HANDBOOK OF MAGMA FUNCTIONS

Volume 4

Local Arithmetic Fields

John Cannon Wieb Bosma
Claus Fieker Allan Steel

Editors

Version 2.19
Sydney
December 17, 2012



ii



MAGMA

COMPUTER®ALGEBRA

HANDBOOK OF MAGMA FUNCTIONS

Editors:
John Cannon Wieb Bosma Claus Fieker Allan Steel

Handbook Contributors:

Geoff Bailey, Wieb Bosma, Gavin Brown, Nils Bruin, John
Cannon, Jon Carlson, Scott Contini, Bruce Cox, Brendan
Creutz, Steve Donnelly, Tim Dokchitser, Willem de Graaf,
Andreas-Stephan Elsenhans, Claus Fieker, Damien Fisher,
Volker Gebhardt, Sergei Haller, Michael Harrison, Florian
Hess, Derek Holt, David Howden, Al Kasprzyk, Markus
Kirschmer, David Kohel, Axel Kohnert, Dimitri Leemans,
Paulette Lieby, Graham Matthews, Scott Murray, Eamonn
O’Brien, Dan Roozemond, Ben Smith, Bernd Souvignier,
William Stein, Allan Steel, Damien Stehlé, Nicole Suther-
land, Don Taylor, Bill Unger, Alexa van der Waall, Paul
van Wamelen, Helena Verrill, John Voight, Mark Watkins,
Greg White

Production Editors:

Wieb Bosma Claus Fieker Allan Steel Nicole Sutherland

HTML Production:
Claus Fieker Allan Steel






VOLUME 4: OVERVIEW

VII LOCAL ARITHMETIC FIELDS . . . . . . . . 1223
45 VALUATION RINGS 1225
46 NEWTON POLYGONS 1231
47 p-ADIC RINGS AND THEIR EXTENSIONS 1259
48 GALOIS RINGS 1309
49 POWER, LAURENT AND PUISEUX SERIES 1317
50 LAZY POWER SERIES RINGS 1345
o1 GENERAL LOCAL FIELDS 1361
52 ALGEBRAIC POWER SERIES RINGS 1373
VIII MODULES . . . . . . . . . . . . . . . . . 1387
53 INTRODUCTION TO MODULES 1389
54 FREE MODULES 1393
55 MODULES OVER DEDEKIND DOMAINS 1417

56 CHAIN COMPLEXES 1439



vi VOLUME 4: CONTENTS

VOLUME 4: CONTENTS

VII LOCAL ARITHMETIC FIELDS 1223
45 VALUATION RINGS . . . . . . . . . . . . . . . . . . . 1225
45.1 Introduction 1227
45.2 Creation Functions 1227
45.2.1 Creation of Structures 1227
45.2.2 Creation of Elements 1227
45.3 Structure Operations 1228
45.3.1 Related Structures 1228
45.3.2 Numerical Invariants 1228
45.4 Element Operations 1228
45.4.1 Arithmetic Operations 1228
45.4.2 Equality and Membership 1228
45.4.3 Parent and Category 1228
45.4.4 Predicates on Ring Elements 1229
45.4.5 Other Element Functions 1229
46 NEWTON POLYGONS . . . . . . . . . . . . . . . . . . 1231
46.1 Introduction 1233
46.2 Newton Polygons 1235
46.2.1 Creation of Newton Polygons 1235
46.2.2 Vertices and Faces of Polygons 1237
46.2.3 Tests for Points and Faces 1241
46.3 Polynomials Associated with Newton Polygons 1242
46.4 Finding Valuations of Roots of Polynomials from Newton Polygons 1243
46.5 Using Newton Polygons to Find Roots of Polynomials over Series Rings 1243
46.5.1 Operations not associated with Duval’s Algorithm 1244
46.5.2 Operations associated with Duval’s algorithm 1249
46.5.3 Roots of Polynomials 1256
46.6 Bibliography 1258
47 p-ADIC RINGS AND THEIR EXTENSIONS . . . . . . . . 1259
47.1 Introduction 1263
47.2 Background 1263
47.3 Overview of the p-adics in MAGMA 1264
47.3.1 p-adic Rings 1264
47.3.2 p-adic Fields 1264
47.3.3 Free Precision Rings and Fields 1265
47.3.4 Precision of Extensions 1265
47.4 Creation of Local Rings and Fields 1265
47.4.1 Creation Functions for the p-adics 1265
47.4.2 Creation Functions for Unramified Extensions 1267
47.4.3 Creation Functions for Totally Ramified Extensions 1269
47.4.4 Creation Functions for Unbounded Precision Extensions 1270
47.4.5 Miscellaneous Creation Functions 1271
47.4.6 Other Elementary Constructions 1272
47.4.7 Attributes of Local Rings and Fields 1272

47.5 Elementary Invariants 1272



48

47.6
47.6.1
47.7
47.7.1
47.7.2
47.8
47.8.1
47.8.2
47.8.3
47.8.4
47.8.5
47.8.6
47.8.7
47.9
47.10
47.11
47.11.1
47.11.2
47.11.3
47.12
47.13
47.14
47.14.1
47.14.2
47.14.3
47.15
47.16

VOLUME 4: CONTENTS

Operations on Structures
Ramification Predicates
Element Constructions and Conversions
Constructions
Element Decomposers
Operations on Elements
Arithmetic
Equality and Membership
Properties
Precision and Valuation
Logarithms and Exponentials
Norm and Trace Functions
Teichmiiller Lifts
Linear Algebra
Roots of Elements
Polynomials
Operations for Polynomials
Roots of Polynomials
Factorization
Automorphisms of Local Rings and Fields
Completions
Class Field Theory
Unit Group
Norm Group
Class Fields
Extensions
Bibliography

GALOIS RINGS

48.1

48.2

48.2.1
48.2.2
48.2.3
48.2.4
48.3

48.3.1
48.3.2
48.3.3
48.4

48.4.1
48.4.2
48.4.3
48.4.4
48.4.5

Introduction
Creation Functions
Creation of Structures
Names
Creation of Elements
Sequence Conversions
Structure Operations
Related Structures
Numerical Invariants
Ring Predicates and Booleans
Element Operations
Arithmetic Operators
Euclidean Operations
Equality and Membership
Parent and Category
Predicates on Ring Elements

vii

1276
1278
1279
1279
1282
1283
1283
1284
1286
1286
1288
1289
1291
1291
1291
1292
1292
1294
1298
1302
1304
1305
1305
1306
1307
1307
1308

1309

1311
1311
1311
1312
1313
1313
1314
1314
1315
1315
1315
1315
1316
1316
1316
1316



viii VOLUME 4: CONTENTS

49 POWER, LAURENT AND PUISEUX SERIES . . . . . . . . 1317
49.1 Introduction 1319
49.1.1 Kinds of Series 1319
49.1.2 Puiseux Series 1319
49.1.3 Representation of Series 1320
49.1.4 Precision 1320
49.1.5 Free and Fixed Precision 1320
49.1.6 Equality 1321
49.1.7 Polynomials over Series Rings 1321
49.2 Creation Functions 1321
49.2.1 Creation of Structures 1321
49.2.2 Special Options 1323
49.2.3 Creation of Elements 1324
49.3 Structure Operations 1325
49.3.1 Related Structures 1325
49.3.2 Invariants 1326
49.3.3 Ring Predicates and Booleans 1326
49.4 Basic Element Operations 1326
49.4.1 Parent and Category 1326
49.4.2 Arithmetic Operators 1326
49.4.3 Equality and Membership 1327
49.4.4 Predicates on Ring Elements 1327
49.4.5 Precision 1327
49.4.6 Coefficients and Degree 1328
49.4.7 Evaluation and Derivative 1329
49.4.8 Square Root 1330
49.4.9 Composition and Reversion 1330
49.5 Transcendental Functions 1332
49.5.1 Exponential and Logarithmic Functions 1332
49.5.2 Trigonometric Functions and their Inverses 1334
49.5.3 Hyperbolic Functions and their Inverses 1334
49.6 The Hypergeometric Series 1335
49.7 Polynomials over Series Rings 1335
49.8 Extensions of Series Rings 1338
49.8.1 Constructions of Extensions 1338
49.8.2 Operations on Extensions 1339
49.8.3 Elements of Extensions 1342
49.8.4 Optimized Representation 1343
49.9 Bibliography 1344

50 LAZY POWER SERIES RINGS . . . . . . . . . . . . . . 1345
50.1 Introduction 1347
50.2 Creation of Lazy Series Rings 1348
50.3 Functions on Lazy Series Rings 1348
50.4 Elements 1349
50.4.1 Creation of Finite Lazy Series 1349
50.4.2 Arithmetic with Lazy Series 1352
50.4.3 Finding Coefficients of Lazy Series 1353
50.4.4 Predicates on Lazy Series 1356

50.4.5 Other Functions on Lazy Series 1357



51

52

VOLUME 4: CONTENTS

GENERAL LOCAL FIELDS .

51.1
51.2
51.3
51.3.1
51.4
51.5
51.6
51.7
51.7.1
51.7.2
51.7.3
51.8

Introduction
Constructions
Operations with Fields

Predicates on Fields
Maximal Order
Homomorphisms from Fields
Automorphisms and Galois Theory
Local Field Elements

Arithmetic

Predicates on Elements

Other Operations on Elements
Polynomials over General Local Fields

ALGEBRAIC POWER SERIES RINGS

52.1
52.2
52.2.1
52.2.2
52.3
52.3.1
52.4
52.5
52.6
52.7
52.8

Introduction
Basics
Data Structures
Verbose Output
Constructors
Rational Puiseux Expansions
Accessors and Expansion
Arithmetic
Predicates
Modifiers
Bibliography

X

1361

1363
1363
1364
1367
1367
1368
1368
1369
1369
1369
1370
1371

1373

1375
1375
1375
1376
1376
1377
1381
1382
1383
1384
1385



VIII

53

54

55

VOLUME 4: CONTENTS

MODULES

INTRODUCTION TO MODULES

53.1 Overview
53.2 General Modules
53.3 The Presentation of Submodules

FREE MODULES

54.1 Introduction

54.1.1 Free Modules

54.1.2 Module Categories

54.1.3 Presentation of Submodules

54.1.4 Notation

54.2 Definition of a Module

54.2.1 Construction of Modules of n-tuples
54.2.2 Construction of Modules of m x n Matrices
54.2.3 Construction of a Module with Specified Basis
54.3 Accessing Module Information

54.4 Standard Constructions

54.4.1 Changing the Coefficient Ring

54.4.2 Direct Sums

54.5 Elements

54.6 Construction of Elements

54.6.1 Deconstruction of Elements

54.6.2 Operations on Module Elements

54.6.3 Properties of Vectors

54.6.4 Inner Products

54.7 Bases

54.8 Submodules

54.8.1 Construction of Submodules

54.8.2 Operations on Submodules

54.8.3 Membership and Equality

54.8.4 Operations on Submodules

54.9 Quotient Modules

54.9.1 Construction of Quotient Modules
54.10 Homomorphisms

54.10.1 Hompg (M, N) for R-modules

54.10.2 Homp (M, N) for Matrix Modules
54.10.3 Modules Hompg (M, N) with Given Basis
54.10.4 The Endomorphsim Ring

54.10.5 The Reduced Form of a Matrix Module
54.10.6 Construction of a Matrix

54.10.7 Element Operations

MODULES OVER DEDEKIND DOMAINS

55.1 Introduction

55.2 Creation of Modules

55.3 Elementary Functions

55.4 Predicates on Modules

55.5 Arithmetic with Modules
55.6 Basis of a Module

55.7 Other Functions on Modules

1387

1389

1391
1391
1392

1393

1395
1395
1395
1396
1396
1396
1396
1397
1397
1397
1398
1398
1398
1399
1399
1400
1400
1402
1402
1403
1403
1403
1404
1404
1405
1405
1405
1406
1406
1407
1409
1409
1410
1413
1414

1417

1419
1420
1424
1426
1427
1428
1429



56

55.8
55.9
55.9.1
55.9.2
55.9.3
55.10
55.10.1
55.10.2
55.10.3
55.10.4
55.10.5

VOLUME 4: CONTENTS

Homomorphisms between Modules
FElements of Modules

Creation of Elements

Arithmetic with Elements

Other Functions on Elements
Pseudo Matrices

Construction of a Pseudo Matrix

Elementary Functions

Basis of a Pseudo Matrix

Predicates

Operations with Pseudo Matrices

CHAIN COMPLEXES

56.1

56.1.1
56.1.2
56.1.3
56.1.4
56.1.5
56.1.6
56.2

56.2.1
56.2.2
56.2.3
56.2.4
56.2.5

Complexes of Modules
Creation
Subcomplexes and Quotient Complexes
Access Functions
Elementary Operations
Extensions
Predicates

Chain Maps
Creation
Access Functions
Elementary Operations
Predicates
Maps on Homology

x1

1431
1434
1434
1435
1435
1436
1436
1436
1437
1437
1437

1439

1441
1441
1442
1442
1443
1444
1445
1447
1448
1448
1449
1449
1452






45

46

47

48

49

50

51

52

PART VII
LOCAL ARITHMETIC FIELDS

VALUATION RINGS

NEWTON POLYGONS

p-ADIC RINGS AND THEIR EXTENSIONS
GALOIS RINGS

POWER, LAURENT AND PUISEUX SERIES
LAZY POWER SERIES RINGS

GENERAL LOCAL FIELDS

ALGEBRAIC POWER SERIES RINGS

1225

1231

1259

1309

1317

1345

1361

1373






45 VALUATION RINGS

45.1 Introduction

45.2 Creation Functions
45.2.1 Creation of Structures .

ValuationRing(Q, p)
ValuationRing(F, f)
ValuationRing(F)

45.2.2 Creation of Elements
!

45.3 Structure Operations
45.3.1 Related Structures.

Category Parent PrimeRing Center
FieldOfFractions (V)

45.3.2 Numerical Invariants .

Characteristic

45.4 Element Operations
45.4.1 Arithmetic Operations .
+ -

+ - x =/

1227

1227

. 1227

1227
1227
1227

. 1227

1227
1228

. 1228

1228
1228

. 1228

1228
1228

. 1228

1228
1228

div
45.4.2 Equality and Membership

eq ne
in notin

45.4.3 Parent and Category .
Parent Category

45.4.4 Predicates on Ring Elements .

IsZero IsOne IsMinusOne
IsNilpotent IsIdempotent
IsUnit IsZeroDivisor IsRegular

45.4.5 Other Element Functions .

EuclideanNorm(v)
Valuation(v)

Quotrem(v, w)
GreatestCommonDivisor(v, w)
Ged (v, w)

ExtendedGreatestCommonDivisor (v, w)

Xgcd(v, w)
XGCD (v, w)

1228
1228

. 1228

1228
1228

. 1228

1228

. 1229

1229
1229
1229

. 1229

1229
1229
1229
1229
1229
1229
1229
1229






Chapter 45
VALUATION RINGS

45.1 Introduction

MAGMA currently supports basic operations in valuation rings obtained either from the
rational field Q (and a finite prime p), or from a field of rational functions over a field (and
an irreducible polynomial, or the infinite prime).

