidimensional
factor there is a single set of variables which constitute a maximally independent set
of every primary component of the factor (¢fDimension on page 3242). A sequence
of pairs consisting of each factor and the indices of its set of variables is returned.

The algorithm from [GP02] is used in the general case. When I is homogeneous,
a faster, more module-theoretic method is employed for the first two functions. This
involves first expressing P/I as a finite module M over a linear Noether Normali-
sation (described in the next section) S of I. Then if E(I) is the equidimensional
part of I, E(I)/I as a submodule of M is equal to the kernel of the natural map of
M to its double dual over S, Homg(Homg (M, S),S). Working with modules over
S rather than over P here allows the “reduction to dimension 0”. We could directly
over P, doing a similar computation but with Homg replaced by some Ext (see
[EHV92]).

Ch. 106 POLYNOMIAL RING IDEAL OPERATIONS 3253

Example H106E12

> P<x, y, z> := PolynomialRing(RationalField(), 3);
> P1 := ideal<P|x*y+y*z+z*x>; // dimension 2 prime
> P2 := ideal<P|x"2+y,y*z+2>; // dimension 1 prime
> P3 := ideal<P|x*y-1,y+z>; // dimension 1 prime
> I := P1 meet P2 meet P3;

> time rd := RadicalDecomposition(I);

Time: 3.720

> time ed := EquidimensionalDecomposition(I);
Time: 0.070

> #ed;

2

> ed[1] eq Pi;

true

> ed[2] eq (P2 meet P3);

true

106.12 Normalisation and Noether Normalisation

Suppose [is an ideal of P = K[x1,...,z,] with K a field, and I has dimension d.

A Noether normalisation of [is given by a set of d polynomials fi,..., fq of P, alge-
braically independent over K, for which K|[fy,...,fs)NI =0 and K|f1,..., fa] — P/I is
an integral extension. These always exist and if K is an infinite field, the f; can be chosen
to be linear expressions in the x;.

If I is radical, then the normalisation of I here will refer to the integral closure of
the affine ring P/I in its total ring of fractions. If I = (| P; with P, prime, then the
normalisation is equal to the finite direct product of the normalisations of the P; as affine
rings. It will be specified by a list of pairs (I;, ¢;) where I; is a prime ideal with generic
ring G;, a multivariate polynomial ring over K, and ¢; a homomorphism from P to G;.
The pairs represent the normalisation of each P; and the inclusion P/I — [][G;/I; induced
by the ¢; makes the RHS the integral closure of P/I.

106.12.1 Noether Normalisation

NoetherNormalisation(I)

NoetherNormalization(I)

This function attempts to compute a Noether Normalisation for I, as described
above, using linear combinations of the variables. The function is guaranteed to
work if K has characteristic zero but may fail in unlucky cases in small characteristic.
The algorithm followed is basically that given in [GP02] but with a simpler test
for homogeneous ideals I, which gives a speed-up in that case. Also, subsets of the
full sets of variables are considered before more general linear combinations.
The return values are

3254 COMMUTATIVE ALGEBRA Part XV

1) the sequence [fi,..., fd]-

2) h, an automorphism P — P given by a linear change of variables which maps the
fi to the last d variables of P. Thus z,,_4+1,...,%, are a corresponding Noether
normalising set of polynomials for h(I).

3) the inverse of h.

Example H106E13

> P<x,y> := PolynomialRing(RationalField(),2);
> I := ideal<P | xxy+x+2>;

> fs,h,hinv := NoetherNormalisation(I);

> fs;

[

X +y

> J := ideal<P | [h(b) : b in Basis(I)1>; J;
Ideal of Polynomial ring of rank 2 over Rational Field
Order: Lexicographical
Variables: x, y
Basis:
L
-Xx"2 + x¥y + x + 2
]

> // clearly x is integral over the last variable y in P/J

106.12.2 Normalisation

| Normalisation(I) |

| Normalization(I) |
UseFF BooLELT Default : true
FFMin BooLELT Default : true
UseMax BooLELT Default : false

This function computes the normalisation of the ideal I and returns the result as a
list of pairs as described above. The ideal I must be radical - this is not checked in
the function. Also the base field K must be perfect.

There are several options. The general algorithm used is that of De Jong as
described in [GP02]. However, if the generic polynomial ring P of I has rank 2 then
Magma’s powerful function field machinery can be applied to give a generally much
faster algorithm. This is the default behaviour but can be bypassed by setting the
parameter UseFF to false.

When the function field machinery is used, a correct result can be obtained
extremely quickly, but the generic spaces of the solution ideals can be of quite high

Ch. 106 POLYNOMIAL RING IDEAL OPERATIONS 3255

Example H106E14

> P<x,
> // w
> 1 :=
> time
Time:

#Js;

N :=

vV V.V ~ V

N;
Ideal
Order:
Variab
Basis:

[

dimension. The default behaviour, controlled by the parameter FFMin, is to use
a filtration by Riemann-Roch spaces to try to find a roughly minimal number of
generators of the algebras G;/I; and return the corresponding ideal in the smaller
number of variables as a more optimal presentation of the solution. This takes more
time but is still usually faster than the general algorithm and tends to produce much
nicer results. In some cases, the minimised solution is the same as the basic one but
takes longer to generate. The minimising stage can be cut out by setting FFMin to
false.

The general algorithm can avoid doing some work if it is known that certain
conditions on I hold. One standard condition is that I C M =< x1,...,x, > and
that P/I is locally normal away from M. This holds, for example, if the affine
variety defined by I in K™ is non-singular except at the origin. If this is known,
then parameter UseMax can be set to true which will usually speed up the general
algorithm (it has no effect if the function field method is used). However, if P/I is
locally non-normal at other primes then this will produce an incorrect result.

y> := PolynomialRing(RationalField(),2);
e begin with a very simple example (prime ideal)
Ideal((x - y~2)°2 - x*y~3);
Js := Normalisation(I); // function field method
0.010

Js[1][1]1;

N<[al> := N;

of Polynomial ring of rank 2 over Rational Field
Lexicographical
les: al1], al2]

—al[1]*a[2] + a[2]"2 - 2*a[2] + 1

]

> // N
> time
Time:
> //ge
>N :=

ow try the basic function field method
Js := Normalisation(I: FFMin:=false);

0.010

t the same result here either way
Js[1]1[1];

> N<[a]> := N;

> N;
Ideal
Order:
Variab
Basis:

of Polynomial ring of ramnk 2 over Rational Field
Lexicographical
les: al1l, al2]

3256 COMMUTATIVE ALGEBRA Part XV

—a[1]*al2] + a[2]"2 - 2#a[2] + 1
]
> time Js := Normalisation(I:UseFF:=false); // try the general method
Time: 0.120
> J := Js[1][1];
> Groebner(J);
> J;
Ideal of Polynomial ring of ramnk 4 over Rational Field
Lexicographical Order
Variables: $.1, $.2, $.3, $.4
Groebner basis:

[
$.172 + 2x$.1 + $.2 - 1,
$.1x$.2 - 2x$.1 + 2x$.2 - $.3 + $.4 - 4,
$.1x$.3 + $.3x$.4 + 2%$.3 - $.472,
$.1x$.4 - $.2 + 2,
$.2°2 - 4x$.2 - $.3%x$.4 - 2%$.3 + $.472 + 4,
$.2%$.3 + $.3%$.472 + 2%$.3%$.4 - 2%$.3 - $.4°3,
$.2x$.4 + $.3 - 2x$.4,
$.372 - $.3%$.4°3 - 2x$.3%$.4"2 + $.4°4
]
> // try the general method with UseMax (which applies here)
> time Js := Normalisation(I:UseFF:=false,UseMax:=true);
Time: 0.040

> J := Js[1]1[1];

> Groebner(J);

> J;

Ideal of Polynomial ring of ramnk 3 over Rational Field
Lexicographical Order

Variables: $.1, $.2, $.3

Groebner basis:

[
$.1°2 - 4x$.1 - $.2%$.3 - 2x$.2 + $.372 + 4,
$.1x$.2 + $.2%$.372 + 2x$.2%$.3 - 2x$.2 - $.3°3,
$.1x$.3 + $.2 - 2x$.3,
$.2°2 - $.2%$.3°3 - 2%$.2%$.3°2 + $.3°4

]

> // now try a harder case - a singular affine form of modular curve X1(11)
> I := ideal<P | (x-y)*x*(y+x~2)"3-y " 3*(x"3+x*y-y~2)>;

> time Js := Normalisation(I: FFMin := false);

Time: 0.110

#Js;

J = Js[1]1[1];

Groebner (J);

J3

Ideal of Polynomial ring of rank 5 over Rational Field

V V. V ~ V

Ch. 106 POLYNOMIAL RING IDEAL OPERATIONS 3257

Lexicographical Order
Variables: $.1, $.2, $.3, $.4, $.5
Groebner basis:

[
$.1x$.3 - $.1 - 6%$.3 + $.4x$.5°2 - 4%$.4x$.5 + 6x$.4 - $.5°5 + $.5°4 +
11x$.5°3 - 16*$.572 + 2x$.5 + 6,
$.1%x$.4 + 2x$.3 - $.4%x$.572 + 2*%$.4x$.5 - 2x$.4 + $.574 - 4%$.5"3 + 4x$.5°2
-2,
$.1%$.5 - 2%$.3 + $.4 + $.5°3 - 2%$.5"2 + $.5 + 1,
$.2 - $.3 + $.5°3 - $.5°2,
$.372 + 3*%$.3 - 2*%$.4%$.572 + 4*x$.4x$.5 - 4x$.4 - $.576 + 2%$.5°5 + $.57°4 -
10%x$.5°3 + 10*x$.5"2 - 4,
$.3x$.4 - $.3 - $.4x$.5°3 + $.4x$.5"2 - $.4x$.5 + $.4 - $.5°4 + 2x$.5°3 -
2x$.5"2 + 1,
$.3x$.5 + $.3 - $.4 - $.5"4 + 2x$.5"2 - $.5 - 1,
$.472 - 2%x$.4x$.5"2 + $.4%$.5 + $.4 - $.5°5
]
> time Js := Normalisation(I);
Time: 1.110

> J := Js[1]1[1];

> Groebner(J);

> J;

Ideal of Polynomial ring of rank 2 over Rational Field
Lexicographical Order

Variables: $.1, $.2

Groebner basis:

L
$.172%$.2 + 2x$.1x$.2 + $.1 - $.272 + 2x$.2 + 1
]
> // Minimised result is a cubic equation in K[x,y] - as good as we could get!
> // This example takes MUCH longer with the general method - even setting
> // UseMax := true.

106.13 Hilbert Series and Hilbert Polynomial

Let I be a homogeneous ideal of the graded polynomial ring P = K|[x1,...,x,], where K
is a field. Then the quotient ring P/I is a graded vector space in the following way: P/I
is the direct sum of the vector spaces Vg for d = 0,1,... where V, is the K-vector space
consisting of all homogeneous polynomials in P/ (i.e., reduced residues of polynomials of
P with respect to I) of weighted degree d. The Hilbert Series of the graded vector space
P/I is the generating function

Hp/[(t) = Z dlm(Vd>td
d=0

3258 COMMUTATIVE ALGEBRA Part XV

The Hilbert series can be written as a rational function in the variable ¢.

If the weights on the variables of P are all 1, then there also exists the Hilbert polynomial
Fp/r(d) corresponding to the Hilbert series Hp,;(t) which is a univariate polynomial in
Q[d] such that Fp,;(@) is equal to the coefficient of t* in the Hilbert series for all i > k for
some fixed k.

| HilbertSeries(I) |

Given an homogeneous ideal I of a polynomial ring P over a field, return the Hilbert
series Hp,;(t) of the quotient ring P/I as an element of the univariate function field
Z(t) over the ring of integers. The algorithm implemented is that given in [BS92].

Note that this is equivalent to HilbertSeries(QuotientModule(I)), while if
one wishes the Hilbert series of I considered as a P-module, one should call
HilbertSeries (Submodule(I)).

HilbertSeries(I, p)

Given an homogeneous ideal I of a polynomial ring P over a field, return the Hilbert
series Hp/r(t) of the quotient ring P/I as a power series to precision p.

HilbertDenominator (I) |

Given an homogeneous ideal I of a polynomial ring P over a field, return the unre-
duced Hilbert denominator D of P/I (as a univariate polynomial over the ring of
integers). The denominator D equals

n

H(l - twi)v

i=1

where n is the rank of P and w; is the weight of the i-th variable (1 by default).

HilbertNumerator (I)

Given an homogeneous ideal I of a polynomial ring P over a field, return the unre-
duced Hilbert numerator N of P/I (as a univariate polynomial over the ring of in-
tegers). The numerator N equals D x x Hp,;(t), where D is the unreduced Hilbert
denominator above. Computing with the unreduced numerator is often more con-
venient.

HilbertPolynomial(I)

Given an homogeneous ideal I of a polynomial ring P over a field with weight 1 for
each variable, return the Hilbert polynomial H(d) of the quotient ring P/I as an
element of the univariate polynomial ring Q[d], together with the index of regularity
of P/I (the minimal integer k£ > 0 such that H(d) agrees with the Hilbert function
of P/I at d for all d > k).

Ch. 106 POLYNOMIAL RING IDEAL OPERATIONS 3259

Example H106E15

We compute the Hilbert series and Hilbert polynomial for an ideal corresponding to the square
of a matrix (see [BS92]).

> MatSquare := function(n)

> P := PolynomialRing(RationalField(), n * n, "grevlex");

> AssignNames (

> “P,

> ["x" cat IntegerToString(i) cat IntegerToString(j): i, j in [1..n]]
>)

> M := MatrixRing(P, n);

> X:=M! [P.(1-1) *n+3j): i, jin [1 .. nl];

> Y := X72;

> return ideal<P | [Y[i][jl: i, j in [1 .. nll>;

> end function;

> I := MatSquare(4);

> I;

Ideal of Polynomial ring of rank 16 over Rational Field

Order: Graded Reverse Lexicographical

Variables: x11, x12, x13, x14, x21, x22, x23, x24, x31, x32,
x33, x34, x41, x42, x43, x44

Homogeneous

Basis:

L
x1172 + x12%x21 + x13*x31 + x14xx41,

x11*x12 + x12*%x22 + x13%x32 + x14%*x42,
x11*x13 + x12*x23 + x13*%x33 + x14%*x43,
x11*xx14 + x12*x24 + x13%x34 + x14*x44,
x11*x21 + x21*x22 + x23*x31 + x24x*x41,
x12*%x21 + x2272 + x23%x32 + x24%*x42,
x13*x21 + x22*%x23 + x23%x33 + x24%*x43,
x14*xx21 + x22*%x24 + x23%x34 + x24*x44,
x11*%x31 + x21*x32 + x31%x33 + x34*x41,
x12*%x31 + x22*x32 + x32*x33 + x34*x42,
x13*%x31 + x23*%x32 + x3372 + x34%x43,
x14*xx31 + x24%x32 + x33%x34 + x34%x44,
x11*x41 + x21*x42 + x31%x43 + x41%*x44,
x12*x41 + x22%x42 + x32%x43 + x42%x44,
x13*%x41 + x23*x42 + x33*x43 + x43%*x44,
x14*%x41 + x24*x42 + x34%x43 + x4472

]

> S<t> := HilbertSeries(I);

> S;

(t712 - 7*t~11 + 20%t~10 - 28*%t~9 + 14%t~8 + 16%t~7 - 20%t~6 +
19%t"5 - 22%t"4 + 7*t"3 + 20%t"2 + 8%t + 1)/(t"8 - 8%t~7 +
28%t"6 - 56*t”5 + 7O*t~4 - 56*%t~3 + 28*t"2 - 8xt + 1)

> H<d>, k := HilbertPolynomial(I);

> H, k;

3260 COMMUTATIVE ALGEBRA Part XV

1/180%d"~7 + 7/90*d"6 + 293/360*d"5 + 61/36*d"4 + 1553/360*d"3 +
851/180*d"2 + 101/30%d + 1

5

> // Check that evaluations of H for d >= 5 match coefficients of S:
> L<u> := LaurentSeriesRing(IntegerRing());

> L;

Laurent Series Algebra over Integer Ring

>L !'S;

1 + 16%u + 120*%u”2 + 575%u”3 + 2044*u~4 + 5927*u”5 + 14832*%u”6 +
33209%u”7 + 68189*u”8 + 130642*u”9 + 236488*u~10 + 408288*u~11 +
677143%u"12 + 1084929*%u~13 + 1686896*u~14 + 2554659*u~15 +
3779609*%u”~16 + B476772*%u”~17 + 7789144*u”~18 + 10892530*%u~19 +

0(u~20)
> Evaluate(H, 5);
5927
> Evaluate(H, 6);
14832
> Evaluate(H, 19);
10892530

106.14 Syzygies

The main functions to compute syzygies work with or return modules. See Chapter 109
for these. This section contains a variant that returns a basis of syzygies of a polynomial
sequence as rows of a matrix.

SyzygyMatrix (Q)

Given a sequence () of polynomials from a multivariate polynomial ring P, return
the module of syzygies of @) as a matrix S. This an r by k£ matrix, where k is
the length of (), whose rows span the space of all vectors v such that the sum of
v[i] * Q[i] for i = 1,...k is zero. The algorithm used is the standard one, computing
a module Grobner basis with respect to a particular elimination order (see section
2.5 of [GP02], for example). The base ring may be a field or Euclidean ring.

Example H106E16

> P<x, y, 2> := PolynomialRing(RationalField(), 3);
> SyzygyMatrix([x + y, x - y, x*z + y*z]);

[z 0 -1]

[1/2xx - 1/2%y -1/2xx - 1/2xy 0]

Ch. 106 POLYNOMIAL RING IDEAL OPERATIONS 3261

106.15 Maps between Rings

MAGMA includes functions for working with maps between multivariate polynomial rings.
Let R = Kq[x1,...,2,] and S = Ks[y1,...,ym] be a polynomial rings over the fields K7,
Ky, and f: R — S a ring homomorphism.

PolyMapKernel (f)

Return the kernel of the map f as an ideal in the domain R, i.e., the set
{a € R|f(a) = 0}. This is basically the computation of the relation ideal for the
polynomials defining the map and is as described in RelationIdeal.

IsInImage(f, p)

Given an polynomial p in S, return whether p is in the image of the map f. The
algorithm is the one described on p. 82 of [AL94].

IsSurjective(f)

Return whether the map f is surjective. Uses the function above to check whether
each codomain variable lies in the image.

Extension(phi, I)

The extension of the ideal I by ¢, where ¢ is a homomorphism from the generic of
I. That is, the ideal generated by the image of I under ¢.

Implicitization(phi)

Example H106E17

Suppose the polynomial map ¢ : K™ — K™ is a parametrization of a variety V, i.e.,
V' is the image of ¢ in K. This function constructs the ideal of S corresponding
to V.

The map ¢ maps (21,...,2,) — (f1(21),..-, fm(2m)) where the z; are the co-
ordinates of K™. Let f : § — R be the map of polynomial rings defined by
(Y1, ---sYm) — (fr1(y1),---s fm(Ym)). Then Implicitization(f) is the ideal of
S corresponding to V.

If V is not a true variety, the function returns the smallest variety containing V'
(the Zariski closure of V).

The algorithm used is given on p. 97 of [CLO96]

We demonstrate the use of the function Implicitization for the variety defined by ¢ : Q[z,y] —
Qlr,u,v,w], (z,y) — (z*, 2%y, xy®,y*). This example is taken from [AL94, Ex. 2.5.4].

> R<x, y> := PolynomialRing(Rationals(), 2);
> S<r, u, v, w> := PolynomialRing(Rationals(), 4);

> f

:= hom<S -> R [x"4, x"3%y, x*y~3, y~4>;

> Implicitization(f);
Ideal of Polynomial ring of ramnk 4 over Rational Field
Lexicographical Order
Variables: r, u, v, w

3262 COMMUTATIVE ALGEBRA Part XV

Basis:
-r"2%v + u”3,
r*v~"2 - u”2%w,
—uxw"2 + v~3,
-T*W + Wkv

106.16 Symmetric Polynomials

MaGMmA includes functions for working with symmetric polynomials.

ElementarySymmetricPolynomial (P, k)

Given a polynomial ring P of rank n, and an integer k with 1 < k < n, return the
k-th elementary symmetric polynomial of P.

IsSymmetric(f)

IsSymmetric(f, S)

Given a polynomial f from a polynomial ring P of rank n, return whether f is a
symmetric polynomial of P (i.e., is symmetric in all the n variables of P). If the
answer is true, a polynomial g from a new polynomial ring of rank n is returned
such that f = g(es,...,ey,), where e; is the i-th elementary symmetric polynomial
of P. If g is desired to be a member of a particular polynomial ring S of rank n (to
obtain predetermined names of variables, for example), then S may also be passed.

Example H106E18

We create a symmetric polynomial from Q[a,b,c,d] and express it in terms of the elementary
symmetric polynomials.

> P<a, b, c, d> := PolynomialRing(RationalField(), 4, "grevlex");

> f :=

> a"2*%b"2%cxd + a”"2¥b*c”2xd + a*b"2xc”2*xd + a"2%bxckd"2 + axb"2*%c*xd"2 +
> axbxc"2xd"2 - a"2%xb"2%c - a"2%b*c"2 - axb"2*%c”2 - a"2*%xb"2*d -

> 3*%a"2xbxckd - 3xaxb"2*c*d - a"2*%c"2%d - 3*axbkc”"2xd - b"2*c"2xd -
> a"2*xbxd"2 - axb"2*%d"2 - a"2xc*d"2 - 3*axbxc*xd"2 - b 2%xcxd"2 -

> axc”2*d"2 - b*c"2%d"2 + a + b + ¢ + d;

> // Check orbit under Sym(4) has size one:

> #(£°Sym(4));

1

> Q<el, e2, e3, e4> := PolynomialRing(RationalField(), 4);

> 1, E := IsSymmetric(f, Q);

> 1;

true

> E;

Ch. 106 POLYNOMIAL RING IDEAL OPERATIONS 3263

el - e2xe3 + e2*e4d

In the following example, we use a rational function field to define parameters a and b which occur
as coefficients of the symmetric polynomial f.

> F<a,b> := FunctionField(RationalField(), 2);

> P<x1,x2,x3,x4,x5> := PolynomialRing(F, 5, "grevlex");
>yl :=x174 + x172%a + x1%b;

> y2 = x274 + x272%a + x2%b;

> y3 := x374 + x372%a + x3%b;

> y4 := x474 + x472%a + x4x*b;

> y5 := x574 + x572%a + x5%b;

> f = ylxy2 + ylxy3 + yl*xy4d + yl*xyb + y2*xy3 + y2*xy4d +
> y2*y5 + y3*y4 + y3*y5 + y4*y5;

> Q<el,e2,e3,ed,e5> := PolynomialRing(F, 5);

> 1,E := IsSymmetric(f, Q);

> 1, E;

true b*el”3%e2 - 2%a*el”3%e3 - 4%el”3%eb + axel”2%e272 +
4xel”2%e2%ed + 2%el"2%e372 - bxel"2%e3 + 2*axel”2%ed -
4xelxe272%e3 - 3%bxel*e2”2 + 4xakxel*e2%e3 + 8xelxe2*eb +
axbxel*e2 — 8xel*e3*ed - 2*xa"2%el*e3d + b*elkxed - 6G*axel*xeb +
e274 - 2xaxe2”3 - 4%e272%ed + a"2%e2”2 + 4%e2%e3”2 +
Bxb*e2*e3 + 2%akxe2*ed + b 2xe2 - 3*xa*e372 - 4*xe3*xeb -
3xa*xbxe3 + 6%ed”2 + 2%a"2%ed - bx¥bxeb

106.17 Functions for Polynomial Algebra and Module Generators

The following functions work with collections of polynomials which are considered as gen-
erators for subalgebras or submodules of a polynomial ring. They have particular use in
invariant theory.

MinimalAlgebraGenerators (L)

Let R = Klx1,...,z,] be a polynomial ring of rank n over the field K. Suppose
L is a set or sequence of k polynomials f1,..., fr in R. Let A = K[f1,..., fx] be
the subalgebra (not ideal) of R generated by L. This function returns a minimal
generating set of the algebra A as a (sorted) sequence of elements taken from L.

3264 COMMUTATIVE ALGEBRA Part XV

HomogeneousModuleTest (P, S, F)

Let R = K|z1,...,z,] be a polynomial ring of rank n over the field K. Suppose
P is a sequence of k£ homogeneous polynomials pq,...,pr in R and suppose S is a
sequence of r homogeneous polynomials s1,...,s, in R. Let A = K|[p1,...,px] be
the subalgebra (not ideal) of R generated by P and let M = Alsy,...,s,;| be the
A-module generated by S over A. Finally, suppose F' is an element of R. This
function returns whether F' is in the module M (considered as a submodule of R).

If the result is true, the function also returns a sequence C' = [cy, . .., ¢,] of length
r with ¢; € K[t1,...,t;] such that F = >"'_, ¢;(p1,...,pk) - si- (The polynomial
ring K[t1,...,t,] is constructed separately but automatically with the print names
t1, t2, etc.)

The grading of the polynomial ring R is used to determine the (weighted) degrees
of all the polynomials in P, .S and the polynomial F'.

The function works as follows: it first splits F' into its homogeneous components,
and then, for each homogeneous component of (weighted) degree d, it constructs
a basis for the K-space of all polynomials of the module M of degree d and then
determines by linear algebra whether the component lies in that space.

The function is most often used with an invariant ring: P is the sequence of
primary invariants, S is the sequence of secondary invariants, and F' is a general
invariant which one wishes to express in terms of the module generators S over the
algebra generated by P. Also, if one wishes to test only for membership in the
algebra A = K{p1,...,pk], then the sequence [R!1] should be passed for S.

HomogeneousModuleTest (P, S, L)

Let R = Klx1,...,z,] be a polynomial ring of rank n over the field K. Suppose
P is a sequence of k£ homogeneous polynomials py,...,pr in R and suppose S is
a sequence of r homogeneous polynomials si,...,s, in R. Let A = K|[p1,...,pk]
be the subalgebra (not ideal) of R generated by P and let M = A[sy,...,s.| be
the A-module generated by S over A. Finally, suppose L is a sequence of length [
of elements of R which are all homogeneous of (weighted) degree d. This function
returns parallel sequences B and V with the following properties:

(a) B is sequence of length [of booleans such that for 1 <+ <, BJi] is true iff L[i]
is in the module M.

(b)V is a sequence of length [consisting of sequences of length r and consisting
of polynomials in the polynomial ring T' = K|[ty,...,t:]. (The polynomial ring
T = Klt1,...,t.] is constructed separately but automatically with the print
names t1, t2, etc.) If B[i] is false (so L[i] is not in M), V[i] is a sequence of r
zero polynomials. Otherwise V[i] is a sequence of r polynomials ¢; 1,...,¢;, in
T such that that L[i] = > 7 ¢i j(p1,. -, pk) - 55

The grading of the polynomial ring R is used to determine the (weighted) degrees
of all the polynomials in P, S and L.

Ch. 106 POLYNOMIAL RING IDEAL OPERATIONS 3265

The function works as follows: it constructs a basis for the K-space of all polyno-
mials of the module M of degree d and then, for each ¢ with 1 < ¢ <[, determines by
linear algebra whether L[i] lies in the space. Only one echelonization of the space
is needed to determine all the values of B and V so it is much more efficient to
use this function if possible with many polynomials in L of the same homogeneous
degree instead of calling the previous function separately for each polynomial since
that will need to construct the basis for the homogeneous space and perform an
echelonization each time.

Again, this function is most often used with an invariant ring: P is the sequence
of primary invariants, S is the sequence of secondary invariants, and L is a sequence
of general invariants which one wishes to express in terms of the module generators
S over the algebra generated by P. Also, if one wishes to test only for membership
in the algebra A = K{p1,...,pk], then the sequence [R!1] should be passed for S.

HomogeneousModuleTestBasis(P, S, L)

Example H106E19

Let R = K|x1,...,z,] be a polynomial ring of rank n over the field K. Suppose
P is a sequence of £ homogeneous polynomials py,...,pr in R and suppose S is
a sequence of r homogeneous polynomials s1,...,s, in R. Let A = K|[p1,...,pk]
be the subalgebra (not ideal) of R generated by P and let M = A[sy,...,s,.| be
the A-module generated by S over A. Finally, suppose L is a sequence of length
[of elements of R which are all homogeneous of (weighted) degree d. Let U be
the K-subspace of R consisting of all polynomials of the module M of (weighted)
degree d and let V be the K-subspace of R generated by the elements of L. This
function returns a sequence I of integer indices such that the sequence elements of
L corresponding to the indices in I forms a basis for a K-subspace W of R such that
U+V =U@W. That is, I selects a subsequence of L which yields an extension of
any basis of U to a basis of U + V.

Using this function, one can extend a minimal module generating set in S to
include new elements of increasing degree, while ensuring that the module generators
are minimalized (i.e., there is no redundancy amongst them).

The grading of the polynomial ring R is used to determine the (weighted) degrees
of all the polynomials in P, S and L.

We demonstrate simple uses of the function HomogeneousModuleTest. See also the example
HomogeneousModuleTest2 in the Invariant Rings chapter which demonstrates the use of the func-
tion HomogeneousModuleTest in invariant theory

R<x,
P :=

, V

true

0w wm

>
>
>
>
>
>
L

y, 2> := PolynomialRing(RationalField(), 3);
[x"2 + y°2, z];

[1, x + y + 2];

[x72 + y~2, (x+y+z)72-z2"2-2xx*y, x*y]l;

:= HomogeneousModuleTest (P, S, L);

, true, false]

3266 COMMUTATIVE ALGEBRA Part XV

> V;
[
[
t1,
0
1,
[
tl - 2*%t272,
2*%t2
1,
[
0,
0
]
]

> // Thus L[1] is P[1]*S[1] and
> // L[2] is (P[1] - 2*P[2]"2)*S[1] + 2*P[2]*S[2].
> L[1] eq P[1]1*S[1];

true

> (P[1] - 2¥P[2]"2)*S[1] + 2xP[2]*S[2] eq L[2];

true

> // Determine subsequence of [x"3, y~3, z"3] which forms
> // extension basis of module generated by P and S.

>L := [x73, y°3, z"3];

> HomogeneousModuleTestBasis(P, S, L);

[1, 2]

> // Thus x"2 and y~2 could be appended to S to preserve
> // minimality.

106.18 Bibliography

[AL94] William Adams and Philippe Loustaunau. An introduction to Grébner bases,
volume 3 of Graduate studies in mathematics. American Mathematical Society, Provi-
dence, R.I., 1994.

[BS92] David Bayer and Michael Stillman. Computation of Hilbert Functions. J.
Symbolic Comp., 14(1):31-50, 1992.

[BW93] Thomas Becker and Volker Weispfenning. Grobner Bases. Graduate Texts in
Mathematics. Springer, New York—Berlin—Heidelberg, 1993.

[CLO96] David Cox, John Little, and Donal O’Shea. Ideals, Varieties and Algorithms.
Undergraduate Texts in Mathematics. Springer, New York-Berlin—Heidelberg, 2nd
edition, 1996.

[CLO98] David Cox, John Little, and Donal O’Shea. Using Algebraic Geometry. Grad-
uate Texts in Mathematics. Springer, New York—Berlin—Heidelberg, 1998.

Ch. 106 POLYNOMIAL RING IDEAL OPERATIONS 3267

[DL06] Wolfram Decker and Christoph Lossen. Computing in Algebraic Geometry,
volume 16 of Algorithms and Computation in Mathematics. Springer, New York—
Berlin—Heidelberg, 2006.

[EHV92] D. Eisenbud, C. Huneke, and W. Vasconcelas. Direct Methods for Primary
Decomposition. Inv. math., 110:207-235, 1992.

[ES94] Eisenbud and Sturmfels. Finding sparse systems of parameters. Journal of
Pure and Applied Algebra, 94:143-157, 1994.

[GP02] G.-M. Greuel and G. Pfister. A Singular Introduction to Commutative Algebra.
Springer-Verlag, Berlin—-Heidelberg-New York, 2002.

[Har77] Robin Hartshorne. Algebraic Geometry, GTM 52. Springer, ASpringer, 1977.

[Laz92] Daniel Lazard. Solving Zero-dimensional Algebraic Systems. J. Symbolic
Comp., 13(2):117-131, 1992.
[Ste05] Allan Steel. Conquering Inseparability: Primary Decomposition and Multivari-

ate Factorization over Algebraic Function Fields of Positive Characteristic. J. Symbolic
Comp., 40(3):1053-1075, 2005.

107

107.1 Introduction 3271

107.2 Elements and Local Monomial
Orders . 3271

107.2.1 Local Lexicographical: 11ex . . 3272

107.2.2 Local Graded Lexicographical:
lglex.3272

107.2.3 Local Graded Reverse Lexicograph-
ical: 1grevlex. 3272

107.3 Local Polynomial Rings

and Ideals 3273

107.3.1 Creation of Local Polynomial Rings
and Accessing their Monomial Or-
ders3273
LocalPolynomialRing(K, n) 3273
LocalPolynomialRing(K, n, order) 3273
LocalPolynomialAlgebra(K, n, order) 3273
LocalPolynomialRing(K, n, T) 3273
MonomialOrder (R) 3273
MonomialOrderWeightVectors(R) 3273
Localization(R) 3273
107.3.2 Creation of Ideals and Accessing
their Bases 3274
ideal< > 3275
Ideal(B) 3275
Ideal (f) 3275
Basis(I) 3275
BasisElement (I, i) 3275

107.4 Standard Bases . 3275
107.4.1 Construction of Standard Bases . 3276

StandardBasis (I) 3276
StandardBasis(S) 3276

LOCAL POLYNOMIAL RINGS

107.5 Operations on Ideals .
107.5.1 Basic Operations

+
*

QuotientDimension(I)
Generic(I)
LeadingMonomialIdeal(I)
meet

&meet S

107.5.2 Ideal Predicates .

eq

ne

notsubset

subset

IsZero(I)
IsProper (I)
IsZeroDimensional (I)

107.5.3 Operations on Elements of Ideals
in

NormalForm(f, I)

notin

107.6 Changing Coefficient Ring
ChangeRing (I, L)

107.7 Changing Monomial Order .
ChangeOrder (I, Q)

ChangeOrder (I, order)

107.8 Dimension of Ideals

Dimension(I)

107.9 Bibliography

3278

. 3278

3278
3278
3278
3279
3279
3279
3279
3279

. 3279

3279
3279
3279
3279
3279
3280
3280

3281
3281
3281
3281
3281
3281

3282

3282
3282

3282
3282

3282

Chapter 107
LOCAL POLYNOMIAL RINGS

107.1 Introduction

This chapter describes local polynomial rings. Let R be the multivariate polynomial ring
K(xy,...,z,], where K is a field. We denote by

Klz1, .. Tnl(ay,.)

the collection of all rational functions f/g of x1, ..., z, with g(p) # 0, where p = (0,...,0).
Such a ring is local (has a unique maximal ideal) and we will call it a local polynomial
ring in MAGMA. Such a ring is always multivariate and is related to the corresponding
multivariate polynomial ring K{[zq,...,x,] which will we will call global (when distin-
guishing it from the local case). We will also call K[z1,...,Zn](g,,. .. ,2,) the localization
of K|[x1,...,xy] (this is always understood to be at the prime ideal generated by 1, ..., x,,
corresponding to the origin).

Much of the theory for multivariate polynomial rings and their ideals carry over to local
polynomial rings, so the reader should first be familiar with multivariate polynomial rings
and their ideals (see Chapters 24 and 105).

Corresponding to a Grobner basis of an ideal of a global multivariate ring is a standard
basis of an ideal of a local polynomial ring. See [CLO98, Chapter 4] or [GP02, Chapter 1]
for the basics of the theory and algorithms.

The other facilities are currently basic but will be expanded in coming versions. But
note that computations with R—modules, where R is a local polynomial ring, are fully
supported: see Chapter 109.

107.2 Elements and Local Monomial Orders

Elements of a local polynomial ring are multivariate polynomials just like the usual (global)
multivariate polynomials, except that the monomials are sorted (again with the greatest
first) with respect to a local monomial order, which is in general the negation of a
standard global monomial order. Thus the monomial 1 is less than all other monomials
and the polynomials are like multivariate formal power series (written, for example, as
1+ 2+ 22y +y*). But most arithmetic-like operations allowed for global polynomials also
carry over automatically for elements of a local polynomials so we will not list them in
detail in this chapter (see Chapter 24).

Note that in the strict mathematical definition of R = K[z1,...,Zn](z, ... ,2,), €lements
of R may have non-trivial denominators, but this is currently not supported in MAGMA: the
elements in MAGMA must always be strict polynomials. The main purpose of supporting

3272 COMMUTATIVE ALGEBRA Part XV

such rings is for standard bases of ideals (see below), and this restriction does not matter
there, since units are automatically removed from the elements of a standard basis.

We now describe the current local monomial orders available in MAGMA. First the
reader should see Section 105.2 for the fundamental points about (global) monomial orders
for multivariate polynomial rings.

The fundamental difference in the local case is that for a local polynomial ring R of
rank n, the monomial order is the negation of a global monomial order. More precisely,
let M be the monomials of R. A local monomial ordering on M is a total order < on
M such that s < 1 for all s € M, s <t implies su < tu for all s,t,u € M, and M is a
well-ordering (every non-empty subset of M possesses a minimal element w.r.t. <). See
[CLO98, Sec. 4.3], [DLO06, Sec. 9.1], or [GP02, Sec. 1.2] for more information.

We now list each of the monomial orders available in MAGMA (these will be expanded in
future versions). As in the global case, we suppose that s and ¢ are monomials from a ring
R of rank n. Any order on the monomials is then fully defined by just specifying exactly
when s < t with respect to that order. In the following, the argument(s) are described for
an order as a list of expressions; that means that the expressions (without the parentheses)
should be appended to any base arguments when any particular intrinsic function is called
which expects a monomial order.

107.2.1 Local Lexicographical: 1lex

Definition: s < t iff there exists 1 < ¢ < n such that all of the j-th exponents of s and ¢
are equal for i < 7 < n, but the i-th exponent of s is greater than the i-th exponent of t.
The order is specified by the argument ("1lex").

This order is the negation of the global lexicographical order, but with the reverse order
for the variables. Thus the i-th variable is greater than the (i 4 1)-th variable for 1 <i <n
so the first variable is the greatest variable.

107.2.2 Local Graded Lexicographical: 1glex

Definition: s < t iff the total degree of s is greater than the total degree of t or the
total degree of s is equal to the total degree of ¢ and s > ¢ with respect to the (glocal)
lexicographical order. The order is specified by the argument ("lglex").

This order is the negation of the global glex order.

107.2.3 Local Graded Reverse Lexicographical: 1grevlex

Definition: s < t iff the total degree of s is greater than the total degree of ¢ or the
total degree of s is equal to the total degree of ¢ and s < ¢ with respect to the (global)
lexicographical order applied to the exponents of s and t in reverse order. The order is
specified by the argument ("grevlex").

This order is the negation of the global grevlex order.

Ch. 107 LOCAL POLYNOMIAL RINGS 3273

107.3 Local Polynomial Rings and Ideals

107.3.1 Creation of Local Polynomial Rings and Accessing their Mono-
mial Orders

Local polynomial rings are created from a coefficient field, the number of variables, and
a monomial order. If no order is specified, the monomial order is taken to be the local
lexicographical order.

LocalPolynomialRing (K, n)

Create a local polynomial ring in n > 0 variables over the field K. The local
lexicographical ordering on the monomials is used for this default construction.

LocalPolynomialRing(K, n, order)

LocalPolynomialAlgebra(K, n, order)

Create a local polynomial ring in n > 0 variables over the ring R with the given
order order on the monomials. See the above section on local monomial orders for
the valid values for the argument order.

LocalPolynomialRing(K, n, T)

Create a local polynomial ring in n > 0 variables over the field K with the order
given by the tuple 7" on the monomials. T" must be a tuple whose components match
the valid arguments for the monomial orders in Section 107.2. Such a tuple is also
returned by the next function.

MonomialOrder (R)

Given a local polynomial ring R (or an ideal thereof), return a description of the
monomial order of R. This is returned as a tuple which matches the relevant argu-
ments listed for each possible order in Section 107.2, so may be passed as the third
argument to the function LocalPolynomialRing above.

MonomialOrderWeightVectors (R)

Given a polynomial ring R of rank n (or an ideal thereof), return the weight vectors
of the underlying monomial order as a sequence of n sequences of n rationals. See,
for example, [CLO98, p. 153] for more information.

Localization(R) |
Given a (global) multivariate polynomial ring R = K|z1,...,z,] (or an ideal I of
such an R), return the localization K[z1,...,2n](s,, . 2,) of R (or the ideal of the

localization of R which corresponds to I). The print names for the variables of R
are carried over.

3274 COMMUTATIVE ALGEBRA Part XV

Example H107E1

We show how one can construct local polynomial rings with different orders. Note the order on
the monomials for elements of the rings.

> K := RationalField();

> R<x,y,z> := LocalPolynomialRing(K, 3);

> R;

Localization of Polynomial Ring of rank 3 over Rational Field
Order: Local Lexicographical

Variables: x, y, z

> MonomialOrder (R);

<"llex">
> MonomialOrderWeightVectors(R) ;
[
Lo,o0, -11,
Lo, -1, 01,
[-1, 0, 0]
]

>1+x+y+2z+ x7+ x78y"7 +y°5 + z710;
1+x+x77T+y+y'5+x"8y"7 +2z + 2710

> R<x,y,z> := LocalPolynomialRing(K, 3, "lgrevlex");

> R;

Localization of Polynomial Ring of rank 3 over Rational Field
Order: Local Graded Reverse Lexicographical

Variables: x, y, z

> MonomialOrder (R);

<"lgrevlex">

> MonomialOrderWeightVectors(R);

L
[-1, -1, -1 1,
[-1, -1, 0],
[-1, 0, 0]

]

>1 +x+y+2z+ X7+ x78y"7 + y'5 + z2710;
l1+z+y+x+y5+x7+ 2710 + x"8xy~7

107.3.2 Creation of Ideals and Accessing their Bases

As for global polynomial rings, within the general context of ideals of local polynomial
rings, the term “basis” will refer to an ordered sequence of polynomials which generate an
ideal. (Thus a basis can contain duplicates and zero elements so is not like a basis of a
vector space.)

Ch. 107 LOCAL POLYNOMIAL RINGS 3275

ideal< R | L >|

Given a local polynomial ring R, return the ideal of R generated by the elements of
R specified by the list L. Each term of the list L must be an expression defining an
object of one of the following types:

(a) An element of R;

(b) A set or sequence of elements of R;
(c) An ideal of R;
(

d) A set or sequence of ideals of R.

Ideal(B)

Given a set or sequence B of polynomials from a local polynomial ring R, return the
ideal of R generated by the elements of B with the given basis B. This is equivalent
to the above ideal constructor, but is more convenient when one simply has a set
or sequence of polynomials.

Ideal (f)

Given a polynomial f from a local polynomial ring R, return the principal ideal of
R generated by f.

Basis(I)

Given an ideal I, return the current basis of I. This will be the standard basis of I
if it is computed; otherwise it will be the original basis.

BasisElement (I, i)

Given an ideal I together with an integer i, return the i-th element of the current
basis of I. This the same as Basis(I) [i].

107.4 Standard Bases

Computation in ideals of local polynomial rings is possible because of the construction of
standard bases of such ideals. These are the counterpart to Grobner bases for ideals
of global polynomial rings. Currently, standard bases may only be computed for ideals
defined over fields.

