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Chapter 119

RATIONAL CURVES AND CONICS

119.1 Introduction

This chapter describes the specialised categories of nonsingular plane curves of genus zero:
The rational plane curves and conics. Rational curves and conics in Magma are nonsin-
gular plane curves of degree 1 and 2, respectively. The central functionality for conics
concerns the existence of points over the rationals. If a point is known to exist then a
conic can be parametrised by a projective line or a rational curve. In addition, several
algorithms are implemented to convert conics to standard Legendre, or diagonal, models
and, for curves over Q, to a reduced Legendre model or a minimal model. A rational curve
in Magma is a linearly embedded image of the projective line to which the full machinery
of algebraic plane curves can be applied. The special category of conics is called CrvCon
and that of rational curves is CrvRat.

The central algorithms of this chapter deal with the classification and reduction of genus
zero curves to one of the standard models to which efficient algorithms can be applied.
These special types serve to classify all curves up to birational isomorphism. Since the
canonical divisor KC of a genus zero curve is of degree −2, a basis for the Riemann–
Roch space of the effective divisor −KC has dimension 3 and gives an anti-canonical
embedding in the projective plane. The homogeneous quadratic relations between the
functions define a conic model for any genus zero curve. If the curve has a rational point
then a similar construction with the divisor of this point gives a birational isomorphism
with the projective line. For conics over the rationals, efficient algorithms of Simon [Sim05]
allow one to first find a point, if one exists, and then to reduce to simpler models. The
existence of a point is easily determined by local conditions, and this local data is carried by
the data of the ramified or bad primes of reduction; if such a point exists then the existence
can be certified by a certificate. Simon’s algorithm in fact parametrises the curve (by the
projective line) which gives a birational isomorphism with the curve.

Not every curve of genus zero can be “trivialised” by reduction to a rational curve in
this way; the obstruction to having a rational point, and therefore to being parametrised
by a projective line, is measured by the primes of bad reduction and also by the automor-
phism group, both of which are closely associated to an isomorphism class of quaternion
algebras. The final algorithms of this chapter make use of this connection to compute the
automorphism group of a curve and to find isomorphisms between conics.
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119.2 Rational Curves and Conics
The general tools for constructing and analysing curves are described in Chapter 114. We
do not repeat them here, but rather give some examples in Section 119.2.3 to demonstrate
those basics that the user will need. In this section we describe the main parametrisation
function for rational curves and functions which enable type change from a curve of genus
zero to a rational curve.

119.2.1 Rational Curve and Conic Creation
Rational curves and conics are the specialised types for nonsingular plane curves of genus
zero defined by polynomials of degree 1 and 2, respectively. The condition of nonsingularity
is equivalent to that of absolute irreducibility for conics, and imposes no condition on a
linear equation in the plane.

Conic(coeffs)

Ambient Sch

This creates a conic curve with the given sequence of coefficients (which should have
length 3 or 6). A sequence [a, b, c] designates the conic aX2 + bY 2 + cZ2, while a
sequence [a, b, c, d, e, f ] designates the conic aX2 + bY 2 + cZ2 +dXY +eY Z+fXZ.

The optional parameter Ambient may be used to give the specific ambient pro-
jective space in which to create the conic; otherwise a new ambient will be created
for it to lie in.

Conic(M)

Ambient Sch

This creates a conic curve associated to M , which must be a symmetric 3×3 matrix.
Explicitly, the equation of the conic is [X,Y, Z]M [X,Y, Z]tr.

The optional parameter Ambient may be used to give the specific ambient pro-
jective space in which to create the conic; otherwise a new ambient will be created
for it to lie in.

Conic(X, f)

Returns the conic defined by the polynomial f in the projective plane X.

IsConic(S)

Returns true if and only if the scheme S is a nonsingular plane curve of degree
2, in which case it also returns a curve (of type CrvCon) with the same defining
polynomial as S.

RationalCurve(X, f)

Returns the rational curve defined by the linear polynomial f in the projective plane
X.

IsRationalCurve(S)

Returns true if and only if the scheme S is defined by a linear polynomial in some
projective plane P2; if so, it also returns a curve of type CrvRat with the same
defining polynomial as S in P2.
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Example H119E1

In the following example we create a degree two curve over the rational field, then create a new
curve of conic type using IsConic.

> P2<x,y,z> := ProjectivePlane(Rationals());

> C0 := Curve(P2, x^2 + 3*x*y + 2*y^2 - z^2);

> C0;

Curve over Rational Field defined by

x^2 + 3*x*y + 2*x^2 - z^2

> bool, C1 := IsConic(C0);

Clearly this is a nonsingular degree two curve, so bool must be true and we have created a new
curve C1 in the same ambient space P2 but of conic type.

> C1;

Conic over Rational Field defined by

x^2 + 3*x*y + 2*y^2 - z^2

> AmbientSpace(C0) eq AmbientSpace(C1);

true

> DefiningIdeal(C0) eq DefiningIdeal(C1);

true

> C0 eq C1;

false

> Type(C0);

CrvPln

> Type(C1);

CrvCon

The equality test return false because the two objects are of different Magma type.

119.2.2 Access Functions
The basic access functions for rational curves and conics are inherited from the general
machinery for plane curves and hypersurface schemes.

DefiningPolynomial(C)

Returns the defining polynomial of the conic or rational curve C.

DefiningIdeal(C)

Returns the defining ideal of the conic or rational curve C.

BaseRing(C) BaseField(C)

Returns the base ring of the curve C.

Category(C) Type(C)

Returns the category of rational curves CrvRat or of conics CrvCon; these are special
subtypes of planes curves (type CrvPln), which are themselves subtypes of general
curves (type Crv).
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119.2.3 Rational Curve and Conic Examples
These examples illustrate how to obtain standard models of a curve of genus zero, either
as a conic or as a parametrisation by the projective line.

Example H119E2

We begin with an example of a singular curve of geometric genus zero.

> P2<x,y,z> := ProjectivePlane(FiniteField(71));

> C := Curve(P2, (x^3 + y^2*z)^2 - x^5*z);

> C;

Curve over GF(71) defined by

x^6 + 70*x^5*z + 2*x^3*y^2*z + y^4*z^2

> ArithmeticGenus(C);

10

> Genus(C);

0

> #RationalPoints(C);

73

> Z := SingularSubscheme(C);

> Degree(Z);

18

We see that C is highly singular and that its desingularisation has genus zero. At most 18 of 73
points are singular; note that a nonsingular curve of genus zero would have 72 points. We now
investigate the source of the extra points.

> cmps := IrreducibleComponents(Z);

> [ Degree(X) : X in cmps ];

[ 11, 7 ]

> [ Degree(ReducedSubscheme(X)) : X in cmps ];

[ 1, 1 ]

> [ RationalPoints(X) : X in cmps ];

[

{@ (0 : 0 : 1) @},

{@ (0 : 1 : 0) @}

]

Since the only singular rational points on C are (0 : 0 : 1) and (0 : 1 : 0), the “obvious” point
(1 : 0 : 1) must be nonsingular and we can use it to obtain a rational parametrisation of the curve
as explained in Section 119.6.

> P1<u,v> := ProjectiveSpace(FiniteField(71), 1);

> p := C![1, 0, 1];

> m := Parametrization(C, Place(p), Curve(P1));

> S1 := {@ m(q) : q in RationalPoints(P1) @};

> #S1;

72

> [ q : q in RationalPoints(C) | q notin S1 ];
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[ (0 : 1 : 0) ]

We conclude that the extra point comes from a singularity whose resolution does not have any
degree one places over it (see Section 114.9 of Chapter 114 for background on places of curves).
We can verify this explicitly.

> [ Degree(p) : p in Places(C![0, 1, 0]) ];

[ 2 ]

Example H119E3

In this example we start by defining a projective curve and we check that it is rational; that is,
that it has genus zero.

> P2<x,y,z> := ProjectiveSpace(Rationals(), 2);

> C0 := Curve(P2, x^2 - 54321*x*y + y^2 - 97531*z^2);

> IsNonsingular(C0);

true

The curve C0 is defined as a degree 2 curve over the rationals. By making a preliminary type
change to the type of conics, CrvCon, we can test whether there exists a rational point over Q and
use efficient algorithms of Section 119.5.1 for finding rational points on curves in conic form. The
existence of a point (defined over the base field) is equivalent to the existence of a parametrisation
(defined over the base field) of the curve by the projective line.

> bool, C1 := IsConic(C0);

> bool;

true

> C1;

Conic over Rational Field defined by

x^2 - 54321*x*y + y^2 - 97531*z^2

> HasRationalPoint(C1);

true (398469/162001 : -118246/162001 : 1)

> RationalPoint(C1);

(398469/162001 : -118246/162001 : 1)

The parametrisation intrinsic requires a one-dimensional ambient space as one of the arguments.
This space will be used as the domain of the parametrisation map.

> P1<u,v> := ProjectiveSpace(Rationals(), 1);

> phi := Parametrization(C1, Curve(P1));

> phi;

Mapping from: Prj: P1 to CrvCon: C1

with equations :

398469*u^2 + 944072*u*v + 559185*v^2

-118246*u^2 - 200850*u*v - 85289*v^2

162001*u^2 + 329499*u*v + 162991*v^2

and inverse

-4634102139*x + 30375658963*y + 31793350442*z

5456130497*x - 25641668406*y - 32136366969*z

and alternative inverse equations :
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5456130497*x - 25641668406*y - 32136366969*z

-6424037904*x + 21645471041*y + 31600239062*z

The defining functions for the parametrisation may look large, but they are defined simply by a
linear change of variables from the 2-uple embedding of the projective line in the projective plane.
We now do a naive search for rational points on the curve.

> time RationalPoints(C1 : Bound := 100000);

{@ @}

Time: 2.420

Although there were no points with small coefficients, the parametrisation provides us with any
number of rational points:

> phi(P1![0, 1]);

(559185/162991 : -85289/162991 : 1)

> phi(P1![1, 1]);

(1901726/654491 : -404385/654491 : 1)

> phi(P1![1, 0]);

(398469/162001 : -118246/162001 : 1)

Example H119E4

The first part of this example illustrates how to obtain diagonal equations for conics.

> P2<x,y,z> := ProjectiveSpace(RationalField(), 2);

> f := 1134*x^2 - 28523*x*y - 541003*x*z - 953*y^2 - 3347*y*z - 245*z^2;

> C := Conic(P2, f);

> LegendrePolynomial(C);

1134*x^2 - 927480838158*y^2 - 186042605936505203884941*z^2

> ReducedLegendrePolynomial(C);

817884337*x^2 - y^2 - 353839285266278*z^2

Now we demonstrate how to extend the base field of the conic; that is, to create the conic with the
same coefficients but in a larger field. This can be done by calling BaseExtend; in this instance,
we move from the rationals to a particular number field.

(Note the assignment of names to C in order to make the printing nicer.)

> P<t> := PolynomialRing(RationalField());

> K := NumberField(t^2 - t + 723);

> C<u,v,w> := BaseExtend(C, K);

> C;

Conic over K defined by

1134*u^2 - 28523*u*v - 953*v^2 - 541003*u*w - 3347*v*w - 245*w^2
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119.3 Conics

In this section we discuss the creation and basic attributes of conics, particularly the stan-
dard models for them. In subsequent sections we treat the local-global theory and existence
of points on conics, the efficient algorithms for finding rational points, parametrisations and
isomorphisms of genus zero curves with standard models, and finally the automorphism
group of conics.

119.3.1 Elementary Invariants

Discriminant(C)

Given a conic C, returns the discriminant of C. The discriminant of a conic with
defining equation

a11x
2 + a12xy + a13xz + a22y

2 + a23yz + a33z
2 = 0

is defined to be the value of the degree 3 form

4a11a22a33 − a11a
2
23 − a2

12a33 + a12a13a23 − a2
13a22.

Over any ring in which 2 is invertible this is just 1/2 times the determinant of the
matrix 


2a11 a12 a13

a12 2a22 a23

a13 a23 2a33


 .

119.3.2 Alternative Defining Polynomials
The functions described here provide access to basic information stored for a conic C.
In addition to the defining polynomial, curves over the rationals compute and store a
diagonalised Legendre model for the curve, whose defining polynomial can be accessed.

LegendrePolynomial(C)

Returns the Legendre polynomial of the conic C, a diagonalised defining polynomial
of the form ax2+by2+cz2. Once computed, this polynomial is stored as an attribute.
The transformation matrix defining the isomorphism from C to the Legendre model
is returned as the second value.

ReducedLegendrePolynomial(C)

Returns the reduced Legendre polynomial of the conic C, which must be defined over
Q or Z; that is, a diagonalised integral polynomial whose coefficients are pairwise
coprime and square-free. The transformation matrix defining the isomorphism from
C to this reduced Legendre model is returned as the second value.
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119.3.3 Alternative Models

LegendreModel(C)

Returns the Legendre model of the conic C — an isomorphic curve of the form

ax2 + by2 + cz2 = 0,

together with an isomorphism to this model.

ReducedLegendreModel(C)

Returns the reduced Legendre model of the conic C, which must be defined over Q
or Z; that is, a curve in the diagonal form ax2 + by2 + cz2 = 0 whose coefficients
are pairwise coprime and square-free. The isomorphism from C to this model is
returned as a second value.

119.3.4 Other Functions on Conics

MinimalModel(C)

Returns a conic, the matrix of whose defining polynomial has smaller discriminant
than that of the conic C (where possible). The algorithm used is the minimisation
stage of Simon’s algorithm [Sim05], as used in HasRationalPoint. A map from the
conic to C is also returned.

Example H119E5

In the following example we are able to reduce the conic at 13.

> P2<x,y,z> := ProjectiveSpace(RationalField(), 2);

> f := 123*x^2 + 974*x*y - 417*x*z + 654*y^2 + 113*y*z - 65*z^2;

> C := Conic(P2, f);

> BadPrimes(C);

[ 491, 18869 ]

> [ x[1] : x in Factorization(Integers()!Discriminant(C)) ];

[ 13, 491, 18869 ]

> MinimalModel(C);

Conic over Rational Field defined by

-9*x^2 + 4*x*y + 6*x*z + 564*y^2 + 178*y*z + 1837*z^2

Mapping from: Conic over Rational Field defined by

-9*x^2 + 4*x*y + 6*x*z + 564*y^2 + 178*y*z + 1837*z^2 to CrvCon: C

with equations :

x + 6*y - 10*z

-x - 8*y + 4*z

-8*x - 50*y + 61*z

and inverse

-144/13*x + 67/13*y - 28/13*z

29/26*x - 19/26*y + 3/13*z

-7/13*x + 1/13*y - 1/13*z
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119.4 Local-Global Correspondence

The Hasse–Minkowski principle for quadratic forms implies that a conic has a point over
a number field if and only if it has a point over its completion at every finite and infinite
prime. This provides an effective set of conditions for determining whether a conic has
a point: Only the finite number of primes dividing the discriminant of the curve need to
be checked, and by Hensel’s lemma it is only necessary to check this condition to finite
precision. The theory holds over any global field (a number field or the function field of a
curve over a finite field) but the algorithms implemented at present only treat the field Q.

119.4.1 Local Conditions for Conics
We say that p is a ramified or bad prime for a conic C if there exists no p-integral model
for C with nonsingular reduction. Every such prime is a divisor of the coefficients of the
Legendre polynomial. However, in general it is not possible to have a Legendre model
whose coefficients are divisible only by the ramified primes. We use the term ramified or
bad prime for a conic to refer to the local properties of C which are independent of the
models.

BadPrimes(C)

Given a conic C over the rationals, returns the sequence of the finite ramified primes
of C: Those at which C has intrinsic locally singular reduction. This uses quaternion
algebras.
N.B. Although the infinite prime is not included, the data of whether or not C/Q
is ramified at infinity is carried by the length of this sequence. The number of bad
primes, including infinity, must be even so the parity of the sequence length specifies
the ramification information at infinity.

119.4.2 Norm Residue Symbol
Hilbert’s norm residue symbol logically pertains to the theory of quadratic forms and
lattices, and to that of quadratic fields and their norm equations. We express it here for
its relevance to determining conditions for the existence of local points on conics over Q.
The norm residue symbol gives a precise condition for a quadratic form to represent zero
over Qp, or more generally over any local field; this is equivalent to the condition that a
conic has a point over that field.

An explicit treatment of the properties and theory of the norm residue symbol can be
found in Cassels [Cas78]; the Hilbert symbol is treated by Lam [Lam73].

NormResidueSymbol(a, b, p)

Given two rational numbers or integers a and b, and a prime p, returns 1 if the
quadratic form ax2 + by2 − z2 represents zero over Qp and returns −1 otherwise.



3914 ARITHMETIC GEOMETRY Part XVII

HilbertSymbol(a, b, p : parameters)

Al MonStgElt Default : "NormResidueSymbol"

Computes the Hilbert symbol (a, b)p, where a and b are elements of a number field
and p is either a prime number (if a, b ∈ Q) or a prime ideal. For a, b ∈ Q, by default
Magma uses NormResidueSymbol to compute the Hilbert symbol; one may insist
on instead using the same algorithm as for number fields by setting the optional
argument Al to "Evaluate".

Example H119E6

In the following example we show how the norm residue symbols can be used to determine the
bad primes of a conic.

> P2<x,y,z> := ProjectiveSpace(RationalField(), 2);

> a := 234;

> b := -33709;

> c := 127;

> C := Conic(P2, a*x^2 + b*y^2 + c*z^2);

> HasRationalPoint(C);

false

> fac := Factorization(Integers()!Discriminant(C));

> fac;

[ <2, 3>, <3, 2>, <13, 2>, <127, 1>, <2593, 1> ]

So we only need to test the primes 2, 3, 13, 127 and 2593. By scaling the defining polynomial of
the curve ax2 + by2 + cz2 = 0 by −1/c, we obtain the quadratic form −a/cx2 − b/cy2 − z2; this
means that we want to check the Hilbert symbols for the coefficient pair (−a/c,−b/c).

> [ NormResidueSymbol(-a/c, -b/c, p[1]) : p in fac ];

[ -1, 1, 1, -1, 1 ];

The norm residue symbol indicates that only 2 and 127 have no local p-adic solutions, which
confirms the bad primes as reported by Magma:

> BadPrimes(C);

[ 2, 127 ]
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119.5 Rational Points on Conics

This section contains functions for deciding solubility and finding points on conics over the
following base fields: the rationals, finite fields, number fields, and rational function fields
in odd characteristic.

A point on a conic C is given as a point in the pointset C(K) where K is the base ring
of the conic, unless that base ring is the integers in which case the returned point belongs
to the pointset C(Q).

Over the rationals (or integers), the algorithm used to find rational points is due to
D. Simon [Sim05]. Simon’s algorithm works with the symmetric matrix of the defining
polynomial of the conic. It computes transformations reducing the determinant of the
matrix by each of the primes which divide the discriminant of the conic until it has absolute
value 1. After this it does an indefinite LLL which reduces the matrix to a unimodular
integral diagonal matrix, which is equivalent to the conic x2 + y2 − z2 = 0, and then the
Pythagorean parametrisation of this can be pulled back to the original conic.

The existence of a point on a conic C/Q is determined entirely by local solubility
conditions, which are encapsulated in a solubility certificate. The algorithm of Simon works
prime-by-prime, determining local solubility as it goes through its calculation of square
roots modulo primes. In theory the existence of a point can be determined using Legendre
symbols instead of computing these square roots. This is not implemented because the
running time is dominated by the time needed to factorise the discriminant.

Over number fields the algorithm for finding points is as follows. One first reduces
to diagonal form, which is done with care to ensure that one can factor the coefficients
(assuming that one can factor the discriminant of the original conic). The algorithm for
diagonal conics is a variant of Lagrange’s method (which was once the standard method
for solving diagonal conics over Q). It involves a series of reduction steps in each of which
the conic is replaced by a simpler conic. Reduction is achieved by finding a short vector
in a suitable lattice sitting inside two copies of the base field. (This lattice is defined by
congruence conditions arising from local solutions of the conic.)

After several reduction steps one is often able to find a solution via an easy search.
In other cases, one is unable to reduce further and must call NormEquation to solve the
reduced conic. (This is still vastly superior to calling NormEquation on the original conic.)
The basic reduction loop is enhanced with several tricks; in particular, when it is not too
large the class group of the base field may be used to reduce much further than would
otherwise be feasible.

Over rational function fields the algorithm for solving conics is due to Cremona and
van Hoeij [CR06]. The implementation was contributed by John Cremona and David
Roberts.

Over finite fields the algorithm used for finding a point (x : y : 1) on a conic is to solve
for y at random values of x.

119.5.1 Finding Points
The main function is HasRationalPoint, which also returns a point when one exists. This
(and also RationalPoint) works over various kinds of fields; the other functions work only
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over the rationals (or integers) and finite fields.
When a point is found it is also cached for later use.

HasRationalPoint(C)

The conic C should be defined over the integers, rationals, a finite field, a number
field, or a rational function field over a finite field of odd characteristic. The function
returns true if and only if there exists a point on the conic C, and if so also returns
one such point.

RationalPoint(C)

The conic C should be defined over the integers, rationals, a finite field, a number
field, or a rational function field over a finite field of odd characteristic. If there
exists a rational point on C over its base ring then a representative such point is
returned; otherwise an error results.

Random(C : parameters)

Bound RngIntElt Default : 109

Reduce BoolElt Default : false

Returns a randomly selected rational point of the conic C. Such a solution is
obtained by choosing random integers up to the bound specified by the parameter
Bound, followed by evaluation at a parametrisation of C, then by point reduction
if the parameter Reduce is set to true. (See Section 119.5.2 for more information
about point reduction.)

Points(C : parameters)

RationalPoints(C : parameters)

Bound RngIntElt

Given a conic over the rationals or a finite field, returns an indexed set of the rational
points of the conic. If the curve is defined over the rationals then a positive value for
the parameter Bound must be given; this function then returns those points whose
integral coordinates, on the reduced Legendre model, are bounded by the value of
Bound.

Example H119E7

We define three conics in Legendre form, having the same prime divisors in their discriminants,
which differ only by a sign change (twisting by

√−1) of one of the coefficients.

> P2<x,y,z> := ProjectiveSpace(Rationals(), 2);

> C1 := Conic(P2, 23*x^2 + 19*y^2 - 71*z^2);

> RationalPoints(C1 : Bound := 32);

{@ @}

> C2 := Conic(P2, 23*x^2 - 19*y^2 + 71*z^2);

> RationalPoints(C2 : Bound := 32);

{@ @}
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> C3 := Conic(P2, 23*x^2 - 17*y^2 - 71*z^2);

> RationalPoints(C3 : Bound := 32);

{@ (-31 : 36 : 1), (-31 : -36 : 1), (31 : 36 : 1), (31 : -36 : 1),

(-8/3 : 7/3 : 1), (-8/3 : -7/3 : 1), (8/3 : 7/3 : 1), (8/3 : -7/3 : 1),

(-28/15 : 11/15 : 1), (-28/15 : -11/15 : 1), (28/15 : 11/15 : 1),

(28/15 : -11/15 : 1) @}

This naive search yields no points on the first two curves and numerous points on the third one.
A guess that there are no points on either of the first two curves is proved by a call to BadPrimes,
which finds that 19 and 23 are ramified primes for the first curve and 23 and 71 are ramified
primes for the second.

> BadPrimes(C1);

[ 19, 23 ]

> BadPrimes(C2);

[ 23, 71 ]

> BadPrimes(C3);

[]

The fact that there are no ramified primes for the third curve is equivalent to a true return
value from the function HasRationalPoint. As we will see in Section 119.6, an alternative ap-
proach which is guaranteed to find points on the third curve would be to construct a rational
parametrisation.

119.5.2 Point Reduction
If a conic C/Q in Legendre form ax2 + by2 + cz2 = 0 has a point, then Holzer’s theorem
tells us that there exists a point (x : y : z) satisfying

|x| ≤
√
|bc|, |y| ≤

√
|ac|, |z| ≤

√
|ab|,

with x, y, and z in Z, or equivalently max(|ax2|, |by2|, |cz2|) ≤ |abc|. Such a point is said
to be Holzer-reduced. There exist constructive algorithms to find a Holzer-reduced point
from a given one; the current Magma implementation uses a variant of Mordell’s reduction
due to Cremona [CR03].

IsReduced(p)

Returns true if and only if the projective point p on a conic in reduced Legendre
form satisfies Holzer’s bounds. If the curve is not a reduced Legendre model then
the test is done after passing to this model.

Reduction(p)

Returns a Holzer-reduced point derived from p.
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Example H119E8

We provide a tiny example to illustrate reduction and reduction testing on conics.

> P2<x,y,z> := ProjectiveSpace(Rationals(), 2);

> C1 := Conic(P2, x^2 + 3*x*y + 2*y^2 - 2*z^2);

> p := C1![0, 1, 1];

> IsReduced(p);

false

The fact that this point is not reduced is due to the size of the coefficients on the reduced Legendre
model.

> C0, m := ReducedLegendreModel(C1);

> C0;

Conic over Rational Field defined by

X^2 - Y^2 - 2*Z^2

> m(p);

(3/2 : 1/2 : 1)

> IsReduced(m(p));

false

> Reduction(m(p));

(-1 : 1 : 0)

> Reduction(m(p)) @@ m;

(-2 : 1 : 0)

> IsReduced($1);

true

Example H119E9

In this example we illustrate the intrinsics which apply to finding points on conics.

> P2<x,y,z> := ProjectiveSpace(RationalField(), 2);

> f := 9220*x^2 + 97821*x*y + 498122*y^2 + 8007887*y*z - 3773857*z^2;

> C := Conic(P2, f);

We will now see that C has a reduced solution; indeed, we find two different reduced solutions.
For comparison we also find a non-reduced solution.

> HasRationalPoint(C);

true (157010/741 : -19213/741 : 1)

> p := RationalPoint(C);

> p;

(157010/741 : -19213/741 : 1)

> IsReduced(p);

true

> q := Random(C : Reduce := true);

> q;

(-221060094911776/6522127367379 : -49731359955013/6522127367379 : 1)

> IsReduced(q);

true
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> q := Random(C : Bound := 10^5);

> q;

(4457174194952129/84200926607090 : -1038901067062816/42100463303545 : 1)

> IsReduced(q);

false

> Reduction(q);

(-221060094911776/6522127367379 : -49731359955013/6522127367379 : 1)

To make a parametrisation of C one can use the intrinsic Parametrization to create a map of
schemes from a line to C.

> phi := Parametrization(C);

> P1<u,v> := Domain(phi);

> q0 := P1![0, 1]; q1 := P1![1, 1]; q2 := P1![1, 0];

> phi(q0);

(7946776/559407 : -21332771/1118814 : 1)

> phi(q1);

(26443817/1154900 : -5909829/288725 : 1)

> phi(q2);

(157010/741 : -19213/741 : 1)

> C1, psi := ReducedLegendreModel(C);

> psi(phi(q0));

(-1793715893111/4475256 : -22556441171843029/4475256 : 1)

> p0 := Reduction($1);

> p0;

(1015829527/2964 : -59688728328467/2964 : 1)

> IsReduced(p0);

true

> p0 @@ psi;

(157010/741 : -19213/741 : 1)

119.6 Isomorphisms

119.6.1 Isomorphisms with Standard Models
In this section we discuss isomorphisms between heterogeneous types — isomorphisms be-
tween combinations of curves of type Crv, CrvCon, and CrvRat, and their parametrisations
by a projective line.

The first function which we treat here is Conic, which is as much a constructor as an
isomorphism. It takes an arbitrary genus zero curve C and uses the anti-canonical divisor
−KC of degree 2 to construct the Riemann–Roch space. For a genus zero curve this is a
dimension 3 space of degree 2 functions and gives a projective embedding of C in P2 as
a conic. This provides the starting point to make any genus zero curve amenable to the
powerful machinery for point finding and isomorphism classification of conics.

An isomorphism — provided that one exists — of the projective line with a conic can be
described as follows. The 2-uple embedding φ : P1 → P2 defined by (u : v) 7→ (u2 : uv : v2)
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gives an isomorphism of P1 with the conic C0 with defining equation y2 = xz. The inverse
isomorphism C0 → P1 is defined by the maps

(x : y : z) 7→ (x : y) on x 6= 0,
(x : y : z) 7→ (y : z) on z 6= 0,

respectively. Since these open sets cover the conic C0 this defines an isomorphism and not
just a birational map. In order to describe an isomorphism of a conic C1 with P1 it is
then necessary and sufficient to give a change of variables which maps C0 = φ(P1) onto
the conic C1. This matrix is called the parametrisation matrix and is stored with C1 once
a rational point is found.

Conic(C)

Given a curve of genus zero, returns a conic determined by the anti-canonical em-
bedding of C.

Example H119E10

We demonstrate the function Conic on the curve of Example H119E2 to find a conic model, even
though we know that it admits a rational parametrisation.

> P2<x,y,z> := ProjectivePlane(FiniteField(71));

> C0 := Curve(P2, (x^3 + y^2*z)^2 - x^5*z);

> C1, m := Conic(C0);

> C1;

Conic over GF(71) defined by

x^2 + 70*x*z + y^2

> m : Minimal;

(x : y : z) -> (x^3*y*z : 70*x^5 + x^4*z + 70*x^2*y^2*z : x^3*y*z + y^3*z^2)

ParametrizationMatrix(C)

This function is an optimised routine for parametrising a conic C defined over Z or
Q. It returns a 3×3 matrix M which defines a parametrisation of C as a projective
change of variables from the 2-uple embedding of a projective line in the projective
plane; i.e., for a point (x0 : y0 : z0) on C, the point

(x1 : y1 : z1) = (x0 : y0 : z0)M

satisfies the equation y2
1 = x1z1. Note that as usual in Magma the action of M is

on the right and, consistently, the action of scheme maps is also on the right.
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Example H119E11

In this example we demonstrate that the parametrisation matrix determines the precise change
of variables to transform the conic equation into the equation y2 = xz. We begin with a singular
plane curve C0 of genus zero and construct a nonsingular conic model in the plane.

> P2<x,y,z> := ProjectiveSpace(Rationals(), 2);

> C0 := Curve(P2, (x^3 + y^2*z)^2 - x^5*z);

> C1, m := Conic(C0);

> C1;

Conic over Rational Field defined by

x^2 - x*z + y^2

The curve C1 has obvious points, such as (1 : 0 : 1), which Magma internally verifies without
requiring an explicit user call to HasRationalPoint.

> ParametrizationMatrix(C1);

[1 0 1]

[0 1 0]

[0 0 1]

> Evaluate(DefiningPolynomial(C1), [x, y, x+z]);

-x*z + y^2

We note (as is standard in Magma) that the action of matrices, as with maps of schemes, is a
right action on coordinates (x : y : z).

Parametrization(C)

Parametrization(C, P)

Parametrization(C, p)

Parametrization(C, p, P)

Given a conic curve C over a general field, these functions return a parametrisation
as an isomorphism of schemes P → C. Here P is a copy of a projective line; it may be
specified as one of the arguments or a new projective line will be created. Note that it is now
required that P is given (or created) as a curve rather than as an ambient space (as used
to be permitted). This allows the immediate use of pullback/push-forward functionality
for the parametrisation map.

When a rational point or place is not specified as one of the arguments then the base
field of C must be one of the kinds allowed in HasRationalPoint. If the conic has no
rational points then an error results.
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ParametrizeOrdinaryCurve(C)

ParametrizeOrdinaryCurve(C, p)

ParametrizeOrdinaryCurve(C, p, I)

ParametrizeRationalNormalCurve(C)

These functions are as above (see Parametrization), but use different algorithms.
When C is a plane curve with only ordinary singularities (see subsection 114.3.6)

then a slightly different procedure is followed that relies less on the general function
field machinery and tends to be faster and can produce nicer parametrisations. The
variants ParametrizeOrdinaryCurve allow direct calls to these more specialised
procedures. The I argument is the adjoint ideal of C (loc. cit.), which may be
passed in if already computed.

The final function listed is slightly different; it applies only to rational normal
curves. i.e., non-singular rational curves of degree d in ordinary d-dimensional pro-
jective space for d ≥ 1. For the sake of speed the irreducibility of C is not checked.
The function uses adjoint maps to find either a line or conic parametrisation of C:
If d is odd then an isomorphism from the projective line to C is returned, and if d
is even then an isomorphism from a plane conic is returned. The method uses no
function field machinery and can be much faster than the general function.

Example H119E12

In this example we show how to parametrise a projective rational curve with a map from the
one-dimensional projective space. First we construct a singular plane curve and verify that it has
geometric genus zero.

> k := FiniteField(101);

> P2<x,y,z> := ProjectiveSpace(k, 2);

> f := x^7 + 3*x^3*y^2*z^2 + 5*y^4*z^3;

> C := Curve(P2, f);

> Genus(C);

0

In order to parametrise the curve C we need to find a nonsingular point on it, or at least a point of
C over which there exists a unique degree one place; geometrically, such a point is one at which C
has a cusp. To find such a point we invoke the intrinsic RationalPoints on C; since C is defined
over a finite field this call returns an indexed set of all the points of C that are rational over its
base field.

Having done the previous in the background, we demonstrate that the particular point (2 : 33 : 1)
is such a nonsingular rational point.

> p := C![2,33,1];

> p;

(2 : 33 : 1)

> IsNonsingular(C, p);
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true

The parametrisation function takes a projective line as the third argument; this will be used as
the domain of the parametrisation map.

> P1<u,v> := ProjectiveSpace(k, 1);

> phi := Parametrization(C, Place(p), Curve(P1));

> phi;

Mapping from: Prj: P1 to Prj: P2

with equations :

2*u^7 + 5*u^6*v + 81*u^5*v^2 + 80*u^4*v^3 + 13*u^3*v^4

33*u^7 + 88*u^6*v + 90*u^5*v^2 + 73*u^4*v^3 + 25*u^3*v^4 +

83*u^2*v^5 + 72*u*v^6 + 24*v^7

u^7

Finally we confirm that the map really does parametrise the curve C. Note that the map is
normalised so that the point at infinity on the projective line P1 maps to the prescribed point p.

> Image(phi);

Scheme over GF(101) defined by

x^7 + 3*x^3*y^2*z^2 + 5*y^4*z^3

> Image(phi) eq C;

false

> DefiningIdeal(Image(phi)) eq DefiningIdeal(C);

true

> phi(P1![1, 0]);

(2 : 33 : 1)

119.7 Automorphisms

119.7.1 Automorphisms of Rational Curves
Automorphisms of the projective line P1 are well-known to be 3-transitive — for any
three distinct points p0, p1, and p∞, there exists an automorphism taking 0 = (0 : 1),
1 = (1 : 1), and ∞ = (1 : 0) to p0, p1, and p∞. Conversely, the images of 0, 1, and ∞
uniquely characterise an automorphism. We use this characterisation of isomorphisms to
define automorphisms of rational curves as bijections of three element sequences of points
over the base ring.

Automorphism(C, S, T)

Given a rational curve C and two indexed sets S = {p0, p1, p∞} and T = {q0, q1, q∞},
each of distinct points over the base ring of C, returns the unique automorphism of
C taking p0, p1, p∞ to q0, q1, q∞.
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119.7.2 Automorphisms of Conics
The automorphism group of a conic, and indeed the conics themselves, have a special
relationship with quaternion algebras (see Lam [Lam73] or Vignéras [Vig80]). For the sake
of exposition we focus on conics C/K defined by a Legendre equation

ax2 + by2 + cz2 = 0

where abc 6= 0. We define a quaternion algebra A over K with anticommuting generators
i, j, and k = c−1ij satisfying relations

i2 = −bc, j2 = −ac, k2 = −ab,

and setting I = ai, J = bj, and K = ck. Then for any extension L/K we may identify the
ambient projective pointset P2(L) with the projectivisation of the trace zero part

A0
L = {α ∈ AL | Tr(α) = 0} = LI + LJ + LK

of the quaternion algebra AL = A⊗K L via (x : y : z) 7→ xI + yJ + zK. Under this map,
the pointsets C(L) are identified with the norm zero elements

N(xI + yJ + zK) = abc(ax2 + by2 + cz2) = 0

in P2(L). This allows us to identify the automorphism group AutK(C) with the quotient
unit group A∗/K∗ acting on each A0

L by conjugation.
In the Magma implementation of this correspondence, the quaternion algebra A is

computed and stored as an attribute of the curve C. Automorphisms of C can be created
from any invertible element of the quaternion algebra. We note that the isomorphism
of two conics is equivalent to the isomorphism of their quaternion algebras, and that a
rational parametrisation of a conic is equivalent to an isomorphism A ∼= M2(K).

We note that while the advanced features of finding rational points (and hence finding
parametrisations) and determining isomorphism only exist over Q, it is possible to repre-
sent the automorphism group and find automorphisms of the curve independently of these
other problems. The current implementation works only in characteristic different from 2,
as otherwise a Legendre model does not exist.

QuaternionAlgebra(C)

Returns the quaternion algebra in which automorphisms of the conic C can be
represented.

Automorphism(C, a)

Given a conic C and a unit a of the quaternion algebra associated to C, returns the
automorphism of C corresponding to a.
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Example H119E13

In this example we demonstrate how to use the quaternion algebra of a conic to construct nontrivial
automorphisms of the curve when no rational points exist over the base ring. (We use the printing
level Minimal to produce human readable output for scheme maps.)