45.2 Creation Functions

45.2.1 Creation of Structures

ValuationRing(Q, p)

Given the rational field @) and a rational prime number p, create the valuation ring R
corresponding to the discrete non-Archimedean valuation v, consisting of rational
numbers 7 such that v, (r) > 0, that is, r = % € Q such that p fy.

ValuationRing(F, f)

Given the rational function field F' as a field of fractions of the univariate polynomial
ring K[z]| over a field K, as well as a monic irreducible polynomial f € K|z], create
the valuation ring R corresponding to the discrete non-Archimedean valuation vy.
Thus R consists of rational functions ¢ € F' with vy(g/h) > 0, that is, with f fh.

ValuationRing(F)

Given the rational function field F' as a field of fractions of the univariate polynomial
ring K [x] over a field K, create the valuation ring R corresponding to v, consisting
of 4 € F such that deg(h) > deg(g).

45.2.2 Creation of Elements

Given a valuation ring V' and an element of the field of fractions F' of V' (from which
V' was created), coerce the element r into V. This is only possible for elements
r € F for which the valuation on V is non-negative, an error occurs if this is not
the case.



1228 LOCAL ARITHMETIC FIELDS Part VIII

45.3 Structure Operations

45.3.1 Related Structures

Category (V) Parent (V) PrimeRing (V) Center (V)

FieldOfFractions(V) |

Return field of fractions of the valuation ring V', which is the rational field or the
function field from which V' was created.

45.3.2 Numerical Invariants

Characteristic (V)

45.4 Element Operations

45.4.1 Arithmetic Operations

+ v - v
v+ w vV - W vV ox W v "k v/ w
v +:=w vV -:= W vV *%:= W

v div w

The quotient ¢ of the division with remainder v = qw + r of the valuation ring
elements v and w, where the remainder will have valuation less than that of w; if
the valuation of v is greater than or equal than that of w, this simply returns the
quotient v/w, if the valuation of w exceeds that of v it returns 0.

45.4.2 Equality and Membership

Vv.eqw vV ne w

v in V v notin V

45.4.3 Parent and Category

Parent (v) Category(v)




Ch. 45 VALUATION RINGS 1229

45.4.4 Predicates on Ring Elements

IsZero(n) IsOne(n) IsMinusOne (n)
IsNilpotent(n) IsIdempotent (n)
IsUnit(n) IsZeroDivisor(n) IsRegular(n)

45.4.5 Other Element Functions

EuclideanNorm(v) |

Valuation(v)

Given an element v of a valuation ring V, return the valuation (associated with V)
of v.

Quotrem(v, w)

Given two elements v, w of a valuation ring V' with associated valuation ¢, return a
quotient and remainder ¢ and r in V' such that v = qw + r and 0 < ¢(r) < p(w). If
#(v) < ¢(w) this simply returns ¢ = 0 and 7 = v, and if ¢(v) > ¢(w) then it returns
g=wv/w and r = 0.

GreatestCommonDivisor (v, w)
Ged(v, w)
This function returns a greatest common divisor of two elements v, w in a valuation
ring V. This will return «™, where m = min(¢(v), ¢(w)) is the minimum of the

valuations of v and w m = min(¢(v), ¢(w)) and u is the uniformizing element of V'
(with valuation ¢(u) = 1).

ExtendedGreatestCommonDivisor (v, w)
Xged(v, w)
XGCD(v, w)

This function returns a greatest common divisor z € V of two elements v, w in
a valuation ring V' as well as multipliers =,y € V such that xv + yw = 2. The
principal return value will be z = «™, where m = min(¢(v), ¢(w)) is the minimum
of the valuations of v and w m = min(¢(v), ¢(w)) and u is the uniformizing element
of V' (with valuation ¢(u) = 1).






46 NEWTON POLYGONS

46.1 Introduction

46.2 Newton Polygons .
46.2.1 Creation of Newton Polygons .

NewtonPolygon (£f)
NewtonPolygon (f)
NewtonPolygon(f, p)
NewtonPolygon(f, p)
NewtonPolygon(C)
NewtonPolygon (V)
DefiningPoints(N)

46.2.2 Vertices and Faces of Polygons

Faces(N)
InnerFaces(N)
LowerFaces (N)
OuterFaces (N)
Al1Faces (N)
Vertices (N)
InnerVertices(N)
LowerVertices(N)
OuterVertices(N)
AllVertices(N)
EndVertices(F)
FacesContaining(N,p)
GradientVector (F)
GradientVectors(N)
Weight (F)

Slopes (N)
InnerSlopes(N)
LowerSlopes (N)
Al11Slopes(N)

46.2.3 Tests for Points and Faces

IsFace(N, F)
IsVertex (N, p)
IsInterior(N,p)
IsBoundary(N, p)
IsPoint(N,p)

46.3 Polynomials Associated with
Newton Polygons .

1233

1235

. 1235

1235
1235
1235
1236
1236
1236
1236

. 1237

1237
1237
1237
1238
1238
1238
1238
1238
1238
1238
1239
1240
1240
1240
1241
1241
1241
1241
1241

. 1241

1241
1242
1242
1242
1242

1242

HasPolynomial (N) 1242
Polynomial (N) 1242
ParentRing(N) 1242
IsNewtonPolygonOf (N, f) 1242
FaceFunction(F) 1242
IsDegenerate (F) 1243
IsDegenerate (N) 1243

46.4 Finding Valuations of Roots of
Polynomials from Newton Poly-

gons . . . . .« .« .« « « .« . . 1243
ValuationsOfRoots (f) 1243
ValuationsOfRoots(f, p) 1243

46.5 Using Newton Polygons to Find
Roots of Polynomials over Series

Rings . . . . . . . . . . . 1243
SetVerbose("Newton", v) 1243
46.5.1 Operations not associated with Du-

val’s Algorithm . . . . . . . . . 1244
PuiseuxExpansion(f, n) 1244
ExpandToPrecision(f, c, n) 1245
ImplicitFunction(f, d, n) 1245
IsPartialRoot (f, c) 1247
IsUniquePartialRoot(f, c) 1247
PuiseuxExponents (p) 1248
PuiseuxExponentsCommon(p, q) 1248
46.5.2 Operations associated with Duval’s

algorithm . . . . . . . . . . . 1249
DuvalPuiseuxExpansion(f, n) 1249
ParametrizationToPuiseux(T) 1250
PuiseuxToParametrization(S) 1250
46.5.3 Roots of Polynomials . . . . . . 1256
Roots (f) 1256
Roots(f, n) 1256
HasRoot (f) 1257
46.6 Bibliography . . . . . . . . 1258






Chapter 46
NEWTON POLYGONS

46.1 Introduction

This chapter introduces functions which allow the creation and simple study of Newton
polygons. It allows data from a number of different contexts to be used to construct
the polygons. It also covers different interpretations of Newton polygons, and translation
among these interpretations. Recall that a Newton polygon is the intersection of finitely
many rational half spaces in the rational plane. An advantage of this definition is that it
emphasizes that Newton polygons are often thought of as being noncompact. However,
they are not implemented here in this way. Instead polygons are interpreted as the convex
hull of finitely many points of the plane (possibly including some points at +o0o0 along the
axes).

Any Newton polygon is contained in some virtual cartesian product of the rational field
with itself (virtual since this plane is not a structure that is intended to be accessible to the
user or which is characteristic of the polygon). The first and second coordinate functions
of this plane are referred to as the x and y coordinates respectively. Points of the plane
will always be written (a, b) while faces of polygons will be written (a, b, ¢). Geometrically,
a face (a,b,c) is a one-dimensional boundary intersection of N with the line az + by = c.

The standard Newton polygon of a polynomial f = f(u,v) is, by definition, the convex
hull of the points (a,b), so-called Newton points, ranging over monomials u%v® having
nonzero coefficient in f together with the points +o00 on the two axes. The infinite points,
however, are not listed among the vertices of the polygon; they are simply a convenient
way of hiding all Newton points other than those on the ‘lower lefthand’ faces of the hull
of those points. A similar definition applies to polynomials f(y) whose coefficients lie in
some field of fractional power series, or Puiseux field, k {(z)). Newton Polygons can also
be created for polynomials over local rings (and fields). The defining points are computed
as (i,v(a;)) where a; is the coefficient of the i-th power of the generator and v denotes the
valuation function on the ring. Infinite points arise only as the valuation of zero coefficients.

The main intended application of Newton polygons is to the Newton—Puiseux analysis
of singular points of plane curves, or put another way, the factorization of polynomials
defined over Puiseux fields.

The examples below should be thought of as running consecutively in a single MAGMA
session.

> R<x,y> := PolynomialRing(Rationals(),2);

> f = x5 + x72%y + x72%y"3 + y°4 + x"3%y"5 + yT2%x77;

> N := NewtonPolygon(f);

> N;

Newton Polygon of x"7*y~2 + x5 + x"3*y~5 + x"2%y"3 + x"2*%y + y~4 over



1234 LOCAL ARITHMETIC FIELDS Part VIII

Rational Field

> Faces(N);

[ <3, 2, 8>, <1, 3, 5> ]

> Vertices(N);

[ <0, 4>, <2, 1>, <5, 0> ]

This is the standard Newton polygon associated with the polynomial f. Only those vertices
and faces of the convex hull of points which correspond to the monomials appearing in f
which ‘face’ the origin are considered to be vertices and faces of the polygon. As already
mentioned, one interpretation of this is to think of the points +00 on each axis as being
included among the defining points of N, and then N is the convex hull of its defining
points.

To consider N as the compact convex hull of only the monomials of f simply use
alternative vertex and face functions.

> AllVertices(N);

[ <0, 4>, <2, 1>, <5, 0>, <7, 2>, <3, 5> ]

> AllFaces(N);

[ <3, 2, 8, <1, 3, 5>, <-1, 1, -b>, <=3, -4, -29>, <1, -3, -12> ]

However, where there is a choice of interpretation, MAGMA always interprets IV in the way
it was defined. So for example, the functions which test for faces and vertices compare a
given value with the sequence returned by the functions Faces (N) or Vertices(N), which
are fixed the first time they are calculated, rather than with any other collections of faces
or vertices.

> IsFace(N,<3/4,3/6,2>);
true <3, 2, 8>

> IsFace(N,<-3,-4,-29>);
false

Notice that faces are reduced to normal integral form and that the correct form is returned
as the second return value of the test function.

When a polygon is created using a polynomial, the restriction of the polynomial to
faces is important characteristic data.

> FaceFunction(Faces(N) [1]);
xX"2%y + y*4

The face function is simply the sum of those monomial terms of f (they keep their coeffi-
cients) whose corresponding Newton point lies on the given face.



Ch. 46 NEWTON POLYGONS 1235

46.2 Newton Polygons

All polygons are determined by a finite collection of points in the rational plane. For
MAGMA, these points are the most basic attribute of any Newton polygon. They are always
determined and recorded on creation of a polygon. Throughout this chapter, for a Newton
polygon N, these points are denoted by Ppy. As seen in the introduction, the main class of
polygons is that comprising polygons in the first quadrant of the plane and including the
points +o00 on the two axes. But there are other useful types, especially when calculating
factorizations of univariate polynomials over series rings. The data distinguishing the
different flavours of Newton polygon is the collection of lines and points that are considered
to be faces and vertices.

46.2.1 Creation of Newton Polygons

These are the functions available for constructing Newton polygons and retrieving the
points which describe them.

NewtonPolygon (f)

Faces MONSTGELT Default : “Inner”

The standard Newton polygon of a polynomial f in two variables. This is the hull
of the Newton points of the polynomial together with the points +o00 on each axis.
The horizontal and vertical ‘end’ faces are not listed among the faces of the polygon;
the points at infinity are not listed among the vertices of the polygon.

The parameter Faces can have the value "Inner", "Lower" or "A11l". This
determines which faces are returned by the intrinsic Faces.

NewtonPolygon (f)
SwapAxes BooLELT Default : false
Faces MoNSTGELT Default :

The standard Newton polygon of a polynomial in one variable defined over a series
ring or a local ring or field. A value of true for SwapAxes is only valid if the
polynomial is over a series ring. If SwapAxes is set to true then the exponents of
the series variable will be plotted on the horizontal axis and the exponents of the
polynomial on the vertical axis.

For a polynomial over a series ring, the hull includes the points +o00 on each axis.
For a polynomial over a local ring, the infinite points are not included.

The parameter Faces can have the value "A11l", "Inner" or "Lower". This
determines which faces are returned by the intrinsic Faces. The default for series
rings is "Inner" and for local rings is "Lower".

NewtonPolygon(f, p)

Faces MONSTGELT Default : “Inner”

The newton polygon of f where p is a prime used for valuations of the coefficients
of f. The polynomial f may be over the integers or rationals or a number field or



1236 LOCAL ARITHMETIC FIELDS Part VIII

algebraic function field or an order thereof. The prime p may be an integer or a
prime ideal. The newton polygon will have points (i,v;) where ¢ is the exponent of
a term of f and v; is the valuation of the coefficient of the ith term. The points at

400 on each axis are included.
The parameter Faces can have the value "Inner", "Lower" or "All".
determines which faces are returned by the intrinsic Faces.

NewtonPolygon(f, p)

Faces MONSTGELT Default : “Inner”

This

The newton polygon of the polynomial f where the place p of an algebraic function

field is the prime used for determining the valuations of the coefficients of f.
points at 400 on each axis are included.

The parameter Faces can have the value "Inner", "Lower" or "All".
determines which faces are returned by the intrinsic Faces.

NewtonPolygon (C)

The standard Newton polygon of the defining polynomial of the curve C.

NewtonPolygon (V)

Faces MoNSTGELT Default : “All”

The

This

The Newton polygon that is the compact convex hull of the set or sequence V of

points of the form (a,b) where a, b are integers or rational numbers.
The parameter Faces can have the value "A11l", "Lower" or "Inner".
determines which faces are returned by the intrinsic Faces.