MAGMA computes a standard basis of an ideal using the Mora normal form and stan-
dard basis algorithms (with the homogenization technique): see [CLO98, Sec. 4.4] for an
overview.

In contrast to the global case, for a given fixed monomial ordering a standard basis of
an ideal is not unique in general because it can be difficult to get the lower order terms of
polynomials in the standard basis into a unique form. But the leading monomials of a
standard basis are always sorted in MAGMA and are unique.

3276 COMMUTATIVE ALGEBRA Part XV

107.4.1 Construction of Standard Bases

The following functions and procedures allow one to construct standard bases. Note that a
standard basis for an ideal will be automatically generated when necessary; the Groebner
procedure below simply allows control of the algorithms used to compute the standard
basis. The verbose flags are shared with those for global Grébner basis construction (since
the standard basis algorithms reduce to those), so see Section 105.4.6 for details on these.

| StandardBasis(I) |

Given an ideal I, force the standard basis of I to be computed, and then return
that.

| StandardBasis(S) |

Given a set or sequence S of polynomials of a local polynomial ring R, return a
standard basis of the ideal generated by S as a sorted sequence.

Example H107E2

We compute the standard basis of the ideal given in [CLO98, p.167].

> Q := RatiomnalField();

> R<x,y,z> := LocalPolynomialRing(Q, 3);

> I := Ideal([x"5 - x*xy~6 + 277, x*y + y"3 + 273, x"2 + y"2 - 272]);

> I;

Ideal of Localization of Polynomial Ring of rank 3 over Rational Field
Order: Local Lexicographical

Variables: x, y, z

Basis:

L

x"5 - xxy"6 + z°7,

xxy + y°3 + z73,

x"2 +y"2 - z"2

]
> StandardBasis(I);
L

x"2 +y2 - z72,

x*¥y + y°3 + z73,

y°3 - x*y"3 - y*z"2 - x*z"3,

x*z"4 + 3xy~2%z"4 + 4xxxy~4xz"4 + y*z"5 + bxxxy~3%z"5 - 2%z76 + 4*xy~2%z"6 +
XkyT2%Z7T6 + Z7T7 - 2%kx*z77 + Txy*z”T7 + 4dxxxyxz"7 — y 2%z"7 + 3%z"8 +
4xx*xz"8,

yo2%z274 + 3xy“"bxz"5 - 276 + 3/2%x*z76 + 2%y "2%xz"6 + y 4*z"6 - x*z"7 +
T/2%xy*z~7 — x*y~2%z"7 - y~3%z2"7 + 3/2*%z78 - 3/2%x*z"8 - 2*xy*z~8 +
2xxxy*z~8 + 3/2%xy~2%z"8,

y*277 + 1/2%x*z"8 + 23/4xy*z"8 - 9/4*xxxy~3%z"8 + 3/2xy~4*z"8,

z"9

Ch. 107 LOCAL POLYNOMIAL RINGS 3277

]

We note that no elements of the standard basis have factors which are units in R.

> [Factorization(f): f in $11;

L
L
x"2 +y"2 -272, 1>
1,
L
<x*y + y"3 + z73, 1>
1,
L
<y"2 - x*y~2 - y*z + xky*z - x*z72, 1>,
<y + z, 1>
1,
L
<z, 4>,
<x + 3%y"2 + 4xx*yT4 + ykz + Bkxky 3%z - 2%z72 + 4kyT2%z72 + xkyT2%z72 +
z"3 - 2%x*z"3 + T*xy*z"3 + 4¥xxy*z”3 - y 2*z"3 + 3*z"4 + 4dxx*xz"4, 1>
1,
L
<z, 4>,
<y~2 + 3*y"b*z - 272 + 3/2%x*272 + 2%y 2%z"2 + yT4*%z"2 - x*2"3 +
T/2xyxz"3 - x*y"2%z"3 - y~3*%z"3 + 3/2%z74 - 3/2%x*z"4 - 2xy*z~4 +
2xxxy*z~4 + 3/2xy~2%z"4, 1>
1,
L
<z, 7>,
<y + 1/2%x*z + 23/4*y*z - 9/4xxxy 3%z + 3/2xy 4d*z, 1>
1,
L
<z, 9>
]
]

Example H107E3

We note that starting from an ideal I of a global polynomial ring, the standard basis of the
localization of I may be much simpler than the Grébner basis of 1.

> Q := RationalField();

> R<x,y,z> := PolynomialRing(Q, 3);

> I := Ideal([x"2 - x*y"3 + 273, x*xy + y"2 + z, x + y°2 - z72]);
> Groebner(I); I;

Ideal of Polynomial ring of rank 3 over Rational Field

Order: Lexicographical

Variables: x, y, z

Inhomogeneous, Dimension O

3278 COMMUTATIVE ALGEBRA Part XV

Groebner basis:

[
X - y*z + 127/1052%z"9 + 585/1052%z"8 + 233/263*z"7 + 1273/1052%z"6 +
695/526*z~5 + 223/1052*z~4 + 569/526*z~3 + 35/1052*z"2 - z,
y~2 + yxz - 127/1052*%z"9 - 585/1052%z"8 - 233/263%z"7 - 1273/1052*z"6 -
695/526%z"5 - 223/1052%z"4 - 569/526*%z"3 - 1087/1052*z"2 + z,
y*z~2 + 51/263%z"9 + 208/263*z"8 + 308/263*z"7 + 476/263*%z"6 + 465/263*z"5 +
278/263*%z"4 + 691/263%z"3 + 217/263*z"2,
z"10 + 5%z79 + 10%z"8 + 15*%z"7 + 16%z"6 + 9*%xz"5 + 12*%z74 + 13%xz"3 + 2%z~ 2
]
> QuotientDimension(I);
12
>
> IL := Localization(I);
> StandardBasis(IL);
[
x +y°2,
y°2 -y 3+ z,
z"2
]
> QuotientDimension(IL);
4

107.5 Operations on Ideals

In the following, note that since ideals of a full polynomial ring P are regarded as subrings
of P, the ring P itself is a valid ideal as well (the ideal containing 1).

107.5.1 Basic Operations

Given ideals I and J of the same polynomial ring P, return the sum of I and J,
which is the ideal generated by the generators of I and those of J.

Given ideals I and J of the same polynomial ring P, return the product of I and J,
which is the ideal generated by the products of the generators of I and those of .J.

Given an ideal I of the polynomial ring P, and an integer k, return the k-th power

of I.

Ch. 107 LOCAL POLYNOMIAL RINGS 3279

QuotientDimension(I)

Given an ideal I of a local polynomial ring R over a field K, return the dimension
of P/I as a K-vector space. Note that this is quite different from the function
Dimension below (which returns the Krull dimension of an ideal).

Generic(I) |

Given an ideal I of a generic local polynomial ring R, return R.

LeadingMonomialIdeal(I)

Given an ideal I, return the leading monomial ideal of I; that is, the ideal generated
by all the leading monomials of I.

Given ideals I and J of the same polynomial ring P, return the intersection of I
and J.

Given a set or sequence S of ideals of the same local polynomial ring R, return the
intersection of all the ideals of S.

107.5.2 Ideal Predicates

I egqld

Given two ideals I and J of the same polynomial ring P, return whether I and J
are equal.

Given two ideals I and J of the same polynomial ring P, return whether I and J
are not equal.

| I notsubset J |

Given two ideals I and J in the same polynomial ring P return whether I is not
contained in J.

| I subset J |

Given two ideals I and J in the same polynomial ring P return whether [is contained
in J.

| IsZero(I) |

Given an ideal I of the local polynomial ring R, return whether [is the zero ideal
(contains zero alone).

3280 COMMUTATIVE ALGEBRA Part XV

IsProper(I)

Given an ideal I of the local polynomial ring R, return whether I is proper; that
is, whether [is strictly contained in R (or whether the standard basis of I does not
contain 1 alone).

| IsZeroDimensional(I) |

Given an ideal I of the local polynomial ring R, return whether [is zero-dimensional
(so the quotient of P by I has non-zero finite dimension as a vector space over the
coefficient field — see the section on dimension for further details). Note that the
ring R has dimension —1, so it is not zero-dimensional.

Example H107E4

We construct some ideals in Q[z,y, z] and perform basic arithmetic on them.

> R<x,y,z> := LocalPolynomialRing(RationalField(), 3);

> I := ideal<R | x*y - z, x"3*%2"2 - y~2, x*x2"3 - x - y>;
> J := ideal<R | x*y - z, x"2%xz - y, x*2"3 - x - y>;

>A =1 x J;

> _ := StandardBasis(A);

> A;

Ideal of Localization of Polynomial Ring of rank 3 over Rational Field
Order: Local Lexicographical

Variables: x, y, z

Inhomogeneous, Dimension O

Standard basis:

L
X"2 - yT2 + 2%x7 3%z,
X*y + y©2 - x73%z,
y°3,
X*zZ + y*z,
y*z,
z"2

]

>M := 1 meet J;

> M;

Ideal of Localization of Polynomial Ring of rank 3 over Rational Field
Order: Local Lexicographical
Variables: x, y, z
Homogeneous
Basis:
L

X +y,

vy 2,

z
]
> A eq M;

Ch. 107 LOCAL POLYNOMIAL RINGS 3281

false
> A subset M;
true

107.5.3 Operations on Elements of Ideals

Given a polynomial f from a local polynomial ring R, together with an ideal I of
R, return whether f isin I.

NormalForm(f, I)

Given a polynomial f from a local polynomial ring R, together with an ideal I of
R, return a normal form of f with respect to (the standard basis of) I. The normal
form of f is zero if and only if f is in [I.

| f notin I |

Given a polynomial f from a polynomial ring P, together with an ideal I of P,
return whether f is not in .

Example H107E5
We demonstrate the element operations with respect to an ideal of the localization of Q[z,y, z].

> R<x,y,z> := LocalPolynomialRing(RationalField(), 3);
> I :=ideal<R | (x + y)73, (y - 2)72, y 2%z + z>;

> NormalForm(y~2*z + z, I);
0
>

NormalForm(x~3, I);
—-3*x" 2%y
>x +y in I;
false

107.6 Changing Coefficient Ring

The ChangeRing function enables the changing of the coefficient ring of a local polynomial
ring or ideal.

ChangeRing(I, L)

Given an ideal I of a local polynomial ring R = K|[xy,...,x,] of rank n with
coeflicient ring K, together with a field L, construct the ideal J of the polynomial
field S = L[z1,...,z,] obtained by coercing the coefficients of the elements of the
basis of I into L. It is necessary that all elements of the old coefficient field K can
be automatically coerced into the new coefficient field L. If K and L are fields and
K is known to be a subfield of L and the current basis of I is a standard basis, then
the basis of J is marked automatically to be a standard basis of J.

3282 COMMUTATIVE ALGEBRA Part XV

107.7 Changing Monomial Order

Often one wishes to change the monomial order of an ideal. MAGMA allows one to do this
by use of the ChangeOrder function.

ChangeOrder (I, Q)

Given an ideal I of the local polynomial ring R = K|[x1,...,z,], together with a
local polynomial ring S of rank n (with possibly a different order to that of R),
return the ideal J of S corresponding to J and the isomorphism f from R to S. The
map f simply maps R.: to S.i for each .

ChangeOrder (I, order)

Given an ideal I of the polynomial ring P = Rl[z1, ..., x,], together with a monomial
order order (see Section 107.2), construct the polynomial ring Q@ = Rlzq,...,z,]
with order order, and then return the ideal J of) corresponding to I and the
isomorphism f from P to (). See the section on monomial orders for the valid
values for the argument order. The map f simply maps P.i to (). for each i.

107.8 Dimension of Ideals

Let I be an ideal of the local polynomial ring K[z1,...,%n](s,,... 2,), Where K is a field.
As for polynomial rings, the dimension of the ideal I can be defined as the the maximum
of the cardinalities of all the independent sets modulo I (see Section 107.8 for details).

Dimension(I) |

Given an ideal I of a local polynomial ring R defined over a field, return the dimen-
sion d of I, together with a (sorted) sequence U of integers of length d such that the
variables of P corresponding to the integers of U constitute a maximally indepen-
dent set modulo I. If I is the full local polynomial ring R, the dimension is defined
to be —1, and the second return value is not set. The algorithm implemented is
that given in [BW93, p. 449].

107.9 Bibliography
[BW93] Thomas Becker and Volker Weispfenning. Gréibner Bases. Graduate Texts in
Mathematics. Springer, New York—Berlin—Heidelberg, 1993.

[CLO98] David Cox, John Little, and Donal O’Shea. Using Algebraic Geometry. Grad-
uate Texts in Mathematics. Springer, New York—Berlin—Heidelberg, 1998.

[DL06] Wolfram Decker and Christoph Lossen. Computing in Algebraic Geometry,
volume 16 of Algorithms and Computation in Mathematics. Springer, New York—
Berlin—Heidelberg, 2006.

[GP02] G.-M. Greuel and G. Pfister. A Singular Introduction to Commutative Algebra.
Springer-Verlag, Berlin—Heidelberg—New York, 2002.

108 AFFINE ALGEBRAS

108.1 Introduction 3285

108.2 Creation of Affine Algebras . 3285

quo< > 3285
quo< > 3285
/ 3285
AffineAlgebra< > 3286
108.3 Operations on Affine Algebras3287
. 3287
CoefficientRing(Q) 3287
Rank (Q) 3287
DivisorIdeal(I) 3287
PreimageIdeal (I) 3287
PreimageRing(Q) 3287
OriginalRing(Q) 3287
eq 3287
subset 3288
+ 3288
* 3288
- 3288
meet 3288
IsProper(I) 3288
IsZero(I) 3288
IsPrime(I) 3288
IsPrimary(I) 3288

IsRadical(I) 3288

PrimaryDecomposition(I) 3288
RadicalDecomposition(I) 3288
108.4 Maps between Affine Algebras3290
AffineAlgebraMapKernel (phi) 3290
108.5 Finite Dimensional Affine Al-

gebras 3290
HasFiniteDimension(Q) 3290
Dimension(Q) 3290
VectorSpace(Q) 3290
MonomialBasis(Q) 3291
MatrixAlgebra(Q) 3291
RepresentationMatrix(f) 3291
IsUnit (£) 3291
IsNilpotent (f) 32901
MinimalPolynomial (f) 3291
108.6 Affine Algebras which are

Fields 3292
108.7 Rings and Fields of Fractions

of Affine Algebras 3294
RingOfFractions(Q) 3294
FieldOfFractions(Q) 3294
Numerator(a) 3294
Denominator (a) 3294

Chapter 108
AFFINE ALGEBRAS

108.1 Introduction

An affine algebra in MAGMA is simply the quotient ring of a multivariate polynomial ring
P = R[z1,...,x,] by an ideal J of P. Such rings arise commonly in commutative algebra
and algebraic geometry. They can also be viewed as generalizations of number fields and
algebraic function fields, when R is a field.

The elements of affine algebras are simply multivariate polynomials which are always
kept reduced to normal form modulo the ideal J of “relations”. Practically all operations
which are applicable to multivariate polynomials are also applicable in MAGMA to elements
of affine algebras (when meaningful).

If the ideal J of relations defining an affine algebra A = R|x1,...,x,]/J is mazimal
and R is a field, then A is a field and may be used with any algorithms in MAGMA which
work over fields. Factorization of polynomials over such affine algebras is also supported
(including fields of small characteristic, since V2.10).

If an affine algebra defined over a field has finite dimension considered as a vector space
over the coefficient field, extra special operations are available on its elements.

Currently the base ring R may be a field or a Euclidean ring. Further operations for
affine algebras over Euclidean rings will be supported in the future.

An affine algebra has type RngMPolRes and its elements type RngMPolResElt.

108.2 Creation of Affine Algebras

One can create an affine algebra simply by forming the quotient of a multivariate polyno-
mial ring by an ideal (quo constructor or / function). A special constructor AffineAlgebra
is also provided to remove the need to create the base polynomial ring.

quo< P | J >

quo< P | aj;, ..., a, >

Given a multivariate polynomial ring P and an ideal J of P, return the quotient
ring P/J. The ideal J may either be specified as an ideal or by a list ay, ag, ...,
a,, of generators which all lie in P. The angle bracket notation can be used to
assign names to the indeterminates: Q<q, r> := quo< I | I.1 + I.2, I.272 -
2, 1.372 + 1.4 >;.

Given a multivariate polynomial ring P and an ideal J of P, return the quotient
affine algebra P/J.

3286 COMMUTATIVE ALGEBRA

AffineAlgebra< R, X | L >

Part XV

Given a ring R, a list X of n identifiers, and a list L of polynomials (relations) in
the n variables X, create the affine algebra of rank n with base ring R with given
quotient relations; i.e., return R[X]/(L). The angle bracket notation can be used to

assign names to the indeterminates.

Example H108E1

One can create a relative extension of an algebraic number field as an affine algebra. The multi-
variate representation will often be more efficient than an absolute representation because of the

sparsity of the elements in the field.

> @ := RationalField();

> A<x, y> := AffineAlgebra<Q, x, y | x"2 - y°2 + 2, y~3 - 5>;

> A;

Affine Algebra of rank 2 over Rational Field
Lexicographical Order

Variables: x, y

Quotient relations:

L
x"2 - yT2 + 2,
y3 -5

]

> x72;

y'2 - 2

> x7-1;

2/17*x*y"2 + 5/17*x*y + 4/17*x

> P<z> := PolynomialRing(Q);

> MinimalPolynomial(x) ;

z"6 + 6%xz"4 + 12%xz"2 - 17

> MinimalPolynomial(x~-1);

z°6 - 12/17xz"4 - 6/17*%z"2 - 1/17
> MinimalPolynomial(y);

z"3 -5

Another important construction is to create an affine algebra over a rational function field to

obtain an algebraic function field:

> F<t> := FunctionField(IntegerRing());

> A<x, y> := AffineAlgebra<F, x, y | t*x"2 - y™2 + t + 1, y~°3 - t>;

> P<z> := PolynomialRing(F);
> x7-1;

(mt72 = £)/(£73 + 2%t72 + 3%t + 1)*x*y~2 - t72/(£73 + 2%t72 + 3*t + 1)*x*y
+ (-t73 - 2%t72 - £)/(t73 + 2%t72 + 3xt + 1)*x

> MinimalPolynomial (x);

z"6 + (3%t + 3)/t*xz"4 + (3*xt"2 + 6%t + 3)/t"2%z"2 + (t°3 + 2%t"2 + 3%t +

1)/t°3
> MinimalPolynomial(x~-1);

z"6 + (3%t"3 + 6%xt”2 + 3xt) /("3 + 2%t"2 + 3%t + 1)*z"4 + (3*%t"3 +

Ch. 108 AFFINE ALGEBRAS 3287

3xt72) /(73 + 2*%t"2 + 3%t + 1)*z"2 + t73/(t"3 + 2*xt"2 + 3xt + 1)

In this example we can consider y as a cube root of the transcendental indeterminate t.
Note that in general the (Krull) dimension of the ideal defining the relations may be anything; it
need not be 0 or 1 as it is in these examples.

108.3 Operations on Affine Algebras

This section describes operations on affine algebras. Most of the operations are very
similar to those for multivariate polynomial rings; such operations are done by mapping
the computation to the preimage ideal and then by mapping the result back into the affine
algebra. See the corresponding functions for the multivariate polynomial rings for details.

Given an affine algebra @), return the i-th indeterminate of () as an element of Q).

CoefficientRing(Q)

Return the coefficient ring of the affine algebra Q.

Rank (Q)
Return the rank of the affine algebra) (the number of indeterminates of Q).

DivisorIdeal(I)

Given an ideal I of an affine algebra) which is the quotient ring P/J, where P is
a polynomial ring and J an ideal of P, return the ideal J.

PreimageIdeal(I)

Given an ideal I of an affine algebra) which is the quotient ring P/.J, where P is
a polynomial ring and J an ideal of P, return the ideal I’ of P such that the image
of I’ under the natural epimorphism P — @ is I.

PreimageRing(Q)

Given an affine algebra () which is the quotient ring P/.J, where P is a polynomial
ring and J an ideal of P, return the polynomial ring P.

OriginalRing(Q)

Return the generic polynomial ring P such that @ is P/J for some ideal J of P.

I eqld

Given two ideals I and J of the same affine algebra @), return true if and only if I
and J are equal.

3288 COMMUTATIVE ALGEBRA Part XV

I subset J |

Given two ideals I and J of the same affine algebra (), return true if and only if 1
is contained in J.

I+
Given two ideals I and J of the same affine algebra @), return the sum I + J.

I xJ

Given two ideals I and J of the same affine algebra @), return the product I x J.
I " n

Given an ideal I of an affine algebra () and an integer n, return the power ™.

Given two ideals I and J of the same affine algebra @), return the intersection 1N .J.

IsProper(I)

Given an ideal I of the affine algebra @), return whether I is proper; that is, whether
I is strictly contained in Q.

IsZero(I) |

Given an ideal I of the affine algebra @), return whether I is the zero ideal. Note
that this is equivalent to whether the preimage ideal of I is the divisor ideal of Q).

IsPrime(I) |

Given an ideal I of the affine algebra (), return whether I is a prime ideal.

IsPrimary(I)

Given an ideal I of the affine algebra @), return whether I is a primary ideal.

IsRadical(I) |

Given an ideal I of the affine algebra @, return whether I is a radical ideal.

PrimaryDecomposition(I)

Given an ideal I of the affine algebra @), return the primary decomposition of I,
together with the associated primes.

RadicalDecomposition(I)

Given an ideal I of the affine algebra @, return the (prime) decomposition of the
radical of I.

Ch. 108 AFFINE ALGEBRAS 3289

Example H108E2
We illustrate the operations on ideals of affine algebras.

> Q := RationalField();
> A<x,y,z> := AffineAlgebra<Q,x,y,z | x"2 -y + 1, y73 + z - 1>;
> A;
Affine Algebra of rank 3 over Rational Field
Lexicographical Order
Variables: x, y, z
Quotient relations:
L
x"2 -y +1,
y3+z-1
]
> I := ideal<A | x"3*y*xz"2>;
> IsRadical(I);
false
> Radical(I);
Affine Algebra of rank 3 over Rational Field
Lexicographical Order
Variables: x, y, z
Quotient relations:

L
x"2 -y + 1,
y3+z-1
]
Generating basis:
L
xX*y~2 + x*¥y - x*z + X,
y*z,
z72 -z
]
> PQ, PP := PrimaryDecomposition(I);
> #PQ;
3
> PQ[11;

Affine Algebra of rank 3 over Rational Field
Lexicographical Order

Variables: x, y, z

Quotient relations:

L
x"2 -y + 1,
y3+z-1
]
Generating basis:
L

y + 5/81*%z"3 + 1/9%z"2 + 1/3*z - 1,
x*xz" 3,

3290 COMMUTATIVE ALGEBRA Part XV

y + 5/81%z"3 + 1/9%z"2 + 1/3%z - 1,
z"4
]
> PP[1];
Affine Algebra of rank 3 over Rational Field
Lexicographical Order
Variables: x, y, z
Quotient relations:

L
x72 -y +1,
y3+z-1
]
Generating basis:
L
X,
y -1,
z
]

108.4 Maps between Affine Algebras

MaGMA includes functions for working with maps between affine algebras.

AffineAlgebraMapKernel (phi)

Return the kernel of the homomorphism ¢ of affine algebras.

108.5 Finite Dimensional Affine Algebras

If an affine algebra is defined over a field and has finite dimension considered as a vector
space over its coefficient field, extra special operations are available on its elements.

Similar operations for affine algebras defined over general Euclidean rings will be sup-
ported in the future.

HasFiniteDimension(Q)

Given an affine algebra @) defined over a field, return whether () has finite dimension.

Dimension(Q)

Given a finite dimensional affine algebra () defined over a field, return the dimension

of Q.
VectorSpace(Q)

Given a finite dimensional affine algebra () defined over a field, construct the vector
space V' isomorphic to @), and return V together with the isomorphism f from @
onto V.

Ch. 108 AFFINE ALGEBRAS 3291

MonomialBasis(Q)

Given a finite dimensional affine algebra () defined over a field, return the basis B
of monomials of). This is a sequence of monomials in @) of length d, such that
that the image f(B[i]) = V.i where V and f are the return values of VectorSpace
above.

MatrixAlgebra(Q)

Given a finite dimensional affine algebra) defined over a field, construct the matrix
algebra A isomorphic to @), and return A together with the isomorphism f from Q
onto A.

RepresentationMatrix (f)

Given an element f of a finite dimensional affine algebra () defined over a field,
return the representation matrix of f, which is a d by d matrix over the coefficient
field of @ (where d is the dimension of @}) which represents f.

IsUnit(f) |

Given an element f of a finite dimensional affine algebra () defined over a field,
return whether f is a unit.

IsNilpotent (£)

Given an element f of a finite dimensional affine algebra () defined over a field,
return whether f is nilpotent, and if so, return also the smallest ¢ such that f¢ = 0.

MinimalPolynomial (f)

Given an element f of a finite dimensional affine algebra) defined over a field,

return the minimal polynomial of f as a univariate polynomial over the coefficient
field of Q.

Example H108E3

Suppose we wish to find the minimal polynomial of § = v/2 + /5 over Q. To do this we can just
compute the minimal polynomial of (the coset of) x + v over Q in the affine algebra Q|z,y]/(z* —
2,9y% —5).

> @ := RationalField();

> A<x, y> := AffineAlgebra<Q, x, y | x72 - 2, y~3 - 5>;
> UP<z> := PolynomialRing(Q);

> MinimalPolynomial(x + y);

z"6 - 6xz74 - 10*%z"3 + 12%z"2 - 60*z + 17

3292 COMMUTATIVE ALGEBRA Part XV

108.6 Affine Algebras which are Fields

If the ideal J of relations defining an affine algebra A = K{z1,...,z,]/J, where K is a
field, is maximal, then A is a field and may be used with any algorithms in MAGMA which
work over fields. Factorization of polynomials over such affine algebras is also supported
(in any characteristic, since V2.10). The examples below will demonstrate some of the
applications available.

Note that an affine algebra defined over a field which itself is a field also has finite
dimension when considered as a vector space over its coefficient field, so all of the operations
in the previous section are also available.

Example H108E4

We create the function field F' = Q(a,b,z) and then the affine algebra A = F[y]/ < v* — (2 +
ax + b) > (which is also equivalent to an algebraic function field). This then allows us to create a
generic elliptic curve E over A and compute the coordinates of multiples of a generic point easily.

> Q := RationalField();

> F<x, a, b> := FunctionField(Q, 3);

> A<y> := AffineAlgebra<F, y | y™2 - (x"3 + a*x + b)>;

> IsField(A);

true

> y72;

x"3 + xxa + b

> yo-1;

1/(x"3 + x*a + b)*y

> E := EllipticCurve([A | a, bl);

> E;

Elliptic Curve defined by y™2 = x"3 + a*x + b over Affine Algebra of rank 1 over
Rational function field of rank 3 over Rational Field
Variables: x, a, b

>p :=E ! [x, y];

> p;
x 1y : 1)
> q := 2%p;
> q;

((1/4*x~4 - 1/2%x"2%a - 2*x*b + 1/4*a"2)/(x"3 + x*a + b) : (1/8*x"6 +
5/8*x"4*a + 5/2*x"3*%b - 5/8*x"2*%a"2 - 1/2*x*a*b - 1/8*a"3 - b"2)/(x"6
+ 2xx"4*xa + 2%x"3%b + x"2%a"2 + 2xx*axb + b 2)*y : 1)

> ¢ := LeadingCoefficient(q[2]);

> Denominator(c);

X"6 + 2*xx"4*a + 2*xx"3*%b + x"2%a”2 + 2*x*axb + b”2

> Factorization($1);

[

<x"3 + x*a + b, 2>

Ch. 108 AFFINE ALGEBRAS 3293

Example H108E5

Starting with the same affine algebra A = Q(a,b,z)F[y]/ < v* — (z® 4+ ax + b) > as in the last
example, we factor some univariate polynomials over A. A is of course isomorphic to an absolute
field, but the presentation given may be much more convenient to the user.

> Q := RationalField();
> F<x, a, b> := FunctionField(Q, 3);

> A<y> := AffineAlgebra<F, y | y"2 - (x73 + a*x + b)>;
> P<z> := PolynomialRing(A) ;

>Ff =272 - (x"3 + axx + b);

> f;

z"2 + -x"3 - x*¥a - b
> time Factorization(f);

L
<z -y, 1>,
<z +y, 1>
]
Time: 0.019

Example H108E6

In this final example, A is isomorphic to an algebraic number field, but its presentation may be
more convenient than an absolute presentation (and may lead to sparser expressions for elements).

> Q := RationalField();

> A<a,b,c> := AffineAlgebra<Q, a,b,c | a™2 - bxc + 1, ™2 - c + 1, c™2 + 2>;
> P<x> := PolynomialRing(A);

> time Factorization(x"2 + 2);

[
<x - c, 1>,
<x + c, 1>
]
Time: 0.080
> time Factorization(x"2 - b*c + 1);
[
<x - a, 1>,
<x + a, 1>
]
Time: 0.090

> MinimalPolynomial(a);

X"8 + 4xx"6 + 2*%x"4 - 4%x"2 + 9

> time Factorization(P ! $1);

[
<x - a, 1>,
<x + a, 1>,
<x - 1/3%axbxc - 2/3*%axb + 1/3*axc - 1/3*a, 1>,
<x + 1/3%axbxc + 2/3*axb - 1/3*a*xc + 1/3*a, 1>,
<x"4 + 2%x72 - 2xc - 1, 1>

3294 COMMUTATIVE ALGEBRA Part XV

Time: 2.809

108.7 Rings and Fields of Fractions of Affine Algebras

Given any affine algebra Q = K{z1,...,x,]/J, where K is a field, one may create the ring
of fractions R of Q. This is the set of fractions a/b, where a,b € @ and b is invertible, and
it forms a ring.

The defining ideal J does not need to be zero-dimensional. The ring of fractions R is
itself represented internally by an affine algebra over an appropriate rational function field,
but has the appearance to the user of the set of fractions, so one may access the numerator
and denominator of elements of R, for example.

If the ideal J is prime, then R is the field of fractions of A and may be used with any
algorithms in MAGMA which work over fields. For example, factorization of polynomials
over such fields of fractions is supported (in any characteristic).

Rings of fractions have type RngFunFrac and their elements RngFunFracElt.

RingOfFractions(Q)

FieldOfFractions(Q)

Given an affine algebra) over a field K, return the ring of fractions of (). The only
difference between the two functions is that for Field0fFractions, the defining
ideal of () must be prime.

Numerator(a)

Denominator (a) |

Given an element a from the ring of fractions of an affine algebra (), return the
numerator (resp. denominator) of a as an element of Q.

Example H108E7

We create the field of fractions of an affine algebra and note the basic operations.

> A<x,y> := AffineAlgebra<RationalField(), x,y | y°2 - x73 - 1>;
> IsField(A);
false
> F<a,b> := FieldOfFractions(A);
> F;
Ring of Fractions of Affine Algebra of rank 2 over Rational Field
Lexicographical Order
Variables: x, y
Quotient relations:
L
x"3 -y"2+1
]

Ch. 108

> a;

a

> b;

b

> a™-1;

> a™-1;
1/(b"2 - 1)*a"2
> b™-1;

1/b

> c := b/a;
> c;

b/(b"2 - 1)*a"2
> Numerator(c);
X" 2%y
> Denominator(c);
y'2-1
> P<X> := PolynomialRing(F);
> time Factorization(X"3 - b"2 + 1);
[
<X - a, 1>,
<X"2 + axX + a”2, 1>
]
Time: 0.000
> P<X,Y> := PolynomialRing(F, 2);

AFFINE ALGEBRAS

> time Factorization((X + Y)"3 - b"2 + 1);

[
<X +Y - a, 1>,
<X"2 + 2%X*Y + axX + Y°2 + axY + a”2, 1>
]
Time: 0.030
> time Factorization((b*X"2 - a)*(a*Y"3 - b + 1)*(X"3 - b"2 + 1));
[
<Y"3 - 1/(b + 1)*a"2, 1>,
<X - a, 1>,
<X~2 - 1/b*a, 1>,
<X"2 + axX + a2, 1>
]
Time: 0.010

Example H108ES8

3295

This example shows the internal operations underlying the method of constructing the field of
fractions. If the ideal of relations has dimension d, then the sequence L of d maximally independent
variables is passed to the extension/contraction construction, which creates a rational function
field with d variables such that the ideal of relations over this field now becomes zero dimensional.

Appropriate maps are set up, too.

> Q := RationalField();

3296 COMMUTATIVE ALGEBRA Part XV

> A<x,y> := AffineAlgebra<RationalField(), x,y | y°2 - x73 - 1>;
> IsField(A);

false

> I := DivisorIdeal(A);

> I;

Ideal of Polynomial ring of rank 2 over Rational Field
Lexicographical Order

Variables: x, y

Groebner basis:

[
x"3 -y2+1
]
> d, L := Dimension(I);
> d;
1
> L;
[2]
> E, f := Extension(I, L);
> E;

Ideal of Polynomial ring of rank 1 over Multivariate rational function
field of rank 1 over Integer Ring

Graded Reverse Lexicographical Order

Variables: x

Basis:

L
x"3 -y 2+1

]

> F := Generic(E)/E;

Affine Algebra of rank 1 over Multivariate rational function field of
rank 1 over Integer Ring

Graded Reverse Lexicographical Order

Variables: x

Quotient relations:

L
x"3 -y 2+1

g :=map<A -> F | x :=> FIf(x)>;
g(x);

g(y);

V< VX V V VY

g(x)"-1;
1/(y~2 - 1)*x~2
> g(y)~-1;

1/y

> g(x72 + x*y);
X"2 + y*x

Ch. 108 AFFINE ALGEBRAS 3297

> g(x™2 + x*xy)~-1;

y°2/(y"5 + y"4 - y™3 - 2xy"2 + 1)*x"2 + 1/(y"3 + y°2 - 1)*x - y/
(y73 +y°2-1)

> $1 x $2;

1

109 MODULES OVER MULTIVARIATE RINGS

109.1 Introduction 3301 ! 3308
. Zero (M) 3308
109.2 Module Basics: Embedded UnitVector(M, i) 3308
and Reduced Modules . . . 3301
109.4.6 Element Operations 3309
109.3 Monomial Orders 3303 Eltseq(f) 3309
109.3.1 Term Over Position: TOP . . . 3304 Vector (f) 3309
f[i 3309
109.3.2 Term Over Position (Weighted): o 3300
TDPW 3304 diV 3309
109.3.3 Position Over Term: POT . . . 3304 SPolynomial(f, g) 3309
. . Normalize (f) 3309
109.3.4 Position Over Term (Permutation): NormalForm(f, S) 3310
POTPERM 3305 Coordinates (£, M) 3310
109.3.5 Block TOP-TOP: TOPTOP . . . 3305 Coefficients Monomials Terms 3310
LeadingCoefficient LeadingMonomial 3310
CoefficientsAndMonomials 3310
109.4 Basic Creation and Access . 3305 Column () 3310
109.4.1 Creation of Ambient Embedded Degree (f) 3310
Modules 3305 WeightedDegree (f) 3310
EModule (R, k) 3305 IsHomogeneous (f) 3310
EModule(R, k, order) 3305 IsZero(f) 3311
EModule(R, W) 3306 eq 3311
EModule(R, W, order) 3306 1t 3311
109.4.2 Creation of Reduced Modules . . 3306 in 3311
RModule (R, k) 3306 109.5 The Homomorphism Type . 3313
RModule(R, W) 3306 Homomorphism(M, N, A) 3313
GradedModule (R, k) 3306 Domain(f) 3313
GradedModule (R, W) 3306 Codomain (£) 3313
109.4.3 Localization 3306 PresentationMatrix(f) 3314
Localization (M) 3306 MatlfiX(f)] 3313
109.4.4 Basic Invariants 3307 prblenehstrix (D) o
Ambient (M) 3307 £(v) 3314
Generic (M) 3307 * 3314
IsAmbient (M) 3307 £i] 3314
IsEmbedded (M) 3307 Image (f) 3314
IsReduced (M) 3307 Kernel (f) 3314
IsRoot (M) 3307 Cokernel (f) 3314
CoefficientRing (M) 3307 IsZero(f) 3314
BaseRing (M) 3307 IsInjective(f) 3315
Degree (M) 3307 IsSurjective(f) 3315
ColumnWeights (M) 3307 IsBijective(f) 3315
Grading (M) 3307 IsGraded(f) 3315
RelationModule (M) 3307 IsHomogeneous (f) 3315
Relations (M) 3308 Degree (f) 3315
RelationMatrix (M) 3308
Presentation (M) 3308 109.6 Submodules and Quotient
IsGraded (M) 3308 Modules 3316
IsHomogeneous (M) 3308 109.6.1 Creation 3316
109.4.5 Creation of Module Elements . . 3308 sub< > 3316
! 3308 quo< > 3316

! 3308 Morphism(M, N) 3317

ar
3300 COMMUTATIVE ALGEBRA Part XV
Submodule (I) 3317 109.10 Changing Ring 3324
QuotlentModule(I) 3317 ChangeRlng(M S) 3324
GradedModule (I) 3317 ’
10962 Modu]e Bases . . 3317 109.11 Hilbert Series . 3324
Basis (M) 3317 HilbertSeries (M) 3324
BasisElement (M, i) 3317 HilbertSeries(M, p) 3324
BasisMatrix(M) 3317 HilbertDenominator (M) 3325
Groebner (M) 3317 HilbertNumerator (M) 3325
HilbertPolynomial(I) 3325
109.7 Basic Module Constructions 3320 .
3390 109.12 Free Resolutions . 3326
+
meet 3320 109.12.1 Constructing Free Resolutions . 3326
* 3320 FreeResolution(M) 3326
* 3320 SetVerbose("Resolution", v) 3327
* 3320 109.12.2 Betti Numbers and Related
* 3320 Invariants . 3330
]é, tSum(M, W) ggg? BettiNumbers (M) 3331
D:!.rectsum(si 3391 BettiNumber (M, i, j) 3331
Tn_”ef: (Mumd) o MaximumBettiDegree (M, i) 3331
wistifs BettiTable (M) 3331
109.8 Predicates 3321 Regularity (M) 3331
IsZero (M) 3391 HomologicalDimension (M) 3331
subset 3321 109.13 The Hom Module and Ext . 3340
eq 3321 Hom(M, N) 3340
IsFree(M) 3321 Hom(C. N) 3340
109.9 Module Operations 3322 Ext(i, M, N) 3341
MinimalBasis (M) 3322 109.14 Tensor Products and Tor . 3343
ﬁln}::zzl;ﬁ)l.Ba31s(S) gggg TensorProduct (M, N) 3343
CilllonModule a1 2390 TensorProduct (C, N) 3343
ColonIdeal (M, N) 3322 Tor(i, M, 1D 3343
Annihilator (M) 3322 109.15 Cohomology Of Coherent
FittingIdeal(M, i) 3323 Sheaves 3345
FittingIdeals (M) 3323 CohomologyDimension(M,r,n) 3345
SyzygyModule (M) 3323
MinimalSyzygyModule (M) 3323 109.16 Bibliography 3349
SyzygyModule (Q) 3323

Chapter 109
MODULES OVER MULTIVARIATE RINGS

109.1 Introduction

This chapter describes modules over multivariate polynomial rings and related rings. The
fundamental tool for computing with such modules is the construction of Grobner bases
for modules, since these rings are not principal ideal rings in general (so standard matrix
echelonization algorithms are not applicable).

In this chapter, unless otherwise indicated, a ring R will refer to one of the following:

(a) Multivariate Polynomial Ring (Chapters 24 and 105). Currently the coefficient
ring of such a ring may be a field or Euclidean ring (even operations such as syzygy
modules or free resolutions work over modules whose coefficient rings are Euclidean but

not fields).

(b)Local Polynomial Ring (Localization of a Multivariate Polynomial Ring: Chap-
ter 107; new in V2.15). Currently the coefficient ring of such a ring must be a field.

(c) Affine Algebra (Chapter 108). Currently the coefficient ring of such a ring must be
a field.

(d) Exterior Algebra (Chapter 82; new in V2.15). Currently the coefficient ring of such
a ring must be a field. Strictly speaking, this is a skew-commutative ring, so is not a
commutative ring, and the associated modules are left R-modules, but the operations
on R-modules in this chapter are practically all applicable if R is such an algebra also,
so the term ‘a ring R’ will include such an algebra in this chapter.

In this chapter, the term “module” will always refer to an R-module, where R is one
of the above types of ring, and such a module will have type ModMPol (or may have type
ModMPolGrd if graded; see below). So we assume that the reader is generally familiar
with such base rings and their ideals in MAGMA; see the relevant chapters for background.
Many of the concepts and tools of Grobner basis theory carry over from these types of
rings.

109.2 Module Basics: Embedded and Reduced Modules

All of the modules considered in this chapter are ambient modules or embedded in such
a module. We call an R-module ambient if it has the explicit presentational form
R /(relations), where the relations are elements of R* (and they may be zero or not even
determined, initially). Elements of an ambient R-module M are represented explicitly as
vectors in R¥, and M is always generated by the k unit vectors. The degree of M is k.
An arbitrary module S may have a representation as a submodule of such an ambient
A, which is referred to as its ambient module. Hence the most general definition of
a module is as a sub-quotient of a free module. If A has no relations then S is just a

3302 COMMUTATIVE ALGEBRA Part XV

submodule of a free module (namely, A). However, in this case, S will often also have an
internal representation in presentational form that is essential for much of its fundamental
functionality. In any case, the primary representation of elements of such an embedded
module S is as vectors in the ambient.

As with vector spaces, there are two basic ways that modules can be defined in MAGMA:
as embedded or reduced modules. A general subquotient as described above is in embed-
ded form, but ambients may also be defined of either reduced or embedded type. The
type primarily affects the way submodules and quotient modules are created. Briefly, sub-
modules and quotient modules of embedded modules stay in embedded form (as generally
proper submodules of an ambient) whereas submodules or quotients of reduced modules
are always returned in presentational form as ambients, with connecting homomorphisms
to link them explicitly to the original module. The two types are described in a bit more
detail below. For illustration, see the examples at the end of Section 109.6.

Embedded modules are created in general via the function EModule, which returns
a free embedded module, and in principle mimic the embedded R-spaces (as created by
the function RSpace (R, k) in Chapter 54). Such modules are always presented with their
elements and bases lying in an ambient module R¥ /(relations). The modules are basically
implemented as extensions of the multivariate polynomial ideal type (or affine algebra type
if non-zero relations are present), where columns are internally added to monomials in a
polynomial to represent a vector. Many operations applicable to ideals, including various
Grobner basis operations, naturally extend to such modules.

Starting with an ambient embedded module M = RF /(relations), when a submodule S
of M is created, the ambient module of S is still M, so the elements of S are represented
as elements of R¥ (modulo the relations if present); this therefore also applies to elements
of any basis of S, including the Grobner basis of S. Thus S itself may be not ambient
and this is the only situation in which non-ambients can occur. Similarly, when a quotient
module @) of M is constructed, the elements of Q appear as elements of R*, while Q simply
gains more relations than M, but its generators are usually not minimally reduced.

Reduced modules are created in general via the function RModule, which returns a free
reduced module, and are more abstract and mimic the reduced modules with action over
fields and Euclidean rings (as created by the function RModule (R, k) in Chapter 54). Such
modules are always ambient, so always have the abstract form R"/(relations), and the
relationships between such modules are managed by morphisms lying in the background.
The Grobner basis techniques and properties are also hidden from the user in general.

