[____] [____] [_____] [____] [__] [Index] [Root]

Subindex: introduction-guide  ..  invariant


introduction-guide

   Guide for the Reader (LIE ALGEBRAS)

Intseq

   Intseq(n, b) : RngIntElt, RngIntElt -> [RngIntElt]
   IntegerToSequence(n, b) : RngIntElt, RngIntElt -> [RngIntElt]

inv_cub

   Invariants (ALGEBRAIC SURFACES)
   AlgSrf_inv_cub (Example H116E26)

invar

   Accessing Properties of the Cohomology Module (COHOMOLOGY AND EXTENSIONS)
   Class Invariants (BINARY QUADRATIC FORMS)
   Elliptic and Modular Invariants (BINARY QUADRATIC FORMS)
   General Structure Invariants (ALGEBRAIC FUNCTION FIELDS)
   Invariants of an Algebra (ALGEBRAS)
   Invariants of Codes over Z4 (LINEAR CODES OVER FINITE RINGS)
   Local Invariants (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
   Local Invariants (ELLIPTIC CURVES OVER Q AND NUMBER FIELDS)
   FldFunG_invar (Example H42E11)
   Plane_invar (Example H141E6)

invar-non-simple

   FldFunG_invar-non-simple (Example H42E12)

InvarField1

   Assoc_InvarField1 (Example H13E1)
   RngInvar_InvarField1 (Example H110E22)

InvarField2

   RngInvar_InvarField2 (Example H110E23)

Invariant

   ArfInvariant(V) : ModTupFld -> RngIntElt
   DicksonInvariant(V, f) : ModTupFld, Mtrx -> RngIntElt
   EichlerInvariant(O, p) : AlgAssVOrd , RngOrdIdl -> RngIntElt
   EllipticCurveFromjInvariant(j) : RngElt -> CrvEll
   GaloisGroupInvariant(G, H) : GrpPerm, GrpPerm -> RngSLPolElt
   HadamardInvariant(H) : AlgMatElt -> [ RngIntElt ]
   HasseWittInvariant(C) : Crv[FldFin] -> RngIntElt
   HasseWittInvariant(F) : FldFunG -> RngIntElt
   HasseWittInvariant(F) : FldFunG -> RngIntElt
   InvariantBilinearForms(G) : GrpMat -> SeqEnum[AlgMatElt], SeqEnum[AlgMatElt]
   InvariantFactors(a) : AlgMatElt -> [ AlgPolElt ]
   InvariantFactors(A) : Mtrx -> [ RngUPolElt ]
   InvariantField(G, K) : GrpPerm, Fld -> FldInvar
   InvariantFormBases(G) : GrpMat -> SeqEnum[AlgMatElt], SeqEnum[AlgMatElt], SeqEnum[AlgMatElt], SeqEnum[AlgMatElt]
   InvariantForms(G) : GrpMat -> SeqEnum
   InvariantForms(G) : GrpMat -> [ AlgMatElt ]
   InvariantForms(G, n) : GrpMat, RngIntElt -> [ AlgMatElt ]
   InvariantForms(L) : Lat -> [ AlgMatElt ]
   InvariantForms(L, n) : Lat, RngIntElt -> [ AlgMatElt ]
   InvariantQuadraticForms(G) : GrpMat -> SeqEnum[AlgMatElt]
   InvariantRing(G) : GrpMat -> RngInvar
   InvariantRing(I, A) : RngMPol, Mtrx -> RngInvar
   InvariantSesquilinearForms(G) : GrpMat -> SeqEnum[AlgMatElt]
   IsInvariant(f, G) : RngMPolElt, Grp -> BoolElt
   IsInvariant(f, g) : RngMPolElt, GrpElt -> BoolElt
   IsInvariant(F, p) : RngSLPolElt, GrpPermElt -> BoolElt
   NumberOfInvariantForms(G) : GrpMat -> RngIntElt, RngIntElt
   NumberOfInvariantForms(L) : Lat -> RngIntElt, RngIntElt
   PrimaryInvariantFactors(a) : AlgMatElt -> [ <RngUPolElt, RngIntElt ]
   PrimaryInvariantFactors(A) : Mtrx -> [ <RngUPolElt, RngIntElt> ]
   RelativeInvariant(G, H) : GrpPerm, GrpPerm -> RngSLPolElt
   SemiInvariantBilinearForms(G) : GrpMat -> SeqEnum
   SemiInvariantQuadraticForms(G) : GrpMat -> SeqEnum
   SemiInvariantSesquilinearForms(G) : GrpMat -> SeqEnum
   WittInvariant(f, p) : RngMPolElt, RngIntElt -> RngIntElt

invariant

   Elementary Invariants (INTEGER RESIDUE CLASS RINGS)
   Elementary Invariants of a Graph (GRAPHS)
   Elementary Invariants of a Design (INCIDENCE STRUCTURES AND DESIGNS)
   Elementary Invariants of an Incidence Structure (INCIDENCE STRUCTURES AND DESIGNS)
   Invariant Fields (INVARIANT THEORY)
   Invariant Rings of Finite Groups (INVARIANT THEORY)
   Invariant Rings of Linear Algebraic Groups (INVARIANT THEORY)
   INVARIANT THEORY
   Invariants (CYCLOTOMIC FIELDS)
   Invariants (NUMBER FIELDS)
   Invariants (ORDERS AND ALGEBRAIC FIELDS)
   Invariants (ORDERS AND ALGEBRAIC FIELDS)
   Invariants (POWER, LAURENT AND PUISEUX SERIES)
   Invariants (RATIONAL FUNCTION FIELDS)
   Invariants of an Abelian Group (ABELIAN GROUPS)
   Matrix Invariants (MATRIX GROUPS OVER GENERAL RINGS)
   Numerical Invariants (FINITE FIELDS)
   Numerical Invariants (FINITELY PRESENTED ALGEBRAS)
   Numerical Invariants (GALOIS RINGS)
   Numerical Invariants (INTRODUCTION TO RINGS [BASIC RINGS])
   Numerical Invariants (MULTIVARIATE POLYNOMIAL RINGS)
   Numerical Invariants (RATIONAL FIELD)
   Numerical Invariants (REAL AND COMPLEX FIELDS)
   Numerical Invariants (RING OF INTEGERS)
   Numerical Invariants (UNIVARIATE POLYNOMIAL RINGS)
   Numerical Invariants (VALUATION RINGS)
   Numerical Invariants of a Plane (FINITE PLANES)
   The Invariants of a Matrix Algebra (MATRIX ALGEBRAS)

[____] [____] [_____] [____] [__] [Index] [Root]

Version: V2.19 of Mon Dec 17 14:40:36 EST 2012