DefiningPoints(N)

This

The points of the rational plane used in the initial creation of N. Applying this
function to two polygons allows their defining points to be compared. No explicit
function is provided for testing whether defining points of two polygons are equal.

Example H46E1
Some ways of creating Newton Polygons from polynomials are shown below.

> P<y> := PuiseuxSeriesRing(Rationals());

> R<x> := PolynomialRing(P);

> f 1= 3%x74 + (6xy~3 + 4xy~(1/4))*x73 + (7Txy~2 + 1/2%y~(1/3))*x"2 + 6*x + y~(
> 4/5);

> N := NewtonPolygon(f);

> N;

Newton Polygon of 3*x~4 + (4*xy~(1/4) + 5xy~3)*x~3 + (1/2xy~(1/3) + 7T*y~2)*x"2 +

6*xx + y~(4/5) over Puiseux series field in y over Rational Field
> P<x> := PolynomialRing(Integers());

> L := ext<ext<pAdicRing(5, 100) | 3> | x"2 + 5>;

> R<x> := PolynomialRing(L);

> f = 3%xx"4 + 7bxx"3 + 78%x"2 + 10*x + 750;



Ch. 46 NEWTON POLYGONS 1237

> NR := NewtonPolygon(f);
> NR;
Newton Polygon of 3*x74 + 75*xx"3 + 78%x"2 + 10*x + 750 over L

Newton Polygons can also be created by specifying the defining points that the polygon must
enclose.

> N2 := NewtonPolygon({<2, 0>, <0, 3>, <4, 1>});

> N2;

Newton Polygon with defining points {(0, 3), (2, 0), (4, D}

> N6 := NewtonPolygon({<1, 4>, <1, 6>, <2, 4>, <3, 1>, <6, 1>, <5, 2>, <4, 5>,
> <4, T>, <6, 6>, <7, T>, <2, 7>, <5, 9>, <8, 4>, <8, 6>, <8, 8>, <7, 9>});

> N6;

Newton Polygon with defining points {(1, 4), (1, 6), (2, 4), (2, 7), (3, 1), (4,
5), (4, 7, (5, 2), (5, 9, (6, 1), (6, 6), (7, 7O, (7, 9, (8, 4), (8, 6), (8,
8)}

These polygons will be referred to in later examples.

46.2.2 Vertices and Faces of Polygons

Both the vertices (a,b) and faces (a, b, c) (representing ax + by = ¢) of a given polygon N
are computed as needed. As seen above, these will be a particular choice of possible faces
and vertices determined by the data used to create the polygon. They can be recovered
using the Faces() and Vertices() intrinsics. A different choice of faces and vertices,
those faces and vertices of the compact convex hull of the defining points say, can be made
using the other intrinsics below.

Recall that Py denotes the set of points used in the definition of the Newton polygon
N whether they arise as the powers of monomials appearing in a polynomial or have been
given explicitly as a sequence of pairs.

Faces(N)

The sequence of faces (a,b,c) (representing ax + by = ¢) of N listed anticlockwise.
How this is interpreted in terms of the points used to create N depends on the cre-
ation function used (see Section 46.2.1). The faces are listed anticlockwise starting
with the face with its left endpoint being the lowest of the leftmost points.

| InnerFaces (N) |

Those faces of the compact convex hull of Py starting at the lowest of the leftmost
points which have strictly negative gradient.

| LowerFaces (N) |

Those faces of the compact convex hull of Py which bound it below in the y direction.



1238 LOCAL ARITHMETIC FIELDS Part VIII

| OuterFaces(N) |

The union of lower faces which aren’t inner faces and the faces which bound the
compact convex hull of Py above in the y-direction (ignoring infinite points).

| AllFaces(N) |

The faces of the compact convex hull of Py.

Example H46E2

Using some of the polygons defined before the different types of faces are illustrated.

> Faces(N);
[ <4, 5, 4> ]

> InnerFaces(N);

[ <4, 5, 4> ]

> OuterFaces(N);

[ <0, 1, 0>, <-1, -4, -4>, <-11, -60, -48> ]

> AllFaces(N);

[ <4, 5, 4>, <0, 1, 0>, <-1, -4, -4>, <-11, -60, -48> ]
> Faces(NR) ;

[ <4, 1, 6>, <2, 1, 4>, <0, 1, 0> ]

> InnerFaces(NR);

[ <4, 1, 6>, <2, 1, 4> 1]

> LowerFaces(NR) ;

[ <4, 1, 6>, <2, 1, 4>, <0, 1, 0> ]

For the polynomial over the Puiseux Field it is no coincidence that InnerFaces and Faces return
the same sequences. Similarly, for the polynomial over the local ring Faces is defined to be
LowerFaces. For both, this is the category of faces that gives the most information for the purposes
that the polygon is used. It can also be noted that combining InnerFaces and OuterFaces will
give Al1Faces with no repetitions (though repetitions will occur if the polygon has only one face
and this face is an inner face).

| Vertices(N) |

The sequence of vertices of N. The vertices will be listed anticlockwise from the
lowest of the leftmost points.

| InnerVertices(N) |

The sequence of vertices which arise as endpoints of inner faces.

| LowerVertices (N) |

The sequence of vertices which arise as endpoints of lower faces.

| OuterVertices(N) |

The sequence of vertices which arise as endpoints of outer faces.

| AllVertices(N) |

The sequence of vertices of the compact convex hull of Py.




Ch. 46 NEWTON POLYGONS 1239

Example H46E3

This example illustrates the types of vertices that can be calculated. Note that the printing of
these polygons, created from their defining points, changes as more information is calculated. This
would occur in the same manner if faces were being calculated instead of vertices.

> InnerVertices(N2);
[ <0, 3>, <2, 0> ]

> N2;
Newton Polygon with vertices {(0, 3), (2, 0)} and defining points {(0, 3), (2,
0), (4, 1}

> InnerVertices(N6);

[ <1, 4>, <3, 1> ]

> N6;

Newton Polygon with vertices {(1, 4), (3, 1)} and defining points {(1, 4), (1,
6), (2, 4, (2, 7, 3, 1), 4, 5, 4, n, B, 2, (5, 9, (6, 1), (6, 6), (7,
7, (7, 9, (8, 4), (8, 6), (8, 8}

> Vertices(N2);

[ <0, 3>, <2, 0>, <4, 1> 1]

> Vertices(N6);

[ <1, 4>, <3, 1>, <6, 1>, <8, 4>, <8, 8>, <7, 9>, <5, 9>, <2, 7>, <1, 6> 1]

> AllVertices(N2);

[ <0, 3>, <2, 0>, <4, 1> 1]

> N2;

Newton Polygon with vertices {(0, 3), (2, 0), (4, 1)} and defining points {(O,
3), (2, 0), (4, 1}

> AllVertices(N6);

[ <1, 4>, <3, 1>, <6, 1>, <8, 4>, <8, 8>, <7, 9>, <5, 9>, <2, 7>, <1, 6> ]

> N6;

Newton Polygon with vertices {(1, 4), (3, 1), (6, 1), (8, 4), (8, 8), (7, 9),
(5, 9, (2, 7), (1, 6)} and defining points {(1, 4), (1, 6), (2, 4), (2, 7, (3,
1), (4, 5, 4, 7, (5, 2, (5, 9, 6, 1), b6, 6), (7, 7), (7, 9, (8, 4), (8,
6), (8, 8}

Here Vertices has been defined to be AllVertices. All the known vertices of the polygon are
printed when the polygon is printed. There is some overlap between the inner and outer vertices
as is shown below. Every vertex is either an inner vertex or an outer vertex with some being both.
Not all defining points are vertices.

> OuterVertices(N6);

[ <3, 1>, <6, 1>, <8, 4>, <8, 8>, <7, 9>, <5, 9>, <2, 7>, <1, 6>, <1, 4> ]
> OuterVertices(N2);

[ <2, 0>, <4, 1>, <0, 3> ]

EndVertices (F) |

A sequence containing the two end vertices of the face F' = (a, b, c).




1240 LOCAL ARITHMETIC FIELDS Part VIII

FacesContaining(N,p)

Example H46E4

Those faces of the polygon N returned by Faces on which the point p = (a,b) lies.

Using some of the example polygons that have been created above, we illustrate the simple use of
EndVertices and FacesContaining.

>
>

L
>
>

L

AN := AllFaces(N);

AN;

<4, 5, 4>, <0, 1, 0>, <-1, -4, -4>, <-11, -60, -48> ]

A6 := AllFaces(N6);

A6;

<3, 2, 11>, <0, 1, 1>, <=3, 2, -16>, <-1, 0, -8, <-1, -1, -16>, <0, -1, -9>,

<2, -3, -17>, <1, -1, -5>, <1, 0, 1> 1]

>

L
>

L
>
[
>
L
>
L
>

[
>

L
>

[
>

(]

>
L

>

(]

>
L

AllVertices(N);

<0, 4/5>, <1, 0>, <4, 0>, <3, 1/4> ]
AllVertices(N6) ;

<1, 4>, <3, 1>, <6, 1>, <8, 4>, <8, 8>, <7, 9>, <5, 9>, <2, 7>, <1, 6> ]
EndVertices (AN[1]);

<0, 4/5>, <1, 0> ]

EndVertices (AN[4]);

<0, 4/5>, <3, 1/4> ]

EndVertices (A6[1]);

<1, 4>, <3, 1> ]
EndVertices(A6[5]);

<7, 9>, <8, 8> 1]

EndVertices(A6[9]);

<1, 4>, <1, 6> ]

FacesContaining (N, <1, 0>);

<4, 5, 4> ]

FacesContaining(N6, <1, 0>);

FacesContaining (N6, <4, 1>);
<0, 1, 1> ]
FacesContaining(N, <4, 1>);

FacesContaining (N6, <3, 1>);
<3, 2, 11>, <0, 1, 1> ]

| GradientVector (F) |

The a and b values of the line describing the face F' of the form axx +bxy = ¢
where a,b and c are integers.

| GradientVectors(N) |

A sequence containing the gradient vectors of the faces of the newton polygon N.



Ch. 46 NEWTON POLYGONS 1241

Weight (F)

The ¢ value of the line describing the face F' of the form a x xz + by = ¢ where a,b
and c are integers.

Slopes (N)

The slopes of the faces of the newton polygon N.

InnerSlopes(N)

LowerSlopes (N)
A11Slopes(N)

The slopes of the polygon N corresponding of InnerFaces, LowerFaces and
AllFaces respectively.

Example H46E5

In this example GradientVector and Weight can be seen to be access functions on the components
of a face of a polygon.

> A := AllFaces(N);

> A;

[ <4, 5, 4>, <0, 1, 0>, <-1, -4, -4>, <-11, -60, -48> ]
> f := A[3];

> GradientVector(f);

<-1, -4>

> Weight (f);

-4

The gradient of the face can now be easily computed as shown.

> a := GradientVector(f) [1];
> b := GradientVector(f) [2];
> -a/b;

-1/4

46.2.3 Tests for Points and Faces

Once more, recall that Py denotes the finite set of points in the plane used to define the
Newton polygon N. Whether or not a point is considered to lie in a polygon depends
on what are considered to be its faces. MAGMA always uses the list of faces returned by
Faces(N) when testing points. Of course, this is not always the case in applications. One
must to perform other tests explicitly when there is doubt.

IsFace(N, F)

Return true if and only if the tuple F' = (a, b, c) describes a line coinciding with a
face of the polygon N as returned by Faces.



1242 LOCAL ARITHMETIC FIELDS Part VIII

IsVertex(N, p)

Return true if and only if the point p = (a,b) of the rational plane (given as a
tuple) is a vertex of the polygon N as returned by Vertices.

IsInterior(N,p)

Return true if and only if the point p = (a,b) given as a tuple lies strictly in the
interior of the polygon N.

IsBoundary (N, p)

Return true if and only if the point p = (a,b) given as a tuple lies on the boundary
of the polygon N, that is, the point is contained in a face of N.

IsPoint (N,p)

Return true if and only if the point p = (a, b) (given as a tuple) lies on the polygon
N.

46.3 Polynomials Associated with Newton Polygons

The polynomial used to define a polygon can be recovered, but more usefully so can those
restrictions of that polynomial to parts of the polygon, the so-called face functions in
particular.

Note that most of these functions will return an error if N was not defined in terms of
a polynomial.

HasPolynomial (N)

Return true if and only if the polygon N was defined as the Newton polygon of
some polynomial.

Polynomial (N)

The polynomial used to define the polygon N.

ParentRing(N)

The parent ring of the polynomial of the polygon N.

IsNewtonPolygonOf (N, f)

Return whether the newton polygon N is defined by the polynomial f.

FaceFunction(F) |

If the polygon N is defined by a polynomial in two variables f this returns those
monomial terms of f whose corresponding Newton points lie on the face F'. On the
other hand, if N is determined by a univariate polynomial over a series ring, this
returns the univariate polynomial supported on the face F'.



Ch. 46 NEWTON POLYGONS 1243

IsDegenerate(F)

Return true if the face function along F' is not squarefree.

IsDegenerate(N)

Return true if a face function on some face of N is degenerate.

46.4 Finding Valuations of Roots of Polynomials from Newton
Polygons

Newton polygons can be used to find the valuations of roots of the polynomial from which
the polygon was created at the prime used in the creation (given implicitly or explicitly).
The following functions use Newton polygons to calculate the valuations of the roots of
the polynomial paired with the number of roots with that valuation.

ValuationsOfRoots(f) |

The valuations of the roots of f, where f is a polynomial over a local ring or a series
ring.

ValuationsOfRoots(f, p)

The valuations of the roots of f with respect to p where p may be either a prime
integer, a prime ideal of a number field or a place of a function field.

46.5 Using Newton Polygons to Find Roots of Polynomials over
Series Rings

The operations described in this section are relevant for polynomials over series rings.
There are two main algorithms involved.

SetVerbose("Newton", v)

Set the verbose printing to level v for PuiseuxExpansion, ExpandToPrecision,
DuvalPuiseuxExpansion, Roots and ImplicitFunction. A level of 1 will mean
that any partial solutions that could not be expanded to the precision requested will
be printed before an error is returned except for Roots. The polynomials used in
forming extensions will also be printed before the extension is computed. In Roots,
the algorithm used to compute the expansions will be printed. When Walker’s al-
gorithm is being used the current value of the denominator will be printed. For
ImplicitFunction a warning about a potentially bad value of d will be printed if
the value of d given is not divisible by the exponent denominator of some coefficient
of f. A level of 2 will print the last polynomials calculated during the newton poly-
gon part of PuiseuxExpansion and DuvalPuiseuxExpansion and some evaluated
polynomials during ImplicitFunction.