Starting from a reduced module M = R*/(relations), when a submodule S (having s
generators vy, ..., vs) of M is created, S is generally created as R®/(relationss) (where the
relations for S are initially unknown and are only computed when needed) and a morphism
is stored from S to M, which maps the i-th unit vector of S to v; in M. Similarly, a
quotient module @) of M is constructed as another ambient module, usually with minimal
generators, and a morphism from M onto () is stored in the background. All morphisms
between modules can be accessed via the function Morphism.

For any module M, there exists an isomorphic reduced presentation module P,
which is always ambient, since P is reduced. If M is embedded, then P is a reduced

Ch. 109 MODULES OVER MULTIVARIATE RINGS 3303

module equivalent to M (and morphisms in the background allow automatic coercion
between M and P). Otherwise, M is already reduced so P is simply identical to M. Some
functions (such as FreeResolution) always move to the presentation of M, since it is more
natural to work only with ambient modules in that context.

Embedded modules are generally preferable when one wishes to work explicitly with
Grobner bases at a very low level, while reduced modules are generally preferable for homo-
logical computations since the ambient presentation form is more convenient (particularly
for the relevant maps).

Technically, there is little difference in practice between an ambient embedded module
and a reduced module, if each module is considered in isolation. The concepts basically
refer to how submodules and quotient modules are derived from a given module (and the
fact that embedded modules allow non-ambient submodules).

Finally, there is a subclass of reduced modules with the special type ModMPolGrd: these
are graded, which means that they are always generated by homogeneous elements (with
respect to the relevant grading). The main distinctive of this type is simply that when
one creates a submodule or quotient module of a module of type ModMPolGrd, then the
generators must be homogeneous, thus ensuring that the new derived module is also graded
so will be of type ModMPolGrd also. In the future, more functions will be developed which
will take modules of type ModMPolGrd explicitly. Note also that since the type ModMPolGrd
ISA ModMPol via the type ‘ISA’ relation, any operation applicable to a module of type
ModMPol is also applicable to a module of type ModMPolGrd.

109.3 Monomial Orders

In this section we describe each of the module monomial orders available in MAGMA.
If the user wishes to work with reduced modules only (particularly for homology compu-
tations), then the underlying monomial orders and Grébner bases will probably be rarely
of interest to the user, so this section may be skipped. The monomial orders are mostly
of interest if one wishes to work with embedded modules with special orders so that the
relevant Grobner bases have special properties. In either case, elements of the module are
represented by vectors in an ambient and we refer to the vector component positions as
columns in analogy to matrix terminology: a presentational module is often just defined
by a matrix of relations, the rows giving vectors generating the relation module and the
column numbering labelling the components of the vectors. For our modules there can
be a non-trivial column weighting, which we think of as applying a shift to the degree
of a homogeneous polynomial that occurs as the corresponding vector component of the
module element. This is used to define homogeneity and degree of the overall vector.

Given an R-module M, suppose that the underlying monomial order of R is <. A
module monomial of M is a monomial-column pair consisting of a monomial s of R and
a column number ¢ (with ¢ > 1), written as s[c| in the following. Monomial-column pairs
give an (infinite) basis for the elements in a free module R* and a vector representing an
element of M can be decomposed into a sum of scalar multiples of monomial-column pairs
just as elements of the polynomial ring R can be written as a sum of scalar multiples of
plain monomials.

3304 COMMUTATIVE ALGEBRA Part XV

Now suppose that sq[c1] and s2[ce] are module monomials from M. Any order on the
pairs is then fully defined by just specifying exactly when sq[c1] < sa[co] with respect to
that order. As for multivariate polynomial rings, in the following the argument(s) are
described for an order as a list of expressions; that means that the expressions (without
the parentheses) should be appended to any base arguments when any particular intrinsic
function is called which expects a module monomial order. See [AL94, Sec. 3.5] and
[CLO98, Def. 2.4] for motivation and further discussion.

109.3.1 Term Over Position: TOP

Definition: sq[e1] < s2fceo] iff 51 <g s or 1 = s and ¢y > ¢1. The order is specified by
the argument ("top").

This order is called “TOP” (term over position) since it first compares the underlying
monomials (terms with the coefficients ignoredf) and then compares the columns (the
positions). The column comparison is ordered so that the first column is the greatest. A
Grobner basis of a module with respect to the TOP order is usually the easiest to compute,
and corresponds to the grevlex order for polynomial rings in a certain way (i.e., the order
favours the ‘size’ of monomials and only gives priority to the columns in a secondary way).

109.3.2 Term Over Position (Weighted): TOPW

Definition (given a sequence W of k integer weights, where k is the degree of the ambient
module): write d; = Degreey (s;[c;]) = Degree(s;) + We;]; then sq[c1] < soeo] iff dy < do
or di = dg and s7 <p s or di = dy, s = sg and ¢ > ¢1. The order is specified by the
arguments ("topw", W). The weights need not be positive (but must be small integers).

This order first compares the degrees of the monomial-coefficient pairs using both the
weights of the underlying ring R and the weights on the columns given by W and then
proceeds as for the TOP order. If there is a natural grading W on the columns of the module,
then it is preferable to use this order with W, particularly if submodules of interest are
homogeneous or graded w.r.t. W, since then the GB w.r.t. this order will tend to be smaller
and easier to compute. Normally one would also make the base order < to be one of the
grevlex or grevlexw degree orders (see Subsections 105.2.3, 105.2.3), so that the order <
extends the degree order <p to a degree order on the module.

109.3.3 Position Over Term: POT
Definition: sq[c1] < safea] iff ca > ¢1 or ¢; = ¢ and s; <p $3. The order is specified by
the argument ("pot").

This order is called “POT” (position over term) since it first compares the columns and
then compares the underlying monomials. The column comparison is ordered so that the
first column is the greatest. A Groébner basis of a module with respect to the POT order is
like an echelon form of a matrix, since the order gives priority to the columns but this is
in general rather harder to compute than the GB w.r.t. the TOP order.

T Some authors apply the terms ‘monomial” and ‘term’ in opposite senses to how we do
here, so that is why there are the established names ‘TOP’ and ‘POT’; we follow this
instead of using ‘MOP’ and ‘POM’!

Ch. 109 MODULES OVER MULTIVARIATE RINGS 3305

109.3.4 Position Over Term (Permutation): POTPERM

Definition (given a sequence P of k integers describing a permutation of [1..k], where k
is the degree of the ambient module): si[c1] < safca] iff Plea] > Plei] or ¢4 = ¢ and
s1 <pr s2. The order is specified by the arguments ("potperm", P).

This order first compares the columns using the given permutation, and then compares
the underlying monomials.

109.3.5 Block TOP-TOP: TOPTOP

Definition (given a integer k): say that a column c is in the 1st block if ¢ < k and in the
2nd block if ¢ > k; then s1[c1] < safca] iff ¢o is in the 1st block and ¢; is in the 2nd block,
or if the columns are in the same block and s1[c1] < s2[ca] w.r.t. the TOP order.

This order is a block order, like an elimination order for polynomial rings: comparison
is first made on the blocks in which the columns lie, and then the TOP order is applied
within each block. A GB w.r.t. this order is easier in general to compute than the POT
order and so is useful when one wishes to ‘eliminate’ the first £ columns only in a GB.

109.3.6 Block TOP-POT: TOPPOT

Definition (given a integer k): say that a column c is in the 1st block if ¢ < k and in
the 2nd block if ¢ > k; then s1[c1] < sz2]ce] iff ¢o is in the 1st block and ¢; is in the 2nd
block, or if the columns are in the same block and s1[c1] < s2[ca] w.r.t. the TOP/POT order
(respective to the 1st/2nd blocks).

This order is a block order, like an elimination order for polynomial rings: comparison
is first made on the blocks in which the columns lie, and then the TOP order is applied
within the 1st block and the POT order is applied within the 2nd block. This is similar to
the TOPTOP order, but it may be preferable to order the 2nd block w.r.t. the POT order.
Note: POTPOT would equal to POT, and POTTOP does not seem to be useful.

109.4 Basic Creation and Access

An ambient free module M = RF is created by giving the base ring R (see introduction
above), the degree r or a sequence W of r integers for the column weights, and, optionally,
an argument specifying the type of module monomial order.

109.4.1 Creation of Ambient Embedded Modules

The following functions create ambient embedded modules.

EModule(R, k)

Given a ring R, create the ambient embedded module R* with the default TOP
module monomial order.

EModule(R, k, order)

Given a ring R, create the ambient embedded module R* with the module monomial
order described by the given order order. See Section 109.3 for the valid values for
order.

3306 COMMUTATIVE ALGEBRA Part XV

EModule(R, W)

Given a ring R and a sequence W of k integers, create the ambient embedded module
RF with column weights given by W and with the TOPW module monomial order with
weights W.

EModule(R, W, order)

Given aring R and a sequence W of k integers, create the ambient embedded module
RF with column weights given by W and with the module monomial order described
by the given order order. See Section 109.3 for the valid values for order.

109.4.2 Creation of Reduced Modules

The following functions create reduced modules, which are always ambient.

RModule(R, k)

Given a ring R, create the reduced module R¥ with zero column weights.

RModule(R, W)

Given a ring R and a sequence W of k integers, create the reduced module R* with
column weights given by W.

GradedModule(R, k)

Given a ring R, create the reduced graded module R¥ with zero column weights.
The resulting module has type ModMPolGrd, so submodules and quotient modules
of it may only be generated by homogeneous elements.

Note also that in general it is preferable if possible that the base ring R has
a degree ordering (such as the grevlex or grevlexw orders) so that associated
Grobner bases of derived modules will be easier to compute.

GradedModule(R, W)

Given a ring R and a sequence W of k integers, create the reduced graded module
RF with column weights given by W. The resulting module has type ModMPolGrd,
so submodules and quotient modules of it may only be generated by homogeneous
elements.

109.4.3 Localization

Localization(M) |
Given an R-module M, where R = Klzq,...,x,] for a field K, return the corre-
sponding S-module M, . ..y, where S = K|[x1,...,%n](z,,... 2,) s the localization

of R. See Chapter 107 for more information.

Ch. 109 MODULES OVER MULTIVARIATE RINGS 3307

109.4.4 Basic Invariants

The following functions access simple defining invariants of a module M.

Ambient (M)

Generic(M)

Given a module M, return the ambient (or generic) module A in which M is em-
bedded. The only case in which A differs from M is when M is a proper submodule
of an ambient embedded module. So if M is reduced, A will always equal M.

| IsAmbient (M) |

Given a module M, return whether M is ambient.

| IsEmbedded(M) |
Given a module M, return whether M is embedded.

| IsReduced (M) |

Given a module M, return whether M is reduced.

| IsRoot (M) |

Given a module M, return whether M is a root (an independent module, not derived
via sub- or quotient constructions from another module).

CoefficientRing (M)
BaseRing (M)

Given an R-module M, return the base ring R over which M is defined. Note that
one can then call BaseRing(R) to obtain the underlying ring S in which the base
coefficients of elements R lie.

Degree (M)

Given an R-module M, return the degree of M, which is the k£ such that the ambient
module of M equals R¥/(relations). Note that if M is free and ambient, then the
degree of M equals the rank of M, but otherwise in general the rank of M may be
less than the degree of M (see the function Rank below).

ColumnWeights (M)

Grading(M)

Given a module M of degree k, return the grading of M, which is a sequence of k
integers giving the grading on the columns of M.

RelationModule (M)

Given an R-module M of degree k, return the submodule of the embedded module
RF which is generated by the defining relations of M.

3308 COMMUTATIVE ALGEBRA Part XV

| Relations (M) |

Given an R-module M of degree k, return the defining relations of M as a sorted
sequence of elements of the embedded module RF.

RelationMatrix (M) |

Given a module M, return the relation matrix of M, which is the matrix whose
rows are the defining relations of M.

Presentation(M) |

Given an R-module M, return the presentation module P of M. This is a reduced
module isomorphic to M (and such that automatic coercion between M and P is
allowed). If M is reduced, then P is identical to M.

IsGraded (M)

IsHomogeneous (M)

Given a module M, return whether M is graded (or equivalently, homogeneous),
w.r.t. the grading of M (given by the weights on the columns of M and the variables
of the base ring of M). This is true iff the Grobner basis of M consists of homo-
geneous elements only (always true if M is reduced) and the Grobner basis of the
relation module of M consists of homogeneous elements alone. Note that a module
of type ModMPolGrd is always graded.

109.4.5 Creation of Module Elements

Module elements (internally, multivariate polynomials with columns attached to the mono-
mials) are constructed in general by giving a sequence or vector of elements from the
coefficient ring R.
M1 Q
Suppose M is an R-module of degree r. Given a sequence Q@ = [aq,...,a,] of
ring elements such that the a; are coercible into R, construct the element of M
corresponding to Q.

M! v

Suppose M is an R-module of degree r. Given a vector v from the R-space R",
construct the element of M corresponding to v.

M!O

N
[0}
H
(o]
~
=
<

Create the zero element of the module M.

UnitVector(M, i)
Suppose M is an R-module of degree r. Given an integer ¢ in the range [1..r],
construct the i-th unit vector of M (the vector with 1 in the i-th column and 0
elsewhere) whose parent is the ambient module of M (since it may not lie in M
itself). Note that this not the same as the function BasisElement (below) which
depends on the current basis of M.

Ch. 109 MODULES OVER MULTIVARIATE RINGS 3309

109.4.6 Element Operations

The following functions allow simple access and operations on module elements. Some of
them use the module structure and refer to the column structure of an element; others use
the polynomial structure and ignore the column structure.

109.4.6.1 Access
Eltseq(f)

Given an element f of the R-module of degree r, return the sequence [fi,..., f.] of
r elements from R corresponding to f.

| Vector (f) |

Given an element f of the module M over R and of degree r, return the element of
the R-space of degree r over R corresponding to f.

Given an element f of the R-module of degree r, together with an integer ¢ in the
range [1..r], return the i-th component of f as an element of R.

109.4.6.2 Arithmetic

The following functions act on elements of R-modules. The operations are similar to those
for multivariate polynomials or vectors, whenever meaningful. For the binary operations,
the elements must be compatible; that is, their parents must have the same ambient
module. Note that if quotient relations for M are present, then the result is reduced to
the unique normal form modulo the quotient relations, but if the determination of the
relations is delayed, then an element may have a non-unique representation, but all the
predicates on elements below do not depend on the representation.

f+g f-g - f r x f fx*xr

Basic arithmetic operations. The element r lies in the base ring R.

Given a scalar ring element s and an element f of the module M, such that s is
coercible into R s divides all components of f, return the quotient of f by s.

SPolynomial (f, g)

Given elements f and g of the module M such that the leading module monomials
of f and g have the same column, return the S-polynomial of f and g. Note that the
result is always reduced to the unique normal form modulo the quotient relations
of M.

| Normalize(f) |

Given an element f of the module M, return the normalized form of f (so that the
leading module monomial of f is normalized).

3310 COMMUTATIVE ALGEBRA Part XV

NormalForm(f, S)

Given an element f of the module M, together with a compatible module S, return
the normal form of f with respect to S. This is unique if the base ring R is not
local. In general, S will be a non-ambient embedded module for this to be useful
(otherwise any f would already be in S so the result would always be zero).

Coordinates(f, M)

Given an element f of the R-module S, together with a compatible R-module M
such that f is in M, return the coordinates of f with respect to the basis of M
(whose components lie in R).

109.4.6.3 Accessing the Underlying Representation

The following functions access simple properties of module elements which are to do with
the underlying representation.

Coefficients(f) Monomials (f) Terms (f)
LeadingCoefficient (f) LeadingMonomial (f)
LeadingTerm(f)

CoefficientsAndMonomials (f)

These functions are equivalent to the access functions for multivariate polynomi-
als and access the underlying distributed polynomial representation (with columns
added to the monomials); see Section 24.4.4 for details.

Column(f) |

Given a single-term element f of a module M, return the column c of the single
monomial-column pair (module monomial) s[c| which f has.

Degree(f)

WeightedDegree (f)

Given an element f of a module M, return the weighted degree (abbreviated to
‘degree’ in this chapter) of f, which is the maximum of the weighted degrees of the
monomial-column pairs of f. The weighted degree of a monomial-column s|c] is the
weighted degree of s (in the base ring R) plus the degree of column ¢ in the grading
of M.

IsHomogeneous (f)

Given an element f of a module M, return whether f is homogeneous; that is,
whether the weighted degrees of all the monomial-columns of f are equal. (Note
that the grading of M is thus significant.)

Ch. 109 MODULES OVER MULTIVARIATE RINGS 3311

109.4.6.4 Predicates
| IsZero(f) |

Given an element f of the module M, return whether f is the zero element of
M. Note that if the relations of M are non-zero this operation may be non-trivial
(especially if the relations are not yet computed, but they will be automatically
computed if needed).

feqg

Given elements f and g of the module M, return whether f and g are equal. Note
that this may be non-trivial (see the remarks above).

flt g

Given elements f and g of the module M, return whether f < g w.r.t. the underlying
module monomial order. The operators le, gt, ge are similarly defined.

Given an element f of a module S together with a compatible module M, return
whether f is in M.

Example H109E1

We illustrate simple modules over a multivariate polynomial ring. We construct simple ambient
embedded modules over Q[z,y, z]. The first module has default weights 0 on its columns, while
the second has weights 1, 2, and 3 respectively on its columns.

> R<x,y,z> := PolynomialRing(RationalField(), 3, "grevlex");
> M := EModule(R, 3);

> M;

Free Embedded Module R"3

Order: Module TOP: Graded Reverse Lexicographical

>f = Ml [x, y, z°2];
> g =M [z, y'3, x + 1];
> f;
[x, y, z"2]
> g;
[z, y°3, x + 1]
>f + g;
x +z, y73+y, 272 + x + 1]
> Terms(f);
[
[0, 0, z~2],
[x, 0, 01,
[0, y, 0]
]
> Degree(f);
2

> [Degree(m): m in Monomials(f)];

3312 COMMUTATIVE ALGEBRA Part XV

(2,1, 1]
> LeadingMonomial (f);
(0, 0, z"2]
> M2 := EModule(R, [10, 5, 11);
Free Embedded Module R"3 with grading [10, 5, 1]
Order: Module TOP with column weights [10, 5, 1]: Graded Reverse Lexicographical
> f = M2![x, y, z72];
> £
[x, y, z°2]
> Terms(f);
L
[x, 0, 0],
[0, y, 01,
[0, 0, z"2]
]
> Degree(f);
11
> [Degree(m): m in Monomials(f)];
[11, 6, 3]

Similar operations can be done with reduced modules. There is no difference for the elements.

> M := RModule(R, 3);

> M;

Free RModule R"3

> M := GradedModule(R, [10, 5, 1]);

> M;

Free Graded Module R"3 with grading [10, 5, 1]
> Grading(M);

[10, 5, 1]
> f := M![x, y°6, z"10];
> £,

[x, y°6, z"10]
> IsHomogeneous(f);
true

Ch. 109 MODULES OVER MULTIVARIATE RINGS 3313

109.5 The Homomorphism Type

Magma has a special type for a homomorphism between two R-modules. The type of
such a homomorphism is ModMPolHom. In general, functions such as Morphism return a
homomorphism of type ModMPolHom, while the boundary maps of complexes are also of
type ModMPolHom (see the function FreeResolution).

A homomorphism f : M — N is represented by a matrix A. There are two ways in
which A can be defined:

(a) A is an ambient matrix: in this case, A gives the explicit map on the ambient modules
of M and N. Thus A is m X n, where m =Degree (M), n =Degree (N).

(b) A is a presentation matrix: in this case, A gives the explicit map on the presenta-
tion modules of M and N. Thus A is m x n, where m =Degree (Presentation(M)),
n =Degree (Presentation(N)).

If M and N are reduced (a common case), then they equal their respective presentation
modules, so there is no difference between the above two cases (the ambient matrix and the
presentation matrix are identical). So the only difference between (a) and (b) occurs when
at least one of M and N is a non-ambient (proper) submodule of an embedded module.

When M and N are graded - that is, generated by elements homogeneous with re-
spect to the ambient column weightings and with a relation module that is also generated
by homogeneous elements - all homomorphisms as non-graded modules are still allowed.
However there are functions to test if a given homomorphism preserves the gradings on
the domain and codomain up to a constant degree shift. See IsHomogeneous and Degree
below.

Homomorphism(M, N, A)

Presentation BooLELT Default : true

Given R-modules M and N and an m X n matrix A over R, construct the homo-
morphism f: M — N (with type ModMPolHom) defined by A.

By default, A is assumed to be a presentation matrix (see the comments above),
in which case m and n must equal the degrees of the presentation modules of M
and N, respectively. Alternatively, setting the parameter Presentation to false
specifies that A is an ambient matrix; in this case, m and n must equal the degrees
of M and N, respectively.

| Domain (f) |

Given a module homomorphism f : M — N, return the domain M.

| Codomain (f) |

Given a module homomorphism f : M — N, return the codomain N.

3314 COMMUTATIVE ALGEBRA Part XV

PresentationMatrix(f) |

Matrix(f)

Given a module homomorphism f : M — N, return the presentation matrix Ap
of f as an m x m matrix corresponding to the presentation modules of M and N,
respectively. This presentation matrix is always well-defined and computed, even if
f is constructed via an ambient matrix.

| AmbientMatrix (f) |
| Matrix(f) |

Given a module homomorphism f : M — N, return the ambient matrix A4 of
f as an m x n corresponding to the ambient modules of M and N, respectively.
If M and N are reduced (as commonly happens), this will be the same as the
presentation matrix above. But if M and N are not reduced and f is constructed
via a presentation matrix, then an error may result (since it may be impossible
to give a matrix over the base ring R which gives the mapping for the ambient
modules).

v x f

Given a module homomorphism f : M — N and an element v of M, return the
image of v under f, as an element of N.

Given a module homomorphism f : M — N and an integer ¢, return the element of
N corresponding to the i-th row of the ambient matrix of f.

Image (f)

Given a module homomorphism f : M — N, return the image of f as a submodule
of N (which will be reduced iff N is).

| Kernel(f) |

Given a module homomorphism f : M — N, return the kernel of f as a submodule
of M (which will be reduced iff M is).

| Cokernel (f) |

Given a module homomorphism f : M — N, return the cokernel of f as a quotient
module of N (which will be reduced iff N is).

| IsZero(f) |

Given a module homomorphism f : M — N, return whether f is the zero map.
Note that f may be the zero map even if the presentation or ambient matrices of f
are NoN-zero.

Ch. 109 MODULES OVER MULTIVARIATE RINGS 3315

IsInjective(f)

Given a module homomorphism f : M — N, return whether f is injective (whether
the kernel of f is the zero module).

IsSurjective(f)

Given a module homomorphism f : M — N, return whether f is surjective (whether
the image of f equals N).

IsBijective(f)

Given a module homomorphism f : M — N, return whether f is bijective (injective
and surjective).

IsGraded(f)

IsHomogeneous (f)

Given a module homomorphism f : M — N, where M and N are graded modules,
return whether f is homogeneous of some degree d; that is, whether for every pure
degree element v € M, f(v) = 0 or Degree(f(v)) equals Degree(v) + d.

Degree(f)

Given a module homomorphism f : M — N, return the degree of f, which is
the maximum d such that an element of M of degree e is mapped via f to zero
or an element of degree e + d. If f is homogeneous, then the ‘maximum’ concept
is unnecessary, since the degree will be consistent for all elements of M (see the
previous function).

Example H109E2

We illustrate some homomorphism functionality by looking at the explicit inclusion homomor-
phism between two submodules of a rank 3 free module over Q[z,y]. We define this in non-
presentational form by the identity matrix. Then we can retrieve the corresponding defining
matrix for the map between the internal presentations of the two submodules. The two submod-
ules being graded submodules, we check that the inclusion is indeed homogeneous of degree 0 (as
it must be, obviously preserving degrees of elements).

> R<x,y> := PolynomialRing(RationalField(), 2, "grevlex");
> F := EModule(R, 3);

> // get a submodule M1 generated by a single non-zero element of F
> M1 := sub<F|[x"2,y"2,x*y]>;

> // and a second submodule M2 containing M1

> M2 := sub<F|[x,0,y],[0,y,0]>;

> incl_hm := Homomorphism(M1,M2,IdentityMatrix(R,3)

> Presentation := false);

> incl_hm;

Module homomorphism (3 by 3)

Ambient matrix:

[1 0 0]

3316 COMMUTATIVE ALGEBRA Part XV

[0 1 0]
[0 0 1]

Now the corresponding presentation matrix of the inclusion map is the obvious one coming from
the expression of the natural generator of M1 in terms of the two natural generators of M2

> PresentationMatrix(incl_hm);
[y x]

> // check homogeneity of incl_hm
> IsHomogeneous (incl_hm) ;

true

> Degree(incl_hm);

0

109.6 Submodules and Quotient Modules

The following functions allow the construction of submodules and quotient modules and
access to essential properties.

109.6.1 Creation

sub< M | L >|

Given a module M over aring R, return the submodule of M (with the same quotient
relations as M) generated by the elements of M specified by the list L. Each term
of the list L must be an expression defining an object of one of the following types:

(a) An element of M,;

(b) A set or sequence of elements of M;
(c¢) A submodule of M;
(

d) A set or sequence of submodules of M.
A morphism is stored from the resulting submodule S into M, such that S.i is
mapped to the i-th generator given in the above list.

quo< M | L >

Given a module M over a ring R, return the quotient module of M by the elements
of M specified by the list L. Each term of the list L must be an expression defining
an object of one of the following types:

(a) An element of M,;

(b) A set or sequence of elements of M;

(c¢) A submodule of M;
(

d) A set or sequence of submodules of M.
A morphism is stored from M onto the resulting quotient module Q.

Ch. 109 MODULES OVER MULTIVARIATE RINGS 3317

Morphism(M, N)

Given modules M and N, related by a chain of stored sub and quo morphisms as
mentioned above, returns the resulting morphism matrix map from M to N. If
no known sub/quo relationship chain exists between M and N then an error is
returned.

Submodule(I) |

Given an ideal I of a polynomial ring R, return the submodule of R! generated by
I.

QuotientModule (I)

Given an ideal I of a polynomial ring R, return the quotient module R*/I.

GradedModule(I) |

Given a homogeneous ideal I of a ring R, return the graded quotient module R'/I.

109.6.2 Module Bases

The following functions allow one to manipulate the bases of modules. Note that a Grobner
basis for a module will be automatically generated when necessary; the Groebner procedure
just allows explicit immediate construction of the Grobner basis.

Basis (M)

Given a module M, return the current basis (whether it has been converted to a
Grdbner basis or not) of M.

BasisElement (M, i)

Given a module M together with an integer i, return the i-th element of the current
basis of M. Note that this is not the same as M.i.

BasisMatrix (M) |

Given a module M, return the basis matrix of M, which is a k£ by r matrix over R,
where k is the length of the basis of M and r is the degree of M.

| Groebner (M) |

(Procedure.) Explicitly force a Grébner basis for the module M to be constructed.

3318 COMMUTATIVE ALGEBRA Part XV

Example H109E3

We construct simple submodules and quotient modules of an embedded module and consider some
of their basic properties.

> R<x, y, 2> := PolynomialRing(RationalField(), 3);
> M := EModule(R, 3);

> 8 := sub<M | [1, x, x"2+y], [z, y, x*y~2+1],

> Ly, z, x+z]>;

> Groebner(S);

> S;

Embedded Submodule of R"3
Order: Module TOP: Lexicographical
Groebner basis:

[—x*%z + y72 + y, x*y"2 - x*y + zZ, y°3 + z],
[x¥y - y*xz - 1, x%z - x - 272, -y - z°2],
[Y, z, x + z],
[y3 - z, y 2%z -y, y 2xz - 1]
>a :=M! [y, z, x+z];

> a;

ly, z, x + z]

> a in S;

true

> BasisElement (S, 1);

[-x*z + y72 + y, xxy"2 - x*xy + z, y°3 + Z]
> Q := quo<M | [x, y, z]>;

> Q;

Embedded Module R~3/<relations>

Order: Module TOP: Lexicographical
Relations (Groebner basis):

[x, vy, z]

>a :=Q![x, y, 0];

>b :=Q!'[0, 0, z];

> a;

[0, 0, -z]

> b;

[0, 0, z]

> atb;

[0, 0, O]

>Q ! [x,y,2];

[0, 0, O]

> QQ := quo<q | [x72, 0, y+z]>;
> QQ;

Embedded Module R"3/<relations>

Order: Module TOP: Lexicographical
Relations (Groebner basis):

[0, Xxy, xX*%z -y - z],
[X, ¥, z]
> SL := Localization(S);

Ch. 109 MODULES OVER MULTIVARIATE RINGS 3319

> SL;
Embedded Submodule of R~3 (local)
Order: Module TOP: Local Lexicographical

Basis:

[1, X, x"2 + yl,
[z, y, 1 + x*xy~2],
[v, z, x + z]

Example H109E4

We construct simple submodules and quotient modules of a reduced module and consider some
of their basic properties.

> R<x,y,z> := PolynomialRing(RationalField(), 3);
> M := RModule(R, 3);

> S := sub<M | [1, x, x"2+y], [z, y, x*xy~2+1]>;
> M;

Free Reduced Module R"3

> S;

Reduced Module R"2/<relations>

> Morphism(S, M);

Module homomorphism (2 by 3)

Ambient matrix:

L 1 X x"2 +yl]

[z y x*¥y~2 + 1]

> RelationMatrix(S);

Matrix with O rows and 2 columns

> S;

Free Reduced Module R"2
> M.1;

(1, 0, 0]

> M!S.1;

[1, x, x"2 + y]

> M!S.2;

[z, y, x¥y~2 + 1]

> M.1 in S;

false

> Q := quo<M | [1, x"2, yI>;
> Q;

Free Reduced Module R"2

> RelationMatrix(Q);

Matrix with O rows and 2 columns
> Morphism(M, Q);

Module homomorphism (3 by 2)
Ambient matrix:

[-x"2 -y]

[1 0]

[O 1]

3320 COMMUTATIVE ALGEBRA

> Morphism(S, Q);

Module homomorphism (2 by 2)
Ambient matrix:

[-Xx"2 + x x~2]
L -X"2%z + y x*¥y~2 - y*z + 1]
> QM. 1;

[-x"2, -y]

> M!Q.1;

[0, 1, 0]

> M!Q.2;

[0, 0, 1]

> QIM!IQ.2;

[0, 1]

Part XV

109.7 Basic Module Constructions

The following functions give some fundamental basic constructions with modules.

Given compatible modules M and N (ie, embedded in the same ambient module),
return the sum of M and N; that is, the submodule of the ambient generated by M

and N.

Given compatible modules M and N (ie, embedded in the same ambient module),
return the intersection of M and N in the ambient. This uses the standard algorithm
for intersecting two modules of a free module (see Section 2.8.3 of [GP02]). If the
ambient is the quotient of a free module F' by non-trivial relations, the intersection

performed is effectively that of the inverse images of M and N in F.

f xM
M x f

Given an R-module M and an element f € R, return the submodule of M generated

by {f-v:ve M}or{v-f:veE M}, respectively.

I xM
Mx*x I

Given an R-module M and an ideal I of R, return the submodule of M generated

by {f-v:fel,ve M}or{v-f:fel,ve M}, respectively.

Given compatible modules M and N (ie, embedded in the same ambient module),
return the quotient module M /(M N N). This has the same effect as using the quo

constructor.

Ch. 109 MODULES OVER MULTIVARIATE RINGS 3321

DirectSum(M, N)

Given R-modules M and N, return the direct sum D = M & N and two sequences
of corresponding homomorphisms giving the injections into and projections from D,
respectively.

DirectSum(S) |

A sequence or list L of R-modules, return their direct sum D and two sequences of
corresponding homomorphisms giving the injections into and projections from D,
respectively.

Twist(M, d)

Given a graded module M, and an integer d, return the Serre twist M (d) and an
isomorphism f : M — M(d). The twisted module is simply an isomorphic copy of
M, but with the grading twisted by d (so d is subtracted from each weight of M).
f has degree —d.

109.8 Predicates

| IsZero(M) |

Given a module M, return whether M is the zero module.

| M subset N |

Given compatible modules M and N (ie, embedded in the same ambient module),
return whether M is a submodule of N. This will generally involve module Grébner
basis and normal form computations to check that the generators of M lie in N.

MeqN

Given compatible modules M and N (ie, embedded in the same ambient module),
return whether M equals N. The function checks that appropriate module Grébner
bases of M and N are equal.

IsFree(M) |

Given an R-module M, return whether M is free. M is free ifft M is isomorphic to
the module R* for some k. Such a k need not equal the degree of M but will equal
the rank of M (as defined in the next section) if M is free. The function checks
whether a minimised presentation of M has trivial relations or not.

3322 COMMUTATIVE ALGEBRA Part XV

109.9 Module Operations

The following functions perform some fundamental module operations.

| MinimalBasis(M) |

Given an R-module M, return a minimal basis B of M. If M is graded, or if R is
a local ring, then the cardinality of B (the rank) is guaranteed to be unique (so is
the absolutely minimal number of elements needed to generate M).

Otherwise the cardinality of B is not unique: B will only satisfy the rule that
the i-th element of B is not in the submodule generated by elements 1 to i — 1 of B.

In the graded case or local cases, a minimal basis is computed in the usual way
starting from any basis B consisting of homogeneous elements. B gives a particular
presentation whose relation matrix R consists of homogeneous polynomials. If R
contains a non-zero constant term (or more generally a unit in the local case), an
element of B can be eliminated and R recalculated. This can be continued until all
non-zero terms of R have positive degree.

| MinimalBasis(S)

Given a set or sequence S of homogeneous module elements from a module M,
return a minimal basis of the submodule of M generated by S.

Given an R-module M, return the rank of M. This is simply defined to be the
cardinality of the minimal basis of M, returned by the function MinimalBasis.
Thus if M is graded, or if R is a local ring, then the rank is guaranteed to be
unique (and is the absolutely minimal number of elements needed to generate M).
Otherwise the result is not an invariant of M, but simply reflects the minimum as
found by the MinimalBasis algorithm.

ColonModule(M, J)

Given an R-module M and an ideal J of R, return the colon module M : J which
is the submodule of the ambient module A of M consisting of all f € A such that
f-g9g€ M for all g € J. When J is generated by a single element, this easily reduces
to a syzygy computation in A and in the general case, we intersect the colon modules
for a set of generators of J.

ColonIdeal (M, N)

Given an R-modules M and N which are both submodules of a common supermod-
ule, return the colon ideal M : N, which is the ideal of R consisting of all f € R
such that f- N C M. The algorithm used is as described in section 2.8.4 of [GP02].

Annihilator (M) |

Given an R-module M, return the annihilator ideal of M. This is the ideal I of R
consisting of all f € R such that f- M = 0 (which can be seen to equal the ideal
Oar : M, where 0y is the zero submodule of M, so is a special case of ColonIdeal).

Ch. 109 MODULES OVER MULTIVARIATE RINGS 3323

FittingIdeal(M, i)

Given an R-module M of degree r and an integer ¢ > 0, return the ¢-th Fitting ideal
of M, which is the ideal of R generated by the (r — 7)-th minors of the presentation
matrix of M, where 7 is the degree of M. See [CLO98, p.229] or [Eis95, Sec. 20.2].

FittingIdeals(M)

Given an R-module M of degree r, return the Fitting ideals (for from 0 to r) as a
sequence of ideals of R.

SyzygyModule (M)

Given a module M, return the syzygy module S of M. If the basis B of M has length
k, the syzygy module S has degree k and elements of S express a syzygy amongst
the k elements of the basis B. Note that the degree of the resulting module thus
depends on the current basis of M.

MinimalSyzygyModule (M)

Given a homogeneous module M, return the syzygy module S of the minimal basis
of M. If the minimal basis B of M has length k, the syzygy module S has degree k
and elements of S express a syzygy amongst the k elements of the minimal basis B.

SyzygyModule (Q)

Given a sequence) of polynomials from a multivariate polynomial ring P, return
the module of syzygies of (). This is a module over P of degree k, where k is the
length of @, consisting of all vectors v such that the sum of v[i| * Q[i| fori =1,...k
is zero.

Example H109E5

In this example we note that a certain module M has rank 3 (equal to its degree 3), since no
generator is redundant. If we move to the localization of M, then (1 4+ x — z) becomes a unit, so
the first generator becomes redundant.

> R<x,y,z> := PolynomialRing(RationalField(), 3, "grevlex");
> F := RModule(R, 3);
>M := qu0<F | [X + 1, Y, Z]: [Z: y’ O]>;

> M;

Reduced Module R"3/<relations>
Relations:

x + 1, v, z],

[z, ¥y, 0]

Degree (M) ;

ML := Localization(M);

>

3

> Rank (M) ;
3

>

> ML;

3324

COMMUTATIVE ALGEBRA Part XV

Reduced Module R"3/<relations> (local)

Relations:
[1 +x - z, 0, z],
[z, V> O]
> Rank (ML) ;
2
> MinimalBasis (ML) ;
[
[o, 1, o1,
[0, 0, 1]
]

109.10 Changing Ring

The ChangeRing function enables the changing of the polynomial ring over which a module
is defined.

ChangeRing (M, S)

Given an R-module M, where R is a polynomial ring, and another polynomial ring
S, construct the S-module N obtained by coercing the coefficients of the elements
of the basis and relations of M into S. It is necessary that all elements of the old
coefficient ring R can be automatically coerced into the new coefficient ring S. Note
that S itself must be polynomial ring having the same rank as R, so S does not
specify the new ring for the underlying coefficients (one can use ChangeRing for
polynomial rings to do that first).

109.11 Hilbert Series

The following functions compute the Hilbert series information of graded or (homogeneous)
modules. This depends on the column weights, just as in graded polynomial rings.

| HilbertSeries(M) |

Given a graded R-module M, return the Hilbert series Hj(t) of M (as a univariate
function field over the ring of integers. The i-th coefficient of the series gives the
vector-space dimension of the degree-i graded piece of M. The algorithm imple-
mented is that given in [BS92].

Note that if I is an ideal of the ring R, then the corresponding function for ideals
HilbertSeries applied to I gives the Hilbert series of the affine algebra (quotient)
R/I, so this is equivalent to HilbertSeries(QuotientModule(I)).

HilbertSeries(M, p)

Given a graded R-module M, return the Hilbert series Hy,(t) of M as a Laurent
series to precision p. (A Laurent series is required in general, since negative powers
may occur when there are negative values in the grading of M.)

Ch. 109 MODULES OVER MULTIVARIATE RINGS 3325

HilbertDenominator (M) |

Given a graded R-module M, return the unreduced Hilbert denominator D of the
Hilbert series Hps(t) of M (as a univariate polynomial over the ring of integers).
The denominator D equals HilbertDenominator (R) which is simply

n

[-,

1=1

where n is the rank of R and w; is the weight of the i-th variable (1 by default).

HilbertNumerator (M) |

Given a graded R-module M, return the unreduced Hilbert numerator N of the
Hilbert series Hp(t) of M (as a univariate polynomial over the ring of integers)
and a valuation shift s. The numerator N equals D x t* x Hp(t), where D is the
unreduced Hilbert denominator above. Computing with the unreduced numerator
is often more convenient. Note that s will only be non-zero when M has negative
weights in its grading.

HilbertPolynomial (I)

Given a graded R-module M, return the Hilbert polynomial H (d) of M as an element
of the univariate polynomial ring Q[d], together with the index of regularity of M
(the minimal integer & > 0 such that H(d) agrees with the Hilbert function of M
at d for all d > k).

Example H109E6

We apply the Hilbert series functions to a simple quotient module.

> R<x,y,z> := PolynomialRing(RationalField(), 3);

> F := GradedModule(R, 3);

> M := quo<F | [x,0,0], [0,y"2,0]1>;

> M;

Graded Module R"3/<relations>

Relations:

[x, O, 0],

[0, y2, 0]

> HilbertSeries(M);

(t72 + t - 3)/(£"3 - 3*t"2 + 3%t - 1)

> HilbertSeries(M, 10);

3 + 8%s + 14%s72 + 21%s”3 + 29*%s74 + 38%xs”5 + 48%s76 + B59*s”7 + T71%s"8 + 84%xs”9
+ 0(s~10)

> HilbertNumerator (M) ;

-x"2 - x + 3

0

> HilbertDenominator (M) ;

-x"3 + 3%x"2 - 3*%x + 1

3326 COMMUTATIVE ALGEBRA Part XV

> HilbertPolynomial (M) ;

1/2%x"2 + 9/2xx + 3

0

> [Evaluate(HilbertPolynomial(F), i): i in [0..10]];
[3, 9, 18, 30, 45, 63, 84, 108, 135, 165, 198]

If the module has negative weights, then denominator may include extra powers of ¢, so the shift
for the numerator will be non-zero.

> F := GradedModule(R, [-1]);

> F;

Free Graded Module R"1 with grading [-1]

> HilbertSeries(F);

-1/(t"4 - 3*%t~3 + 3*t"2 - t)

> HilbertSeries(F, 10);

s”-1 + 3 + 6*%s + 10%s"2 + 156%s3”3 + 21*s”4 + 28*s”5 + 36*s”6 + 45%xs”7 + 0(s°8)
> HilbertNumerator (F);

1

1

> HilbertDenominator (F);

-x"3 + 3*%x72 - 3*%x + 1

> HilbertPolynomial (F) ;

1/2%x~2 + 5/2*x + 3

-1

> [Evaluate(HilbertPolynomial(F), i): i in [-1..10]];
[1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78]

109.12 Free Resolutions

The functions in this section deal with free resolutions and associated properties. Free
resolutions are returned as chain complexes (see Chapter 56).

109.12.1 Constructing Free Resolutions

FreeResolution (M) |
Minimal BooLELT Default : true
Limit RNGINTELT Default : 0
Homogenize BooLELT Default : true
Al MoNSTGELT Default : “LaScala”

Given an R-module M, return a free resolution M as a complex C', and a comparison
homomorphism f : Cy — M (where Cy is the term of C of degree 0).

By default, the free resolution will be minimal. Setting the parameter Minimal
to false will construct a non-minimal resolution (which is constructed via a se-
quence of successive syzygy modules, with no minimization).

Ch. 109 MODULES OVER MULTIVARIATE RINGS 3327

Magma has two algorithms for computing resolutions:

(1) The La Scala (LS) [SS98] algorithm, which works with a homogeneous module.
The Magma implementation involves an extension of this algorithm which uses
techniques from the Faugere F; [Fau99] algorithm to compute many normal forms
together in a block.

(2) The Iterative algorithm, which simply computes successive syzygy modules
progressively (minimizing as it goes if and only a minimal resolution is desired).

By default the LS algorithm is used if M is homogeneous and the coefficient ring
of R is a finite field or the rational field, since this tends to be faster in general. But
for some inputs the iterative algorithm may be significantly faster, particularly for
some modules over the rationals. So one may set the parameter A1l to "Iterative"
to select the iterative algorithm. Uniqueness of the terms in the resolution is as
follows.

(1)If M is homogeneous or defined over a local ring R, then the resulting complex
C is guaranteed to be minimal, so the ranks of the terms in C' and the associated
Betti numbers will be unique.

(2)If M is non-homogeneous and over a global ring R, then the boundary maps
of C will not have any entries which are units, but C' cannot be guaranteed
to be an absolutely minimal free resolution, so the ranks of the terms and the
associated Betti numbers will not be unique in general. Also, Magma may choose
to compute C' by computing the free resolution C'y of a homogenization My of
M, and then specializing C'y to yield C, since this method is usually faster (since
the LS algorithm can then be used). One may set the parameter Homogenize to
true or false to force Magma to use this homogenization technique or not.