> P2<x,y,z> := ProjectiveSpace(Rationals(), 2);

> C0 := Conic(P2, 2*x^2 + x*y + 5*y^2 - 37*z^2);

> HasRationalPoint(C0);

false

> BadPrimes(C0);

[ 3, 37 ]

> A := QuaternionAlgebra(C0);

> RamifiedPrimes(A);

[ 3, 37 ]

> B := Basis(MaximalOrder(A));

> B;

[ 1, 1/52*i + 1/4*j + 2/481*k, j, 1/2 + 1/148*k ]

> m1 := Automorphism(C0, A!B[2]);

> m1 : Minimal;

(x : y : z) -> (-5/8*x + 259/48*y - 37/3*z : 37/12*x + 69/8*y - 74/3*z :

x + 7/2*y - 61/6*z)

> m2 := Automorphism(C0, A!B[3]);

> m2 : Minimal;

(x : y : z) -> (x + 1/2*y : -y : z)

> m3 := Automorphism(C0, A!B[4]);

> m3 : Minimal;

(x : y : z) -> (-x - 1/2*y : 1/5*x - 9/10*y : z)

> [ Trace(B[2]), Trace(B[3]), Trace(B[4]) ];

[ 0, 0, 1 ]

> m1 * m1 : Minimal;

(x : y : z) -> (x : y : z)

> m2 * m2 : Minimal;

(x : y : z) -> (x : y : z)

> m3 * m3 : Minimal;

(x : y : z) -> (9/10*x + 19/20*y : -19/50*x + 71/100*y : z)

The last example points out that pure quaternions τ in A0 give rise to involutions — a reflection
of the projective plane about the point defined by τ in P2(K).

One of the strengths of the scheme model in Magma is the ability to work with points of a curve
over any extension. Provided that we have a rational point over some extension field L/K, we
are able to apply automorphisms of the curve to generate an unbounded number of new points
over that extension by means of the action of the automorphism group. We demonstrate this by
looking at quadratic twists of the curve to find a point over Q, which identifies a point on the
original curve over a quadratic extension.

> C1 := Conic(P2, 2*x^2 + x*y + 5*y^2 - z^2);

> HasRationalPoint(C1);

false
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> C2 := Conic(P2, 2*x^2 + x*y + 5*y^2 - 2*z^2);

> HasRationalPoint(C2);

true

> RationalPoint(C2);

(-1 : 0 : 1)

This gives rise to the obvious points (±1 : 0 :
√

74/37) on the original curve.

> P<t> := PolynomialRing(RationalField());

> L<a> := NumberField(t^2 - 74);

> p := C0(L)![1, 0, a/37];

> m1(p);

(1/1880*(207*a + 3034) : 1/940*(-37*a + 2146) : 1)

> m2(p);

(1/2*a : 0 : 1)

> m3(p);

(-1/2*a : 1/10*a : 1)

We could alternatively have formed the base extension of the curve to the new field L and used the
known point over L to find a parametrisation of the curve by the projective line. This approach
demonstrates that it is possible to work with points and curve automorphisms without passing to
a new curve.
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Chapter 120

ELLIPTIC CURVES

120.1 Introduction

This chapter describes features for working with elliptic curves in Magma. It contains
basic functionality that is applicable to curves over fairly general fields. There are separate
chapters describing features that are specific to
- curves over finite fields (Chapter 121),
- curves over the rationals or number fields (Chapter 122),
- curves over univariate function fields (Chapter 123).

An elliptic curve E is the projective closure of the curve given by the generalised
Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

The curve is specified by the sequence of coefficients [a1, a2, a3, a4, a6]; the two element
sequence [a4, a6] may be used instead when a1 = a2 = a3 = 0.

Elliptic curve functionality covers both elementary invariants of curves and arithmetic
in the group of rational points, as well as higher level features for computing local invari-
ants, heights, and Mordell–Weil groups for curves over Q, and for point counting and the
determination of the group structure over Fq. The base ring of elliptic curves is currently
restricted to fields. Curves over the rationals have special features to allow the construction
of integral and minimal models, and for base change to finite fields, in acknowledgement
of the integral structure over Z or Zp.

For curves over the rationals or over number fields there are routines for determining
minimal models and an implementation of Tate’s algorithm for determining Kodaira sym-
bols and various local invariants. Algorithms for the computation of the Mordell–Weil
group are heavily based on publications of John Cremona; see [Cre97] for details. There
are also separate implementations of 2-descent for curves over number fields, and 3- and
4-descent for curves over the rationals. Additionally, several aspects of the analytic theory
(including modular parametrisations and Heegner points) are implemented for curves over
the rationals.

Elliptic curves are specialised forms of the more general curve and scheme types, and as
such all functions which apply to these general types work on elliptic curves (although a few
of them behave differently for elliptic curves). Some of these functions are described here,
but not all of them — refer to chapters 112 (Schemes) and 114 (Curves) for descriptions of
these functions, as well as an explanation of the relationships between points, point sets,
and schemes. In particular, note that the parent of a point is a point set, and not the
curve.
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The name of the category of elliptic curves is CrvEll, with points of type PtEll lying in
point sets of type SetPtEll. There is also the category SchGrpEll for subgroup schemes of
elliptic curves, and a special category SymKod exists for the datatype of Kodaira symbols,
which classify the local structure of the special fibre at p of the Néron model of an elliptic
curve E/Q.

This chapter, the first of four on elliptic curves, contains a treatment of the basics for
curves over general fields: their construction, their arithmetic, and their basic properties.
Specialised machinery provided for elliptic curves over finite fields is described in Chapter
121; Chapter 122 presents the wide range of techniques available for determining informa-
tion about the group of rational points for curves over Q and over number fields, while
elliptic curves over function fields are discussed in Chapter 123.

120.2 Creation Functions

120.2.1 Creation of an Elliptic Curve
An elliptic curve E may be created by specifying Weierstrass coordinates for the curve
over a field K, where integer coordinates are interpreted as elements of Q. Note that the
coordinate ring K defines the base point set of E, and points defined over an extension
field of K must be created in the appropriate point set.

EllipticCurve([a, b])

EllipticCurve([a1, a2, a3, a4, a6])

Given a sequence of elements of a ring K, this function creates the elliptic curve E
over K defined by taking the elements of the sequence as Weierstrass coefficients.
The length of the sequence must either be two, that is s = [a, b], in which case E
is defined by y2 = x3 + ax + b, or five, that is s = [a1, a2, a3, a4, a6], in which case
E is given by y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6. Currently K must be field;
if integers are given then they will be coerced into Q. The given coefficients must
define a nonsingular curve; that is, the discriminant of the curve must be nonzero.

EllipticCurve(f)

EllipticCurve(f, h)

Given univariate polynomials f and h, this function creates the elliptic curve defined
by y2 + h(x)y = f(x), or by y2 = f(x) if h is not given. The polynomial f must be
monic of degree 3 and h must have degree at most 1.

EllipticCurveFromjInvariant(j)

EllipticCurveWithjInvariant(j)

Given a ring element j, this function creates an elliptic curve E over K with j-
invariant equal to j defined as follows: If j = 0 and K does not have characteristic
3 then E is defined by y2 + y = x3; if j = 1728 then E is defined by y2 = x3 + x
(which covers the case where j = 0 and K has characteristic 3); otherwise j − 1728
is invertible in K and E is defined by y2 +xy = x3−(36/(j−1728))x−1/(j−1728).
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Example H120E1

We create one particular elliptic curve over Q in three different ways:

> EllipticCurve([1, 0]);

Elliptic Curve defined by y^2 = x^3 + x over Rational Field

> Qx<x> := PolynomialRing(Rationals());

> EllipticCurve(x^3 + x);

Elliptic Curve defined by y^2 = x^3 + x over Rational Field

> EllipticCurveWithjInvariant(1728);

Elliptic Curve defined by y^2 = x^3 + x over Rational Field

EllipticCurve(C)

Verbose EllModel Maximum : 3

Given a scheme C describing a curve of genus 1 with an easily recognised rational
point, this function returns an elliptic curve E together with a birational map from
C to E. If there is no “obvious” rational point then this routine will fail. C must
belong to one of the following classes:

(i) Hyperelliptic curves of genus 1 of the form

C : y2 + h(x)y = f(x)

with f of degree 3 or 4 and h of degree at most 1. If the function x on C has
a rational branch point then that point is sent to the origin on E. Otherwise,
if C has a rational point at x = ∞ then that point is used.

(ii) Nonsingular plane curves of degree 3. If the curve is already in general Weier-
strass form up to a permutation of the variables then this is recognised and
used as a model for the elliptic curve. Otherwise the base field of the curve
must have characteristic different from 2 and 3; in this case, the curve is
tested for having a rational flex. If it has then a linear transformation suffices
to get the curve into general Weierstrass form, and this is used.

(iii) Singular plane curves of degree 4 over a base field of characteristic different
from 2 with a unique cusp, with the tangent cone meeting the curve only at
that point. Up to linear transformation, these are curves of type

y2 = f(x),

with f of degree 4. Such curves are brought into the standard form above.
If either a rational point exists with x = 0 or the curve intersects the line at
infinity in a rational point then that point is used to put the curve in general
Weierstrass form.
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EllipticCurve(C, P)

Verbose EllModel Maximum : 3
Given a scheme C describing a curve of genus 1 with a nonsingular rational point P ,
this function returns an elliptic curve E together with a birational map sending the
supplied point to the origin on E.

If C is a plane curve of degree 3 over a base field having characteristic different
from 2 and 3 then particular tricks are tried. If the supplied point is a flex then a
linear transformation is used. Otherwise, Nagell’s algorithm [Nag28], also described
in [Cas91], is used.

If C is a plane curve of degree 4 over a base field of characteristic different from
2 with a unique cusp and a tangent cone that meets the curve only in that cusp,
then a construction in [Cas91] is used.

In all other cases, C has to be a plane curve and a Riemann–Roch computation
is used. This is potentially very expensive.

EllipticCurve(C, pl)

Verbose EllModel Maximum : 3
Given a plane curve C of genus 1 and a place pl of degree 1, this function returns
an elliptic curve E together with a birational map from C to E.

This routine uses a (potentially expensive) Riemann–Roch computation. This
is different to the routine that takes a point instead of a place, which uses special
methods when the curve has degree 3 or 4.

SupersingularEllipticCurve(K)

Given a finite field K, this function returns a representative supersingular elliptic
curve over K.

Example H120E2

In the following example Nagell’s algorithm is applied.

> P2<X, Y, Z> := ProjectiveSpace(Rationals(), 2);

> C := Curve(P2, X^3 + Y^2*Z - X*Y*Z - Z^3);

> pt := C![0, 1, 1];

> time E1, phi1 := EllipticCurve(C, pt);

Time: 0.070

> E1;

Elliptic Curve defined by y^2 = x^3 - 5/16*x^2 + 1/32*x + 15/1024 over Rational

Field

Whereas this next call (given a place) is forced to do the Riemann–Roch computation.

> time E2, phi2 := EllipticCurve(C, Place(pt));

Time: 0.120

> E2;

Elliptic Curve defined by y^2 + 1024*y = x^3 + 16*x^2 over Rational Field
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> phi1;

Mapping from: CrvPln: C to CrvEll: E1

with equations :

9/8*X^2 - 1/4*X*Y

-1/8*X^2 + 1/4*X*Y + 13/16*X*Z - 1/8*Y*Z - 1/8*Z^2

X^2 - 2*X*Y + 2*X*Z

and inverse

$.1^2 - 3/16*$.1*$.3 + 1/128*$.3^2

1/2*$.1^2 + $.1*$.2 - 15/32*$.1*$.3 + 9/256*$.3^2

$.1*$.2 + 1/8*$.1*$.3 - 1/8*$.2*$.3 - 1/64*$.3^2

> phi2;

Mapping from: CrvPln: C to CrvEll: E2

with equations :

-64*X^2*Y + 64*X^2*Z - 128*X*Y^2 + 256*X*Y*Z - 128*X*Z^2 + 64*Y^2*Z - 64*Y*Z^2

256*X^2*Y + 256*X^2*Z + 1024*X*Y*Z - 1024*X*Z^2 + 1792*Y^2*Z - 4352*Y*Z^2 +

2048*Z^3

Y^3 - 3*Y^2*Z + 3*Y*Z^2 - Z^3

Example H120E3

In this example the starting curve is less clearly elliptic. Since this curve does not match any of
the special forms described the Riemann–Roch computation will be used.

> P2<X, Y, Z> := ProjectiveSpace(Rationals(), 2);

> C := Curve(P2, X^3*Y^2 + X^3*Z^2 - Z^5);

> Genus(C);

1

> pt := C![1, 0, 1];

> E, toE := EllipticCurve(C, pt);

> E;

Elliptic Curve defined by y^2 = x^3 + 3*x^2 + 3*x over Rational Field

> toE;

Mapping from: CrvPln: C to CrvEll: E

120.2.2 Creation Predicates

IsEllipticCurve([a, b])

IsEllipticCurve([a1, a2, a3, a4, a6])

The function returns true if the given sequence of ring elements defines an elliptic
curve (in other words, if the discriminant is nonzero). When true, the elliptic curve
is also returned.
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IsEllipticCurve(C)

Given a hyperelliptic curve, the function returns true if C has degree 3. When
true, the function also returns the elliptic curve, and isomorphisms to and from it.
This function is deprecated and will be removed in a later release. Instead, use
Degree(C) eq 3 and EllipticCurve(C).

Example H120E4

We check a few small primes to see which ones make certain coefficients define an elliptic curve.

> S := [ p : p in [1..20] | IsPrime(p) ];

> for p in S do

> ok, E := IsEllipticCurve([GF(p) | 1, 1, 0, -3, -17 ]);

> if ok then print E; end if;

> end for;

Elliptic Curve defined by y^2 + x*y = x^3 + x^2 + 1 over GF(3)

Elliptic Curve defined by y^2 + x*y = x^3 + x^2 + 10*x + 9 over GF(13)

Elliptic Curve defined by y^2 + x*y = x^3 + x^2 + 14*x over GF(17)

120.2.3 Changing the Base Ring
The following general scheme functions provide a convenient way to generate a new elliptic
curve similar to an old one but defined over a different field. Some care must be taken,
however: If the result is not a valid elliptic curve then the functions will still succeed but
the object returned will be a general curve rather than an elliptic curve.

BaseChange(E, K)

BaseExtend(E, K)

Given an elliptic curve E defined over a field k, and a field K which is an extension
of k, returns an elliptic curve E′ over K using the natural inclusion of k in K to
map the coefficients of E into K.

ChangeRing(E, K)

Given an elliptic curve E defined over a field k, and a field K, returns an elliptic
curve E′ overK by using the standard coercion from k toK to map the coefficients of
E into K. This is useful when there is no appropriate ring homomorphism between
k and K (e.g., when k = Q and K is a finite field).

BaseChange(E, h)

BaseExtend(E, h)

Given an elliptic curve E over a field k and a ring map h : k → K, returns an elliptic
curve E′ over K by applying h to the coefficients of E.
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BaseChange(E, n)

BaseExtend(E, n)

Given an elliptic curve E defined over a finite field K, returns the base extension of
E to the degree n extension of K.

Example H120E5

> K1 := GF(23);

> K2 := GF(23, 2);

> f := hom<K1 -> K2 | >;

> E1 := EllipticCurve([K1 | 1, 1]);

> E2 := EllipticCurve([K2 | 1, 1]);

> assert E2 eq BaseExtend(E1, K2);

> assert E2 eq BaseExtend(E1, f);

> assert E2 eq BaseExtend(E1, 2);

> // this is illegal, since K1 is not an extension of K2

> BaseExtend(E2, K1);

>> BaseExtend(E2, K1);

^

Runtime error in ’BaseExtend’: Coercion of equations is not possible

> assert E1 eq ChangeRing(E2, K1); // but this is OK

120.2.4 Alternative Models
Given an elliptic curve E, there are standard alternative models for E that may be of
interest. Each of the functions in this section returns an isomorphic curve E′ that is the
desired model, together with the isomorphisms E → E′ and E′ → E.

Note: The second isomorphism is now completely redundant as it is the inverse of the
first; in a later release only the first will be returned.

WeierstrassModel(E)

Given an elliptic curve E, this function returns an isomorphic elliptic curve E′ in
simplified Weierstrass form y2 = x3 + ax+ b. It does not apply when the base ring
of E has characteristic 2 or 3 (in which case such a simplified form may not exist).

IntegralModel(E)

Given an elliptic curve E defined over a number field K (which may be Q), this
function returns an isomorphic elliptic curve E′ defined over K with integral coeffi-
cients.
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SimplifiedModel(E)

A simplified model of the elliptic curve E is returned. If E is defined over Q
this has the same effect as MinimalModel below. Otherwise, if the characteristic
of the base ring is different from 2 and 3, the simplified model agrees with the
WeierstrassModel. For characteristics 2 and 3 the situation is more complicated;
see chapter 4 of [Con99] for the definition for curves defined over finite fields.

MinimalModel(E)

Given an elliptic curve E defined over Q or a number field K with class number
one, returns a global minimal model E′ for E. By definition, the global minimal
model E′ is an integral model isomorphic to E over K such that the discriminant of
E′ has minimal valuation at all non-zero prime ideals π of K. (For Q, this means
that it has minimal p-adic valuation at all primes p.)

Such a global minimal model is only guaranteed to exist when the class number
of K is 1 (and so one always exists when K = Q); depending on the curve, however,
such a model may exist even when this is not the case. If no such minimal model
exists then a runtime error will occur.

MinimalModel(E, p)

MinimalModel(E, P : parameters)

UseGeneratorAsUniformiser BoolElt Default : false
Given an elliptic curve E defined over a number field K, and a prime ideal P , returns
a curve isomorphic to E which is minimal at P . If K is Q then the ideal may be
specified by the appropriate (integer) prime p.

For curves over number fields, when the parameter UseGeneratorAsUniformiser
is set to true then Magma will check whether the ideal is principal; if so, an ideal
generator will be used as the uniformising element. This means that at other primes
the returned model will remain integral, or minimal, if the given model was.

120.2.5 Predicates on Curve Models

IsWeierstrassModel(E)

Returns true if and only if the elliptic curve E is in simplified Weierstrass form.

IsIntegralModel(E)

Returns true if and only if the elliptic curve E is an integral model.

IsSimplifiedModel(E)

Returns true if and only if the elliptic curve E is a simplified model.

IsMinimalModel(E)

Returns true if and only if the elliptic curve E is a minimal model.
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IsIntegralModel(E, P)

Returns true if the defining coefficients of the elliptic curve E, a curve over a number
field, have non-negative valuation at the prime ideal P , which must be an ideal of
an order of the coefficient ring of E.

Example H120E6

We define an elliptic curve over the rationals and then find an integral model, a minimal model,
and an integral model for the short Weierstrass form.

> E := EllipticCurve([1/2, 1/2, 1, 1/3, 4]);

> E;

Elliptic Curve defined by y^2 + 1/2*x*y + y = x^3 + 1/2*x^2 + 1/3*x + 4

over Rational Field

> IE := IntegralModel(E);

> IE;

Elliptic Curve defined by y^2 + 3*x*y + 216*y = x^3 + 18*x^2 + 432*x +

186624 over Rational Field

> ME := MinimalModel(IE);

> ME;

Elliptic Curve defined by y^2 + x*y + y = x^3 - x^2 + 619*x + 193645

over Rational Field

> WE := WeierstrassModel(E);

> WE;

Elliptic Curve defined by y^2 = x^3 + 9909/16*x + 6201603/32 over

Rational Field

> IWE := IntegralModel(WE);

> IWE;

Elliptic Curve defined by y^2 = x^3 + 649396224*x + 208091266154496

over Rational Field

> IsIsomorphic(IWE, ME);

true

120.2.6 Twists of Elliptic Curves
In the following, all twists will be returned in the form of simplified models.

QuadraticTwist(E, d)

Given an elliptic curve E and an element d of the base ring, returns the quadratic
twist by d. This is isomorphic to E if and only if either the characteristic is 2 and
the trace of d is 0, or the characteristic is not 2 and d is a square. The routine does
not always work in characteristic 2.

QuadraticTwist(E)

Given an elliptic curve E over a finite field, returns a quadratic twist; that is, a
nonisomorphic curve whose trace is the negation of Trace(E).



3940 ARITHMETIC GEOMETRY Part XVII

QuadraticTwists(E)

Given an elliptic curve E over a finite field, returns the sequence of nonisomorphic
quadratic twists. The first of these curves is isomorphic to E.

Twists(E)

Given an elliptic curve over a finite fieldK, returns the sequence of all nonisomorphic
elliptic curves over K which are isomorphic over an extension field. The first of these
curves is isomorphic to E.

Example H120E7

In this example we compute the quadratic twists of an elliptic curve over the finite field F13 and
verify that they fall in two isomorphism classes over the base field.

> E1 := EllipticCurve([GF(13) | 3, 1]);

> E5 := QuadraticTwist(E1, 5);

> E5;

Elliptic Curve defined by y^2 = x^3 + 10*x + 8 over GF(13)

> S := QuadraticTwists(E1);

> S;

[

Elliptic Curve defined by y^2 = x^3 + 3*x + 1 over GF(13),

Elliptic Curve defined by y^2 = x^3 + 12*x + 5 over GF(13)

]

> [ IsIsomorphic(E1, E) : E in S ];

[ true, false ]

> [ IsIsomorphic(E5, E) : E in S ];

[ false, true ]

IsTwist(E, F)

Returns true if and only if the elliptic curves E and F are isomorphic over an
extension field — this function only tests the j-invariants of the curves.

IsQuadraticTwist(E, F)

Returns true if and only if the elliptic curves E and F are isomorphic over a
quadratic extension field; if so, returns an element d of the base field such that F is
isomorphic to QuadraticTwist(E, d).
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Example H120E8

In this example we take curves of j-invariant 0 and 123 = 12 over the finite field F13, and compute
all twists. Since the automorphism groups are nontrivial the number of twists is larger than the
number of quadratic twists. By computing the numbers of points we see that the curves are indeed
pairwise nonisomorphic over the base field.

> E3 := EllipticCurve([GF(13) | 0, 1]);

> jInvariant(E3);

0

> E4 := EllipticCurve([GF(13) | 1, 0]);

> jInvariant(E4);

12

> T3 := Twists(E3);

> T3;

[

Elliptic Curve defined by y^2 = x^3 + 1 over GF(13),

Elliptic Curve defined by y^2 = x^3 + 2 over GF(13),

Elliptic Curve defined by y^2 = x^3 + 4 over GF(13),

Elliptic Curve defined by y^2 = x^3 + 8 over GF(13),

Elliptic Curve defined by y^2 = x^3 + 3 over GF(13),

Elliptic Curve defined by y^2 = x^3 + 6 over GF(13)

]

> [ #E : E in T3 ];

[ 12, 19, 21, 16, 9, 7 ]

> T4 := Twists(E4);

> T4;

[

Elliptic Curve defined by y^2 = x^3 + x over GF(13),

Elliptic Curve defined by y^2 = x^3 + 2*x over GF(13),

Elliptic Curve defined by y^2 = x^3 + 4*x over GF(13),

Elliptic Curve defined by y^2 = x^3 + 8*x over GF(13)

]

> [ #E : E in T4 ];

[ 20, 10, 8, 18 ]

Observe that exactly two of the twists are quadratic twists (as must always be the case).

> [ IsQuadraticTwist(E3, E) : E in T3 ];

[ true, false, false, true, false, false ]

> [ IsQuadraticTwist(E4, E) : E in T4 ];

[ true, false, true, false ]



3942 ARITHMETIC GEOMETRY Part XVII

MinimalQuadraticTwist(E)

Determine the minimal twist of the rational elliptic curve E. This is defined locally
prime-by-prime, and the algorithm for finding it is based on this observation. For
each odd prime p of bad reduction the algorithm iteratively replaces the curve by
its twist by p if the latter has smaller discriminant.

For p = 2 there is no accepted definition of minimal, and the prime at infinity
also plays a role. After having handled all the odd primes there are only twists by
−1, 2, and −2 left to consider. The algorithm implemented in Magma first chooses
a twist with minimal 2-valuation of the conductor; this is unique precisely when this
2-valuation is less than 5. [Note that others have chosen instead to minimise the
2-valuation of ∆.]

The prime 2 can be eliminated at this point as was done in the case of the
odd primes, leaving only the consideration of twisting the curve by −1. Here the
algorithm arbitrarily chooses the curve that has (−1)v2(c6)odd(c6) congruent to 3
mod 4. The function returns as its second argument the integer d by which the
curve was twisted to obtain the minimal twist.

Example H120E9

> E:=EllipticCurve([0, 1, 0, 135641131, 1568699095683]);

> M, tw := MinimalQuadraticTwist(E);

> M, tw;

Elliptic Curve defined by y^2 + y = x^3 + x^2 + 3*x + 5 over Rational Field

7132

> MinimalModel(QuadraticTwist(M, tw));

Elliptic Curve defined by y^2 = x^3 + x^2 + 135641131*x + 1568699095683 over

Rational Field

120.3 Operations on Curves

120.3.1 Elementary Invariants

aInvariants(E)

Coefficients(E)

ElementToSequence(E)

Eltseq(E)

Given an elliptic curve E, this function returns a sequence consisting of the Weier-
strass coefficients of E; this is the sequence [a1, a2, a3, a4, a6] such that E is defined
by y2z+a1xyz+a3yz

2 = x3 +a2x
2z+a4xz

2 +a6z
3. Note that this function returns

the five coefficients even if E was defined by a sequence [a, b] of length two (the first
three coefficients are zero in such a case).
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bInvariants(E)

This function returns a sequence of length 4 containing the b-invariants of the elliptic
curve E, namely [b2, b4, b6, b8]. In terms of the coefficients of E these are defined by

b2 = a2
1 + 4a2

b4 = a1a3 + 2a4

b6 = a2
3 + 4a6

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4.

cInvariants(E)

This function returns a sequence of length 2 containing the c-invariants of the elliptic
curve E, namely [c4, c6]. In terms of the b-invariants of E these are defined by

c4 = b22 − 24b4
c6 = −b32 + 36b2b4 − 216b6.

Discriminant(E)

This function returns the discriminant ∆ of the elliptic curve E. In terms of the
b-invariants of E it is defined by

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6

and there is also the relationship 1728∆ = c34 − c26.

jInvariant(E)

Return the j-invariant of the elliptic curve E. In terms of the c-invariants and the
discriminant of E it is defined by j = c34/∆. Two elliptic curves defined over
the same base field are isomorphic over some extension field exactly when their
j-invariants are equal.

HyperellipticPolynomials(E)

Returns polynomials x3 + a2x
2 + a4x+ a6 and a1x+ a3, formed from the invariants

of the elliptic curve E.

Example H120E10

Here are a few simple uses of the above functions.

> E := EllipticCurve([0, -1, 1, 1, 0]);

> E;

Elliptic Curve defined by y^2 + y = x^3 - x^2 + x over Rational Field

> aInvariants(E);

[ 0, -1, 1, 1, 0 ]

> Discriminant(E);
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-131

> c4, c6 := Explode(cInvariants(E));

> jInvariant(E) eq c4^3 / Discriminant(E);

true

Example H120E11

By constructing a generic elliptic curve we can see that the relationships described above hold.

> F<a1, a2, a3, a4, a6> := FunctionField(Rationals(), 5);

> E := EllipticCurve([a1, a2, a3, a4, a6]);

> E;

Elliptic Curve defined by y^2 + a1*x*y + a3*y = x^3 + a2*x^2 + a4*x + a6

over F

> aInvariants(E);

[

a1,

a2,

a3,

a4,

a6

]

> bInvariants(E);

[

a1^2 + 4*a2,

a1*a3 + 2*a4,

a3^2 + 4*a6,

a1^2*a6 - a1*a3*a4 + a2*a3^2 + 4*a2*a6 - a4^2

]

> b2,b4,b6,b8 := Explode(bInvariants(E));

> cInvariants(E);

[

a1^4 + 8*a1^2*a2 - 24*a1*a3 + 16*a2^2 - 48*a4,

-a1^6 - 12*a1^4*a2 + 36*a1^3*a3 - 48*a1^2*a2^2 + 72*a1^2*a4 +

144*a1*a2*a3 - 64*a2^3 + 288*a2*a4 - 216*a3^2 - 864*a6

]

> c4,c6 := Explode(cInvariants(E));

> c4 eq b2^2 - 24*b4;

true

> c6 eq -b2^3 + 36*b2*b4 - 216*b6;

true

> d := Discriminant(E);

> d;

-a1^6*a6 + a1^5*a3*a4 - a1^4*a2*a3^2 - 12*a1^4*a2*a6 + a1^4*a4^2 +

8*a1^3*a2*a3*a4 + a1^3*a3^3 + 36*a1^3*a3*a6 - 8*a1^2*a2^2*a3^2 -

48*a1^2*a2^2*a6 + 8*a1^2*a2*a4^2 - 30*a1^2*a3^2*a4 + 72*a1^2*a4*a6 +

16*a1*a2^2*a3*a4 + 36*a1*a2*a3^3 + 144*a1*a2*a3*a6 - 96*a1*a3*a4^2 -

16*a2^3*a3^2 - 64*a2^3*a6 + 16*a2^2*a4^2 + 72*a2*a3^2*a4 +
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288*a2*a4*a6 - 27*a3^4 - 216*a3^2*a6 - 64*a4^3 - 432*a6^2

> d eq -b2^2*b8 - 8*b4^3 - 27*b6^2 + 9*b2*b4*b6;

true

> 1728*d eq c4^3 - c6^2;

true

120.3.2 Associated Structures

Category(E) Type(E)

Returns the category of elliptic curves, CrvEll.

BaseRing(E) CoefficientRing(E)

The base ring of the elliptic curve E; that is, the parent of its coefficients and the
coefficient ring of the default point set of E.

120.3.3 Predicates on Elliptic Curves

E eq F

Returns true if and only if the elliptic curves E and F are defined over the same
ring and have the same coefficients.

E ne F

The logical negation of eq.

IsIsomorphic(E, F)

Given two elliptic curves E and F this function returns true if there exists an
isomorphism between E and F over the base field, and false otherwise. If E and
F are isomorphic then the isomorphism is returned as a second value. This function
requires being able to take roots in the base field.

IsIsogenous(E, F)

Given two elliptic curves E and F defined over the rationals or a finite field, this
function returns true if the curves E and F are isogenous over this field and false
otherwise. In the rational case, if the curves are isogenous then the isogeny will be
returned as the second value. For finite fields the isogeny computation operates via
point counting and thus no isogeny is returned.
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Example H120E12

We return to the curves in the earlier quadratic twist example. By definition, these curves are
not isomorphic over their base field, but are isomorphic over a quadratic extension.

> K := GF(13);

> E := EllipticCurve([K | 3, 1]);

> E5 := QuadraticTwist(E, 5);

> IsIsomorphic(E, E5);

false

> IsIsomorphic(BaseExtend(E, 2), BaseExtend(E5, 2));

true

Since they are isomorphic over an extension, their j-invariants must be the same.

> jInvariant(E) eq jInvariant(E5);

true

120.4 Polynomials

The torsion or division polynomials are the polynomials defining the subschemes of n-
torsion points on the elliptic curve.

DefiningPolynomial(E)

Returns the homogeneous defining polynomial for the elliptic curve E.

DivisionPolynomial(E, n)

DivisionPolynomial(E, n, g)

Given an elliptic curve E and an integer n, returns the n-th division polynomial
as a univariate polynomial over the base ring of E. If n is even this polynomial
has multiplicity two at the nonzero 2-torsion points of the curve. The second return
value is the n-th division polynomial, divided by the univariate 2-torsion polynomial
if n is even. The third argument is the cofactor, equal to the univariate 2-torsion
polynomial if n is even, and 1 otherwise.

If a polynomial is passed as a third argument then the division polynomial is
computed efficiently modulo that polynomial.

TwoTorsionPolynomial(E)

Returns the multivariate 2-torsion polynomial 2y+ a1x+ a3 of the elliptic curve E,
as a bivariate polynomial.
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Example H120E13

Let E be an elliptic curve over a finite field K. The following code fragment illustrates the
relationship between the roots in K of the n-th division polynomial for E, and the x-coordinates
of the points of n-torsion on E.

> K := GF(101);

> E := EllipticCurve([ K | 1, 1]);

> Roots(DivisionPolynomial(E, 5));

[ <86, 1>, <46, 1> ]

> [ P : P in RationalPoints(E) | 5*P eq E!0 ];

[ (86 : 34 : 1), (0 : 1 : 0), (46 : 25 : 1), (86 : 67 : 1), (46 : 76 : 1) ]

It is worth noting that even if the roots of the division polynomial lie in the field, the corresponding
points may not, lying instead in a quadratic extension.

> Roots(DivisionPolynomial(E, 9));

[ <4, 1>, <17, 1>, <28, 1>, <34, 1>, <77, 1> ]

> Points(E, 4);

[]

> K2<w> := ext<K | 2>;

> Points(E(K2), 4);

[ (4 : 82*w + 57 : 1), (4 : 19*w + 44 : 1) ]

> Order($1[1]);

9

120.5 Subgroup Schemes

A subgroup scheme G of an elliptic curve E is a subscheme of E defined by a univariate
polynomial ψ and closed under the group law on E. The points of G are those points
of E whose x-coordinate is a root of ψ. All elliptic curves are considered to be subgroup
schemes with defining polynomial ψ = 0.

120.5.1 Creation of Subgroup Schemes

SubgroupScheme(G, f)

Creates the subgroup scheme of the subgroup scheme G defined by the univariate
polynomial f . No checking is done to ensure that the rational points of the result
actually do form a group under the addition law. Note that G can be an elliptic
curve.

TorsionSubgroupScheme(G, n)

Returns the subgroup scheme of n-torsion points of the subgroup scheme G. Note
that G can be an elliptic curve.
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120.5.2 Associated Structures

Category(G)

Type(G)

Returns the category of elliptic curve subgroup schemes, SchGrpEll.

Curve(G)

Generic(G)

Returns the elliptic curve E of which G is a subgroup scheme.

BaseRing(G)

CoefficientRing(G)

Returns the base ring of the subgroup scheme G; this is the same as the base ring
of its curve.

DefiningSubschemePolynomial(G)

Returns the univariate polynomial that defines G as a subscheme of its curve.

120.5.3 Predicates on Subgroup Schemes

G1 eq G2

Returns true if and only if G1 and G2 are subgroup schemes of the same elliptic
curve and are defined by equal polynomials.

G1 ne G2

The logical negation of eq.

120.5.4 Points of Subgroup Schemes

#G

Order(G)

The order of the group of rational points on the subgroup scheme G.

FactoredOrder(G)

The factorisation of the order of the group of rational points on the subgroup scheme
G.

Points(G)

RationalPoints(G)

The indexed set of rational points of the subgroup scheme G over its base ring.
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Example H120E14

We construct a curve over F49 and form several subgroup schemes from it.

> K<w> := GF(7, 2);

> P<t> := PolynomialRing(K);

> E := EllipticCurve([K | 1, 3]);

> G := SubgroupScheme(E, (t-4)*(t-5)*(t-6));

> G;

Subgroup scheme of E defined by x^3 + 6*x^2 + 4*x + 6

> Points(G);

{@ (0 : 1 : 0), (6 : 1 : 1), (6 : 6 : 1), (4 : 1 : 1), (4 : 6 : 1),

(5 : 0 : 1) @}

The points of order 3 form a further subgroup.

> [ Order(P) : P in $1 ];

[ 1, 3, 3, 6, 6, 2 ]

> G2 := SubgroupScheme(G, t - 6);

> G2;

Subgroup scheme of E defined by x + 1

> Points(G2);

{@ (0 : 1 : 0), (6 : 1 : 1), (6 : 6 : 1) @}

We can find this subgroup another way, as the intersection of the 15-torsion points of E and G.

> G3 := TorsionSubgroupScheme(E, 15);

> #G3;

15

> G4 := SubgroupScheme(G3, DefiningSubschemePolynomial(G));

> G4;

Subgroup scheme of E defined by x + 1

> G2 eq G4;

true

120.6 The Formal Group

These functions are for elliptic curves over any (exact) field.

FormalGroupLaw(E, prec)

This function returns a polynomial in two variables, T1 + T2 + . . ., which expresses
the formal group law associated to addition on E, up to precision prec. (More
precisely, it contains the terms which have total degree less than or equal to prec.)

The formal variables T1 and T2 may be identified with the function −x/y on E,
where x and y are the standard affine coordinates on E. (Note that this function is
a local parameter in a neighbourhood of OE .)
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FormalGroupHomomorphism(phi, prec)

This function returns the homomomorphism of formal groups associated to the
isogeny phi, represented as a power series in one variable up to precision prec. As
in FormalGroupLaw, this is in terms of the parameter −x/y on each curve.

FormalLog(E)

Precision RngIntElt Default : 10
This function returns the formal logarithm for the elliptic curve E as a power series
f(T ), where the parameter T is the function−x/y on E. (This is the same parameter
used in FormalGroupLaw).

The function also returns a point P (T ) on E with coordinates in a Laurent series
ring with generator T , which again corresponds to −x/y. Thus P (T ) is a formal
parametrisation of E in a neighbourhood of OE .

120.7 Operations on Point Sets
Each elliptic curve E has associated with it a family of point sets of E indexed by coefficient
rings. These point sets, not E, are the objects in which points lie. If K is the base ring
of E and L is some extension of K then the elements of the point set E(L) comprise all
points lying on E whose coordinates are in L.

There is a distinguished point set E(K) of E which is called the base point set of E.
Many intrinsics (such as #, or TorsionSubgroup), strictly speaking, only make sense when
applied to point sets; as a convenience, when E is passed to these functions the behaviour
is the same as if the base point set E(K) were passed instead. It is important to remember,
however, that E and E(K) are different objects and will not always behave in the same
manner.

The above statements are equally valid if the elliptic curve E is replaced by some
subgroup scheme G. Moreover, the types of the point sets of G and E are the same, and
similarly for points. (They may be distinguished by checking the type of the scheme of
which they are point sets.)