1244 LOCAL ARITHMETIC FIELDS

46.5.1 Operations not associated with Duval’s Algorithm

PuiseuxExpansion(f, n)

PreciseRoot BooLELT Default : false
TestSquarefree BooLELT Default : true
NoExtensions BooLELT Default : false
LowerFaces BooLELT Default : true
OneRoot BooLELT Default : false
Verbose Newton Maximum : 2

Part VIII

This function implements the algorithm described in [Wal78].

Return a sequence of partial expansions of the roots of the polynomial f over a
series ring as puiseux series. The roots are returned with relative precision at least
n/d where d is the least common multiple of exponent denominator for the series
expansion and the exponent denominators of the coefficients of the f. An input
of n = 0 will return the expansions calculated by the newton polygon part of the
algorithm and these will be to the precision of what is known. The coefficient ring
of the series ring containing the coefficients of f must always be a field and unless
extensions are not required it must be able to be extended.

If the coefficient ring of the series ring is a finite field whose characteristic is less
than or equal to the degree of the polynomial then the denominators computed in
the newton polygon part of the algorithm may not be bounded and the function will
return an error. However, it is possible for some polynomials that the denominators
will be bounded. This is stated by [Gri95], pg 269 — 272.

Care needs to be taken with polynomials whose coefficients have low precision.
The algorithm must extract from f the squarefree part and in doing so lose even
more precision. The result is that the algorithm may not have enough precision to
calculate the expansions correctly. A solution is to set TestSquarefree to false if
the polynomial is known to have no multiple roots. However this will not solve all
precision problems and the answer is only as good as the precision allows it to be.

If PreciseRoot is set to true then the partial expansions to be returned are
checked and if any are exact roots of f they are returned with full precision. If
NoExtensions is set to true then expansions are found within the puiseux series
ring only. By default, the coefficient ring of the series ring is extended to find
all the partial expansions. If LowerFaces is set to false then expansions with
negative valuations will not be found. If OneRoot is set to true then representatives
of conjugate roots only will be found instead of each of the roots individually.

Note that it may useful to define the polynomial over an algebraically closed field
(via AlgebraicClosure), so that all roots may be found.



Ch. 46 NEWTON POLYGONS 1245
ExpandToPrecision(f, c, n)
PreciseRoot BoOoOLELT Default : false
TestSquarefree BooLELT Default : true
Verbose Newton Maximum : 2

Given a polynomial f over a Puiseux series ring and a partial root ¢ of that polyno-
mial (found by PuiseuxExpansion for example) continue to expand that root until
it has relative precision n/d where d is the least common multiple of the exponent
denominator of ¢ and the exponent denominators of the coefficients of f. If ¢ is
given to greater precision (or length greater than n if its precision is infinite), the
relative precision of ¢ is reduced to n/d. An error results if ¢ is not a partial ex-
pansion to precision n/d. If PreciseRoot is true then the partial expansion to be
returned is checked and if it is an exact root of f it is returned with full precision.
All input is checked for being an exact root regardless. If TestSquarefree is false
the polynomial will not be made squarefree. This may avoid some loss of precision
but may result in some unique partial roots not being recognized as unique partial
roots and as such they cannot be expanded.

An error may result if ¢ is a partial root of f but the exponent denominator of
the full expansion is greater than that of c. Therefore for ¢ to be expanded it must
have the same denominator as the expansion it is part of. This will rarely be an
issue for those partial expansions resulting from PusieuxExpansion which did not
encounter problems with precision in the newton polygon part since the algorithm
for this will find at least as much of the expansion as necessary to compute the
exponent denominator.

ImplicitFunction(f, d, n)

Example H46EG6

Verbose Newton Maximum : 2

Return a root of the polynomial f over a series ring. The input d is the denominator
(or a multiple of ) the exponent denominator of the root. The root is given to absolute
precision n/d. The evaluation of f at zero (polynomial) evaluated at zero (series)
must be zero but that of its derivative must be nonzero.

This example illustrates the joint use of PuiseuxExpansion and ExpandToPrecision which can be
used together to gain and improve partial roots of a polynomial. The use of ExpandToPrecision
following PuiseuxExpansion avoids the recalculation of information already known.

V V V V V V Vv VvV

P<x> :

R<y>
f :=
c :=

A<a>
N<n> :
Q<g> :

PuiseuxSeriesRing(Rationals());
:= PolynomialRing(P);

yo3 + 2xx7T-1kyT2 + 1kxT-2%y + 2%x;
PuiseuxExpansion(f, 0);

Parent (c[1]);
CoefficientRing(A);
PolynomialRing(A);



1246 LOCAL ARITHMETIC FIELDS Part VIII

[
-2xa”~3 + 0(a"4),
-a"-1 + n*a + 0(a~2),
-a”-1 - n*a + 0(a~2)
]
> [ExpandToPrecision(f, c[i], 10) : i in [1 .. #cl];
[
-2%a”3 - 8%a"7 - 56*a”11 + 0(a~13),
-a”-1 + n*a + a”3 + 5/4*n*a"5 + 4*xa"7 + 0(a"9),
-a”-1 - n*a + a3 - 5/4*n*a"5 + 4*xa"7 + 0(a"9)
]

The same results could have been gained using PuiseuxExpansion with the required precision in
the first place.

> ¢ := PuiseuxExpansion(f, 10);
> A<a> := Parent(c[1]);
> N<n> := CoefficientRing(A);

> c;
[
-2*%a~3 - 8*%a"7 - 56xa”11 + 0(a"13),
-a”-1 + n*a + a”3 + 5/4*n*a”5 + 4%a~7 + 0(a”9),
-a”-1 - n*a + a3 - 5/4*n*a"5 + 4*xa"7 + 0(a"9)
]

However, asking for more precision requires time so that if it is not necessary the extra calculation
can be avoided and if more precision happens to be required then it can be gained without
recalculation. ExpandToPrecision is also called on only one root so that if only one expansion is
required using PusieuxExpansion and then ExpandToPrecision will not calculate any unnecessary
information.

> time c := PuiseuxExpansion(f, 100);

Time: 2.810

> time ¢ := PuiseuxExpansion(f, 10);

Time: 0.060

> A<a> := Parent(c[1]);

> N<n> := CoefficientRing(A4);

> time ExpandToPrecision(f, c[1], 100);

-2*%a”~3 - 8*%xa”7 - b6*¥a~11 - 480*a”15 - 4576*%xa"~19 - 46592%a”23 -
496128*a~27 - 5457408*xa~31 - 61529600*a~35 - 707266560*%a~39 -
8257566720*a"~43 - 97654702080*a"~47 - 1167349284864*a"~51 -
14082308833280*a~55 - 171221451538432*a~59 -
2096081963188224*%a"63 - 25814314231136256*%a"67 -
319605795242639360*a~71 - 3975750610806374400*%a~75 -
49666299938073477120*a~79 - 622818862289639178240%a"83 -
7837247078959687925760*a~87 - 98931046460491133091840*a~91 -
1252424949872174982758400*%a"95 - 15897106567806080658702336*a~99
+ 0(a~103)



Ch. 46 NEWTON POLYGONS 1247

Time: 0.410

IsPartialRoot(f, c)

Return true if the series ¢ can be expanded to at least one root of the polynomial

£.

IsUniquePartialRoot(f, c)

TestSquarefree BooLELT Default : true

Return true if the series ¢ can be expanded to exactly one distinct root of the
polynomial f. By default f will have multiple factors removed to allow partial
expansions of multiple roots to be recognized as being unique. If TestSquarefree
is set to false then f will be taken as given which may avoid errors due to lost
precision but may not pick partial expansions of multiple roots as being unique and
as such is best used when f is squarefree or the expansion is known to be of a single
root.

Example H46E7

The above 2 functions can be used to reduce the occurrence of errors from ExpandToPrecision by
checking that the input can be expanded. Errors resulting from a lack of precision which means
that the expansion cannot be calculated to the requested precision are the only errors that cannot
be removed. Only unique partial roots can be expanded. If a partial root is not unique then
calling PuiseuxExpansion will provide several further partial expansions of the partial root that
will themselves be unique and so can be used to calculate several expansions of the original.

> P<x> := PuiseuxSeriesRing(Rationals());
> R<y> := PolynomialRing(P);

>f := (y°2 - x73)72 - y*x76;

> IsPartialRoot(f, x~(3/2));

true

> ExpandToPrecision(f, x~(3/2), 10);

>> ExpandToPrecision(f, x"(3/2), 10);

Runtime error in ’ExpandToPrecision’: Element is not a unique partial
root of the polynomial
> IsUniquePartialRoot(f, x~(3/2));

false

> ¢ := PuiseuxExpansion(f, 0);
> A<a> := Parent(c[1]);

> N<n> := CoefficientRing(A4);
> Q<g> := PolynomialRing(A);
> c;

[

a~(3/2) + 1/2%a~(9/4) + 0(a~(5/2)),
a~(3/2) - 1/2%a~(9/4) + 0(a~(5/2)),
-a~(3/2) + 1/2*n*a~(9/4) + 0(a~(5/2)),



1248 LOCAL ARITHMETIC FIELDS

-a”~(3/2) - 1/2*n*a"~(9/4) + 0(a~(5/2))
]
> IsUniquePartialRoot(f, x~(3/2) + 1/2*x~(9/4));
true
> ExpandToPrecision(f, x~(3/2) + 1/2*x~(9/4), 10);
x~(3/2) + 1/2%x~(9/4) - 1/64*x~(15/4) + 0(x"4)
> ExpandToPrecision(f, x~(3/2) + x72, 30);
>> ExpandToPrecision(f, x~(3/2) + x72, 30);

Runtime error in ’ExpandToPrecision’: Element is not a partial root of

the polynomial
> IsPartialRoot(f, x~(3/2) + x°2);
false

Part VIII

So if IsPartialRoot returns false then no expansion can be made. If IsUniquePartialRoot
returns false (but IsPartialRoot returns true) then several expansions can be made after calling

PuiseuxExpansion.

PuiseuxExponents (p)

Given a series expansion return the sequence of exponents [a/b] of the non zero terms
of the series p up to and including the first one where b is the global denominator

for the series.

PuiseuxExponentsCommon(p, q)

Given two series return the sequence of exponents [a/b] of the non zero initial terms
of the series p and ¢ which are equal up to but not including the first unequal terms.

Example H46ES8

This example illustrates how PuiseuxExponents and PuiseuxExponentsCommon can be used on
output from PusieuxExpansion. (Similar can be done with related functions and general series).

> P<x> := PuiseuxSeriesRing(FiniteField(5, 3));

> R<y> := PolynomialRing(P);

> f = (1+x)*xy"4 - x7(-1/3)*y"2 + y + x~(1/2);

> time ¢ := PuiseuxExpansion(f, 5);

Time: 0.030

> c;

[
4xx~(1/2) + x~(2/3) + 3*x~(5/6) + x~(7/6) + 0(x~(4/3)),
x~(1/3) + x~(1/2) + 4xx~(2/3) + 2*x~(5/6) + 0(x~(7/6)),
4xx~(-1/6) + 2*xx~(1/3) + 0(x~(2/3)),
x~(-1/6) + 2*x~(1/3) + 0(x~(2/3))

]

> PuiseuxExponents(c[1]);

[ 1/2, 2/3, 5/6 ]

> PuiseuxExponents(c[3]);



Ch. 46

—m VvV V V V V V V V

]

>

-1/6 ]

NEWTON POLYGONS

P<x> := PuiseuxSeriesRing(FiniteField(5, 3));
R<y> := PolynomialRing(P);

f = ((y°2 - x73)72 - y*x"6)"2 - y*x"15;

¢ := PuiseuxExpansion(f, 0);

A<a>
N<n> :
Q<g> :
C;

4*xa~(3/2)
4xa~(3/2)
4xa”~(3/2)
4xa”~(3/2)
a~(3/2) +
a~(3/2)
a~(3/2)
a~(3/2)

+ + +

Parent(c[1]);
CoefficientRing(A);
PolynomialRing(A);

4xa”~(9/4)
4xa”~(9/4)
a~(9/4) +
a~(9/4)
3*xa~(9/4)
3xa~(9/4)
2*xa”~(9/4)
2*a”~(9/4)

+ + + +

+ + + + +

+ 4%a”~3 + 0(a~(13/4)),
+ a"3 + 0(a~(13/4)),
4xa~3 + 0(a~(13/4)),
a”3 + 0(a~(13/4)),
4xa~3 + 0(a~(13/4)),
a3 + 0(a~(13/4)),
4xa~3 + 0(a~(13/4)),
a~3 + 0(a~(13/4))

PuiseuxExponentsCommon (c[1], c[1]);
[ 3/2, 9/4, 3]

1249

> PuiseuxExponentsCommon(c[1], c[2]);

[ 3/2, 9/4 1]

> PuiseuxExponentsCommon(c[1], c[3]);

[ 3/2 ]

> PuiseuxExponentsCommon(c[1], c[8]);

[

46.5.2 Operations associated with Duval’s algorithm

The following functions have a similar use to those given above but implement a different
algorithm, namely that of [Duv89] which is faster and can handle larger degree polyno-
mials. However, it can only be used with polynomials which are essentially over a laurent
series ring and the coefficient ring of that laurent series ring has either characteristic zero
or characteristic greater than the degrees of the squarefree factors of the polynomial.

DuvalPuiseuxExpansion(f, n)

Version

TestSquarefree

NoExtensions

LowerFaces

OneRoot

Verbose

MonSTGELT Default : “Rational”
BooLELT Default : true
BooLELT Default : false
BooLELT Default : true
BooLELT Default : false
Newton Maximum : 2



1250 LOCAL ARITHMETIC FIELDS Part VIII

A sequence of parametrizations of puiseux expansions of roots of f, as puiseux series,
where f is a polynomial over a series ring. The expansions will have at least n non
zero terms (unless the expansion is finite and has less than n non zero terms), with
more than n occurring only if n is less than the number of terms returned by the
newton polygon part of the algorithm. The coefficients of f must have exponent
denominator 1.

This algorithm is faster than that given by Walker and implemented in
PuiseuxExpansion, since it doesn’t calculate non zero terms explicitly and doesn’t
make all necessary extensions during the algorithm leaving some to be made when
the series is computed from the parametrizations.

If f has coefficients with finite precision then the expansions can only be com-
puted to as many non zero terms as can be known for that expansion. After this
limit has been reached, an error results since the next non zero term is not known.
If f has roots with finite puiseux expansions then if n is greater than the number of
non zero terms in the expansion the expansion is returned with infinite precision.