If the parameter Limit is set to a non-zero value [, then at most [terms (plus the
term corresponding to the free module) are computed. If R is an affine algebra or
exterior algebra of rank n, then by default the limit is set to n, since the resolution
is not finite in general.

SetVerbose("Resolution", v)

Example H109E7

(Procedure.) Change the verbose printing level for the free resolution algorithm and
related functions to be v.

We construct the module M = R'/I where I is the ideal of the twisted cubic and then construct
a minimal free resolution of M and note simple properties of this.

>
>
>
>
>
>

R<x,y,z,t> := PolynomialRing(RationalField(), 4, "grevlex");
= [

-X"2 + y*t, -y*z + x¥t, x*z - t72,
x*y - t72, -y*z + x*t, -x"2 + zZxt

:= GradedModule(Ideal(B));

3328 COMMUTATIVE ALGEBRA Part XV

> M;

Graded Module R"1/<relations>

Relations:

[-x"2 + y*t],

[-y*z + x*t],

[xxz - t°2],

[xxy - t°2],

[-y*z + x*t],

[-x"2 + z*t]

> C := FreeResolution(M);

> C;

Chain complex with terms of degree 4 down to -1

Dimensions of terms: 0 1 5510

> Terms(C);

[
Free Graded Module R70,
Free Graded Module R"1 with grading [5],
Free Graded Module R"5 with grading [3, 3, 3, 3, 3],
Free Graded Module R"5 with grading [2, 2, 2, 2, 2],
Free Graded Module R71,
Free Graded Module R"0

vV V

B := BoundaryMaps(C) ;
B;

[*

Graded module homomorphism (0 by 1),

Graded module homomorphism (1 by 5) of degree 0O
Ambient matrix:

[x¥z - t72 X"2 - z*t -y*t + z*t y*z - x*t -x*y + t72],
Graded module homomorphism (5 by 5) of degree 0
Ambient matrix:

[-y x -t 0]

[0 -z 0 tl

[t -z x 0]

[0 -t 0 x]

[-z 0 x -t =z],

Graded module homomorphism (5 by 1) of degree 0
Ambient matrix:

[x"2 - zx*t]

[xxy - t72]

[x*¥z - t~2]

[yxz - x*t]

[yxt - z*t],

Graded module homomorphism (1 by 0)

¢ O O

*]

> B[2]*B[3];

Module homomorphism (1 by 5)
Ambient matrix:

Ch. 109 MODULES OVER MULTIVARIATE RINGS 3329

[0 00 0 0]

> B[3]*B[4];

Module homomorphism (5 by 1)
Ambient matrix:

(o]

(o]

(o]

(o]

(o]

> Image(B[3]) eq Kernel(B[4]);
true

Example H109ES8

Following [CLO98, p.248], we compute the ideal I of Q[z,y] whose affine variety is a certain list
of 6 pairs.

> R<x,y> := PolynomialRing(RationalField(), 2, "grevlex");
> L := [<0, 0>, <1, 0>, <0, 1>, <2, 1>, <1, 2>, <3, 3>];
> I := Ideal(L, R);

> I,

Ideal of Polynomial ring of rank 2 over Rational Field
Graded Reverse Lexicographical Order

Variables: x, y

Inhomogeneous, Dimension O

Groebner basis:

L
X"3 - B¥x72 + 2%x*xy — 2%xy~2 + 4xx + 2%y,
X72%y — B*x72 + 3kxky - 4dky~2 + bkx + 4xy,
x*¥y~2 - 4xx72 + 3xx*xy - bxy~2 + 4xx + bxy,
y©3 - 2%x72 + 2xxxy - bxy"2 + 2%x + 4xy

]

I is not homogeneous, and we compute a non-minimal free resolution of the module R/I.

> M := QuotientModule(I);

> M;

Reduced Module R~1/<relations>

Relations:

[x73 - 5%x™2 + 2xx*y — 2%y~2 + 4*x + 2%y],
[x"2%y — B*x"2 + 3xx*ky - 4*y~2 + Bb*x + 4xy],
[x*y~"2 - 4*%x~2 + 3xxxy - b*y~2 + 4*x + bxy],

[y73 - 2%x72 + 2xx*y — b*xy~2 + 2%x + 4xy]

> C := FreeResolution(M: Minimal := false);

> C;

Chain complex with terms of degree 3 down to -1
Dimensions of terms: 0 3 4 10

> B := BoundaryMaps(C);

> B;

3330 COMMUTATIVE ALGEBRA Part XV

[*
Module homomorphism (0 by 3),
Module homomorphism (3 by 4)
Ambient matrix:
[-y +5 x -8 6 -2]
[4 -y -8 x +8 -4]
[2 -6 -y +8 x - 5],
Module homomorphism (4 by 1)
Ambient matrix:
[x73 - 5xx72 + 2xx*y — 2%y~2 + 4*x + 2xy]
[x"2%y - Bxx"2 + 3*x*y - 4%y~2 + b*x + 4xy]
[x*xy~"2 - 4%x72 + 3*x*y - 5*xy~2 + 4*x + bxy]
[y73 - 2%x72 + 2xx*y - B5*y~2 + 2%x + 4xy],
Module homomorphism (1 by 0)

*]

> IsZero(B[2]1*B[3]);

true

As noted in [CLO98], the 3 by 3 minors of the boundary map from R* to R* generate the ideal T
again, and this is due to the Hilbert-Burch Theorem.

> U := Minors(Matrix(B[2]), 3);

> U;

L
y©3 - 2%x72 + 2xx¥y - bxy~2 + 2%x + 4xy,
x*y~2 - 4xx"2 + 3xx*y - bxy~2 + 4%x + bxy,
X"2%y - B*x72 + 3kxxy - 4xy~2 + Bxx + 4xy,
x"3 - B¥x"2 + 2xxxy - 2%y"2 + 4xx + 2%y

]

> Ideal(U) eq I;

true

109.12.2 Betti Numbers and Related Invariants

Each of the functions in this section compute numerical properties of a free resolution of
a module M. Each function takes the same parameters as the function FreeResolution
(not repeated here), thus allowing control of the construction of the underlying resolution.

In particular, by default the minimal free resolution of M is used (so the Betti numbers
correspond to that), so the relevant invariant is guaranteed to be unique if M is graded or
over a local ring R. Otherwise, one may set the parameter Minimal to false to give the
Betti numbers for a non-minimal resolution.

Note: If M is graded and the LS algorithm is used (which will be the case by default),
then computing any of the invariants to do with Betti numbers in this section may be
quicker than computing the full resolution (since minimization of the actual resolution
is needed for the latter). Thus it is preferable just to use one of the following functions
instead of FreeResolution if only the numerical invariants are desired.

Ch. 109 MODULES OVER MULTIVARIATE RINGS 3331

BettiNumbers (M) |

Given a module M, return the Betti numbers of M, which is simply the sequence of
integers consisting of the degrees of the non-zero terms of the free resolution of M.
See the discussion above concerning the parameters. Since the underlying resolution
is minimal by default, if M is graded or over a local ring, then the result is unique.

BettiNumber (M, i, j)

Given a module M and integers 4,7 > 0, return the graded Betti number 3; ; of M
as an integer. This is the number of generators of degree j in the i-th term F; of
the free resolution of M.

MaximumBettiDegree (M, i)

Given a module M and an integer ¢ > 0, return the maximum degree of the genera-
tors in the i-th term of the free resolution of M. Equivalently, this is the maximum
j such that BettiNumber (M, i, j) is non-zero.

BettiTable (M) |

Given a module M, return the Betti table of M as a sequence S of sequences of
integers, and a shift s. This is designed so that if M is non-zero, then S[1, 1]
is always non-zero and S[i, j] equals BettiNumber(M, i, j - i + s). (So the
degrees are shifted by s.)

Regularity (M)

Given an R-module M which is either graded or over a local ring, return the
Castelnuovo-Mumford regularity. This is the least r such that in a minimal free
resolution of M, the maximum of the degrees of the generators of the i-th term F;
is at most ¢ +r. A simple consequence of this is that M is generated by elements of
degree at most 7. See [Eis95, Sec. 20.5] or [DLO06, p. 167].

HomologicalDimension (M)

Given a module M, return the homological dimension of M. This is just the length
of a minimal free resolution of M (the number of non-zero boundary maps).

Example H109E9

For an integer n, we can construct a Koszul complex as the free resolution of R/I, where I is the
ideal of R = K|z1,...,x,] generated by the n variables.

> Q := RationalField();

>n := 3;

> R<[x]> := PolynomialRing(Q, n);

> 1 := Ideal([R.i: i in [1 .. nl]);
> M := QuotientModule(I);

> M;

Graded Module R"1/<relations>
Relations:

3332 COMMUTATIVE ALGEBRA

[x[111,
(x[2]11,
[x[3]]
> C := FreeResolution(M);
> C;
Chain complex with terms of degree 4 down to -1
Dimensions of terms: 0 1 3 310
> BoundaryMaps (C) ;
[*
Module homomorphism (0 by 1),
Module homomorphism (1 by 3)
Ambient matrix:
[x[3] -x[2] =x[1]1],
Module homomorphism (3 by 3)
Ambient matrix:
[-x[2] =x[1] 0]
[-x[3] 0 x[1]]
L 0 -x[3] =x[2]],
Module homomorphism (3 by 1)
Ambient matrix:
[x[11]
[x[2]]
[x[31],
Module homomorphism (1 by 0)
*]

Part XV

In general, the i-th Betti number is (?) We can see this for n = 10. Each boundary map consists

of linear relations alone, so the regularity is zero.

>n := 10;

> R<[x]> := PolynomialRing(Q, n);

> I := Ideal([R.i: i in [1 .. nll);
> M := QuotientModule(I);

> time C := FreeResolution(M);
Time: 0.060

> C;

Chain complex with terms of degree 11 down to -1

Dimensions of terms: 0 1 10 45 120 210 252 210 120 45 10 1 0

> Terms(C);
L
Free Graded Module R7O0,
Free Graded Module R"1 with grading [10],

Free Graded Module R"10 with grading [9, 9, 9, 9, 9, 9, 9, 9, 9, 9],

Free Graded Module R"45 with grading [87745],

Free Graded Module R"120 with grading [77~120],
Free Graded Module R"210 with grading [677210],
Free Graded Module R"252 with grading [5°"252],
Free Graded Module R"210 with grading [4°"210],
Free Graded Module R"120 with grading [377120],

Ch. 109 MODULES OVER MULTIVARIATE RINGS 3333

Free Graded Module R"45 with grading [27745],

Free Graded Module R"10 with grading [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
Free Graded Module R71,

Free Graded Module R"0

> B := BoundaryMaps(C);
> B: Minimal;

Graded module homomorphism (0 by 1),
Graded module homomorphism (1 by 10) of degree O,
Graded module homomorphism (10 by 45) of degree O,
Graded module homomorphism (45 by 120) of degree O,
Graded module homomorphism (120 by 210) of degree O,
Graded module homomorphism (210 by 252) of degree 0,
Graded module homomorphism (252 by 210) of degree O,
Graded module homomorphism (210 by 120) of degree O,
Graded module homomorphism (120 by 45) of degree O,
Graded module homomorphism (45 by 10) of degree O,
Graded module homomorphism (10 by 1) of degree O,
Graded module homomorphism (1 by 0)

*]

> [Binomial(n, i): i in [0 .. nl];

[1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1 1]

> BettiTable(M);

[
[1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1]
]
> $1 eq [[Binomial(n, i): i in [0 .. nll];
true
> Regularity(M);
0

Example H109E10

We can construct the same type of ideal and module as in the last example for n = 3, but over an
exterior algebra. The free resolution is infinite here, but we can construct the resolution partially
(by default, a bound is set on the number of terms). In this general construction, the i-th Betti
number will be (nil)

Q := RatiomnalField();

n := 3;

R<[x]> := ExteriorAlgebra(Q, n);
I Ideal([R.i: i in [1 .. nl]);
M := QuotientModule(I);

M;

Reduced Module R~1/<relations>
Relations:

(x[1]],

V V. V V V V

3334 COMMUTATIVE ALGEBRA

[x[211,

[x[3]]

> BettiNumbers (M) ;

[1, 3, 6, 10, 15]

> [Binomial(i + n - 1, n - 1): i in [0..4]];

(1, 3, 6, 10, 15 1]

> C := FreeResolution(M);

> C;

Chain complex with terms of degree 5 down to -1

Dimensions of terms: 0 156 10 6 3 1 0

> BoundaryMaps(C) ;

[*
Graded module homomorphism (0 by 15),
Graded module homomorphism (15 by 10) of degree O
Ambient matrix:

[x[3] 0 0 0 0 0 0 0 0 0]
[0 x[3] 0 x[2] 0 0 0 0 0 0]
[0 0 x[2] 0 0 0 0 0 0 0]
[0 x[2] xI[3] 0 0 0 0 0 0 0]
[x[2] 0 0 x[3] 0 0 0 0 0 0]
[O 0 0 0 x[3] 0 0 0 0 x[1]]
[0 0 0 0 0 x[2] 0 0 x[1] 0]
[O 0 0 0 x[2] x[3] 0 x[1] 0 0]
L 0 0 0 0 0 0 x[1] 0 0 0]
[0 0 0 0 0 x[1] x[2] 0 0 0]
[O 0 0 0 x[1] 0 x[3] 0 0 0]
[O 0 0 x[1] 0 0 x[3] 0 x[2]]
L 0 0 x[1] 0 0 0 0 x[2] 0]

[0 x[1] 0 0 0
[x[1] 0 0 0 0
Graded module homomorphism (10 by 6) of degree O
Ambient matrix:

x[2] x[3] 0]

o O O O
(@]

[x[3] 0 0 0 0 0]
[0 x[3] x[2] 0 0 0]
[0 x[2] 0 0 0 0]
[x[2] 0 x[3] 0 0 0]

[0 0] 0 x[3] 0 x[1]]
[o 0 0 x[2] x[1] 0]
[© 0 0 x[1] 0 0]
[© 0 x[1] 0 x[3] x[2]]
[0 x[1] 0 0 x[2] 0]
[x[1] 0] 0] 0 0 x[311,
Graded module homomorphism (6 by 3) of degree 0
Ambient matrix:

[x[3] 0 0]

[0 x[2] 0]

[x[2] x[3] 0]

[O 0 x[1]]

0 0 0 x[3]],

Part XV

Ch. 109 MODULES OVER MULTIVARIATE RINGS 3335

[0 x[1] x[2]]
[x[1] 0 x[3]],
Graded module homomorphism (3 by 1) of degree 0O
Ambient matrix:
[x[3]]
[x[2]]
[x[111,
Graded module homomorphism (1 by 0)
*]

Example H109E11

We construct a non-homogeneous quotient module M of Q®. As expected, the Betti numbers of
the localization of M are smaller than the Betti numbers of M.

> R<x,y,z> := PolynomialRing(RationalField(), 3, "grevlex");
> R3 := RModule(R, 3);

>B := [R3 | [x*y, x"2, z], [x*z"3, x°3, y], ly*z, z, x],
> [z, y*z, x], [y, z, x]1];

> M := quo<R3 | B>;

> M;

Reduced Module R"3/<relations>

Relations:

[x*y, x"2, z],

[x*z"3, x"3, vl,

[y*z, z, x],

[z, y*2z, x],

L Vs, z, x]

> BettiNumbers (M) ;

[3, 5, 4, 2]

> BettiNumbers(Localization(M));
[3,5, 3, 1]

Since M is non-homogeneous, the Betti numbers are not unique. If we create a second module
M> which is equivalent to M and compute the Betti numbers this time without homogenization
(in the internal free resolution algorithm), then we obtain different Betti numbers for Ms. But
since the Betti numbers over a local ring are unique, we get the same result for the localization
of MQ.

> M2 := quo<R3 | B>;

> BettiNumbers(M2: Homogenize :=false);

[3, 6, 5, 2]

> BettiNumbers(Localization(M2): Homogenize:=false) ;
[3, 5, 3, 1]

3336 COMMUTATIVE ALGEBRA Part XV

Example H109E12

Suppose M is a graded R-module. Given the graded Betti numbers 3; ; of M, one can compute
the Hilbert series Ha(t) of M via the formula ([Eis95, Thm. 1.13] or [DL06, Thm. 1.22]):

Ziyj <_1)i6i,jtj

Hun(t) = 5 :

where D is the Hilbert denominator of M: this depends on the underlying ring R and equals

n

H(l - twi)7

=1

where n is the rank of R and wj; is the weight of the i-th variable (1 by default). We can thus
write a simple function to compute the Hilbert series numerator via this formula.

> function HilbertNumeratorBetti (M)

> P<t> := PolynomialRing(IntegerRing());

> return &+[

> (-1)"i*BettiNumber(M, i, j)#*t~j:

> j in [0 .. MaximumBettiDegree(M, i)],
> i in [0 .. #BettiNumbers(M)]

> 1;

>

end function;

We then check that this function agrees with the Macma internal function HilbertNumerator for
some modules. (Since the modules do not have negative gradings, we do not have to worry about
the denominator shift which is 0 for these modules.) First we try the Twisted Cubic.

> Q := RationalField();

> R<x,y,z,t> := PolynomialRing(Q, 4, "grevlex");
>B := [

> -xX"2 + y*t, -y*z + x¥t, x*z - t72,

> x*y - t72, -y*z + x*t, -x"2 + zZ*xt

> 1;

> M := GradedModule(Ideal(B));

> HilbertNumeratorBetti(M);

-t°5 + b5*xt"3 - b5xt"2 + 1
> HilbertNumerator (M) ;
-t°5 + B6xt"3 - b6xt"2 + 1
0

Now we apply the function to the module M = R'/I where I is the ideal generated by the 2 x 2
minors of a generic 4 X 4 matrix. Computing the Hilbert series numerator via the Betti numbers
takes a little time since the resolution is non-trivial. Note the components of the Betti table which
contribute to the terms of the Hilbert series numerator.

1= 4,

>n
> R<[x]> := PolynomialRing(Q, n~2, "grevlex");
> A := Matrix(n, [R.i: i in [1 .. n~2]]);

Ch. 109 MODULES OVER MULTIVARIATE RINGS 3337

> A;

[x[1] =x[2] =x[3] =x[4]]

[x[6] =x[6] =x[7] =x[8]]

[x[9] x[10] x[11] x[12]]

[x[13] x[14] x[15] x[16]]

> I := Ideal(Minors(A, 2));

> #Basis(I);

36

> M := QuotientModule(I);

> time HilbertNumeratorBetti(M);

-t712 + 36%xt"10 - 160*t~9 + 315%xt~8 - 288*t~7 + 288*%t"5 - 315%t"4 + 160*xt~3 -
36*%t72 + 1

Time: 0.470

> time HilbertNumerator (M) ;

-t712 + 36*%t"10 - 160*t~9 + 315xt~8 - 288*t~7 + 288*t~"5 - 315xt~4 + 160*t~3 -
36*%t72 + 1

0

Time: 0.000

> assert $1 eq $2;

> BettiNumbers (M) ;

[1, 36, 160, 315, 388, 388, 315, 160, 36, 1]

> BettiTable(M);

L
(1 o, 0, 0, 0, 0, 0, 0, 0, 01,
[0, 36, 160, 315, 288, 100, O, O, O, O 1],
(o, o, 0, 0, 100, 288, 315, 160, 36, 0 1],
(o, o,o0,0,0,0,0,0,0,1]

]

0

Example H109E13

Given a graded module M = R'/I, one can obtain an upper bound on the regularity of M by
computing the regularity of My = R'/Iy, where Iy, is the leading monomial ideal of I. This will
be faster in general (since the associated free resolution will be easier to compute).

>wts := [1, 5,9, 13, 17, 5, 1, 1, 1 1;

> K := GF(32003);

> R<x0,x1,x2,x3,x4,y0,y1l,u,t> := PolynomialRing(K, wts);
> I := Ideal([

x0*xy0 - y173*%u”3 - x1x*t,

x1l*yl - x0*%u”b - t76,

x172 - x0*%x2 + yl172*%u~3*%t"5,

x272 - x1*x3 + yOxyl*xu~8xt~4,

x372 - x2xx4 + y0~2%u”~13%t"3,

x3*%y0 - u”18 - x4x*t,

x4*xyl - x3*%u”5 - y0~3%t~3,

x1*x2 - x0*%x3 + yOxyl~2*xu~3*t~4 + yl*u~8*t~5,

V V.V V V V V V

3338 COMMUTATIVE ALGEBRA Part XV

> x272 - x0%x4 + yO*xyl*u~8*t~"4 + u~13*t~5,

> x2*x3 - x1*x4 + yO0~"2*xyl*u~8*t~3 + yO*xu~13*%t~4,
> x1*xy0 - y172%u”8 - x2x*t,

> x2xy0 - yl*u~13 - x3*t,

> x2*xyl - x1*xu”5 - yO*t~5,

> x3*xyl - x2%u”5 - y0~2*%t~4]);

> IsHomogeneous(I);

true

> M := GradedModule(I);
> time Regularity(M);

67

Time: 3.360

> IL := LeadingMonomiallIdeal(I);
> ML := GradedModule(IL);

> time Regularity(ML);

92

Time: 0.530

> BettiNumbers (M) ;

[1, 14, 45, 72, 76, 58, 29, 8, 1]

> BettiNumbers (ML) ;

[1, 42, 210, 505, 723, 659, 388, 144, 31, 3 1]

Example H109E14

The following example shows how to explicitly use the resolution and syzygy functions to com-
pute the ideal of a random space curve (in P?) of genus 11. The construction is described in
Section 1.2 of [ST02] and an equivalent form of the following computation is used by Macma’s
RandomCurveByGenus function to produce such curves.

We work over the field GF(101), which will be referred to as K and the polynomial ring R will be
the 4 variable polynomial ring over K. The construction begins by choosing a random 8 x 3 matrix
with entries given by random linear and quadratic polynomials of R in appropriate positions. The
minimal free resolution of the reduced module having this as the matrix of relations is computed.
The image of the second boundary map of the resolution is the module referred to as G* in the
above reference. Taking the submatrix of rows of a certain weighting of the matrix defining this
map, we multiply by a 6 x 8 matrix with random entries in K. The resulting matrix represents
a map from a free module F' of rank 6 to G*, whose kernel is isomorphic to R as a submodule
of F. The 6 coordinates of a generator of the kernel generate the desired ideal I. This kernel is
computed with a syzygy computation (note: we could also use Kernel for the matrix giving the
map). We also check that the quotient module of I has a minimal free resolution of the right
form.

K := GF(101);

R<x,y,z,t> := PolynomialRing(GF(101),4,"grevlex");

v := [1,1,1,1,1,1,2,2];

// generate the base random relations with appropriate linear and quadratic
// entries using the Random function for multivariate polynomials.

rels := [[Random(i,R,0): j in [1..3]] : i in v];

Matrix (8,3, [TotalDegree(e) : e in &cat(rels)]);

V V V V V VvV V

Ch. 109 MODULES OVER MULTIVARIATE RINGS 3339

[1 1 1]

[1 1 1]

[11 1]

[1 1 1]

[1 1 1]

[1 1 1]

[2 2 2]

[2 2 2]

> // get the quotient module
> F := RModule(R,3);
> M := quo<F|rels>;

Get the minimal free resolution and check that it has the correct Betti table.

> res := MinimalFreeResolution(M);
> BettiTable(res);
L

3,
0,
0

b

, 0, 0,0
, 8, 0, 0
3

1,
, 01,
, 10, 4]

[W W |
o N O

3’

]
0

Get the 2nd boundary map matrix and then the 8 x 8 submatrix of linear and quadratic entry
TOWS.

> mat := Matrix(BoundaryMap(res,2));

> Nrows(mat); Ncols(mat);

11

8

>u := [1,1,2,2,2,2,2,2];

> mat := Matrix(R,[ri : i in [1..11] |

> &and[(ri[j] eq 0) or (TotalDegree(ril[j]l) eq uljl):
> j in [1..8]] where ri is Eltseq(mat[il)]);
> Nrows(mat); Ncols(mat);

8

8

> Matrix (8,8, [TotalDegree(m) :m in Eltseq(mat)]);
[11222222]

(1122222 2]
[11222222]
[11222222]
[11222222]
(1122222 2]
(1122222 2]
[11222222]

Now generate the random 6 x 8 matrix over K, compute the kernel of the composition via syzygies
and generate the matrix I.

> matl := Matrix(R,6,8,[Random(K) : i in [1..48]1]);

3340 COMMUTATIVE ALGEBRA Part XV

> matc := matl*mat;

> F1 := EModule(R,[2-x : x in ul);

> syz := SyzygyModule (sub<F1|RowSequence (matc)>);
> B := MinimalBasis(syz);

> #B;

1

> I := ideal<R|Eltseq(B[1])>;

Finally, check I has the right dimension (2) and degree (12) and that R/I has the correct minimal
free resolution with Betti table as given in [ST02].

> Dimension(I); Degree(I);

2 [3, 4]

12

> 0C := QuotientModule(I);

> BettiTable(MinimalFreeResolution(0C));

[
[1, 0, 0, 01,
[0, 0, 0,01,
[o, 0, 0, 01,
[0, 0, 0, 01,
[0, 6,2, 01,
[0, 0, 6, 31

]

0

109.13 The Hom Module and Ext

Hom(M, N)

Given R—modules M and N, return H = Hompg (M, N) as an abstract reduced
module and a transfer map f : H — S, where S is the set of all homomorphisms (of
type ModMPolHom) from M to N.

Thus H is a module representing the set of all homomorphisms from M to N,
while f maps an element h € H to an actual homomorphism from M to N (and the
inverse image of an element of S under f gives a corresponding element of H).

If M and N are graded, then H is graded also, and the degree d; of an element
f € H is the degree of the corresponding homomorphism (so an element in M of
degree d will be mapped by f to zero or an element of degree df +d in N).

Hom(C, N)

Given a complex C' of R-modules and an R-module N, return Hompg(C, N). This
is a new complex whose i-th term is Hompg(C;, N) (where C; is the i-th term of
(); the boundary maps are also derived from those of C' in the natural way via the
functor Homp(—, N) (see [Eis95, p.63]). Note that the direction of arrows in this
complex is opposite to that of C.

Ch. 109 MODULES OVER MULTIVARIATE RINGS 3341

Ext(i, M, N)

Given an integer i > 0 and R-modules M and N, return Ext’(M, N). This is the
homology at the i-th term of the complex Hompg(C, N) where C is a free resolution
of M.

Example H109E15

We construct a Hom module and explicit homomorphisms derived from it.

> R<x,y,z> := PolynomialRing(RationalField(), 3);

> M := quo<GradedModule(R, 3) |

> [xxy, x*xz, y*zl, ly, x, yl,

> [0, x73 - x"2%xz, x"2%y - x¥y*z], [y*z, x"2, x*yl>;
> N := quo<GradedModule(R, 2) |

> [x~2, y~21, [x72, y*z], [x"2*z, x*y~2]>;

>

M;
Graded Module R"3/<relations>
Relations:
[X*y, X*Z, y*z],
[Vs X, v,
[0, X"3 - x"2%z, X 2%y - x*y*z],
[y*z, x"2, x*y]
> N;
Graded Module R"2/<relations>
Relations:

[x°2, y~21,

[x°2, y*z],

[x"2%z, x*xy~2]

> H, f := Hom(M, N);

> H;

Graded Module R"7/<relations> with grading [1, 2, 1, 1, 1, 1, 1]
Relations:

[x, 0, O, -z, O, x, O],

ly, 0, x, 0, y, 0, O],

ly, 0, x, 0, 0, y, 0],

(o, o, 0, 0, 0, 0, yl,

-y, 0, -x, 0, -z, 0, z],

[x, 0, 0, -y, x, 0, O],

[x*xy, y, 0, 0, O, O, xxy],

[-x*y + x*z, -y + z, 0, 0, O, 0, x*z - z"2],
[x*xz, x, 0, 0, 0, 0, O],

(o, y, 0, y°2, -z°2, 0, z"°2],

(0, y -z, 0, 0, 0, 0, z°2]

>h := f(H.1);

> h;

Module homomorphism (3 by 2) of degree 1
Presentation matrix:

[0 z]

3342

[x 0]

[0 0]

> $1 @@ f£;

(1, o, 0, 0, 0, 0, O]
> Degree(M.1);

0

>hM.1);
(o, z]
> Degree(h(M.1));

1

> f(Basis(H));

[

Module homomorphism

Presentation matrix:

[0 z]

[x 0]

[0 o],

Module homomorphism

Presentation matrix:

[0 -z"2]
[0 yx*z]
[O 0],

Module homomorphism

Presentation matrix:

[0 0]

[-y 0]

[x o],

Module homomorphism

Presentation matrix:

[0 0]
[0 -yl
[0 x],
Module homomorphism

Presentation matrix:

[0 -z]
[0 o]
L0 vyl,
Module homomorphism

Presentation matrix:

[0 -z]
[0 0]
[0 z],
Module homomorphism

Presentation matrix:

L 0y - z]
[0 0]
[0 0]

COMMUTATIVE ALGEBRA

@3

(3

(3

(3

(3

3

(3

by

by

by

by

by

by

by

2)

2)

2)

2)

2)

2)

2)

of

of

of

of

of

of

of

degree

degree

degree

degree

degree

degree

degree

Part XV

Ch. 109 MODULES OVER MULTIVARIATE RINGS 3343

109.14 Tensor Products and Tor

TensorProduct (M, N)

Given R—modules M and N, return the tensor product M ®r N as an ambient
module T, together with the associated map f: M x N — T. If M and N are
graded, then T is graded also.

TensorProduct (C, N)

Given a complex C' of R-modules and an R-module N, return C ®g N. This is
a new complex whose i-th term is C; ® g N (where C; is the i-th term of C); the
boundary maps are also derived from those of C' in the natural way via the functor
— ®pr N (see [Eis95, p.64]).

Tor(i, M, N)

Given an integer 4 > 0 and R-modules M and N, return Tor’(M, N). This is the

homology at the i-th term of the complex C' @ N where C is a free resolution of
M.

Example H109E16

We construct a tensor product and some Tor modules for the same modules from the previous
example.

R<x,y,z> := PolynomialRing(RationalField(), 3);
M := quo<GradedModule(R, 3) |
[xxy, x*z, y*z], ly, x, yl,
[0, x°3 - x"2*xz, x"2xy - x*y*z], [y*z, x"2, x*yl>;
N := quo<GradedModule(R, 2) |
[x~2, y°21, [x72, y*z], [x"2*z, x*y~2]>;
T, f := TensorProduct(M, N);
T;
Graded Module R"6/<relations>
Relations (Groebner basis):
[x~2, y*z, 0, 0, 0, O],
[0, 0, 0, 0, x~2, yx*z],
[0, 0, 0, 0, 0, x*y*z - y*z"2],
[xxy - y*z, 0, 0, 0, 0, 0],
[0, x*y - y*z, 0, 0, 0, O],
[yxz, 0, 0, -y*z, x*xy, O],
ly, 0, x, 0, y, 0],
o, y, 0, x, 0, yl,
[0, y°2 - y*z, 0, 0, 0, 0],
(0, 0, 0, y°2 - y*z, 0, 0],

>
>
>
>
>
>
>
>

3344 COMMUTATIVE ALGEBRA

(0, 0, 0, 0, 0, y™2 - y*z],
[yxz~2, 0, 0, -y*z~2, 0, -y*z~2],
[0, y*z~2, 0, y*z"2, 0, y*z~2]

Note that f maps the cartesian product of M and N into 7.

> f(KM.1, N.1>);
[1, 0, 0, O, O, O]
> [f(<m, n>): n in Basis(N), m in Basis(M)];

L

(1, o, 0, 0, 0, 0],
(o, 1, 0o, o, 0, 01,
(o, o, 1, 0, 0, 01,
(o, o, o, 1, o, 07,
(o, o, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 1]

]

Finally we construct associated Tor modules.

> Tor(0, M, N);

Graded Module R"6/<relations>
Relations:

ly, 0, x, 0, y, 0],

o, y, 0, x, 0, yl,

[0, 0, 0, O, xxy - y*z, 0],

[0, 0, 0, 0, 0, x*y - y*z],
[y*z, x~2, 0, 0, 0, 0],

[xxy*z - y*xz"2, 0, 0, 0, 0, 0],
[y"2 - y*z, 0, 0, 0, 0, O],

(0, 0, y*z, x~2, 0, 0],

[0, 0, x*y*xz - y*z~2, 0, 0, 0],
[0, 0, y*2 - y*z, 0, 0, 0],

[0, 0, 0, 0, y*z, x"21,

[0, 0, 0, O, y°2 - y*z, 0],

[0, 0, O, O, xxy*z - y*xz~2, 0]

> Tor(1, M, N);
Graded Module R"2/<relations> with grading [3, 3]
Relations:

ly - =z, 0],
L z, -yl,
[z72, -xxy],
[0, 0]

> Tor(2, M, N);
Free Reduced Module R"0

Part XV

Ch. 109 MODULES OVER MULTIVARIATE RINGS 3345

109.15 Cohomology Of Coherent Sheaves

We have implemented functions to compute the dimensions of cohomology groups of coher-
ent sheaves on ordinary projective space over an (exact) field. The sheaves are represented
by graded modules over the coordinate ring of the ambient projective space. The sheaf may
arise naturally as one supported on a particular closed subscheme (eg, the structure sheaf
of a projective variety) but it is a matter of indifference whether the sheaf is considered
as lying on the subscheme or the entire ambient space (equivalently, whether the repre-
senting module is considered as a module over the coordinate ring of the ambient or the
quotient coordinate ring of the subscheme) because the cohomology groups are naturally
isomorphic. We plan to add a fuller package of functionality for coherent sheaves, but it
is convenient to add the cohomology function now as the algorithm we use works equally
efficiently (roughly speaking) when applied to any two graded modules that represent the
same coherent sheaf.

The algorithm we have implemented is that of Decker, Eisenbud, Floystad and Schreyer
which uses the Beilinson-Gelfand-Gelfand (BGG) correspondence to reduce the computa-
tion of the cohomology groups of the sheaf and its Serre twists to that of various graded
free modules in the projective resolution of a module over a finite exterior (alternating)
algebra.

CohomologyDimension(M,r,n)

Verbose Cohom Maximum : 1

M is a graded module over P = k[zg,.., 2] with k an exact field. Let M be
the corresponding coherent sheaf on Proj(P) = P}'. The function returns the k-
dimension of the cohomology group H' (P}, M(n)) where M(n) is the nth Serre
twist of M. n can be any integer and r a non-negative integer.

The algorithm used is based on the BGG correspondence. Details can be found
in [EFS03] or see [DE02] for a slightly more computational description. Let A be
the finite exterior algebra with m 4 1 generators, which is of dimension 2™*! over
k. The Tate resolution of M is a doubly infinite exact sequence of graded free A-
modules. Each cohomology group of a twist of M is isomorphic as a k vector space
to a particular graded piece of a particular term in the Tate resolution. In fact, we
never need to explicitly compute the terms of the resolution of index > reg(M) (the
regularity of M) because they are pure graded of dimension given by the Hilbert
polynomial of M.

The algorithm computes two consecutive terms in the Tate resolution at indices
> reg(M), and the A-homomorphism between them, from two corresponding graded
pieces of M and the linear maps between them coming from multiplication by the
base variables. Then the resolution is extended backwards as far as necessary by
computing the A-projective resolution of the kernel of this A-homomorphism. The
projective resolution is efficiently determined by non-commutative Grobner basis
computations. This uses the new MAGMA machinery for exterior algebras and their
modules. The projective resolution information is cached so that repeated calls to
the function for the same module M will require either no extra work or only an

3346 COMMUTATIVE ALGEBRA Part XV

extension to the part of the resolution already computed.

Example H109E17

We consider a random surface X in a family of Enriques surfaces of degree 9 in P*. It is defined
by 15 degree 5 polynomials and we work over Fi7 to keep the input of reasonable size (it is still
fairly large!).

The surface is non-singular with arithmetic genus (p,), geometric genus (g) and irregularity ¢ all
zero. These are related generally for a non-singular surface by ¢ = p, + ¢ and p, can be computed
without cohomology machinery (from Hilbert polynomials). But cohomology of the structure
sheaf of X and Serre duality is the easiest way to get g or q.

> R<x,y,z,t,u> := PolynomialRing(GF(17),5,"grevlex");

> I := ideal<R |[

2%x73%z*t + BkxT2kyxzkt + 14%x72%z72%t + x"3kzku + SkxT2xykzku +
10%x72%z72%u + 8xx*y*z~2%u + 15xy " 2*%z"2%u + 4xx*xz"3%u + 2ky*xz"3%u +
O*xx“3ktku + 14*kx72kyktku + 16%xT2kzktku + 10*xkykzktru + 10*x*z"2%txu +
y*z"2%tku + 13*x73*u"2 + 14*x"2xy*xu”2 + 11kx"2%zxu"2 + 1bxxky*kz¥u~2 +
10%xy~2%xz*xu~2 + 8xx*z"2%u"2 + 8xy*xz"2*xu"2 + x"2%txu"2 + llkx*y*t¥u”2 +
16xx*y*u~3 + 9%y 2%u”3 + 4kxkzxu”3 + 2xy*z*u~3 + 10*x*t*u”3 + y*xtxu~3 +
8xx*xu~4 + 8xy*xu~4,

5kx73%z*t + x"2%z72%t + bxx"3kzku + 11*xT2%z72%u + 15kxky*xz"2%u + 2*kx*z"3%u
+ 14%x73*%t*ku + BkxT2kzktku + xkzT2%xtku + 14%x73%u"2 + 10*x*y*xzxu~2 +
8*xx*z"2*%u"2 + 156*x72*%tku”2 + 11*xx72%u”3 + Okx*ky*u~3 + 2kx*z*u~3 +
x*xt*u~3 + 8*xx*u~4,

14xx"3*%z*xt + X"2xy*z*t + 13*x"2%z7 2%t + T*x"2%z*t"2 + 3*x"3%z¥u +
16%x™2%y*xz*u + 4xx"2%z"2%u + 6xx"3xtxu + 16%x"2xy*xtxu + O*x"2kz*t*u +
O*x 2%t 72%u + 11*x73*%u”2 + xT2ky*ku”2 + 14%xT2%z¥u"2 + 2%x*z"2%u"2 +
11xy*z"2*%u”2 + 6%z73%u”2 + 4xx"2xt*xu”2 + 4xxxzxtxu"2 + 14xy*z*xt*xu”2 +
6xz"2%t*u"2 + 16kxx*t"2*%u”"2 + 10*%z*xt"2*%u”"2 + 3*x"2%u”3 + 1lkx*kzxu~3 +
16xy*z*u~3 + 4*xz"2%u"3 + 16*x*t*u”3 + 3*y*t*xu~3 + 14xz*t*u~3 + 6%t~ 2%u"3
+ 13*x*u”4 + 7*xy*u~4 + 16*z*u”4 + 11l*xt*u~4 + 10%u”5,

15%x73%z72 + 12%x72%y*z"2 + 3%x"2%z"3 + 12%x"3%z¥u + 8*x"2ky*z¥u +
11xx72*%z72%u + x73*%u”2 + 14*x72xy*u”2 + 3*x"2*zxu"2 + 11xx"2*u”3,
12xx73%z72 + 16*%x72%z"3 + 8xx"3*z*u + x"2%z72%u + 14*x73*%u”2 + 16*x"2*z*u"2
+ x72*%u”3,

2%x73*y*z + BkxT2ky 2%z + 14%x7T2%y*z72 + 13%x73kyku + 12%x"2%y"2%u +
8*xx"3kzku + 4kxT2kykzku + 12%kxT2%zT2%u + kxky*kzT2%u + 14%yT2%xz"2%u +
15xx*z"3*%u + 3xy*z"3%u + 15xx"2xyxtxu + 4xx"2xzxtxu + 15xxkyxzxtxu +
11xx*z72%t*u + 10%y*z"2%t*u + 2%x73*%u”"2 + 12%x"2*y*u~2 + 3*x"2*z*u"2 +
1dxx*xy*xz*xu™2 + 13%x*z72%u"2 + 10*y*z"2%u"2 + x"2%t*u”2 + 15xx*y*t*xu~2 +
16*y*zxt*u™2 + 12*xx*y*u~3 + 3%y 2*%u”3 + 15*xx*z*u~3 + 4xyxz*u~3 +
11xx*t*u~3 + 6xy*t*u~3 + 13*x*u~4 + 14*xy*u~4,

5¥x73*y*z + X"2%y*z72 + 10%x72%z72%t + 4xx"4ku + 12%x73*ky*ku + 5kx"3*kzku +
12xx " 2%y*xz*xu + 14xx*xy*z"2%u + 3xx*z"3%u + 15%xx"3*t*ku + 16*x"2*z*t*u +
10*x*z72%t*u + 11%x73*%u"2 + 4xx"2*y*u~2 + 13*x"2*z*u"2 + 10*x*z"2%u"2 +
4xx"2%t*u”2 + 16%x*zxtxu”2 + 13%x72%u”3 + 3kx*xy*u”3 + 4xkx*z*u”3 +
6*x*t*u~3 + 14*xx*xu~4,

10*x72%z73 + 8%x" 2%z 2%u + bxx"2%z*u"2 + 11*x72*%u”3,

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYV

Ch. 109 MODULES OVER MULTIVARIATE RINGS 3347

16%x73%z72 + 12%x"2%y*z"2 + 7Txx"2%z"3 + Okx*xy*xz~3 + 2%y~ 2%z"3 + 13*%x*z"4 +
16xy*z~4 + 13*x"3%z*t + 12%x"2%y*z*t + T*X"2%z72%t + THxky*z 2%t +
T*x*z" 3%t + 16*%y*z7 3%t + 4kx"3kzku + 3kx"2kyxzxu + 6xx"2%z"2%u +
2%xky*zT 2% + TkyT2%zT2%u + Okx*xzT3%u + Oxy*xz"3%u + 16%x"3xtxu +
BxxT2kyktku + 13kxT2kzktku + Gkxkykzktku + xky*kz*ku~2 + 8xy 2xzxu"2 +
13%x*z72%u”2 + 16%xy*z"2%u"2 + 6xx"2*%t*u”2 + Txxkzktku"2 + 16*y*kzktxu~2 +
Okx*xz¥xu~3 + Oky*zxu~3,

12%x73%z72 + 6%x72%z"3 + 2xx*xy*z"3 + 1b%x*z74 + 12%x73*z*t + 11*x72%z72%t +
16%x*z" 3%t + 3*x"3*%z*u + Txxky*z"2%u + 9kxx*xz"3%u + 3*x"3xtxu +
3xx"2kzktku + GkxT2kzku"2 + SkxkykzkuT2 + 15kx*kzT2%u"2 + 16%x"2*xt*u"2 +
16*%x*xz*xt*xu~2 + Q*kx*xz*u~3,

X"3xy*z + B¥xxT2ky 2%z + 10%x"2ky*z"2 + 8xxkyT2%z72 + 1b6%y 3*%z72 + 4kxxy*z”3
+ 2%xyT2%z73 + 13*x73kykt + 2*kXT2%xy 2%t + O*xXT3kzkt + 12%xT2ky*kzxt +
10%xky~2%z*t + Dxx"2%zZ72%t + Txxky*z 2%t + 4xy 2%xz"2xt + 2xx*xz" 3%t +
1dxy*xz" 3%t + 2%xx72%xy*t"2 + 13%x72%z*xt72 + 2kxky*xz*xt"2 + G*x*¥z"2%t"2 +
Txyxz"2%t72 + 13%x"3*y*u + 14%x"2%y~2%u + 11*xx"2%y*z*ku + 15xx*xy 2*z*u +
10xy~3*z*u + 8*xxxy*z 2%u + 8xy 2%z"2%u + 15kx"3*t*ku + 6*x"2xy¥xtiu +
11xky~2%tku + 14*xx™2kzxtiku + Jkxkykzktru + 4kx*xz"2%tku + Thxy*z 2xt*ku +
16%xx™2%t72%u + 2kxx*xy*xt~2%u + yxzxt"2xu + 16xx*y 2%u"2 + 9%y 3¥%u"2 +
dxxky*zrku~2 + 2%y 2%xzxu"2 + 15xxkyxtxuT2 + 16xyT2xt¥xu"2 + 2kx¥z¥ktF¥u”2 +
13*y*zxt*xu™2 + 6xx*t”"2%u"2 + 1lxy*t™2%u”2 + 8xx*y*u~3 + 8y 2%u”3 +
dxx*xt*u”~3 + 3*ky*t*xu~3,

5xx"3ky*z + 11*xx"2%y*z”"2 + 15*xky 2%z"2 + 2kx*y*kz”3 + 13*x74¥t + 2%kx"3ky*t +
T*x"3*z*t + 6*xT2kykzkt + 16%xT2%xzT2%t + dkxky*xzT2%xt + 14xx*xz" 3%t +
2%x73kLT2 4+ OkXT2kzZAtT2 + ThxkzZT2%t72 + 14%x73ky*u + 5xx"3kzxu +
Axx"2%yxzxu + 10*xky 2%z¥xu + 12%x"2*%z72%u + 8xxky*z"2%u + 15xx*z"3%u +
Gxy*z~3*%u + 11*z74*u + 16%x73*%t*ku + 15%xx"2*y*xt*u + 13%x"2%zxtxu +
Bkxxkz T2k tku + BkykzT2ktku + 11kzT3ktku + 13%kxT2*tT2%u + 3kxkzkt"2%u +
T*zZ"2%t72%u + T*xT3ku"2 + TkxT2kykuT2 + OkxkyT2%u"2 + x"2%z*u"2 +
2kxxy*zku"2 + 6kx*¥z"2%u"2 + y*kzT2%u"2 + 13%z73%u"2 + 12%x"2*t*u"2 +
16xxky*t*xu™2 + 14xxkzktxu™2 + 14xy*kzktxu™2 + 3%z 2%xt*xu”2 + 11l x*t™2%u"2
+ 11%z*t72%u"2 + 9*x72*%u”3 + 8kxky*u~3 + 4dxxkxzxu~3 + 10*y*zxu~3 +
z"2*%u"3 + 3xx*t*u”3 + 6*kzxtxu~3 + T*kz*u'"4,

4xx"4*xz + 3xx"3%y*z + 10%x"3*%z72 + x72%z"3 + 14xxxy*z~3 + 3xx*z"4 +
16%x"3*%zxt + 8*xx"2%z" 2%t + 10%x*z"3*t + 14%x"3xy*u + 15%x"3*zxu +
11xx72%z72%u + 10*x*z"3*%u + 16*x"2*zxtxu + 16%x*z"2%t*u + 6*%x"3*%u"2 +
14%x7™2%z*u"2 + 3xxky*z*xu~2 + 4xx*z"2%u"2 + 6xx"2%xtxu"2 + Gxx¥xzxtxu"2 +
15%x72*u”3 + 14*x*z*u”3,

5%x73%z72 + 4*xx"2%y*z"2 + 12*%x72*%z73 + 16*xx*z"4 + 6xy*xz"4 + 11xz"5 +
14xx"3%z*xt + X"2%y*z*t + T*x"2%z"2%t + 13*x*z" 3%t + 3xy*z 3%t + 11xz"4xt
+ 12%x"2%z*xt 72 + 2xx*zT2%t72 + T*z73%t72 + TkxT3%z*ku + 13*x7T2xy*ziu +
XT2%z72%u + 6xx*z"3%u + y*z"3%u + 13%z74xu + 6xx"3kt*u + 16%x"2ky*t*u +
O*xx 2%z tku + xkzZT2ktku + 1dkykzT2%ktku + 3*xzT3ktku + 6xx"2%t"2xu +
11%z72%t72%u + 9*xx™2%z*xu"2 + 4xx*xz"2*xu"2 + 10*xy*z"2¥%u”2 + z"3%u"2 +
15%x72%t*xu"2 + 6*%z"2*%t*xu"2 + T*xz"2*%u"3,

13%x75 + 2*x74d*xy + T*xx"4*z + 6xx"3*ky*z + 16%x"3%z72 + 4*kx"2xy*z"2 +
14%x72%z73 + 2%x74*%t + O%x"3%z*xt + Txx"2%z"2xt + 16%x"4*u + 15xx"3xyxu +
x73%zku + 11xx72%z72%u + 3kxky*z"2%u + 14xx*xz"3%u + 13%x"3xtxu +

VVYVYVYVYVYVYV

3348 COMMUTATIVE ALGEBRA Part XV

3kxT2kzktku + ThxkzT2ktku + 14%xT3%u"2 + 15kxT2xy*u”2 + 6*x"2%xz¥xu"2 +
14xxxy*z*xu~2 + 10*x*xz72*xu”2 + 11%x"2xt*u"2 + 1lsx*z*t*xu”2 + 3xx*z*xu~3]>;
X := Scheme(Proj(R),I); // define the surface
// The structure sheaf 0_X of X is represented by graded module R/I
0_X := GradedModule(I); // R/I

V V. V V V

We first compute the dimension of H°(Ox). This is fairly uninteresting (it’s just 1) but after
this computation, the cached data will allow the following cohomology calls to execute practically
instantaneously.

