[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: IsSquarefree  ..  IsTorsionUnit


IsSquarefree

   IsSquarefree(n) : RngIntElt -> BoolElt

IsStandard

   IsStandard(t) : Tbl -> BoolElt

IsStandardAffinePatch

   IsStandardAffinePatch(A) : Aff -> BoolElt, RngIntElt

IsStandardParabolicSubgroup

   IsStandardParabolicSubgroup(W, H) : GrpPermCox, GrpPermCox -> BoolElt

IsStarAlgebra

   IsStarAlgebra(A) : AlgMat -> BoolElt

IsSteiner

   IsSteiner(D, t) : Dsgn -> BoolElt

IsStrictlyConvex

   IsStrictlyConvex(C) : TorCon -> BoolElt

IsStronglyAG

   IsStronglyAG(C) : Code -> BoolElt

IsStronglyConnected

   IsStronglyConnected(G) : GrphDir -> BoolElt
   IsStronglyConnected(G) : GrphMultDir -> BoolElt

IsSubcanonicalCurve

   IsSubcanonicalCurve(g,d,Q) : RngIntElt,RngIntElt,SeqEnum -> BoolElt,GRCrvK

IsSubfield

   IsSubfield(F, L) : FldAlg, FldAlg -> BoolElt, Map
   IsSubfield(K, L) : FldFun, FldFun -> BoolElt, Map
   IsSubfield(F, L) : FldNum, FldNum -> BoolElt, Map
   FldFunG_IsSubfield (Example H42E17)

IsSubgraph

   IsSubgraph(G, H) : Grph, Grph -> BoolElt
   IsSubgraph(G, H) : GrphMultUnd, GrphMultUnd -> BoolElt

IsSublattice

   IsSublattice(L) : TorLat -> BoolElt

IsSubmodule

   IsSubmodule(M, N) : ModDed, ModDed -> BoolElt, Map

IsSubnormal

   IsSubnormal(G, H) : GrpFin, GrpFin -> BoolElt
   IsSubnormal(G, H) : GrpMat, GrpMat -> BoolElt
   IsSubnormal(G, H) : GrpPC, GrpPC -> BoolElt
   IsSubnormal(G, H) : GrpPerm, GrpPerm -> BoolElt

IsSubscheme

   IsSubscheme(C,D) : Sch,Sch -> BoolElt
   IsSubscheme(X, Y) : Sch,Sch -> BoolElt

IsSubsequence

   IsSubsequence(S, T) : SeqEnum, SeqEnum -> BoolElt

IsSubsystem

   IsSubsystem(L,K) : LinearSys,LinearSys -> BoolElt
   K subset L : LinearSys,LinearSys -> BoolElt

IsSUnit

   IsSUnit(a, S) : FldFunElt, SetEnum[PlcFunElt] -> BoolElt

IsSUnitWithPreimage

   IsSUnitWithPreimage(a, S) : FldFunElt, SetEnum[PlcFunElt] -> BoolElt, GrpAbElt

IsSupercuspidal

   IsSupercuspidal(pi) : RepLoc -> BoolElt

IsSuperlattice

   IsSuperlattice(L) : TorLat -> BoolElt

IsSupersingular

   IsSupersingular(E : parameters) : CrvEll -> BoolElt

IsSuperSummitRepresentative

   IsSuperSummitRepresentative(u: parameters) : GrpBrdElt -> BoolElt

IsSupportingHyperplane

   IsSupportingHyperplane(v,h,P) : TorLatElt,FldRatElt,TorPol -> BoolElt,RngIntElt

IsSurjective

   IsSurjective(f) : Map -> [ BoolElt ]
   IsSurjective(f) : MapChn -> BoolElt
   IsSurjective(phi) : MapModAbVar -> BoolElt
   IsSurjective(a) : ModMatRngElt -> BoolElt
   IsSurjective(f) : ModMPolHom -> BoolElt

IsSuzukiGroup

   IsSuzukiGroup(G) : GrpMat -> BoolElt, RngIntElt

IsSymmetric

   IsSymmetric(a) : AlgMatElt -> BoolElt
   IsSymmetric(D) : Dsgn -> BoolElt
   IsSymmetric(G) : GrphUnd -> BoolElt
   IsSymmetric(G) : GrpPerm -> BoolElt
   IsSymmetric(A) : Mtrx -> BoolElt
   IsSymmetric(A) : MtrxSprs -> BoolElt
   IsSymmetric(f) : RngMPolElt -> BoolElt, RngMPolElt
   IsSymmetric(f) : RngMPolElt -> BoolElt, RngMPolElt
   Ideal_IsSymmetric (Example H106E18)
   RngInvar_IsSymmetric (Example H110E24)

IsSymplecticGroup

   IsSymplecticGroup(G) : GrpMat -> BoolElt

IsSymplecticMatrix

   IsSymplecticMatrix(A) : Mtrx -> BoolElt

IsSymplecticSelfDual

   IsSymplecticSelfDual(C) : CodeAdd -> BoolElt

IsSymplecticSelfOrthogonal

   IsSymplecticSelfOrthogonal(C) : CodeAdd -> BoolElt

IsSymplecticSpace

   IsSymplecticSpace(W) : ModTupFld -> BoolElt

IsTamelyRamified

   IsTamelyRamified(K) : FldAlg -> BoolElt
   IsTamelyRamified(O) : RngFunOrd -> BoolElt
   IsTamelyRamified(P) : RngFunOrdIdl -> BoolElt
   IsTamelyRamified(P, O) : RngFunOrdIdl, RngFunOrd -> BoolElt
   IsTamelyRamified(L) : RngLocA -> BoolElt
   IsTamelyRamified(O) : RngOrd -> BoolElt
   IsTamelyRamified(P) : RngOrdIdl -> BoolElt
   IsTamelyRamified(P, O) : RngOrdIdl, RngOrd -> BoolElt
   IsTamelyRamified(R) : RngPad -> BoolElt

IsTangent

   IsTangent(C,D,p) : Sch,Sch,Pt -> BoolElt

IsTensor

   IsTensor(G: parameters) : GrpMat -> BoolElt

IsTensorInduced

   IsTensorInduced(G : parameters) : GrpMat -> BoolElt

IsTerminal

   IsTerminal(C) : TorCon -> BoolElt
   IsTerminal(F) : TorFan -> BoolElt
   IsTerminal(X) : TorVar -> BoolElt

IsTerminalThreefold

   IsTerminalThreefold(B) : GRBskt -> BoolElt
   IsTerminalThreefold(p) : GRPtS -> BoolElt

IsThick

   IsThick(X) : CosetGeom -> BoolElt

IsThin

   IsThin(X) : CosetGeom -> BoolElt

IsTorsionUnit

   IsTorsionUnit(w) : RngOrdElt -> BoolElt

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012