If Version is set to "Classical" then the (slower) classical branch of the al-
gorithm will be run which makes all extensions necessary for the computation of
the expansions. It is still faster than PusieuxExpansion since it does not iter-
ate through and calculate zero terms but will encounter the same problems that
PuiseuxExpansion does with field extensions over the rationals. The classical ver-
sion will return as many parametrizations as there are expansions and some of these
parametrizations will give the same set of expansions.

If NoExtensions is set to true then only the expansions which lie in the puiseux
series ring corresponding to the coefficient ring of f are calculated. Otherwise, all
the expansions of roots of f are calculated regardless of where they lie. LowerFaces
and OneRoot work as for PuiseuxExpansion.

This algorithm works with the squarefree part of f only. If any coefficient of f
has low precision then this step may make it impossible for any information about
the expansions to be gained due to a loss of further precision. A way around this is
to set TestSquarefree to false if the polynomial is known to be squarefree. This
may result in some information being returned but such information is only as good
as the precision it was allowed.

| ParametrizationToPuiseux(T) |

The series that satisfy the parametrization T. These are found by evaluating T[2]
at t where T[1] = At°.

| PuiseuxToParametrization(S) |

A parametrization of the series S. It is the simplest one which takes the denominator
out of S and makes it the exponent of the first entry in the parametrization.

Example H46E9

This example illustrates the use of DuvalPuiseuxExpansion and ParametrizationToPuiseux to
gain the information given by PuiseuxExpansion and also compares the performance of the two



Ch. 46 NEWTON POLYGONS 1251

algorithms. It also highlights some of the anomalies that may be encountered due to precision
concerns.

> P<x> := PuiseuxSeriesRing(Rationals());
> R<y> := PolynomialRing(P);
>f = (y72 - x73)72 - y*x76;
> time D := DuvalPuiseuxExpansion(f, 0);
Time: 0.000
> D;
[
<16*x~4, 64*x"6 + 256*%x~9 + 0(x~10)>
]
> time P := ParametrizationToPuiseux(D[1]);
Time: 0.060
> A<a> := Parent(P[1]);
> N<n> := CoefficientRing(A);
> P;
[
a~(3/2) + 1/2xa"~(9/4) + 0(a~(5/2)),
a~(3/2) - 1/2xa"~(9/4) + 0(a~(5/2)),
-a”~(3/2) + 1/2*nxa”~(9/4) + 0(a~(5/2)),
-a~(3/2) - 1/2xn*a~(9/4) + 0(a"~(5/2))
]
> time ¢ := PuiseuxExpansion(f, 0);
Time: 0.050

Here it can be seen that the newton polygon part of the algorithm is substantially faster using
Duval’s method, though the converting of the parametrization to a series is not as fast. Asking
for more terms shows this more substantially.

> time D := DuvalPuiseuxExpansion(f, 10);
Time: 0.020
> D;
[
<16*x74, 64*x"6 + 256*x"9 - 512xx~15 + 2048*x718 - 4608*x~21 + 56320*%x~27 -
294912%x~30 + 792064*x~33 - 12082176*x~39 + 68157440*x~42 + 0(x"43)>
]
> time P := ParametrizationToPuiseux(D[1]);
Time: 0.129
> time ¢ := PuiseuxExpansion(f, 10);
Time: 0.100
> A<a> := Parent(c[1]);
> N<n> := CoefficientRing(A4);
> c;

L

a~(3/2) + 1/2*xa~(9/4) - 1/64xa~(15/4) + 0(a"4),
a~(3/2) - 1/2xa~(9/4) + 1/64xa~(15/4) + 0(a"4),
-a~(3/2) + 1/2%n*a~(9/4) + 1/64*n*a~(15/4) + 0(a~4),
-a~(3/2) - 1/2*n*a”~(9/4) - 1/64*n*xa”(15/4) + 0(a"4)



1252 LOCAL ARITHMETIC FIELDS

> A<a>
> N<n> :
> P;

[

Parent (P[1]);
CoefficientRing(A);

Part VIII

a~(3/2) + 1/2%a~(9/4) - 1/64xa”(15/4) + 1/128%a~(9/2) - 9/4096x*a~(21/4) +

55/131072*a"~ (27/4) - 9/32768*a"~(15/2) + 1547/16777216%a"(33/4) -
11799/536870912*a" (39/4) + 65/4194304*a"(21/2) + 0(a~(43/4)),

a”(3/2) - 1/2%a~(9/4) + 1/64*a~(15/4) + 1/128%a"(9/2) + 9/4096*a"(21/4) -

55/131072*a"~ (27/4) - 9/32768*a"~(15/2) - 1547/16777216%a"(33/4) +
11799/5636870912*a"~ (39/4) + 65/4194304*a"~(21/2) + 0(a~(43/4)),
-a~(3/2) + 1/2*n*a”~(9/4) + 1/64*n*a”~(15/4) - 1/128%a"~(9/2) -
9/4096*n*a” (21/4) - 55/131072*nxa” (27/4) + 9/32768%a”(15/2) +
15647/16777216*n*a" (33/4) + 11799/536870912*n*a"~(39/4) -

65/4194304%a"~(21/2) + 0(a"(43/4)),

-a~(3/2) - 1/2*n*a”~(9/4) - 1/64xn*a”~(15/4) - 1/128%a”~(9/2) +
9/4096*n*a”~ (21/4) + 55/131072*n*a”~ (27/4) + 9/32768*a~ (15/2) -
1547/16777216%n*a"~ (33/4) - 11799/536870912*n*a"~ (39/4) -

65/4194304*a" (21/2) + 0(a~(43/4))
]

It can be seen that the computation of the information is a lot faster using Duval’s method. It is
only the cosmetic of converting this information into series that could make this algorithm seem
slow. But also note that there is much greater information given by Duval’s algorithm. The

equivalent information is given below.

> time D := DuvalPuiseuxExpansion(f, 3);
Time: 0.009

> time P := ParametrizationToPuiseux(D[1]);
Time: 0.049

> A<a> := Parent(P[1]);

> N<n> := CoefficientRing(A4);

> P;

[

a~(3/2) + 1/2%a~(9/4) - 1/64*a~(15/4) + 0(a"4),
a~(3/2) - 1/2*a~(9/4) + 1/64*a”~(15/4) + 0(a"4),

-a~(3/2) + 1/2%n*a”~(9/4) + 1/64*nxa”(15/4) + 0(a"4),
-a~(3/2) - 1/2*n*xa"~(9/4) - 1/64xn*xa”(15/4) + 0(a~4)

]

One thing that may be taken for granted from PuiseuxExpansion is that all the expansions lie in
the same puiseux series ring. However, for DuvalPuiseuxExpansion this may not be the case. It
will always be true that each of the parametrizations will lie in the same puiseux series ring but
series resulting from different parametrizations may not. This occurs since some extensions are
left to the stage of calculating the series from the parametrization to be made and for different

parametrizations these extensions may be different.

> f = (-x"3 + x74) - 2*x"2%y - x*y~2 + 2xx*y"4 + y~b5;

> time D := DuvalPuiseuxExpansion(f, 0);
Time: 0.010



Ch. 46 NEWTON POLYGONS

> D;
[
<x"2, -x"2 - x73 + 0(x"4)>,
<x"3, x + 0(x"2)>
]
> time P := ParametrizationToPuiseux(D[1]);
Time: 0.000
> P;
[
-x - x~(3/2) + 0(x~2),
-x + x7(3/2) + 0(x"2)
]

> Parent(P[1]);

Puiseux series field in x over Rational Field
> time P := ParametrizationToPuiseux(D[2]);
Time: 0.030

> A<a> := Parent(P[1]);

> N<n> := CoefficientRing(A);

> P;
[
a~(1/3) + 0(a~(2/3)),
n*xa~(1/3) + 0(a~(2/3)),
(-n - 1)*a~(1/3) + 0(a~(2/3))
]

> Parent(P[1]);
Puiseux series field in a over N
> N;

Number Field with defining polynomial $.1°2 + $.1 + 1 over the Rational Field

1253

DuvalPuiseuxExpansion reacts differently to PuiseuxExpansion when given input which has finite
expansions either due to finite precision or exact roots. These differences are shown below and
are due to the fact that DuvalPuiseuxExpansion always looks for the next non zero term in an

expansion whereas PuiseuxExpansion will calculate zero terms.

>f =y -x"3-x"7 - x"76 + 0(x"200);
> D := DuvalPuiseuxExpansion(f, 0);
> D;
[

<x, x"3 + 0(x"4)>
]
> D := DuvalPuiseuxExpansion(f, 3);
> D;
[

<x, X"3 + X7 + x°76 + 0(x"77)>
]
> D := DuvalPuiseuxExpansion(f, 4);
>> D := DuvalPuiseuxExpansion(f, 4);

Runtime error in ’DuvalPuiseuxExpansion’: Insufficient precision to calculate to



1254 LOCAL ARITHMETIC FIELDS Part VIII

requested precision

> ¢ := PuiseuxExpansion(f, 197);
> c;
[

Xx"3 + xX77 + X776 + 0(x~200)
]
> ¢ := PuiseuxExpansion(f, 200);
>> ¢ := PuiseuxExpansion(f, 200);

Runtime error in ’PuiseuxExpansion’: Insufficient precision to calculate to
requested precision

>f =y -x"3 -x77 - x776;

> D := DuvalPuiseuxExpansion(f, 0);
> D;
L

<x, x°3 + 0(x"4)>

D := DuvalPuiseuxExpansion(f, 3);
D

’

—, VvV VvV

<x, X3 + x°7 + x°76 + 0(x"77)>

D := DuvalPuiseuxExpansion(f, 4);
D

b

—, VvV VvV

<x, x"3 + x°7 + xX"76>

¢ := PuiseuxExpansion(f, 10);

b

—, VvV VvV

x"3 + x°7 + 0(x~13)

¢ := PuiseuxExpansion(f, 100);

’

—, VvV Vv

x"3 + x°7 + x°76 + 0(x~103)

¢ := PuiseuxExpansion(f, 200);

b

—, VvV VvV -4

X"3 + x77 + x776 + 0(x"203)

¢ := PuiseuxExpansion(f, 200 : PreciseRoot := true);

b

—, VvV VvV

X3 + xX°7 + X776



Ch. 46 NEWTON POLYGONS 1255

]

The two methods can be combined. Given a series there is no way that Duval’s REGULAR
algorithm can be used to further the precision of an expansion. But ExpandToPrecision can be
used to gain the extra precision. Using the REGULAR algorithm would be preferable since it is
faster but this is not possible for the type of input that is available. This is explored in the case
of our first example.

>f = (y°2 - x73)72 - y*x76;

> time D := DuvalPuiseuxExpansion(f, 0);
Time: 0.009

> time P := ParametrizationToPuiseux(D[1]);
Time: 0.050

> A<a> := Parent(P[1]);

> N<n> := CoefficientRing(A);

> P;

[

a~(3/2) + 1/2*xa~(9/4) + 0(a~(5/2)),
a~(3/2) - 1/2*a~(9/4) + 0(a~(5/2)),
-a~(3/2) + 1/2*n*a”~(9/4) + 0(a~(5/2)),
-a~(3/2) - 1/2*n*a~(9/4) + 0(a~(5/2))

]

> time ExpandToPrecision(f, P[1], 20);

a~(3/2) + 1/2*%a"~(9/4) - 1/64*a”~(15/4) + 1/128*a"~(9/2) - 9/4096*a” (21/4) +
0(a~(13/2))

Time: 0.070

> time D := DuvalPuiseuxExpansion(f, 5);

Time: 0.010

> time P := ParametrizationToPuiseux(D[1]);

Time: 0.059

It can be seen that using ExpandToPrecision is slower even than rerunning Duval’s algorithm
from the beginning. Even more so when it is remembered that running Duval’s algorithm with
the extra precision will give parametrizations of all the expansions of the roots of f and not just
one expansion. This seems to still be the case when larger examples are considered so that if more
terms of an expansion are required it is probably best to start from the beginning asking for these
extra terms.

> time pl := ExpandToPrecision(f, P[1], 50);

> A<a> := Parent(pl);

> N<n> := CoefficientRing(A);

> pl;

a”(3/2) + 1/2*%a”(9/4) - 1/64xa~(15/4) + 1/128%a~(9/2) - 9/4096*a"(21/4) +

55/131072*a”~ (27/4) - 9/32768*a~(15/2) + 1547/16777216%*a" (33/4) -
11799/536870912*a"~ (39/4) + 65/4194304*a"~ (21/2) - 189805/34359738368*a"~ (45/4)
+ 1584999/1099511627776*a"~ (51/4) - 2261/2147483648+*a~(27/2) + 0(a~14)

Time: 0.439

> time D := DuvalPuiseuxExpansion(f, 13);

Time: 0.009

> time P := ParametrizationToPuiseux(D[1]);



1256 LOCAL ARITHMETIC FIELDS Part VIII

Time: 0.200

46.5.3 Roots of Polynomials

This section describes two similar functions that can be used for finding roots of polyno-
mials over series rings in a similar way to finding roots of polynomials over any other ring
for which roots can be computed in MAGMA.

Roots (f)
Roots(f, n)

Verbose Newton Maximum : 2

Find the roots of the polynomial f which lie in the coefficient ring of f. The first
form of this function can be used on any polynomial over any ring for which MAGMA
can compute roots. Since precision is an issue in series rings and some roots may
have infinite expansions, the second version of this function which is specific to series
rings allows a lower bound for the precision to which these roots will be known to
be specified. The first computes the roots to at least the default precision of the
ring if that ring has infinite precision otherwise it computes them to at least the
precision of the ring. The first version will be enough when all the coefficients of
the polynomial have infinite precision. The second version may be required when a
precision other than that assumed by the first is sought which may be due to the
impossibility of computing the roots to such a high precision as the default. The
precision is relative to the least common multiple of the exponent denominators of
the coefficients of f and the exponent denominator of the root. Roots which are
known to be different but are identical to the precision specified will be returned as
two distinct roots.

Duval’s algorithm as implemented in DuvalPuiseuxExpansion will usually be
used. Walker’s algorithm as implemented in PuiseuxExpansion will be used if the
polynomial has coefficients involving fractional powers or the characteristic of the
coefficient ring of the series ring is less than the degree of a squarefree factor.

If Walker’s algorithm is used and the characteristic of the field is less than the
degree of the polynomial then the computation may not finish (see remarks under
PuiseuxExpansion) and control will return to the user when interrupted.