120.7.1 Creation of Point Sets

E(L)

PointSet(E, L)

Given an elliptic curve E (or a subgroup scheme thereof) and an extension L of its
base ring, this function returns a point set whose elements are points on E with
coefficients in L.

E(m)

PointSet(E, m)

Given an elliptic curve E (or a subgroup scheme thereof) and a map m from the
base ring of E to a field L, this function returns a point set whose elements are
points on E with coefficients in L. The map is retained to permit coercions between
point sets.
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120.7.2 Associated Structures

Category(H)

Type(H)

Given a point set H of an elliptic curve, returns the category SetPtEll of point sets
of elliptic curves.

Scheme(H)

Returns the associated scheme (either an elliptic curve or a subgroup scheme) of
which H is a point set.

Curve(H)

Returns the associated elliptic curve that contains Scheme(H).

Ring(H)

Returns the ring that contains the coordinates of points in H.

120.7.3 Predicates on Point Sets

H1 eq H2

Returns whether the two point sets are equal. That is, whether the point sets have
equal coefficient rings and elliptic curves (subgroup schemes).

H1 ne H2

The logical negation of eq.

Example H120E15

We create an elliptic curve E over GF(5) and then construct two associated point sets:

> K := GF(5);

> E := EllipticCurve([K | 1, 0]);

> H := E(K);

> H;

Set of points of E with coordinates in GF(5)

> H2 := E(GF(5, 2));

> H2;

Set of points of E with coordinates in GF(5^2)

We note that although these are point sets of the same curve, they are not equal because the rings
are not equal.

> Scheme(H) eq Scheme(H2);

true

> Ring(H) eq Ring(H2);

false

> H eq H2;
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false

Similarly, we see that a point set of a subgroup scheme is not the same object as the point set of
the curve because the schemes are different.

> P<t> := PolynomialRing(K);

> G := SubgroupScheme(E, t - 2);

> HG := G(K);

> Scheme(HG) eq Scheme(H);

false

> Ring(HG) eq Ring(H);

true

> HG eq H;

false

Also note that the scheme and the parent curve of point sets of G are different:

> Scheme(HG);

Subgroup scheme of E defined by x + 3

> Curve(HG);

Elliptic Curve defined by y^2 = x^3 + x over GF(5)

120.8 Morphisms
Four types of maps between elliptic curves may be constructed: isogenies, isomorphisms,
translations, and rational maps. Isogenies and isomorphisms are by far the most important
and have the most functions associated to them. Isogenies are always surjective as scheme
maps, even though the Magma parlance of a map from E(Q) → F (Q) may seem to
indicate that (for instance) the multiplication-by-two map is not surjective. There is an
internal limit that the degrees of the polynomials defining an isogeny cannot be more
than 107.

120.8.1 Creation Functions

Example H120E16

The following example gives a construction of a 2-isogeny between elliptic curves. This example
follows Example III 4.5 of Silverman [Sil86], and demonstrates a parametrised family of 2-isogenies
of elliptic curves together with its dual.

> FF := FiniteField(167);

> a := FF!2; b := FF!3; r := a^2 - 4*b;

> E1 := EllipticCurve([0, a, 0, b, 0]);

> E2 := EllipticCurve([0, -2*a, 0, r, 0]);

> _<x> := PolynomialRing(BaseRing(E1));

> Ff, f := IsogenyFromKernel(E1, x);

> Fg, g := IsogenyFromKernel(E2, x);

> b, m1 := IsIsomorphic(Ff, E2); assert b;
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> b, m2 := IsIsomorphic(Fg, E1); assert b;

> // Verify that f and g are dual isogenies of degree 2

> &and[ m2(g(m1(f(P)))) eq 2*P : P in RationalPoints(E1) ];

true

> &and[ m1(f(m2(g(Q)))) eq 2*Q : Q in RationalPoints(E2) ];

true

Isomorphism(E, F, [r, s, t, u])

Given elliptic curves E and F defined over the same field K, and four elements
r, s, t, u of K with u 6= 0, this function returns the isomorphism E → F mapping
OE 7→ OF and mapping (x, y) 7→ (u2x + r, u3y + su2x + t). This function returns
an error if the values passed do not define such an isomorphism.

Isomorphism(E, F)

Given elliptic curves E and F defined over the same field K, this function computes
and returns an isomorphism from E to F where such an isomorphism exists. The
map returned will be the same as the second return value of IsIsomorphic.

Automorphism(E, [r, s, t, u])

Given an elliptic curve E defined over a field K, and four elements r, s, t, u of K
with u 6= 0, this function returns the automorphism E → E mapping OE 7→ OE

and mapping (x, y) 7→ (u2x + r, u3y + su2x + t). This function returns an error if
the values passed do not define such an automorphism.

IsomorphismData(I)

The sequence [r, s, t, u] of elements defining the isomorphism I.

Example H120E17

We illustrate the isomorphism routines with some simple examples.

> K := GF(73);

> E1 := EllipticCurve([K | 3, 4, 2, 5, 1]);

> E2 := EllipticCurve([K | 8, 2, 29, 45, 28]);

> IsIsomorphic(E1, E2);

true

> m := Isomorphism(E1, E2, [3, 2, 1, 4]);

> m;

Elliptic curve isomorphism from: CrvEll: E1 to CrvEll: E2

Taking (x : y : 1) to (16*x + 3 : 64*y + 32*x + 1 : 1)

> P1 := Random(E1);

> P2 := Random(E1);

> m(P1 + P2) eq m(P1) + m(P2);
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true

From the isomorphism data we can apply the map by hand if desired:

> r, s, t, u := Explode(IsomorphismData(Inverse(m)));

> P3 := E2![ 69, 64 ];

> x, y := Explode(Eltseq(P3));

> E1 ! [ u^2*x + r, u^3*y + s*u^2*x + t ];

(68 : 32 : 1)

> m($1) eq P3;

true

IsIsomorphism(I)

This function returns true if and only if the isogeny I has the same action as some
isomorphism; if so, the isomorphism is also returned.

IsomorphismToIsogeny(I)

This function takes a map I of type isomorphism and returns an equivalent map
with type isogeny.

Example H120E18

An example of how to use the previous two functions to transform isogenies to isomorphisms and
vice versa.

> FF := FiniteField(23);

> E0 := EllipticCurve([FF | 1, 1]);

> E1 := EllipticCurve([FF | 3, 2]);

> b, iso := IsIsomorphic(E0, E1);

> b;

true

> iso;

Elliptic curve isomorphism from: CrvEll: E0 to CrvEll: E1

Taking (x : y : 1) to (16*x : 18*y : 1)

> isog := IsomorphismToIsogeny(iso);

> isog;

Elliptic curve isogeny from: CrvEll: E0 to CrvEll: E1

taking (x : y : 1) to (16*x : 18*y : 1)

> b, new_iso := IsIsomorphism(isog);

> b;

true

> inv := Inverse(new_iso);

> P := Random(E0);

> inv(isog(P)) eq P;

true



Ch. 120 ELLIPTIC CURVES 3955

TranslationMap(E, P)

Given a rational point P on the elliptic curve E, this function returns the morphism
tP : E → E defined by tP (Q) = P +Q for all rational points Q of E.

RationalMap(i, t)

Let i be an isogeny and t be a translation map tP : E → E where tP (Q) = P +Q
for some rational point P ∈ E. This function returns the rational map φ : E → F
obtained by composing i and t (applying t first). Any rational map E → F can be
represented in this form.

TwoIsogeny(P)

Given a 2-torsion point P of the elliptic curve E, this function returns a 2-isogeny
on E with P as its kernel.

Example H120E19

One may, of course, also define maps between elliptic curves using the generic map constructors,
as the following examples show.

> E1 := EllipticCurve([ GF(23) | 1, 1 ]);

> E2 := EllipticCurve([ GF(23, 2) | 1, 1 ]);

The doubling map on E1 lifted to E2:

> f := map<E1 -> E2 | P :-> 2*P>;

Two slightly different ways to define the negation map on E1 lifted to E2:

> f := map<E1 -> E2 | P :-> E2![ P[1], -P[2], P[3] ]>;

> f := map<E1 -> E2 | P :-> (P eq E1!0) select E2!0

> else E2![ P[1], -P[2], 1 ]>;

IsogenyFromKernel(G)

Let G be a subgroup scheme of an elliptic curve E. There is a separable isogeny
f : E → Ef to some other elliptic curve Ef , which has kernel G. This function
returns the curve Ef and the map f using Velu’s formulae.

IsogenyFromKernelFactored(G)

Returns a sequence of isogenies whose product is the isogeny returned by the invo-
cation IsogenyFromKernel(G). These isogenies have either degree 2 or odd degree.
This function was introduced because composing isogenies can be computationally
expensive. The generic Expand function on a composition of maps can then be used
if desired.
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IsogenyFromKernel(E, psi)

Given an elliptic curve E and a univariate polynomial psi which defines a subgroup
scheme of E, compute an isogeny using Velu’s formulae as above.

IsogenyFromKernelFactored(E, psi)

Returns a sequence of isogenies whose product is the isogeny returned by the invo-
cation IsogenyFromKernel(E, psi). These isogenies have either degree 2 or odd
degree. This function was introduced because composing isogenies can be computa-
tionally expensive. The generic Expand function on a composition of maps can then
be used if desired.

PushThroughIsogeny(I, v)

PushThroughIsogeny(I, G)

Given an isogeny I and a subgroup G which contains the kernel of I, find the
image of G under the action of I. The subgroup G may be replaced by its defining
polynomial v.

DualIsogeny(phi)

Given an isogeny φ : E1 → E2, the function returns another isogeny φ∗ : E2 → E1

such that φ∗ ◦ φ is multiplication by the degree of φ. The result is remembered and
DualIsogeny(DualIsogeny(phi)) returns phi.

Example H120E20

We exhibit one way of calculating the dual of an isogeny. First we create a curve and an isogeny
f with kernel equal to the full 5-torsion polynomial.

> E := EllipticCurve([GF(97) | 2, 3]);

> E1, f := IsogenyFromKernel(E, DivisionPolynomial(E, 5));

The image curve E1 is isomorphic, but not equal, to the original curve E. We proceed to find the
dual of f .

> deg := Degree(f);

> psi := DivisionPolynomial(E, deg);

> f1 := PushThroughIsogeny(f, psi);

> E2, g := IsogenyFromKernel(E1, f1);

> // Velu’s formulae give an isomorphic curve, not the curve itself.

> IsIsomorphic(E2, E);

true

> h := Isomorphism(E2, E);

> f_dual := g*IsomorphismToIsogeny(h);

The latter isogeny is the dual of f , as we verify:

> &and [ f_dual(f(P)) eq deg*P : P in RationalPoints(E) ];
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true

Of course, a simpler way to verify this is just to check equality:

> f_dual eq DualIsogeny(f);

true

120.8.2 Predicates on Isogenies

IsZero(I)

IsConstant(I)

Returns true if and only if the image of the isogeny I is the zero element of its
codomain.

I eq J

Returns true if and only if the isogenies I and J are equal.

120.8.3 Structure Operations

IsogenyMapPsi(I)

Returns the univariate polynomial ψ used in defining the isogeny I. The roots of ψ
determine the kernel of I.

IsogenyMapPsiMulti(I)

Returns the polynomial ψ used in defining the isogeny I as a multivariate polyno-
mial.

IsogenyMapPsiSquared(I)

Returns the denominator of the fraction giving the image of the x-coordinate of a
point under the isogeny I (the numerator is returned by IsogenyMapPhi(I)).

IsogenyMapPhi(I)

Returns the univariate polynomial φ used in defining the isogeny I.

IsogenyMapPhiMulti(I)

Returns the polynomial φ used in defining the isogeny I as a multivariate polynomial.

IsogenyMapOmega(I)

Returns the multivariate polynomial ω used in defining the isogeny I.

Kernel(I)

Returns the subgroup of the domain consisting of the elements that map to zero
under the isogeny I.

Degree(I)

Returns the degree of the morphism I.
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120.8.4 Endomorphisms
Let E be an elliptic curve defined over the field K. The set of endomorphisms End(E) of
E to itself forms a ring under composition and addition of maps.

The endomorphism ring of E always contains a subring isomorphic to Z. A curve E
whose endomorphism ring contains additional isogenies is said to have complex multipli-
cation. If E is defined over a finite field then E always has complex multiplication. The
endomorphism ring of E is isomorphic to an order in either a quadratic number field or a
quaternion algebra.

MultiplicationByMMap(E, m)

Returns the multiplication-by-m endomorphism [m] : E → E of the elliptic curve
E, such that [m](P ) = m ∗ P .

IdentityIsogeny(E)

Returns the identity map E → E of the elliptic curve E as an isogeny.

IdentityMap(E)

Returns the identity map E → E of the elliptic curve E as an isomorphism. The
defining coefficients are [r, s, t, u] = [0, 0, 0, 1].

NegationMap(E)

Returns the isomorphism of the elliptic curve E which maps P to −P , for all P ∈ E.

FrobeniusMap(E, i)

Returns the Frobenius isogeny (x : y : 1) 7→ (xpi

: ypi

: 1) of an elliptic curve E
defined over a finite field of characteristic p.

FrobeniusMap(E)

Equivalent to FrobeniusMap(E, 1).

Example H120E21

We check the action of the FrobeniusMap function.

> p := 23;

> FF1 := FiniteField(p);

> FF2 := FiniteField(p, 2);

> E1 := EllipticCurve([FF1 | 1, 3]);

> E2 := BaseExtend(E1, FF2);

> frob := FrobeniusMap(E2, 1);

> #{ E1!P : P in RationalPoints(E2) | P eq frob(P) } eq #E1;

true
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120.8.5 Automorphisms
The functions in this section deal with automorphisms in the category of elliptic curves.
For an elliptic curve E these are the automorphisms of the underlying curve that also
preserve the group structure (equivalently, that send the identity OE to itself).

Warning: The behaviour of these functions depends on the type of the input curve. For
a general curve in Magma (an object that is a Crv but not a CrvEll) over a finite field,
AutomorphismGroup and Automorphisms give automorphisms in the category of curves.

AutomorphismGroup(E)

For an elliptic curve E over a general field K, this function determines the group of
automorphisms of E that are defined over K. It returns an abstract group A (an
abelian group or a polycyclic group), together with a map which sends elements of
A to actual automorphisms of E (maps of schemes with domain and codomain E).

Automorphisms(E)

For an elliptic curve E over a general field K, this function returns a sequence
containing the elements of the AutomorphismGroup of E.

120.9 Operations on Points

Points on an elliptic curve over a field are given in terms of projective coordinates: A
point (a, b, c) is equivalent to (x, y, z) if and only if there exists an element u (in the field
of definition) such that ua = x, ub = y, and uc = z. The equivalence class of (x, y, z) is
denoted by the projective point (x : y : z). At least one of the projective coordinates must
be nonzero. We call the coefficients normalised if either z = 1, or z = 0 and y = 1.

120.9.1 Creation of Points
In this section the descriptions will refer to a point set H, which is either the H in the
signature or the base point set of the elliptic curve E in the signature.

H ! [x, y, z] elt< H | x, y, z >

E ! [x, y, z] elt< E | x, y, z >

Given a point set H = E(R) and coefficients x, y, z in R satisfying the equation
for E, return the normalised point P = (x : y : z) in H. If z is not specified it is
assumed to be 1.

H ! 0 Id(H) Identity(H)

E ! 0 Id(E) Identity(E)

Returns the normalised identity point (0 : 1 : 0) of the point set H on the elliptic
curve E.
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Points(H, x)

Points(E, x)

Returns the sequence of points in the pointset H on the elliptic curve E whose
x-coordinate is x.

Points(H) RationalPoints(H)

Points(E) RationalPoints(E)

Bound RngIntElt Default : 0
DenominatorBound RngIntElt Default : Bound
Denominators Setq Default :

Max RngIntElt Default :

NPrimes RngIntElt Default : 30
Given an elliptic curve E (or associated point set) over the rationals, a number field,
or a finite field, this function returns an indexed set of points on the curve (or in
the point set). When over a finite field this will contain all the rational points.

When over Q or a number field, a positive value for the parameter Bound must
be given. Over Q this refers to the height of the x-coordinate of the points. Over
number fields the algorithm searches x-coordinates in some chosen box and with
some chosen denominators depending on the Bound (so here, too, there is loosely a
linear relationship between the Bound and the heights of the x-coordinates searched).

The other optional parameters are only for the number field case. The denom-
inators of x-coordinates to be searched can be specified as Denominators (a set of
integral elements in the field) or by setting DenominatorBound (an integer). If an
integer Max is specified then the routine returns as soon as this many points are
found. The parameter NPrimes is an internal parameter that controls the number
of primes used in the sieving.

The algorithm uses a sieve method; the number field case is described in Ap-
pendix A of [Bru02]. In both cases the implementation of the sieving is reasonably
fast.

PointsAtInfinity(H)

PointsAtInfinity(E)

Returns the indexed set containing the identity point of the pointset H or on the
elliptic curve E.

120.9.2 Creation Predicates

IsPoint(H, S)

IsPoint(E, S)

Returns true if the sequence of values in S are the coordinates of a point in the
pointset H or on the elliptic curve E, false otherwise. If this is true then the
corresponding point is returned as the second value.
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IsPoint(H, x)

IsPoint(E, x)

Returns true if x is the x-coordinate of a point in the pointset H or on the elliptic
curve E, false otherwise. If this is true then a corresponding point is returned as
the second value. Note that the point at infinity of H will never be returned.

120.9.3 Access Operations

P[i]

Returns the i-th coefficient for an elliptic curve point P , for 1 ≤ i ≤ 3.

ElementToSequence(P)

Eltseq(P)

Given a point P on an elliptic curve, this function returns a sequence of length 3
consisting of its coefficients (normalised).

120.9.4 Associated Structures

Category(P)

Type(P)

Given a point P on an elliptic curve, this function returns PtEll, the category of
elliptic curve points.

Parent(P)

Given a point P on an elliptic curve, this function returns the parent point set for
P .

Scheme(P)

Curve(P)

Given a point P on an elliptic curve, this function returns the corresponding scheme
or elliptic curve for the parent point set of P .

120.9.5 Arithmetic
The points on an elliptic curve over a field form an abelian group, for which we use the
additive notation. The identity element is the point O = (0 : 1 : 0).

-P

Returns the additive inverse of the point P on an elliptic curve E.

P + Q

Returns the sum P +Q of two points P and Q on the same elliptic curve.
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P +:= Q

Given two points P and Q on the same elliptic curve, sets P equal to their sum.

P - Q

Returns the difference P −Q of two points P and Q on the same elliptic curve.

P -:= Q

Given two points P and Q on the same elliptic curve, sets P equal to their difference.

n * P

Returns the n-th multiple of the point P on an elliptic curve.

P *:= n

Sets the point P equal to the n-th multiple of itself.

120.9.6 Division Points

P / n

Given a point P on an elliptic curve E and an integer n, this function returns a
point Q on E such that P = nQ, if such a point exists. If no such point exists then
a runtime error results.

P /:= n

Given a point P on an elliptic curve E and an integer n, this function sets P equal
to a point Q on E such that P = nQ, if such a point exists. If no such point exists
then a runtime error results.

DivisionPoints(P, n)

Given a point P on an elliptic curve E and an integer n, this function returns the
sequence of all points Q on E such that P = nQ holds. If there are no such points
then an empty sequence is returned.

IsDivisibleBy(P, n)

Given a point P on an elliptic curve E and an integer n, this function returns true
if P is n-divisible, and if so, an n-division point. Otherwise false is returned.
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Example H120E22

> E := EllipticCurve([1, 0, 0, 12948, 421776]);

> P := E![ -65498304*1567, -872115836268, 1567^3 ];

> DivisionPoints(P, 3);

[ (312 : -6060 : 1), (-30 : -66 : 1), (216 : 3540 : 1) ]

Note that P has three three-division points — this tells us that there are three 3-torsion points
in E. In fact, there are 9 points in the torsion subgroup.

> DivisionPoints(E!0, 9);

[ (0 : 1 : 0), (24 : 852 : 1), (24 : -876 : 1), (-24 : -300 : 1), (-24 : 324 : 1),

(600 : 14676 : 1), (600 : -15276 : 1), (132 : 2040 : 1), (132 : -2172 : 1) ]

Example H120E23

We construct some points in a certain elliptic curve over Q and try by hand to find a “smaller”
set of points that generate the same group.

> E := EllipticCurve([0, 0, 1, -7, 6]);

> P1 := E![ 175912024457 * 278846, -41450244419357361, 278846^3 ];

> P2 := E![ -151 * 8, -1845, 8^3 ];

> P3 := E![ 36773 * 41, -7036512, 41^3 ];

> P1; P2; P3;

(175912024457/77755091716 : -41450244419357361/21681696304639736 : 1)

(-151/64 : -1845/512 : 1)

(36773/1681 : -7036512/68921 : 1)

Now we try small linear combinations in the hope of finding nicer looking points. We shall omit
the bad guesses and just show the good ones.

> P1 + P2;

(777/3364 : 322977/195112 : 1)

Success! We replace P1 with this new point and keep going.

> P1 +:= P2;

> P2 + P3;

(-3 : 0 : 1)

> P2 +:= P3;

> P3 - P1;

(-1 : -4 : 1)

> P3 -:= P1;

> P1 - 2*P2;

(0 : 2 : 1)

> P1 -:= 2*P2;

> [ P1, P2, P3 ];

[ (0 : 2 : 1), (-3 : 0 : 1), (-1 : -4 : 1) ]

The pairwise reductions no longer help, but there is a smaller point with x-coordinate 1:

> IsPoint(E, 1);
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true (1 : 0 : 1)

After a small search we find:

> P1 - P2 - P3;

(1 : 0 : 1)

> P2 := P1 - P2 - P3;

> [ P1, P2, P3 ];

[ (0 : 2 : 1), (1 : 0 : 1), (-1 : -4 : 1) ]

Using a naive definition of “small” these are the smallest possible points. (Note that there are
points of smaller canonical height.) These points are in fact the generators of the Mordell–Weil
group for this particular elliptic curve. Since none of the transformations changed the size of the
space spanned by the points it follows that the original set of points are also generators of E.
However, the reduced points form a much more convenient basis.

Example H120E24

We construct an elliptic curve over a function field (hence an elliptic surface) and form a “generic”
point on it. First, we construct the function field.

> E := EllipticCurve([GF(97) | 1, 2]);

> K<x, y> := FunctionField(E);

Now we lift the curve to be over its own function field and form a generic point on E.

> EK := BaseChange(E, K);

> P := EK![x, y, 1];

> P;

(x : y : 1)

> 2*P;

((73*x^4 + 48*x^2 + 93*x + 73)/(x^3 + x + 2) : (85*x^6 + 37*x^4 + 5*x^3

+ 60*x^2 + 96*x + 8)/(x^6 + 2*x^4 + 4*x^3 + x^2 + 4*x + 4)*y : 1)

Finally, we verify that addition of the generic point defines the addition law on the curve.

> m2 := MultiplicationByMMap(E, 2);

> P := E![ 32, 93, 1 ];

> m2(P);

(95 : 63 : 1)

> 2*P;

(95 : 63 : 1)
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120.9.7 Point Order

Order(P)

Given a point on an elliptic curve defined over Q or a finite field, this function
computes the order of P ; that is, the smallest positive integer n such that n ·P = O
on the curve. If no such positive n exists then 0 is returned to indicate infinite
order. If the curve is defined over a finite field then the order of the curve will first
be computed.

FactoredOrder(P)

Given a point on an elliptic curve defined over Q or over a finite field, this function
returns the factorisation of the order of P . If the curve is over a finite field then
on repeated applications this is generally much faster than factorising Order(P)
because the factorisation of the order of the curve will be computed and stored. An
error ensues if the curve is defined over Q and P has infinite order.

Example H120E25

We show a few simple operations with points on an elliptic curve over a large finite field.

> E := EllipticCurve([GF(NextPrime(10^12)) | 1, 1]);

> Order(E);

1000001795702

> FactoredOrder(E);

[ <2, 1>, <7, 1>, <13, 1>, <19, 1>, <31, 1>, <43, 1>, <59, 1>, <3677, 1> ]

> P := E ! [652834414164, 320964687531, 1];

> P;

(652834414164 : 320964687531 : 1)

> IsOrder(P, Order(E));

true

> FactoredOrder(P);

[ <2, 1>, <7, 1>, <13, 1>, <19, 1>, <31, 1>, <43, 1>, <59, 1>, <3677, 1> ]

> FactoredOrder(3677 * 59 * P);

[ <2, 1>, <7, 1>, <13, 1>, <19, 1>, <31, 1>, <43, 1> ]

120.9.8 Predicates on Points

IsId(P)

IsIdentity(P)

IsZero(P)

Returns true if and only if the point P is the identity point of its point set, false
otherwise.
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P eq Q

Returns true if and only if P and Q are points on the same elliptic curve and have
the same normalised coordinates.

P ne Q

The logical negation of eq.

P in H

Given a point P , return true if and only if P is in the point set H. That is, it
satisfies the equation of E and its coordinates lie in R, where H = E(R).

P in E

Given a point P , return true if and only if P is on the elliptic curve E (i.e., satisfies
its defining equation). Note that this is an exception to the general rule, in that P
does not have to lie in the base point set of E for this to be true.

IsOrder(P, m)

Returns true if and only if the point P has order m. If you believe that you know
the order of the point then this intrinsic is likely to be much faster than just calling
Order.

IsIntegral(P)

Given a point P on an elliptic curve defined over Q, this function returns true if
and only if the coordinates of the (normalisation of) P are integers.

IsSIntegral(P, S)

Given a point P on an elliptic curve defined over Q and a sequence S of primes,
this function returns true if and only if the coordinates of the (normalisation of) P
are S-integers. That is, the denominators of x(P ) and y(P ) are only supported by
primes of S.

Example H120E26

We find some integral and S-integral points on a well-known elliptic curve.

> E := EllipticCurve([0, 17]);

> P1 := E![ -2, 3 ];

> P2 := E![ -1, 4 ];

> S := [ a*P1 + b*P2 : a,b in [-3..3] ];

> #S;

49

> [ P : P in S | IsIntegral(P) ];

[ (43 : -282 : 1), (5234 : -378661 : 1), (2 : -5 : 1), (8 : 23 : 1),

(4 : 9 : 1), (-2 : -3 : 1), (52 : -375 : 1), (-1 : -4 : 1), (-1 : 4 : 1),

(52 : 375 : 1), (-2 : 3 : 1), (4 : -9 : 1), (8 : -23 : 1), (2 : 5 : 1),

(5234 : 378661 : 1), (43 : 282 : 1) ]

> [ P : P in S | IsSIntegral(P, [2, 3]) and not IsIntegral(P) ];
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[ (1/4 : 33/8 : 1), (-8/9 : 109/27 : 1), (-206/81 : -541/729 : 1),

(137/64 : 2651/512 : 1), (137/64 : -2651/512 : 1), (-206/81 : 541/729 : 1),

(-8/9 : -109/27 : 1), (1/4 : -33/8 : 1) ]

120.9.9 Weil Pairing
Magma contains an optimised implementation of the Weil pairing on an elliptic curve.
This function is used in the computation of the group structure of elliptic curves over
finite fields, making the determination of the group structure efficient.

WeilPairing(P, Q, n)

Given n-torsion points P and Q of an elliptic curve E, this function computes the
Weil pairing of P and Q.

IsLinearlyIndependent(S, n)

Given a sequence S of points of an elliptic curve E such that each point has order
dividing n, this function returns true if and only if the points in S are linearly
independent over Z/nZ.

IsLinearlyIndependent(P, Q, n)

Given points P and Q of an elliptic curve E, this function returns true if and only
if P and Q form a basis of the n-torsion points of E.

Example H120E27

We compute the Weil pairing of two 3-torsion points on the curve y2 = x3 − 3 over Q.

> E := EllipticCurve([0, -3]);

> E;

> P1, P2, P3 := Explode(ThreeTorsionPoints(E));

> P1;

(0 : 2*zeta_3 + 1 : 1)

> Parent(P1);

Set of points of E with coordinates in Cyclotomic Field

of order 3 and degree 2

> Parent(P2);

Set of points of E with coordinates in Number Field with

defining polynomial X^3 - 18*X - 30 over the Rational Field

In order to take the Weil pairing of two points we need to coerce them into the same point set.
This turns out to be a point set over a number field K of degree 6.

> Qmu3 := Ring(Parent(P1));

> K<w> := CompositeFields(Ring(Parent(P1)), Ring(Parent(P2)))[1];

> wp := WeilPairing( E(K)!P1, E(K)!P2, 3 );

> wp;

1/975*(14*w^5 + 5*w^4 - 410*w^3 - 620*w^2 + 3964*w + 8744)
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> Qmu3!wp;

zeta_3
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Chapter 121

ELLIPTIC CURVES OVER
FINITE FIELDS

This chapter describes the specialised facilities for elliptic curves defined over finite fields.
Details concerning their construction, arithmetic, and basic properties may be found in
Chapter 120. Most of the machinery has been constructed with Elliptic Curve Cryptogra-
phy in mind.

The first major group of intrinsics relate to the determination of the order of the group
of rational points of an elliptic curve over a large finite field. A variety of canonical lift
algorithms are provided for characteristic 2 fields while the SEA algorithm is used for fields
having characteristic greater than 2. These tools are used as the basis for functions that
search for curves suitable for cryptographic applications.

A function for computing the Weil pairing forms the basis of the MOV reduction of the
discrete logarithm problem (DLP) for a supersingular elliptic curve to a DLP in a finite
field. A second type of attack on the DLP is based on the use of Weil descent. Tools
implementing a generalisation of the GHS attack for ordinary curves in characteristic 2
are provided.

Finally, for a direct attack on the DLP for elliptic curves, a parallel collision search
version of the Pollard rho algorithm is available.

121.1 Supersingular Curves

IsSupersingular(E : parameters)

Proof BoolElt Default : true

Given an elliptic curve E over a finite field, this function returns false if E is
ordinary, otherwise proves that E is supersingular and returns true. If the param-
eter Proof is set to false then the effect of the function is the same as that of
IsProbablySupersingular.

SupersingularPolynomial(p)

Given a prime p, returns the separable monic polynomial over Fp whose roots are
precisely the j invariants of supersingular elliptic curves in characteristic p. The
polynomial is computed by a formula; ignoring factors corresponding to j = 0 or
1728, it is the partial power-series expansion of a certain hypergeometric function
reduced mod p. For p of moderate size this is a very fast method.
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IsOrdinary(E)

Given an elliptic curve E over a finite field, this function returns true if the elliptic
curve E is ordinary, otherwise false (i.e., if it is supersingular). Thus, this function
is the logical negation of IsSupersingular.

IsProbablySupersingular(E)

Given an elliptic curve E over a finite field, this function returns returns false
if the elliptic curve E is proved to be ordinary, otherwise true. The algorithm is
nondeterministic and repeated tests are independent.

121.2 The Order of the Group of Points

121.2.1 Point Counting
Magma contains an efficient implementation of the Schoof–Elkies–Atkin (SEA) algorithm,
with Lercier’s extension to base fields of characteristic 2, for computing the number of
points on an elliptic curve over a finite field. There are also implementations of the faster
p-adic canonical lift methods and the p-adic deformation method in small characteristic.
Calculations are performed in the smallest field over which the curve is defined, and the
result is lifted to the original field.

Like all group functions on elliptic curves, these intrinsics really apply to a particular
point set; the curve is identified with its base point set for the purposes of these functions.
To aid exposition only the versions that take the curves are shown but an appropriate
point set (over a finite field) may be used instead.

#E

Order(E)

The order of the group of K-rational points of E, where E is an elliptic curve defined
over the finite field K.

FactoredOrder(E)

This function returns the factorisation of the order of the group of K-rational points
of E, where E is an elliptic curve defined over the finite field K. This factorisation
is stored on E and is reused when computing the order of points on E.

SEA(H : parameters)

SEA(E : parameters)

Al MonStgElt Default : "Default"

MaxSmooth RngIntElt Default : ∞
AbortLevel RngIntElt Default : 0
UseSEA BoolElt Default : false

This is the internal algorithm used by the point counting routines, but it can be
invoked directly on an elliptic curve E or a point set H if desired. The most obvious
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reason to do this is because of the parameters AbortLevel and MaxSmooth, which
allow the computation to be stopped early if it can be shown not to satisfy certain
conditions (such as the order of the group being prime).
Warning: Unlike the external functions which call it (such as Order and
FactoredOrder), SEA does not store the computed group order back on the curve
itself and so functions which need the group order will have to recompute it.

The parameter Al can be set to one of "Enumerate", "BSGS", or "Default".
Setting Al to "Enumerate" causes the group order to be found by enumeration of
all points on the curve and hence is only practical for small orders. Setting Al
to "BSGS" is currently equivalent to setting Al to "Default", which uses point
enumeration for suitably small finite fields, the full Schoof–Elkies–Atkin algorithm
if the characteristic is not small, and canonical lift methods or deformation if it is.
Currently, small characteristic means p < 1000. For p < 37 or p ∈ {41, 47, 59, 71},
canonical lift is used; deformation is the chosen method for other small p.

The canonical lift methods use a range of techniques to lift a modular parameter
of the curve to an unramified p-adic ring. If a Gaussian Normal Basis of type ≤ 2
exists for that ring (see HasGNB on page 4-1268) then the method of Lercier and
Lubicz from [LL03] is used with some local adaptations by Michael Harrison to
increase the speed for fields of moderate size. Otherwise, the MSST algorithm as
described in [Gau02] is used for fields up to a certain size with Harley’s recursive
version ([Har]) taking over for larger fields.

For p < 10 and p = 13 the modular parameter used is a generator of the function
field of a genus 0 modular curve X0(pr). The parameter gives a particularly nice
modular polynomial Φ for use in the above-mentioned iterative lifting processes (see
[Koh03]). In these cases Φ has a relatively simple factored form and evaluations are
hand-coded for extra efficiency.

For p where X0(p) is hyperelliptic (excepting the anomalous case p = 37) we
use a new method, developed by Michael Harrison, which lifts a pair of modular
parameters corresponding to the x and y coordinates in a simple Weierstrass model
of X0(p).

The deformation method uses code designed and implemented by Hendrik
Hubrechts. It is based on ideas of Dwork, first used in the design of explicit compu-
tational algorithms by Alan Lauder, and works by computing the deformation over
a family of curves of the Frobenius action on rigid cohomology by solving a certain
differential equation p-adically. Details can be found in [Hub07]. The method is
used for E over Fpn with p < 1000 for which the canonical lift method is not used
and for n greater than a smallish bound that increases slowly with p. For such p
and smaller n, either enumeration or small characteristic SEA is used.

To use Schoof–Elkies–Atkin in small characteristic (with Lercier’s improvements)
instead of canonical lift or deformation, set UseSEA to true.

The parameter MaxSmooth can be used to specify a limit on the number of small
primes that divide the group order. That is, we will consider the group order to
be “smooth” if it is divisible by the product of small primes and this product is
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larger than the value of MaxSmooth. Then the possible values of AbortLevel have
the following meanings:

0 : Abort if the curve has smooth order.
1 : Abort if both the curve and its twist have smooth order.
2 : Abort if either the curve or its twist have smooth order.

If the early abort is triggered then the returned group order is 0.
One common use of these parameters is when searching for a curve with prime

order. Setting MaxSmooth := 1 will cause the early termination of the algorithm if
a small factor of the order is found. If, however, the algorithm did not abort then
the group order is not necessarily prime — this just means that no small prime
dividing the order was encountered during the computation.

Note that the canonical lift methods give no intermediate data on the order of
E, so MaxSmooth and AbortLevel have no effect when these methods are used.

Example H121E1

The first examples in characteristic 2 illustrate the increased speed when we work with fields that
have GNBs available:

> //example with no Gaussian Normal Basis (GNB)

> K := FiniteField(2, 160); // finite field of size 2^160

> E := EllipticCurve([K!1, 0, 0, 0, K.1]);

> time #E;

1461501637330902918203686141511652467686942715904

Time: 0.100

> //example with a GNB of Type 1

> HasGNB(pAdicRing(2, 1), 162, 1);

true

> K := FiniteField(2, 162); // finite field of size 2^162

> E := EllipticCurve([K!1, 0, 0, 0, K.1]);

> time #E;

5846006549323611672814738806268278193573757976576

Time: 0.020

> //example with a GNB of Type 2

> K := FiniteField(2, 173); // finite field of size 2^173

> E := EllipticCurve([K!1, 0, 0, 0, K.1]);

> time #E;

11972621413014756705924586057649971923911742202056704

Time: 0.090

and here is an example in characteristic 3 (with type 1 GNB)

> F := FiniteField(3, 100);

> j := Random(F);

> E := EllipticCurveWithjInvariant(j);

> time #E;

515377520732011331036461505619702343613256090042



Ch. 121 ELLIPTIC CURVES OVER FINITE FIELDS 3975

Time: 0.020

Finally (for small characteristic), a case with p = 37 where the deformation method is used.