CohomologyDimension(0_X,0,0); // dim H~0(0_X)

>
1
> // get the geometric genus and irregularity
>
0

time CohomologyDimension(0_X,2,0); // dim H"2(0_X) = g
Time: 0.000
> time CohomologyDimension(0_X,1,0); // dim H"1(0_X) = q
0
Time: 0.000

> // => p_a(X)=0. Verify this.
> ArithmeticGenus(X);
0

We now compute a module representative of the canonical sheaf Kx of X. We can just take
Exth(M, R(—5)). Then we check again that H°(Kx) = g is 0. Note that here the module
representing K x is maximal so that H°(Kx(n)) is just the dimension of its nth graded part for
any n. However, in other cases (where X is again mot arithmetically Cohen-Macaulay) the Ext
computation for Kx may not give the maximal representing module, so its Oth graded piece might
have dimension less than g.

> K_X := Ext(2,0_X,RModule(R,[5]));

> K_X;

Reduced Module R"6/<relations> with grading [1, 1, 1, 1, 1, 1]

Quotient Relations:

[12%z + 8%t + Txu, b*y + 7xz + 8t + 6%u, 16%z + 4*u, 16*z + 7*u, 15%u,
7*u],

[14*u, 8%u, 13xx + 2%y + 4%t + 14*u, 4%y + 8%t + 2%u, 16xt + 6*u, 3*u],

[15%z + 9%t + 11lxu, 2%y + 13%z + 8%t + 14*u, 7xt + 16%u, 8xx + 14xt + 6%
11%t + 15%u, 11%z + 14*xt + 16%u],

[12%z + 1B*%t + 6%u, bxy + T*xz + 4%t + O%u, t + u, 2%t + 2%u, 7*x + 4%t +
12%z + t + 2%u],

[12%y + 10%z + 14%t + 14*u, 7*y + 15%z + 8%t, 4*u, 8xu, 16%u, 5*x + 15%z
+ 9xu],

[15%x, 15%x, 4u, 8*u, 16%u, 0],

[14*z + 1Bxt + 9%u, 3%y + 1l*xz + 7+t + 13*u, 0, 1l*z + 6%u, 2%z + 14xu,
10xt + 4x*u],

[10*z + 14xt + 14%u, 4xx + 12%y + 15*%z + 8%t, 0, 0, O, 15%z + 16%t + 9*u

[6%z + 16%t + 4xu, 12%xy + 10%z + 15%t + b*xu, 0, 2%z + 1b*u, 6%u, 15*z +
T*ul,

[13*z + t + 1bxu, 4*xy + 9%z + 16%t + 16%u, 0, 0, 0, 5*z + 11xt + 3%*u]

Ch. 109 MODULES OVER MULTIVARIATE RINGS 3349

> CohomologyDimension(K_X,0,0);
0

Finally, we verify some more cases of Serre duality which gives

dim H"(Ox(n)) = dim H* " (Kx(—n)).

> [CohomologyDimension(K_X,0,i) eq CohomologyDimension(0_X,2,-i) :
> i in [-1..5]];
[true, true, true, true, true, true, true]

109.16 Bibliography

[AL94] William Adams and Philippe Loustaunau. An introduction to Grébner bases,
volume 3 of Graduate studies in mathematics. American Mathematical Society, Provi-
dence, R.I., 1994.

[BS92] David Bayer and Michael Stillman. Computation of Hilbert Functions. J.
Symbolic Comp., 14(1):31-50, 1992.

[CLO98] David Cox, John Little, and Donal O’Shea. Using Algebraic Geometry. Grad-
uate Texts in Mathematics. Springer, New York—Berlin—Heidelberg, 1998.

[DE02] Wolfram Decker and David Eisenbud. Sheaf algorithms using the Exte-
rior algebra. In Eisenbud et al., editors, Computations in Algebraic Geometry with
Macaulay2, volume 8 of Springer Algorithms and Computation in Mathematics Series,
pages 215-247. Springer-Verlag, 2002.

[DL06] Wolfram Decker and Christoph Lossen. Computing in Algebraic Geometry,
volume 16 of Algorithms and Computation in Mathematics. Springer, New York—
Berlin—Heidelberg, 2006.

[EFS03] Eisenbud, Floystad, and Schreyer. Sheaf Cohomology and Free Resolutions
over Exterior Algebras. Trans. Am. Maths. Soc., 355:4397-4426, 2003.

[Eis95] David Eisenbud. Commutative Algebra with a View Toward Algebraic Geometry,
volume 150 of Graduate Texts in Mathematics. Springer, New York—Berlin—Heidelberg,
1995.

[Fau99] Jean-Charles Faugere. A new efficient algorithm for computing Grébner bases
(Fy). Journal of Pure and Applied Algebra, 139 (1-3):61-88, 1999.

[GP02] G.-M. Greuel and G. Pfister. A Singular Introduction to Commutative Algebra.
Springer-Verlag, Berlin—-Heidelberg-New York, 2002.

[SS98] Roberto La Scala and Michael Stillman. Strategies for Computing Minimal
Free Resolutions. J. Symbolic Comp., 26(4):409-431, 1998.

[ST02] Frank-Olaf Schreyer and Fabio Tonoli. Needles in a Haystack: Special Varieties
via Small Fields. In Eisenbud et al., editors, Computations in Algebraic Geometry with

Macaulay2, volume 8 of Springer Algorithms and Computation in Mathematics Series,
pages 251-277. Springer-Verlag, 2002.

110 INVARIANT THEORY

110.1 Introduction 3353
110.2 Invariant Rings of Finite

Groups 3354
110.2.1 Creation 3354
InvariantRing(G) 3354
InvariantRing(G, K) 3354
110.2.2 Access 3354
Group (R) 3354
CoefficientRing(R) 3354
CoefficientField(R) 3354
PolynomialRing(R) 3355
in 3355

110.3 Group Actions on Polynomials3355

110.4 Permutation Group Actions on

Polynomials 3355
- 3355
- 3355
IsInvariant(f, g) 3355
IsInvariant(f, G) 3355
110.5 Matrix Group Actions on
Polynomials 3356
- 3356
- 3356
110.6 Algebraic Group Actions on
Polynomials 3357
110.7 Verbosity. 3357
SetVerbose("Invariants", v) 3357
110.8 Construction of Invariants of
Specified Degree 3357
ReynoldsOperator(f, G) 3358
InvariantsOfDegree(R, d) 3358
InvariantsOfDegree(G, d) 3358
InvariantsOfDegree(G, K, d) 3358
Invariants0fDegree(G, P, d) 3358
InvariantsOfDegree(R, d, k) 3358
InvariantsOfDegree(G, d, k) 3358
InvariantsOf
Degree(G, K, d, k) 3358
InvariantsOf
Degree(G, P, d, k) 3358
SetAllInvariantsOfDegree(R, d, Q) 3360
110.9 Construction of G-modules . 3361
GModule (G, P, d) 3361
GModule(G, I, J) 3361
GModule (G, Q) 3361
110.10 Molien Series 3362

MolienSeries(G) 3362
MolienSeriesApproximation(G, n) 3362
110.11 Primary Invariants 3363
PrimaryInvariants(R) 3363
110.12 Secondary Invariants. . . . 3364
SecondaryInvariants(R) 3364
SecondaryInvariants (R, H) 3364
IrreducibleSecondaryInvariants(R) 3365
110.13 Fundamental Invariants . . 3366
FundamentalInvariants(R) 3366
110.14 The Module of an Invariant
Ring. 3371
Module(R) 3371

110.15 The Algebra of an Invariant
Ring and Algebraic Relations

3372
Algebra(R) 3373
Relations(R) 3373
RelationIdeal(R) 3373
PrimaryAlgebra(R) 3373
PrimaryIdeal(R) 3373
110.16 Properties of Invariant Rings 3376
HilbertSeries(R) 3376
HilbertSeriesApproximation(R, n) 3376
IsCohenMacaulay(R) 3376
FreeResolution(R) 3376
MinimalFreeResolution(R) 3376
HomologicalDimension(R) 3376
Depth(R) 3376
110.17 Steenrod Operations 3377
SteenrodOperation(f, i) 3377
110.18 Minimalization and Homoge-
neous Module Testing . . . 3378
MinimalAlgebraGenerators (L) 3378
HomogeneousModuleTest (P, S, F) 3378
HomogeneousModuleTest (P, S, L) 3378
110.19 Attributes of Invariant Rings
and Fields 3381
R‘PrimaryInvariants 3381
R‘SecondaryInvariants 3382
R‘HilbertSeries 3382
110.20 Invariant Rings of Linear Alge-
braic Groups 3383
110.20.1 Creation 3384
InvariantRing(I, A) 3384

BinaryForms(N, p) 3384

3352

BinaryForms(n, p)
110.20.2 Access .

GroupIdeal(R)
Representation(R)

110.20.3 Functions

InvariantsOfDegree(R, d)
FundamentalInvariants(R)
DerksenIdeal (R)
HilbertIdeal (R)

110.21 Invariant Fields .

110.21.1 Creation .

InvariantField (G, K)
InvariantField(G)
InvariantField (I, A)

110.21.2 Access .

COMMUTATIVE ALGEBRA Part XV

3384
. 3384

3384
3384

. 3384

3384
3385
3385
3385

3390

. 3390

3390
3390
3390

. 3391

FunctionField(F) 3391
Group (F) 3391
GroupIdeal (F) 3391
Representation(F) 3391
110.21.3 Functions for Invariant Fields . . 3391
FundamentallInvariants(F) 3391
DerksenIdeal (F) 3391
MinimizeGenerators(L) 3392
QuadeIdeal (L) 3392
110.22 Invariants of the Symmetric
Group 3394
ElementarySymmetricPolynomial (P, k) 3394
IsSymmetric(f) 3394
IsSymmetric(f, S) 3394
110.23 Bibliography 3396

Chapter 110
INVARIANT THEORY

110.1 Introduction

MAGMA contains a powerful module for computing with invariant rings and fields of fi-
nite groups and algebraic groups. The algorithms for invariant theory of finite groups
in MAGMA are based on those in the Inmvar package written in Maple, implemented by
G. Kemper [Kem96|, but also include many new ideas and improvements which are de-
scribed in detail in a subsequent paper [KS97]. Since a detailed understanding of the
latter paper is useful for better understanding of many of the functions in the chapter, it
is recommended the paper be perused by anyone wishing to make serious applications of
the functions.

Since V2.14, MAGMA also has algorithms for invariant theory of linear algebraic groups.
In particular, Derksen’s algorithm [Der99] and the algorithm by Beth and Miiller-Quade
[MQB99] have been implemented. These additions use code written by G. Kemper.

The primary goal of invariant theory in MAGMA is the computation of generators of the
invariant ring or field of a given group, which may be finite or algebraic. The ground field
may have arbitrary characteristic. In invariant theory of finite groups, the modular case,
i.e., the case where the characteristic of the ground field K divides the group order, is of
particular interest, since in that case there are still many theoretical questions unanswered.
MAGMA also contains easy algorithms to calculate properties of modular invariant rings,
such as the Hilbert series, the Cohen-Macaulay property, depth, and free resolutions.

The approach to calculating the invariant ring of a finite group is broken up into
two major steps: first a system of primary invariants is constructed, i.e., homogeneous
invariants f1,..., f, which are algebraically independent, such that the invariant ring is a
finitely generated module over A = K|f1,..., fn]. In the next step we calculate secondary
invariants, which are generators of the invariant ring as an A-module.

Throughout this chapter, K will be a field and G is a group acting linearly on the
n-dimensional vector space V' = K" with basis x1,...,x,. G may be a linear algebraic
group, in which case K is assumed to be algebraically closed, or a finite matrix group, or
a permutation group. G also acts on the symmetric algebra K[V] = S(V), which is the
multivariate polynomial ring K{[z1,...,x,] in the variables z1,...,z,. The invariant ring
R={f e K[V]| f7 = f Vo € G} is denoted by K[V]“. The G-action extends naturally to
the rational function field K (V') on V, leading to the analogous definition of the invariants
field K (V)C.

Sections 110.2.1 through 110.7 describe the general setup of invariant theory in
MAGMA. Section 110.8 is about computing invariants of specified degree. Sections 110.9
through 110.16 deal with functions for invariant rings of finite groups. The following Sec-
tions 110.17 and 110.18 present some functions whose scope is not limited to the context
of invariant theory. Sections 110.20 and 110.21.3 are about functions for invariant rings

3354 COMMUTATIVE ALGEBRA Part XV

of algebraic groups and for invariant fields, respectively. The Section 110.19 gives infor-
mation about some low-level control of the data structures associated to invariant theory.
Finally, since V2.14, the Section 110.20 deals with invariant rings of algebraic groups and
the Section 110.21.3 deals with invariant fields.

110.2 Invariant Rings of Finite Groups

110.2.1 Creation

Let G be a finite matrix or permutation group acting on the polynomial ring P =
Klzy,...,zy,] over the field K. MAacMA allows the construction of the invariant ring
R = K[V]%. The invariant ring R is a special structure which contains references to
the group G and polynomial ring P. When the invariant ring R is created using the
InvariantRing function, no explicit calculations are done until specifically invoked (e.g.,
by the PrimaryInvariants function). The elements of R are the polynomials of P which
are invariant under the action of G. Note that the parent of such polynomials is still P
— the invariant ring R is just a special structure which contains all the information about
the invariant ring. The category of invariant rings is RngInvar.

InvariantRing(G)

InvariantRing(G, K)

Construct the invariant ring R = K[V] of the finite matrix or permutation group
G over the field K. For a matrix group GG, G alone should be supplied, while for
a permutation group G, G should be supplied, together with the field K. The
appropriate multivariate polynomial ring P is automatically constructed. No other
explicit calculations are done (e.g. computation of primary invariants).

110.2.2 Access

The following functions allow simple access to basic properties of invariant rings.

Group(R)

Given the invariant ring R = K[V]¢ of the group G over the field K, return the
group G.

CoefficientRing(R)

CoefficientField(R) |

Given the invariant ring R = K[V]“ of the group G over the field K, return the
coefficient field K.

Ch. 110 INVARIANT THEORY 3355

PolynomialRing(R)

Given an invariant ring R = K[V] of the group G of degree n over the field K,
return the polynomial ring P = K|[x1,...,2,] in which the invariants of R lie. P
has the print names "x1", "x2", etc. — the angle bracket notation or the . operator
should be used to assign the variables of P to actual MAGMA variables.

Return whether the polynomial f is in R = K[V]“. Note that the parent of f is

always the polynomial ring P, never R, so a true result does not mean that the
parent of f is R.

110.3 Group Actions on Polynomials

This section describes in detail the actions which groups have on multivariate polynomial
rings.

110.4 Permutation Group Actions on Polynomials

If P is a polynomial ring in n indeterminates xi,...,x,, over any coefficient ring,
Sym(n) acts on P by permuting the indices of the indeterminates. Thus, the polyno-
mial f(x1,...,7,) is mapped into the polynomial f(xyx1),...,Zg(mn))-

ft ¢

Given a polynomial f belonging to a polynomial ring having n indeterminates, and
a permutation g belonging to a subgroup of Sym({1,...,n}), return the image of f
under g.

Given a polynomial f belonging to a polynomial ring having n indeterminates, and
a permutation group G contained in Sym({1,...,n}), return the orbit of f under

G.

IsInvariant(f, g)

Given a polynomial f belonging to a polynomial ring having n indeterminates, and
a permutation g of degree n or an element of a matrix group of degree n whose
coefficient ring is the same as that of f, return whether f is an invariant of g, i.e.,
whether f9 = f.

IsInvariant(f, G)

Given a polynomial f belonging to a polynomial ring having n indeterminates, and
a permutation group G of degree n or a matrix group of degree n whose coefficient
ring is the same as that of f, return whether f is an invariant of G, i.e., whether
f9=fforall ged.

3356 COMMUTATIVE ALGEBRA Part XV

110.5 Matrix Group Actions on Polynomials

If P is a polynomial ring in n indeterminates x1, ..., ., over the ring S, then GL(n, S) acts
on P as follows: Let x denote the vector (z1,...,2z,). Then the image g of a polynomial
f of P under the action of a matrix a of GL(n, S) is defined by g(x) = f(x * a).

f " a
Given a polynomial f belonging to a polynomial ring having n indeterminates and

coefficient ring S, and a matrix a belonging subgroup G of GL(n,S), return the
image of f under a.

Given a polynomial f belonging to a polynomial ring having n indeterminates and
coefficient ring S, and a to a subgroup of GL(n, S), return the orbit of f under G.

Example H110E1

We act on the polynomial ring in two indeterminates over the field K = Q(\/i), by a cyclic
subgroup of GL(2, K).

> K := QuadraticField(2);

>Aq := [x/K.1:xin [1, 1, -1, 1]1];
> G := MatrixGroup<2, K | Ag>;

> P<x, y> := PolynomialRing(K, 2);

>f =x"2+x xy + y2;

> g = £7G.1;

> g;

1/2%x~2 + 3/2xy~2

> £7°G;

{

1/2%x72 + 3/2xy~2,
X"2 - X%y + y72,
X"2 + x*y + y72,
3/2xx72 + 1/2%y~2

Ch. 110 INVARIANT THEORY 3357

110.6 Algebraic Group Actions on Polynomials

In the invariant theory package of MAGMA, a linear algebraic group G is given by poly-
nomials, say in variables tq,...,t,,, defined over some field K that is representable in
MAGMA, as the affine variety over the algebraic closure K of K given by these polyno-
mials. A G-module is given by a matrix A € K[t1,...,t;,]|"*™ such that a group element
(N1,...,Mm) € G acts on K™ by the matrix obtained by substituting (71, ..., 7,,) into the
polynomials occurring in the matrix A.

G then also acts on the ring of polynomials on K™ by

o(f) = foo

for o € G and f € K|xy,...,7,]. Since the algorithms in MAGMA do not work with
the algebraic closure, single group elements are never dealt with. In fact, all relevant
algorithms ony involve field elements of K, the field of definition.

110.7 Verbosity

The following procedure allows verbose information for the Invariant Theory algorithms
to be displayed.

SetVerbose("Invariants", v)

(Procedure.) Set the verbose printing level for the Invariant Theory algorithms of
MAGMA to be v. Currently the legal values for v are true, false, 0, 1, 2, 3, or 4
(false has the same effect as 0, and true has the same effect as 1). Level 1 gives a
minimal amount of useful information during the running of all the algorithms while
higher levels give more detailed information. For the primary invariants computa-
tion, the verbose output displays each possible degree list (degrees of the potential
primary invariants) before and then tries to find primary invariants corresponding to
this degree list. For the secondary invariants computation, in the non-modular case
the algorithm loops over the necessary degrees in increasing order and computes the
relevant new invariants; in the modular case the algorithm finds secondary invari-
ants with respect to a subgroup and then performs a module syzygy computation.
Full details of the algorithms are found in [KS97].

110.8 Construction of Invariants of Specified Degree

Let R = K[V]9 be the invariant ring of the group G over the field K. Let d > 0 be a fixed
integer. The homogeneous invariants in R of degree d form a vector space R4 over K.

There are two ways of explicitly constructing homogeneous invariants in R of degree d:
the Reynolds operator method and the linear algebra method. Both methods are described
in detail in [KS97].

The Reynolds operator method only works fro finite groups in the non-modular case. It
takes a monomial of degree d and yields either the zero polynomial or a non-zero invariant
of degree d. By applying it to several different monomials, a complete basis of R; can be

3358 COMMUTATIVE ALGEBRA Part XV

constructed. If G is a permutation group, a simplified version of the Reynolds operator
can always be used which is independent of the field K (and thus whether we are in the
modular case or not).

The linear algebra method works in both the modular and non-modular cases and, with
appropriate modifications, also for linear algebraic groups. It simply finds a basis for Ry
in one step — it is not possible to find a single invariant alone by this method.

MAGMA provides the function Invariants0fDegree to automatically compute a basis
of Ry by a default appropriate method — the method can also be selected by a parameter.
The function InvariantsOfDegree can also be given a positive integer k which is less than
or equal to the dimension of R;: in such a case, only k linearly independent invariants are
computed. See also the functions MonomialsOfDegree and MonomialsOfWeightedDegree
in the Ideal Theory chapter.

ReynoldsOperator(f, G)

Given a polynomial f and a matrix group G such that G' can act on f, return the
application of the Reynolds operator of G to f. (f need not be a monomial but may
be a non-homogeneous polynomial.)

InvariantsOfDegree(R, d)

InvariantsOfDegree(G, d)

InvariantsOfDegree(G, K, d)

InvariantsOfDegree(G, P, d)

Invariants MONSTGELT Default : “Both”

Construct a K-basis of the space R; of the homogeneous invariants of degree d
in the invariant ring R = K[V]“ of the group G over the field K as a sequence
of polynomials. Either the invariant ring R, the group G (if a matrix group), or
the group G (if a permutation group) together with the field K may be passed. A
specific polynomial ring P compatible with G and K may be passed so that the
returned invariants lie in P. The parameter Invariants may be supplied to select
the method of the construction of the invariants: "Reynolds" (use the Reynolds
operator), "Linear" (use the linear algebra method), or "Both" (use an appropriate
combination of both methods). The default is "Both".

InvariantsOfDegree(R, d, k)

InvariantsOfDegree(G, d, k)

InvariantsOfDegree(G, K, d, k)

InvariantsOfDegree(G, P, d, k)

Invariants MONSTGELT Default : “Both”

Construct £ linearly independent homogeneous invariants of degree d in the invariant
ring R = K[V]% of the group G over the field K as a sequence of polynomials, where
k must be greater than or equal to 1 and less than or equal to the dimension of the

Ch. 110 INVARIANT THEORY 3359

Example H110E2

space Rg4. FEither the invariant ring R, the group G (if a matrix group), or the
group G (if a permutation group) together with the field K may be passed. A
specific polynomial ring P compatible with G and K may be passed so that the
returned invariants lie in P. The parameter Invariants may be supplied to select
the method of the construction of the invariants — see the last function.

We demonstrate elementary uses of ReynoldsOperator and InvariantsOfDegree

> K<z>
> w o=
> G :=
> [
> [
> P<x1

> time

:= CyclotomicField(5);

-z"3 - z72;

MatrixGroup<3,K |
1,0,-w, 0,0,-1, 0,1,-w],
-1,-1,w, -w,0,w, -w,0,1]>;
,X2,x3> := PolynomialRing(K, 3);
ReynoldsOperator(x1~4, G);

(=273 - 272 + 1)*x174 + (12/5%z"3 + 12/5%z"2 -
4/5)*x1°3%x2 + (12/5%z"3 + 12/5%z"2 - 4/5)*x1"3%*x3

+

(-14/5*%z"3 - 14/5*z"2 + 14/5)*x172*x272 +

(4/5%z"3 + 4/5%z"2 + 4/5)*x1"2%x2%x3 + (-14/5%z"3 -
14/5%z"2 + 14/5)*x1°2*x3"2 + (12/5%z"3 + 12/5*%xz"2 -
4/5)*x1*x2°3 + (4/5*z"3 + 4/5%z"2 + 4/5)*x1*x2"2%x3

+
+

(4/5%z~3 + 4/5%z"2 + 4/5)*x1*x2%x3"2 + (12/5%z"3
12/5%z"2 - 4/5)*x1*x373 + (-z273 - z72 + 1)*x274 +

(12/5%z"3 + 12/5%z"2 - 4/5)*x2"3%x3 + (-14/5*%z"3 -
14/5%z~2 + 14/5)*x2"2*x3"2 + (12/5%z"3 + 12/5%z"2 -
4/5)*x2*x3°3 + (-z"3 - z72 + 1)*x374

Time: 0.090

time
.259
time

I20_1 := InvariantsOfDegree(G, 20, 1);

I20 := InvariantsOfDegree(G, 20);

[LeadingMonomial(f): £ in I20];

>
0
>
3.589
>
L

x1
x1

~20,
~18%x272,

x1716*xx274,
x1715%x275,
x1714%xx276,
x1713%x277,
x1712%x278

G :
K :

—, VvV V Vv -4

CyclicGroup(4);
GF(2);

InvariantsO0fDegree(G, K, 4);

x174 + x274 + x374 + x474,

3360 COMMUTATIVE ALGEBRA Part XV

x173*%x2 + x1*x4"3 + x273*%x3 + x373*x4,

x173*%x3 + x1*x373 + x273*%x4 + x2%x4°3,

x173*%x4 + x1*x2"°3 + x2*x3°3 + x3%x473,

x172%x272 + x172*%x472 + x272%x372 + x372%x472,
x172%x2%x3 + x1*x2*%x472 + x1*x372*x4 + x272*x3%x4,
x172%x2%x4 + x1*x272*%x3 + x1*x3*x472 + x2*x372*x4,
x172*%x372 + x272*%x472,

x172*%x3*%x4 + x1*x272*%x4 + x1*x2*x372 + x2*%x3*%x472,
x1*x2*x3%*x4

SetAllInvariantsOfDegree(R, d, Q)

Example H110E3

(Procedure.) Given an invariant ring R = K[V]%, an integer d > 0, and a sequence
Q@ consisting of k degree-d homogeneous invariants of GG, set the internal list of all
linearly-independent homogeneous invariants of degree d of R to be). Thus the
elements of () must describe a basis of the space of all homogeneous invariants of
degree d of R. If the Hilbert Series of R is known, it will be used to check that the
length of @ (the dimension of the basis) is correct.

We demonstrate a simple use of SetAllInvariantsOfDegree

>
>

\4

vV V V

>
>
>

L

]
>

L

R := InvariantRing(CyclicGroup(4), GF(2));
P<x1,x2,x3,x4> := PolynomialRing(R);
L :=1[

x172 + x272 + x372 + x472,
x1*x2 + x1*x4 + x2*%x3 + x3*x4,
x1*x3 + x2*x4

1

SetAllInvariantsOfDegree(R, 2, L);

InvariantsOfDegree(R, 2);

x172 + x272 + x372 + x472,
x1*x2 + x1*x4 + x2*%x3 + x3*x4,
x1%x3 + x2*x4

PrimaryInvariants(R);

x1 + x2 + x3 + x4,

x1*x2 + x1*x4 + x2*%x3 + x3*x4,
x1*x3 + x2*x4,

x1*x2*x3*x4

The following sections 110.9 through 110.16 all deal with invariant rings of finite groups.

Ch. 110 INVARIANT THEORY 3361

110.9 Construction of G-modules

This section describes how one can create a finite-dimensional G-module corresponding to
the action of a finite group G on a polynomial ring P. There are two ways one can create
a finite-dimensional action: the action on the space of homogeneous polynomials of a fixed
degree, or the action on the quotient space of polynomials by a zero-dimensional ideal (so
the quotient has finite-dimension as a vector space). The functions in this section are also
found in the chapter on general modules but are also included here since they are useful
in Invariant Theory.

GModule(G, P, d)

Given a finite permutation or matrix group G of degree n, a polynomial ring P =
K[zy,...,z,] over a field K, and a non-negative integer d, create the K[G]-module
M corresponding to the action of G on the space of homogeneous polynomials of
degree d of the polynomial ring P. The function also returns the isomorphism f
between the space of homogeneous polynomials of degree d of P and M, together
with an indexed set of monomials of degree d of P which correspond to the columns
of M.

GModule(G, I, J)

Given a finite permutation or matrix group G of degree n, an ideal I of a multivariate
polynomial ring P = K|z1,...,x,] over a field K, and a zero-dimensional subideal
J of I, create the K[G]-module M corresponding to the action of G on the finite-
dimensional quotient I/J. The function also returns the isomorphism f between
the quotient space I/J and M, together with an indexed set of monomials of P,
forming a (vector space) basis of I/.J, and which correspond to the columns of M.

GModule (G, Q)

Given a finite permutation or matrix group G of degree n, and a finite-dimensional
quotient ring @ = I/J of a multivariate polynomial ring P = K|z1,...,z,] over a
field K, create the K[G]-module M corresponding to the action of G on the finite-
dimensional quotient). The function also returns the isomorphism f between the
quotient ring @) and M, together with an indexed set of monomials of P, forming a
(vector space) basis of @, and which correspond to the columns of M.

Example H110E4

We demonstrate simple uses of the GModule function.

> q := b;

> K := GF(q);

> G := GL(3, K);

> P<x, y, z> := PolynomialRing(K, 3);

> 1 := ideal< P | x°5 - x,y°56 -y, 2756 - z >;
> Q, rho := quo< P | I >;

> f = x"3 + x"2%y + y~3;

> M, phi:= GModule(G, P, I);

3362

> Constituents(M);

[
GModule
GModule
GModule
GModule
GModule
GModule
GModule
GModule
GModule
GModule
GModule
GModule

]

of
of
of
of
of
of
of
of
of
of
of
of

> N := sub<M |

> N;

dimension
dimension
dimension
dimension
dimension
dimension
dimension
dimension
dimension
dimension
dimension
dimension

phi(f)>;

COMMUTATIVE ALGEBRA

over
over
over
over
over
over
over
over
over
over
over
over

GF(5),
GF(5),
GF(5),
GF(5),
GF(5),
GF(5),
GF(5),
GF(5),
GF(5),
GF(5),
GF(5),
GF (5)

GModule N of dimension 10 over GF(5)

> M5 := GModule(G, P, 5);

> M5;

GModule M5 of dimension 21 over GF(5)
> Constituents(M5);

Part XV

[
GModule of dimension 3 over GF(5),
GModule of dimension 18 over GF(5)
]
110.10 Molien Series

Let R = K[V]9 be the invariant ring of the finite group G over the field K. If G is a finite
matrix group in the non-modular case or a permutation group (in either the modular or

non-modular case) then the Molien series of G yields the Hilbert Series of R.

MolienSeries(G) |

The Molien series of G, returned as an element of the rational function field Z(t).
If G is a permutation group, the Molien series always exists and equals the Hilbert
series of the invariant ring of GG for any field. If GG is a matrix group, the characteristic

of the coefficient field of G must be coprime with the order of G.

MolienSeriesApproximation(G, n)

The Molien series of a permutation group G, or more precisely, an approximation to
it, as a Laurent series with n known coefficients. In contrast to the MolienSeries

function above, approximations can be computed for far larger groups.

Ch. 110 INVARIANT THEORY 3363

Example H110E5

We compute the Molien series of a matrix G and verify that the coefficients of the corresponding
power series match the number of independent invariants for each degree.

> K<z> := CyclotomicField(5);

>w :=-2"3 - z72;

> G := MatrixGroup<3,K |

> [1,0,-w, 0,0,-1, 0,1,-w],

> [-1,-1,w, -w,0,w, -w,0,1]>;

> M<t> := MolienSeries(G);

> M;

(-t"8 -t 7+t 5+ t4+t°3-1t-1)/(t"11 + £710 -
t79 - 2%t7"8 - 77 + t74 + 2%t"3 + t72 -t - 1)

> P<u> := PowerSeriesRing(IntegerRing());

>P I M;

1 +u™2 +u™4 + 2%u”™6 + 2xu"8 + 3*xu~10 + 4*xu~12 +
4*xu~14 + u”15 + 5%u~16 + u”17 + 6*u~18 + u~19 +
0(u~20)

> Coefficients(P ! M);

1, 0, 1, 0, 1, 0, 2, O, 2, O, 3, 0, 4, 0, 4, 1, 5, 1,

6, 1]

> time [#InvariantsOfDegree(G, i): i in [0 .. 19]];

(1, 0, 1, 0, 1, 0, 2, 0, 2, O, 3, O, 4, 0, 4, 1, 5, 1,

6, 11

110.11 Primary Invariants

Let R = K[V]9 be the invariant ring of a finite group G over the field K and suppose the
degree of G is n. A set of primary invariants of R is a set {f1,..., fn} of n algebraically
independent homogeneous invariants of R such that the invariant ring R is a finitely
generated module over A = K|[f1,..., fu]. A set of primary invariants always exists for any
invariant ring R. The invocation PrimaryInvariants(R) allows automatic construction of
primary invariants of R. The primary invariants are stored in R and recalled as necessary
in subsequent computations.

The latest algorithm in MAGMA to compute primary invariants, due to G. Kemper
[Kem99], now guarantees that the degrees of the primary invariants found by the algorithm
are optimal (with respect to their product and then their sum).

PrimaryInvariants(R)

Construct optimal primary invariants for the invariant ring R = K[V] as a sorted
sequence (with increasing degrees) of n polynomials of R where n is the degree of

G.

3364 COMMUTATIVE ALGEBRA Part XV

Example H110E6

We compute primary invariants for the “first As in SL(F2)”, discussed in [AM94, p. 116]. The
resulting degrees 3,5, 8, and 12 are necessarily optimal (see [Kem96]).

R := InvariantRing(G);

time p := PrimaryInvariants(R);
Time: 1.399
> [TotalDegree(f): f in pl;
[3, 5, 8, 12]

> K := GF(2);

> G := MatrixGroup<4, K |

> (o,1,0,0, t1,1,0,0, 0,0,1,1, 0,0,1,0],
> (1,0,0,0, 0,1,0,0, 1,0,1,0, 0,1,0,1],
> (t1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,11>;
>

>

110.12 Secondary Invariants

Let R = K[V]9 be the invariant ring of a finite group G over the field K and suppose the
degree of G is n. If {f1,..., fn} is a set of primary invariants for R then R can be viewed
as a finitely generated module over the algebra A = K|[f1,..., fn]. A set of secondary
invariants for R with respect to these primary invariants is set of module generators over
A. The invocation SecondaryInvariants(R) allows automatic construction of secondary
invariants of R. The secondary invariants are stored in R and recalled as necessary in sub-
sequent computations. Different algorithms are needed for the modular and non-modular
cases — see [KS97] for details.

SecondaryInvariants(R)

Construct secondary invariants for the invariant ring R = K[V]¢ (with respect to
the current primary invariants of R, constructed automatically first if necessary)
as a sorted sequence (with increasing degrees) of polynomials of R. The secondary
invariants are minimal; i.e. they are a minimal generating set for R considered as a
module over the algebra generated by the primary invariants.

SecondaryInvariants(R, H)

Construct secondary invariants for the modular invariant ring R = K[V]¢ (with
respect to the current primary invariants of R), using the subgroup H. This func-
tion can only be used if R is a modular invariant ring. H must be a subgroup of
the group G; first, secondary invariants are computed for K[V]# using the current
primary invariants for G and then these secondary invariants are used in the man-
ner described in [KS97]. The function SecondaryInvariants(R) (taking just the
invariant ring R) follows a default strategy in which it tries to use this function
with the best subgroup H appropriate. Thus usually using this function to spec-
ify a particular subgroup is not more helpful than the one-argument function but
occasionally it may be.

Ch. 110 INVARIANT THEORY 3365

IrreducibleSecondaryInvariants(R)

Return the irreducible secondary invariants of the invariant ring R = K[V]¢ (with
respect to the current primary invariants of R, constructed automatically first if
necessary) as a sequence of polynomials of R. These, together with the primary
invariants of R, generate R as an algebra over K. In the modular case, these will be
the same as the secondary invariants of R (excluding the polynomial 1) but in the
non-modular case they may form a proper subsequence of the secondary invariants.
Note that the expression of the secondary invariants in terms of the irreducible
secondary invariants is given as the second return value of the function Algebra
(see the section on the algebra of an invariant ring and algebraic relations below).

Example H110E7

We construct primary and then secondary invariants for the invariant ring R of the group G over
F2, where G is the (permutation) cyclic group of order 4. Note that in this example Noether’s
degree bound (which holds for characteristic 0) is violated.

> K := GF(2);
> G := CyclicGroup(4);
> R := InvariantRing(G, X);
> time PrimaryInvariants(R);
[
x1 + x2 + x3 + x4,
x1*x2 + x1*x4 + x2%x3 + x3*x4,
x1*x3 + x2*x4,
x1*x2*%x3*x4
]
Time: 0.040
> time SecondaryInvariants(R);
[
1,
x1*x2*%x3 + x1*x2*%x4 + x1*x3*x4 + x2*%x3*x%4,
x172%x3 + x172*%x4 + x1*x272 + x1*x372 + x272*%x4 +
x2*xx372 + x2*x472 + x3%x472,
x172%x372 + x172%x3*x4 + x1*x272%x4 + x1*x2*x3°2 +
X272%x472 + x2*%x3%x472,
x173%x3*%x4 + x172*%x272*%x3 + x172%x272*%x4 +
x172%x2*%x372 + x172*%x2%x3*x4 + x172*%x2%x472 +
x172%x372*%x4 + x172*%x3%x472 + x1*x273*%x4 +
x1*x272*%x372 + x1*x272*xx3*%x4 + x1*x272*%x472 +
x1*x2*%x37°3 + x1*x2*%x372*x4 + x1*x2%x3*x472 +
x1*x372*%x472 + x272*%x372*%x4 + x272%x3*x472 +
x2*%x372*%xx472 + x2*%x3%x473
]

Time: 0.080

3366 COMMUTATIVE ALGEBRA Part XV

110.13 Fundamental Invariants

Let R = K[V]% be the invariant ring of the group G over the field K and suppose the
degree of G is n. A set of fundamental invariants for R is a generating set of R as an
algebra over K.

FundamentalInvariants(R) |

Al MoNSTGELT Default : “King”

MaxDegree RNGINTELT Default : 0

Construct fundamental invariants for the invariant ring R = K[V]¢ as a sorted
sequence (with increasing degrees) of polynomials of R.

As of V2.15, if R is non-modular, then by default the fundamental invariants are
computed via the algorithm of S.King [Kin07]; the alternative algorithm (always
used in the modular case), which computes the fundamental invariants by minimal-
izing the union of the primary and secondary invariants of R, may be selected by
setting the parameter Al to "MinPrimSec".

If the fundamental invariants are known to be bounded by degree d, then the
parameter MaxDegree may be set to d to assist the King algorithm with an early
stopping condition in the non-modular case.

Example H110E8

We construct fundamental invariants for the invariant ring R of the group G over Q, where G is
permutation group consisting of two parallel copies of S3 in degree 6. Notice that the sequence
of fundamental invariants is shorter and simpler than the sequence consisting of the primary
invariants combined with the secondary invariants.