If verbose printing of partial output that doesn’t have enough precision is required
the functions PuiseuxExpansion and DuvalPuiseuxExpansion should be used with
the appropriate precision. Roots also requires that there is enough precision in the
roots so that the multiplicities can be calculated correctly and the parts of the roots
that are returned are distinct. Therefore an error will be given if there is not enough
precision to calculate the part of the root that results from the newton polygon part
of the algorithm and the root is not known to be a single root since the multiplicity
may not be able to be calculated correctly. Information at such a low precision can
be gained correctly by using the PuiseuxExpansion functions and determining the
multiplicities manually.



Ch. 46 NEWTON POLYGONS 1257

HasRoot (f) |

Return true if the polynomial f has a root in its coefficient ring and that root can
be found to the fixed or default precision of the ring as applicable. A root is also
returned in this case. If f is irreducible over its coefficient ring then return false.

Example H46E10

Below are some examples of the use of the Roots function.

> SetVerbose("Newton", 1);
> P<x> := PuiseuxSeriesRing(Rationals());
> R<y> := PolynomialRing(P);
> f = y73 + 2¥x7-1%yT2 + 1%x7-2%y + 2%¥x;
> Roots(f);
DUVAL :
[
<-2%x"3 - 8%x"7 - 56%x"11 - 480%x715 - 4576*x"19 + 0(x"23), 1>

]
> f = £72;
> Roots(f);
DUVAL :
[

<-2%x7"3 - 8xx"7 - b6xx~11 - 480*x"15 - 4576%x~19 + 0(x~23), 2>
]
> f 1=y 3 4+ 2%xx"-1*y"2 + 1*kx"-2%y + 2%x;
> f +:= 0(x"20)*(y"3 + y"2 + y + 1);
> £,

(1 + 0(x720))*y~3 + (2*x"-1 + 0(x"20))*y~2 + (x"-2 + 0(x"20))*y + 2xx + 0(x~20)
> Roots(f);

DUVAL :

>> Roots(f);

Runtime error in ’Roots’: Roots not calculable to default precision
> Roots(f, 10);
DUVAL :
L
<-2xx"3 - 8%x"7 - b6xx"11 + 0(x"13), 1>

f := £72;

f;

1 + 0(x720))*y"6 + (4*%x"-1 + 0(x"19))*y~5 + (6*%x"-2 + 0(x"18))*y~4 + (4*x~-3 +
4xx + 0(x"18))*y”"3 + (x7-4 + 8 + 0(x718))*y~2 + (4*x"-1 + 0(x"18))*y + 4*x"2
+ 0(x"21)

> Roots(f, 10);

DUVAL :

L

~ VvV Vv <

<-2*%x"3 - 8*x"7 - b6*x~11 + 0(x~13), 2>



1258 LOCAL ARITHMETIC FIELDS Part VIII

> f o= (y - x"(1/4)*(y - x°(1/3));
> Roots(f);
WALKER :
L
<x~(1/3) + 0(x"2), 1>,
<x~(1/4) + 0(x~(23/12)), 1>

46.6 Bibliography

[Duv89] Dominique Duval. Rational Puiseux Expansions. Compositio Mathematica,
70:119 — 154, 1989.

[Gri95] Deryn Griffiths. Series Expansions of Algebraic Functions. In W. Bosma and
A. van der Poorten, editors, Computational Algebra and Number Theory, pages 267 —
277. Kluwer Academic Publishers, Netherlands, 1995.

[Wal78] Robert J. Walker. Algebraic Curves, pages 98 —99. Springer-Verlag, 1978.



47.1 Introduction . . . . . . . . 1263
47.2 Background . . . . . . . . 1263
47.3 Overview of the p-adics in

MAGMA . . . . . . . . . . 1264
47.3.1 p-adic Rings . . . . . . . . . . 1264
47.3.2 p-adic Fields . . . . . . . . . . 1264

47.3.3 Free Precision Rings and Fields . . 1265

47.3.4 Precision of Extensions. . . . . . 1265
47.4 Creation of Local Rings and
Fields . . . . . . . . . . . 1265
47.4.1 Creation Functions for the p-adics . 1265
pAdicRing(p, k) 1265
pAdicField(p, k) 1265
pAdicRing(p) 1266
pAdicField(p) 1266
pAdicQuotientRing(p, k) 1266
quo< > 1266
47.4.2 Creation Functions for Unramified
Extensions . . . . . . . . . . . 1267
UnramifiedExtension(L, n) 1267
ext< > 1267
UnramifiedQuotientRing (K, k) 1267
UnramifiedExtension(L, f) 1267
ext< > 1267
IsInertial(f) 1267
HasGNB(R, n, t) 1268

CyclotomicUnramifiedExtension(R, f) 1268
CyclotomicUnramifiedExtension(R, f) 1268
CyclotomicUnramifiedExtension(R, f) 1268
CyclotomicUnramifiedExtension(R, f) 1268

47.4.3 Creation Functions for Totally Ram-

ified Extensions . . . . . . . . . 1269
TotallyRamifiedExtension(L, f) 1269
ext< > 1269
IsEisenstein(f) 1269
47.4.4 Creation Functions for Unbounded

Precision Extensions . . . . . . . 1270
ext< > 1270
47.4.5 Miscellaneous Creation Functions . 1271
IntegerRing(F) 1271
Integers(F) 1271
RingOfIntegers(F) 1271
RingOfIntegers(R) 1271
FieldOfFractions(R) 1271
SplittingField(f, R) 1271

AbsoluteTotallyRamifiedExtension(R) 1271
47.4.6 Other Elementary Constructions . 1272

47 p-ADIC RINGS AND THEIR EXTENSIONS

Composite(R, S) 1272
47.4.7 Attributes of Local Rings and Fields 1272
L‘DefaultPrecision 1272

47.5 Elementary Invariants . . . . 1272

Prime (L) 1272
InertiaDegree(L) 1272
InertiaDegree(K, L) 1272
AbsoluteInertiaDegree(L) 1272
RamificationDegree (L) 1272
RamificationIndex (L) 1272
RamificationDegree (K, L) 1272
RamificationIndex (XK, L) 1272
AbsoluteRamificationDegree(L) 1273
AbsoluteRamificationIndex (L) 1273
AbsoluteDegree(L) 1273
Degree(L) 1273
Degree(X, L) 1273
DefiningPolynomial (L) 1273
DefiningMap (L) 1273
HasDefiningMap (L) 1273
PrimeRing(L) 1273
PrimeField (L) 1273
pAdicRing(L) 1273
pAdicField (L) 1273
BaseRing(L) 1273
CoefficientRing(L) 1273
BaseField (L) 1273
CoefficientField (L) 1273
BaseRing(L) 1273
ResidueClassField (L) 1274
ResidueSystem(R) 1274
UniformizingElement (L) 1274
. 1274
Precision(L) 1274
HasPRoot (R) 1274
HasRoot0fUnity(L, n) 1274
Discriminant (R) 1274
Discriminant (K, k) 1274
AdditiveGroup(R) 1274
47.6 Operations on Structures. . . 1276
AssignNames(~L, S) 1276
AssignNames(~L, S) 1276
Characteristic(L) 1276
Characteristic(L) 1276
Characteristic(L) 1276
# 1276
Name (L, k) 1276
ChangePrecision(L, k) 1277
ChangePrecision(~L, k) 1277
ChangePrecision(L, k) 1277
ChangePrecision(~L, k) 1277

ChangePrecision(L, k) 1277



1260 LOCAL ARITHMETIC FIELDS

ChangePrecision(~L, k) 1277
ChangePrecision(L, k) 1277
ChangePrecision(~L, k) 1277
ChangePrecision(L, k) 1277
ChangePrecision(~L, k) 1277
ChangePrecision(L, k) 1277
ChangePrecision(~L, k) 1277
eq 1277
ne 1277
47.6.1 Ramification Predicates . . . . . 1278
IsRamified(R) 1278
IsUnramified(R) 1278
IsTotallyRamified(R) 1278
IsTamelyRamified(R) 1278
IsWildlyRamified (R) 1278
47.7 Element Constructions and Con-
versions . . . . . . . . . . 1279
47.7.1 Constructions . . . . . . . . . . 1279
Zero(L) 1279
One (L) 1279
Random (L) 1279
Representative (L) 1279
elt< > 1279
! 1279
elt< > 1280
elt< > 1280
Big0O(x) 1280
0(x) 1280
UniformizingElement (L) 1280
47.7.2 Element Decomposers . . . . . . 1282
ElementToSequence (x) 1282
Eltseq(x) 1282
Coefficients(x) 1282
Coefficient(x, i) 1282
47.8 Operations on Elements . . . 1283
47.8.1 Arithmetic . . . . . . . . . . . 1283
- 1283
+ 1283
- 1283
* 1283
- 1283
div 1283
div:= 1284
/ 1284
IsExactlyDivisible(x, y) 1284
47.8.2 Equality and Membership . . . . 1284
eq 1284
ne 1285
in 1285
notin 1285
47.8.3 Properties . . . . . . . . . . . 1286
IsZero(x) 1286
IsOne(x) 1286

IsMinusOne(x)

IsUnit(x)

IsIntegral(x)

47.8.4 Precision and Valuation

Parent (x)

Precision(x)
AbsolutePrecision(x)
RelativePrecision(x)
ChangePrecision(x, k)
ChangePrecision(~x, k)
ChangePrecision(x, k)
ChangePrecision(~x, k)
Expand (x)

Valuation(x)

47.8.5 Logarithms and Exponentials .

Log(x)
Exp(x)

47.8.6 Norm and Trace Functions .

Norm (x)

Norm(x, R)

Trace (%)

Trace(x, R)
MinimalPolynomial (x)
MinimalPolynomial(x, R)
CharacteristicPolynomial (x)
CharacteristicPolynomial(x, R)
GaloisImage(x, i)

47.8.7 Teichmiiller Lifts

TeichmuellerLift(u, R)
47.9 Linear Algebra

47.10 Roots of Elements .

SquareRoot (x)
Sqrt(x)

IsSquare (x)
InverseSquareRoot (x)
InverseSqrt (x)
InverseSquareRoot (x, y)
InverseSqrt(x, y)
Root(x, n)
IsPower(x, n)
InverseRoot (x, n)
InverseRoot(x, y, n)

47.11 Polynomials . . . .

47.11.1 Operations for Polynomials .

GreatestCommonDivisor(f, g)
Ged(f, g)

GCD(f, g)

div mod LeastCommonMultiple
Coefficient LeadingCoefficient
Derivative Evaluate
ShiftValuation(f, n)

47.11.2 Roots of Polynomials

NewtonPolygon (£)
ValuationsOfRoots (f)

Part VIII

1286
1286
1286

. 1286

1286
1286
1286
1286
1287
1287
1287
1287
1287
1287

. 1288

1288
1288

. 1289

1289
1289
1289
1289
1289
1289
1290
1290
1290

. 1291
1291

1291

1291

1291
1291
1291
1291
1291
1292
1292
1292
1292
1292
1292

1292
. 1292

1293
1293
1293
1293
1293
1293
1293

. 1294

1294
1294



Ch. 47

HenselLift(f, x)
HenselLift(f, x, k)
Roots (f)

Roots(f, R)
HasRoot (f)

47.11.3 Factorization .

HenselLift(f, s)
IsIrreducible(f)
SquareFreeFactorization(f)
Factorization(f)
LocalFactorization(f)
SuggestedPrecision(f)
IsIsomorphic(f, g)
Distance(f, g)

47.12 Automorphisms of Local Rings

and Fields

Automorphisms (L)
Automorphisms (K, k)
AutomorphismGroup (L)
AutomorphismGroup (K, k)
IsNormal (K)

IsNormal(K, k)
IsAbelian(K, k)
Continuations(m, L)
IsIsomorphic(E, K)

47.13 Completions
Completion(Q0, P)

1295
1295
1296
1296
1297

. 1298

1298
1298
1299
1299
1299
1299
1300
1300

1302

1302
1302
1302
1302
1302
1303
1303
1303
1303

1304
1304

p-ADIC RINGS AND THEIR EXTENSIONS

Completion(K, P)
LocalRing(P, k)

47.14 Class Field Theory
47.14.1 Unit Group .

PrincipalUnitGroupGenerators(R)

PrincipalUnitGroup (R)
UnitGroup(R)
UnitGroup (F)
UnitGroupGenerators(R)
UnitGroupGenerators (F)
pSelmerGroup(p,F)

47.14.2 Norm Group
NormGroup (R, m)
NormEquation(R, m, b)
NormEquation(mi, m2, G)
Norm(ml, m2, G)
NormKernel (ml, m2)

47.14.3 Class Fields
ClassField(m, G)
NormGroupDiscriminant (m, G)
47.15 Extensions

AllExtensions(R, n)
NumberOfExtensions(R, n)
OreConditions(R, n, j)

47.16 Bibliography

1261

1304
1304

1305

. 1305

1305
1305
1306
1306
1306
1306
1306

. 1306

1306
1306
1307
1307
1307

. 1307

1307
1307
1307

1308
1308
1308

1308






Chapter 47
p-ADIC RINGS AND THEIR EXTENSIONS

47.1 Introduction

MAGMA supports finite extensions of the ring Z,, of p-adic integers or the field Q,, of p-adic
numbers. Within this chapter, we mean these objects if we refer to local rings or fields.
Section 47.2 provides more background information on the theory behind the p-adics.

MAGMA has two different models for working with these locals: fixed precision rings
(RngPadRes and RngPadResExt, with element types RngPadResElt and RngPadResExtElt)
and free precision rings (RngPad and FldPad, with element types RngPadElt and
F1ldPadElt). The merits of each model are discussed in Section 47.3.1.

MAcGMA also contains a type of local field where extensions can be made by any irre-
ducible polynomial. For more information on these local fields, see Chapter 51.

47.2 Background

The p-adic field Q, arises naturally as the completion of Q with respect to an absolute
value function |z|, = p~¥»(®) where v, () is the p-adic valuation of = (that is, a power of
p such that =z = p”P(m)% but p Jab). The ring of integers of Q,, denoted Z,, is the set of
all elements of non-negative valuation. The ring Z, has a unique maximal ideal, generated
by the prime p; the residue class field K is the quotient Z,/pZ,. Any element x of Q,
can be expressed as a power series in the prime p, so that z = >~ a;p’, where v is the
valuation of x, a, is non-zero, and each a; is a lift of an element from the residue class
field. In more general terms, Q, is a local field, with its ring of integers Z, being a local
ring. A uniformizer 7 of Q, is the prime p.