> F := FiniteField(37, 30);

> j := Random(F);

> E := EllipticCurveWithjInvariant(j);

> time #E;

111186413610993811950186296693286649955782417767

Time: 1.580

Here we can see the early abort feature in action:

> p := NextPrime(10^9);

> p;

1000000007

> K := GF(p);

> E := EllipticCurve([K | -1, 1]);

> time SEA(E : MaxSmooth := 1);

0

Time: 0.010

> time #E;

1000009476

Time: 0.070

For curves this small the amount of time saved by an early abort is fairly small, but for curves
over large fields the savings can be quite significant. As mentioned above, even when SEA does
not abort there is no guarantee that the curve has prime order:

> E := EllipticCurve([K | 0, 1]);

> time SEA(E : MaxSmooth := 1);

1000000008

> IsSupersingular(E);

true

> E := EllipticCurve([K | -30, 1]);

> time SEA(E : MaxSmooth := 1);

1000035283

> Factorization($1);

[ <13, 1>, <709, 1>, <108499, 1> ]

In the first case the curve was supersingular and so the order was easily computed directly; thus
no early abort was attempted. The latter case shows that small primes may not be looked at even
when the curve is ordinary.
Next we find a curve with prime order (see also CryptographicCurve on page 3979):

> for k in [1..p] do

> E := EllipticCurve([K | k, 1]);

> n := SEA(E : MaxSmooth := 1);

> if IsPrime(n) then

> printf "Found curve of prime order %o for k = %o\n", n, k;

> break;
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> end if;

> end for;

Found curve of prime order 999998501 for k = 29

> E;

Elliptic Curve defined by y^2 = x^3 + 29*x + 1 over GF(1000000007)

> #E;

999998501

SetVerbose("SEA", v)

This procedure changes the verbose printing level for the SEA algorithm which
counts the number of points on an elliptic curve. Currently the legal values for v are
false, true, or an integer between 0 and 5 (inclusive), where false is equivalent to
0 and true is equivalent to 1. A nonzero value gives information during the course
of the algorithm, increasing in verbosity for higher values of v.

N.B. The previous name for this verbose flag, "ECPointCount" is now deprecated
and will be removed in a future release. It should continue to function in this release,
but its verbose levels are different to those of "SEA".

Order(E, r)

Returns the order of the elliptic curve E over the extension field of K of degree r,
where K is the base field of E. The order is found by calculating the order of E
over K and lifting.

Trace(E)

TraceOfFrobenius(E)

Returns the trace of the Frobenius endomorphism on the elliptic curve E, equal to
q + 1− n where q is the cardinality of the coefficient field and n is the order of the
group of rational points of E.

Trace(E, r)

TraceOfFrobenius(E, r)

Returns the trace of the r-th power Frobenius endomorphism, where E is an elliptic
curve over a finite field.
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Example H121E2

The computation of the order of a curve over a finite field invokes the SEA algorithm. This data
determines the number of points over all finite extensions, and is equivalent to the data for the
trace of Frobenius. The values of the trace of Frobenius and group order over all extensions are
therefore a trivial computation.

> FF<w> := GF(2^133);

> E := EllipticCurve([1, 0, 0, 0, w]);

> time #E;

10889035741470030830941160923712974513152

Time: 8.830

> FactoredOrder(E);

[ <2, 10>, <3, 2>, <150959, 1>, <654749, 1>, <11953995917236774217401867, 1> ]

> time TraceOfFrobenius(E);

-113173485896391746559

Time: 0.000

> time TraceOfFrobenius(E, 3);

2247497466279379392112525914232899060001042788725924296315905

Time: 0.000

Example H121E3

The following code demonstrates the computation of twists of an elliptic curve over a finite field,
and the relationship with the trace of Frobenius.

> E := EllipticCurveFromjInvariant(GF(101^2)!0);

> Twists(E);

[

Elliptic Curve defined by y^2 = x^3 + 1 over GF(101^2),

Elliptic Curve defined by y^2 = x^3 + (61*w + 91) over GF(101^2),

Elliptic Curve defined by y^2 = x^3 + (98*w + 16) over GF(101^2),

Elliptic Curve defined by y^2 = x^3 + (9*w + 66) over GF(101^2),

Elliptic Curve defined by y^2 = x^3 + (59*w + 76) over GF(101^2),

Elliptic Curve defined by y^2 = x^3 + (87*w + 81) over GF(101^2)

]

> IsSupersingular(E);

true

Since E is supersingular, so are the twists of E. Hence the traces are divisible by the prime:

> [ TraceOfFrobenius(F) : F in Twists(E) ];

[ -202, -101, 101, 202, 101, -101 ]

> [ TraceOfFrobenius(F) : F in QuadraticTwists(E) ];

[ -202, 202 ]

We see that the traces come in pairs; the trace of a curve is the negative of the trace of its
quadratic twist. This is not just true of the supersingular curves:

> E := EllipticCurveFromjInvariant(GF(101^2)!12^3);

> Twists(E);
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[

Elliptic Curve defined by y^2 = x^3 + x over GF(101^2),

Elliptic Curve defined by y^2 = x^3 + (40*w + 53)*x over GF(101^2),

Elliptic Curve defined by y^2 = x^3 + (3*w + 99)*x over GF(101^2),

Elliptic Curve defined by y^2 = x^3 + (92*w + 19)*x over GF(101^2)

]

> IsSupersingular(E);

false

> [ TraceOfFrobenius(F) : F in Twists(E) ];

[ -198, 40, 198, -40 ]

> [ TraceOfFrobenius(F) : F in QuadraticTwists(E) ];

[ -198, 198 ]

121.2.2 Zeta Functions

ZetaFunction(E)

Given an elliptic curve E over a finite field, the function returns the zeta function
of E as a rational function in one variable.

Note that each of the function calls Order(E), Trace(E), and ZetaFunction(E) invoke
the same call to the SEA algorithm and determine equivalent data.

Example H121E4

The zeta function ζE(t) of an elliptic curve E over a finite field Fq is a rational function whose
logarithmic derivative has the power series expansion:

d log ζE(t)

d log t
=

∞∑
n=1

|E(Fqn)| tn

The following example illustrates this property of ζE(t).

> p := 11;

> E := EllipticCurve([GF(p) | 1, 2]);

> Z := ZetaFunction(E);

> Q<t> := LaurentSeriesRing(Rationals());

> t*Derivative(Log(Evaluate(Z, t))) + O(t^7);

16*t + 128*t^2 + 1264*t^3 + 14848*t^4 + 160976*t^5 + 1769600*t^6 + O(t^7)

> [ Order(E, n) : n in [1..6] ];

[ 16, 128, 1264, 14848, 160976, 1769600 ]
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121.2.3 Cryptographic Elliptic Curve Domains
This section describes functions for generating/validating good cryptographic Elliptic
Curve Domains. The basic data of such a domain is an elliptic curve E over a finite
field together with a point P on E such that the order of P is a large prime and the pair
(E,P ) satisfies the standard security conditions for being resistant to MOV and Anomalous
attacks (see [JM00]).

CryptographicCurve(F)

ValidateCryptographicCurve(E, P, ordP, h)

OrderBound RngIntElt Default : 2160

Proof BoolElt Default : true

UseSEA BoolElt Default : false

Given a finite field F , the first function finds an Elliptic Curve Domain over F ;
it generates random elliptic curves over F until a suitable one is found. For each
generated curve E, the order #E is calculated and a check is made as to whether
sieving #E by small primes leaves a strong pseudoprime

p ≥ max(OrderBound, 4
√

(#F )).

If so, the security conditions (which only depend on the order of P ) are checked for
p. Finally, if Proof is true, p is proven to be prime. If all of the above conditions
hold true then a random point P on E of order p is found and E,P, p,#E/p are
returned.

If the Schoof–Elkies–Atkins method is used for computing #E then the early
abort mechanism (see SEA on page 3972) can help to shortcut the process when
OrderBound is close to #F . However, when they apply, it is generally still quicker
overall to use the much faster p-adic point-counting methods for large fields. To
force the use of the SEA method for point-counting set UseSEA to true. This is not
recommended!

Given data of the form returned by the first function as input, the second function
verifies that it is valid data for a secure EC Domain with ordP satisfying the above
inequality for p. If Proof is true (resp. false), ordP is proven to be prime (resp.
subjected to a strong pseudoprimality test).

NB: For the first function, it is required that #F ≥ OrderBound (or 2 ∗
OrderBound if F has characteristic 2 when all ordinary elliptic curves have even
order).

SetVerbose("ECDom", v)

Set the verbose printing level for progress output when running the above functions.
Currently the legal values for v are true, false, 0, 1, and 2 (false is the same as
0, and true is the same as 1).
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Example H121E5

For a bit of extra speed, we look for curves over F = GF (2196) where a Type 1 GNB exists for
p-adic point-counting (see SEA on page 3972). We begin by looking for a curve over F with a
point whose order is greater than the default OrderBound.

> SetVerbose("ECDom", 1);

> F := FiniteField(2, 196);

> E,P,ord,h := CryptographicCurve(F);

Finished! Tried 2 curves.

Total time: 1.721

> ord; h;

12554203470773361527671578846370731873587186564992869565421

8

Now we search for a curve whose order is twice a prime (the best we can do in characteristic 2!).
This can be accomplished by setting OrderBound to half the field size.

> E,P,ord,h := CryptographicCurve(F : OrderBound := 2^195);

Finished! Tried 102 curves.

Total time: 22.049

> ord; h;

50216813883093446110686315385797359941852852162929185668319

2

> ValidateCryptographicCurve(E, P, ord, h);

Verifying primality of the order of P...

true

121.3 Enumeration of Points
In this section the descriptions will refer to a point set H, which is either the H in the
signature or the base point set of the elliptic curve E in the signature.

Points(E)

Points(H)

RationalPoints(E)

RationalPoints(H)

Returns the set of rational points of the point set H or of the base point set of the
elliptic curve E, including the point at infinity.

Random(E)

Random(H)

Returns a random rational point of the point set H or of the base point set of the
elliptic curve E. Every rational point has a roughly equal chance of being selected,
including the point at infinity.



Ch. 121 ELLIPTIC CURVES OVER FINITE FIELDS 3981

121.4 Abelian Group Structure

Like all group functions on elliptic curves, these intrinsics really apply to a particular point
set; the curve is identified with its base point set for the purposes of these functions. To
aid exposition only the versions that take the curves are shown but an appropriate point
set over a finite field may be used instead.

AbelianGroup(E)

TorsionSubgroup(E)

Computes the abelian group isomorphic to the group of rational points on the elliptic
curve E over a finite field. The function returns two values: an abelian group A and
a map m from A to E. The map m provides an isomorphism between the abstract
group A and the group of rational points on the curve.

Generators(H)

Generators(E)

Given an elliptic curve E defined over a finite field or a pointset H of E, this
function returns generators for the group of points of E. The i-th element of the
sequence corresponds to the i-th generator of the group as returned by the function
AbelianGroup.

NumberOfGenerators(H)

NumberOfGenerators(E)

Ngens(H)

Ngens(E)

The number of generators of the group of rational points of (the point set H
of) the elliptic curve E; this is simply the length of the sequence returned by
Generators(E).

Example H121E6

A simple example of some of the above calls in action:

> FF<w> := GF(1048583, 2);

> E := EllipticCurve([ 1016345*w + 272405, 660960*w + 830962 ]);

> A, m := AbelianGroup(E);

> A;

Abelian Group isomorphic to Z/3 + Z/366508289334

Defined on 2 generators

Relations:

3*A.1 = 0

366508289334*A.2 = 0

> S := Generators(E);

> S;

[ (191389*w + 49138 : 878749*w + 1008891 : 1), (852793*w + 24192 :
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376202*w + 48552 : 1) ]

> S eq [ m(A.1), m(A.2) ];

true

121.5 Pairings on Elliptic Curves
Pairings on elliptic curves over finite fields have many uses, ranging from checking indepen-
dence of torsion points to more practical applications in cryptography. Both destructive
applications (such as the MOV attack) and constructive applications (such as pairing-
based cryptography) are worth mentioning. Magma now contains an implementation of
the most popular pairings on elliptic curves over finite fields, including the Weil pairing,
the Tate pairing, and various versions of the Eta and Ate pairings.

All pairings evaluate what is now called a Miller function, denoted by fn,P and defined
as any function on E with divisor n(P ) − ([n]P ) − (n − 1)∞, where ∞ is the point at
infinity of the curve.

121.5.1 Weil Pairing
The Weil pairing is a non-degenerate bilinear map from E[n]×E[n] to µn, the n-th roots
of unity. The Weil pairing wn(P,Q) is computed as (−1)nfn,P (Q)/fn,Q(P ).

WeilPairing(P, Q, n)

Given n-torsion points P and Q on an elliptic curve E, this function computes the
Weil pairing of P and Q. Both points need to be in the same point set.

121.5.2 Tate Pairing
The Tate pairing (sometimes called the Tate–Lichtenbaum pairing) is a non-degenerate
bilinear map from E[n] × E/nE into K∗/(K∗)n, where K is a finite field containing the
n-th roots of unity. In practice one often works with the reduced version of the pairing
by mapping into µn using the final exponentiation; i.e., powering by #K∗/n. The Tate
pairing tn(P,Q) is computed as fn,P (Q).

TatePairing(P, Q, n)

Given an n-torsion point P and a pointQ on an elliptic curve, this function computes
the Tate pairing tn(P,Q) by returning a random representative of the coset. Both
points need to be in the same point set; the field K is the field of definition of this
point set.

ReducedTatePairing(P, Q, n)

Given an n-torsion point P and a pointQ on an elliptic curve, this function computes
the reduced Tate pairing en(P,Q) = tn(P,Q)(#K−1)/n. Both points need to be in
the same point set; the field K is the field of definition of this point set and n should
divide #K − 1.
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121.5.3 Eta Pairing
The Eta pairing is only defined on supersingular curves and can be considered as an
optimised version of the Tate pairing. It works as follows.

Let E be a supersingular elliptic curve defined over Fq and n|#E(Fq). The security
multiplier k is the smallest positive integer such that qk ≡ 1 mod n. Here, in the supersin-
gular case, k divides 6. Now, E[n] ⊆ E(Fqk) is a free Z/nZ-module of rank 2 which splits
into the direct sum of 2 rank one eigenspaces under the action of q-Frobenius (denoted by
F in the following), with eigenvalues 1 and q (as long as (n, k) = 1 and k > 1).

The Eta pairing is defined on the subgroup of E[n]×E[n] given by the product of the
two F -eigenspaces G1 ×G2, where P ∈ G1 iff F (P ) = P and Q ∈ G2 iff F (Q) = [q]Q. G1

is just E(Fq)[n]. If R is an arbitrary n-torsion point in E(Fqk), k times its G1-component
is just the F -trace of R. This can be used to find non-trivial points in G2 (see the example
below).

There are three versions of the Eta pairing: one unreduced and two reduced versions.
The Eta pairing eT (P,Q) is defined as fT,P (Q) where T = t− 1 and #E(Fq) = q + 1− t
or T = q.

As for the Tate pairing, the unreduced version takes values in K∗/(K∗)n and the
reduced versions in µn(K) where K is Fqk .

EtaTPairing(P, Q, n, q)

CheckCurve BoolElt Default : false

CheckPoints BoolElt Default : false

Given a supersingular elliptic curve E/Fq and two points P,Q in E[n] such that
P = F (P ) and F (Q) = [q]Q with F the q-power Frobenius, this function computes
the Eta pairing with T = t−1 where #E(Fq) = q+1− t. The result is non-reduced
and thus a random representative of a whole coset. Both points need to be in the
same point set E(Fqk) and q should be the size of the base field.

ReducedEtaTPairing(P, Q, n, q)

CheckCurve BoolElt Default : false

CheckPoints BoolElt Default : false

The reduced version of the EtaTPairing function.

EtaqPairing(P, Q, n, q)

CheckCurve BoolElt Default : false

CheckPoints BoolElt Default : false

Given a supersingular elliptic curve E/Fq, two points P,Q in E[n] such that P =
F (P ) and F (Q) = [q]Q with F the q-power Frobenius, this function computes the
Eta pairing with T = q. This pairing is automatically reduced: It maps directly
into n-th roots of unity. Both points need to be in the same point set E(Fqk) and
q should be the size of the base field.
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In the previous intrinsics one can explicitly check that the curve is supersingular by setting
the parameter CheckCurve to true, and that the input points are indeed in the eigenspaces
of Frobenius by setting the parameter CheckPoints to true. By default Magma does not
perform these checks for efficiency reasons.

121.5.4 Ate Pairing
The Ate pairing generalises the Eta pairing to all elliptic curves, but is defined on G2×G1.
i.e., the arguments are swapped with respect to the Eta pairing. Like the Eta pairing
there are three versions, one unreduced and two reduced. The Ate pairing aT (Q,P ) with
Q ∈ G2 and P ∈ G1 is defined as fT,Q(P ), where T = t − 1 and #E(Fq) = q + 1 − t or
T = q.

AteTPairing(Q, P, n, q)

CheckPoints BoolElt Default : false

Given two points Q,P in E[n] such that F (Q) = [q]Q and P = F (P ) with F the
q-power Frobenius, this function computes the Ate pairing with T = t − 1 where
#E(Fq) = q+1− t. The result is non-reduced and thus a random representative of
a whole coset. Both points need to be in the same point set E(Fqk) and q should
be the size of the base field.

ReducedAteTPairing(Q, P, n, q)

CheckPoints BoolElt Default : false

The reduced version of the AteTPairing function.

AteqPairing(P, Q, m, q)

CheckPoints BoolElt Default : false

Given two points Q,P in E[n] such that F (Q) = [q]Q and P = F (P ) with F the
q-power Frobenius, this function computes the Ate pairing with T = q. This pairing
is automatically reduced: It maps directly into n-th roots of unity. Both points need
to be in the same point set E(Fqk) and q should be the size of the base field.

In the previous intrinsics one can explicitly check that the input points are indeed in
the eigenspaces of Frobenius by setting the parameter CheckPoints to true. By default
Magma does not perform these checks for efficiency reasons.

Example H121E7

In this example, we first create a so-called BN-curve, which is an elliptic curve of the form
y2 = x3 + b defined over Fp of prime order n and embedding degree k = 12. These curves
can be found easily by testing for which s both p(s) = 36s4 + 36s3 + 24s2 + 6s + 1 and n(s) =
36s4 + 36s3 + 18s2 + 6s + 1 are prime. Finding the parameter b is equally easy by testing a few
random values, since there are only 6 isogeny classes. The point G = (1, y) can be used as base
point.

> Zs<s> := PolynomialRing(Integers());
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> ps := 36*s^4 + 36*s^3 + 24*s^2 + 6*s + 1;

> ns := 36*s^4 + 36*s^3 + 18*s^2 + 6*s + 1;

> z := 513235038556; // some random start value

> repeat

> z := z+1;

> p := Evaluate(ps, z);

> n := Evaluate(ns, z);

> until IsProbablePrime(p) and IsProbablePrime(n);

> p;

2497857711095780713403056606399151275099020724723

> n;

2497857711095780713403055025937917618634473494829

> Fp := FiniteField(p);

> b := Fp!0;

> repeat

> repeat b := b + 1; until IsSquare(b + 1);

> y := SquareRoot(b + 1);

> E := EllipticCurve([Fp!0, b]);

> G := E![1, y];

> until IsZero(n*G);

> E;

Elliptic Curve defined by y^2 = x^3 + 18 over

GF(2497857711095780713403056606399151275099020724723)

> #E eq n; // just to verify

true

> t := p + 1 - n;

> t;

1580461233656464547229895

> k := 12; // security multiplier

> (p^k - 1) mod n; // check on p, n and k

0

> Fpk := GF(p, k);

> N := Resultant(s^k - 1, s^2 - t*s + p); // number of points over big field

> Cofac := N div n^2;

> P := E(Fpk)!G;

> Q := Cofac*Random(E(Fpk)); // Q has order n now

Up to this point we have constructed a BN-curve and two points of order n. As such we can test,
for instance, that P and 2P are linearly dependent:

> WeilPairing(P, 2*P, n) eq 1;

true

and also that the Weil pairing can be obtained from 2 Tate pairing computations:

> WeilPairing(P, Q, n) eq (-1)^n*TatePairing(P, Q, n)/TatePairing(Q, P, n);

true

or test the bilinearity of the reduced Tate pairing

> ReducedTatePairing(P, 2*Q, n) eq ReducedTatePairing(P, Q, n)^2;
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true

and that the corresponding test for the Tate pairing would fail since the result is a random
representative of the coset:

> TatePairing(P, 2*Q, n) eq TatePairing(P, Q, n)^2;

false

Since the curve is ordinary we cannot use the Eta pairing on this curve. We can use the Ate
pairing, but this is defined on G2 ×G1 and up to this point we only have a generator of G1. To
find a generator of G2 we need to remove the component in Q that lies in G1. This can be done
easily by using the trace of the point Q: Tr(Q) =

∑k−1

i=0
F (Q) with F the p-power Frobenius. The

trace equals k times the component of Q in G1.

> TrQ := &+[ E(Fpk) ! [Frobenius(Q[1], Fp, i), Frobenius(Q[2], Fp, i)] :

> i in [0..k-1]];

> Q := k*Q - TrQ;

At this point Q is in G2 and we can compute the Ate pairing of Q and P . For instance, we can
test compatibility of the reduced Ate pairing with the reduced Tate pairing:

> T := t - 1;

> L := (T^k - 1) div n;

> c := &+[ T^(k - 1 - i)*p^i : i in [0..k-1] ] mod n;

> ReducedAteTPairing(Q, P, n, p)^c eq ReducedTatePairing(Q, P, n)^L;

true

> Frobenius(AteqPairing(Q, P, n, p)^k, Fp, k - 1) eq ReducedTatePairing(Q, P, n);

true

To test the Eta pairing computations we will use one of the supersingular elliptic curves y2 + y =
x3 +x+b with b = 0 or 1 over a finite field F2m and m odd. These curves have security parameter
k = 4.

> F2m := GF(2, 163);

> q := #F2m;

> E := EllipticCurve([F2m!0, 0, 1, 1, 1]);

> #E;

11692013098647223345629483497433542615764159168513

> IsPrime($1);

true

> n := #E;

> t := TraceOfFrobenius(E);

> P := Random(E);

> k := 4;

> F2m4 := ExtensionField<F2m, X | X^4 + X + 1>;

> N := Resultant(s^k - 1, s^2 - t*s + q); // number of points over big field

> Cofac := N div n^2;

> P := E(F2m4) ! P;

> Q := Cofac*Random(E(F2m4)); // Q has order n now

> TrQ := &+[ E(F2m4) ! [Frobenius(Q[1], F2m, i), Frobenius(Q[2], F2m, i)] :

> i in [0..k-1]];
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> Q := k*Q - TrQ;

After this setup we can now compute the Eta pairing and test compatibility with the Tate pairing.

> d := GCD(k, q^k - 1);

> Frobenius(EtaqPairing(P, Q, n, q)^(k div d), F2m, k - 1) eq

> ReducedTatePairing(P, Q, n);

true

Example H121E8

The following example demonstrates the Menezes, Okamoto, and Vanstone (MOV) reduction of
the discrete logarithm on a supersingular elliptic curve to a discrete logarithm in a finite field
using the Weil Pairing. The group structure of a supersingular curve E over a finite prime field
Fp for p > 3 can be Z/nZ or Z/2Z × Z/(n/2)Z, where n = p + 1, and the group structure over
a degree 2 extension is Z/nZ × Z/nZ. The nontrivial Weil pairing on this is the basis for this
reduction.

> p := NextPrime(2^131);

> n := p + 1;

> n;

2722258935367507707706996859454145691688

> Factorization(n);

[ <2, 3>, <3, 2>, <37809151880104273718152734159085356829, 1> ]

> E0 := SupersingularEllipticCurve(GF(p));

> G<x>, f := AbelianGroup(E0);

> G;

Abelian Group isomorphic to Z/2722258935367507707706996859454145691688

Defined on 1 generator

Relations:

2722258935367507707706996859454145691688*x = 0

> n eq #G;

true

> P0 := f(x);

> E1 := BaseExtend(E0, GF(p^2));

> P1 := E1!P0;

> repeat

> Q1 := Random(E1);

> z1 := WeilPairing(P1, Q1, n);

> until Order(z1) eq n;

> IsOrder(Q1, n);

true

> r := 1234567;

> z2 := WeilPairing(r*P1, Q1, n);

> z1^r eq z2;

true

> WeilPairing(P1, r*P1, n);

1
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121.6 Weil Descent in Characteristic Two
One approach to attacking the discrete logarithm problem for elliptic curves over finite
fields is through Weil descent. Let E have base field K and let k be a subfield of K. The
basic idea is to find a higher genus curve C/k along with a non-trivial homomorphism from
E(K) to Jac(C)(k) [the Jacobian of C]. This transfers the problem to one over a smaller
field and Index Calculus methods over C can then be applied.

Magma now contains an implementation, due to Florian Heß, of the GHS Weil Descent
for ordinary (i.e., j(E) 6= 0) elliptic curves in characteristic 2 (see [Gau00] or the chapter
by F. Heß in [Bla05]), which constructs such a C along with the divisor map from E to C.

WeilDescent(E, k, c)

HyperellipticImage BoolElt Default : true

The curve E/K is an ordinary elliptic curve over a finite field K of characteristic 2.
The argument k is a subfield of K and c is a non-zero element of K.

The function uses GHS descent to construct a plane curve C/k and a map from
E(K) to k-divisors of C. There are two possibilities:

i) The curve C is hyperelliptic and Magma implements the group law on its
Jacobian, Jac(C). In this case, C will be returned as a hyperelliptic curve (type
CrvHyp) and the map returned will actually be the divisor class homomorphism from
E(K) to Jac(C)(k) with points of E(K) being identified with divisor classes in the
usual way: P ↔ (P )− (0).

ii) Otherwise, C is returned as a general plane curve and the map is from points
of E(K), considered as divisors of degree 1, to the corresponding k-divisor of C.
In this case, where specialised Jacobian arithmetic is not available, it may be more
convenient to work with the effective divisors rather than degree 0 divisors. The
user may readily convert to the degree 0 case by getting h(0) initially and then using
h((P )− (0)) = h(P )− h(0), where h is the divisor map.

In case ii), no reduction of the image divisor is performed by the divisor map
and if [K : k] is large then this divisor will have high degree and the computation
may be quite slow. h is defined by divisor pullback corresponding to the function
field inclusion K(E) ↪→ K(C) followed by the trace from K down to k.

If the user prefers to have C and h returned as in case ii), even when C is
hyperelliptic, the parameter HyperellipticImage should be set to false.

The third argument c is a parameter to specify the precise data for the descent.
If r =

√
(1/j(E)) and b = r/c, the function field K(E) is isomorphic to the degree

2 extension of the rational function field K(x) with equation

y2 + y = c/x+ a2(E) + bx

and it is this Artin–Schreier extension that is used for the GHS descent as explained
in the above references.

It is possible to work directly with function fields, if preferred, using the function
WeilDescent. However this function produces a divisor map between function fields
rather than curves and does not give the divisor class map in case i) above.
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The genus of C and its degree are very dependent on the choice of c. For a
description of how to choose a good c for given E and k, see sections V

¯
III.2.4 and

V
¯
III.2.5 in the chapter by Heß cited in the introduction to this section.

We merely note here that c ∈ k or b ∈ k leads to a hyperelliptic C, though this
may have very large genus and other choices, giving non-hyperelliptic curves, may
be better.

WeilDescentGenus(E, k, c)

Returns the genus of the Weil descent curve C produced by WeilDescent for input
E, k, c.

WeilDescentDegree(E, k, c)

Returns the degree in the second variable of the plane Weil descent curve C produced
by WeilDescent for input E, k, c.

Example H121E9

The following example is similar to one from the article of F. Heß referred to above. E is defined
over F2155 and C is a hyperelliptic curve of genus 31 over F25 .

> K<w> := FiniteField(2, 155);

> k := FiniteField(2, 5);

> Embed(k, K);

> b := w^154 + w^152 + w^150 + w^146 + w^143 + w^142 + w^141 +

> w^139 + w^138 + w^137 + w^136 + w^134 + w^133 + w^132 + w^131 +

> w^127 + w^125 + w^123 + w^121 + w^117 + w^116 + w^115 + w^112 +

> w^111 + w^109 + w^108 + w^107 + w^105 + w^104 + w^102 + w^101 +

> w^100 + w^99 + w^98 + w^97 + w^95 + w^90 + w^89 + w^88 + w^85 +

> w^83 + w^81 + w^80 + w^79 + w^78 + w^76 + w^75 + w^73 + w^72 +

> w^69 + w^68 + w^62 + w^61 + w^59 + w^54 + w^52 + w^47 + w^45 +

> w^44 + w^43 + w^40 + w^39 + w^37 + w^36 + w^34 + w^32 + w^31 +

> w^25 + w^15 + w^13 + w^10 + w^8 + w^7 + w^6;

> E := EllipticCurve([K| 1, 0, 0, b, 0]);

> C,div_map := WeilDescent(E, k, K!1);

> C;

Hyperelliptic Curve defined by y^2 + (k.1^16*x^32 + k.1^27*x^8 + k.1^2*x^4 +

k.1^29*x^2 + k.1^30*x + k.1^20)*y = k.1^30*x^32 + k.1^10*x^8 + k.1^16*x^4 +

k.1^12*x^2 + k.1^13*x + k.1^3 over GF(2^5)

> ptE := Points(E, w^2)[1];

> ord := Order(ptE);

> ord;

142724769270595988105829091515089019330391026

> ptJ := div_map(ptE); // point on Jacobian(C)

> // check that order ptJ on J = order ptE on E

> J := Jacobian(C);

> ord*ptJ eq J!0;

true

> [ (ord div p[1])*ptJ eq J!0 : p in Factorization(ord) ];
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[ false, false, false, false, false, false, false, false ]

121.7 Discrete Logarithms
Computing discrete logarithms on elliptic curves over finite fields is considered to be a very
difficult problem. The best algorithms for general elliptic curves take exponential time,
and do not take much advantage of properties of the curve. Solving such problems can
thus be computationally infeasible for large curves. Indeed, elliptic curves are becoming
increasingly appealing for applications in cryptography.

Although hard instances of the elliptic curve discrete logarithm may be impossible to
solve, Magma is able to efficiently solve reasonable sized instances, or instances where
the large prime factor of the order of the base point is not too big. Magma does this as
follows: The first step is to compute the factorisation of the order of the base point, which
may require calling SEA if the order of the curve is not already known to Magma. Then
it checks that the order of the base point is a multiple of the order of the other point. If
this is not true then there is no solution. It next breaks the problem down to solving the
discrete logarithm modulo the prime power factors of the order using the Pohlig–Hellman
algorithm.

For very small primes it will try to solve this by exhaustive search. If a solution does
not exist then Magma might determine this during the exhaustive search and abort the
remaining computations. For the larger prime power factors, Magma uses the parallel
collision search version of Pollard’s rho algorithm. The implementation includes Edlyn
Teske’s idea of r-adding walks and Michael Wiener’s and Robert Zuccherato’s idea of
treating the point P the same as −P (for curves of the form y2 = x3 + ax + b) so as to
reduce the search space by a factor of 1/

√
2 (this idea was independently discovered by

other researchers). It should be noted that Magma is not always able to determine the
nonexistence of a solution and therefore may run forever if given very bad parameters. For
this reason, the user has the option of setting a time limit on the calculation.

Log(Q, P)

The discrete log of P to the base Q (an integer n satisfying n ∗ Q = P where
0 ≤ n < Order(Q)). The arguments Q and P must be points on the same elliptic
curve, which must be defined over a finite field. The function returns −1 if it is
determined that no solution exists.

Log(Q, P, t)

The discrete log of P to the base Q (an integer n satisfying n ∗ Q = P where
0 ≤ n < Order(Q)). The arguments Q and P must be points on the same elliptic
curve, which must be defined over a finite field. The argument t is a time limit in
seconds on the calculation; if this limit is exceeded then the calculation is aborted.
The time limit t must be a small positive integer. This function returns −1 if it
is determined that no solution exists; if the calculation is aborted due to the time
limit being exceeded then −2 is returned.
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Example H121E10

In the example below we create a random elliptic curve over a randomly chosen 40-bit prime field.
Our base point Q is chosen randomly on the curve, and the other point P is selected as a random
multiple of Q. Using the Log function, we recover that multiplier (m) and finally we verify that
the solution is correct.

> GetSeed();

1020 132

> K := GF(RandomPrime(40));

> E := EllipticCurve([Random(K), Random(K)]);

> E;

Elliptic Curve defined by y^2 = x^3 + 456271502613*x + 504334195864

over GF(742033232201)

> Q := Random(E);

> Q;

(174050269867 : 191768822966 : 1)

> FactoredOrder(Q);

[ <31, 1>, <7789, 1>, <3073121, 1> ]

> P := Random(Order(Q))*Q;

> P;

(495359429535 : 455525174166 : 1)

> m := Log(Q, P);

> m;

597156621194

> m*Q - P;

(0 : 1 : 0)
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Chapter 122

ELLIPTIC CURVES OVER Q AND
NUMBER FIELDS

122.1 Introduction

This chapter deals with functionality that is specific to elliptic curves defined over the ra-
tionals or over number fields. As a general goal, these functions are developed in parallel.
Naturally however, the functionality available over Q is far ahead of that available for gen-
eral number fields, both in the range of functions and in the efficiency of implementations.

Functions declared for number fields may also be used over Q: to do so, it is usually
necessary to construct Q as RationalsAsNumberField() rather than Rationals().

122.2 Curves over the Rationals

122.2.1 Local Invariants

Conductor(E)

The conductor of the elliptic curve E defined over Q.

BadPrimes(E)

Given an elliptic curve E defined over Q, return the sequence of primes dividing the
minimal discriminant of E. These are the primes at which the minimal model for E
has bad reduction; note that there may be other primes dividing the discriminant
of the given model of E.

TamagawaNumber(E, p)

Given an elliptic curve E defined over Q and a prime number p, this function returns
the local Tamagawa number of E at p, which is the index in E(Qp) of the subgroup
E0(Qp) of points with nonsingular reduction modulo p. For any prime p that is of
good reduction for E, this function returns 1.

TamagawaNumbers(E)

Given an elliptic curve E defined over Q, this function returns the sequence of
Tamagawa numbers at each of the bad primes of E, as defined above.
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LocalInformation(E, p)

Given an elliptic curve E defined over Q and a prime number p, this function returns
the local information at the prime p as a tuple of the form< P, vpd, fp, cp,K, split >,
consisting of p, its multiplicity in the discriminant, its multiplicity in the conductor,
the Tamagawa number at p, the Kodaira symbol, and finally a boolean which is
false iff the curve has nonsplit multiplicative reduction. The second object returned
is a local minimal model for E at p.

LocalInformation(E)

Given an elliptic curve E this function returns a sequence of tuples of the kind
described above, for the primes dividing the discriminant of E.

ReductionType(E, p)

Returns a string describing the reduction type of E at p; the possibilities are “Good”,
“Additive”, “Split multiplicative” or “Nonsplit multiplicative”. These correspond
to the type of singularity (if any) on the reduced curve. This function is necessary
as the Kodaira symbols (see below) do not distinguish between split and unsplit
multiplicative reduction.

FrobeniusTraceDirect(E, p)

Given a rational elliptic curve E and a prime p, this function provides an efficient
way to directly compute the trace of Frobenius (without having to create GF (p),
coercing E into this field, etc). The argument p is not checked to be prime.

TracesOfFrobenius(E, B)

The sequence of traces of Frobenius ap(E), of the reduction mod p of E, for all
primes p up to B. This function is very carefully optimised.

Example H122E1

> E := EllipticCurve([ 0, 1, 1, 3, 5 ]);

> T := TracesOfFrobenius(E, 100); T;

[ 0, 1, -3, -2, -5, 1, -3, -1, 5, 6, 8, -1, -6, 7, -2, 1, 14, -1, -12,

16, -16, -7, 6, 12, 2 ]

> time T := TracesOfFrobenius(E, 10^6);

Time: 5.600
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122.2.2 Kodaira Symbols
Kodaira symbols have their own type SymKod. Apart from the two functions that determine
symbols for elliptic curves, there is a special creation function and a comparison operator
to test Kodaira symbols.

KodairaSymbol(E, p)

Given an elliptic curve E defined over Q and a prime number p, this function returns
the reduction type of E modulo p in the form of a Kodaira symbol.

KodairaSymbols(E)

Given an elliptic curve E defined over Q, this function returns the reduction types
of E modulo the bad primes in the form of a sequence of Kodaira symbols.

KodairaSymbol(s)

Given a string s, return the Kodaira symbol it represents. The values of s that
are allowed are: "I0", "I1", "I2", ..., "In", "II", "III", "IV", and "I0*", "I1*",
"I2*", ..., "In*", "II*", "III*", "IV*". The dots stand for "Ik" with k a positive
integer. The ‘generic’ type "In" allows the matching of types "In" for any integer
n > 0 (and similarly for "In*").

h eq k

Given two Kodaira symbols h and k, this function returns true if and only if either
both are identical, or one is generic (of the form "In", or "In*") and the other is
specific of the same type: "In" will compare equal with any of "I1", "I2", "I3",
etc., and "In*" will compare equal with any of "I1*", "I2*", "I3*", etc. Note
however that "In" and "I3" are different from the point of view of set creation.

h ne k

The logical negation of eq.

Example H122E2

We search for curves with a particular reduction type ‘I0*’ in a family of curves.

> S := [ ];

> for n := 2 to 100 do

> E := EllipticCurve([n, 0]);

> for p in BadPrimes(E) do

> if KodairaSymbol(E, p) eq KodairaSymbol("I0*") then

> Append(~S, <p, n>);

> end if;

> end for;

> end for;

> S;

[ <3, 9>, <3, 18>, <5, 25>, <3, 36>, <3, 45>, <7, 49>, <5, 50>,

<3, 63>, <3, 72>, <5, 75>, <3, 90>, <7, 98>, <3, 99>, <5, 100> ]
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122.2.3 Complex Multiplication

HasComplexMultiplication(E)

Given an elliptic curve E over the rationals (or a number field), the function deter-
mines whether the curve has complex multiplication or not and, if so, also returns
the discriminant of the CM quadratic order. The algorithm uses fairly straightfor-
ward analytic methods, which are not suited to very high degree j-invariants with
CM by orders with discriminants more than a few thousand.