> K :

RationalField();

> G := PermutationGroup<é | (1,2,3)(4,5,6), (1,2)(4,5)>;
> R := InvariantRing(G, K);

> PrimaryInvariants(R);

[

x1 + x2 + x3,
x4 + x5 + x6,
x172 + x272 + x372,
x472 + x572 + x672,
x1°3 + x2°3 + x373,
x4~3 + x56°3 + x673
]
> SecondaryInvariants(R);
[

1,

x1*x4 + x2*xx5 + x3%x6,

x172*%x4 + x272xx5 + x372*x6,

x1*x472 + x2*xx572 + x3*%x672,

x172%x472 + 2%x1*x2*%x4*x5 + 2*x1*x3*x4*x6 + x272%x572 + 2*x2*x3*x5*x6 +

x372%x672,

Ch. 110

x173%x4"3 + x172*x2*xx4*xx572 + x172*%x3*x4*%x672 + x1*x272*%xx4"2*x5 +
x1*x372*xx472*%x6 + x2°3*x573 + x272*x3*x5*xx672 + x2*%x372*x572*x6 +

x373%x6"3
]
> FundamentalInvariants(R);
[
x1 + x2 + x3,
x4 + x5 + x6,
x172 + x272 + x372,
x1*x4 + x2*%x5 + x3*x6,
x4"2 + x572 + x672,
x1°3 + x2°3 + x373,
x172xx4 + x272%x5 + x372*x6,
x1*x472 + x2*x572 + x3*%x672,
x473 + x573 + x673

INVARIANT THEORY

3367

Example H110E9

As in [Kin07], we compute fundamental invariants for the invariant rings for all transitive groups
of degree 7 (in characteristic zero). For each group, we print its order and a summary of the
degrees (where the i-th element of the sequence gives the number of fundamental invariants of

degree 7).

> function deg_summary(B)

> degs := [TotalDegree(f): f in B];

> return [#[j: j in degs | j eq d]l: d in [1 .. Max(degs)]l];
> end function;

>

>d =7,

> time for i := 1 to NumberOfTransitiveGroups(d) do

> G := TransitiveGroup(d, 1i);

> R := InvariantRing(G, RationalField());

> F := FundamentalInvariants(R);

> printf "Y%o: Order: %o, Degrees: %o\n", i, #G, deg_summary(F);
> end for;

1: Order: 7, Degrees: [1, 3, 8, 12, 12, 6, 6]

2: Order: 14, Degrees: [1, 3, 4 , 6, 3, 3]

3: Order: 21, Degrees: [1, 1, 4 , 8,8, 6]

4: Order: 42, Degrees: [1, 1, 2, 3, 4, 7, 7, 5, 1]

5: Order: 168, Degrees: [1, 1, 2, 2, 2, 2, 2]

6: Order: 2520, Degrees: 1, 1, 1 , 1,1, 1, 0, 0, O,

[b b 2
0, 0,0,0,0,0,0,0,0,0, 1
[

7: Order: 5040, Degrees:
Time: 1.610

Instead of computing over the rational field, for each group G we can instead compute over
F,, where p is the smallest prime which does not divide the order of G. This is faster, and it

3368 COMMUTATIVE ALGEBRA Part XV

is conjectured that the resulting degrees are always the same as for the computation over the
rationals.

>d :=7;

> time for i := 1 to NumberOfTransitiveGroups(d) do

> G := TransitiveGroup(d, i);

> p := rep{p: p in [2 .. #G] | IsPrime(p) and #G mod p ne 0};
> R := InvariantRing(G, GF(p));

> F := FundamentalInvariants(R);

> printf "Jo: Order: %o, Degrees: %o\n", i, #G, deg_summary(F);
> end for;

1: Order: 7, Degrees: [1, 3, 8, 12, 12, 6, 6]

2: Order: 14, Degrees: [1, 3, 4, 6, 6, 3, 3]

3: Order: 21, Degrees: [1, 1, 4, 5, 8, 8, 6]

4: Order: 42, Degrees: [1, 1, 2, 3, 4, 7, 7, 5, 1]

5: Order: 168, Degrees: [1, 1, 2, 2, 2, 2, 2]

6: Order: 2520, Degrees: 1, 1, 1 , 1,1, 1, 0, 0, O,

(1,1, 1,1
o0, 0, 0, 0, 0, O, 0, 0, O, O, 11
7: Order: 5040, Degrees: [1
Time: 0.790

Finally, we can do the same for all transitive groups of degree 8 in about 2 minutes.

>d := 8;

> time for i := 1 to NumberOfTransitiveGroups(d) do
> G := TransitiveGroup(d, 1i);

> p := rep{p: p in [2 .. #G] | IsPrime(p) and #G mod p ne 0};
> R := InvariantRing(G, GF(p));

> F := FundamentalInvariants(R);

> printf "Jo: Order: %o, Degrees: %o\n", i, #G, deg_summary(F);
> end for;

1: Order: 8, Degrees: [1, 4, 10, 18, 16, 8, 4, 4 1]
2: Order: 8, Degrees: [1, 5, 9, 16, 8]

3: Order: 8, Degrees: [1, 7, 7, 7 1]

4: Order: 8, Degrees: [1, 6, 8, 12, 5]

5: Order: 8, Degrees: [1, 4, 10, 19, 15, 7 1]

6: Order: 16, Degrees: [1, 4, 5, 9, 8, 4, 2, 2]

7: Order: 16, Degrees: [1, 3, 7, 12, 13, 9, 4, 4]
8: Order: 16, Degrees: [1, 3, 6, 11, 12, 7, 2, 2]
9: Order: 16, Degrees: [1, 5, 5, 8, 4 1]

10: Order: 16, Degrees: [1, 4, 6, 11, 7, 2]

11: Order: 16, Degrees: [1, 4, 6, 11, 7, 3]

12: Order: 24, Degrees: [1, 2, 4, 8, 11, 12, 7]

13: Order: 24, Degrees: [1, 3, 3, 7, 8, 11, 7]

14: Order: 24, Degrees: [1, 3, 3, 8, 7, 9, 6, 1, 1]
15: Order: 32, Degrees: [1, 3, 4, 7, 6, 4, 2, 2]
16: Order: 32, Degrees: [1, 3, 5, 8, 7, 7, 4, 4]
17: Order: 32, Degrees: [1, 3, 4, 7, 6, 4, 2, 2]
18: Order: 32, Degrees: [1, 4, 4, 7, 3]

Ch. 110 INVARIANT THEORY 3369

19: Order: 32, Degrees: [1, 3, 3, 7, 6, 7, 5, 1]

20: Order: 32, Degrees: [1, 3, 5, 9, 6, 4, 2, 1]

21: Order: 32, Degrees: [1, 4, 4, 6, 4, 3, 2, 1]

22: Order: 32, Degrees: [1, 4, 4, 7, 3, 1]

23: Order: 48, Degrees: [1, 2, 3, 5, 6, 6, 5, 2]

24: Order: 48, Degrees: [1, 3, 3, 6, 4, 3, 1]

25: Order: 56, Degrees: [1, 1, 1, 4, 6, 13, 18, 23, 18, 6]

26: Order: 64, Degrees: [1, 3, 3, 5, 3, 3, 2, 3, 1]

27: Order: 64, Degrees: [1, 3, 5, 8, 6, 4, 2, 2]

28: Order: 64, Degrees: [1, 3, 3, 5, 4, 4, 2, 2]

29: Order: 64, Degrees: [1, 3, 3, 6, 3, 2, 1]

30: Order: 64, Degrees: [1, 3, 3, 5, 3, 2, 3, 4, 3, 2,1, 1]

31: Order: 64, Degrees: [1, 4, 4, 6, 3, 1]

32: Order: 96, Degrees: [1, 2, 2, 4, 3, 5, 4, 2, 2, 1, 1, 1]

33: Order: 96, Degrees: [1, 2, 2, 4, 3, 6, 5, 5, 31

34: Order: 96, Degrees: [1, 2, 2, 5, 2, 5, 4, 3, 31

35: Order: 128, Degrees: [1, 3, 3, 5, 3, 2, 1, 1]

36: Order: 168, Degrees: [1, 1, 1, 2, 2, 5, 6, 8, 10, 11, 8]

37: Order: 168, Degrees: [1, 1, 1, 3, 1, 5, 5, 8, 9, 9, 7]

38: Order: 192, Degrees: [1, 2, 2, 3, 3, 5, 4, 3, 2, 1, 1, 1]
39: Order: 192, Degrees: [1, 2, 2, 4, 2, 2, 1]

40: Order: 192, Degrees: [1, 2, 2, 3, 2, 2,1, 1,1, 3, 3,2, 2,1, 1, 1]
41: Order: 192, Degrees: [1, 2, 2, 4, 2, 3, 2, 2, 1]

42: Order: 288, Degrees: [1, 2, 2, 3, 2, 3, 2, 2, 1, 1]

43: Order: 336, Degrees: [1, 1, 1, 2, 1, 3, 3, 5, 4, 6, 5, 4, 2]
44: Order: 384, Degrees: [1, 2, 2, 3, 2, 2, 1, 1]

45: Order: 576, Degrees: [1, 2, 2, 3, 2, 2, 1, 1, 0, 0, 0, 1]
46: Order: 576, Degrees: [1, 2, 2, 3, 2, 2, 1,1, 0, 0, 0, 0, 1, 1, 1, 1]
47: Order: 1152, Degrees: [1, 2, 2, 3, 2, 2, 1, 1]

48: Order: 1344, Degrees: [1, 1, 1, 2, 1, 2, 2, 2, 1, 1]

49: Order: 20160, Degrees: [1, 1, 1, 1, 1, 1, 1, 1, 0, O, O,
o, o, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, 11

50: Order: 40320, Degrees: [1, 1, 1, 1, 1,1, 1, 1]

Time: 128.030

Example H110E10

We compute fundamental invariants of a degree-10 representation of Ss acting on pairs. See
[Kin07, p.11-12]. First we compute the fundamental invariants mod 7 of the permutation repre-
sentation (very difficult in practice hitherto).

> G := PermutationGroup(lO | (2,5)(3,6)(4,7),(1,5,8,10,4)(2,6,9,3,7)>;
> #G;

120

> R := InvariantRing(G, GF(7));

> time F := FundamentallInvariants(R);

Time: 29.310

> {* Degree(f): f in F *};

3370

{x 1, 2772, 3774, 4°°7, 57710, 67713, 77713, 8774, 9772 %}

COMMUTATIVE ALGEBRA

Part XV

Finally, we can compute a matrix representation of G as a direct sum of irreducible representations
of degrees 1, 4 and 5. We then compute the fundamental invariants of the invariant ring of this
representation mod 7.

O O O OO OO OOk OO O OO

O O OO OO HrH OO OOOOoOOoOOo

> Q := RationalField();

> RO := InvariantRing(G, Q);

> PO := PolynomialRing(RO) ;

> M := GModule(G, Q);

> Gl := MatrixGroup(M);

> C := CharacterTable(Gl);

>

>Pi := [p: pin Pi | p ne 0];

> L := [sub<M | Image(p)>: p in Pi];

> G :=

> G,

MatrixGroup(10, Rational Field)

Generators:
[1 0 0] 0 0
[O 1 1/3 1/3 1/3
[O 0 1/3 -2/3 -2/3
[© 0 -2/3 1/3 -2/3
[© 0 -2/3 -2/3 1/3
[0 0 0 0 0
[0 0 0 0 0]
[0 0 0 0 0]
[© 0 0 0 0
[0 0 0 0 0
[1 0 0 0 0]
[o o0 1/3-2/3 -2/3
[© 0 -2/3 1/3 -2/3
[© 0 -2/3 -2/3 1/3
[O 1 1/3 1/3 1/3
[0 0 0 0 0]
[0 0 0 0 0]
[© 0 0 0 0
[0 0 0 0 0
[0 0 0 0 0]

> Gp := ChangeRing(G, GF(7));

> #Gp;

120

> Rp := InvariantRing(Gp);

> time Fp := FundamentalInvariants(Rp);

Time: 35.380

> {* Degree(f): f in Fp *};

{x 1, 2772, 3774, 4°°7, 57710, 67713, 77713, 8774, 9772 %}
> [Degree(f): f in F] eq [Degree(f): f in Fp];

P O, OFP,r OO0OO0OO0OO0OFr,r OO OO0 O0OO0oOOoOOo

O O OO P, OO O0OO0OO0OO0OO0OOFHrH OO OO OoOOo

Pi := [&+[Q!'Integers()!c(g)*MatrixAlgebra(Q, 10)!g: g in Gl]/#G: c in C];

MatrixGroup(DirectSum(DirectSum(L[1],L[2]),L[3]1));

0]
0]
0]
0]
0]
0]
0]
1]
0]
0]
0]
0]
0]
0]
0]
0]
1]
0]
0]
0]

Ch. 110 INVARIANT THEORY 3371

true

110.14 The Module of an Invariant Ring

Let R = K[V]9 be the invariant ring of a finite group G over the field K and suppose the
degree of G is n. Suppose also that primary invariants {f1,..., f,} for R have been con-
structed, together with minimal secondary invariants S = {¢1,...,gm} for R with respect
to these primary invariants. (These secondary invariants may possess non-trivial module
syzygies.) Then R can be considered as a module over the algebra A = K|[f1,..., f,] with
the minimal (module) generating set S.

To compute with this module structure of R easily, MAGMA automatically constructs
the graded multivariate polynomial algebra A" = Klt;,...,t,] (with the weighted degree
of the variable ¢; defined to be the degree of f;) which is isomorphic to A, and then
constructs the graded module M = A" /Q over A’ with the quotient relations @) given by
the syzygies of the g; (and with the weighted degree of column i equal to the degree of g;).
The algebra A’ is isomorphic to A under the map ¢; — f;, and the module M is isomorphic
to R (considered as a module) under the map M.i — g; (extended by the isomorphism
from A’ onto A). (See the chapter on modules over K[x1,...,z,] for details on how to
compute with the module M and an explanation of quotient relations, the unit vectors
M.i, etc.) Once the module M is created, together with the isomorphism f : R — M,
one can apply f to a general element h of R to obtain the element of M corresponding
to h. This effectively yields a representation of h as a sum)., ka;g; with a; € A in
terms of the primary and secondary invariants. This representation is also unique up to
the relations given by the syzygies of the g;.

When creating the module M, the coefficient ring A" of M is assigned the print names
"t1", "t2", etc. — the angle bracket notation or the . operator should be used to assign
the variables of A’ to actual MAGMA variables.

Module(R) |

The module M isomorphic to R = K[V]%, together with the isomorphism f : R —
M.

Example H110E11

We create the module M corresponding to the invariant ring R of the group G generated by the
4 by 4 Jordan block over F3.

> K :
> G :
> R := InvariantRing(G);

> P<x1,x2,x3,x4> := PolynomialRing(R) ;
>

>

>

[

GF(3);
MatrixGroup<4,X | [1,0,0,0, 1,1,0,0, 0,1,1,0, 0,0,1,1]1>;

p := PrimaryInvariants(R);

s := SecondaryInvariants(R);
[TotalDegree(f): f in pl;

1, 2, 3, 91

3372 COMMUTATIVE ALGEBRA Part XV

> [TotalDegree(f): f in s];
(0, 3,4,5,6,7,8, 9]
> M, f := Module(R);

> M;
Full Quotient Module of degree 8
TOP Order

Column weights: 0 3 4567 8 9
Coefficient ring:
Graded Polynomial ring of rank 4 over GF(3)
Lexicographical Order
Variables: t1, t2, t3, t4
Variable weights: 1 2 3 9
Quotient Relations:

[
t1[7] + 2*t2[6] + t3[5],
t1[4] + 2*t2[3] + t3[2]
]
> h := x17°5*%x2 + 2*%x17°3%x373 + 2*x276;
> h;
x175*%x2 + 2*%x173*%*x373 + 2*x276
>m := f(h);
> m;

t174*xt2[1] + t1°3[2] + t273[1]
> // Evaluate in the primaries and secondaries:
> pl[1]-4xp[2]*s[1] + p[1]1~3*s[2] + p[2]~3*s[1];
x176%x2 + 2*x173%x373 + 2%x276

110.15 The Algebra of an Invariant Ring and Algebraic Relations

Let R = K[V] be the invariant ring of a finite group G over the field K and suppose
the degree of G is n. Suppose also that primary invariants {f,..., f,} for R have been
constructed, together with minimal secondary invariants S = {g1,...,9m} for R with
respect to these primary invariants. Suppose also that the irreducible secondary invariants
for R are S = {hq, ..., h,} so that the g; are power products of the h;. We write g; = p;(h;)
where the p; are monomials of the indeterminates ¢1,...,¢.. Then R is generated as an
algebra over K by the primary invariants f1,..., f, and the irreducible secondary invariants
hi,...,h.. MAGMA allows the construction of a polynomial algebra A with indeterminate
names "f1", "f2" etc. corresponding to the primary invariants and indeterminate names
"h1", "h2" etc. corresponding to the irreducible secondary invariants. Thus R can be
regarded as an homomorphic image of A and finding the algebraic relations between these
(algebra) generators of R yields a presentation of R as a quotient of a polynomial algebra.
The functions in this section construct the algebra A and the algebraic relations for R.
When creating the algebra A, the algebra A is assigned the print names "f1", "f2",

Ch. 110 INVARIANT THEORY 3373

"h1", "h2", etc. — the angle bracket notation or the . operator should be used to assign
the variables of A to actual MAGMA variables.

Algebra(R)
Given an invariant ring R = K[V]Y, return the polynomial algebra A =
K(f1,---; fu,h1,...,h] of which R is an homomorphic image. This function also

returns a sequence () giving the secondary invariants in terms of the irreducible sec-
ondary invariants as monomials in A. Thus Q[i] is the monomial p;(¢;) mentioned
in the introduction to this section. Note that the secondary invariant 1 is not an
irreducible secondary invariant so no h-variable corresponds to it (the polynomial 1
in A simply corresponds to it).

Relations(R)

Given an invariant ring R = K[V]%, return a (sorted) sequence L giving the alge-
braic relations amongst the algebra generators of R as elements of the algebra A
corresponding to R. Thus R is isomorphic as an algebra (or ring) to the quotient of
A by the ideal of A generated by the relations in L.

RelationIdeal (R)

Given an invariant ring R = K[V]%, return the ideal of algebraic relations corre-
sponding to R. This is simply the same as taking the ideal generated by the algebra
A by the sequence L returned by the function Relations(R).

PrimaryAlgebra(R)

Given an invariant ring R = K[V]%, return the algebra corresponding to the primary
invariants of R as a graded polynomial ring (with the weights corresponding to the
degrees of the primary invariants).

PrimaryIdeal(R)

Given an invariant ring R = K|[V]Y, return the ideal generated by the primary
invariants of R (this is stored in R).

Example H110E12

We create the invariant ring R = K [V]G where G is a degree-6 permutation representation of
the direct product Cs x Cs of two cyclic groups both of order 3 and K is the rational field.
We construct the algebra A and the sequence @) giving the secondary invariants in terms of the
irreducible secondary invariants. We then note that the degree-6 secondary invariant is obtained
as the product of two degree-3 irreducible secondary invariants. We then construct the list L
of algebraic relations in A for R. Thus R is isomorphic to the quotient ring A/ < L >. We
then construct an homomorphism A from A onto R and check that the relations in L are correct.
Finally, we check that the Hilbert series of the (quotient by the) ideal of A generated by L is the
same as the Hilbert series of R as expected.

> G := PermutationGroup<6 | (1, 2, 3), (4, 5, 6)>;
> R := InvariantRing(G, RationalField());

3374 COMMUTATIVE ALGEBRA Part XV

> P := PrimaryInvariants(R);
> P
[
x1 + x2 + x3,
x4 + x5 + x6,
x172 + x272 + x372,
x4"2 + x572 + x672,
x1°3 + x273 + x373,
x4"3 + x573 + x673
]
> S := SecondaryInvariants(R);
> S;
[
1,
x172%xx2 + x1*x372 + x272*x3,
x4°2%x5 + x4*xx672 + x572*x6,
x172%x2%x472*%xx5 + x172*%x2*%x4*xx672 + x172*%x2*%x572%x6 +
x1*x372*%x4"2*%x5 + x1*x372*%x4*x672 + x1*x372*%x572*%x6 +
x272%x3*%x4"2*%x5 + x272%x3*x4*x672 + x272*x3*%x572*%x6
]
> H := IrreducibleSecondaryInvariants(R);
> H;
[
x172%x2 + x1*x372 + x272%x3,
x4~ 2%x5 + x4*x672 + x572*x6
]
> A, Q := Algebra(R);
> A;

Graded Polynomial ring of rank 8 over Rational Field
Lexicographical Order
Variables: f1, f2, f3, f4, f5, f6, hl, h2
Variable weights: 1 1 22 3 3 33
> Q;
[
1,
hi,
h2,
hi1xh?2
]
> // Thus S[4] must be H[1]*H[2]:
> S[4];
x172%x2%x472*%xx5 + x172*%x2*%x4*xx672 + x172*%x2*%x572%x6 +
x1*x372%x472*%xx5 + x1*x372%x4*xx672 + x1*x3"2*%x572%x6 +
Xx272%x3*%x472*%xx5 + x272*%x3*%x4*xx672 + x272*%x3*x572%x6
> H[1];
x172%x2 + x1*x372 + x272%x3
> H[2];
x472*%x5 + x4*x6°2 + x572%x6

Ch. 110 INVARIANT THEORY 3375

> H[1]1#H[2] eq S[4];
true
> L := Relations(R);
> L;
[
-1/24%£176 + 3/8*f174*f3 - 1/3*%f1°3*%f5 - 9/8*f172*f37°2 +
2xf1xf3*%f5 + f1xf3+«hl + 1/8*xf3"3 - f5°2 - fb5*xhl - h1"2,
-1/24%£276 + 3/8*f274%f4 - 1/3*%f27°3*f6 - 9/8*f272*f4"2 +
2xf2xf4*xf6 + f2xf4+xh2 + 1/8%xf4°3 - f6°2 - f6+«h2 - h2°2

// Construct homomorphism h from A onto (polynomial ring of) R:

h := hom<A -> PolynomialRing(R) | P cat H>;

// Check images of L under h are zero so that elements of L are relations:
h(L);

—, V V V Vv

0,
0

// Create relation ideal and check its Hilbert series equals that of R:
I := RelationIdeal(R);

I;

Ideal of Graded Polynomial ring of rank 8 over Rational Field

VvV V v

Lexicographical Order
Variables: f1, f2, £3, f4, f5, f6, hl, h2
Variable weights: 1 1 2 2 3 3 3 3
Basis:
L
£176 - 9%f174%£f3 + 8*f173%f5 + 27xf172%xf372 - 48xf1*f3xf5 -
24*f1%£3%h1 - 3*£373 + 24*£f572 + 24*f5xhl + 24%h172,
£276 - 9xf274xf4 + 8xf273*%f6 + 27*f272%xf472 - 48xf2xf4*xf6 -
24*£2%£4*h2 - 3*f473 + 24*£672 + 24*f6*h2 + 24%h272
]
> HilbertSeries(I);
(t74 - 2%t73 + 3*t72 - 2%t + 1)/(t710 - 4%t"9 + 6%t"8 - 6*%t~7 +
9%t"6 — 12%t"5 + 9%xt"4 - 6%t"3 + 64t72 - 4*t + 1)
> HilbertSeries(I) eq HilbertSeries(R);
true

3376 COMMUTATIVE ALGEBRA Part XV

110.16 Properties of Invariant Rings

The following functions return non-trivial structural properties of invariant rings of finite
groups.

| HilbertSeries(R) |

The Hilbert series of the invariant ring R = K[V]9, returned as an element of the
rational function field Z(¢). The Molien series of G will be used if possible; otherwise
(the modular matrix group case) secondary invariants for R will be constructed to
determine the result.

HilbertSeriesApproximation(R, n)

The Hilbert series of the invariant ring R = K[V]Y, returned as a Laurent series
with n known terms. The conjugacy classes of G will be used to compute the
approximation.

IsCohenMacaulay (R)

Given the invariant ring R = K[V]¢ of the group G over the field K, return true
iff R is Cohen-Macaulay. This is always true in the non-modular case. Otherwise,
secondary invariants for R will be constructed to determine the result.

FreeResolution(R) |

Given the invariant ring R = K[V] of the group G over the field K, return
a free resolution of (the module of) R. This is just the same as the invocation
FreeResolution(Module(R)). The free resolution is returned as a sequence F' such
that F[1] is M, F[i + 1] is the syzygy module of F[i] for i < #F, and the last
element of F' is free (its basis has no syzygies).

MinimalFreeResolution(R) |

Given the invariant ring R = K[V]% of the group G over the field K, return a
minimal free resolution of (the module of) R. This is just the same as the invocation
MinimalFreeResolution(Module(R)).

HomologicalDimension(R)

Given the invariant ring R = K[V]% of the group G over the field K, return the
homological dimension of R. This is just the length of a minimal free resolution of
R minus 1 (taking account of the fact that the module M of R is always included
in the free resolution).

Depth(R)

Given the invariant ring R = K[V]¢ of the group G over the field K, return the
depth of R. This is n —d by the Auslander-Buchsbaum formula, where n is the rank
of R and d is the homological dimension of R.

Ch. 110 INVARIANT THEORY 3377

Example H110E13

We construct a minimal free resolution of the invariant ring of the group generated by the degree-5
Jordan block over Fy and verify that the depth is 3.

> K:=GF(2);

> G := MatrixGroup<5,X | [1,0,0,0,0, 1,1,0,0,0, 0,1,1,0,0,
> 0,0,1,1,0, 0,0,0,1,1]1>;

> R := InvariantRing(G);

> time F := MinimalFreeResolution(R);

Time: 0.690

> F;

Chain complex with terms of degree 3 down to -1
Dimensions of terms: 0 1 7 22 0

> Depth(R);

3

> HomologicalDimension(R) ;

2

Sections 110.17 and 110.18 present functions whose scope is not limited to the context
of invariant theory.

110.17 Steenrod Operations

SteenrodOperation(f, i)

The i-th Steenrod operation P'(f) of f, which must be a multivariate polynomial
with coefficients in a finite field, and ¢ must be a non-negative integer.

Example H110E14

We demonstrate an elementary use of Steenrod operations.

K:=GF(3);

F4:=MatrixGroup<4,K |
[-1,0,0,0, 1,1,0,0, 0,0
(1,1,0,0, 0,-1,0,0, 0,1,
[1,0,0,0, 0,1,-1,0, 0,0, s
(1,0,0,0, 0,1,0,0, 0,0,1,1, 0,0,0,-1] >;

R := InvariantRing(F4);

f2 := InvariantsOfDegree(R, 2)[1];

f4 := SteenrodOperation(f2, 1);

10 := SteenrodOperation(f4, 3);

f4;

2*%x174 + x173%x3 + 2%x173*%x4 + x1*x373 + 2*x1*x473 + 2*%x273%x3 + x273*%x4 +

2*%x2%x373 + x2*%x4°3 + x474
> £10;
2*%x1710 + x179%x3 + 2*%x179*x4 + x1*x379 + 2%x1*x479 + 2*%xx279*%x3 + x279*x4 +

V VV V V V V VYV VYV

3378

COMMUTATIVE ALGEBRA Part XV

2*x2*xx379 + x2*xx4°9 + x4710

> f4 in R;
true
> £10 in R;
true

110.18 Minimalization and Homogeneous Module Testing

The following functions work with collections of polynomials which are considered as gen-
erators for subalgebras or submodules of a polynomial ring. They are repeated from the
chapter on multivariate polynomials since they are used extremely often in invariant theory
to express an invariant in terms of the primary and secondary invariants of an invariant
ring. Full descriptions of the functions are not given here. See the descriptions in the
chapter on multivariate polynomials.

MinimalAlgebraGenerators (L)

Let R = K|z1,...,z,] be a polynomial ring of rank n over the field K. Suppose
L is a set or sequence of k polynomials py,...,pr in R. Let A = Klpi,...,px] be
the subalgebra (not ideal) of R generated by L. This function returns a minimal
generating set of the algebra A as a (sorted) sequence of elements taken from L.

HomogeneousModuleTest (P, S, F)

Let R = K|z1,...,z,]| be a polynomial ring of rank n over the field K. Suppose
P is a sequence of k£ homogeneous polynomials pi,...,pg in R and suppose S is a
sequence of r homogeneous polynomials s1,...,s, in R. Let A = K|[p1,...,pg] be
the subalgebra (not ideal) of R generated by P and let M = A[sy,...,s,| be the
A-module generated by S over A. Finally, suppose F' is an element of R. This
function returns whether F' is in the module M (considered as a submodule of R).
If the result is true, the function also returns a sequence C' = [cq,. .., ¢,] of length
r with ¢; € K[ty,...,t,] such that F =3, ¢;(p1,-..,pk) - Si.

HomogeneousModuleTest (P, S, L)

Let R = K|z1,...,z,] be a polynomial ring of rank n over the field K. Suppose
P is a sequence of £ homogeneous polynomials py,...,pr in R and suppose S is
a sequence of r homogeneous polynomials s1,...,s, in R. Let A = K|[p1,...,pk]
be the subalgebra (not ideal) of R generated by P and let M = Alsy,...,s,| be
the A-module generated by S over A. Finally, suppose L is a sequence of length [
of elements of R which are all homogeneous of (weighted) degree d. This function
returns parallel sequences B and V with the following properties:

(a) B is sequence of length [of booleans such that for 1 <i <[, BJ[i] is true iff L[i]
is in the module M.

Ch. 110 INVARIANT THEORY 3379

(b)V is a sequence of length [consisting of sequences of length r and consisting
of polynomials in the polynomial ring 7' = K|[ty,...,t:]. (The polynomial ring
T = K]Jt1,...,t.] is constructed separately but automatically with the print
names t1, t2, etc.) If BJ[i] is false (so L[i] is not in M), V[i] is a sequence of r
zero polynomials. Otherwise V[i] is a sequence of r polynomials ¢; 1,...,¢;, in
T such that that L[i] = 7 _ ¢ j(p1,- -, Dk) - 55

Example H110E15

We demonstrate how the function MinimalAlgebraGenerators can be used to compute funda-
mental invariants (in fact, the Macma function FundamentalInvariants does just this).

> K := RationalField();

> G := PermutationGroup<6 | (1,2,3)(4,5,6), (1,2)(4,5)>;
:= InvariantRing(G, K);

= PrimaryInvariants(R);

—, VvV V V
U ' o
.l.

x1 + x2 + x3,

x4 + x5 + x6,

x172 + x272 + x372,
x4°2 + x572 + x672,
x173 + x273 + x373,
x4°3 + x5673 + %673
S := SecondaryInvariants(R);
S

)

—, VvV Vv

1,
x1*x4 + x2*%x5 + x3*x6,
x172*%x4 + x272%x5 + x372*x6,
x1*x472 + x2*xx572 + x3*x672,
Xx172%x472 + 2*%x1*x2*%x4*x5 + 2*x1*x3*x4*x6 + x272%x572 + 2*x2*x3*x5*x6 +
x372%x672,
x173%x473 + x172%x2*%x4*x572 + x172%x3*%x4*x672 + x1*x272%x472*%x5 +
x1*x372*%x472*%x6 + x273%x573 + x272*%x3*xb5*x672 + x2*%x372*xx572*%x6 +
x373%x6"3
]
> MinimalAlgebraGenerators(P cat S);
[
1,
x1 + x2 + x3,
x4 + x5 + x6,
x172 + x272 + x372,
x1*x4 + x2*%x5 + x3*x6,
x472 + x572 + x672,
x1°3 + x273 + x373 + x4*x5*x6,
x172xx4 + x272%x5 + x372*x6,

3380 COMMUTATIVE ALGEBRA Part XV

x1*x472 + x2*xx572 + x3*%x672,
x4"3 + x573 + x673

Example H110E16

We demonstrate uses of the function HomogeneousModuleTest in invariant theory.

> // Create invariant ring R with primaries P, secondaries S
> R := InvariantRing(CyclicGroup(4), GF(2));

> P := PrimaryInvariants(R);

> S := SecondaryInvariants(R);

> #S;

5

> S[5];

x173%x372 + x172%x272*%x3 + x172*%x2*%x372 + x172%x2*%x472 +
x172%x373 + x172%x372*%x4 + X1*x272*%x472 + x1*x372*%x472 +
X273%x472 + x272%x372*xx4 + x272*%x3*%x472 + x272%x473

> // Write S[2] in terms of P and S

> HomogeneousModuleTest(P, S, S[2]72);

true [
t172%xt372 + t273,
t1%t2,
t1°3,
0,
0
]

> // Find all invariants I5 of degree 5

> I5 := InvariantsOfDegree(R, 5);

> 1I5;

[
x1°5 + x275 + x375 + x475,
x174*%x2 + x1*x474 + x274%x3 + x374%x4,
x174%x3 + x1*x374 + x274*x4 + x2%x47°4,
x174xx4 + x1*x274 + x2*x374 + x3%x47°4,
x173*%x272 + x172*%x4"3 + x273*%x372 + x373%x472,
x173*%x2%x3 + x1*x2%x4°3 + x1*x373*x4 + x2"3*x3*%x4,
x173*%x2*%x4 + x1*x273%x3 + x1*x3*%x4"3 + x2*x3"3*%x4,
x173%x372 + x172%x373 + x273*%x472 + x272*%x473,
x173*%x3*%x4 + x1*x273*x4 + x1*x2*x373 + x2*x3*x473,
x173*%x472 + x172*%x273 + x272*%x373 + x372%x473,
x172%x272%x3 + x172*%x2*x472 + x1*x372*%x472 + x272*x372*x4,
x172%x272*%x4 + x172*%x3%x472 + x1*x272%x372 + x2*%x372*%x472,
x172%x2%x372 + x172*%x372*%x4 + x1*x272*%x472 + x272*%x3*x472,
x172%x2%x3*x4 + x1*x272%x3*x4 + x1*x2%x372*%x4 + xX1*x2%x3*%x472

]
> // Write all elements of I5 in terms of P and S
> // (the t-variables correspond to elements of P and

Ch. 110 INVARIANT THEORY 3381

> // the "columns" of the inner sequences to elements of S)

> HomogeneousModuleTest (P, S, I5);

[true, true, true, true, true, true, true, true, true, true,
true, true, true, true]

L

[t17°5 + t173%t2 + t173*%t3 + t1*t272 + t1*t372 + t1xt4,

0, t1”2 + t2 + t3, 0, 0 1,

[t173%t2 + t1°3*%t3 + ti1*xt4, t1°2 + t2, t2 + t3, 0, 0 1],

[t1°3%t3 + t1%t3"2 + ti1*xt4, 0, t1°2 + t2 + t3, 0, 0 1],
[t173%t3 + t1*t2°2 + ti1*xt4, t1°2 + t2, t2 + t3, 0, 0 1,
[t1*t2°2 + t1%t3"2, t2, t1°2, 0, 1],

[t1*t2*t3, t3, t2 + t3, 0, 11,

[t1*t2*%t3 + tlxt4, 0, t1°2 + t2, 0, 0 1,
[t1*xt3"2 + t1xt4, 0, t3, 0, 0 1],

[0, t3, t3, 0, 11,

[t1*t3"2, t2, t1°2 + t2, 0, 11,

[t1*xt3"2, 0, 0, 0, 11,

[t1xt3"2, 0, t2, 0, 1 1,

[tixt4, 0, t3, 0, 0 1],

[tixt4, 0, 0, 0, O]

110.19 Attributes of Invariant Rings and Fields

In this section we list various attributes of invariant rings which can be examined and
set by the user. This allows low-level control of information stored in invariant rings or
fields. Note that when the user sets an attribute, only minimal testing can be done on
the value so if an incorrect value is set, unpredictable results may occur. Note also that

if an attribute is not set, referring to it in an expression (using the

‘ operator) will not

trigger the calculation of it (while intrinsic functions do); rather an error will ensue. Use
the assigned operator to test whether an attribute is set.

R‘PrimaryInvariants

The attribute for the primary invariants of invariant ring R = K[V]Y. If the
attribute R‘PrimaryInvariants is examined, either the current primary invari-
ants of R are set so they are returned or an error results. If the attribute
R‘PrimaryInvariants is set by assignment, it must be sequence of n algebraically-
independent invariants of G, where n is the rank of R. MAGMA will not necessarily
check that this condition is met since that may be very time-consuming. If the
attribute is already set, the new value must be the same as the old value. Note
that this attribute is useful when it is desired to compute secondary invariants of R
with respect to some specially constructed primary invariants which would not be
constructed by the automatic algorithm in MAGMA.

3382

COMMUTATIVE ALGEBRA Part XV

R‘SecondaryInvariants

The attribute for the secondary invariants of invariant ring R = K[V]“. If the
attribute R‘SecondaryInvariants is examined, either the current primary in-
variants of R are set so they are returned or an error results. If the attribute
R‘SecondaryInvariants is set by assignment to (), primary invariants for R must
already be defined, and () must be sequence of secondary invariants with respect to
the primary invariants of R. MAGMA will not necessarily check that this condition
is met since that may be very time-consuming. If the attribute is already set, the
new value must be the same as the old value.

| R‘HilbertSeries |

The attribute for the Hilbert series of invariant ring R = K[V]%. If the attribute
R‘HilbertSeries is examined, either the Hilbert series of R is computed so it is
returned or an error results. If the attribute R‘HilbertSeries is set by assignment
to H, H must be rational function in the function field Z(t) and equal to the Hilbert
series of R. MAGMA will not necessarily check that this condition is met since that
may be very time-consuming. If the attribute is already set, the new value must be

the same as the old value.

Example H110E17

We demonstrate elementary uses of attributes.

// Create group G and subgroup H of G and invariant rings
// RG and RH of G and H respectively.

G := CyclicGroup(4);

H := sub<G|G.1°2>;

RG := InvariantRing(G, GF(2));

RH := InvariantRing(H, GF(2));

F<t> := FunctionField(IntegerRing());

S = (£73 + t72 -t + 1)/(£78 - 2%t77 + 2%t75 - 2%t74 +
2%t73 - 2%t + 1)

RG‘HilbertSeries := S;

// Note RG has no primary invariants yet so let Magma compute them as PG.
RG‘PrimaryInvariants;
>> RG‘PrimaryInvariants;

>
>
>
>
>
>
>
> // Create Hilbert Series S of RG and set it in RG.
>
>
>
>
>
>
>

Runtime error in ¢

but not assigned

> PG := PrimaryInvariants(RG);
> PG;

[

: Attribute ’PrimaryInvariants’ for this structure is valid

x1 + x2 + x3 + x4,
x1*x2 + x1*x4 + x2*%x3 + x3*x4,

Ch. 110 INVARIANT THEORY 3383

x1*x3 + x2*x4,

x1*x2%x3%*x4
]
>
> // Set primary invariants of RH to PG and compute secondary
> // invariants of RH with respect to PG.
> RH‘PrimaryInvariants := PG;
> SecondaryInvariants(RH) ;
[
1,
X2 + x4,
x2%x4 ,
x1*x2 + x1*x3 + x272 + x2*%x4 + x3*x4 + %472,
x172*%x2 + x1*x2%x3 + x1*x3*x4 + X273 + x372*%x4 + x473,
x172%x2 + x1*x272 + x1*x2*%x3 + x1*x2*%x4 + x1*x3*%x4 + X1*x472
+ x273 + x272%x3 + x2*x3*%x4 + x372*%x4 + x3*x472 + %473,
x1*x2*xx472 + x272*%x3%x4 + x272*%xx472,
x172%x2*%x472 + x1*x272%x3*x4 + x1*%x272*%x472 + x1*x2%x3*x472 +
X273%x472 + x272*%x372*%x4 + x272*%x3%x472 + x272*%x473
]

110.20 Invariant Rings of Linear Algebraic Groups

By definition, a linear algebraic group is an affine variety G together with morphisms
giving G the structure of a group. In the invariant theory algorithms of MAGMA, the
group structure of G is nowhere required. Therefore an algebraic group will be defined
by simply giving polynomials defining G as an affine variety. A G-module of an algebraic
group is a finite dimensional vector space K™ together with a morphism G — GL,, of
algebraic groups. In MAGMA, such a morphism is given by specifying an n by n matrix
whose entries are polynomials in the same variables as the polynomials specifying G (for
more details, see section 110.6). An invariant ring of a linear algebraic group is constructed
by giving a linear algebraic group together with a G-module. MAGMA makes no checks
that the variety defined by the user has a multiplication making it into an algebraic group,
or that the morphism G — GL,(K) really provides an action of G. If they do not,
the computations will have unpredictable results. Likewise, MAGMA is unable to decide
whether an algebraic group is reductive or linearly reductive. Therefore the user should
indicate whether a group has these properties at creation by the options described below.
This is important because Derksen’s algorithm only works for linearly reductive groups.

3384 COMMUTATIVE ALGEBRA Part XV

110.20.1 Creation

InvariantRing(I, A)

Reductive BooLELT Default : false
LinearlyReductive BooLELT Default : false
PolynomialRing RNGMPoL Default :

Construct the invariant ring R for the algebraic group G defined by the ideal I and
representation matrix A.

If the parameter Reductive is set to true, then G is assumed to be reductive,
while if the parameter LinearlyReductive is set to true, then G is assumed to be
linearly reductive.

If the parameter PolynomialRing is set to a value P, then P is used as the
polynomial ring in which the invariants of R will lie.

BinaryForms (N, p)

BinaryForms(n, p)

Let N = [nq,...,nk| be a sequence of positive integers and let p be a positive prime
or zero. Let G = SLy(K) with K an algebraically closed field of characteristic p.
This function defines the action on a direct sum of spaces of binary forms with
degrees given by the n;. The function returns three items: the ideal I defining G
as an algebraic group, the representation matrix A (as a sequence of sequences of
polynomials), and a polynomial ring on which G acts with appropriate naming of
variables.

The second version of the function is given an integer n, and takes N to be [n].

110.20.2 Access

GroupIdeal(R)

Given an invariant ring R defined over an algebraic group G, return the ideal I
defining G.

Representation(R)

Given an invariant ring R defined over an algebraic group G, return the represen-
tation matrix A for G.

110.20.3 Functions

InvariantsOfDegree(R, d)

Return a K-basis of the space Ry of the homogeneous invariants of degree d in the
invariant ring R = K[V] of the algebraic group G over the field K as a sequence
of polynomials.

Ch. 110 INVARIANT THEORY 3385

FundamentalInvariants(R) |

Optimize BooLELT Default : true
Minimize BooLELT Default : true
MinimizeHilbert BOOLELT Default : true
Force BOOLELT Default : false

Given an invariant ring R defined over an algebraic group, return a sequence of
fundamental invariants of R, using Derksen’s algorithm.

By default, the computation of homogeneous invariants is optimized by extend-
ing at each the degree the basis obtained from multiplying lower-degree invariants
by appropriate monomials. This method can be suppressed by setting Optimize
to false. By default the generators will be minimal. By setting the parameter
Minimize to false, no minimization will be attempted. By setting the parameter
MinimizeHilbert to false, the basis of the Hilbert ideal will not be minimized.

By default the group must be linearly reductive. Setting the parameter Force to
true will force the application of Derksen’s algorithm even though the group may
not be linearly reductive.

DerksenIdeal (R) |

Given an invariant ring R defined over an algebraic group, return a sequence of
generators of the Derksen ideal of R. The Derksen ideal is an ideal D of Py, ..., Y],
where P = K{z1,...,x,] is the ambient polynomial ring of R, and the y; are new
indeterminates. By definition, D is the intersection of all the ideals

(vy1 —g9(x1), .- yn — g9(xn))

for all g € G, the group of R. Geometrically, D is the vanishing ideal of the subset
{(z,9(z))|z € K",g € G}

of the cartesian product K" x K".