More generally, consider an irreducible polynomial over some local field L; (such as
Q,). Then the extension given by adjoining a root « of this polynomial to Ly, Ly = L1[a],
is also a local field. Let m; and me be uniformizers of L; and Lo, respectively. Then
m§ = miu, where u is a unit of Ly. The number e is the ramification degree of Ly over Ly,
and divides the degree n of the extension. If e = n, we say Ls is totally ramified over Lq;
if e = 1, we say Lo is unramified over L. The degree of the residue class field Ky of Lo
over the residue class field K of Ly is f = Z. Finite extensions in MAGMA must be either
unramified or totally ramified; MAGMA also allows towers of extensions to be built.

It is well known that up to isomorphism there is only one degree n unramified extension
of L, which can be obtained by adjoining a p™ — 1-th root of unity  to L. This extension
is Galois, with Galois group isomorphic to the cyclic group of order n. The Galois group is
generated by the Frobenius automorphism o, which takes ¢ to (. For some applications,
it is necessary to have a fast Frobenius action, so MAGMA supports such a representation.
However, the defining polynomial in this representation is particularly dense and can be
expensive to construct, hence it is ill-suited for general applications. An unramified exten-
sion can only be defined by inertial polynomials, which are polynomials that are irreducible



1264 LOCAL ARITHMETIC FIELDS Part VIII

over the residue class field. MAGMA allows an unramified extension to be defined by any
inertial polynomial.

All totally ramified extensions contain a root of an Eisenstein polynomial of L. An
Eisenstein polynomial f(z) = Y"1, a;2° satisfies vr(a,) =0, vz(a;) > 1 for all 0 < i < n,
and v, (ag) = 1. MAacGMA allows a totally ramified extension to be defined by any Eisenstein
polynomial; note that this does not allow arbitrary representations of totally ramified
extensions to be constructed.

47.3 Overview of the p-adics in Macma

47.3.1 p-adic Rings

Since p-adic rings are completions (like the real numbers), it is difficult to represent their
elements in an exact form. As described in Section 47.2, any element z of a local ring L
can be expressed as a power series in the uniformizing element of L. Most problems can be
solved by computing in a finite quotient of L, which is equivalent to truncating the infinite
expansion of x at some point. More precisely, we work in the quotient rings L/7*L for
non-negative k, which is called the precision of the ring L.

Unfortunately, working with finite approximations to elements does have problems.
Some operations on these approximations will yield results with reduced precision. For
example, in a ring constructed with precision k£ the quotient of two elements with valuations
v1 > vy lies in the local ring, but can only be determined up to k — vy digits. Also, it is
only possible in general to construct an approximation to the GCD of two polynomials f
and g over a local ring.

MAGMA offers two models for computing in a local ring L. The first model (the fized
precision model) allows the user to work with the quotient rings defined above. These
quotient rings are finite structures, and their elements can easily be represented exactly;
hence, many exact algorithms can be applied to them. On the other hand, precision
management is left to the user, since operations which may lose precision, such as division,
will still return results to the full precision of the ring. In the second model (the free
precision model), the user works more directly with L, instead of a finite quotient of L. Each
element is still represented by a finite approximation, however, these approximations can
be of varying precisions, thus freeing the user from precision management. However, these
rings are inexact (for instance, there is no zero element of the ring, only approximations to
it), and hence many algorithms in MAGMA which are designed for exact rings may cause
significant precision loss. The situation is analogous to the support for real numbers in
MAGMA.

47.3.2 p-adic Fields

A local field in MAGMA is the field of fractions of a local ring. Representing a local field on
a machine causes some trouble, since there is no algebraic structure in which truncations
of the elements could be interpreted (as in the case of the finite quotients for the local
rings). Moreover, all structural information of a local field is already contained in its ring



Ch. 47 p-ADIC RINGS AND THEIR EXTENSIONS 1265

of integers, so that the main motivation for supporting local fields is to provide some basic
arithmetic.

An element x of a local field L is stored internally as x = 7%u + O(7***), where v is
the (possibly negative) valuation of x, and u is a unit known to precision k in the ring of
integers of L. It can happen that operations in a field yield elements with no known digits
at all, since the unit parts may not overlap.

47.3.3 Free Precision Rings and Fields

Free precision rings and fields can be created with bounded or unbounded precision. If
they are created with some bounded precision k, then no element in the structure can
have precision greater than k. Thus, bounded free precision rings are “inexact” versions
of the fixed precision rings. Unbounded precision structures can have elements with arbi-
trarily large, but not infinite, precision. In general, it is recommended that free precision
structures are utilized unless speed is absolutely critical.

47.3.4 Precision of Extensions

In MAGMA, all measurements of precision are made with respect to a valuation function
vy which takes the uniformizer 7 of the local ring L to unity (throughout this chapter, the
subscript will be dropped on v, where there is no ambiguity). This can have surprising
results. For instance, consider a local ring L; which extends Lo, such that the ramification
degree of Ly over Lo is e. Let m; and my be the uniformizing elements of L; and Lo,
respectively. Then, v, (m) = 1, and v, (m2) = e. Hence, an element of precision k in Loy
will have precision ek in when mapped into L;. Thus, it is important to always remember
in which ring precision is determined.

47.4  Creation of Local Rings and Fields

A local ring in MAGMA can be constructed in two ways: as either a p-adic ring, or as an
extension of another local ring. MAGMA supports the construction of towers of extensions
of local rings; the only restriction is that each extension must be either unramified or totally
ramified. As discussed in Section 47.2, MAGMA requires that the defining polynomial is
either inertial or Eisenstein.

Additionally, the user must specify whether to construct a fixed precision or free pre-
cision structure, and, if necessary, assign a precision to the structure. For local rings the
precision is interpreted as an absolute precision, specifying to what precision the element
is known, but for local fields it is interpreted as a relative precision, specifying to what
precision the unit part of the element is known.

47.4.1 Creation Functions for the p-adics

pAdicRing(p, k)
pAdicField(p, k)

Given a prime integer p and non-negative single-precision integer k, construct the
bounded free precision ring (field) of p-adic integers with maximum precision k.



1266 LOCAL ARITHMETIC FIELDS Part VIII

pAdicRing(p)

pAdicField(p)

Precision RNGINTELT Default : 20

Given a prime integer p, construct the unbounded free precision ring (field) of p-adic
numbers. The optional parameter Precision, which must be a non-negative single
precision integer, controls the default precision to which elements are created, e.g.,
when coercing precise elements such as integers or rationals into the ring.

pAdicQuotientRing(p, k)

Given a prime integer p and non-negative single precision integer k, construct the
fixed precision quotient ring Z,/p*Z,.

quo< L | x >

Given a local ring L, construct the quotient ring L/xz L, where x is an element of L.

Example H47E]1

The creation of p-adic rings using the above functions is illustrated below.

> R := pAdicRing(5);
> R;

5-adic ring

> R‘DefaultPrecision;

20

> R!1;

1 + 0(5720)

> R := pAdicRing(5 : Precision := 20);
> R!1;

1 + 0(5720)

> Q := quo<R | 5720>;

> Q;

Quotient of the 5-adic ring modulo the ideal generated by 5720
> Q'1;

1

> Q eq pAdicQuotientRing(5, 20);
true




Ch. 47 p-ADIC RINGS AND THEIR EXTENSIONS 1267

47.4.2 Creation Functions for Unramified Extensions

UnramifiedExtension(L, n)

ext< L | n >|

Cyclotomic BooLELT Default : false
GNBType RNGINTELT Default : 0

Given a local ring or field L and a positive single precision integer n, construct
the default unramified extension of L of degree n. If K is the residue class field of
L, then the defining polynomial of the default degree n extension of K is lifted to
be an inertial polynomial of L; this polynomial is used as the defining polynomial
of the extension. If Cyclotomic is true, then the lift of the defining polynomial
will be such that p™ — 1-st root of unity will be adjoined to L (this representation
makes computation of the Frobenius automorphism particularly efficient). The angle
bracket notation can be used to assign a name to the generator of the extension,
e.g. K<t> := UnramifiedExtension(L, n). If Cyclotomic is false but GNBType
is t > 0 then a Gaussian normal basis of type t is used. This allows extremely
fast multiple Frobenius computations but multiplication is slower than the usual or
Cyclotomic representation if ¢ > 2. Because of this, currently only 1 or 2 are legal
values for t. Only certain extension degrees will have a Gaussian normal basis of
type 1 or 2. To determine if this is true, the HasGNB functions described below may
be used.

UnramifiedQuotientRing(K, k)

Given a finite field K and a non-negative single precision integer k, construct the
fixed precision quotient ring which has residue class field K and precision k. The
angle bracket notation can be used to assign a name to the generator of the extension,
e.g. L<t> := UnramifiedExtension(K, f).

UnramifiedExtension(L, f)

ext< L | £ >|

Given a local ring or field L and a polynomial f with coefficients coercible to L,
construct the unramified extension of L defined by f. The polynomial f must be
an inertial polynomial over L. The angle bracket notation can be used to assign
a name to the generator of the extension, e.g. K<t> := UnramifiedExtension(L,
f). Free precision rings can only be extended by a polynomial if they are of bounded
precision, in which case f must be specified to the maximum precision of the ring.

| IsInertial (f) |

Given a polynomial f with coefficients over a local ring or field L, return true if and
only if f is an inertial polynomial. A polynomial is inertial over L if it is irreducible
over the residue class field of L.



1268 LOCAL ARITHMETIC FIELDS Part VIII

HasGNB(R, n, t)

Given a local ring or field, returns true iff the unramified extension of degree n
can be generated by a Gaussian Normal Basis (GNB) of Type t. A GNB allows
particularly fast multiple Frobenius and Norm computations. Multiplication will
tend to be slower though, unless t = 1.

CyclotomicUnramifiedExtension(R, £f)

CyclotomicUnramifiedExtension(R, f)

CyclotomicUnramifiedExtension(R, f)

CyclotomicUnramifiedExtension(R, f)

Given a local ring of field R, construct the unramified degree f extension by
adjoining a p/ — 1-th root of unity to R. Functionally equivalent to calling
UnramifiedExtension(R, f:Cyclotomic := true).

Example H47E2

The creation of unramified extensions of local rings using the above functions is illustrated below.

> R1 := pAdicRing(2, 20);
> R2 := ext<R1 | 5>;
> R2;

Unramified extension defined by the polynomial x"5 + x72 + 1
over 2-adic ring mod 2720

> DefiningPolynomial (R2);

X’ +x72 + 1

> R3 := ext<R1 | 5 : Cyclotomic>;

> R3;

Cyclotomic unramified extension of degree 5 over 2-adic ring mod 2720

> DefiningPolynomial (R3);

x"5 + 426248*x74 - 14172xx"3 - 147105%x"2 + 293314*x - 1
R3.17(275-1);

>
1
> P1<x> := PolynomialRing(R1);
> f1 := x"3 + 3*%x + 1;

>

IsInertial(f1);
true
> R4 := ext<Rl | f1>;
> R4;

Unramified extension defined by the polynomial x"3 + 3*x + 1
over 2-adic ring mod 2720

> P2<y> := PolynomialRing(R2);

> f2 = y73 + 3%y + 1;

> IsInertial(f2);

true

> ext<R2 | £2>;

Unramified extension defined by the polynomial x"3 + 3*x + 1



Ch. 47 p-ADIC RINGS AND THEIR EXTENSIONS 1269

over Unramified extension defined by the polynomial x°5 + x"2 + 1
over 2-adic ring mod 2720

47.4.3 Creation Functions for Totally Ramified Extensions

TotallyRamifiedExtension(L, f)

ext< L | f >|

Given a local ring or field L and a polynomial f with coefficients coercible to L,
construct the totally ramified extension of L defined by f. The polynomial f must
be an Eisenstein polynomial, that is, the leading coefficient is a unit, the constant
coefficient has valuation 1 and all other coefficients have valuation greater than or
equal to 1. The angle bracket notation can be used to assign a name to the generator
of the extension, e.g. K<t> := TotallyRamifiedExtension(L, f). Free precision
rings can only be extended by a polynomial if they are of bounded precision, in
which case f must be specified to the maximum precision of the ring.

IsEisenstein(f) |

Given a polynomial f with coefficients over a local ring or field L, return true if
and only if f is an Eisenstein polynomial over L. An Eisenstein polynomial satisfies
the following properties: the leading coefficient is a unit, the constant coefficient has
valuation 1 and all other coefficients have valuation greater than or equal to 1.

Example H47TE3

The creation of totally ramified extensions of local rings using the above functions is illustrated
below.

> Li<a> := ext<pAdicRing(5, 20) | 4>;

> L1;

Unramified extension defined by the polynomial x4 + 4%x72 + 4*x + 2
over 5-adic ring mod 5720

> L2<b> := ext<Ll | x"4 + 125%x"2 + 5>;

> L2;

Totally ramified extension defined by the polynomial x"4 + 125%x72 + 5
over Unramified extension defined by the polynomial x"4 + 4%x"2 + 4*x + 2
over 5-adic ring mod 5720

> P<y> := PolynomialRing(L2);

> L3<c> := TotallyRamifiedExtension(L2, y~3 + b~4xa"b*y + b*a"2);

> L3;

Totally ramified extension defined by the polynomial x~3 + ((500%a~3 + 500%a”2 +

250%a)*b”2 + 20%a”3 + 20*a”2 + 10*a)*x + a”2*b

over Totally ramified extension defined by the polynomial x"4 + 125*%x"2 + 5
over Unramified extension defined by the polynomial x"4 + 4%x”2 + 4*x + 2



1270 LOCAL ARITHMETIC FIELDS Part VIII

over 5-adic ring mod 5720

If the precision of the base ring is only 1, then it is not possible to construct a ramified extension,
as there is not enough precision to allow the constant coefficient to be non-zero to that precision.