122.2.4 Isogenous Curves

IsogenousCurves(E)

The set of curves Q-isogenous to a rational elliptic curve E. The method used is
to proceed prime-by-prime. Mazur’s Theorem restricts the possibilities to a short
list, and j-invariant considerations leave only p-isogenies for p = 2, 3, 5, 7, 13 to be
considered. For p = 2 or 3, the method proceeds by finding the rational roots of the
p-th division polynomial for the curve E. From these roots, one can then recover the
isogenous curves. The question as to whether or not there is a p-isogeny is entirely
a function of the j-invariant of the curve, and this idea is used for p = 5, 7, 13. In
these cases the algorithm first takes a minimal twist of the elliptic curve, and then
finds rational roots of the polynomial of degree (p + 1) that comes from a fibre of
X0(p). The isogenous curves of the minimal twist corresponding to these roots are
then computed, and then these curves are twisted back to get the isogenous curves
of E. In all cases, if the conductor is squarefree, some small values of the Frobenius
traces are checked mod p to ensure the feasibility of a p-isogeny. Other similar
ideas involving checking congruences are also used to try to eliminate the possibility
of a p-isogeny without finding roots. Tree-based methods are used to extend the
isogeny tree from (say) 2-isogenies to 4-isogenies to 8-isogenies, etc. The integer
returned as a second argument corresponds to the largest degree of a cyclic isogeny
between two curves in the isogeny class. The ordering of the list of curves returned
is well-defined; the first curve is always the curve of minimal Faltings height, and
the heights generically increase upon going down the list. However, when there are
isogenies of two different prime degrees, a different ordering is used. In the case
where there is a 4-isogeny (or a certain type of 9-isogeny), there is an arbitrary
choice made on the bottom tree leaves in order to make the ordering consistent.

FaltingsHeight(E)

Precision RngIntElt Default :

Compute the Faltings height of a rational elliptic curve. This is given by
− 1

2 log Vol(E) where Vol(E) is the volume of the fundamental parallelogram.
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Example H122E3

First we compute isogenous curves using DivisionPolynomial; in this special case we obtain the
entire isogeny class by considering only 3-isogenies directly from E.

> E:=EllipticCurve([1,-1,1,1,-1]);

> F:=Factorization(DivisionPolynomial(E,3));

> I:=IsogenyFromKernel(E,F[1][1]); I;

Elliptic Curve defined by y^2 + x*y + y = x^3 - x^2 - 29*x - 53 over Rational

Field

> I:=IsogenyFromKernel(E,F[2][1]); I;

Elliptic Curve defined by y^2 + x*y + y = x^3 - x^2 - 14*x + 29 over Rational

Field

Alternatively, we can get the IsogenousCurves directly. Note that IsogenyFromKernel also re-
turns the map between the isogenous curves as a second argument.

> IsogenousCurves(E);

[

Elliptic Curve defined by y^2 + x*y + y = x^3 - x^2 + x - 1 over Rational

Field,

Elliptic Curve defined by y^2 + x*y + y = x^3 - x^2 - 29*x - 53 over

Rational Field,

Elliptic Curve defined by y^2 + x*y + y = x^3 - x^2 - 14*x + 29 over

Rational Field

]

9

122.2.5 Mordell–Weil Group
The Mordell–Weil theorem states that for an elliptic curve E defined over Q, the set E(Q)
of points on E with Q-rational coordinates forms a finitely generated abelian group, known
as the Mordell–Weil group.

To compute Mordell–Weil groups in Magma, there are several ways to proceed:
(i) A large array of relevant tools (various descents, and other techniques) are described

elsewhere in this chapter, and may be applied “by hand”.
(ii) The routine MordellWeilShaInformation automates the process: it applies all rel-

evant tools in a suitable order.
(iii) The older routines Rank and MordellWeilGroup use an (independent) implemen-

tation of an algorithm similar to the famous program mwrank by John Cremona.
These routines do 2-descent or 2-isogeny descent, but use no additional techniques.

Warning: No algorithm has been implemented that is guaranteed to determine the
Mordell-Weil rank! In some cases the functions Rank and MordellWeilGroup return a
lower bound which is not known to be the true rank (or group). In cases where the rank is
not proven, a warning message is printed the first time either Rank or MordellWeilGroup
is called for a particular elliptic curve; on subsequent calls, the unproven result will be
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returned without any warning. It is recommended to use RankBounds instead of Rank, to
avoid confusion.

MordellWeilShaInformation(E: parameters)

DescentInformation(E: parameters)

RankOnly BoolElt Default : false

ShaInfo BoolElt Default : false

Silent BoolElt Default : false

This is a special function which uses all relevant Magma machinery to obtain
as much information as possible about the Mordell-Weil group and the Tate-
Shafarevich group of the given elliptic curve E over Q. The tools used include
2-descent, 4-descent, Cassels-Tate pairings, 3-descent, and also analytic routines
(rank and Heegner points) when the conductor of E is not too large. The infor-
mation is progressively refined as the tools are applied (in order of their estimated
cost), and a summary is printed at each stage. At the end, the collected information
is returned in three sequences.

The first sequence returned contains lower and upper bounds on the Mordell-
Weil rank of E(Q), and the second is the sequence of independent generators of the
Mordell-Weil group (modulo the torsion subgroup) that have been found. The third
sequence returned contains the information obtained about the Tate-Shafarevich
group Sha(E): letting rn denote the largest integer such that Z/nZ is contained
in Sha(E), the tuple <n, [l,u]> would indicate that the computations prove l ≤
rn ≤ u.

By default, the routine attempts to determine the rank and generators, and
returns whenever it succeeds in determining them. When RankOnly is set to true, it
returns as soon as the Mordell-Weil rank has been determined. When ShaInfo is
set to true, it additionally probes the structure of Sha(E) using all available tools.

Example H122E4

Conductor 389 is the smallest conductor of a curve with rank 2:

> E := EllipticCurve("389a1");

> time rank, gens, sha := MordellWeilShaInformation(E);

Torsion Subgroup is trivial

Analytic rank = 2

The 2-Selmer group has rank 2

Found a point of infinite order.

Found 2 independent points.

After 2-descent:

2 <= Rank(E) <= 2

Sha(E)[2] is trivial

(Searched up to height 100 on the 2-coverings.)
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Time: 0.280

We now take a curve of conductor 571, which has rank 0 and nontrivial Tate-Shafarevich group:

> E := EllipticCurve("571a1");

> time rank, gens, sha :=MordellWeilShaInformation(E);

Torsion Subgroup is trivial

Analytic rank = 0

==> Rank(E) = 0

Time: 0.010

We must specify that we want information about the Tate-Shafarevich group:

> time rank, gens, sha :=MordellWeilShaInformation(E : ShaInfo);

Torsion Subgroup is trivial

Analytic rank = 0

==> Rank(E) = 0

The 2-Selmer group has rank 2

After 2-descent:

0 <= Rank(E) <= 0

(Z/2)^2 <= Sha(E)[2] <= (Z/2)^2

(Searched up to height 10000 on the 2-coverings.)

The Cassels-Tate pairing on Sel(2,E)/E[2] is

[0 1]

[1 0]

After using Cassels-Tate:

0 <= Rank(E) <= 0

(Z/2)^2 <= Sha(E)[4] <= (Z/2)^2

The 3-Selmer group has rank 0

After 3-descent:

0 <= Rank(E) <= 0

(Z/2)^2 <= Sha(E)[12] <= (Z/2)^2

Time: 0.840

TorsionSubgroup(E)

Given an elliptic curve E defined over Q, this function returns an abelian group A
isomorphic to the torsion subgroup of the Mordell–Weil group, and a map from this
abstract group A to the elliptic curve providing the isomorphism. By a theorem of
Mazur, A is either Ck (for k in {1..10} or 12) or C2 ×C2k (for k in {1..4}). If there
are two generators then the first generator returned in this case will have order 2.
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Rank(E: parameters)

MordellWeilRank(E: parameters)

Bound RngIntElt Default : 150

Given an elliptic curve E defined over Q, this function returns the rank of the
Mordell–Weil group of E.

The general procedure to calculate the rank involves searching for rational points
on certain homogeneous spaces represented by equations of the form y2 = ax4+bx3+
cx2 + dx+ e. The parameter Bound is a bound on the numerator and denominator
of x that will be used when searching for such points.

RankBounds(E: parameters)

MordellWeilRankBounds(E: parameters)

Bound RngIntElt Default : 150

Given an elliptic curve E defined over Q, this computes and returns lower and upper
bounds on the rank of the Mordell–Weil group of E. The parameter Bound is as
described in the intrinsic Rank. This function will not generate the usual warning
message if the upper and lower bounds are not equal.

MordellWeilGroup(E: parameters)

AbelianGroup(E: parameters)

Bound RngIntElt Default : 150

HeightBound RngIntElt Default : 15

The Mordell–Weil group of an elliptic curve E defined over Q. The function returns
two values: an abelian group A and a map m from A to E. The map m provides
an isomorphism between the abstract group A and the Mordell–Weil group.

The parameter Bound is used during the rank computation part of the algorithm,
and has the same meaning as described in the intrinsic Rank, above. The group
computation involves searching for points on E up to a certain (naive) height. The
parameter HeightBound is used to limit this search as the rigorous bounds may
not be feasible. When the HeightBound is less than the rigorous bound, a warning
message is printed. In this situation, the user may wish to also use Saturation (see
below).

As explained above for Rank, the computed rank may be less than the actual
rank. In cases where the rank is not proven, a warning message is printed (the
first time). The best way to check whether the rank has been proven is to use
RankBounds.
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Generators(E)

Given an elliptic curve E defined over Q, this function returns generators for the
Mordell–Weil group of E, in the form of a sequence of points of E. The i-th element
of the sequence corresponds to the i-th generator of the group as returned by the
function MordellWeilGroup; the generators of the torsion subgroup will come first
(in the order described in TorsionSubgroup), followed by the points of infinite order.

NumberOfGenerators(E)

Ngens(E)

The number of generators of the group of rational points of the elliptic curve E; this
is simply the length of the sequence returned by Generators(E).

Saturation(points, n)

TorsionFree BoolElt Default : false

OmitPrimes [ RngIntElt ] Default : []
Check BoolElt Default : true

Given a sequence of points on an elliptic curve E over the rationals, and an integer
n, this function returns a sequence of points generating a subgroup of E(Q) which
contains the given points and which is p-saturated for all primes p up to n. (A
subgroup S is p-saturated in a group G if there is no intermediate subgroup H for
which the index [H : S] is finite and divisible by p.)

If OmitPrimes is set to be a sequence of primes, then the group is not checked to
be p-saturated for those primes. If TorsionFree is set to tt true, torsion points are
omitted from the result (that is, the result contains independent generators modulo
torsion). If Check is set to false, the input sequence of points are assumed to be
independent modulo torsion.

Example H122E5

> E := EllipticCurve([73, 0]);

> E;

Elliptic Curve defined by y^2 = x^3 + 73*x over Rational Field

> Factorization(Integers() ! Discriminant(E));

[ <2, 6>, <73, 3> ]

> BadPrimes(E);

[ 2, 73 ]

> LocalInformation(E);

[ <2, 6, 6, 1, II, true>, <73, 3, 2, 2, III, true> ]

> G, m := MordellWeilGroup(E);

> G;

Abelian Group isomorphic to Z/2 + Z + Z

Defined on 3 generators

Relations:

2*G.1 = 0
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> Generators(E);

[ (0 : 0 : 1), (36 : -222 : 1), (4/9 : 154/27 : 1) ]

> 2*m(G.1);

(0 : 1 : 0)

Example H122E6

Here is a curve with moderately large rank; we do not attempt to compute the full group since
that would be quite time-consuming.

> E := EllipticCurve([0, 0, 0, -9217, 300985]);

> T, h := TorsionSubgroup(E);

> T;

Abelian Group of order 1

> time RankBounds(E);

7 7

Time: 0.070

This curve was well-behaved in that the computed lower and upper bounds on the rank are the
same, and so we know that we have computed the rank exactly. Here is a curve where that is not
the case:

> E := EllipticCurve([0, -1, 0, -140, -587]);

> time G, h := MordellWeilGroup(E);

Warning: rank computed (2) is only a lower bound

(It may still be correct, though)

Time: 0.250

> RankBounds(E);

2 3

The difficulty here is that the Tate–Shafarevich group of E is not trivial, and this blocks the
2-descent process used to compute the rank. We can compute the AnalyticRank of the curve to
be 2, but this is only conjecturally equal to the rank. In cases like this, higher level descents may
provide a more definitive answer; the machinery for two- and four-descents described in the next
two sections can be used to confirm that the rank is indeed 2. In any case, we can certainly get
the group with rank equal to the lower bound.

> G;

Abelian Group isomorphic to Z + Z

Defined on 2 generators (free)

> S := Generators(E);

> S;

[ (-6 : -1 : 1), (-7 : 1 : 1) ]

> [ Order(P) : P in S ];

[ 0, 0 ]

> h(G.1) eq S[1];

true

> h(G.2) eq S[2];

true

> h(2*G.1 + 3*G.2);
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(-359741403/57729604 : 940675899883/438629531192 : 1)

> 2*S[1] + 3*S[2];

(-359741403/57729604 : 940675899883/438629531192 : 1)

As mentioned above, the rank of this curve is actually 2, so we have computed generators for the
full group of E.

122.2.6 Heights and Height Pairing
These functions require that the corresponding elliptic curve has integral coefficients.

NaiveHeight(P)

WeilHeight(P)

Given a point P = (a/b, c/d, 1) on an elliptic curve E defined over Q with integral
coefficients, this function returns the naive (or Weil) height h(P ) whose definition
is h(P ) = log max{|a|, |b|}.

Height(P: parameters)

CanonicalHeight(P: parameters)

Precision RngIntElt Default :

Given a point P on an elliptic curve E defined over Q with integral coefficients, this
function returns the canonical height ĥ(P ).

One definition of ĥ(P ) is ĥ(P ) = limn→∞ 4−nh(2nP ), although this is of limited
computational use. A more useful computational definition is as the sum of local
heights: ĥ(P ) =

∑
p≤∞ ĥp(P ), where the sum ranges over each prime p and the

so-called ‘infinite prime’. Each of these local heights can be evaluated fairly simply,
and in fact most of them are 0. The function always uses a minimal model for the
elliptic curve internally, as otherwise the local height computation could fail. The
computation at the infinite prime uses a slight improvement over the σ-function
methods given in Cohen, with the implementation being based on an AGM-trick
due to Mestre.

LocalHeight(P, p)

Precision RngIntElt Default :

Check BoolElt Default : false

Renormalization BoolElt Default : false

Given a point P on an elliptic curve E defined over Q with integral coefficients, this
function returns ĥp(P ), the local height of P at p as described in Height above.
The integer p must be either a prime number or 0; in the latter case the height at
the infinite prime is returned. The Check vararg determines whether to check if the
second argument is prime. The Renormalization vararg changes what definition
of heights is used. Without this flag, a factor of 1

6 log ∆v is added at every place.
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HeightPairing(P, Q: parameters)

Precision RngIntElt Default :

Given two points P,Q on the same elliptic curve defined over Q with integral co-
efficients, this function returns the height pairing of P and Q, which is defined by
ĥ(P,Q) = (ĥ(P +Q)− ĥ(P )− ĥ(Q))/2.

HeightPairingMatrix(S: parameters)

HeightPairingMatrix(E: parameters)

Precision RngIntElt Default :

Given a sequence of points on an elliptic curve defined over Q with integral coeffi-
cients, this function returns the height pairing matrix. If an elliptic curve is passed
to it, the corresponding matrix for the Mordell–Weil generators is returned.

Regulator(S)

Precision RngIntElt Default :

Given a sequence of points S on an elliptic curve E over Q, this function returns
the determinant of the Néron-Tate height pairing matrix of the sequence.

Regulator(E)

Precision RngIntElt Default :

Given an elliptic curve E this function returns the regulator of E; i.e., the determi-
nant of the Néron-Tate height pairing matrix of a basis of the free quotient of the
Mordell–Weil group.

Example H122E7

> E := EllipticCurve([0,0,1,-7,6]);

> P1, P2, P3 := Explode(Generators(E));

> Height(P1);

0.6682051656519279350331420509

> IsZero(Abs(Height(2*P1) - 4*Height(P1)));

true

> BadPrimes(E);

[ 5077 ]

The local height of a point P at a prime is 0 except possibly at the bad primes of E, the ‘infinite’
prime, and those primes dividing the denominator of the x-coordinate of P . Since these generators
have denominator 1 we see that only two local heights need to be computed to find the canonical
heights of these points.

> P2;

(2 : 0 : 1)

> LocalHeight(P2, 0);

-0.655035947159686182497278069814

> LocalHeight(P2, 5077); // 0 + Log(5077)/6
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1.42207930249123238829272871637

> LocalHeight(P2, 0 : Renormalization);

0.767043355331546205795450646552

> LocalHeight(P2, 5077 : Renormalization);

0.000000000000000000000000000000

> Height(P2);

0.7670433553315462057954506466

The above shows that the local height at a bad prime may still be zero, at least in the renormalised
value.

SilvermanBound(E)

Given an elliptic curve E over Q with integral coefficients, this function returns the
Silverman bound B of E. For any point P on E we will have h(P )− ĥ(P ) ≤ B.

SiksekBound(E: parameters)

Torsion BoolElt Default : false

Given an elliptic curve E over Q which is a minimal model, this function returns a
real number B such that for any point P on E h(P )− ĥ(P ) ≤ B. In many cases,
the Siksek bound is much better than the Silverman bound.

If the parameter Torsion is true then a potentially better bound BTor is com-
puted, such that for any point P on E there exists a torsion point T so that
h(P + T )− ĥ(P ) ≤ BTor . Note that ĥ(P + T ) = ĥ(P ).

Example H122E8

We demonstrate the improvement of the Siksek bound over the Silverman bound for the three
example curves from Siksek’s paper [Sik95].

> E := EllipticCurve([0, 0, 0, -73705, -7526231]);

> SilvermanBound(E);

13.00022113685530200655193

> SiksekBound(E);

0.82150471924479497959096194911

> E := EllipticCurve([0, 0, 1, -6349808647, 193146346911036]);

> SilvermanBound(E);

21.75416864448061105008

> SiksekBound(E);

0.617777290687848386342334921728509577480

> E := EllipticCurve([1, 0, 0, -5818216808130, 5401285759982786436]);

> SilvermanBound(E);

27.56255914401769757660

> SiksekBound(E);

15.70818965430290161142481294545

This last curve has a torsion point, so we can further improve the bound:

> T := E![ 1402932, -701466 ];
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> Order(T);

2

> SiksekBound(E : Torsion := true);

11.0309876231179839831829512652688

Here is a point which demonstrates the applicability of the modified bound.

> P := E![ 14267166114 * 109, -495898392903126, 109^3 ];

> NaiveHeight(P) - Height(P);

12.193000709615680011116868901084

> NaiveHeight(P + T) - Height(P);

2.60218831527724007036

IsLinearlyIndependent(P, Q)

Given points P and Q on an elliptic curve E, this function returns true if and only
if P and Q are independent free elements of the group of rational points of an elliptic
curve (modulo torsion points). If false, the function returns a vector v = (r, s) as
a second value such that rP + sQ is a torsion point.

IsLinearlyIndependent(S)

Given a sequence of points S belonging to an elliptic curve E, this function returns
true if and only if the points in S are linearly independent (modulo torsion). If
false, the function returns a vector v in the kernel of the height pairing matrix, i.e.
giving a torsion point as a linear combination of the points in S.

ReducedBasis(S)

Given a sequence of points S belonging to an elliptic curve E over the rationals, the
function returns a sequence of points that are independent modulo the torsion sub-
group (equivalently, they have non-degenerate height pairing), and which generate
the same subgroup of E(Q)/Etors(Q) as points of S.

Example H122E9

We demonstrate the linear independence test on an example curve with an 8-torsion point and
four independent points. The torsion point is easily recognized and we establish the independence
of the remaining points using the height function.

> E := EllipticCurve([0,1,0,-95549172512866864, 11690998742798553808334900]);

> P0 := E![ 39860582, 2818809365988 ];

> P1 := E![ 144658748, -946639447182 ];

> P2 := E![ 180065822, 569437198932 ];

> P3 := E![ -339374593, 2242867099638 ];

> P4 := E![ -3492442669/25, 590454479818404/125 ];

> S0 := [P0, P1, P2, P3, P4];

> IsLinearlyIndependent(S0);

false (1 0 0 0 0)

> Order(P0);
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> S1 := [P1, P2, P3, P4];

> IsLinearlyIndependent(S1);

true

We now demonstrate the process of solving for a nontrivial linear dependence among points on
an elliptic curve by constructing a singular matrix, forming the corresponding linear combination
of points, and establishing that the dependence is in the matrix kernel.

> M := Matrix(4, 4, [-3,-1,2,-1,3,3,3,-2,3,0,-1,-1,0,2,1,1]);

> Determinant(M);

0

> S2 := [ &+[ M[i, j]*S1[j] : j in [1..4] ] : i in [1..4] ];

> IsLinearlyIndependent(S2);

false ( 5 -3 8 7)

> Kernel(M);

RSpace of degree 4, dimension 1 over Integer Ring

Echelonized basis:

( 5 -3 8 7)

Despite the moderate size of the numbers which appear in the matrix M , we note that height
is a quadratic function in the matrix coefficients. Since height is a logarithmic function of the
coefficient size of the points, we see that the sizes of the points in this example are very large:

> [ RealField(16) | Height(P) : P in S2 ];

[ 137.376951049198, 446.51954933694, 52.724183282292, 59.091649046171 ]

> Q := S2[2];

> Log(Abs(Numerator(Q[1])));

467.6598587040659411808117253

> Log(Abs(Denominator(Q[1])));

449.2554587727840583949442765

pAdicHeight(P, p)

Precision RngIntElt Default : 0

E2 FldPadElt Default : 0

Given a point P on an elliptic curve defined on the rationals and a prime p ≥ 5
of good ordinary reduction, this function computes the p-adic height of P to the
desired precision. The value of the EisensteinTwo function for the curve can be
passed as a parameter. The algorithm dates back to [MT91] with improvements due
to [MST06] and [Har08]. The normalization is that of the last-named paper and
is 2p (or −2p in some cases) as large as in other papers.
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pAdicRegulator(S, p)

Precision RngIntElt Default : 0
E2 FldPadElt Default : 0

Given a set of points S on an elliptic curve defined over the rationals and a prime
p ≥ 5 of good ordinary reduction, this function computes the p-adic height regulator
of S to the desired precision. Here the normalization divides out a power of p from
the individual heights.

EisensteinTwo(E, p)

Precision RngIntElt Default : 0
Given an elliptic curve over the rationals and a prime p ≥ 5 of good ordinary
reduction, this function computes the value of the Eisenstein series E2 using the
Monsky-Washnitzer techniques via Kedlaya’s algorithm. See pAdicHeight above
for references.

Example H122E10

We give examples for computing p-adic heights.

> E := EllipticCurve("5077a");

> P1 := E ! [2, 0];

> P2 := E ! [1, 0];

> P3 := E ! [-3, 0];

> assert P1+P2+P3 eq E!0; // the three points sum to zero

> for p in PrimesInInterval(5,30) do pAdicHeight(P1, p); end for;

4834874647277 + O(5^20)

5495832406058373*7 + O(7^20)

-12403985313704524674*11 + O(11^20)

616727731594753360389*13 + O(13^20)

53144975867434108754867*17 + O(17^20)

651478754033733420744924*19 + O(19^20)

1382894029404692415656094*23^2 + O(23^20)

-2615503441214747688800993518*29 + O(29^20)

> pAdicHeight(P1, 37); // 37 is not ordinary for this curve

>> pAdicHeight(P1, 37); // 37 is not ordinary for this curve

Runtime error in ’pAdicHeight’: p cannot be supersingular

> for p in PrimesInInterval(5,30) do pAdicRegulator([P1, P2], p); end for;

-263182161797834*5^-2 + O(5^20)

-35022392779944725 + O(7^20)

-331747503271490921584 + O(11^20)

246446095809126124462 + O(13^20)

-1528527915797227515067270 + O(17^20)

333884275695653846729970*19 + O(19^20)

412978398356115570280760602 + O(23^20)

-45973362301048046561945193743 + O(29^20)

> pAdicRegulator([P1, P2, P3], 23); // dependent points
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O(23^20)

> eisen_two := EisensteinTwo(E, 13 : Precision:=40); eisen_two;

25360291252705414983472710631099471724343012 + O(13^40)

> pAdicRegulator([P1, P2], 13 : Precision:=40, E2:=eisen_two);

85894629213918025547455609490608727790695215 + O(13^40)

122.2.7 Two-Descent and Two-Coverings
The two-descent process determines the locally soluble two-coverings of an elliptic curve
defined over a number field K, giving them as hyperelliptic curves C : y2 = f(x) with f
of degree four. To be practical, K must be of rather small degree, and for various parts of
2-descent to run (particularly reduction), K must have certain properties (such as being
totally real). Also, the algorithms over the rationals have now been revisited, and are now
faster than when using the general number field descent machinery.

A separate implementation is available for the case where E admits a 2-isogeny: this
involves first computing the 2-coverings for the isogeny and its dual (in this case the
covering maps have degree 2 instead of degree 4), and then lifting these to the level of a
“full 2-descent”.

This section also provides some tools for manipulating such curves, including generators
for some rings of invariants of quartic forms, minimisation and reduction of such forms, and
the maps back to the associated elliptic curve. This functionality overlaps with the package
for genus one models (see 124). There is a straightforward interface to the 2-Selmer group
machinery, which also works over number fields.

TwoDescent(E: parameters)

RemoveTorsion BoolElt Default : false

RemoveGens {PtEll} Default : {}
WithMaps BoolElt Default : true

Verbose TwoDescent Maximum : 1

Given an elliptic curve E over the rationals 2-descent can be used to construct
a sequence of hyperelliptic curves (quartics) representing the elements of the 2-
Selmer group. The group structure is not preserved by this function: the intrinsic
TwoSelmerGroup should be used if this is desired. If RemoveTorsion is true, the
generators of the torsion subgroup are factored out from the set. If RemoveGens
is nonempty, the image of the specified points is factored out from the set. If
AppendMaps is true, then the maps from the covers to the curve are appended as a
second argument.
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AssociatedEllipticCurve(f)

AssociatedEllipticCurve(C)

E CrvEll Default :

Gives the minimal model of the elliptic curve associated with a two-covering given
as a polynomial f or a hyperelliptic curve C, along with a map from points [x, y]
on the two-covering to the curve.

If an elliptic curve is given as E, this must be isomorphic to the Jacobian of C,
and then the map returned will be a map to the given E.

Example H122E11

> SetSeed(1); // results may depend slightly on the seed

> E := EllipticCurve([0, 1, 0, -7, 6]);

> S := TwoDescent(E);

> S;

[

Hyperelliptic Curve defined by y^2 = x^4 + 4*x^3 - 2*x^2 - 20*x + 9 over

Rational Field,

Hyperelliptic Curve defined by y^2 = x^4 - x^3 - 2*x^2 + 2*x + 1 over

Rational Field,

Hyperelliptic Curve defined by y^2 = 2*x^4 - 4*x^3 - 8*x^2 + 4*x + 10 over

Rational Field

]

E has three non-trivial two-descendants, hence its rank is at most 2. The first two curves yield
obvious rational points, so we can find two independent points on E (and it has exact rank 2).

> pt_on_S1 := Points(S[1] : Bound:=10 )[1];

> pt_on_S1;

// We obtain the map from S[1] to E by

> _, phi := AssociatedEllipticCurve(S[1] : E:=E );

> phi( pt_on_S1 );

(1 : -1 : 1)

// Now do the same for the second curve.

> pt_on_S2 := Points(S[2] : Bound:=10 )[1];

> _, phi := AssociatedEllipticCurve(S[2] : E:=E );

> phi( pt_on_S2 );

(-3 : 3 : 1)
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122.2.7.1 Two Descent Using Isogenies

TwoIsogenyDescent(E : parameters)

Isogeny MapSch Default :

TwoTorsionPoint PtEll Default :

Given an elliptic curve E over Q admitting a 2-isogeny φ : E′ → E, this function
computes 2-coverings representing the nontrivial elements of the Selmer groups of
φ and of the dual isogeny φ′ : E → E′. These coverings are given as hyperelliptic
curves C : y2 = quartic(x). Six objects are returned: (i) the sequence of coverings
C of E for φ; (ii) the corresponding list of maps C → E; (iii) and (iv) the coverings
C ′ and maps C ′ → E′ for φ′; (v) and (vi) the isogenies φ and φ′ that were used.

It’s advisable to give a model for E that is close to minimal.

LiftDescendant(C)

This routine performs a higher descent on curves arising in TwoIsogenyDescent(E)
on an elliptic curve E over Q. The curves obtained are 2-coverings of E in the sense
of ordinary (full) TwoDescent; more precisely, they are exactly the set of 2-coverings
D for which the covering map D → E factors through C. Up to isomorphism, they
are a subset of the 2-coverings returned by TwoDescent(E). The advantage of this
approach is that it works entirely over the base field of E, whereas TwoDescent will
in general compute a class group over a quadratic extension of the base field. The
example below explains how to recover all coverings produced by TwoDescent(E)
using the 2-isogeny approach.

This function accepts any curve C in the first sequence of curves returned by
TwoIsogenyDescent(E) (these are the 2-isogeny-coverings of E). More generally it
accepts any hyperelliptic curve of the form y2 = d1x

4 + cx2 + d2. A model for the
associated elliptic curve E is then y2 = x(x2 + cx+ d1d2).

The function returns three objects: a sequence containing the covering curves
D, a list containing the corresponding maps D → C, and lastly the covering map
C → E from the given curve to some model of its associated elliptic curve.

122.2.7.2 Invariants

QuarticIInvariant(q) QuarticJInvariant(q)

QuarticG4Covariant(q) QuarticG6Covariant(q)

QuarticHSeminvariant(q) QuarticPSeminvariant(q)

QuarticQSeminvariant(q) QuarticRSeminvariant(q)

Compute invariants, semivariants, and covariants, as in paper [Cre01], of a given
quartic polynomial q. The G4 and G6 covariants are polynomials of degrees four
and six respectively; the I and J invariants are integers that generate the ring of
integer invariants of the polynomial and satisfy J2 − 4I3 = 27∆(f). The names H
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and P have been used for essentially the same seminvariant in different papers; they
are related by H = −P .

QuarticNumberOfRealRoots(q)

Using invariant theory, compute the number of real roots of a real quartic polynomial
q.

QuarticMinimise(q)

This computes a minimal model of the quartic polynomial q over the rationals or a
univariate rational function field.

Three objects are returned: the minimised quartic, the transformation matrix,
and the scaling factor.

For further explanation see Chapter 124. The algorithm can be found in [CFS10].

QuarticReduce(q)

Given a quartic q, the algorithm of [Cre99] is applied to find the reduced quartic
and the matrix that reduced it.

IsEquivalent(f,g)

Determines if the quartics f and g are equivalent.

122.2.8 The Cassels-Tate Pairing
The Tate–Shafarevich group of any elliptic curve E admits an alternating bilinear form
on III (E) with values in Q/Z, known as the Cassels-Tate pairing. The key property is
that if III (E) is finite (as conjectured), the Cassels-Tate pairing is non-degenerate. When
restricted to the 2-torsion subgroup, one obtains a non-degenerate alternating bilinear
form on III (E)[2]/2III (E)[4], or equivalently on Sel2(E) modulo the image of Sel4(E),
with values in Z/2Z.

This means that if C and D are 2-coverings of E and the pairing (C,D) has value 1,
then both C and D represent elements of order 2 in III (E), and moreover there are no
locally solvable 4-coverings of E lying above them (in other words, FourDescent(C) and
FourDescent(D) would both return an empty sequence). In this sense the Cassels-Tate
pairing provides the same information as 4-descent, but is much easier to compute.

Similarly, for an element in III (E)[4]/2III (E)[8], the values of the pairing between
this element and all elements in III (E)[2]/2III (E)[4] provides the same information as
performing an 8-descent on C. These elements may be represented by a 4-covering C → E
and a 2-covering D → E respectively.

In Magma the pairing between 2-coverings is implemented over Q number fields, and
rational function fields F (t) for F finite of odd characteristic. The pairing between a 2-
covering and a 4-covering is implemented over Q. A new, very efficient implementation of
pairing on 2-coverings over Q was released in Magma V2.15.

The algorithms are due to Steve Donnelly and will be described in a forthcoming paper,
a draft of which is available on request. For the pairing between 2-coverings, the only
nontrivial computation is to solve a conic over the base field of E, so over Q the pairing
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is easy to compute. For the pairing between 2- and 4-coverings, the key step is to solve
a conic defined over a degree 4 field; this is also the case for performing 8-descent on the
4-covering, however the advantage here is that there is considerable freedom to choose the
field to have small discriminant. Consequently it is more efficient to use the pairing than
to apply EightDescent.

122.2.8.1 Verbose Information
To have information about the computation printed while it is running, one may use
SetVerbose("CasselsTate",n); with n = 1 (for fairly concise information) or n = 2.

CasselsTatePairing(C, D)

Verbose CasselsTate Maximum : 2
This evaluates the Cassels-Tate pairing on 2-coverings of an elliptic curve over Q, a
number field, or a function field F (t) where F is a finite field of odd characteristic.
The given curves C and D must be hyperelliptic curves of the form y2 = q(x) where
q(x) has degree 4, and they must admit 2-covering maps to the same elliptic curve.
In addition, they must both be locally solvable over all completions of their base
field (otherwise the pairing is not defined).

Typically the input curves C and D would be obtained using TwoDescent(E).
The pairing takes values in Z/2Z (returned as elements of Z).

CasselsTatePairing(C, D)

Verbose CasselsTate Maximum : 2
This evaluates the Cassels-Tate pairing between a 4-covering C and a 2-covering
D of the same elliptic curve over Q. The arguments should be curves over Q,
with C an intersection of two quadrics in P3 (for instance, a curve obtained from
FourDescent), and D a hyperelliptic curve of the form y2 = q(x). In addition, they
must both be locally solvable over all completions of Q (otherwise the pairing is not
defined).

The pairing takes values in Z/2Z (returned as elements of Z).

Example H122E12

We consider the first elliptic curve with trivial 2-torsion and nontrivial Tate-Shafarevich group.

> E := EllipticCurve("571a1"); E;

Elliptic Curve defined by y^2 + y = x^3 - x^2 - 929*x - 10595 over Rational Field

> #TorsionSubgroup(E);

1

> time covers := TwoDescent(E); covers;

Time: 0.270

[

Hyperelliptic Curve defined by y^2 = -11*x^4 - 68*x^3 - 52*x^2 + 164*x - 64

over Rational Field,

Hyperelliptic Curve defined by y^2 = -19*x^4 + 112*x^3 - 142*x^2 - 68*x - 7

over Rational Field,
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Hyperelliptic Curve defined by y^2 = -4*x^4 + 60*x^3 - 232*x^2 + 52*x - 3

over Rational Field

]

> time CasselsTatePairing(covers[1], covers[2]);

1

Time: 0.130

This proves that these two coverings both represent nontrivial elements in the Tate-Shafarevich
group; in fact our computations show that the 2-primary part of III (E) is precisely Z/2 × Z/2.
We could have reached the same conclusion using 4-descent:

> time FourDescent(covers[1]);

[]

Time: 0.460

122.2.9 Four-Descent
In a 1996 paper [MSS96], Merriman, Siksek and Smart described a four-descent algorithm
for elliptic curves over Q. This section describes the Magma implementation of that
algorithm. Another useful reference is Tom Womack’s PhD thesis [Wom03]. Four-descent
is performed on a two-cover, that is a hyperelliptic curve defined by a polynomial of degree
four, with the assumption that the quartic of this descendant does not have a rational
root. The terminology “four-descent” is thus slightly incorrect; Magma actually performs
a second descent on a specific two-cover, and does not try to combine such information
from all two-covers into the 4-Selmer group.

A four-covering F is a pair of symmetric 4× 4 matrices, defining an intersection of two
quadrics in P 3. Associated to F is an elliptic curve E; there is a rational map from F to
E of degree 16. The four-descent process takes a two-covering curve C (something of the
shape y2 = f(x) with f quartic, and possessing points over Qp for all p), and returns a set
of four-coverings that arise from C.

In particular, if C represents an element of order two in the Tate–Shafarevich group
of E, then the four-descent process will return the empty set. If C represents an element
of the Mordell–Weil group, at least one of the four-coverings arising from C will have a
rational point — all of them will do so if the Tate–Shafarevich group of E is trivial — and
once found this point can be lifted to a point on E.

FourDescent(f : parameters)

FourDescent(C : parameters)

RemoveTorsion BoolElt Default : false

IgnoreRealSolubility BoolElt Default : false

RemoveTorsion BoolElt Default : false

RemoveGensEC {PtEll} Default : {}
RemoveGensHC {PtHyp} Default : {}
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Verbose FourDescent Maximum : 3
Verbose LocalQuartic Maximum : 2
Verbose MinimiseFD Maximum : 2
Verbose QISearch Maximum : 1
Verbose ReduceFD Maximum : 2
Verbose QuotientFD Maximum : 2

Performs a four-descent on the curve y2 = f(x), where f is a quartic. Returns
a set of four-coverings of size 2s−1, where s is the Selmer 2-rank of the curve. If
the verbose level of the main function is set to 3, then the auxiliary verbose levels
are all set to at least 1. If RemoveTorsion is true, the generators of the torsion
subgroup are factored out from the set. The optional argument RemoveGensHC
performs a quotient by the images of given points that are on the input quartic
to FourDescent. The optional argument RemoveGensEC forms a quotient by the
images of given points; these can be on any elliptic curve that is isomorphic to the
AssociatedEllipticCurve of the quartic (though all given points must be on the
same elliptic curve). These options can be used together. It can be non-trivial to
remove torsion and generators, as points on the elliptic curve need not pull-back
to the given y2 = f(x) curve. The algorithm used exploits various primes of good
reduction, and attempts to determine whether the images under the µp are the same.
This in turn can be tricky, due to the Cassels kernel, and even more so when there
are extra automorphisms (that is, when j = 0, 1728 over Fp).