HilbertIdeal(R) |
Minimize BoOOLELT Default : true
Force BooLELT Default : false

Given an invariant ring R defined over a linear algebraic group, return the Hilbert
ideal of R. This is the ideal in the polynomial ring generated by all non-constant,
homogeneous invariants. The result is a sequence of homogeneous generators (not
necessarily invariant).

By default the generators will be minimal. By setting the parameter Minimize
to false, no minimization will be attempted. Also, setting the parameter Force to
true will force the application of Derksen’s algorithm even though the group may
not be linearly reductive.

3386 COMMUTATIVE ALGEBRA Part XV

Example H110E18

We consider invariant ring of the group G = SL2(Q), which is is characterised by the equation
det(A) = 1.

Q := RationalField();

P<[a]>:=PolynomialRing(Q, 4);

A := MatrixRing(P,2)!a;

IG := ideal<P | Determinant(A) - 1>;

IG;

Ideal of Polynomial ring of rank 4 over Rational Field
Lexicographical Order

Variables: al[1], al2], al3], al4]

Basis:

L

vV V V Vv V

al1]l*al[4] - al[2]*a[3] - 1
]

The simultaneous action of G on three vectors is given by the matrix I3 ® A:

> T := TensorProduct(MatrixRing(P, 3) ! 1, A);
> T,

[a[1] a[2] 0 0 0 0]
[a[3] al4] 0 0 0 0]
[O 0 a[1] a[2] 0 0]
[O 0 a[3] al4] 0 0]
[O 0 0 0 al1] af[2]]
[O 0 0 0 al3] al4]]

We create the invariant ring R of G (which is reductive) with this action and compute fundamental
invariants.

> IR := InvariantRing(IG, T: Reductive);
> FundamentalInvariants(IR);

[
x3*x6 - x4%*x5,
x1*x6 - x2*x5,
x1*x4 - x2%*x3
]

We see that there are three fundamental invariants. It is well known that the invariant ring of the
simultaneous action of SL, on m vectors is generated by the minors of the n X m matrix formed
by the vectors. We can see this in the present case.

> R<x1,x2,x3,x4,x5,x6> := PolynomialRing(Q, 6);
> M := Matrix([[x1,x3,x5], [x2,x4,x611);

> M;

[x1 x3 x5]

[x2 x4 x6]

> Minors(M, 2);

[

Ch. 110 INVARIANT THEORY 3387

x1*x4 - x2%x3,
-x1*xx6 + x2*x5,
x3*x6 - x4*x5

Example H110E19

As a second example, we consider the representation of the group SL2(Q) x SL2(Q) x SL2(Q)
given by the tensor product of the canonical representation:

n:=3;

P<[x]>:=PolynomialRing(RationalField(), n*4, "grevlex");
L_A := [MatrixRing(P,2)!x[i..i+3]:i in [1..n*4 by 41]1;
IG := ideal<P|[Determinant(A)-1:A in L_A]>;

IG;

Ideal of Polynomial ring of rank 12 over Rational Field
Graded Reverse Lexicographical Order

Variables: x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8],
x[9], x[10], x[11], x[12]

Basis:

L

V V. V V V

-x[2]1*x[3] + x[11*x[4] - 1,
-x[6]*x[7] + x[6]1*x[8] - 1,
-x[10]*x[11] + x[9]=*x[12] - 1

M:=L_A[1];
for i:=2 to n do
M:=TensorProduct (M,L_A[i]);
end for;
M;
[x[1]*x[5]*x[9] x[11*x[5]*x[10] x[11*x[6]*x[9] x[1]*x[6]*x [10]
x[2] *x [5] *x [9] x[2] *x [56]*x [10] x[2]*x [6]*x[9] x[2]*x[6]*x[10]]
[x[1])*x[6]*x[11] x[1]*x[5]*x[12] x[1]*x[6]*x[11] x[1]*x[6]*x[12]
x[2]*x[5]*x[11] x[2]*x[6]*x[12] x[2]*x[6]*x[11] x[2]*x[6]*x[12]]
[x[1]*x[7]1*x[9] x[11*x[7]*x[10] x[1]*x[8] *x[9] x[1]1*x[8]*x [10]
x [2]*x [7]*x[9] x [2]*x [7]*x[10] x [2] *x [8] *x [9] x[2]*x[8]*x [10]]
[x[1]*x[7]*x[11] =x[11*x[7]1*x[12] =x[1]1*x[8]*x[11] =x[1]*x[8]*x[12]
x[2]*x[7]*x[11] x[2]*x[7]*x[12] x[2]*x[8]*x[11] x[2]*x[8]*x[12]]
[x[3]*x[5]*x[9] x[3]*x[6]*x[10] x[3]*x[6]*x[9] x[3]*x[6]*x[10]
x [4] *x [5] *x[9] x [4] *x [5]*x[10] x [4] *x[6]*x[9] x[4]*x[6]*x[10]]
[x[3]*x[5]*x[11] x[3]1*x[5]*x[12] x[3]*x[6]*x[11] x[3]*x[6]*x[12]
x[4]*x[5]*x[11] x[4]*x[6]*x[12] x[4]*x[6]*x[11] x[4]*x[6]*x[12]]
[x[3]*x[7]*x[9] x[3]*x[7]*x[10] x[3]*x[8]*x[9] x[3]*x[8]*x[10]
x[4]*x[7]*x[9] x[4]*x[7]*x[10] x[4]*x[8]*x[9] x[4]*x[8]*x[10]]
[x[3]*x[7]*x[11] x[3]*x[7]*x[12] x[3]*x[8]*x[11] x[3]*x[8]*x[12]
x[4]1*x[7]1*x[11] x[4]*x[7]1*x[12] x[4]*x[8]*x[11] x[4]*x[8]*x[12]]
> IR:=InvariantRing(IG, M: Reductive);

V V V V V V<4

3388 COMMUTATIVE ALGEBRA Part XV

> time FundamentalInvariants(IR);

[
Xx172%x872 - 2*kx1*x2*%xX7*x8 — 2*x1*x3*x6%x8 - 2*x1*x4*xxb5*x8 +
4xx1*x4*Xx6*XT7 + X272%X772 + 4*xx2*xx3*x5*%x8 - 2*x2*x3*X6*xX7 -
2%x2*xx4*x5*%x7 + x372*%x672 - 2%xx3*x4*x5*%x6 + x472*%xx572
]
Time: 0.610
> time DerksenIdeal (IR);
[
y172%xy872 - 2xylxy2xy7xy8 — 2xylxy3xy6xy8 — 2xylxyd*ybxy8 + 4xylx*xyd*y6*y7 +
y2T2xyT772 + 4xy2xy3*xybxy8 - 2%xy2xy3*ky6xy7 - 2%y2xyd*xybxy7 + y37"2xy6”2 -
2%y3*yd*y5*y6 + y472%y572 - x172%x872 + 2*kx1*x22*xT7*x8 + 2*kx1*x3*x6%*x8 +
2%x1*xx4*x5%x8 - 4*x1*x4*x6%X7 — X272*%xX772 - 4*xx2*x3*x5*x8 +
2%x2*xX3*X6%X7T + 2%x2*xxX4*x5*%x7 - x372*%x672 + 2*%xx3*x4*x5*%x6 - x472*%x572
]
Time: 0.010
> time HilbertIdeal(IR);
[
x172%x872 — 2*kx1*x2*xX7*x8 — 2*x1*x3*x6*x8 — 2*x1*x4*xx5*%x8 + 4*x1*x4*xX6*X7 +
X272%X772 + 4%x2*xx3*x5*x8 — 2*x2*xX3*x6%xX7 - 2%x2*xx4*x5*x7 + x372*%x672 -
2%x3*xx4*x5%x6 + x472*%x572
]
Time: 0.000

So in this case, we find that the invariant ring is generated by a single polynomial.

Example H110E20

We compute fundamental invariants for the invariant ring of G = SL2(Q) acting on a space of
binary forms.

> IG, A := BinaryForms([1,1,2,2], 0);

> IG;

Ideal of Polynomial ring of ramnk 4 over Rational Field
Lexicographical Order

Variables: t1, t2, t3, t4

Basis:
[
tixtd - t2%t3 - 1
]
> A;
[t4 -t3 0 0 0 0 0 0 0 0]
[-t2 t1 0 0 0 0 0 0 0 0]
[0 0 t4 -t3 0 0 0 0 0 0]
[0 0 -t2 t1 0 0 0 0 0 0]
[0 0 0 0 t472 -t3*xt4 t372 0 0 0]
[0 0 0 0 -2*%t2%xt4 tlxtd + t2%t3 -2%t1*t3 0 0 0]
[0 0 0 0 t272 -t1*xt2 t172 0 0 0]
[0 0 0 0 0 0 0 t472 -t3*xt4d t3°2]

Ch. 110 INVARIANT THEORY 3389

[0 0 0 0 0 0 0 -2xt2*xt4 tl1xtd + t2%t3 -2%t1%t3]
[0 0 0 0 0 0 0 t272 -t1*t2 t1°2]
> R:=InvariantRing(IG,A: LinearlyReductive);
> time FundamentalInvariants(R);
[
x8*x10 - 1/4%x9°2,
x5*x10 - 1/2*x6*x9 + x7*x8,
x5*x7 - 1/4%x672,
x1*x4 - x2*x3,
x1*x3*x7 - 1/2*%x1*x4*x6 - 1/2*x2*x3*x6 + x2*x4%*x5),
x1*x3%x10 - 1/2*x1*x4*x9 - 1/2*x2*x3*x9 + x2*xx4*x8,
x372xx10 - x3*x4*x9 + x472%x8,
x372xx7 - x3*x4*%x6 + x472%x5,
x172*%x10 - x1*x2%x9 + x272%x8,
x172%x7 - x1*x2*%x6 + x272%x5,
x1*x2*xx5%x10 — x1*x2*x7*x8 — x272*%xb5*x9 + X272*x6%*x8,
x1*x4*x5%x10 - 1/2*x1%x4*x6%x9 + x1*x4*x7*x8 - 1/2*%x2%x3*x5*%x10 +
1/2%x2*%x3*%x6*x9 — 3/2*%x2*x3*x7*x8 - 1/2*x2*x4*x5%x9 + 1/2*x2*x4*x6*x8,
x3*x4*xx5*%x10 - x3*x4*x7*x8 - x4"2*%x5*%x9 + x472%x6%*xX8
]
Time: 0.650

Example H110E21

We do simple computations on an invariant ring of an algebraic group. The group is not reductive,
so fundamental invariants cannot be computed, but invariants of specific degrees can be.

> K := RationalField();

> Pa<a,b> := PolynomialRing(K, 2);

> IG := ideal<Pal>;

> A := Matrix(7,

> [1, 0, O, O, O, O, O, @, 1, O, O, O, O, O, O, O, 1, O, O,
>0, 0, 0, 0, a, 1, 0, O, O, O, O, O, O, 1, O, O, O, O, O, O,
>a, 1, 0, 0, 0, 0, O, b, 0, 1 1);

> A;

[1 00000 0]

[a10000 0]

[001000 0]

[00a100 0]

[000O010 0]

[0000a1lo0]

[000O0DLO 1]

> R:=InvariantRing(IG, A);

> R;

Invariant Ring of algebraic group
Field of definition:

Rational Field
> InvariantsOfDegree(R, 1);

3390 COMMUTATIVE ALGEBRA Part XV

x1,
x3,
x5
]
> Invariants0fDegree(R, 2);
L
x172,
x1*x3,
x1*x4 - x2*x3,
x1*x5,
x1*x6 - x2*x5,
x372,
x3*x5,
x3*%x6 - x4*x5,
x572
]
> FundamentalInvariants(R);
>> FundamentalInvariants(R);
Runtime error in ’FundamentalInvariants’: Computing fundamental invariants (via
Derksen’s algorithm) is only possible for linearly reductive groups

110.21 Invariant Fields

If G is a group acting on a polynomial ring K[z1,...,x,], it also acts on the rational func-
tion field K (z1,...,x,) by homomorphic extension. The invariants field K (z1,...,z,)% is
the field consisting of all functions which are fixed by G. MAGMA allows the construction
of the invariant field by the function InvariantField. All that was said above about
possible arguments of InvariantRing and access functions for invariant rings carries over
to invariant fields. The category of invariant fields is FldInvar.

110.21.1 Creation

InvariantField (G, K)

InvariantField(G)

InvariantField(I, A)

Reductive BooLELT Default : false
LinearlyReductive BooLELT Default : false
FunctionField FLDFUNRAT Default :

Create the invariant field for the group G over the field K. The arguments and
parameters are the same as for the function InvariantRing, in the three cases of
permutation groups, matrix groups, and algebraic groups.

Ch. 110 INVARIANT THEORY 3391

110.21.2 Access
FunctionField (F)

Given an invariant field F', return the underlying function field of F'

Group (F)

Given an invariant field F', return the underlying group of F'

GroupIdeal (F)

Given an invariant field F' defined over an algebraic group G, return the ideal [
defining G.

Representation(F)

Given an invariant field F' defined over an algebraic group G, return the represen-
tation matrix A for G.

110.21.3 Functions for Invariant Fields

This section describes functions that apply to invariant fields.

FundamentalInvariants (F)

Al MoNSTGELT Default : “BethMuellerQuade”
Minimize BooLELT Default : true

Min RNGINTELT Default : 0

BottomUpTo RNGINTELT Default : 0

Given an invariant field F', return a sequence of fundamental invariants of F' which
generate I’ as an algebra over the base field of the ambient rational function field
of F.

By default this function uses the algorithm of Beth and Miiller-Quade [MQB99].
By setting the parameter Al to "FleischmannKemperWoodcock", an alternative al-
gorithm of Fleischmann, Kemper and Woodcock will be used.

By default the returned invariants will be minimal (in the sense of ‘non-
redundant’). By setting the parameter Minimize to false, no minimization will
be attempted. The other parameters apply to the minimization and are as in the
function MinimizeGenerators below.

| DerksenIdeal (F) |

Given an invariant field F', return the Derksen ideal of F'. This is an ideal D in
Klyy ...yn], where K = k(z7 ...x,) is the ambient rational function field of F'; and
the y; are new indeterminates. By definition, D is the intersection of all the ideals

<y —g(x1),...,yn — g(zp) >

for g € G, the group of R. The function returns D as an ideal with a Groebner
basis.

3392 COMMUTATIVE ALGEBRA Part XV

MinimizeGenerators (L) |
Min RNGINTELT Default : 0
BottomUpTo RNGINTELT Default : 0

Suppose L is a set or sequence of non-constant elements of a rational function field.
This function selects a minimal (in the sense of ‘irredundant’) subset of L which
generates the same subfield as L. The function returns a sequence of such minimal
generators.

If the parameter Min is set to m > 0, then the function stops when a generating
set with m elements is reached (m = 0 is the default and implies no limit).

If the parameter BottomUpTo is set to b > 0, then the function first tries to
eliminate generators by testing if they lie in the subfield generated by a small number
of elements from L. This small number is limited by b.

QuadeIdeal (L)
Fy BooLELT Default :
LargeIdeal BooLELT Default : false

Suppose L is a non-empty set or sequence of non-constant elements from a rational
function field F' = k(z1,...,x,), generating a subfield K = k(L). The Quade ideal,
introduced in [MQS99], is the ideal in Fy,...,y,] generated by the kernel of the
map K[yi,...,yn] — F given by y; — x;. This function returns the Quade ideal
(with its basis being a Groebner basis).

The parameter Fy may be set to a polynomial ring P of rank n over F', so that
the result is an ideal of P. If the parameter LargeIdeal is set to true, then an
ideal in a larger polynomial ring is returned, whose intersection with Flyi,. .., yx]
is the Quade ideal.

Example H110E22

This example works with the invariant field of the finite group Cs over the rational field.

> IF := InvariantField(CyclicGroup(3), RationalField());
> time L := FundamentalInvariants(IF);
Time: 1.780
> L;
[
x1 + x2 + x3,
(x172%x2 - 3*kx1*x2*x3 + x1*x37°2 + x272%x3)/(x1°2 - x1%x2 - x1%x3 + x2°2 -
x2*x3 + x372),
(x173 - x172%x3 - x1*x272 + x2°3 - x2%x372 + x373)/(x17°2 - x1*x2 - x1*x3 +
X272 - x2*x3 + x372)
]
> time DerksenIdeal (IF);
Ideal of Polynomial ring of rank 3 over Multivariate rational function field of
rank 3 over Rational Field
Graded Reverse Lexicographical Order

Ch. 110

Variables: yi1, y2, y3

Dimension O

Groebner basis:

[

y272 + (-x173 + x172*x3 + x1*x272 - x273 + x2*%x372 - x373)/(x172 - x1*x2 -
x1*x3 + x272 - x2%x3 + x372)*y2 + (-x172%x2 + x172*%x3 + x1*x272 -
x1*x372 - x272%x3 + x2*%x372)/(x172 - x1*x2 - x1*x3 + x272 - x2%x3 +
x372)*y3 + (x173*%x2 - x172%x272 - x172%x372 + x1%x373 + x273%x3 -
x2°2%x372)/(x1°2 - x1%x2 - x1*x3 + x2°2 - x2*x3 + x372),

INVARIANT THEORY

3393

y2xy3 + (-x172%x2 + 3xx1*x2*x3 - x1*x372 - x272*x3)/(x172 - x1*x2 - x1*x3 +

y372 + (x172*x2 - x172*x3 - x1%x2°2 + x1*x372 + x272*x3 - x2%x3°2)/(x1°2 -
x1*x2 - x1*x3 + x272 - x2*%x3 + x372)*y2 + (-x173 + x172%x2 + x1*x372 -

yl +y2 +y3 - x1 - x2 - %3

Example H110E23

We can compute with the invariant field of the non-reductive group presented above.

X272 - x2%x3 + x372)*y2 + (-x172%x3 - x1*x272 + 3*xx1*x2*x3 -

x2*%x372)/(x172 - x1*x2 - x1*x3 + x272 - x2*x3 + x372)*y3 + (x172*%x272 -

x172%x2%x3 + x172%x372 - x1*x272%x3 - x1*x2*%x372 + x272*%x372)/(x1°2 -

x1*x2 - x1*x3 + x2°2 - x2*x3 + x372),

X273 + x272#x3 - x373)/(x172 - x1*x2 - x1*x3 + x272 - x2*%x3 + x372)*y3 +
(x17°3*%x3 - x172%x2°2 - x17°2*%x372 + x1*x27°3 - x272*x372 + x2*x373)/(x1°2
- x1*x2 - x1*x3 + x2°2 - x2*x3 + x372),

b o’ O’ O’ 0, O! O’ O)

b O! O’

b

> K := RationalField();

> Pa<a,b> := PolynomialRing(K, 2);
> IG := ideal<Pal>;

> A := Matrix(7,

> [1, 0, O, O, O, 0, O, a, 1

>0, 0, O, O, a, 1, 0, 0, O, O, O
>a, 1, 0, 0, 0, 0, 0, b, 0, 1 1)
> A;

[1 00000 0]

[210000 0]

[00 1000 0]

[00a100 0]

[000O010 0]

[000O0 a1 0]

[000O0DO 1]

> IF := InvariantField(IG, A);

> IF;

Invariant field of algebraic group
Field of definition: Rational Field
> time FundamentalInvariants(IF);

[
x5,

1, 0, O,
1, 0, 0, 0, 0, 0, O,

3394 COMMUTATIVE ALGEBRA Part XV

x3/x5,
x1,
(x1%x6 - x2%x5)/x5,
(x3*x6 - x4*x5)/x5
]
Time: 0.010
> DerksenIdeal (IF);
Ideal of Polynomial ring of rank 7 over Multivariate rational function field of
rank 7 over Rational Field
Graded Reverse Lexicographical Order
Variables: y1, y2, y3, y4, y5, y6, y7
Groebner basis:

[
yl - x1,
y2 - x1/x5*y6 + (x1*x6 - x2%x5)/x5,
y3 - x3,
y4 - x3/x5*y6 + (x3*x6 - x4*xx5)/x5,
y5 - x5

]

110.22 Invariants of the Symmetric Group

MAGMA includes basic functions for working with symmetric polynomials, which are in-
variants of the symmetric group.

ElementarySymmetricPolynomial (P, k)

Given a polynomial ring P of rank n, and an integer k with 1 < k < n, return the
k-th elementary symmetric polynomial of P.

IsSymmetric(f)

IsSymmetric(f, S)

Given a polynomial f from a polynomial ring P of rank n, return whether f is a
symmetric polynomial of P (i.e., is symmetric in all the n variables of P). If the
answer is true, a polynomial g from a new polynomial ring of rank n is returned
such that f = g(es,...,ey,), where ¢; is the i-th elementary symmetric polynomial
of P. If g is desired to be a member of a particular polynomial ring S of rank n (to
obtain predetermined names of variables, for example), then S may also be passed.

Ch. 110 INVARIANT THEORY 3395

Example H110E24

We create a symmetric polynomial from Q[a,b,c,d] and express it in terms of the elementary
symmetric polynomials.

> P<a, b, ¢, d> := PolynomialRing(RationalField(), 4, "grevlex");

> f .=

> a"2xb"2xc*kd + a"2%b*xc"2*%d + axb"2xc”2%xd + a"2*bxc*d"2 + axb"2xc*kd"2 +
> axb*c”2*%d"2 - a"2%b"2%c - a"2%xb*xc”2 - a*xb"2xc”2 - a"2*b"2*xd -

> 3*%a”2*xbkckxd - 3*a*b”"2kckd - a"2%c”2*d - 3*axb*c”2*%d - b"2xc"2xd -
> a"2*b*d"2 - a*b"2xd"2 - a"2xc*d”2 - 3*xa*xb*c*d"2 - b"2xc*xd"2 -

> axc”2*d"2 - b*c"2%d"2 + a + b + ¢ + d;

> // Check orbit under Sym(4) has size one:

> #(£°Sym(4));

1

> Q<el, e2, e3, e4> := PolynomialRing(RationalField(), 4);

> 1, E := IsSymmetric(f, Q);

> 1;

true

> E;

el - e2xe3 + e2*e4d

In the following example, we use a rational function field to define parameters a and b which occur
as coefficients of the symmetric polynomial f.

F<a,b> := FunctionField(RationalField(), 2);
P<x1,x2,x3,x4,x5> := PolynomialRing(F, 5, "grevlex");
yl := x174 + x172%a + x1%b;
y2 := x274 + x272%a + x2%b;
y3 := x374 + x372%a + x3%b;
y4 := x474 + x4 2%a + x4xb;
yb := x574 + xb72%xa + xbxb;
f = ylxy2 + ylxy3 + yl*xyd + yl*xyb + y2*xy3 + y2*xyd +

y2xy5 + y3xy4 + y3*y5 + yd*y5;
Q<el,e2,e3,ed4,e5> := PolynomialRing(F, 5);
1,E := IsSymmetric(f, Q);
1, E;
true b*el”3%e2 - 2%a*el”3*%e3 - 4*el”3%eb + axel™2%e272 +
4xel”2%e2xed + 2%xel172%e372 - bxel”2%e3 + 2%axel”2%ed -
4xelxe272%e3 - 3%bxel*e2”2 + 4xakxel*e2%e3 + 8xelxe2*eb +
axb*el*e2 - 8xelxe3xed - 2*%a"2%el*e3 + bkel*ed - 6G*axel*xeb +
e274 - 2xa¥*e2”3 - 4xe272%ed + a"2%e2”2 + 4xe2%e3”2 +
Bxbxe2%e3 + 2%axe2%ed + b "2xe2 - 3*xaxe3"2 - 4*e3*eb -
3*axbxe3d + 6%ed”2 + 2%a"2xed - bxbxeb

+
+

vV VV V V V V V V V V.YV

3396 COMMUTATIVE ALGEBRA Part XV

110.23 Bibliography

[AM94] A. Adem and R.J. Milgram. Cohomology of Finite Groups. Grundlehren der
Mathematischen Wissenschaften. Springer, Berlin-New York-Heidelberg, 1994.

[Der99] Harm Derksen. Computation of Invariants for Reductive Groups. Adv. Math.,
141:366-384, 1999.

[Kem96] Gregor Kemper. Calculating Invariant Rings of Finite Groups over Arbitrary
Fields. J. Symbolic Comp., 21(3):351-366, 1996.

[Kem99] Gregor Kemper. An Algorithm to Calculate Optimal Homogeneous Systems
of Parameters. J. Symbolic Comp., 27(2):171-184, 1999.

[Kin07] Simon King. Minimal generating sets of non-modular invariant rings of finite
groups. URL:http://arxiv.org/abs/math/0703035, 2007.

[KS97] Gregor Kemper and Allan Steel. Some Algorithms in Invariant Theory of
Finite Groups. In P. Draxler, G.O. Michler, and C.M. Ringel, editors, Computational
Methods for Representations of Groups and Algebras, Furoconference in Essen, April
1-5 1997, number 173 in Progress in Mathematics, Basel, 1997. Birkhauser.

[IMQB99] Jorg Miiller-Quade and Thomas Beth. Calculating Generators for Invariant
Fields of Linear Algebraic Groups. In Applied Algebra, Algebraic Algorithms and Error-
Correcting Codes (Honolulu, HI, 1999), number 1719 in LNCS, pages 392-403, Berlin,
1999. Springer.

[IMQS99] Jorg Miiller-Quade and Rainer Steinwandt. Basic algorithms for rational
function fields. J. Symbolic Comp., 27(2):143-170, 1999.

111 DIFFERENTIAL RINGS

111.1 Introduction

3401

111.2 Differential Rings and Fields 3402

111.2.1 Creation . ..
DifferentialRing(P, f, C)
RationalDifferentialField(C)
DifferentialLaurentSeriesRing(C)
RingOfFractions(R)
FieldOfFractions(R)
AssignNames(~R, 8)
111.2.2 Creation of Differential Ring
Elements

Name (R, i)
;

Zero(R)
One(R)

Identity(R)
SeparatingElement (F)

111.3 Structure Operations on Dif-

ferential Rings
111.3.1 Category and Parent .

Category(R)
Type (R)
Parent (R)

111.3.2 Related Structures.

UnderlyingRing(R)
UnderlyingField(R)
BaseRing(R)
BaseField(R)
ConstantRing(R)
ConstantField(R)
ExactConstantField(F)
Generators(R)

111.3.3 Derivation and Differential .

Derivation(R)

Differential (F)

111.3.4 Numerical Invariants .
Ngens (R)

111.3.5 Predicates and Booleans .
eq

IsIdentical(R, F)

IsDomain(R)

IsField(R)
IsDifferentialField(R)
IsAlgebraicDifferentialField(R)
IsDifferentialSeriesRing(R)
IsDifferentialLaurentSeriesRing(R)
HasProjectiveDerivation(F)
HasZeroDerivation(F)

. 3402

3402
3402
3403
3403
3403
3403

. 3404

3404
3404
3404
3404
3404
3404
3404

3405
. 3405

3405
3405
3405

. 3405

3405
3405
3405
3405
3405
3405
3406
3406

. 3407

3407
3407

. 3407

3407

. 3408

3408
3408
3408
3408
3408
3408
3408
3408
3409
3409

111.3.6 Precision .

RelativePrecision(F)
RelativePrecisionOfDerivation(F)
ChangePrecision(F, p)

111.4 Element Operations on Differ-

ential Ring Elements .
111.4.1 Category and Parent .

Category(s)

Type (s)

Parent(s)

111.4.2 Arithmetic .

+

div
/

111.4.3 Predicates and Booleans .
eq

IsZero(s)

IsOne(s)

IsWeaklyEqual(s, t)
IsWeaklyZero(s)

IsOrderTerm(s)

111.4.4 Coefficients and Terms .
0(s)

Truncate(s)
Eltseq(s)
Exponents(s)

111.4.5 Conjugates, Norm and Trace .

MinimalPolynomial(s)
111.4.6 Derivatives and Differentials

Derivative(s)
Differential(s)

. 3409

3409
3409
3410

3411

. 3411

3411
3411
3411

. 3411

3411
3411
3411
3411
3412
3412
3412

. 3412

3412
3412
3412
3412
3412
3412

. 3413

3413
3413
3413
3413

. 3414

3414

. 3415

3415
3415

111.5 Changing Related Structures 3415

ChangeDerivation(R, f)
ChangeDifferential (F, df)
ConstantFieldExtension(F, C)
Completion(F, p)

111.6 Ring and Field Extensions

DifferentialRingExtension(L)
DifferentialFieldExtension(L)
ext< >
ExponentialFieldExtension(F, f)
LogarithmicFieldExtension(F, f)
PurelyRamifiedExtension(f)

111.7 Ideals and Quotient Rings

3415
3416
3417
3418

3419

3419
3419
3420
3421
3421
3421

3424

3398 COMMUTATIVE ALGEBRA

111.7.1 Defining Ideals and Quotient Rings3424

Differentialldeal (L) 3424
QuotientRing(R, I) 3424
111.7.2 Boolean Operations on Ideals . . 3425
IsDifferentialldeal (R, I) 3425
111.8 Wronskian Matrix 3425
WronskianMatrix (L) 3425
WronskianDeterminant (L) 3425

111.9 Differential Operator Rings . 3426

111.9.1 Creation 3426
DifferentialOperatorRing(F) 3426
AssignNames(~R, S) 3426
111.9.2 Creation of Differential Operators 3427
Name (R, i) 3427
. 3427
1 3427
Zero(R) 3427
One(R) 3427
111.10 Structure Operations on Dif-
ferential Operator Rings . . 3428
111.10.1 Category and Parent. 3428
Category(R) 3428
Type (R) 3428
Parent (R) 3428
111.10.2 Related Structures. 3428
BaseRing(R) 3428
CoefficientRing(R) 3428
ConstantRing(R) 3428
111.10.3 Derivation and Differential . . . 3428
Derivation(R) 3428
Differential(R) 3428
111.10.4 Predicates and Booleans 3429
eq 3429
IsIdentical(R, F) 3429
IsDifferentialOperatorRing(R) 3429
HasProjectiveDerivation(R) 3429
HasZeroDerivation(R) 3429
111.10.5 Precision 3430
RelativePrecisionOfDerivation(R) 3430
111.11 Element Operations on Differ-
ential Operators. 3431
111.11.1 Category and Parent. 3431
Category (L) 3431
Type (L) 3431
Parent (L) 3431
111.11.2 Arithmetic 3431
+ 3431
- 3431
- 3431

Part XV
* 3431
) 3431
111.11.3 Predicates and Booleans 3432
eq 3432
IsZero(L) 3432
IsOne (L) 3432
IsMonic (L) 3432
IsWeaklyEqual(L, P) 3432
IsWeaklyZero(L) 3432
IsWeaklyMonic (L) 3432
111.11.4 Coefficients and Terms 3432
Eltseq(L) 3432
Coefficients(L) 3432
Coefficient(L, i) 3432
LeadingCoefficient (L) 3432
LeadingTerm(L) 3433
Terms (L) 3433
111.11.5 Order and Degree 3433
Order (L) 3433
Degree(L) 3433
WeakOrder (L) 3433
WeakDegree (L) 3433
111.11.6 Related Differential Operators . 3434
MonicDifferentialOperator (L) 3434
Adjoint (L) 3434
Translation(L, e) 3434
TruncateCoefficients(L) 3434
111.11.7 Application of Operators 3435
Apply (L, £) 3435
L(£) 3435
@ 3435
111.12 Related Maps. 3436
TranslationMap(R, e) 3436
LiftMap(m, R) 3436
111.13 Changing Related Structures 3437
ChangeDerivation(R, f) 3437
ChangeDifferential (R, df) 3437
ConstantFieldExtension(R, C) 3438
PurelyRamifiedExtension(R,f) 3438
Completion(R, p) 3439
Localization(R, p) 3439
Localization(L, p) 3439
Localization(R) 3439
Localization(L) 3439
111.14 Euclidean Algorithms, GCDs
and LCMs 3441
111.14.1 Euclidean Right and Left Division 3441
EuclideanRightDivision(N, D) 3441
EuclideanLeftDivision(D, N) 3441
111.14.2 Greatest Common Right and Left
Divisors 3442
GreatestCommonRightDivisor (A, B) 3442

GCRD(A, B) 3442

Ch. 111 DIFFERENTIAL RINGS 3399
ExtendedGreatestCommon RationalSolutions (L) 3448
RightDivisor(A, B) 3442 HasRationalSolutions(L, g) 3448
GreatestCommonLeftDivisor (A, B) 3442
GCLD(A, B) 3442 111.18 Newton Polygons 3449
ExtendedGreatestCommon NewtonPolygon(L) 3449
LeftDivisor (A, B) 3442 NewtonPolygon(L, p) 3449
. NewtonPolynomial (F) 3449
111.14.3 Least Left Multiples. . 344 M
3 Least Common Le wiples 3443 NewtonPolynomials (L) 3449
LeastCommonLeftMultiple(L) 3443
LeastCommonLeftMultiple(A, B) 3443 111.19 Symmetric Powers. 3451
LCLM(A, B) 3443 SymmetricPower (L, m) 3451
ExtendedLeastCommonLeftMultiple(A, B) 3443 . .
ExtendedLeastCommonLeftMultiple(S) 3443 111.20 Differential Operators of Alge-
braic Functions 3452
111.15 Related Matrices 3444 DifferentialOperator (f) 34592
C ionMatrix (L 3444
ompanionMatrix(L) 111.21 Factorisation of Operators over
111.16 Singular Places and Indicial Differential Laurent Series
Polynomials 3445 Rings 3452
111.16.1 Singular Places 3445 111.21.1 Slope Valuation of an Operator . 3453
IsRegularPlace(L, p) 3446 SlopeValuation(L,s) 3453
IsRegularSingularPlace(L, p) 3446 111.21.2 Coprime Index 1 and LCLM Fac-
IsIrregularSingularPlace(L, p) 3446 torisation. 3454
SetsOfS}ngularPlaces (D) 3446 Factorisation(L) 3454
IsFuchsianOperator (L) 3446 Factorization(L) 3454
IsRegularSingularOperator (L) 3446)
111.16.2 Indicial Polynomials 3447 111.21.3 Right Hand Factors of Operators 3j59
ightHandFact L
IndicialPolynomial(L, p) 3447 RightHandFactors (L) 3460
111.22 Bibliography 3464

111.17 Rational Solutions 3448

Chapter 111
DIFFERENTIAL RINGS

111.1 Introduction

The Galois theory of linear differential equations, or differential Galois theory, is the ana-
logue of the classical Galois theory of polynomials for linear differential equations. Gener-
ally speaking one studies linear differential equations, that is differential equations of the
form

L(y) = any"™ + an_1y" "V + -+ a1y + agy =0,

in which the coefficients a; are contained in some ring. The natural analogue of a field in the
classical case is the notion of a differential field, that is a specific case of a differential ring.
A differential ring F is equipped with an additive map dr : ' — F called a derivation,
satisfying the multiplicative rule

5F(ab):(5p(a)b+a5p(b), a,bGF.

A classical derivation is the usual derivative. All differential rings have a ring structure
and have a map defined on them. A differential ring that is also a field is called a differ-
ential field.

The differential rings have type RngDiff and their elements have type RngDiffE1t. All
differential rings contain a differential ring of constants on which the derivation acts as the
zero map. The differential rings and their elements inherit all functionality of the rings
from which the differential ring is created. We call the ring from which a differential ring
F' is created the underlying ring of F'.

A solution of a differential equation is an element of some differential field. It can
happen that a solution is not an element of a given differential field F', but is an element of
a differential extension of F'. By this we mean a differential field (ring) M with F' C M such
that the derivations satisfy dps|p = dp. This is completely analogous to field extensions
induced by solutions of a polynomial.

To clearly describe linear differential equations in MAGMA we formalize the concept of
taking the derivative. To a differential field F' with derivation dg, one associates a non—
commutative ring F'[D], the ring of linear differential operators. An element of F[D] is
called a differential operator. A differential operator of degree n € Z>¢ in F[D] is of the
form

L=a,D"+a,_1D" '+ -+ a1 D+ ay,

with a, # 0 and all a; € F. Addition in F[D] is term—wise and the multiplication of
elements in F'[D] is determined by the rule

Dxa=aD +ép(a), a€F.

3402 COMMUTATIVE ALGEBRA Part XV

With these concepts L(y) = 0 is the linear differential equation
n0p(y) + an-18% ' (y) + -+ a18p(y) + agy = 0.

For an introduction to the basic concepts in differential Galois theory, one is encouraged
to consult [vdPS03]. This book is used as the basis for the implementation of differential
rings, fields and operator rings in MAGMA.

111.2 Differential Rings and Fields

111.2.1 Creation

There are two ways to create a differential ring. The first creation is a general creation of a
differential ring, for which the user specifies the ring and its derivation. The second creates
a differential field which has the structure of a rational function field of transcendence
degree 1 over its base field. Its derivation is specified by a differential.

Once a differential ring is created one can ask for its ring or field of fractions.

DifferentialRing(P, f, C)

Given a ring P and derivation f acting on P, return the differential ring isomorphic
to P, with induced derivation f acting on it, and ring of constants C. The ring C'
should be a subring of P on which f is zero.

Example H111E1

Here we illustrate the creation and printing of a general differential ring.

> P := PolynomialRing(Rationals());

> f := map<P->P | a:->5*Derivative(a)>;

> R := DifferentialRing(P, f, Rationals());
> R;

Differential Ring of Univariate Polynomial Ring over
Rational Field with derivation given by Mapping
from: RngUPol: P to RngUPol: P given by a rule [no inverse]

RationalDifferentialField(C) |

The differential field in one variable over the constant field C'. If this field is called
F'| say, then the derivation on F' is given by d/(1)d(F.1), where F.1 is the variable
of F, and (1)d(F.1) is its differential in the differential space of F'. Any exact field
with polynomial GCD is valid input for C.

Ch. 111 DIFFERENTIAL RINGS 3403

Example H111E2

Here we illustrate the creation and printing of the differential field obtained from the command
RationalDifferentialField.

> F<z> := RationalDifferentialField(Rationals());

> F;

Differential Ring of Algebraic function field defined over
Rational Field by $.2 - 4711 with

derivation given by (1) d(z)

DifferentialLaurentSeriesRing(C)

The differential Laurent series ring (in one variable) over the constant field C. If
this field is called F, say, then the derivation on F'is given by F.1-d/d(F.1), where
F.1 is the variable of F.

Example H111E3

This example illustrates the creation and printing of the differential Laurent series ring obtained
from the command DifferentiallLaurentSeriesRing.

> S<t> := DifferentialLaurentSeriesRing(Rationals());

> S;

Differential Ring of Laurent series field in t over Rational Field

with derivation given by Mapping from: Laurent series field in t over Rational
Field to Laurent series field in t over Rational Field given by a rule [no
inverse]

RingOfFractions(R)

Returns the differential ring R[r~' : r € R not a zero divisor] of fractions of the
differential ring R, together with the inclusion map from R to the newly created ring.

FieldOfFractions(R)

Returns the differential field of fractions of the differential ring R, together with the
inclusion map from R to the newly created field.

AssignNames(~R, S)

Given a differential ring R with n indeterminates and a sequence S of n strings,
assign the elements of S to the names of the variables of R.
This procedure only changes the names used in the printing of the elements of R.

3404 COMMUTATIVE ALGEBRA Part XV

111.2.2 Creation of Differential Ring Elements

The easiest way to create an element in a given ring is to use the angle bracket construction
to attach names to the indeterminates of the ring. Others are given below.

Name(R, i)

R . 1

The i-th indeterminate of the differential ring R, where i is between 1 and the
number of generators of R.

R ! s

Coerce the element s in the differential ring R. Elements that are coercible are
elements that are coercible in the underlying ring of the differential ring R.

The zero element of the differential ring R.

One (R)
Identity(R)

The identity element of the differential ring R.

SeparatingElement (F)

Returns the separating element of the algebraic differential field F'.

Example H111E4

We construct the differential field F' = Q(z) with derivation d/dz and show some of the elements
that can be created.

> F<z> := RationalDifferentialField(Rationals());
> F.1;

z

> two := FI12;

> two;

2

> Parent(two) eq F;

true

> Zero(F); One(F);

0

1

> Parent(Zero(F)) eq F and Parent(Identity(F)) eq F;
true

> elt := SeparatingElement (F);

> elt;

z

> ISA(Type(elt),RngDiffElt);

true

> Parent(elt) eq F;

Ch. 111 DIFFERENTIAL RINGS 3405

true
> elt eq F!SeparatingElement (UnderlyingRing(F));
true

111.3 Structure Operations on Differential Rings

111.3.1 Category and Parent

Differential Rings form the MAGMA category RngDiff. The notional power structures
exist as parents of differential rings.

Category(R)
Type (R)
The category, or type, of the differential ring R.

Parent (R) |

The power structure of the differential ring R.

111.3.2 Related Structures

The underlying ring and constant ring from which the differential ring was created can
each be retrieved as described below. There is also the concept of a base ring. If one has
created a differential extension M/F in MAGMA, then F is the base ring of M.

UnderlyingRing(R)

The underlying ring of the differential ring R. The type of the underlying ring
indicates what ring R inherits from.

UnderlyingField(R)

The underlying ring of the differential ring R, provided it is a field.

BaseRing(R)

The base ring of the differential ring R.

BaseField(R) |
The base ring of the differential ring R, provided it is a field.

ConstantRing(R)

The constant ring of the differential ring R. The derivation of R acts trivially on
the constant ring. It is therefore contained in the differential ring of constants of R.

ConstantField(R) |
The constant ring of the differential ring R, provided it is a field.

3406 COMMUTATIVE ALGEBRA Part XV

ExactConstantField(F) |

The exact constant field of F, i.e. the algebraic closure in F' of the constant field
of F', together with the inclusion map to F'. The field F' must be a function field.
The differential field F' must have been created with respect to a differential. If the
derivation of F' has been constructed with respect to a differential, then the exact
constant field coincides with the differential field of constants of F'.

Generators(R) |

The list of generators of the differential ring R. If there is no list assigned to R, one
is constructed by default from the underlying ring of R.

Example H111E5

First we construct the differential field F' = Q(z) with derivation d/dz and show what some of
the related structures are. Then we construct the field extension M = Q(z, «), where « is a root
of the polynomial X? — 2. We do this with the usual ext< > constructor. For M we again derive
some related structures.

> F<z> := RationalDifferentialField(Rationals());

> ConstantRing(F) ;

Rational Field

> UnderlyingRing(F);

Algebraic function field defined over Rational Field by
.2 - 4711

M<alpha> := ext< F | X"2-2 >;
BaseRing (M) ;
Differential Ring of Algebraic function field defined over Rational Field by
$.2 - 4711
with derivation given by (1) d(z)
> BaseRing(M) eq F;
true
> ConstantRing(M);
Rational Field
> E := ExactConstantField(M);
> E;
Number Field with defining polynomial $.172 - 2 over the Rational Field
> Generators(M);
[alpha]

$
>
> _<X> := PolynomialRing(F);
>
>

Example H111E6

Related structures also exist for differential Laurent series rings.

> S<t>:=DifferentiallaurentSeriesRing(Rationals());
> UnderlyingRing(S);
Laurent series field in t over Ratiomal Field

Ch. 111 DIFFERENTIAL RINGS 3407

> ConstantRing(S);
Rational Field
> Generators(S);

[t]

111.3.3 Derivation and Differential

The derivation of a differential ring and its differential, whenever applicable, can be re-
trieved as indicated below.

| Derivation(R) |

The derivation of the differential ring R.

| Differential (F) |

The differential belonging to the derivation of the differential field F'. The field
F must have been constructed in such a way that its derivation is defined by a
differential.