> R<x> := PolynomialRing(Integers());

> L<a> := UnramifiedExtension(pAdicRing(5, 1), 3);

> TotallyRamifiedExtension(L, x"4 + 5);

>> TotallyRamifiedExtension(L, x"4 + 5);

Runtime error in ’TotallyRamifiedExtension’: Polynomial must be Eisenstein

> L<a> := UnramifiedExtension(pAdicRing(5, 2), x°5 + x"2 + 2);

> TotallyRamifiedExtension(L, x"4 + 5);

Totally ramified extension defined by the polynomial x4 + 5 over Unramified
extension defined by the polynomial x°5 + x"2 + 2 over 5-adic ring mod 572

> ext<L | x74 + 125%x"2 + 5>;

Totally ramified extension defined by the polynomial x4 + 5 over Unramified
extension defined by the polynomial x°5 + x"2 + 2 over 5-adic ring mod 572

47.4.4 Creation Functions for Unbounded Precision Extensions

Suppose we have an unbounded precision local ring or field L, and we wish to create a
finite extension of it. If we need the default degree n unramified extension, then we can use
the construction functions defined in Section 47.4.2 to construct this extension. However,
suppose we wish to define the extension by some polynomial f. As there is no upper
bound on the precision of elements of L, it is impossible for us to represent the polynomial
f sufficiently precisely, and hence we cannot use the creation functions defined in previous
sections for this task. To allow such extensions to be created, MAGMA allows extensions to
be defined by a map ¢ : Z>¢ — R[z], where R is a ring whose elements are coercible to the
quotient rings L/7*L for all k € Z>y. The map ¢, given an input precision k, returns the
defining polynomial of the extension to precision k. Internally, whenever MAGMA needs
to represent an element of the extension to some precision, it will use ¢ to compute the
defining polynomial up to this precision. MAGMA may call ¢ on any precision between
zero and the precision of the most precise element created by the user.

| ext< L | m >|

Given a free precision local ring or field L and a map m with domain Z and codomain
R[z], where elements of R are coercible to the quotient rings L/m* L for all k € Z>,
construct an extension of L defined by m. Given a non-negative single precision
integer k, the map m must return the defining polynomial of the extension to pre-
cision k, as a polynomial over R. The map m’s behaviour for other input values is
undefined. Internally, MAGMA will coerce the value returned by the map m to be
a polynomial over L/7*L. Examples of suitable codomains R include the integers,
rationals, or L itself.



Ch. 47 p-ADIC RINGS AND THEIR EXTENSIONS 1271

Example H47E4

The creation of extensions of local rings using maps is illustrated below. We show how it is
possible to define an extension of a free precision ring using an “exact” polynomial.

> R := pAdicRing(2);

> Z := Integers();

> P<x> := PolynomialRing(Z);

>m :=map<Z -> P | k :-> x73 + x + 1>;
> R2 := ext<R | m>;

> R2;

Unramified extension defined by a map over 2-adic ring

> DefiningPolynomial (R2);

(1 + 0(2720))*$.1"3 + 0(2720)*%$.1°2 + (1 + 0(2720))*$.1 + 1 + 0(2720)

> R2‘DefaultPrecision := 1000;

> DefiningPolynomial (R2) ;

(1 + 0(271000))*$.173 + 0(271000)*$.1"2 + (1 + 0(271000))*$.1 + 1 + 0(271000)

47.4.5 Miscellaneous Creation Functions

IntegerRing(F)

Integers(F)

Ring0fIntegers (F)

Given a local field F', construct the ring of integers R of F'. The ring R is the set of
elements of F' of non-negative valuation.

RingOfIntegers(R)

Given a ring R, this function simply returns it, it is provided to support generic
functionality for finite extensions of rings and fields.

FieldOfFractions(R) |

Given a local ring R, construct the field of fractions F' of R. The relative precision
of F'is equal to the precision of R.

SplittingField(f, R)

Given a polynomial f over the integers and a p-adic ring R, compute an extension
S over R such that f splits into linear factors over S. The algorithms uses the
R4-methods as developed by Pauli ([Pau01]).

AbsoluteTotallyRamifiedExtension(R)

Given a tower of ramified extensions over some unramified ring S, compute a more
efficient representation of R, ie. an extension of S that is totally ramified and defined
by a single Eisenstein polynomial. The map returned allows to convert between the
new and old representations.



1272 LOCAL ARITHMETIC FIELDS Part VIII

47.4.6  Other Elementary Constructions

Composite(R, S)

For two p-adic fields that are normal over Q,, compute the compositum of R and
S, ie. the smallest field containing both R and S.

47.4.7  Attributes of Local Rings and Fields

There is only one attribute for local rings and fields that is accessible to the user.

| L‘DefaultPrecision |

Used to retrieve or set the default precision of the local ring or field L. This attribute
is only relevant if L is an unbounded free precision ring, in which case this will
change the precision with which elements are created by default. For bounded
precision structures, the default precision of the ring is equal to the upper bound
on precision; attempting to set this attribute will result in an error in this case.

47.5 Elementary Invariants

These functions return some simple information partially defining a local ring.

Prime (L)

Given a local ring or field L, return the prime p defining the p-adic ring or field
underlying L. This is also the characteristic of the residue class field of L.

InertiaDegree(L)

Return the inertia degree of the local ring or field L over its coefficient ring.

InertiaDegree(X, L)

Return the inertia degree of the local ring or field K relative to its subring L.

AbsoluteInertiaDegree (L)

Return the inertia degree of the local ring or field L over the p-adic ring.

RamificationDegree (L)

RamificationIndex (L) |

Return the ramification degree of the local ring or field L over its coefficient ring.

RamificationDegree(K, L)

RamificationIndex(K, L)

Return the ramification degree of the local ring or field K relative to its subring L.



Ch. 47 p-ADIC RINGS AND THEIR EXTENSIONS 1273

AbsoluteRamificationDegree(L)

AbsoluteRamificationIndex (L)

Return the ramification degree of the local ring or field L over the p-adic ring.

AbsoluteDegree(L)

The degree of L over Z,.

Degree (L)

Return the degree of the local ring or field L over its coefficient ring.

Degree(K, L)

Return the degree of the local ring or field K relative to its subring L.

DefiningPolynomial (L)

Return the minimal polynomial of the generator of L over its coefficient ring. If L
is p-adic, the polynomial x — 1 is returned. For free precision rings and fields, the
coefficients of the defining polynomial are given to the default precision of L.

DefiningMap (L)

Given a free precision local ring or field L, return the map that was used to define
the extension (see Section 47.4.4 for information on defining extension by maps). If
a map was not used, then an error is raised.

HasDefiningMap (L)

Given a free precision local ring or field L, return true if L is defined by a map; if
so, the defining map is also returned.

PrimeRing(L)
PrimeField(L) |
pAdicRing(L)
pAdicField (L)

Given a local ring or field L, return the p-adic ring or field which is a subring of L.

BaseRing(L)

CoefficientRing(L)
BaseField(L) |
CoefficientField(L) |

BaseRing (L)

Given a local ring or field L, return the base ring of L.



1274 LOCAL ARITHMETIC FIELDS Part VIII

ResidueClassField(L) |

Given a local ring or field L, return the residue class field K of L, and a map from
L to K.

ResidueSystem(R)

Given a p-adic ring or field R, compute a set of representatives of the residue class
field of R as elements of R.

UniformizingElement (L)

Given a local ring or field L, return the uniformizing element of L.

Given a local ring or field L, return an element o of L such that if K is L’s base
ring or field, then the powers of « give a basis of L as a vector space over K.

| Precision(L) |

Given a local ring or field L, return the precision with which L has been created.
If L is a local ring this is the maximum absolute precision to which its elements
can be created. If L is a local field this is the maximum relative precision to which
its elements can be created. If L is an unbounded free precision ring or field, then
infinity is returned.

HasPRoot (R) |

Given a local ring R extending Z, for some prime p, decide if R contains a primitive
p-th root of unity.

HasRoot0fUnity(L, n)

Given a local ring L and some positive integer n, decide if L contains a primitive
nth root of unity.

Discriminant (R) |

Compute the discriminant of the local ring R over its coefficient ring. Since R is
defined by either an inertial polynomial or an Eisenstein one, this is equivalent to
computing the discriminant of the defining polynomial.

Discriminant (K, k)

Given p-adic rings K/k, compute the discriminant of K as an extension of k.

AdditiveGroup(R)

The additive group of the p-adic quotient R as an abelian group and the isomorphism
from this group back to R.



Ch. 47 p-ADIC RINGS AND THEIR EXTENSIONS 1275

Example H47E5

We illustrate the functions in this section for rings. Similar constructions can be used for fields.

> Zp := pAdicRing(5, 20);

> I<a> := UnramifiedExtension(Zp, 3);
> R<x> := PolynomialRing(I);

> L<b> := ext<I | x"3 + 5*a*x"2 + 5>;
> Prime(L);

5

> InertiaDegree(L);

1

The inertia degree of L is returned as 1 because L has been defined as a totally ramified extension
of I. However, the inertia degree of L over Z, is 3, because [ itself is an unramified extension of
Zp.

> InertiaDegree(L, Zp);

3

> Degree(L);

3

> Degree(L, Zp);

9

> DefiningPolynomial(L);

X"3 + b*a*xx"2 + 5

> P<y> := PolynomialRing(Zp);

> DefiningPolynomial(I);

y 3 + 3%y + 3

> BaseRing(L);

Unramified extension defined by the polynomial x°3 + 3*x + 3
over 5-adic ring mod 5720

> PrimeRing(L) ;

5-adic ring mod 5720

> PrimeRing(I);

5-adic ring mod 5720

> ResidueClassField(L);

Finite field of size 573

Mapping from: RngPad: L to GF(573)
> ResidueClassField(I);

Finite field of size 573

Mapping from: RngPad: I to GF(573)

Here, we see that the residue class fields of I and L are identical. This is due to the fact that L
is a totally ramified extension of I.

> UniformizingElement (L) ;
b

> Precision(L);

60

> Precision(I);

20



1276 LOCAL ARITHMETIC FIELDS Part VIII

> R<a> := ext<pAdicRing(2) | 2>;

> DefiningPolynomial(R);

(1 +0(2720))*$.172 + (1 + 0(2720))*$.1 + 1 + 0(2720)
> Precision(R);

Infinity

47.6 Operations on Structures

AssignNames(~L, S)

AssignNames(~L, S)

Assign a name to the generator of L. The sequence must have only one element,
which must be a string. This element is assigned to be the name of the generator
when L is considered as a linear associative algebra over its base ring.

| Characteristic(L) |

| Characteristic(L) |

| Characteristic(L) |

The characteristic of the local ring or field L.

The number of elements in the local ring or field L. The cardinality is finite only if
L is a quotient ring or a bounded free precision ring.

Iterating over the elements of a local ring is possible if it is bounded, but it will
take time in proportion to the cardinality of L. It is recommended only in the case
of “small” local rings (i.e., rings for which the precision is be very small).

Name (L, k)

Given a local ring or field L and an integer k, return the generator of L if k is 1;
otherwise, raise an error.



Ch. 47 p-ADIC RINGS AND THEIR EXTENSIONS 1277

ChangePrecision(L, k)

ChangePrecision(~L, k)

ChangePrecision(L, k)

ChangePrecision(~L, k)

ChangePrecision(L, k)

ChangePrecision(~L, k)

ChangePrecision(L, k)

ChangePrecision(~L, k)

ChangePrecision(L, k)

ChangePrecision(~L, k)

ChangePrecision(L, k)

ChangePrecision(~L, k)

Given a local ring or field L and a non-negative single precision integer k, change
the maximum precision with which elements can be created to be k. Depending
on how L and its subrings have been constructed, there may be an upper bound
(possibly infinite for free structures) on the precision to which L can be changed.
For instance, the precision to which a defining polynomial has been given places a
bound on the precision of the extension — no defining polynomial can be expanded
beyond the precision with which it was originally specified.

L eqK

Given local rings or fields L and K, return whether or not L and K are the same
object.

Example H47E6

Given local rings or fields L and K, return whether or not L and K are different
objects.

> Zp := pAdicRing(5, 20);

> I<a> := UnramifiedExtension(Zp, 3);
> R<x> := PolynomialRing(I);

> L<b> := ext<I | x"3 + 5*a*xx”~2 + 5>;
> ChangePrecision(Zp, Infinity());
b-adic ring

> L;

Totally ramified extension defined by the polynomial x"3 + b*a*x"2 + 5

over Unramified extension defined by the polynomial x°3 + 3*x + 3
over 5-adic ring mod 5720



1278 LOCAL ARITHMETIC FIELDS Part VIII

> ChangePrecision("L, 50);

> L;

Totally ramified extension defined by the polynomial x73 + 5%$.1*x"2 + 5
over Unramified extension defined by the polynomial x°3 + 3*x + 3

over 5-adic ring mod 5717

> #L;

8758115402030106693273309895561975820501\
6371367282235734816767743111942667866287\

592914886772632598876953125

> AssignNames ("L, ["t"1);

> L.1;

t

> b;

b

> L eq ChangePrecision(L, 10);

false

Note that b is an element of the original ring L with precision 60 which is why it retains its print
name.

47.6.1 Ramification Predicates

| IsRamified(R) |
| IsUnramified(R) |
IsTotallyRamified(R)

Return whether the local ring or field extension R is ramified, unramified or totally
ramified.

IsTamelyRamified(R)

IsWildlyRamified(R)

Return whether the local ring or field extension R is tamely ramified (the prime
does not divide the ramification degee) or wildly ramified (the prime does divide
the ramification degree).



Ch. 47 p-ADIC RINGS AND THEIR EXTENSIONS 1279

47.7 Element Constructions and Conversions

Local ring elements are implemented using a balanced mod representation. This allows
small negative elements x to be represented as z rather than p* — = where k is a p-adic
precision.

47.7.1 Constructions

To simplify the creation of elements in a local ring, various coercions are provided. The
most obvious is to regard the integer ring or rational field as embedded in the p-adic ring
or field. But there is a range of coercions available, including that of elements from the
residue class field.

To create an element of a local field not lying in the local ring, constructors are provided
that create an element coercible into the ring, and which increase or decrease this element’s
valuation in the field.

Given a local ring or field L, create the additive identity of L. Note that if L is
an unbounded precision structure, this will only be the zero element to the default
precision of the ring, and hence only an approximation to the additive identity of L.

Given a local ring or field L, create the multiplicative identity of L. Note that if L
is an unbounded precision structure, this will only be the one element to the default
precision of the ring, and hence only an approximation to the multiplicative identity
of L.

Random (L)

Given a local ring or field L, return a random element of L, which must be a quotient
ring or bounded precision ring. The element will have the default precision of the
ring.

Representative (L)

Return an element of the local ring or field L.

elt< L | u >|

L!u

Coerce the object u into the local ring or field L. The resulting element will have
as much precision as possible. The element u is allowed to be one of the following:

i)  An integer.

ii)  An element of Z/p™Z; (where m is a precision).

(

(

(ili)) An element of the residue class field of L.

(iv)  An element of a local ring or field with something in common with L.
(

v) A rational number. If L is a ring then w must not have valuation in the
denominator.



1280 LOCAL ARITHMETIC FIELDS

Part VIII

(vi)  An element of a valuation ring over the rationals with the same prime as L.

(vii) A sequence s. In this case, the sequence s is coerced to a sequence t over the

base ring or field of L. This sequence is coerced to Zf:l tli] L1071

elt< L | u, r >

Create an element of the local ring or field L by coercing u into L and returning

with it pre