Example H122E13

This example shows that a well-known curve has rank 0 and that the 2-torsion subgroup of its
Tate–Shafarevich group is isomorphic to (Z/2Z)2.

> D := CremonaDatabase();

> E := EllipticCurve(D, 571, 1, 1);

> time td := TwoDescent(E);

Time: 2.500

> #td;

3

There are three 2-covers, so the 2-Selmer group has order four (since TwoDescent elides the trivial
element).

> time [ FourDescent(t) : t in td ];

[

[],

[],

[]

]

Time: 3.290

So none of the two-covers have four-covers lying over them; hence they all represent elements of
III , and the Mordell–Weil rank must be zero.
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AssociatedEllipticCurve(qi)

AssociatedHyperellipticCurve(qi)

E CrvEll Default :

Given an intersection of quadrics qi, return the associated elliptic and hyperelliptic
curves, respectively, together with maps to them.

If an elliptic curve is given as E, this must be isomorphic to the Jacobian of the
curve qi, and then the map returned will be a map to the given E.

QuadricIntersection(F)

QuadricIntersection(P, F)

Given a pair of symmetric 4 × 4 matrices F , this function returns the associated
quadric intersection in P = P 3.

QuadricIntersection(E)

QuadricIntersection(C)

Given an elliptic curve E or a hyperelliptic curve C, write it as an intersection of
quadrics. The inverse map for the hyperelliptic curve has problems due to difficulties
with weighted projective space.

IsQuadricIntersection(C)

Given a curve C, determines if C is in P 3 and has two defining equations, both
of which involve only quadrics. In the case where C is a quadric intersection, the
associated pair of matrices are also returned.

PointsQI(C, B : parameters)

OnlyOne BoolElt Default : false

ExactBound BoolElt Default : false

Verbose QISearch Maximum : 1
Given a quadric intersection C, this function searches, by a reasonably efficient
method due to Elkies [Elk00], for a point on C of näıve height up to B; the asymp-
totic running time is O(B2/3).

If OnlyOne is set to true, the search stops as soon as it finds one point; however,
the algorithm is p-adic and there is no guarantee that points with small coordinates
in Z will be found first. If ExactBound is set to true, then points that are found
with height larger than B will be ignored.

TwoCoverPullback(H, pt)

TwoCoverPullback(f, pt)

Given a two-covering of a rational elliptic curve (as either a hyperelliptic curve or
a quartic) and a point on the elliptic curve, compute the pre-images on the two-
covering. This is faster than using the generic machinery.
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FourCoverPullback(C, pt)

Given a four-covering of a rational elliptic curve as an intersection of quadrics and
a point either on the associated elliptic curve or the associated hyperelliptic curve,
this function computes the pre-images on the covering. This is faster than using the
generic machinery.

Example H122E14

This example exhibits a four-descent computation, and manipulation of points once they have
been found, by mapping from the curve to its two- and four-covers.

> P<x> := PolynomialRing(Integers());

> E := EllipticCurve([0, -1, 0, 203, -93]);

> f := P!Reverse([-7, 12, 20, -120, 172]);

> f;

-7*x^4 + 12*x^3 + 20*x^2 - 120*x + 172

The quartic given was obtained with mwrank; the two-descent routine could have been used instead,
although it provides a different (but equivalent) quartic.

> time S := FourDescent(f);

Time: 4.280

> #S;

1

The single cover indicates that the curve E has Selmer rank 1, though this was already known
from the calculation that constructed f .

> _,m := AssociatedEllipticCurve(S[1] : E:=E );

> pts := PointsQI(S[1], 10^4);

> pts;

[ (-5/3 : 13/3 : -34/3 : 1) ]

We now map this point back to E.

> m(pts[1]);

(2346223045599488598/1033322524668523441 :

20326609223460937753264735467/1050397899358266605692672489 : 1)

> Height($1);

44.19679596739622477261983370
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122.2.10 Eight-Descent
One may perform 8-descent (ie a further 2-descent) on curves of the kind produced

by a 4-descent on an elliptic curve E over Q. These are nonsingular intersections of two
quadrics in P3 that are locally soluble. The 8-descent determines whether such a curve
has any 2-coverings (in the sense of 2-descent) that are locally soluble everywhere.

The routine can therefore be used to prove, in many cases, that a given 4-covering of
E is in fact an element of order 4 in the Tate–Shafarevich group of E. It can also be used
to find 8-coverings of E, and to verify these are elements of the 8-Selmer group.

The 8-coverings are given as genus one normal curves of degree 8 in P8. They are
minimised and reduced, so are useful in searching for points on E.

The algorithm and implementation (from Magma 2.17) are due to Tom Fisher; this
implementation partly incorporates and partly replaces an earlier one by Sebastian Stam-
minger.

EightDescent(C : parameters)

BadPrimesHypothesis BoolElt Default : false

DontTestLocalSolvabilityAt

{RngIntElt} Default : {}
StopWhenFoundPoint BoolElt Default : false

Verbose EightDescent Maximum : 4
Verbose LegendresMethod Maximum : 3

For a curve C obtained from FourDescent on some elliptic curve E over Q, this
performs a further 2-descent on C. It returns a sequence of curves D, together with
a sequence containing maps D → C from each of these curves to C. The curves
returned are precisely the 8-descendants of E that lie above C and are locally soluble
at all places.

When the optional argument StopWhenFoundPoint is set to true, the computa-
tion will stop if it happens to find a rational point on C, and immediately return
the point instead of continuing to computing the 8-coverings.

In some cases local solubility testing (at large primes which may arise due to
choices made in the algorithm) can be time-consuming. Testing at specified primes
may be skipped by setting the optional argument DontTestLocalSolvabilityAt
to the desired set of prime integers, or by setting BadPrimesHypothesis to be
true. In that case, certain primes are omitted from the set of bad primes (namely
those primes at which the intersection of C with an auxiliary third quadric has bad
reduction, and which are not bad primes for any other reason).

The algorithm involves class group and unit computations in a number field of
degree 4 (and sometimes also 8). It is recommended to set the bounds to be used
in all such computations before calling EightDescent, via SetClassGroupBounds.

Verbose output: For a readable summary of the computation, set the verbose
level to 1 by entering SetVerbose("EightDescent",1). For full information about
all the time-consuming steps in the process, set the verbose level to 3. For additional
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information about solving the conic, set the verbose level for "LegendresMethod"
to 2.

122.2.11 Three-Descent
Three descent is implemented for elliptic curves over the rationals. This involves com-

puting the 3-Selmer group of the curve, and then representing the elements as plane cubics.
There is also a separate implementation of “descent by three isogenies”, for elliptic

curves over the rationals which admit a Q-rational isogeny of degree 3.
The main application of full three-descent is in studying elements of order 3 in Tate–

Shafarevich groups. For the problem of determining the Mordell–Weil group, three-descent
has no advantage over four descent except in special cases: the cost is greater (three-descent
requires computing the class group and S-units in a degree 8 number field, compared with
degree 4 for four-descent), and the reward is smaller (a point on a 3-coverings has height 1/6
as large as its image on the elliptic curve, while with four-descent the ratio is 1/8). However
three-descent can be useful when there are elements of order 4 in the Tate–Shafarevich
group, which four-descent cannot deal with.

On the other hand, for a curve with a Q-rational isogeny of degree 3, descent by 3-
isogenies is likely to be the most efficient way to bound the Mordell–Weil rank, because it
only requires class group and S-unit computations in quadratic fields.

There are two steps to the 3-descent process: firstly, computing the 3-Selmer group
as a subgroup of H1(Q, E[3]) (explicitly, as a subgroup of A×/A×3 for a suitable algebra
A), and secondly, expressing the elements as genus one curves with covering maps to
E. The elements of the 3-Selmer group are given as plane cubics, and the process of
obtaining these cubics is far from trivial. (Note that in general, an element of H1(Q, E[3])
can only be given as a curve of degree 9 rather than degree 3). The main commands
are ThreeSelmerGroup(E), which performs the first step, and ThreeDescent(E), which
performs both steps together, while ThreeDescentCubic performs the second step for a
given element of 3-Selmer group.

The algorithm for the first step is presented in [SS04], while the theory and algorithms
for the second step are developed in the forthcoming series of papers [CFO+08], [CFO+09],
[CFO+]. The bulk of the code was written by Michael Stoll and Tom Fisher (however,
responsibility for the final version rests with Steve Donnelly).

The following verbose flags provide information about various stages of the three
descent process: Selmer, ThreeDescent, CSAMaximalOrder, Minimise and Reduce.
For instance, to see what ThreeSelmerGroup is doing while it is running, first enter
SetVerbose("Selmer",2);. The verbose levels range from 0 to 3.

ThreeDescent(E : parameters)

Method MonStgElt Default : “HessePencil”
Verbose Selmer Maximum : 3
Verbose ThreeDescent Maximum : 3

Given an elliptic curve over the rationals, this function returns the elements of the
3-Selmer group as projective plane cubic curves C, together with covering maps
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C → E. Two objects are returned: a sequence containing one curve for each inverse
pair of nontrivial elements in the 3-Selmer group, and a corresponding list of maps
from these curves to E. (Note that a pair of inverse elements in the 3-Selmer group
both correspond to the same cubic curve C, and their covering maps C → E differ
by composition with the negation map E → E.)

The function simply calls ThreeSelmerGroup(E), and then ThreeDescentCubic
on the Selmer elements. Note that if ThreeSelmerGroup(E) has already been com-
puted, it will not be recomputed, because the results are stored in the attribute
E‘ThreeSelmerGroup.

For more information see the description of ThreeDescentCubic below.

Example H122E15

Here is Selmer’s famous example 3x3 + 4y3 + 5z3 = 0, which is an element of order 3 in the
Tate–Shafarevich group of its Jacobian, the elliptic curve x3 + y3 + 60z3 = 0.

> Pr2<x,y,z> := ProjectiveSpace(Rationals(),2);

> J := x^3 + y^3 + 60*z^3;

> E := MinimalModel(EllipticCurve(Curve(Pr2,J)));

> cubics, mapstoE := ThreeDescent(E);

> cubics;

[

Curve over Rational Field defined by 2*x^3 + 30*y^3 - z^3,

Curve over Rational Field defined by x^3 + 5*y^3 - 12*z^3,

Curve over Rational Field defined by 6*x^3 + 5*y^3 - 2*z^3,

Curve over Rational Field defined by 3*x^3 + 5*y^3 - 4*z^3

]

The 3-Selmer group of E is isomorphic to Z/3Z ⊕ Z/3Z, and one element for each (nontrivial)
inverse pair is returned. (Note: 3x3 +4y3 +5z3 will not necessarily appear; due to random choices
in the program, an equivalent model may appear instead.)
The covering maps from these curves to E have degree 9, and are given by forms of degree 9 in
x, y, z. For example, the map from the first curve 2x3 − 3y3 + 10z3 to E is given by:

> DefiningEquations(mapstoE[1]);

[

-1377495072000*x*y^7*z + 4591650240000*x*y^4*z^4 - 15305500800000*x*y*z^7,

24794911296000*y^9 - 123974556480000*y^6*z^3 - 413248521600000*y^3*z^6 +

918330048000000*z^9,

-4251528000*x^3*y^3*z^3

]

Since E has trivial Mordell–Weil group, we should not find any rational points on these curves!
(In fact they are all nontrivial in the Tate–Shafarevich group.) Here we search for rational points
on the first cubic, up to height roughly 104:

> time PointSearch( cubics[1], 10^4);

[]
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Time: 0.490

An extended example, concerning “visible” 3-torsion in a Tate–Shafarevich group, can be found
at the end of Chapter 124.

ThreeSelmerGroup(E : parameters)

ThreeTorsPts Tup Default :

MethodForFinalStep MonStgElt Default : “UseSUnits”
CompareMethods BoolElt Default : false

Verbose Selmer Maximum : 3
Given an elliptic curve E over the rationals, this function returns its 3-Selmer group
as an abelian group, together with a map to the natural affine algebra.

The parameter MethodForFinalStep can be either “Heuristic” (which is usually
much faster in large examples), “FindCubeRoots”, or “UseSUnits” (the default,
which has the advantage that it usually takes roughly the same amount of time as
the S-unit computation that has already been performed). To try all three methods
and compare the times, set CompareMethods to true.

Most of the computation time is usually spent on class group and unit group
computations. These computations can be speeded up by using non-rigorous
bounds, and there are two ways to control which bounds are used. The recom-
mended way is to preset them using one of the intrinsics SetClassGroupBounds or
SetClassGroupBoundMaps (see Section 37.6.1). The other way is to precompute the
class groups of the fields involved, setting the optional parameters in ClassGroup as
desired. (The relevant fields can be obtained as the fields over which the points in
ThreeTorsionPoints(E) are defined.) The fields and their class group data would
then be stored internally, and automatically used when ThreeSelmerGroup(E) is
called (even when no optional parameters are provided).

When ThreeTorsPts is specified, it determines the fields used in the computa-
tion, and the algebra used to express the answers.

ThreeDescentCubic(E, α : parameters)

ThreeTorsPts Tup Default :

Method MonStgElt Default : “HessePencil”
Verbose ThreeDescent Maximum : 3

Given an elliptic curve E over the rationals, and an element α in the 3-Selmer group
of E, the function returns a projective plane cubic curve C, together with a map
of schemes C → E. The cubic is a principal homogeneous space for E, and the
covering map C → E represents the same Selmer element as either α or 1/α (and
α can be recovered, up to inverse, by calling ThreeSelmerElement of the cubic).

The 3-Selmer element α is given as an element of the algebra associated
to the 3-Selmer group (the algebra is the codomain of the map returned by
ThreeSelmerGroup, as in S3, S3toA := ThreeSelmerGroup(E)). In this situation,
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where α is S3toA(s) for some s, there is no need to specify the optional parameter
ThreeTorsPts.

The algorithm comes from the series of papers cited in the introduction. There
are three alternative ways to perform the final step of computing a ternary cubic.
All three ways are implemented, and the optional parameter Method may be “Hes-
sePencil” (default), “FlexAlgebra” or “SegreEmbedding”. However, the choice of
Method is not expected to make a big difference to the running time.

The optional parameter ThreeTorsPts is a tuple containing one representative
from each Galois orbit of E[3] \ O. Its purpose is to fix an embedding of the 3-
Selmer group in A×/A×3 (otherwise there is ambiguity when the fields involved
have nontrivial automorphisms, or occur more than once). When ThreeTorsPts is
not specified, ThreeTorsionPoints(E) is called (its value is stored internally and
used throughout the Magma session).

ThreeIsogenyDescent(E : parameters)

Isog MapSch Default :

Verbose Selmer Maximum : 3
Verbose ThreeDescent Maximum : 3

Given an elliptic curve E over Q that admits a Q-rational isogeny E → E1 of degree
3, the function performs “descent by 3-isogenies” on E. This involves computing
the Selmer groups attached to the isogeny and its dual, and representing the ele-
ments of both Selmer groups as plane cubics, with covering maps of degree 3 to
E1 or E respectively. One cubic is given for each nontrivial pair of inverse Selmer
elements, and one covering map is given for each cubic (the other covering map,
which can be obtained by composing with the negation map on the elliptic curve,
would correspond to the inverse Selmer element.)

There are five returned values, in the following order: a list of curves for Sel(E →
E1), a corresponding list of covering maps to E1, a list of curves for the dual isogeny
Selmer group Sel(E1 → E), a corresponding list of covering maps to E, and finally
the isogeny E → E1.

This function works simply by calling ThreeIsogenySelmerGroups(E), and then
calling ThreeIsogenyDescentCubic for each Selmer element.

The isogeny E → E1 may be passed in as Isog. If Isog is not specified, and E
admits more than one such isogeny, then this is chosen at random.

ThreeIsogenySelmerGroups(E : parameters)

Isog MapSch Default :

Verbose Selmer Maximum : 3
Given an elliptic curve E over the rationals that admits a Q-rational isogeny E → E1

of degree 3, the function computes the Selmer groups associated to the isogeny, and
to its dual isogeny E1 → E. The Selmer groups are returned as abstract groups,
together with maps to the relevant algebra. There are five returned values, in the
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following order: the group, and the map, for E → E1, the group, and the map, for
E1 → E, and finally the isogeny E → E1.

A bound for the rank of E(Q) can be deduced, by taking the sum of the ranks
of the Selmer groups for the two isogenies, and subtracting 1 if the kernel of one of
the isogenies consists of rational points.

The isogeny E → E1 may be passed in as Isog. If Isog is not specified, and E
admits more than one such isogeny, then this is chosen at random.

The algebra in which the Selmer group of a particular isogeny is exhibited is the
etale algebra corresponding to the nontrivial points in the kernel of the dual isogeny;
it is either a quadratic field, or a Cartesian product of two copies of Q.

ThreeIsogenyDescentCubic(φ, α)

Verbose ThreeDescent Maximum : 3
Given an isogeny φ of degree 3 between elliptic curves over Q, and any element α of
H1(Q, E[φ]), this function returns a plane cubic curve C representing α, together
with a covering map C → E of degree 3.

The element α is given as an element in the algebra A associated to the
Selmer group of φ; the algebra can be obtained from ThreeIsogenySelmerGroups.
H1(Q, E[φ]) is represented as the subgroup of A×/(A×)3 consisting of elements
whose norm is a cube.

ThreeDescentByIsogeny(E)

Verbose Selmer Maximum : 3
This performs a full 3-descent, returning models for the nontrivial inverse pairs
in the 3-Selmer group and maps to E making them into 3-coverings. The only
difference with ThreeDescent is that the computation is by first and second 3-
isogeny descents. This restricts the number fields used to cubic extensions, rather
than the sextic fields which may be needed for the generic ThreeDescent routine.
The advantage is noticeable for larger examples.

Example H122E16

> E := EllipticCurve([0,0,0,0,131241]);

> G,m := TorsionSubgroup(E);

> #G;

1

> Rank(E);

2

> S1,_,S2 := ThreeIsogenyDescent(E);

> #S1,#S2;

0 4

This shows that there is nontrivial 3-torsion in III on some isogenous curve. Without computing
the full 3-Selmer group of E it is impossible to tell if there is any nontrivial 3-torsion in III (E/Q).

> time Sel3 := ThreeDescentByIsogeny(E);
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Time: 5.280

> #Sel3*2+1;

9

This shows that III (E/Q)[3] = 0 (since we know the rank is 2). Alternatively one could get the
same by calling ThreeDescent. This would require computing class and unit group information
in the sextic field below (and would be much slower).

> E3reps := ThreeTorsionPoints(E);

> Parent(E3reps[2,1]);

Number Field with defining polynomial x^6 + 14174028 over the Rational Field

> time Sel3_slow := ThreeDescent(E);

forever!

Jacobian(C)

Given the equation of a nonsingular projective plane cubic curve C over the rationals,
this function returns the Jacobian of C (over the rationals) as an elliptic curve. Note
that C will be a principal homogeneous space of E.

ThreeSelmerElement(E, C)

ThreeSelmerElement(C)

Given an elliptic curve E over the rationals, and a plane cubic C with the same
invariants as E (for instance, with E equal to Jacobian(C)) the function returns an
element α in the algebra A associated to the 3-Selmer group of E. This α represents
the same element of H1(Q, E[3]) that is represented by a covering C → E that
takes the flex points of C to O. Note that α is only determined up to inverse in
H1(Q, E[3]).

In particular, if we have computed S3, S3toA := ThreeSelmerGroup(E), and
if C is an everywhere locally soluble covering corresponding to the element s in S3,
then α equals either S3toA(s) or S3toA(-s) in A×/(A×)3.

AddCubics(cubic1, cubic2 : parameters)

E CrvEll Default :

ReturnBoth BoolElt Default : false

Given equations of two plane cubics over the rationals with the same invariants (in
other words, they are homogeneous spaces for the same elliptic curve E, which is
their Jacobian, over the rationals), the function computes the sum of the corre-
sponding elements of H1(Q, E[3]). The sum is returned as another plane cubic, if
possible (and otherwise an error results).

An element of H1(Q, E[3]) may be expressed as a plane cubic when it has index
3, equivalently when the so-called “obstruction” is trivial. This is always the case for
elements that are everywhere locally soluble. In particular, the function will always
succeed when the two given cubics are everywhere locally soluble (in other words,
when they belong to the 3-Selmer group). The computation is done by converting
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the cubics to elements of H1(Q, E[3]) as given by ThreeSelmerElement, adding the
cocycles, and then converting the result to a cubic.

Note that a cubic only determines an element ofH1(Q, E[3]) up to taking inverse,
so the sum is not well defined; if the function is called with ReturnBoth := true,
it returns both of the possible cubics.

ThreeTorsionType(E)

For an elliptic curve E over the rationals, this function classifies the Galois action
on E[3]. The possibilities are “Generic”, “2Sylow”, “Dihedral”, “Generic3Isogeny”,
“Z/3Z-nonsplit”, “mu3-nonsplit”, “Diagonal” and “mu3+Z/3Z”.

ThreeTorsionPoints(E : parameters)

OptimisedRep BoolElt Default : true

For an elliptic curve E over the rationals, this function returns a tuple containing
one representative point from each set of Galois conjugates in E[3] \O.

Each point belongs to a point set E(L), where L is the field generated by the
coordinates of that point.

If OptimisedRep is set to false, then optimised representations of the fields will
not be computed, in general.

ThreeTorsionMatrices(E, C)

Given an elliptic curve E over the rationals, and a plane cubic with the same in-
variants as E (in other words, a principal homogeneous space for E of index 3), the
function returns a tuple of matrices. The matrices Mi correspond to the points Ti

in ThreeTorsionPoints(E), and have the corresponding base fields. Each matrix
describes the action-by-translation on C of the corresponding point: the action of
Pi on C is the restriction to C of the automorphism of the ambient projective space
P2 given by the image of Mi in PGL3.

Note that only the images in PGL3 of the matrices are well-determined.

122.2.11.1 Six and Twelve Descent
If a 3-descent has been performed, the results can be used in conjunction with a 2-

descent or a 4-descent to obtain coverings of degree 6 or 12 respectively. These “combined”
coverings can be useful for finding Mordell-Weil generators of large height on the underlying
elliptic curve.

The coverings are given as genus one normal curves (of degree 6 in P5, and of degree
12 in P11, respectively).

The algorithms are described in [Fis08].

SixDescent(C2, C3)

SixDescent(model2, model3)

Given a 2-covering and a 3-covering of an elliptic curve E (either as curves or as
genus one models), this returns the 6-covering that represents their sum in the
6-Selmer group. The covering map C6 → C3 is also returned.



4030 ARITHMETIC GEOMETRY Part XVII

TwelveDescent(C3, C4)

TwelveDescent(model3, model4)

Given a 3-covering and a 4-covering of an elliptic curve E (either as curves or
as genus one models), this returns the two 12-coverings that represent their sum
and difference in the 12-Selmer group. The covering maps to C12 → C4 are also
returned.

122.2.12 Nine-Descent
A nine-descent is performed on an everywhere locally solvable plane cubic curve. The

cubic represents a class in the 3-Selmer group of its Jacobian (up to sign). A nine-descent
computes the fibre above this class under the map from the 9-Selmer group to the 3-Selmer
group induced by multiplication by 3. This fibre is the set of everywhere locally solvable
3-coverings of the cubic. These coverings are given as intersections of 27 quadrics in
P8. As with four-descents the terminology “nine-descent” is slightly incorrect, as Magma
performs a second 3-descent on a specific 3-covering and does not try to combine such
information from all 3-coverings to form the 9-Selmer group.

The algorithm was developed in the PhD thesis of Brendan Creutz [Cre10]. Typically
most of the computation time is spent on class group and unit group computations in the
constituent fields of the degree 9 etale algebra associated to the flex points on the cubic.
The primary use is to obtain information on the 3-primary part of the Shafarevich–Tate
group. It is only in very rare circumstances that a nine descent is required (in addition
to the other descent machinery) to determine the Mordell–Weil rank (e.g. if there were
elements of order 24 in III ).

NineDescent(C : parameters)

ExtraReduction RngIntElt Default : 10

Verbose Selmer Maximum : 3

Verbose ComputeL Maximum : 2

Given a plane cubic curve C over Q this returns a sequence of curves in P8 defined
by 27 quadrics and a list of degree 9 maps making these curves into 3-coverings
of C. This is the 3-Selmer set of C (i.e. the set of everywhere locally solvable 3-
coverings of C). If there are no coverings, then C(Q) = ∅ and the class of C in the
Shafarevich-Tate group of its Jacobian is not divisible by 3. Otherwise the coverings
returned are lifts of C to the 9-Selmer group.

The coverings returned are minimised and reduced in an ad hoc fashion. If
ExtraReduction is set to a larger value, more time will be spent reducing pos-
sibly resulting in smaller models. The current implementation requires that Ga-
lois act transitively on the flex points. If this is not the case, then one can use
pIsogenyDescent instead.
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NineSelmerSet(C)

Computes the 3-rank of the 3-Selmer set of plane cubic curve C defined over Q.
The value −1 is returned when the 3-Selmer set is empty. In this case C(Q) = ∅
and the class of C in the Shafarevich-Tate group of its Jacobian is not divisible by
3. If the 3-Selmer set is nonempty, its 3-rank is the same as that of the 3-Selmer
group of the Jacobian. In this case the class of C in the Shafarevich-Tate group of
the Jacobian is divisible by 3.

122.2.13 p-Isogeny Descent
Given an isogeny φ : E1 → E2 of elliptic curves, one may define the φ-Selmer group of E2

to be the set of everywhere locally solvable φ-coverings of E2. Given a genus one curve
C with Jacobian E2, one may define its φ-Selmer set to be the set of everywhere locally
solvable φ-coverings of C. A φ-isogeny descent computes the φ-Selmer group (or φ-Selmer
set).

We denote the dual isogeny by φ∨. In the case of elliptic curves, performing φ- and
φ∨-descents can be used to bound the Mordell-Weil rank and get information on III . For
general genus one curves descent by isogeny can be used to rule out divisibility in III and
consequently prove that there are no rational points.

In practice it is often easier to compute a ‘fake’ Selmer set. This is a set parameterising
everywhere locally solvable unions of φ-coverings, with the property that every φ-covering
lies in exactly one such union. Any locally soluble φ-covering gives rise to a locally soluble
union, hence there is a map from the Selmer set to the fake Selmer set. In general this
map may be neither surjective nor injective. However, if the fake Selmer set is empty, then
this is also true of the Selmer set.

Current functionality allows one to compute φ-Selmer groups for an isogeny φ of prime
degree in a number of situations. For isogenies of degree 2 or 3, they may be computed using
TwoIsogenyDescent and ThreeIsogenyDescent. When φ is the quotient by a subgroup
generated by a Q-rational point of order p ∈ {5, 7} the dimensions of the φ- and φ∨-Selmer
groups can be computed using an algorithm of Fisher [Fis00] and [Fis01]. This method
also produces models for the everywhere locally solvable φ∨-coverings of E.

Given a genus one normal curve C of prime degree p produced by a φ-isogeny descent
on an elliptic curve, the φ∨-Selmer set of C can be computed using an algorithm of Creutz
described in [Cre10] and [CM12]. Computing the φ∨-Selmer sets of all elements in the
φ-Selmer group yields information that is equivalent to that given by the φ∨ ◦ φ-Selmer
group.

Current functionality allows one to perform these second isogeny descents when φ has
degree p = 3 or when p ∈ {5, 7} and the flex points of C lie on the coordinate hyperplanes
in Pp−1. If the kernel of the isogeny is generated by a Q-rational point of order p, then
such a model always exists. Moreover, the models returned by the algorithm of Fisher
have this property. For p = 7, computation of the coverings is not practical and only a
‘fake’-Selmer set can be computed (see [CM12]).

pIsogenyDescent(E,P)
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pIsogneyDescent(E,p)

pIsogenyDescent(lambda,p)

This performs a φ-descent on an elliptic curve over Q using the algorithm of Fisher.
The descent requires an isogeny φ whose kernel is generated by a Q-rational point
of order p ∈ {5, 7}.

The input can be specified in one of three ways: (1) by giving an elliptic curve
and a point of order p on the curve; (2) by giving an elliptic curve containing a point
of order p and specifying p; or (3) by specifying p and a Q-rational point on the
modular curve X1(p). In the final case the choice for the coordinate λ on X1(p)(Q)
is as described in [Fis00].

The return values are the p-ranks of the φ- and φ∨-Selmer groups, a sequence
of genus one normal curves of degree p representing the inverse pairs of nontrivial
elements of the φ∨-Selmer group modulo the image of the subgroup generated by
the p-torsion point, and the isogenous elliptic curve. If the input is a coordinate on
X1(p), the curve E is also returned.

pIsogenyDescent(C,phi)

pIsogenyDescent(C,E1,E2)

pIsogenyDescent(C,P)

Verbose Selmer Maximum : 3

This performs an isogeny descent on the genus one normal curve C of degree p ∈
{3, 5} as described in [CM12]. C must be a projective plane cubic (in case p = 3)
or an intersection of 5 quadrics in P4, with the additional requirement that the flex
points of C lie on the coordinate hyperplanes. For the descent one must specify:
(1) the isogeny φ; (2) the domain E1 and the codomain E2 of the isogeny; or (3) a
Q-rational point P of order p on an elliptic curve E which generates the kernel of
the isogeny.

The return values are a sequence consisting of genus one normal curves of degree
p representing the elements of the φ-Selmer set and a list of maps making these into
φ-coverings of C.

FakeIsogenySelmerSet(C,phi)

FakeIsogenySelmerSet(C,E1,E2)

FakeIsogenySelmerSet(C,P)

Verbose Selmer Maximum : 3

This determines the Fp-dimension of the ‘fake’-φ-Selmer set of the genus one normal
curve C of degree p ∈ {3, 5, 7} (see [CM12] for the definition). By convention the
empty set has dimension −1. The input is exactly as for pIsogenyDescent, however
coverings are not produced. This makes the computations feasible as well for p = 7.
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Example H122E17

We use a 5-isogeny descent to show that the elliptic curve with Cremona reference 570l3 has rank
0 and that there are nontrivial elements of order 5 in its Shafarevich-Tate group.

> lambda := 48/5;

> r_phiSel,r_phidualSel,Sha,E1,E2 := pIsogenyDescent(lambda,5);

> CremonaReference(E1);

570l1

> CremonaReference(E2);

570l3

> TorsionSubgroup(E1);

Abelian Group isomorphic to Z/10

Defined on 1 generator

Relations:

10*$.1 = 0

> r_phiSel;

0

> r_phidualSel;

3

This shows that E2(Q)/φ(E1(Q)) ' 0, while the φ∨-Selmer group gives an exact sequence: 0 →
E2(Q)/φ∨(E1(Q)) ⊂ (Z/5Z)3 → III (E2/Q)[φ∨] → 0. From this we conclude that the rank (for
both curves) is 0, and so III (E2/Q)[φ∨] has F5-dimension 2. Representatives for the inverse pairs
of nontrivial elements are given by the third return value.

> #Sha*2 + 1;

25

> C := Sha[1];

> CremonaReference(Jacobian(GenusOneModel(C)));

570l3

The above computation does not conclusively show that III (E1/Q) has no nontrivial 5-torsion.
For this we need a second isogeny descent. Namely we show that the C is not divisible by φ in
III .

> time DimSelC := FakeIsogenySelmerSet(C,E1,E2);

Time: 2.950

> DimSelC;

-1

Example H122E18

Now we use a full 5-descent to find a large generator.

> r1,r2,SelModTors,E,EE := pIsogenyDescent(326/467,5);

> r1,r2;

0 2

> E5,m := TorsionSubgroup(E);

> E5;

Abelian Group isomorphic to Z/5



4034 ARITHMETIC GEOMETRY Part XVII

Defined on 1 generator

Relations:

5*E5.1 = 0

> time ConjecturalRegulator(E);

242.013813460415708000138268958 1

Time: 70.180

> Conductor(E);

271976526950

> ThreeTorsionType(E);

Generic

This shows that E(Q) ' Z × Z/5Z and that (assuming III (E/Q) is trivial) that the regulator
is 242.01... This means one probably needs more than a 4-descent to find the generator. The
conductor is too large for Heegner point techniques and the 3-torsion on E is generic, meaning 6-
or 12-descent will be very slow (even if they are performed nonrigorously). We can do a further
isogeny descent to obtain a full 5-covering.

> P := m(E5.1);

> C := Curve(Minimize(GenusOneModel(SelModTors[2])));

> time Ds,Pis := pIsogenyDescent(C,P);

7.880

> D := Ds[1];

> pi := Pis[1];

> time rp := PointSearch(D,10^10 :

> Dimension := 1, OnlyOne := true, Nonsingular := true);

Time: 39.410

> Q := rp[1];

> Q;

(-11610740223/2573365369 : 1350220049/2573365369 :

-110993809/2573365369 : -3970329088/2573365369 : 1)

> piQ := pi(Q); // gives the point on C

> Dnew,Enew,FiveCovering := nCovering(GenusOneModel(D));

> Qnew := Dnew(Rationals())!Eltseq(Q);

> Ecan,EnewtoEcan := MinimalModel(Enew);

> P2 := EnewtoEcan(FiveCovering(Qnew));

> P2;

(18742046893875394386310714878805837118945751672332464430219783625592

23533610794664163106345898123969229661/991466716729115905824131485387

000945412007497180441812893340644055454270710030810641619997008843128

1 : 71245662543288432230853647434377610311616709098508077082874898143

715069493690489458124709392518651254352942841744887961253603235705564

184725054480767436761578/98722742040021206194215985208166099089985806

405143789926209543140373470096170812446567353837866650186446834616709

6101096776119973657047069330277618071 : 1)

> CanonicalHeight(P2);

242.013813460415708000138268957
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Example H122E19

Finally we give an example which shows that the map from the genuine Selmer set to the fake
Selmer set need not be surjective.

> E1 := EllipticCurve("254a1");

> E2 := EllipticCurve("254a2");

> bool, phi := IsIsogenous(E1,E2);

> phicoveringsofE2,_,phidualcoveringsofE1,_,phi := ThreeIsogenyDescent(E1);

> C := phicoveringsofE2[1];

> C;

x^3 - x^2*y - x^2*z - 2*x*y^2 + 3*x*y*z - 2*x*z^2 + 2*y^2*z

> phidual := DualIsogeny(phi);

> MinimalModel(Codomain(phidual)) eq MinimalModel(Jacobian(C));

true

> time FakeIsogenySelmerSet(C,phidual);

2

Time: 0.620

> time SelC := pIsogenyDescent(C,phidual);

Time: 1.160

> Ilog(3,#SelC);

1

122.2.14 Heegner Points
For an elliptic curve of rank 1, it is possible to compute the generator by an analytic process;
the elliptic logarithm of some multiple nP of the generator is the sum of the values of the
modular parameterization at a series of points in the upper half-plane corresponding to
a full set of class representatives for an appropriately-chosen quadratic field. There is no
such thing as a free lunch, sadly; the calculation requires computing O(hN) terms to a
precision of O(h) digits, so in practice it works best for curves contrived to have small
conductors.

The calculation proceeds in three stages: choosing the quadratic field Q(
√−d), evaluat-

ing the modular parameterization, and recovering the generator from the elliptic logarithm
value. Essentially, this is an implementation of the method of Gross and Zagier [GZ86];
Elkies performed some substantial computations using this method in 1994, and much of
the work required to produce this implementation was done by Cremona and Womack.
An array of tricks have been added, and are described to some extent in some notes of
Watkins.

HeegnerPoint(E : parameters)

NaiveSearch RngIntElt Default : 1000
Discriminant RngIntElt Default :

Cover Crv Default :

DescentPossible BoolElt Default : true
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IsogenyPossible BoolElt Default : true

Traces SeqEnum Default : []

Verbose Heegner Maximum : 1

Attempts to find a point on a rank 1 rational elliptic curve E using the method
of Heegner points, returning true and the point if it finds one, otherwise false.
The parameter NaiveSearch indicates to what height the algorithm will first do a
search (using Points) before turning to the analytic method. The Discriminant
parameter allows the user to specify an auxiliary discriminant; this must satisfy
the Heegner hypothesis, and the corresponding quadratic twist must have rank 0.
The Cover option allows the user to specify a 2-cover or 4-cover (perhaps obtained
from TwoDescent or FourDescent) to speed the calculation. This should be either
a hyperelliptic curve or a quadric intersection, and there must be a map from the
cover to the given elliptic curve. If the DescentPossible option is true, then the
algorithm might perform such a descent in any case. If the IsogenyPossible option
is true, then the algorithm will first try to guess the best isogenous curve on which
to do the calculation — if a Cover is passed to the algorithm, it will be ignored if E
is not the best isogenous curve. The Traces option takes an array of integers which
correspond to the first however-many traces of Frobenius for the elliptic curve, thus
saving having to recompute them.

The algorithm assumes that the Manin constant of the given elliptic curve is 1
(which is conjectured in this case), and does not return a generator for the Mordell–
Weil group, but a point whose height is that given by a conjectural extension of the
Gross–Zagier formula. This should be

√
Sha times a generator.