Example H111E7

> F<z> := RationalDifferentialField(Rationals());

> Derivation(F);

Mapping from: RngDiff: F to RngDiff: F given by a rule [no inverse]
> Differential(F);

(1) d(=z)

111.3.4 Numerical Invariants

Ngens (R)

The number of indeterminates associated with the differential ring R.

3408 COMMUTATIVE ALGEBRA Part XV

111.3.5 Predicates and Booleans

R eqF

Returns true if and only if the differential rings R and F' are the same.

IsIdentical(R, F)

Returns true if and only if the differential rings R and F' are identical.

| IsDomain(R) |

Returns true if and only if the differential ring R is a domain.

| IsField(R) |
Returns true if and only if the differential ring R is field.

| IsDifferentialField(R) |
Returns true if and only if the ring R is a differential field.

IsAlgebraicDifferentialField(R)

Returns true if and only if the field structure of the differential ring R is an algebraic
function field.

IsDifferentialSeriesRing(R)

Returns true if and only if the underlying ring of the differential ring R is a series
ring.

IsDifferentialLaurentSeriesRing(R)

Returns true if and only if the underlying ring of the differential ring R is a Laurent
series ring and R has been created with a known constant ring.

Example H111ES8
This example shows some booleans for various differential rings.

> F<z>:=RationalDifferentialField(Rationals());
> S<t>:=DifferentiallaurentSeriesRing(Rationals());
> IsAlgebraicDifferentialField(F);

true

> IsDifferentialSeriesRing(F);

false

> IsAlgebraicDifferentialField(S);

false

> IsDifferentialSeriesRing(S);

true

> IsDifferentialLaurentSeriesRing(S);

true

Ch. 111 DIFFERENTIAL RINGS 3409

HasProjectiveDerivation(F)

Returns true if and only if F'is a differential ring with derivation weakly of the
form (F.1)-d/d(F.1).

HasZeroDerivation (F) |

Returns true if and only if the algebraic differential field or differential series ring F
has zero derivation. When F' is a series ring we relax being zero to being weakly zero.

Example H111E9

> F<z>:=RationalDifferentialField(Rationals());

> S<t>:=DifferentialLaurentSeriesRing(Rationals());
> HasProjectiveDerivation(F);

false

> HasProjectiveDerivation(ChangeDerivation(F,z));
true

> HasZeroDerivation(F);

false

> HasProjectiveDerivation(S);

true

> HasProjectiveDerivation(ChangeDerivation(S,S!3));
false

> HasZeroDerivation(S);

false

111.3.6 Precision

| RelativePrecision(F) |

Returns the relative precision of the underlying series ring of F.

| RelativePrecisionOfDerivation(F) |

Given a differential Laurent series ring F', returns the relative precision of the ring
derivative of F'.1.

3410 COMMUTATIVE ALGEBRA Part XV

Example H111E10
This example illustrate the relative precision of differential rings.

> S<t>:=DifferentiallaurentSeriesRing(Rationals());

> Derivative(t);

t

> IsDifferentiallLaurentSeriesRing(S);

true

> RelativePrecision(S);

20

> RelativePrecision(UnderlyingRing(S));

20;

> V<w>:=DifferentiallLaurentSeriesRing(Rationals() :Precision:=30);
> RelativePrecision(V);

30

> RelativePrecision(V) eq RelativePrecision(UnderlyingRing(V));
true

Example H111E11

> 8<t> := DifferentialLaurentSeriesRing(Rationals());
> RelativePrecisionOfDerivation(S);
Infinity

> V<w> := ChangeDerivation(S,t+0(t"6));
> Derivation(V) (w);

w2 + 0(w"T)

> RelativePrecisionOfDerivation(V);

5

ChangePrecision(F, p)

Returns the differential series ring isomorphic to F' with relative precision p. The
map returned is the induced map of F' to the new field.

Example H111E12

> S<t>:=DifferentiallaurentSeriesRing(Rationals());
> RelativePrecision(S);

20

> V<w>,mp := ChangePrecision(S,10);

> Type(V);

RngDiff

> IsDifferentiallLaurentSeriesRing(V);

true

> RelativePrecision(V);

10

Ch. 111 DIFFERENTIAL RINGS 3411

> RelativePrecision(1/(w-1)) eq 10;
true

> mp(t) eq w;

true

> wlmp eq t;

true

derivt := Derivation(S) (t);
derivt;

derivw := Derivation(V) (w);
derivw;

vV & V V ¢ VvV Vv

mp (derivt) eq Derivation(V) (w);
true

111.4 Element Operations on Differential Ring Elements

111.4.1 Category and Parent

Category(s)

Type(s)

The category, or type, of the differential ring element s.

Parent (s) |

The parent of the differential ring element s.

111.4.2 Arithmetic

All the usual arithmetic operations are possible for differential ring elements.

s+t

The sum of the two differential ring elements s and t.

g

The negation of the differential ring element s.

s -t
The difference between the differential ring elements s and t.

s *x t

The product of the differential ring elements s and t.

3412 COMMUTATIVE ALGEBRA Part XV

~

S n

Given a differential ring element s and an integer n, return the n-th power of s. If
s is invertible, n may be negative.

s div t

Given the differential ring elements s and ¢, return the exact division of s by ¢, if s
is divisible by ¢.

s/t

Given the differential field elements s and ¢, return s divided by ¢.

Predicates and Booleans

s eqt

[Y
[Y
o
.
w

Return true iff the differential ring elements s and ¢ are exactly the same.

IsZero(s) |

Return true iff the differential ring element s is the zero element of its parent.

IsOne(s)

Return true iff the differential ring element s is the unity element of its parent.

IsWeaklyEqual(s, t)

Return true if and only if the differential ring element s is weakly equal to the
differential ring element ¢.

IsWeaklyZero(s)

Return true if and only if the differential ring element s is weakly equal to the zero
element of its parent.

IsOrderTerm(s) |

Return true if and only if the differential ring element s is purely an order term of
a differential series ring.

Ch. 111 DIFFERENTIAL RINGS

Example H111E13

3413

This examples shows the booleans for various differential rings.

> F<z> := RationalDifferentialField(Rationals());
> S<t> := DifferentialLaurentSeriesRing(Rationals());
> IsOne(F!1);

true

> t eq t+0(t72);

false

> IsWeaklyEqual(t, t+0(t"2));

true

> IsWeaklyZero(t~(-1));

false

> IsWeaklyZero(0(t));

true

> IsOrderTerm(t+0(t~2));

false

> IsOrderTerm(0(t));

true

111.4.4 Coeflicients and Terms

Creates the order term of the differential series s.

| Truncate(s) |

The known part of the differential series s.

Eltseq(s)

Returns the coefficients of the differential ring element s.

Exponents(s)

Returns the interval from the valuation of s to (including) the degree of s.

Example H111E14

> F<z> := RationalDifferentialField(Rationals());
> _<X> := PolynomialRing(F);

> K<x>, mp := ext<F|X"2+X+1>;

> seq := Eltseq(x"2);
>
[
>

seq;
-1, -11]
Universe(seq) eq F;
true

3414 COMMUTATIVE ALGEBRA

Example H111E15

Part XV

> 8<t> := DifferentialLaurentSeriesRing(Rationals());
> 0(t+t"2);

0(t)

> Parent(0(t)) eq S;

true

> trunc := Truncate(t”~(-1)+5%t~2 +0(t"4));
> trunc;

t7-1 + 5*%t~2

> Parent(trunc) eq S;

true

> seq := Eltseq(trunc);

> seq;

[1, 0, 0, 5]

> Universe(seq) eq Rationals(Q);

true
> Exponents(trunc) ;
[-1..2]

111.4.5 Conjugates, Norm and Trace

MinimalPolynomial(s)

The minimal polynomial of the differential field element s over the base field.

Example H111E16

> F<z> := RationalDifferentialField(Rationals());
> P<X> := PolynomialRing(F);

> K<x>, mp := ext<F|X"2+X+1>;

> f := MinimalPolynomial(x~2);

> f;

X2+ X +1

> Parent(f) eq P;

true

> g := MinimalPolynomial (x+3/2);

> g;

X2 + -2xX + 7/4

Ch. 111 DIFFERENTIAL RINGS 3415

111.4.6 Derivatives and Differentials

Derivative(s) |

The image of s under the derivation of the parent of s. Notice that it can be different
to the “usual” derivative, as it relies on the defined derivation.

Differential(s) |

Returns the differential of s in the algebraic differential field F', as a differential in
the differential space of the underlying ring of F'.

Example H111E17

> F<z> := RationalDifferentialField(Rationals());

> Derivative(z~2 + 7/z);

(2xz~3 - 7)/z"2

> Differential(z);

(1) d(=)

> Differential (1/z+6+5%z);

((5%z"2 - 1)/z"2) d(=z)

> S<t> := DifferentialLaurentSeriesRing(Rationals());
> Derivative(5 + 2%t + 3%t"2);

2%t + 6*%t”2

111.5 Changing Related Structures

Sometimes whilst working with a differential ring R, one might wish to consider the same
ring, but with a different derivation or with a larger constant ring. It is a consequence of
the creation of a differential ring, that its constant ring may actually be smaller than its
differential ring of constants.

To alter the settings defined by the creation of a differential ring or field the following
functions are available.

ChangeDerivation(R, f)

Returns a differential ring isomorphic to R, but whose derivation is the map f-
Derivation(R) induced by the isomorphism. The ring element f must be non—
zero. The isomorphism of R to the new differential ring is also returned. The new
differential ring has the same underlying ring as R.

3416 COMMUTATIVE ALGEBRA Part XV

Example H111E18

> F<z> := RationalDifferentialField(Rationals());

> Derivative(z~2);

2%z

> K, toK := ChangeDerivation(F, z);

> K;

Differential Ring of Algebraic function field defined over Rational Field by
$.2 - 4711

with derivation given by (1/z) d(z)

> toK;

Mapping from: RngDiff: F to RngDiff: K given by a rule
> Derivative(toK(z"2));

2%z"72

> UnderlyingRing(F) eq UnderlyingRing(X) ;

true

Notice that the differential of K is (1/z)d(z), so that the derivation of K is z - d/dz, as requested.

ChangeDifferential (F, df)

Returns the algebraic differential field, whose underlying ring is the one of F, but
with derivation with respect to the differential df. The map returned is the bijective
map from F into the new algebraic differential field.

Example H111E19

> F<z> := RationalDifferentialField(Rationals());
> df := Differential(1l/z);

> df in DifferentialSpace(UnderlyingRing(F));
true

> M<u>, mp := ChangeDifferential (F,df);

> IsAlgebraicDifferentialField(M);

true

> Domain(mp) eq F and Codomain(mp) eq M;

true

> Differential (M) ;

(-1/u~2) d(w)

> mp(z);

u

> Derivation(M) (u);

u"2

> Derivation(F) (z);

1

> dg := Differential(z"3+5);

> N<v>, mp := ChangeDifferential(F,dg);

> Differential (M) ;

Ch. 111 DIFFERENTIAL RINGS 3417

(3xv~2) d(v)

> mp(z);

v

> Derivation(N) (mp(z));
1/3/v"2

ConstantFieldExtension(F, C)

Returns the differential field isomorphic to the differential field F', but whose con-
stant field is the extension C, and the isomorphism from F' to the new field. The
differential field F' must be an algebraic function field.

Example H111E20

> F<z> := RationalDifferentialField(Rationals());

> _<X> := PolynomialRing(F);

>M := ext< F | X72-2 >;

> ConstantField(M);

Rational Field

> _<x>:=PolynomialRing(Rationals());

> C := NumberField(x"2-2);

> Mext, toMext := ConstantFieldExtension(M, C);

> ConstantField(Mext);

Number Field with defining polynomial x"2 - 2 over the Rational Field
> toMext;

Mapping from: RngDiff: M to RngDiff: Mext given by a rule

Example H111E21

> S<t>:=DifferentiallaurentSeriesRing(Rationals());
> P<T> := PolynomialRing(Rationals());

> Cext := ext<Ratiomnals() [T 2+1>;

> Sext<text>, mp := ConstantFieldExtension(S,Cext);
> IsDifferentialLaurentSeriesRing(Sext);

true

> ConstantRing(Sext) eq Cext;

true

> Derivative(text” (-2)+7+2xtext~3+0(text"6));

-2xtext™-2 + 6xtext”~3 + 0(text”6);

> mp;

Mapping from: RngDiff: S to RngDiff: Sext given by a rule
> mp(t);

text

3418 COMMUTATIVE ALGEBRA Part XV

Completion(F, p)

Precision RNGINTELT Default : oo

The completion of the differential field F' with respect to the place p. The place p
should be an element of the set of places of F'. The derivation of the completion is the
one naturally induced by the derivation of F'. The map returned is the embedding of
F' into the completion. Upon creation one can set the precision by using Precision.
If no precision is given, then a default value is taken.

Example H111E22

This example illustrates the creation of the differential Laurent series ring by using the com-
mand Completion.

> F<z> := RationalDifferentialField(Rationals());
> pl := Zeros(z)[1];

> S<t>, mp := Completion(F,pl: Precision := 5);

> IsDifferentialLaurentSeriesRing(S);

true

> mp;

Mapping from: RngDiff: F to RngDiff: S given by a rule
> Domain(mp) eq F, Codomain(mp) eq S;

true true

> Derivation(S) (t);

1

> 1/(1-t);

1+t+t°2+t°3+t°4+ 0(t°5)

Example H111E23

This example shows that one does not have to restrict to differential fields of genus 0 to
use Completion.

F<z> := RationalDifferentialField(Rationals());
P<Y> := PolynomialRing(F);

K<y> := ext<F|Y"2-z"3+z+1>;

Genus (UnderlyingRing(K)) ;

pl:=Zeros(K!z) [1];
Degree(pl);

S<t>, mp := Completion(K,pl);

IsDifferentialLaurentSeriesRing(S);

true

> C<c> := ConstantRing(S);

> C;

Number Field with defining polynomial $.1°2 + 1 over the Rational Field
> mp(y) + 0(t°4);

V VNV V.~V V V.YV

Ch. 111 DIFFERENTIAL RINGS 3419

c -t - 4xt"3 + 0(t"4)

111.6 Ring and Field Extensions

The first differential ring and field extensions we consider are the ones induced by a differ-
ential operator. Given a differential operator

L:anD”+an_1D”_1+---+a1D+a0, an#()

in a differential operator ring F'[D] with coefficients in a differential field F', we construct
a ring or field extension of degree n over F', whose indeterminates play the role of a formal
solution of L(y) = 0 and its derivatives.

Given a differential field F', it is also possible to construct differential extensions of the
form F[X]/f(X), where f(X) is an irreducible polynomial over F.

DifferentialRingExtension(L)

Constructs a differential ring extension of the base ring of the differential operator
L, by adding a formal solution of L and its formal derivatives as indeterminates.
Let P denote the new differential ring, and F' the coefficient ring of L. The ring F'
is a differential field. If n is the degree of L, the underlying ring of P is a multivariate
polynomial ring of degree n over F. We thus have P = F[Y7,Y3,...,Y,], with
indeterminates Y7, Ys, ..., Y,,. If L is written as a, D" +a,_1D" ' +---+a;D+ag €
F[D], then the derivation of P is induced by the differential operator L as follows:
op(Y;) = Y41, for i <mnand a,0p(Y,) = —an_1Yn—1 — - —a2Ys —a1Y;. With this
construction Y7 mimics a solution of L(y) = 0, and all the others are its derivatives.

| DifferentialFieldExtension(L) |

Constructs a differential field extension of the base ring of the differential operator
L, by adding a formal solution of L and its formal derivatives as indeterminates.

The construction of the new differential field is completely analogous to the differ-
ential ring created by DifferentialRingExtension(L). The only difference is that
now a differential field M = F(Y1,Ys,...,Y,), with n indeterminates Y7,Y5,...,Y,
is created. The action of the derivation of M on Y;7,Y5,...,Y,, is as described
in DifferentialRingExtension(L).

3420 COMMUTATIVE ALGEBRA Part XV

Example H111E24

> F<z> := RationalDifferentialField(Rationals());
> R<D> := DifferentialOperatorRing(F) ;

> L := z"2xD"2-zxD+1;
>
>

P<Y1,Y2> := DifferentialRingExtension(L);
P;
Differential Ring Extension over F
with derivation given by Mapping from: Polynomial ring of rank 2 over F to
Polynomial ring of rank 2 over F given by a rule [no inverse]
> Derivative(Y1);
Y2
> Derivative(Y2);
-1/z"2%Y1 + 1/z*Y2

Example H111E25

F<z> := RationalDifferentialField(Rationals());
R<D> := DifferentialOperatorRing(F);

L := z"2xD"2-1;

M<Y,DY> := DifferentialFieldExtension(L);
IsDifferentialField(M);

true

> Derivative(Y);

DY

> Derivative(DY);

-1/z"2xY

V V V Vv VvV

ext< F | f >|

The differential field extension F'(«) of the differential field F', where « is a root of
the irreducible polynomial f over F. The angle bracket notation may be used to
assign the root « to an identifier.

Example H111E26

> F<z> := RationalDifferentialField(Rationals());
> _<X> := PolynomialRing(F);

> M<alpha> := ext< F | X"2-z >;

> M;

Differential Ring Extension over F by $.1°2 - z
with derivation given by (1) d(z)

> alpha”2;

z

The differential of M is the differential dz of the differential space of F' lifted to the space of
differentials of M.

Ch. 111 DIFFERENTIAL RINGS 3421

ExponentialFieldExtension(F, f)

Returns the differential field F/(E) as an extension of F, such that the derivation of
FE is f- E. The parent of f must be F.

LogarithmicFieldExtension(F, f)

Returns the differential field F'(L) as an extension of F', such that the derivation of
L is F(L)!f. The parent of f must be F.

Example H111E27

> F<z> := RationalDifferentialField(Rationals());
> K<E> := ExponentialFieldExtension(F, z);
> K;

Differential Ring Extension over F

with derivation given by Mapping from: Multivariate Rational function field of
rank 1 over F to Multivariate Rational function field of rank 1 over F given by
a rule [no inversel

> Derivative(E);

z*E

> _<L> := LogarithmicFieldExtension(F, 1/z);

> Derivative(L);

1/z

> Parent($1) eq Parent(L);

true

PurelyRamifiedExtension(f)

Creates a purely ramified field extension M of the differential field F' with respect
to the purely ramified polynomial f € F[X]. By definition, such a polynomial f is
of the form X™ — a - (F.1) for some constant element a in F' and positive integer n.
The returned extension field M is of the same type as F. The allowed differential
fields are algebraic differential fields and differential Laurent series rings. When F' is
a differential Laurent series ring, its derivation is required to be weakly of the form
cx (F.1)xd/d(F.1) for some constant c. The relative precision of M is then n times
the relative precision of F'. The second argument returned is the embedding map
of Finto M. The inverse map acts on elements for which it is defined. Otherwise
it returns 0.

3422 COMMUTATIVE ALGEBRA Part XV

Example H111E28

A purely ramified extension of an algebraic differential field is constructed in this example.

> F<z> := RationalDifferentialField(Rationals());
> _<X> := PolynomialRing(F);

> Fext<v>, mp := PurelyRamifiedExtension(X"2-5%z);
> IsAlgebraicDifferentialField(Fext);

true

> mp(z) eq 1/5%v"2;

true

> Parent (mp(z)) eq Fext;

true

> Derivation(Fext) (mp(z));

1

> Derivation(Fext) (v);

1/2/z*v

> Derivation(Fext) (v"2) eq Fext!5;

true

> Inverse(mp) (v°2);

5%z ;

Example H111E29

A differential Laurent series ring with a derivation without an order term is considered in this ex-
ample.

S<t>:=DifferentialLaurentSeriesRing(Rationals());
_<T>:=PolynomialRing(S) ;

pol := T"4-5%t;

Sext<r>,mp := PurelyRamifiedExtension(pol);
IsDifferentiallLaurentSeriesRing(Sext);

true

> BaseRing(Sext) eq S and ConstantField(Sext) eq ConstantField(S);
true

> RelativePrecision(Sext);

80

> RelativePrecisionOfDerivation(Sext) ;
Infinity

> Derivation(8) (t);

t

> mp(t);

1/5%r~4

> Derivation(Sext) (mp(t));

1/5xr"4

> mp(Derivation(8) (t));

1/5%r~4

> x = 4+6xt+0(t"6);

> mp(x);

V V V V V

Ch. 111

4 + 6/5*xr~4 + 0(r~24)

> Derivation(Sext) (mp(x));
6/5xr~4 + 0(r~24)

> mp(Derivation(S) (x));
6/5*%r~4 + 0(r~24)

> Inverse(mp) (r"4-r"8);
bxt - 26xt~2

> Inverse(mp) (r"4+0(r"5));
5%t + 0(t"2)

> Derivation(Sext) (r);
1/4%r

Example H111E30

DIFFERENTIAL RINGS

3423

The ring in this example has an order term in its derivation. Therefore, taking a derivative of an
element x is of influence on the relative precision of the image of .

S<t>:=BaseRing(RS);

V V V V V V

true
> _<T> := PolynomialRing(S);

F<z> := RationalDifferentialField(Rationals());
FF<z>:=ChangeDerivation(RationalDifferentialField(Rationals()),z);
RR<DD>:=DifferentialOperatorRing(FF) ;

RS<DS>, mpRRtoRS :=Completion(RR,Zeros(z) [1]);

IsDifferentiallLaurentSeriesRing(S) ;

> E<r>, mp := PurelyRamifiedExtension(T"~3-5%t);
> IsDifferentiallaurentSeriesRing(E);

true
> RelativePrecision(E);
60

> RelativePrecisionOfDerivation(E) ;

60

> Derivation(E) (r);

1/3*r + 0(r~61);

> mp(t);

1/5%r"3

> Derivation(S) (t);

t + 0(t"21)

> Derivation(E) (mp(t));
1/5%r~3 + 0(r~63)

> mp(Derivation(S) (t));
1/5%r~3 + 0(r~63)

> x:=t"(-2) +7+t"3 +0(t"15);
> Derivation(S) (x);

-2%xt~-2 + 3%t~3 + 0(t~15)

> Derivation(E) (mp(x));
-50*r"-6 + 3/125%r~9 + 0(r~45)
> mp(Derivation(S) (x));

3424 COMMUTATIVE ALGEBRA Part XV

-50*r~-6 + 3/125*%r"9 + 0(r~45)

>y = 2%t+0(t"25);

> Derivation(8) (y);

2%t + 0(t"21)

> Derivation(E) (mp(y)) eq mp(Derivation(S) (y));
true

> Derivation(E) (mp(y));

2/5xr~3 + 0(r"63)

111.7 Ideals and Quotient Rings

A differential ideal I C R of a differential ring R is an ideal of R that is closed under the
derivation of R. However, we consider a differential ideal as an ideal of the underlying
ring of R. More specifically, ideals of differential rings are restricted to those rings whose
underlying rings are multivariate polynomial rings.

111.7.1 Defining Ideals and Quotient Rings

Differentialldeal(L) |

Given a sequence L with entries in a differential ring R, return the differential ideal
generated by the entries of L as an ideal of the underlying ring of R. The underlying
ring of R must be of type RngMPol. At first the elements of L may generate an ideal
which is not closed under the derivation of R. By adding as many derivatives of
the elements to the set of generators of the ideal as needed, one obtains a full set of
generators for the calculated differential ideal.

QuotientRing(R, I)

Given a differential ring R and a differential ideal I, return the differential quotient
ring @ = R/I. The derivation of @ is induced by the derivation of R. It maps Q.i
to Q0r(R.i), for i = 1,2,...,m where m is the number of generators of @ (or R).
The induced quotient map from R to @ is also returned.

Example H111E31

> P := PolynomialRing(Rationals(),1);

> f := map<P->P | a:->a*Derivative(a,1)>;

> R<T> := DifferentialRing(P, f, Rationals());
>L := [T"2+T-1];

> I := Differentialldeal(L);

> I;

Ideal of Polynomial ring of rank 1 over Rational Field
Lexicographical Order

Variables: T

Basis:

Ch. 111 DIFFERENTIAL RINGS 3425

[
T°2 + T -1,
]
> Q<X>, toQ := QuotientRing(R,I);
> Q;

Differential Ring of Affine Algebra of rank 1 over Rational Field

Lexicographical Order

Variables: X

Quotient relations:

L
X2 +X -1

]

with derivation given by Mapping from: Affine Algebra of rank 1 over Rational
Field to Affine Algebra of rank 1 over Rational Field given by a rule [no

inverse]

> toQ(T);

X

> Derivative(T"2);

2%T"3

> Derivative(X~2);

X

111.7.2 Boolean Operations on Ideals

IsDifferentialIdeal (R, I)
Returns true if and only if I is a differential ideal of the differential ring R.

111.8 Wronskian Matrix

Let R be a differential ring and let y1,yo,...,y, be elements of R. The wronskian matriz
of y1,v2,...,yn is defined as the n x n matrix
Y Y2 e Yn
or(y1) Or(y2) ... Or(yn)
W(ylﬂyQ;"'vyn>: : : . :
0 ‘(1) O N(y2) oo O (yn)
The wronskian determinant, or simply the wronskian, of y1,vys, ...,y is the determinant
of the wronskian matrix W (y1,y2, ..., Yn)-

| WronskianMatrix (L) |

Given a sequence of differential ring elements L, return the Wronskian matrix of L
whose entries are elements of the universe of L.

| WronskianDeterminant (L) |

Given a sequence of differential ring elements L, return the determinant of the
Wronskian matrix of L as well as the matrix itself.

3426 COMMUTATIVE ALGEBRA Part XV

Example H111E32

> F<z> := RationalDifferentialField(Rationals());
> WronskianMatrix([1,z,z"2]);

[1 z z"2]

[0 1 2%z]

[0 0 2]

> WronskianDeterminant([1,z"2,1/z]);

6/z

[z z°2 1/Z]

[1 2%z -1/z"2]

[0 2 2/z"3]

111.9 Differential Operator Rings

111.9.1 Creation

DifferentialOperatorRing(F)

Returns the differential operator ring over the differential field F'.

Example H111E33

> F<z> := RationalDifferentialField(Rationals());

> R := DifferentialOperatorRing(F);

> R;

Differential operator ring over Differential Ring of Algebraic function field
defined over Rational Field by

$.2 - 4711

with derivation given by (1) d(z)

AssignNames(~R, S)

Given a differential operator ring R with n indeterminates and a sequence S of n
strings, assign the elements of S to the names of the variables of R.
This procedure only changes the names used in the printing of the elements of R.

Ch. 111 DIFFERENTIAL RINGS 3427

111.9.2 Creation of Differential Operators

The easiest way to create an element in a given ring is to use the angle bracket construction
to attach a name to the indeterminate of the differential operator ring. Other constructions
are given below.

Name (R, i)

The i-th indeterminate of the differential ring R, where ¢ must be 1.

Coerce the element s into the differential operator ring R. Elements that are co-
ercible into R are elements coercible into its underlying ring, sequences, and differ-
ential operators defined over the base ring of the coefficient ring of R.

When the base ring of R is an algebraic differential field, elements of other
differential operator rings over algebraic differential fields can be coerced into R so
long as the underlying rings of the differential fields are the same.

The zero element of the differential operator ring R.

The identity element of the differential operator ring R.

Example H111E34

> F<z> := RationalDifferentialField(Rationals());
> R<D> := DifferentialOperatorRing(F);

> R.1;

D

> R!'(1/2);

1/z;

>RI1[1/2,0,5,z];

z*D"3 + 5xD"2 + 1/2

> S<T> := DifferentialOperatorRing(ChangeDerivation(F,z));
> RIT;

z*D

> SID;

1/z*T

3428 COMMUTATIVE ALGEBRA Part XV

111.10 Structure Operations on Differential Operator Rings

111.10.1 Category and Parent

Differential Operator Rings form the MAGMA category RngDiffOp. The notional power
structures exist as parents of differential operator rings.

Category(R)
Type (R)
The category, or type, of the differential operator ring R.

| Parent (R) |

The power structure of the differential operator ring R.

111.10.2 Related Structures

As outlined in the introduction, a differential operator ring R is of the form F[D], for a
differential ring F'. The ring F' is called the base ring or coefficient ring of R.

BaseRing(R)

CoefficientRing(R)

The base ring, or coefficient ring, of the differential operator ring R.

ConstantRing(R)

The constant ring of the differential ring operator R.

111.10.3 Derivation and Differential

By construction the variable D of a differential operator ring F[D] is related to the deriva-
tion dp. That is why dp is also considered to be the derivation of R.

| Derivation(R) |

The derivation of the differential operator ring R.

| Differential(R) |

The differential belonging to the derivation of the differential operator ring R. The
derivation must have been constructed in such a way that it is defined by a differ-
ential.

Ch. 111 DIFFERENTIAL RINGS 3429

Example H111E35

> F<z> := RationalDifferentialField(Rationals());

> R<D> := DifferentialOperatorRing(F) ;

> BaseRing(R) eq F;

true

> Derivation(R) ;

Mapping from: RngDiff: F to RngDiff: F given by a rule [no inverse]
> Differential(R);

(1) d(z)

111.10.4 Predicates and Booleans
R eqF

Returns true if and only if the differential operator rings R and F' are the same.

IsIdentical(R, F)

Returns true if and only if the differential operator rings R and F' are identical.

IsDifferentialOperatorRing(R)

Returns true if and only if the given argument is a differential operator ring.

HasProjectiveDerivation(R)

Returns true iff R is defined over a ring F' with derivation weakly of the form
(F.1)-d/d(F.1).

| HasZeroDerivation(R) |

Returns true iff the base ring of R is an algebraic differential field or a differential
series ring F' such that the derivation of R acts as a (weak) zero derivation on F.1.

Example H111E36

> F<z> := RationalDifferentialField(Rationals());
> R<D> := DifferentialOperatorRing(F);

> IsDifferentialOperatorRing(F);

false

> IsDifferentialOperatorRing(R) ;

true

> Derivation(R) (z);

1

> HasProjectiveDerivation(R);

false

> HasProjectiveDerivation(ChangeDerivation(R,z));
true

> HasZeroDerivation(R);

false

3430 COMMUTATIVE ALGEBRA

Part XV

Example H111E37

> 8<t> := DifferentiallaurentSeriesRing(Rationals());
> V<W> := DifferentialOperatorRing(S);
> IsDifferentialOperatorRing(V) ;

true

> Derivation(V) (t);

t

> HasProjectiveDerivation(V);

true

> HasZeroDerivation(V);

false

> P<Q>, mp := ChangeDerivation(V,3/t);
> IsDifferentialOperatorRing(P) ;

true

> HasProjectiveDerivation(P);

false

> X<y> := BaseRing(P);

> Qx*y;

y*Q + 3

111.10.5 Precision

RelativePrecisionOfDerivation(R) |

The relative precision of the derivation of an operator ring over a Laurent series

ring.

Example H111E38

This example illustrates the relative precision of derivations of differential operatorrings.

> S<t>:=DifferentiallaurentSeriesRing(Rationals());
> RS<DS> := DifferentialOperatorRing(S);

> RelativePrecisionOfDerivation(RS);

Infinity

> RV<DV> := ChangeDerivation(RS, t~2+0(t"8));

> relprec := RelativePrecisionOfDerivation(RV);
> relprec;
6
>

RelativePrecisionOfDerivation(BaseRing(RV)) eq relprec;

true

Ch. 111 DIFFERENTIAL RINGS 3431

111.11 Element Operations on Differential Operators

111.11.1 Category and Parent

Category(L)
Type (L)
The category, or type, of the differential operator L.

| Parent (L) |
The parent of the differential operator L.

111.11.2 Arithmetic

All the usual arithmetic operations are possible for differential operators. It follows from
the multiplication rule for differential operators that the multiplication of differential op-
erators is non—commutative.

s+t

The sum of the two differential operators s and t.

g

The negation of the differential operator s.

s -t

The difference between the differential operators s and t.

S *x t
The product of the differential operators s and t.

~

S n

Given a differential operator s and an integer n > 0, return the n-th power of s.

Example H111E39

> F<z> := RationalDifferentialField(Rationals());
> R<D> := DifferentialOperatorRing(F);

> (z#D-1)*(D+1);

z*D"2 + (z - 1)*D + -1

> (D+1)*(z*xD-1);

z¥D"2 + zxD + -1

> (D-1/2)"2;

D°2 + -2/z*D + 2/z"2

3432 COMMUTATIVE ALGEBRA Part XV

111.11.3 Predicates and Booleans

Return true iff the differential operators s and t are exactly the same.

IsZero(L) |

Return true iff the differential operator L is the zero element of its parent.

IsOne(L)

Return true iff the differential operator L is the unity element of its parent.

| IsMonic (L) |

Return true iff the differential operator L is monic.

IsWeaklyEqual(L, P)

Returns true if and only if the differential operator L is weakly equal to the operator
P. This means that the i-th coefficients of L and P should be weakly equal to each
other for every i € [0.. max(deg(L), deg(P))].

IsWeaklyZero(L)

Returns true if and only if the differential operator L € R is weakly equal to R!0.

IsWeaklyMonic (L)

Returns true if and only if the leading coefficient of the differential operator L is
weakly equal to 1.

111.11.4 Coefficients and Terms

Differential operators look like univariate polynomials with coefficients in a differential ring.
Some of the terminology used for polynomial rings is mimicked for differential operators.

Eltseq(L)

Coefficients (L)

Given an operator L with coefficients in R, this function returns the sequence of
elements in R, that are the coefficients of L. The sequence is ordered from the
constant coefficient to the coefficient of the highest order term of L.

Coefficient(L, i)

Given an operator L with coefficients in R, this function returns the coefficient of
the monomial of degree i in L, as an element of R.

LeadingCoefficient (L)

Given an operator L with coefficients in R, this function returns the coefficient of
the highest order term of L.

Ch. 111 DIFFERENTIAL RINGS 3433

LeadingTerm(L)

The leading term of the differential operator L.

Terms (L)

Given an operator L with coefficients in R, this function returns the sequence of
non—zero coefficients of L as elements of R. The sequence is ordered from the lowest
order term to the highest order term in L.

Example H111E40

> F<z> := RationalDifferentialField(Rationals());
> R<D> := DifferentialOperatorRing(F) ;
>L :=D"3 + (-4%z + 5)*D + (3%z - 4);
> L;
D3 + (-4%z + 5)*D + 3%z - 4
> Eltseq(L);
[3%z - 4, -4xz + 5, 0, 1]
> LeadingTerm(L) ;
D~3
> Terms(L);
[
3%z - 4,
(-4xz + 5)*D,
D"3

111.11.5 Order and Degree

Order (L)

Degree (L)

Returns the order of the differential operator L. In the case that L is identically 0,
the order is defined to be —1.

WeakOrder (L) |
WeakDegree (L)

If the differential operator L is defined over a differential series ring, then the expo-
nent of the highest coefficient of L that is not weakly 0 is returned.

3434 COMMUTATIVE ALGEBRA Part XV

Example H111E41

S<t> := DifferentialLaurentSeriesRing(Rationals());
R<D> := DifferentialOperatorRing(S);

L := D™2 + 2%t;

P := 0(t)*D"3 + (1+0(t))*D"2 + 2x*t;

Order (L) ;

Degree(P) ;

VvV WV NV V V V.V

L eq P;

false

> IsWeaklyEqual(L,P);
true

> WeakOrder (P);

2

111.11.6 Related Differential Operators

MonicDifferentialOperator(L)

Given the differential operator L, this function returns the monic differential oper-
ator 1/c- L, where c is the leading coefficient of L.

Adjoint (L)

Returns the formal adjoint of the differential operator L. The formal adjoint of
L =>3"" ,a;D" in the differential operator ring R = F[D] over F, is the differential
operator L* := """ (—1)*D"xa; € R. It follows from the definition that the orders
of L and L* are the same and that the leading coefficient of L* is (—1)"a,,.

Translation(L, e)

If R is the parent of the differential operator L and e is a suitable ring element,
then the operator in R obtained by replacing R.1 by R.1 4+ e in L is returned. The
second argument returned is the translation map on R by e.

TruncateCoefficients (L)

If L is defined over a differential series ring, then returned is the operator whose
coefficients are the truncations of the coefficients of L.

Ch. 111 DIFFERENTIAL RINGS

Example H111E42

3435

F<z> := RationalDifferentialField(Rationals());
R<D> := DifferentialOperatorRing(F) ;

L := zxD"3 + (-4*z + 5)*D + (3%xz - 4);

Order (L) ;

W VvV VvV Vv Vv

\4

MonicDifferentialOperator(L);

D"3 + (-4%z + 5)/z*D + (3*z - 4)/z

> Adjoint (L) ;

-z*D"3 + -3*%D"2 + (4%z - 5)*D + 3%z

> trans, mp := Translation(L, 2);

> trans;

z*D"3 + 6*z*D"2 + (8*z + 5)*D + 3%z + 6

Example H111E43

> 8<t> := DifferentialLaurentSeriesRing(Rationals());

> RS<DS> := DifferentialOperatorRing(S);

> L := (5-0(t))*DS"3+(2*t"-1+t"2+0(t"4))*DS - t~-2+t+0(t"3);
> L;

(5 + 0(t))*DS"3 + (2*%t~-1 + t°2 + 0(t"4))*DS + -t~-2 + t + 0(t"3)

> TruncateCoefficients(L);

5%DS~3 + (2%t"-1 + t"2)*DS + -t"-2 + t
> L -TruncateCoefficients(L);
0(t)*DS"3 + 0(t~4)*DS + 0(t~3)

111.11.7 Application of Operators

As pointed out in the introduction a differential operator L = a,, D™ + a,_1 D" 1 4+ .- +

a1D + ap in F[D] leads to the differential equation L(y) = 0 given by

L(y) = and0p(y) + an—186p () + -+ + a16r(y) + aoy

This notation is formal, but also defines an action of L on any element y € F. The function

Apply returns the ring element obtained by this action.

Apply(L, £)
L(f)

Given a differential operator L and a ring element f, return the ring element obtained
after applying L to f, as an element of the base ring of L. The element f must be

coercible into the base ring of L.

3436 COMMUTATIVE ALGEBRA Part XV

Example H111E44

> F<z> := RationalDifferentialField(Rationals());
> R<D> := DifferentialOperatorRing(F);

> L :=D"2-2/z"2;

> Apply(L, z);

-2/z

> L(z);

-2/z

> Apply(L, z72);

0

111.12 Related Maps

This section is devoted to maps between differential operator rings.

TranslationMap(R, e)

Returns a map on the differential operator ring R that replaces R.1 by R.1+ e when
applied to a differential operator for some suitable ring element e.

LiftMap(m, R)

Let m : F — M be a differential map on differential fields and R a differential oper-
ator ring over F'. Then this routine lifts the given map to a map on the differential
operator rings R — S, where the basefield of S is M.

Example H111E45

> F<z> := RationalDifferentialField(Rationals());
> R<D> := DifferentialOperatorRing(F);

> transmap := TranslationMap(R, 2 + z);

> Codomain(transmap) eq R;

> transmap(D) ;

D+z+ 2

> transmap(D~2);

D2 + (2%z + 4)*D + 272 + 4%z + 5

> P<T> := PolynomialRing(F);

> M<u>, mp := ext<F|T"2+z>;

> liftmap := LiftMap(mp, R);

> Rprime<Dprime> := Codomain(liftmap) ;
> IsDifferentialOperatorRing(Rprime) ;
true

> BaseRing(Rprime) eq M;

true

> liftmap(D);
Dprime

Ch. 11

1 DIFFERENTIAL RINGS 3437

liftmap(R!z);

>
Z
> Deri
1
>

Deri

vation(Rprime) (liftmap(z));

vation(Rprime) (u);

1/2/z*u

111.13 Changing Related Structures

It may happen that certain intrinsics only work for differential operator rings whose deriva-
tions are of a specific form, or whose constant fields have to be large enough. Some of the
functions available for changing settings of the differential rings or fields can be used to
change the desired related structure on the operator ring directly. To alter some of the
settings of a differential operator ring, the following functions are available.

ChangeDerivation(R, f)

Returns a differential operator ring isomorphic to R, but whose derivation is given
by f* Derivation(R). The ring element f must be non-zero. The isomor-
phism of R to the new differential ring is also returned. The base ring of the
new differential operator ring is isomorphic to the one of R, but it has derivation
ChangeDerivation(BaseRing(R)).

ChangeDifferential (R, df)

Example H111E46

Returns the differential operator ring with differential df, and whose underlying ring
of its basefield coincides with the one of R. The map returned is the bijective map
of R into the new operator ring. The base ring of the new differential operator ring
is isomorphic to the one of R. However, the returned inclusion map and taking
derivatives may not be commutative.

> F<z> := RationalDifferentialField(Rationals());
> R<D> := DifferentialOperatorRing(F) ;

> df := Differential(z"3+5);

> RM<DM>, mp := ChangeDifferential(R,df);

> Domain(mp) eq R and Codomain(mp) eq RM;

true

> M<u> := BaseRing(RM);

> IsDifferentialOperatorRing(RM) and IsAlgebraicDifferentialField(M);
true

> mp(RM!z) ;

u

> mp(D);

3%u” 2%

DM

3438 COMMUTATIVE ALGEBRA Part XV

> Dxz, mp(D*z);
uxD + 1

3*xu~3*%DM + 1

> DM*u;

uxDM + 1/3/u"2

> Differential (RM);
(3*xu~2) d(u)

ConstantFieldExtension(R, C)

Returns the ring of differential operators with base ring isomorphic to that of the
differential operator ring R, but whose constant field is C'. The derivation is extended
over the new constant field. The second argument returned is the map from R to
the new operator ring.

PurelyRamifiedExtension(R,f)

When R is a differential operator ring over a differential ring F', this function re-
turns an operator ring over the purely ramified extension of F', as induced by the
polynomial f. The polynomial f is of the form X" — a - (F.1) for some constant
element a in F' and positive integer n.

Example H111E47

> S<t> := DifferentialLaurentSeriesRing(Rationals());
R<D> := DifferentialOperatorRing(S);
_<T> := PolynomialRing(S);

>
>
> Rext<Dext>, mp := PurelyRamifiedExtension(R, T"7-3%t);
>
>

Sext<text> := BaseRing(Rext);
Domain(mp) eq R and Codomain(mp) eq Rext;
true
> IsDifferentialLaurentSeriesRing(Sext);
true
> BaseRing(Sext) eq S;
true
> RelativePrecision(Sext) eq 7*RelativePrecision(S);
true
> Dxt;
t*D + t
> mp(D);
Dext
> mp(R't) eq Rext!(1/3*text”7);
true
> Dext*text;
text*Dext + 1/7*text

Ch. 111 DIFFERENTIAL RINGS 3439

Completion(R, p)

Precision RNGINTELT Default : oo

Returns the operator ring R, whose base ring is the completion of the base ring
of the operator ring R w.r.t. the place p. The second return value is the natural
embedding of R into R. The precision of the base ring of R can be set by setting
Precision upon creation. If no precision is set, a default value for the precision
is taken.

Localization(R, p)

Returns the operator ring whose differential has valuation —1 at p, with derivation
t-d/dt, where t is the uniformizing element at the place p. The natural map between
the operator rings, and the induced image of p are also returned.

Localization(L, p)

Given the differential operator L over an algebraic differential field, returns the
localized operator of L at the place p. The embedding map between the parents as
well as the induced image of the place are also returned.

Localization(R) |

Given a differential operator ring R over the differential Laurent series ring C((t)),
returns the operator ring whose derivation is of the form ¢ - d/dt, and the natural
map between the operator rings.

Localization(L) |

Given the differential operator L over a differential series ring, returns the localized
operator of L and the embedding map between the parents.

Example H111E4