HeegnerPoint(C : parameters)

HeegnerPoint(f : parameters)

NaiveSearch RngIntElt Default : 10000

Discriminant RngIntElt Default :

Traces SeqEnum Default : []

Verbose Heegner Maximum : 3

These are utility functions for the above. The input is either a hyperelliptic curve
given by a polynomial of degree 4, or this quartic polynomial — in both cases
the quartic should have no rational roots — or a nonsingular intersection of two
quadrics in P3. These functions call HeegnerPoint on the underlying elliptic curve.
They then map the computed point back to the given covering curve. The rational
reconstruction step of the HeegnerPoint algorithm can be quite time-consuming
for some coverings, especially if the index is large. Also, if a cover corresponds
to an element of the Tate–Shafarevich group, the algorithm will likely enter an
infinite loop. These functions have not been as extensively tested as the ordinary
HeegnerPoint function, and thus occasionally might fail due to unforeseen problems.
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ModularParametrization(E, z, B : parameters)

ModularParametrization(E, z : parameters)

ModularParametrization(E, Z, B : parameters)

ModularParametrization(E, Z : parameters)

Traces SeqEnum Default : []
ModularParametrization(E, f, B : parameters)

ModularParametrization(E, f : parameters)

ModularParametrization(E, F, B : parameters)

ModularParametrization(E, F : parameters)

Traces SeqEnum Default : []
Precision RngIntElt Default :

Given a rational elliptic curve E and a point z in the upper-half-plane, compute
the modular parametrization

∫∞
z
fE(τ) dτ where fE is the modular form associated

to E. The version with a bound B uses the first B terms of the q-expansion, while
the other version determines how many terms are needed. The optional parameter
Traces allows the user to pass the first however-many traces of Frobenius. There
are also versions which take an array Z of complex points, and versions which take
positive definite binary quadratic forms f (or an array F ) rather than points in the
upper-half-plane (a Precision can be specified with the latter).

HeegnerDiscriminants(E,lo,hi)

Fundamental BoolElt Default : false

Strong BoolElt Default : false

Given a rational elliptic curve and a range from lo to hi, compute the negative
fundamental discriminant in this range that satisfies the Heegner hypothesis for the
curve. The Fundamental option restricts to fundamental discriminants. The Strong
option restricts to discriminants that satisfy a stronger Heegner hypothesis, namely
that ap = −1 for all primes p that divide gcd(D,N).

HeegnerForms(E,D : parameters)

UsePairing BoolElt Default : false

UseAtkinLehner BoolElt Default : true

Use wQ BoolElt Default : true

IgnoreTorsion BoolElt Default : false

Given a rational elliptic curve of conductor N and a negative discriminant that
meets the Heegner hypothesis for N , the function computes representatives for the
complex multiplication points on X0(N).

In general the return value is a sequence of 3-tuples (Q,m, T ) where Q is a
quadratic form, m is a multiplicity, and T is a torsion point on E. Letting φ be
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the modular parametrization map, the sum on E of the values m(φ(Q) + T ) is a
Heegner point in E(Q). When the number of these values equals the class number
h = h(D) (and the multiplicities are all 1 or −1) then they are actually the images
on E of the CM points on X0(N). (They all correspond to a single choice of square
root of D modulo 4N .)

If UsePairing is added, then CM points that give conjugate values under the
modular parametrisation map are combined. If UseAtkinLehner is added, then
more than one square root of D modulo 4N can be used. If Use wQ is added, then
forms can appear with extra multiplicity, due to primes that divide the GCD of the
conductor and the fundamental discriminant. If IgnoreTorsion is added, then the
fact that Atkin-Lehner can change the result by a torsion point will be ignored. The
UsePairing option requires that IgnoreTorsion be true.

This function requires (so as not to confuse the user) that the ManinConstant
of the curve be equal to 1.

HeegnerForms(N,D : parameters)

AtkinLehner [RngIntElt] Default : []
Given a level N and a discriminant that meets the Heegner hypothesis for the level,
the function returns a sequence of binary quadratic forms which correspond to the
Heegner points. The Atkin-Lehner option takes a sequence of q with gcd(q,N/q) = 1
and has the effect of allowing more than one square root of D modulo 4N to be
used.

ManinConstant(E)

Compute the Manin constant of a rational elliptic curve. This is in most cases
simply a conjectural value (and most often just 1).

HeegnerTorsionElement(E)

Given a rational elliptic curve and an integer Q corresponding to an Atkin-Lehner
involution (so that gcd(Q,N/Q) = 1), this function computes the torsion point on
the curve corresponding to the period given by the integral from i∞ to wQ(i∞).

HeegnerPoints(E, D : parameters)

ReturnPoint BoolElt Default : false

Precision RngIntElt Default : 100
Verbose Heegner Maximum : 1

Given an elliptic curve E over Q, and a suitable discriminant D (of a quadratic field)
this function computes the images on E under the modular parametrization of the
CM points on X0(N) associated to D. It returns a tuple 〈pD,m〉, where pD is an
irreducible polynomial whose roots are the x-coordinates of these images, and where
m is the multiplicity of each of these images (the number of CM points on X0(N)
mapping to a given point on E). These x-coordinates lie in the ring class field of
Q(
√
D), and the class number h(D) must equal either mdeg(pD) or 2m deg(pD).
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The conductor of the order Q(
√
D) is required to be coprime to the conductor

of E.
The second object returned by the function is one of the conjugate points, as an

element of the point set E(H) where H is the field defined by pD, or a quadratic
extension of it. This step can be time consuming; if ReturnPoint is set to false,
the point is not computed.

Warning: The computation is not rigorous, as it involves computing over the
complex numbers, and then recognising the coefficients of the polynomial as ratio-
nals. However, the program performs a heuristic check: it checks that the polyno-
mial has the correct splitting at some small primes (sufficiently many to be sure
that wrong answers will not occur in practice).

Example H122E20

> time HeegnerPoint(EllipticCurve([1,0,0,312,-3008])); //uses search

true (12 : -56 : 1)

Time: 0.240

> time HeegnerPoint(EllipticCurve([0,0,1,-22787553,-41873464535]));

true (11003637829478432203592984661004129/1048524607168660222036584535396 :

-1004181871409718654255966342764883958203316448270339/10736628855783147946

99393270058310986889998056 : 1)

Time: 1.380

Example H122E21

Here are some more complicated examples. In the first one, the curve has a 163-isogenous curve,
which the algorithm uses to speed the computation. This occurs automatically, with most of the
time taken being in computing the isogeny map.

> E := EllipticCurve([0,0,1,-57772164980,-5344733777551611]);

> b, pt:= HeegnerPoint(E);

> Height(pt);

373.478661569142379884077480412

Example H122E22

In this next example, we first use descent to get a covering on which the desired point will have
smaller height.

> E := EllipticCurve([0,-1,0,-71582788120,-7371563751267600]);

> T := TwoDescent(E : RemoveTorsion)[1];

> T;

Hyperelliptic Curve defined by y^2 = -2896*x^4 - 57928*x^3 - 202741*x^2

+ 868870*x - 651725 over Rational Field

> S := FourDescent(T : RemoveTorsion)[1];

> b, pt := HeegnerPoint(S);

> pt;
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(-34940281640330765977951793/72963317481453011430052232 :

46087465795237503244048957/72963317481453011430052232 :

82501230298438806677528297/72963317481453011430052232 : 1)

We obtain a point on S, not on the original curve. We map it to E using the descent machinery.

> _, m := AssociatedEllipticCurve(S);

> PT := m(pt);

> PT;

(26935643239674824824611869793601774003477303945223677741244455058753

924460587724041316046901475913814274843012625394997597714766923750555

669810857471061235926971161094484197799515212721830555528087646969545

65/837619099331786545303500955405701693904657590793269053332825491870

645799230089011267382251975387071464373622714525213870033427638236014

2288012504288439077587496501436920044109243898570190931925860244164 :

410189886613094359515065087530226951251222017120181558101276037601794

678635473792334597914052557787798899390943937170051840037860568689664

871351793404398352109768736545284569745952273382778021947446766526118

621612003004627401344216069791103330332004546699363266079516476593864

98538303998567379869974143259174395/766601839981278884919411893932635

388671474045058772153268571977045787439290021029065740244648077391646

579430077900352635000328805236464794479797855430820809227462762666048

009219642700664370632930446228302292313415544188481623273194456758440

446505454248062292834244615276350323795396202280072306278575288 : 1)

> Height(PT);

476.811182818720336949724781780

> ConjecturalRegulator(E : Precision := 5);

476.81 1

Example H122E23

Finally, we do some Heegner point calculation with the curve 43A and the discriminant −327.
Note that the obtained trace down to the rationals is 3-divisible, but the point over the Hilbert
class field is not.

> E := EllipticCurve([0,1,1,0,0]);

> HeegnerDiscriminants(E,-350,-300);

[ -347, -344, -340, -335, -331, -328, -327, -323, -319, -308, -303 ]

> HF := HeegnerForms(E,-327); HF;

[ <<43,19,4>, 1, (0 : 1 : 0)>, <<43,67,28>, 1, (0 : 1 : 0)>,

<<86,105,33>, 1, (0 : 1 : 0)>, <<86,153,69>, 1, (0 : 1 : 0)>,

<<129,105,22>, 1, (0 : 1 : 0)>, <<129,153,46>, 1, (0 : 1 : 0)>,

<<172,67,7>, 1, (0 : 1 : 0)>, <<258,363,128>, 1, (0 : 1 : 0)>,

<<258,411,164>, 1, (0 : 1 : 0)>, <<301,67,4>, 1, (0 : 1 : 0)>,

<<473,621,204>, 1, (0 : 1 : 0)>, <<473,841,374>, 1, (0 : 1 : 0)> ]

> H := [x[1] : x in HF]; mul := [x[2] : x in HF];

> params := ModularParametrization(E,H : Precision := 10);

> wparams := [ mul[i]*params[i] : i in [1..#H]];

> hgpt := EllipticExponential(E,&+wparams);
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> hgpt;

[ 1.000000002 - 1.098466121E-9*I, 1.000000003 - 1.830776870E-9*I ]

> HeegnerPt := E![1,1];

> DivisionPoints(HeegnerPt, 3);

[ (0 : -1 : 1) ]

So the Heegner point is 3 times (0,−1) in E(Q). We now find algebraically one of the points
(of which we took the trace to get HeegnerP t). This point will be defined over a subfield of the
class field of Q(

√−327), and will have degree dividing the class number. The poly below is the
minimal polynomial of the x-coordinate.

> ClassNumber(QuadraticField(-327));

12

> poly, pt := HeegnerPoints(E, -327 : ReturnPoint);

> poly;

<t^12 + 10*t^11 + 76*t^10 - 1150*t^9 + 475*t^8 - 4823*t^7 +

997*t^6 - 5049*t^5 - 2418*t^4 - 468*t^3 - 3006*t^2 + 405*t - 675, 1>

> pt;

(u : 1/16976844562625*(58475062076*u^11 + 568781661961*u^10 +

4238812569862*u^9 - 68932294336288*u^8 + 42534102728187*u^7 -

238141610215111*u^6 + 134503848441911*u^5 - 122884262733563*u^4 -

58148031982456*u^3 + 129014145075851*u^2 -

68190988248855*u + 40320643901175) : 1)

> DivisionPoints(pt,3);

[]

Here is another example of Heegner points over class fields.

Example H122E24

> E := EllipticCurve([0,-1,0,-116,-520]);

> Conductor(E);

1460

> ConjecturalRegulator(E);

4.48887474770666173576726806264 1

> HeegnerDiscriminants(E,-200,-100);

[ -119, -111 ]

> P := HeegnerPoints(E,-119);

> P;

<1227609449333996689*t^10 - 106261506377143984603*t^9 +

2459826667693945203684*t^8 - 12539974356047058417320*t^7 -

298524708823654411408343*t^6 + 4440876684434597926161175*t^5 +

7573549099120618979833241*t^4 - 393938048860406386108113130*t^3 -

215318107135691628298668863*t^2 + 13958289016298162706904004974*t

+ 38624559371249968900024945369, 1>

The function automatically performs a heuristic check that the polynomial has the right properties,
using reduction mod small primes. A more expensive check is the following.

> G := GaloisGroup( P[1] );
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> IsIsomorphic(G,DihedralGroup(10));

true

The extension of Q(−119) defined by the polynomial is the class field. We now obtain a nice
representation of it, and use this to compute the height of the point (which is a bit quicker than
computing the height directly).

> K<u> := NumberField(P[1]);

> L<v>, m := OptimizedRepresentation(K);

> _<y> := PolynomialRing(Rationals()); // use ’y’ for printing

> DefiningPolynomial(L);

y^10 + 2*y^9 - y^8 - 7*y^7 - 7*y^6 + 10*y^5 + 13*y^4 - 9*y^3 - 5*y^2 +

5*y - 1

> PT := Points(ChangeRing(E,L),m(u))[1]; // y-coord is defined over L

> Height(PT);

6.97911761109714376876370533

122.2.15 Analytic Information

Periods(E: parameters)

Precision RngIntElt Default :

Returns the sequence of periods of the Weierstrass ℘-function associated to the
(rational) elliptic curve E, to Precision digits. The first element of the sequence
is the real period. The function accepts a non-minimal model, and returns the
periods corresponding to that model. As with many algorithms involving analytic
information on elliptic curves, the implementation exploits an AGM-trick due to
Mestre. There is some functionality for elliptic curves over number fields, though
the exact normalisation is not always given.

EllipticCurveFromPeriods(om: parameters)

Epsilon FldReElt Default : 0.001

Given two complex numbers ω1, ω2 such that ω2/ω1 is in the upper half-plane that
correspond to an integral model of an elliptic curve over Q, return such a minimal
model of such a curve. This uses the classical Eisenstein series, with the vararg
Epsilon indicating how close to integers the computed −27c4 and −54c6 need to
be.

RealPeriod(E: parameters)

Precision RngIntElt Default :

Returns the real period of the Weierstrass ℘-function associated to the elliptic curve
E to Precision digits.



Ch. 122 ELLIPTIC CURVES OVER Q AND NUMBER FIELDS 4043

EllipticExponential(E, z)

Given a rational elliptic curve E and a complex number z, the function computes
the pair [℘(z), ℘′(z)] where ℘(s) is the Weierstrass ℘-function. The algorithm used is
taken from [Coh93] for small precision, and Newton iteration on EllipticLogarithm
is used for for high precision. The function returns a sequence rather than a point
on the curve.

EllipticExponential(E, S)

Given a rational elliptic curve E and a sequence S = [p, q], where p and q are rational
numbers, this function computes the elliptic exponential of p times the RealPeriod
and q times the imaginary period.

EllipticLogarithm(P: parameters)

Precision RngIntElt Default :

Denote by ω1, ω2 the periods of the Weierstrass ℘-function related to E. This
function returns the elliptic logarithm φ(P ) of the point P , such that −ω1/2 ≤
Re(φ(P )) < ω1/2 and −ω2/2 ≤ Im(φ(P )) < ω2/2. The value is returned to
Precision digits. As with Periods, a non-minimal model can be given, and the
EllipticLogarithm will be computed with respect to it. The algorithm is again an
AGM-trick due to Mestre.

EllipticLogarithm(E, S)

Precision RngIntElt Default :

Check BoolElt Default : true

Given an elliptic curve E and a sequence S = [z1, z2], where z1 and z2 are complex
numbers approximating a point P on E, this function returns the elliptic logarithm
φ(P ). For details see the previous intrinsic. When Check is false, z1 and z2 need
not have any relation to a point on the curve, in which case only the x-coordinate
matters up to (essentially) a choice of sign in the resulting logarithm.

pAdicEllipticLogarithm(P, p: parameters)

Precision RngIntElt Default : 50
For a point P on an elliptic curve E which is a minimal model and a prime p, returns
the p-adic elliptic logarithm of P to Precision digits. The order of P must not be
a power of p.

Example H122E25

Verify that EllipticExponential and EllipticLogarithm are inverses.

> C<I>:=ComplexField(96);

> E:=EllipticCurve([0,1,1,0,0]);

> P:=EllipticExponential(E,0.571+0.221*I); P;

[ 1.656947605210186238868298175 + -1.785440180067681418618695947*I,
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-2.417077284700315330385200257 + 3.894153792661208360153853530*I ]

> EllipticLogarithm(E,P);

0.5710000000000000000000000000 + 0.2210000000000000000000000000*I

Add points on a curve via Napier’s method.

> E:=EllipticCurve([0,0,1,-7,6]);

> P1:=E![0,2]; P2:=E![2,0]; P3:=E![1,0];

> L:=EllipticLogarithm(E!P1)+EllipticLogarithm(E!P2)+EllipticLogarithm(E!P3);

> L;

0.521748219757790769853120197937 + 1.48054826824141499330733111064*i

> P:=EllipticExponential(E,L);

> [Round(Real(x)) : x in P];

[ 4, -7 ]

> P1+P2+P3;

(4 : -7 : 1)

RootNumber(E)

Calculates the global root number of an elliptic curve E defined over Q. This is
equal to the sign in the functional equation of the L-series associated to the curve.
The method used is to take a product of local root numbers over the primes of bad
reduction.

RootNumber(E, p)

Calculates the local root number at a prime p of an elliptic curve E. The method
used is due to Halberstadt; for p > 3 it is a straightforward calculation involving the
valuation of the discriminant, while for p = 2, 3 it involves a more careful analysis
of the reduction type.

AnalyticRank(E)

Verbose AnalyticRank Maximum : 1

Precision RngIntElt Default : 5

Determine the analytic rank of the rational elliptic curve E. The algorithm used is
heuristic, computing derivatives of the L-function L(E, s) at s = 1 until one appears
to be nonzero. Local power series methods are used to compute the special func-
tions used for higher derivatives. The function returns the first nonzero derivative
L(r)(1)/r! as a second argument. The precision is optional, and is taken to be 17 bits
if omitted; the time taken can increase dramatically if this is increased much beyond
50 digits as the time to compute the special functions then starts to dominate the
running time.
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ConjecturalRegulator(E)

Precision RngIntElt Default :

Using the AnalyticRank function, this function calculates an approximation, as-
suming that the Birch–Swinnerton-Dyer conjecture holds, to the product of the
regulator of the elliptic curve E and the order of the Tate–Shafarevich group. The
(assumed) analytic rank is returned as a second value.

ConjecturalRegulator(E, v)

Given an elliptic curve E with L-function L(E, s) and the value v of the first nonzero
derivative L(r)(1)/r!, this function calculates an approximation, assuming that the
Birch–Swinnerton-Dyer conjecture holds, to the product of the regulator of the
elliptic curve E and the order of its Tate–Shafarevich group.

Example H122E26

> E:=EllipticCurve([1,1,0,-2582,48720]);

> time r, Lvalue := AnalyticRank(E : Precision:=9); r,Lvalue;

Time: 17.930

6 320.781164

> ConjecturalRegulator(E,Lvalue);

68.2713770

> time G, map := MordellWeilGroup(E : HeightBound := 8); G;

Time: 21.540

Abelian Group isomorphic to Z (6 copies)

Defined on 6 generators (free)

> Regulator([map(g): g in OrderedGenerators(G)]);

68.2713769

Example H122E27

> ConjecturalRegulator(EllipticCurve([0,-1,1,0,0]) : Precision := 8);

1.0000000 0

> ConjecturalRegulator(EllipticCurve([0,-1,1,0,0]) : Precision := 21);

1.00000000000000000000 0

> ConjecturalRegulator(EllipticCurve([0,-1,1,0,0]) : Precision := 35);

1.0000000000000000000000000000000000 0

> ConjecturalRegulator(EllipticCurve([0,-1,1,0,0]) : Precision := 50);

1.0000000000000000000000000000000000000000000000000 0



4046 ARITHMETIC GEOMETRY Part XVII

ModularDegree(E)

Verbose ModularDegree Maximum : 1
Determine the modular degree of a rational elliptic curve E. The algorithm used is
described in [Wat02]. One computes the special value L(Sym2E, 2) of the motivic
symmetric-square L-function of the elliptic curve, and uses the formula

deg(phi) = L(Sym2E, 2)/(2 ∗ Pi ∗ Ω) ∗ (Nc2) ∗ Ep(2)

where Ω is the area of the fundamental parallelogram of the curve, N is the con-
ductor, c is the Manin constant, and Ep(2) is a product over primes whose square
divides the conductor. The Manin constant is assumed to be 1 except in the cases
described in [SW02], where it is conjectured that the optimal curves for parameteri-
zations from X1(N) and X0(N) are different. A warning is given in these cases. The
optimal curve for parameterizations from X1(N) is assumed to be the curve in the
isogeny class of E that has minimal Faltings height (maximal Ω). The algorithm is
based upon a sequence of real-number approximations converging to an integer —
the use of verbose printing for ModularDegree allows the user to see the sequence
of approximations.

Example H122E28

First we define a space of ModularForms.

> M:=ModularForms(Gamma0(389),2);

The first of the newforms associated to M corresponds to an elliptic curve.

> f := Newform(M,1); f;

q - 2*q^2 - 2*q^3 + 2*q^4 - 3*q^5 + 4*q^6 - 5*q^7 + q^9 + 6*q^10 - 4*q^11 +

O(q^12)

> E := EllipticCurve(f); E;

Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field

We can compute the modular degree of this using modular symbols.

> time ModularDegree(ModularSymbols(f));

40

Time: 0.200

Or via the algorithm based on elliptic curves.

> time ModularDegree(E);

40

Time: 0.000

The elliptic curve algorithm is capable of handling examples of high level, particularly when bad
primes have multiplicative reduction.

> E := EllipticCurve([0,0,0,0,-(10^4+9)]);

> Conductor(E);
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14425931664

> time ModularDegree(E);

6035544576

Time: 3.100

122.2.16 Integral and S-integral Points
Let E be an elliptic curve defined over the rational numbers Q and denote by S =
{p1, . . . , ps−1,∞} a finite set of primes containing the prime at infinity. There are only
finitely many S-integral points on E. (That is, points where the denominators of the coor-
dinates are only supported by primes in S.) Note that the point at infinity on E is never
returned, since it is supported at every prime.

The following algorithms use the technique of linear forms in complex and p-adic elliptic
logarithms.

The main routine here is (S)IntegralPoints for an elliptic curves. The functions listed
afterwards, for determining integral points on various other kinds of genus one curves, are
applications of the main routine.

IntegralPoints(E)

FBasis [ PtEll ] Default :

SafetyFactor RngIntElt Default :

Given an elliptic curve E over the Q, this returns a sequence containing all the
integral points on E, modulo negation. Secondly, a sequence is returned containing
representations of the same points in terms of a fixed basis of the Mordell-Weil group
(each such representation is a sequence of tuples of the form [〈Pi, ni〉]).

The algorithm involves first computing generators of the Mordell-Weil group, by
calling MordellWeilShaInformation which accesses the appropriate tools available
in Magma. Alternatively, the user may precompute generators and pass them to
IntegralPoints as the optional parameter FBasis. This should be a sequence
of points on E that are independent modulo torsion (for instance, as returned by
ReducedBasis). IntegralPoints will then find all integral points on E that are in
the group generated by FBasis and torsion.

If the optional argument SafetyFactor is specified, the search phase at the final
step is extended as a safety check. (The height bound is increased in such a way
that the search region expands by roughly the specified factor.)

SIntegralPoints(E, S)

FBasis [ PtEll ] Default :

SafetyFactor RngIntElt Default :

Given an elliptic curve E over the rationals and a set S of finite primes, returns the
sequence of all S-integral points, modulo negation. The second return value, and the
optional arguments FBasis and SafetyFactor, are the same as in IntegralPoints.
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Example H122E29

We find all integral points on a certain elliptic curve:

> E := EllipticCurve([0, 17]);

> Q, reps := IntegralPoints(E);

> Q;

[ (-2 : -3 : 1), (8 : 23 : 1), (43 : -282 : 1), (4 : 9 : 1),

(2 : -5 : 1), (-1 : 4 : 1), (52 : -375 : 1), (5234 : 378661 : 1) ]

> reps;

[

[ <(-2 : -3 : 1), 1> ],

[ <(-2 : -3 : 1), 2> ],

[ <(-2 : -3 : 1), 1>, <(4 : -9 : 1), -2> ],

[ <(4 : -9 : 1), -1> ],

[ <(-2 : -3 : 1), 1>, <(4 : -9 : 1), -1> ],

[ <(-2 : -3 : 1), 1>, <(4 : -9 : 1), 1> ],

[ <(-2 : -3 : 1), 2>, <(4 : -9 : 1), 1> ],

[ <(-2 : -3 : 1), 1>, <(4 : -9 : 1), 3> ]

]

We see here that the chosen basis consists of the points (−2 : −3 : 1) and (4 : −9 : 1), and that
coefficients which are zero are omitted.

Example H122E30

We find all S-integral points on an elliptic curve of rank 2, for the set of primes S = {2, 3, 5, 7}.
> E := EllipticCurve([-228, 848]);

> Q := SIntegralPoints(E, [2, 3, 5, 7]);

> for P in Q do P; end for; // Print one per line

(4 : 0 : 1)

(-11 : 45 : 1)

(16 : 36 : 1)

(97/4 : -783/8 : 1)

(-44/9 : -1160/27 : 1)

(857/4 : -25027/8 : 1)

(6361/400 : -282141/8000 : 1)

(534256 : -390502764 : 1)

(946/49 : -20700/343 : 1)

(-194/25 : -5796/125 : 1)

(34/9 : 172/27 : 1)

(814 : 23220 : 1)

(13 : 9 : 1)

(-16 : 20 : 1)

(1/4 : -225/8 : 1)

(52 : -360 : 1)

(53 : 371 : 1)

(16/49 : 9540/343 : 1)

(-16439/1024 : -631035/32768 : 1)
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(34 : 180 : 1)

(-2 : 36 : 1)

(-14 : -36 : 1)

(14 : -20 : 1)

(754 : -20700 : 1)

(94/25 : -828/125 : 1)

(2 : 20 : 1)

(94 : 900 : 1)

(-818/49 : 468/343 : 1)

(49/16 : -855/64 : 1)

(196 : -2736 : 1)

(629/25 : 13133/125 : 1)

(1534/81 : -42020/729 : 1)

(8516/117649 : -1163623840/40353607 : 1)

IntegralQuarticPoints(Q)

If Q is a sequence of five integers [a, b, c, d, e] where e is a square, this function returns
all integral points (modulo negation) on the curve y2 = ax4 + bx3 + cx2 + dx+ e.

IntegralQuarticPoints(Q, P)

If Q is a list of five integers [a, b, c, d, e] defining the hyperelliptic quartic y2 =
ax4 + bx3 + cx2 + dx + e and P is a sequence representing a rational point [x, y],
this function returns all integral points on Q.

SIntegralQuarticPoints(Q, S)

Given a sequence of integers Q = [a, b, c, d, e] where a is a square, this function
returns all S-integral points on the quartic curve y2 = ax4 + bx3 + cx2 + dx+ e for
the set S of finite primes.

Example H122E31

We find all integral points (modulo negation) on the curve y2 = x4 − 8x2 + 8x + 1. Since the
constant term is a square we can use the first form and do not have to provide a point as well.

> IntegralQuarticPoints([1, 0, -8, 8, 1]);

[

[ 2, -1 ],

[ -6, 31 ],

[ 0, 1 ]

]
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SIntegralLjunggrenPoints(Q, S)

Given a sequence of integers Q = [a, b, c, d], this function returns all S-integral points
on the curve C : ay2 = bx4 + cx2 + d for the set S of finite primes, provided that C
is nonsingular.

SIntegralDesbovesPoints(Q, S)

Given a sequence of integers Q = [a, b, c, d], this function returns all S-integral points
on C : ay3 + bx3 + cxy + d = 0 for the set S of finite primes, provided that C is
nonsingular.

Example H122E32

We find the points supported by [2, 3, 5, 7] on the curve 9y3 + 2x3 + xy + 8 = 0.

> S := [2, 3, 5, 7];

> SIntegralDesbovesPoints([9, 2, 1, 8], S);

[

[ 1, -1 ],

[ -94/7, 172/21 ],

[ -11/7, 2/7 ],

[ 5, -3 ],

[ 2, -4/3 ],

[ 2/7, -20/21 ],

[ -8/5, -2/15 ]

]

122.2.17 Elliptic Curve Database
Magma includes John Cremona’s database of all elliptic curves over Q of small conductor
(up to 200 000 as of December 2011). This section defines the interface to that database.

For each conductor in the range stored in the database the curves with that conductor
are stored in a number of isogeny classes. Each curve in an isogeny class is isogenous (but
not isomorphic) to the other curves in that class. Isogeny classes are referred to by number
rather than the alphabetic form given in the Cremona tables.

All of the stored curves are global minimal models.

EllipticCurveDatabase(: parameters)

CremonaDatabase(: parameters)

BufferSize RngIntElt Default : 10000
This function returns a database object which contains information about the el-
liptic curve database and is used in the functions which access it. The optional
parameter BufferSize controls the size of an internal buffer — see the description
of SetBufferSize for more information.
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SetBufferSize(D, n)

The elliptic curve database D uses an internal buffer to cache disk reads; if the
buffer is large enough then the entire file can be cached and will not need to be
read from the disk more than once. On the other hand, if only a few curves will be
accessed then a large buffer is not especially useful. SetBufferSize can be used to
set the size n (in bytes) of this buffer. There are well defined useful minimum and
maximum sizes for this buffer, and values outside this range will be treated as the
nearest useful value.

LargestConductor(D)

Returns the largest conductor of any elliptic curve stored in the database. It is an
error to attempt to refer to larger conductors in the database.

ConductorRange(D)

Returns the smallest and largest conductors stored in the database. It is an error
to attempt to refer to conductors outside of this range.

#D

NumberOfCurves(D)

Returns the number of elliptic curves stored in the database.

NumberOfCurves(D, N)

Returns the number of elliptic curves stored in the database for conductor N .

NumberOfCurves(D, N, i)

Returns the number of elliptic curves stored in the database in the i-th isogeny class
for conductor N .

NumberOfIsogenyClasses(D, N)

Returns the number of isogeny classes stored in the database for conductor N .

EllipticCurve(D, N, I, J)

EllipticCurve(D, N, S, J)

Returns the J-th elliptic curve of the I-th isogeny class of conductor N from the
database. I may be specified either as an integer (first form) or as a label like "A"
(second form).

EllipticCurve(D, S)

EllipticCurve(S)

Returns a representative elliptic curve with label S (e.g., "101a" or "101a1") from
the specified database (or if not specified, from the Cremona database).
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Random(D)

Returns a random curve from the database.

CremonaReference(D, E)

CremonaReference(E)

Returns the database reference to the minimal model for E (e.g., "101a1"). E must
be defined over Q and its conductor must lie within the range of the database.
The second form of this function must open the database for each call, so if it is
being used many times the database should be created once and the first form used
instead.

Example H122E33

> D := CremonaDatabase();

> #D;

847550

> minC, maxC := ConductorRange(D);

> minC, maxC;

1 130000

> &+[ NumberOfCurves(D, C) : C in [ minC .. maxC ] ];

847550

These numbers agree (which is nice). The conductor in that range with the most curves is 100800.

> S := [ NumberOfCurves(D, C) : C in [ minC .. maxC ] ];

> cond := maxval + minC - 1 where _,maxval := Max(S);

> cond;

100800

> NumberOfCurves(D, cond);

924

> NumberOfIsogenyClasses(D, cond);

418

The unique curve of conductor 5077 has rank 3.

> NumberOfCurves(D, 5077);

1

> E := EllipticCurve(D, 5077, 1, 1);

> E;

Elliptic Curve defined by y^2 + y = x^3 - 7*x + 6 over Rational Field

> CremonaReference(D, E);

5077a1

> Rank(E);

3
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EllipticCurves(D, N, I)

EllipticCurves(D, N, S)

Returns the sequence of elliptic curves in the I-th isogeny class for conductor N
from the database. I may be specified either as an integer (first form) or as a label
like "A" (second form).

EllipticCurves(D, N)

The sequence of elliptic curves for conductor N from the database.

EllipticCurves(D, S)

The sequence of elliptic curves with label S from the database. S may specify just
a conductor (like "101"), or both a conductor and an isogeny class (like "101A").

EllipticCurves(D)

The sequence of elliptic curves stored in the database. Note: this function is ex-
tremely slow due to the number of curves involved. Where possible it would be
much better to iterate through the database instead (see example).

Example H122E34

Here are two ways to iterate through the database:

> D := CremonaDatabase();

25508696848625044861003843159331265666415824

Time: 21.130

> sum := 0;

> time for E in D do sum +:= Discriminant(E); end for;

> sum;

25508696848625044861003843159331265666415824

Time: 20.060

Now we create a random curve and find the other curves in its isogeny class.

> E := Random(D);

> E;

Elliptic Curve defined by y^2 = x^3 - 225*x over Rational Field

> Conductor(E);

7200

> CremonaReference(E);

7200bg1

> EllipticCurves(D, "7200bg");

[

Elliptic Curve defined by y^2 = x^3 - 225*x over Rational Field,

Elliptic Curve defined by y^2 = x^3 - 2475*x - 47250 over Rational Field,

Elliptic Curve defined by y^2 = x^3 - 2475*x + 47250 over Rational Field,

Elliptic Curve defined by y^2 = x^3 + 900*x over Rational Field

]



4054 ARITHMETIC GEOMETRY Part XVII

122.3 Curves over Number Fields

The functions in this section are for elliptic curves defined over number fields. For the
most part, the functionality is a subset of that available for curves over Q, with functions
having similar names and arguments.

The main items implemented are Tate’s algorithm, 2-descent and descent by 2-isogenies,
the Cassels-Tate pairing, height machinery, and analytic tools.

122.3.1 Local Invariants
The routines listed here, when nontrivial, are based on an implementation of Tate’s algo-
rithm.

Conductor(E)

The conductor is part of the data computed by LocalInformation (described be-
low).

BadPlaces(E)

Given an elliptic curve E defined over a number field K, returns the places of K of
bad reduction for E. i.e., the places dividing the discriminant of E.

BadPlaces(E, L)

Given an elliptic curve E defined over a number field K and a number field L, such
that K is a subfield of L, returns the places of L of bad reduction for E.

LocalInformation(E, P)

UseGeneratorAsUniformiser

BoolElt Default : false

Implements Tate’s algorithm for the elliptic curve E over a number field. This intrin-
sic computes local reduction data at the prime ideal P , and a local minimal model.
The model is not required to be integral on input. Output is 〈P, vp(d), fp, cp,K, s〉
and Emin where P is the prime ideal, vp(d) is the valuation of the local minimal
discriminant, fp is the valuation of the conductor, cp is the Tamagawa number, K
is the Kodaira Symbol, and s is false if the curve has non-split multiplicative re-
duction at P and true otherwise. Emin is a model of E (integral and) minimal at
P .

When the optional parameter UseGeneratorAsUniformiser is set true, the
computation checks whether P is principal, and if so, uses generator of P as the
uniformiser. This means that at primes other that P , the returned model will still
be integral or minimal if the given curve was.

LocalInformation(E)

Return a sequence of the tuples returned by LocalInformation(E, P) for all prime
ideals P in the decomposition of the discriminant of E in the maximal order of the
number field the elliptic curve E is over.
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Reduction(E, p)

Given an elliptic curve E over a number field given by a model which is integral at
p and has good reduction at p, returns an elliptic curve over the residue field of p
which represents the reduction of E at p. The reduction map is also returned.

122.3.2 Complex Multiplication

HasComplexMultiplication(E)

Given an elliptic curve E over a number field, the function determines whether the
curve has complex multiplication and, if so, also returns the discriminant of the CM
quadratic order. The algorithm uses fairly straightforward analytic methods, which
are not suited to very high degree j-invariants with CM by orders with discriminants
more than a few thousand.

122.3.3 Mordell–Weil Groups

TorsionBound(E, n)

Given an elliptic curve E defined over a number field, returns a bound on the size
of the torsion subgroup of E by looking at the first n non-inert primes of sufficiently
low ramification degree and good reduction.

pPowerTorsion(E, p)

Bound RngIntElt Default : −1
Given an elliptic curve E defined over a number field or Q, returns the p-power
torsion of E over its base field as an abelian group, together with the map from the
group into the curve. One can specify a bound on the size of the p-power torsion,
which may help the computation.

TorsionSubgroup(E)

Given an elliptic curve E defined over a number field, returns the torsion subgroup
of E.

The algorithm involves using TorsionBound (described above).

MordellWeilShaInformation(E: parameters)

DescentInformation(E: parameters)

RankOnly BoolElt Default : false

ShaInfo BoolElt Default : false

Silent BoolElt Default : false

This is a special function which uses all relevant Magma machinery to obtain
as much information as possible about the Mordell-Weil group and the Tate-
Shafarevich group of the elliptic curve E. The tools used include 2-descent and
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the Cassels-Tate pairing on the 2-Selmer group; analytic routines may also be used
when the conductor has small norm.

The arguments and returned values are the same as for curves over Q, and are
described in Section 122.2.5.

Note: The function PseudoMordellWeilGroup is obsolete and should not be
used; this function should be used instead.

RankBound(E)

Isogeny Map Default :

The upper bound on the rank of E(K), for an elliptic curve over a number field K
(or Q), obtained by computing the Selmer group(s) associated to some isogeny on
E. The isogeny is either multiplication by 2, or a 2-isogeny if any exist, and may
be specified by the optional parameter Isogeny.

122.3.4 Heights

NaiveHeight(P)

Given a point P on an elliptic curve over a number field K, the function returns the
naive height of P ; i.e., the absolute logarithmic height of the x-coordinate.

Height(P : parameters)

Precision RngIntElt Default : 27
Extra RngIntElt Default : 8

Given a point P on an elliptic curve defined over a number field K, returns the
Néron-Tate height ĥ(P ). (This is based on the absolute logarithmic height of
the x-coordinate.) The parameter Precision may be used to specify the desired
precision of the output. The parameter Extra is used in the cases when one of the
points 2nP gets too close to the point at infinity, in which case there is a huge loss
in precision in the archimedean height and increasing Extra remedies that problem.

HeightPairingMatrix(P : parameters)

Compute the height pairing matrix for an array of points. Same parameters as
above.

LocalHeight(P, Pl : parameters)

Precision RngIntElt Default : 0
Extra RngIntElt Default : 8

Given a point P on an elliptic curve defined over a number field K, and a place Pl
(finite or infinite) of K, returns the local height λPl(P ) of P at Pl. The parameter
Precision sets the precision of the output. A value of 0 takes the default precision.

When Pl is an infinite place, the parameter Extra can be used to remedy the
huge loss in precision when one of the points 2nP gets too close to the point at
infinity.
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122.3.5 Two Descent
The functions here have similar syntax to the corresponding ones for curves over Q. The
current implementation from 2011 is the first complete implementation of 2-descent over
number fields. Previously there have been several implementations that are effective for
computing rank bounds, but not for obtaining nice models of the 2-coverings which is
necessary in order to search for points. Some of the key ingredients here are the routine for
solving conics over number fields (see HasRationalPoint), and techniques for minimisation
and reduction over number fields developed by Donnelly and Fisher.

TwoDescent(E:parameters)

RemoveTorsion BoolElt Default : false

RemoveGens {PtEll} Default : {}
WithMaps BoolElt Default : true

MinRed BoolElt Default :

Verbose TwoDescent Maximum : 1

This function has the same arguments and return values as the corresponding func-
tion for curves over Q. It returns the 2-coverings as a sequence of hyperelliptic
curves, and a corresponding list of maps.

Additionally, it returns a third object which specifies the group structure on the
2-coverings. This is a map (with inverse) from an abstract group to the sequence
of 2-coverings; the abstract group is either TwoSelmerGroup(E), or the appropriate
quotient in the case where RemoveTorsion or RemoveGens are specified.

Currently, there is an additional optional argument MinRed, which controls
whether the coverings are minimised and reduced. (This may be expensive for
various reasons, especially when the field discriminant is not small: for one thing, a
large integer may need to be factored.)

TwoCover(e)

TwoCover(e)

The purpose of this function is to obtain 2-covers arising in TwoDescent individually
rather than all together.

The argument e is an element of a cubic extension A/F , where F is a number
field, and where A may be either a number field over F or an affine algebra over F .
The element e determines a 2-cover of some elliptic curve over F (by the construction
given in the description of DescentMaps in the next section).

122.3.6 Selmer Groups
First we give a short overview of the theory of Selmer groups. This enables us to fix
the notation that is used in the naming of the Magma functions. For a more complete
account, see [Sil86]. The actual algorithms to compute the Selmer groups are closer to the
description in [Cas66].
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Let E′, E be elliptic curves over a number field K and let φ : E′ → E be an isogeny.
The only cases currently implemented are where φ is a 2-isogeny, i.e., an isogeny of degree
2, and where E′ = E and φ is multiplication by 2.

Let E′[φ] be the kernel subscheme of φ. By taking Galois cohomology of the short exact
sequence of schemes over K,

0 → E′[φ] → E′ → E → 0,

we obtain
E′(K) → E(K) → H1(K,E′[φ]) → H1(K,E′).

For the middle map, we write µ : E(K) → H1(K,E′[φ]). Thus, E(K)/φ(E′(K)) injects
in H1(K,E′[φ]) and the image consists exactly of the cocycles that vanish in H1(K,E′).

As an approximation to this image, we define the φ-Selmer group of E over K to
consist of those cocycles H1(K,E′[φ]) that vanish in all restrictions H1(Kp, E

′), where p
runs though all places of K. It fits in the exact sequence

0 → S(φ)(E/K) → H1(K,E′[φ]) →
∏
p

H1(Kp, E
′)

The main application of Selmer groups is that they provide the bound:

#E(K)/φE′(K) ≤ #S(φ)(E/K).

If φ∗ : E → E′ is the isogeny dual to φ, then φ◦φ∗ : E → E is multiplication by d = Deg(φ).
Thus, one can use the φ and φ∗ Selmer groups to provide a bound on #E(K)/dE(K) and
thus on the Mordell–Weil rank of E(K).

Representation of H1(K,E′[φ]):
If φ is a 2-isogeny, then H1(K,E′[φ]) ∼ K∗/K∗2. Thus, we can represent elements by

δ ∈ K∗. In Magma, the map µ corresponds to a representation of the map E(K) → K∗.
The map µ also accepts just x-coordinates.

If φ is multiplication-by-2 and E : y2 = f(x), we write A = K[x]/(f(x)) then

H1(K,E[2]) ∼ {δ ∈ A∗/A∗2|NA/K(δ) ∈ K∗2}.

In fact, the full set A∗/A∗2 corresponds to H1(K,E[2]× {±1}).
The set H1(K,E′[φ]) also corresponds to the set of covers τδ : Tδ → E over K, modulo

isomorphy over K, that are isomorphic to φ : E′ → E over the algebraic closure of K (see
[Sil86], Theorem X.2.2). In this section, we write tor for the map δ 7→ τδ.

DescentMaps(phi)

CasselsMap(phi)

Fields SetEnum Default : {}
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Given an isogeny φ : E → E1 of elliptic curves over a number field K (or Q), the
function returns the connecting homomorphism

µ : E1(K) → H1(K,E[φ]),

and a map τ sending an element of H1(K,E[φ]) to the corresponding homogeneous
space. Here elements of H1(K,E[φ]) are represented as elements of A∗/(A∗)2 (as
described above). The maps are actually given as maps to, and from, A (rather
than A∗/(A∗)2).

The isogeny φ must be either a 2-isogeny or multiplication–by–2.
When φ is multiplication–by–two, then the computation of µ involves a call to

AbsoluteAlgebra. The optional parameter Fields is passed on to that. If the
fields mentioned in this set are found to be of any use, then these will be used and
whatever class group and unit data stored on the fields will be used in subsequent
computations.

When φ is multiplication–by–two, the second map τ accepts all elements δ ∈ A∗.
An element δ ∈ A∗ represents an element of H1(K,E[2]) if and only if δ must have
square norm. In general, δ ∈ A∗ represents an element of H1(K,E[2] × {±1}), in
which case τ(δ) is the corresponding covering Tδ → P1. (This covering is a twist of
the covering E → E → P1 given by P 7→ 2P 7→ x(2P ).)

SelmerGroup(phi)

Hints SetEnum Default : {}
Raw BoolElt Default : false

Bound RngIntElt Default : −1
Verbose Selmer Maximum : 2

Given an isogeny φ : E → E1 defined over a number field K, computes the
associated Selmer group Sel(φ) := Selφ(E/K).

The Selmer group is returned as a finite abelian group S, together with a map
AtoS : A→ S, where A is as in the introduction. This is a map only in the Magma
sense; it is defined only on a finite subset of A. Its “inverse” S → A provides the
mathematically meaningful injection S ↪→ A∗/(A∗)2. The standard map

E1(K) → E1(K)/φE(K) → Sel(φ)

is given by the composition of µ with AtoS, where µ : E1(K) → H1(K,E[φ]) is the
first map returned by DescentMaps.

If the optional parameter Hints is given, it is used as a list of x-coordinates
to try first when determining local images. Supplying Hints does not change the
outcome, but may speed up the computation.

The calculation of the Selmer group involves possibly expensive class group and
unit group computations. If no such data has been precomputed, SelmerGroup will
attempt to obtain this information unconditionally, unless Bound is positive. This
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bound is then passed on to any called ClassGroup. However, if such data is already
stored, it will be used and subsequent results will be conditional on whatever as-
sumptions were made while computing this information. If conditional results are
desired (for instance, assuming GRH), one should precompute class group informa-
tion on the codomain of CasselsMap(phi) prior to calling SelmerGroup(phi).

If Raw is true, then three technical items are also returned. The first two of
these, toV ec and FB, enable one to represent elements of the Selmer group in terms
of a “factor base” FB consisting of elements of A that generate a relevant subgroup
of A∗/(A∗)2. The map toV ec sends an element of S to an exponent vector relative
to FB. The map from S to A obtained by multiplying out the results is inverse to
AtoS.

The final returned value (when Raw is true) is a set of Hints (just as in the
optional parameter).

TwoSelmerGroup(E)

Hints SetEnum Default : {}
Raw BoolElt Default : false

Bound RngIntElt Default : −1
Verbose EllSelmer Maximum : 2

The 2-Selmer group of an elliptic curve defined over Q or a number field. The
function simply calls SelmerGroup for the multiplication–by–two isogeny. The given
model for E should be integral. The options and return values are the same as for
SelmerGroup.

Example H122E35

In this example, we determine the rank of y2 = x3 + 9x2 − 10x + 1 by computing the 2-Selmer
group.

> E := EllipticCurve([0,9,0,-10,1]);

> two := MultiplicationByMMap(E,2);

> mu, tor := DescentMaps(two);

The hard work: computing the Selmer group.

> S, AtoS := SelmerGroup(two);

> #S;

8

So the Selmer rank is 3. We deduce the following upper bound on the rank of E(Q), taking into
account any 2-torsion.

> RankBound(E : Isogeny := two);

3

In fact, there are 3 points: (0, 1), (1, 1) and (2, 5).

> g1 := E![ 0, 1 ];
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> g2 := E![ 1, 1 ];

> g3 := E![ 2, 5 ];

We now test these points for linear independence. It will follow that the points generate
E(K)/2E(K), which means they are independent nontorsion points in E(K) (since we know
there is no 2-torsion).

> IsLinearlyIndependent ([g1, g2, g3]);

true

Next we compute the homogeneous space associated to the point g1+ g2. It must have a rational
point mapping to g1 + g2. Note that @@ always denotes “preimage” in Magma. The algebra for
AtoS is not the same as the original cubic, so we must translate before applying the requisite map.

> K := NumberField(Modulus(Domain(AtoS)));

> L := NumberField(Polynomial([1,-10,9,1]));

> b, m := IsIsomorphic (K, L); assert b;

> theta := (Rationals()! (L.1 - m(K.1))) + Domain(AtoS).1;

> H, mp := TwoCover((g1+g2)[1] - theta : E:=E); H;

Hyperelliptic Curve defined by y^2 = 9*x^4 - 4*x^3 - 18*x^2 + 4*x + 13

The next command finds all Q-rational points in the preimage of the point g1 + g2 on E. (In
Magma the preimage is constructed as a scheme.)

> RationalPoints( (g1+g2) @@ mp);

{@ (-1 : -2 : 1) @}

Example H122E36

We consider the elliptic curve E : y2 = dx(x + 1)(x + 3) where d is the product of the primes less
than 50. Since E has full 2-torsion, we can carry out 2-isogeny descent in three non-equivalent
ways, resulting in three different rank bounds.

> P<x> := PolynomialRing(Integers());

> d := &*[ p : p in [1..50] | IsPrime(p) ];

> E := EllipticCurve(HyperellipticCurve(d*x*(x + 1)*(x + 3)));

The nontrivial 2-torsion points in E(Q):

> A, mp := TorsionSubgroup(E);

> T := [ t : a in A | t ne E!0 where t := mp(a) ];

The corresponding 2-isogenies:

> phis := [ TwoIsogeny(t) : t in T ];

The rank bounds obtained from these isogenies:

> [ RankBound(E : Isogeny := phi) : phi in phis ];

[ 9, 5, 7 ]

We find [9, 5, 7]! Each descent gives a different rank bound. However, a full 2-descent gives:

> two := MultiplicationByMMap(E,2);

> RankBound(E : Isogeny := two);
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1

Now doing full 2-descent on the three isogenous curves, we see where the obstacle for sharp rank
bounds comes from.

> OtherTwos := [ MultiplicationByMMap(Codomain(phi), 2) : phi in phis ];

> [ RankBound(Domain(two) : Isogeny := two) : two in OtherTwos ];

[ 9, 5, 7 ]

We find [9, 5, 7] again.

Example H122E37

The next example is a classic one from [Kra81].

> E := EllipticCurve([0, 977, 0, 976, 0]);

> twoE := MultiplicationByMMap(E, 2);

> muE := CasselsMap(twoE);

> SE, toSE := SelmerGroup(twoE);

> rkEQ := RankBound(E);

> ptE := [ E | [-4, 108], [4, 140] ]; // ignore torsion

> IsLinearlyIndependent (ptE);

true

> // So E is really of rank 2

> d := 109;

> Ed := QuadraticTwist(E, d);

> Ed![ -976, -298656, 1];

(-976 : -298656 : 1)

> // So Ed is of rank at least 1

> rkEdQ := RankBound(Ed);

> _<x> := PolynomialRing(Rationals());

> K := NumberField(x^2 - d);

> EK := BaseChange(E, K);

> rkEK := RankBound(EK);

> rkEQ;

2

> rkEdQ;

3

> rkEK;

3

We know that the rank of Ed(Q) must be the rank of E(K) minus the rank of E(Q); thus Ed(Q)
has rank 1. This is smaller than the bound of 3 we get from a 2-descent on Ed alone.

Example H122E38

Here we give some examples of using TwoDescent, TwoSelmerGroup, and TwoCover.

> E := EllipticCurve( [ 0, 0, 1, -7, 6] ); // rank 3 curve

> T := TwoDescent(E);

> T[6];
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Hyperelliptic Curve defined by y^2 = 3*x^4 - 10*x^3 + 10*x + 1 over

Rational Field

> G, m := TwoSelmerGroup(E);

> G.1 @@ m;

theta^2 - 12*theta + 33

> Parent($1); // Modulus has y^2 = modulus isomorphic to E

Univariate Quotient Polynomial Algebra in theta over Rational Field

with modulus theta^3 - 112*theta + 400

> TwoCover( (G.1 + G.2) @@ m);

Hyperelliptic Curve defined by y^2 = 3*x^4 - 10*x^3 + 10*x + 1 over

Rational Field

> TwoCover( Domain(m) ! 1 );

Hyperelliptic Curve defined by y^2 = 2*x^3 - 12*x^2 - 32*x + 196 over

Rational Field

122.3.7 The Cassels-Tate Pairing
The pairing between elements of the 2-Selmer group is implemented, in the same way as
for curves over the rationals. This is described in Section 122.2.8.

122.3.8 Elliptic Curve Chabauty
This refers to a method for finding the rational points on a curve, if the curve admits a
suitable map to an elliptic curve over some extension field. The method was developed
principally by Nils Bruin (see [Bru03] or [Bru04]). The first intrinsic follows a Mordell-Weil
sieve based strategy, similar to that used in Chabauty for genus 2 curves (see [BS10]).

Chabauty(MWmap, Ecov)

InertiaDegreeBound RngIntElt Default : 20
SmoothBound RngIntElt Default : 50
PrimeBound RngIntElt Default : 30
IndexBound RngIntElt Default : −1
InitialPrimes RngIntElt Default : 50
Verbose EllChab Maximum : 3

Let E be an elliptic curve defined over a number field K. This function attempts
to determine the subset of E(K) consisting of those points that have a Q-rational
image under a given map E → P1.

The arguments are as follows:
• a map MWmap: A → E from an abstract abelian group into E(K) (for instance,

the map returned by PseudoMordellWeilGroup),
• A map Ecov : E → P1 defined over K.
The returned values are a finite subset V of A and an integer R. The set V consists
of all the points in the image of A in E(K) that have a Q-rational image under
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the given map Ecov. If the index of A in E(K) is finite and coprime to R then V
consists of all points in E(K) with Q-rational image. Changing the various optional
parameters can change the performance of this routine considerably. In general, it
is not proven that this routine will return at all.

The parameter InertiaDegreeBound determines the maximum inertia degree of
primes at which local information is obtained.

Only places at with the group order of the rational points on the reduction of E
are SmoothBound-smooth are used.

The Mordell-Weil sieving process only uses information from E(K)/BE(K),
where B is PrimeBound-smooth.

If IndexBound is set to a value different from −1, then the returned value R will
only contain prime divisors from IndexBound. Setting this parameter may make it
impossible for the routine to return.

Chabauty(MWmap, Ecov, p)

Cosets Tup Default :

Aux SetEnum Default :

Precision RngIntElt Default :

Bound RngIntElt Default :

Verbose EllChab Maximum : 3
Let E be an elliptic curve defined over a number field K. This function bounds the
set of points in E(K) whose images under a given map E → P1 are Q-rational.

The arguments are as follows:
• a map MWmap : A→ E from an abstract group into E(K) (for instance, the map

returned by PseudoMordellWeilGroup),
• a map of varieties Ecov : E → P1 defined over K, and
• a rational prime p, such that E and the map Ecov have good reduction at primes

above p.
The returned values are N , V , R and L as follows. Let G denote the image of A in
E(K).
• N is an upper bound for the number of points P ∈ G such that Ecov(P ) ∈ P1(Q)

(note that N can be ∞).
• V is a set of elements of A found by the program that have images in P1(Q),
• R is a number with the following property: if [E(K) : G] is finite and coprime

to R, then N is also an upper bound for the number of points P ∈ E(K) such
that Ecov(P ) ∈ P1(Q), and

• L is a collection of cosets in A such that (
⋃
L) ∪ V contains all elements of A

that have images in P1(Q).
If Cosets (< Cj >) are supplied (a coset collection of A), then the bounds and

results are computed for A ∩ (
⋃
Cj).
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If Aux is supplied (a set of rational primes), then the information at p is combined
with the information at the other primes supplied.

If Precision is supplied, this is the p-adic precision used in the computations.
If not, a generally safe default is used.

If Bound is supplied, this determines a search bound for finding V .
The algorithm used is based on [Bru03] and [Bru02].
For examples and a more elaborate discussion, see [Bru04].

Example H122E39

This example is motivated and explained in great detail in [Bru04] (Section 7). Let E be the
elliptic curve

y2 = x3 + (−3ζ3 − ζ + 1)dx2 + (−ζ2 − ζ − 1)d2x, d = 2ζ3 − 2ζ2 − 2

over K := Q(ζ) where ζ is a primitive 10th root of unity.

> _<z> := PolynomialRing(Rationals());

> K<zeta> := NumberField(z^4-z^3+z^2-z+1);

> OK := IntegerRing(K);

> d := 2*zeta^3-2*zeta^2-2;

> E<X,Y,Z> := EllipticCurve(

> [ 0, (-3*zeta^3-zeta+1)*d, 0, (-zeta^2-zeta-1)*d^2, 0 ]);

Next we determine as much as possible of E(K), allowing Magma to choose the method.

> success, G, GtoEK := PseudoMordellWeilGroup(E);

> G;

Abelian Group isomorphic to Z/2 + Z/2 + Z + Z

Defined on 4 generators

Relations:

2*G.1 = 0

2*G.2 = 0

> success;

true

Here G is an abstract group and GtoEK injects it into E(K). Since the flag is true, this is a
subgroup of finite, odd index in E(K). Next, we determine the points (X : Y : Z) in this
subgroup for which the function

u : E → P1 : (X : Y : Z) → d(−X + (ζ3 − 1)Z : X + d(−ζ3 − ζ)Z)

takes values in P1(Q).

> P1 := ProjectiveSpace(Rationals(),1);

> u := map< E->P1 | [-X + (zeta^3 - 1)*d*Z, X+(-zeta^3-zeta)*d*Z] >;

> V, R := Chabauty( GtoEK, u);

> V;

{

0,
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G.3 - G.4,

-G.3 + G.4,

G.3 + G.4,

-G.3 - G.4

}

> R;

320

We see that the routine assumed that the image of GtoEK is 2- and 5-saturated in E(K). We can
ask it to not assume anything outside 2.

> V2, R := Chabauty( GtoEK, u: IndexBound:= 2);

> V eq V2;

true

> R;

16

This means that we have found all points in E(K) that have a rational image under u. If one
wants to find the images of these points then it is necessary in this example to first extend u (by
finding alternative defining equations for it) so that it is defined on all the points.

> u := Extend(u);

> [ u( GtoEK(P) ) : P in V ];

[ (-1 : 1), (-1/3 : 1), (-1/3 : 1), (-3 : 1), (-3 : 1) ]

Alternatively, we can apply Chabauty’s method without Mordell-Weil sieving.

> N, V, R, C := Chabauty( GtoEK, u, 3);

> N;

5

> V;

{

0,

G.3 - G.4,

-G.3 + G.4,

G.3 + G.4,

-G.3 - G.4

}

> R;

4

The Chabauty calculations prove that there are at most N elements in G whose image under u
is Q-rational. Also, V is a set of elements with this property. Since here N = 5 = #V , these
are the only such elements. Moreover, the calculations prove that if [E(K) : G] is coprime to R,
then N is actually an upper bound on the number of elements in E(K) whose image under u is
Q-rational. We know from the PseudoMordellWeilGroup computation that [E(K) : G] is odd.
Therefore we have solved our problem for E(K), not just for G.
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122.3.9 Auxiliary Functions for Etale Algebras
This section contains machinery for number fields (and more generally “etale algebras”,
i.e. algebras of the form Q[x]/p(x)), intended to perform the number field calculations
that are involved in computing Selmer groups of geometric objects.

It has become conventional to refer to “the p-Selmer group” of a number field K (or,
more generally, of an etale algebra) relative to a finite set S of K-primes. It means the
finite subgroup K(S, p) of K∗/(K∗)p, consisting of those elements whose valuation at every
prime outside S is a multiple of p.

AbsoluteAlgebra(A)

Fields SetEnum Default : {}
Verbose EtaleAlg Maximum : 1

Given a separable commutative algebra over Q, an absolute number field or a finite
field, the function returns the isomorphic direct sum of absolute fields as a cartesian
product and the isomorphisms to and from this product. The optional parameter
Fields enables the user to suggest representations of the absolute fields. If this
function finds it needs a field isomorphic to one occurring in the supplied list, then it
will use the given field. Otherwise it will construct a field itself. The isomorphism is
returned as a second argument. If called twice on the same algebra, it will recompute
if the Fields argument is given. Otherwise it will return the result computed the
first time.

pSelmerGroup(A, p, S)

Verbose EtaleAlg Maximum : 1
Returns the p-Selmer group of a semi-simple algebra A. The set S of ideals should
be prime ideals of the underlying number field. The group returned is the direct
sum of the p-Selmer groups of the irreducible summands of A and the map is the
obvious embedding in the multiplicative group of A. An implied restriction is that
BaseRing(A) be of type FldNum. See also pSelmerGroup on page 3-1004. If an
algebra over the rationals is required, create a degree 1 extension by

RationalsAsNumberField();

LocalTwoSelmerMap(P)

Let K be the number field associated with the prime ideal P . The map returned
is K∗ → K∗

P /K
∗2
P , where KP is the completion of K at P . The codomain is

represented as a finite abelian group.

LocalTwoSelmerMap(A, P)

Let K be the base field of the commutative algebra A and let P be a prime ideal
in K. Then this function returns a map A∗ → A∗/A∗2 ⊗ KP , where KP is the
completion of K at P . The codomain is represented as a finite abelian group.

This map is computed by using LocalTwoSelmerMap(Q) for the various exten-
sions Q of P to the fields making up AbsoluteAlgebra(A). The map returned is
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essentially the direct sum of all these maps. For technical purposes, one may also
wish to use the components of the map coming from each number field; these are
given by the second return value, which is a sequence of records (ordered in the
same way as the results are concatenated in the returned map). Each record con-
tains items i, p, map and vmap. Here i is an index indicating which number field
in AbsoluteAlgebra(A) the record corresponds to, p is an extension of P to a prime
in that number field, map is LocalTwoSelmerMap(p), and vmap is the valuation map
at p on that number field.

Example H122E40

> P<x> := PolynomialRing(Rationals());

> A := quo<P | x^3 - 1>;

> AA := AbsoluteAlgebra(A);

> AA;

Cartesian Product

<Number Field with defining polynomial x - 1 over the Rational Field,

Number Field with defining polynomial x^2 + x + 1 over the Rational Field>

122.3.10 Analytic Information

RootNumber(E, P)

The local root number of the elliptic curve E (defined over a number field) at the
prime ideal P . The formulae are due to Rohrlich, Halberstadt, Kobayashi and the
Dokchitser brothers.

RootNumber(E)

Calculates the global root number of an elliptic curve E defined over a number
field K. This is the product of local root numbers over all places of K (−1 from
each infinite place), and is the (conjectural) sign in the functional equation relating
L(E/K, s) to L(E/K, 2− s).

AnalyticRank(E)

Precision RngIntElt Default : 6

Determine the analytic rank of the elliptic curve E, which is defined over a number
field K. The algorithm used is heuristic, computing derivatives of the L-function
L(E/K, s) at s = 1 until one appears to be nonzero; it also assumes the analytic con-
tinuation and the functional equation for the L-function. The function returns the
first nonzero derivative L(r)(1)/r! as a second argument. The precision is optional,
and is taken to be 6 digits if omitted.
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ConjecturalRegulator(E)

Precision RngIntElt Default : 10
Using the AnalyticRank function, this function calculates an approximation, as-
suming that the Birch–Swinnerton-Dyer conjecture holds, to the product of the
regulator of the elliptic curve E and the order of the Tate–Shafarevich group. The
(assumed) analytic rank is returned as a second value.

ConjecturalSha(E, Pts)

Precision RngIntElt Default : 6
For an elliptic curve E defined over a number field K and a sequence of points
in E(K) which purpotedly form its basis modulo torsion, computes the conjec-
tural order of the Tate-Shafarevich group III (E/K). This function computes the
product of the regulator and III from the Birch–Swinnerton-Dyer conjecture (using
ConjecturalRegulator) and divides by the determinant of the height pairing ma-
trix for the points supplied in Pts. It returns 0 if the points are linearly dependent
or they generate a group of rank less than the analytic rank. If the points generated
a subgroup of index n > 1, it returns n2 · |III |.

122.3.11 Elliptic Curves of Given Conductor
This section describes search routines for finding elliptic curves with given conductor, or
with good reduction outside a given set of primes. The aim is not to provably find all
such curves; in most cases, this would be a very difficult task using current algorirthms.
Rather the aim is to efficiently search for these curves, using a variety of techniques, taking
advantage of all available information, and taking advantage of all the tools available in
Magma which can be applied to the problem.

The routine is particularly effective when some traces of Frobenius of the desired are
specified. The obvious application here is to find an elliptic curve that matches a known
modular form.

These functions can be used to find elliptic curves over Q, as well as number fields, by
using RationalsAsNumberField().

EllipticCurveSearch(N, Effort)

EllipticCurveWithGoodReductionSearch(S, Effort)

Full BoolElt Default : false

Max RngIntElt Default :

Primes SeqEnum Default :

Traces SeqEnum Default :

Verbose ECSearch Maximum : 2
These functions perform a search for elliptic curves with specified conductor(s).
The first function finds curves with conductor equal to the given ideal N ; the “good
reduction” functions find curves with conductors divisible only by primes that belong
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to the given set S (or that divide the given ideal N). The functions return a sequence
containing all such curves that were found. This sequence will not contain curves
that are isomorphic to each other. It may contain isogenous curves, however no
attempt is made to find full isogeny classes.

The second argument, Effort, is an integer which controls how much effort is
used before returning; the running time depends on this variable in a roughly linear
way, except with significant step-ups at values where an additional technique begins
to be used. Currently, Effort := 400 is the smallest value which tries all available
techniques (however this is subject to change).

There are two ways to specify an early stopping condition:

(i) If the optional argument Max is set to some positive integer, the routine will
return whenever this many non-isogenous curves have been found.

(ii) The optional arguments Primes and Traces, which must correspond to ea-
chother, may be used to specify some traces of Frobenius of the desired
curve(s). Here Primes is a sequence of prime ideals coprime to the conduc-
tor(s), and Traces is a sequence of integers of the form [aP : Pin Primes ].
Alternatively, to search for several curves with different traces, Traces may
instead by a sequence of sequences of that form.

If an early stopping condition has been specified, the routine initially tries with
lower effort, in order to succeed quickly for easier input; the effort is incremented
exponentially up to the specified Effort level. (This strategy is desirable because
the algorithm involves performing a large number of independent searches in alter-
nation.) However if the option Full is set, the full specified Effort is used from
the beginning.

If SetVerbose("ECSearch", 1) is used, information about the search is printed
during computation. In particular, curves with the desired conductor are printed
when they are found, so that they can be obtained without waiting for the routine
to finish.

122.4 Curves over p-adic Fields

The functions in this section are for elliptic curves defined over p-adic fields. They provide
an interface to the same code for Tate’s algorithm that is used for curves over number
fields.

122.4.1 Local Invariants

Conductor(E)

The conductor of the elliptic curve E defined over a p-adic field.
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LocalInformation(E)

Implements Tate’s algorithm for the elliptic curve E over a p-adic field. This intrinsic
computes local reduction data at the prime ideal P , and a local minimal model.
The model is not required to be integral on input. Output is 〈P, vp(d), fp, cp,K, s〉
and Emin where P is the uniformizer of the ground field, vp(d) is the valuation
of the local minimal discriminant, fp is the valuation of the conductor, cp is the
Tamagawa number, K is the Kodaira Symbol, and s is false if the curve has
non-split multiplicative reduction and true otherwise. Emin is an integral minimal
model of E.

RootNumber(E)

The local root number of the elliptic curve E (defined over a p-adic field).

122.5 Bibliography

[BC04] W. Bosma and J. Cannon, editors. Discovering Mathematics with Magma.
Springer-Verlag, Heidelberg, 2004.

[Bos00] Wieb Bosma, editor. ANTS IV, volume 1838 of LNCS. Springer-Verlag, 2000.
[Bru02] N. R. Bruin. Chabauty methods and covering techniques applied to general-

ized Fermat equations, volume 133 of CWI Tract. Stichting Mathematisch Centrum
Centrum voor Wiskunde en Informatica, Amsterdam, 2002. Dissertation, University
of Leiden, Leiden, 1999.

[Bru03] Nils Bruin. Chabauty methods using elliptic curves. J. reine angew. Math.,
562:27–49, 2003.

[Bru04] Nils Bruin. Some ternary Diophantine equations of signature (n, n, 2). In
Bosma and Cannon [BC04].

[BS10] Nils Bruin and Michael Stoll. The Mordell-Weil sieve: Proving non-existence
of rational points on curves. LMS J. Comput. Math., 13:272–306, 2010.

[Cas66] J. W. S. Cassels. Diophantine equations with special reference to elliptic
curves. J. London Math. Soc., 41:150–158, 1966.

[CFO+] J.E. Cremona, T.A Fisher, C. O’Neil, D. Simon, and M Stoll. Explicit n-
Descent On Elliptic Curves, III. Algorithms. ArXiv preprint.
URL:http://arxiv.org/abs/1107.3516.

[CFO+08] J. E. Cremona, T. A. Fisher, C. O’Neil, D. Simon, and M. Stoll. Explicit
n-descent on elliptic curves. I. Algebra. J. Reine Angew. Math., 615:121–155, 2008.

[CFO+09] J.E. Cremona, T.A Fisher, C. O’Neil, D. Simon, and M Stoll. Explicit n-
Descent On Elliptic Curves, II. Geometry. J. reine angew. Math., 632:63–84, 2009.

[CFS10] J.E. Cremona, T.A Fisher, and M Stoll. Minimisation and reduction of 2-, 3-
and 4-coverings of elliptic curves. Algebra & Number Theory, 4(6):763–820, 2010.

[CM12] B. Creutz and R.L. Miller. Second isogeny descents and the Birch and
Swinnerton-Dyer conjectural formula. J.Algebra, 372:673–701, 2012.



4072 ARITHMETIC GEOMETRY Part XVII

[Coh93] Henri Cohen. A Course in Computational Algebraic Number Theory, volume
138 of Graduate Texts in Mathematics. Springer, Berlin–Heidelberg–New York, 1993.

[Cre99] John Cremona. Reduction of binary cubic and quartic forms. LMS JCM,
2:62–92, 1999.

[Cre01] John Cremona. Classical invariants and 2-descent on elliptic curves. J.
Symbolic Comp., 31:71–87, 2001.

[Cre10] Brendan Creutz. Explicit second p-descents on elliptic curves. PhD Thesis,
Jacobs University Bremen, 2010.

[Elk00] N. Elkies. Rational Points Near Curves and Small Nonzero |x3−y2| via Lattice
Reduction. In Bosma [Bos00], pages 33–63.

[Fis00] Tom Fisher. On 5 and 7 descents for elliptic curves. PhD thesis, University
of Cambridge, 2000.

[Fis01] Tom Fisher. Some examples of 5 and 7 descent for elliptic curves over Q. J.
Eur. Math. Soc., 3(Issue 2):169–201, 2001.

[Fis08] Tom Fisher. Finding rational points on elliptic curves using 6-descent and
12-descent. J. Algebra, 320(2):853–884, 2008.

[FK02] Claus Fieker and David R. Kohel, editors. ANTS V, volume 2369 of LNCS.
Springer-Verlag, 2002.

[GZ86] Gross and Zagier. Heegner Points and Derivatives of L-series. Invent. Math.,
84:225–320, 1986.

[Har08] D. Harvey. Efficient computation of p-adic heights. LMS J. Comput. Math.,
11:40–59, 2008.

[Kra81] K. Kramer. Arithmetic of elliptic curves upon quadratic extension. Trans.
Amer. Math. Soc., 264(1):121–135, 1981.

[MSS96] J. R. Merriman, S. Siksek, and N. P. Smart. Explicit 4-descents on an elliptic
curve. Acta Arith., 77(4):385–404, 1996.

[MST06] B. Mazur, W. Stein, and J. Tate. Computation of p-adic heights and log
convergence. Documenta Mathematica, Extra:577–614, 2006.

[MT91] B. Mazur and J. Tate. The p-adic sigma function. Duke Math Journal,
62(3):663–688, 1991.

[Sik95] Samir Siksek. Infinite descent on elliptic curves. Rocky Mountain J. Math.,
25(4):1501–1538, 1995.

[Sil86] J. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts
in Mathematics. Springer-Verlag, New York, 1986.

[SS04] Edward F. Schaefer and Michael Stoll. How to do a p-descent on an elliptic
curve. Trans. Amer. Math. Soc., 356(3):1209–1231 (electronic), 2004.

[SW02] W. A. Stein and M. Watkins. A New Database of Elliptic Curves—First
Report. In Fieker and Kohel [FK02].

[Wat02] M. Watkins. Computing the modular degree of an elliptic curve. Experimental
Mathematics, 11(4):487–502, 2002.



Ch. 122 ELLIPTIC CURVES OVER Q AND NUMBER FIELDS 4073

[Wom03] T. Womack. Explicit descent on elliptic curves. PhD thesis, University of
Nottingham, 2003.





123 ELLIPTIC CURVES OVER
FUNCTION FIELDS

123.1 An Overview of Relevant The-
ory . . . . . . . . . . . 4077

123.2 Local Computations . . . . 4079

BadPlaces(E) 4079
Conductor(E) 4079
LocalInformation(E, Pl) 4079
LocalInformation(E, f) 4079
LocalInformation(E) 4079
KodairaSymbols(E) 4079
NumberOfComponents(K) 4080
MinimalModel(E) 4080
MinimalDegreeModel(E) 4080
IsConstantCurve(E) 4080
TraceOfFrobenius(E, p) 4080

123.3 Elliptic Curves of Given Con-
ductor . . . . . . . . . . 4080

EllipticCurveSearch(N, Effort) 4080

123.4 Heights . . . . . . . . . 4081

NaiveHeight(P) 4081
Height(P) 4081
LocalHeight(P, Pl) 4081
HeightPairing(P, Q) 4081
HeightPairingMatrix(S) 4081
HeightPairingLattice(S) 4081
Basis(S) 4081
Basis(S, r, disc) 4081
IsLinearlyDependent(points) 4081
IsLinearlyIndependent(points) 4081
IndependentGenerators(points) 4081

123.5 The Torsion Subgroup . . . 4082

TorsionSubgroup(E) 4082
TorsionBound(E, n) 4082
TorsionBound(E, n, B) 4082
GeometricTorsionBound(E) 4082

123.6 The Mordell–Weil Group . . 4082

RankBounds(E) 4082

RankBound(E) 4082
MordellWeilGroup(E : -) 4083
MordellWeilLattice(E) 4083
GeometricMordellWeilLattice(E) 4083
Generators(E) 4083

123.7 Two Descent . . . . . . . 4084

TwoSelmerGroup(E) 4084
TwoDescent(E) 4084
QuarticMinimize(f) 4084
Points(C : -) 4085
PointsQI(C, H) 4085
TwoIsogenySelmerGroups(E) 4085

123.8 The L-function and Counting
Points . . . . . . . . . . 4085

LFunction(E) 4085
LFunction(E, S) 4085
LFunction(E, e) 4086
AnalyticRank(E) 4086
AnalyticInformation(E) 4086
AnalyticInformation(E, L) 4086
AnalyticInformation(E, e) 4086
NumberOfPointsOnSurface(E, e) 4087
NumbersOfPointsOnSurface(E, e) 4087
BettiNumber(E, i) 4087
CharacteristicPolynomial

FromTraces(traces) 4087
CharacteristicPolynomial

FromTraces(traces, d, q, i) 4087

123.9 Action of Frobenius . . . . 4088

Frobenius(P, q) 4088
FrobeniusActionOnPoints(S, q : -) 4088
FrobeniusActionOnReducibleFiber(L) 4088
FrobeniusActionOnTrivialLattice(E) 4088

123.10 Extended Examples . . . . 4088

123.11 Bibliography . . . . . . . 4091





Chapter 123

ELLIPTIC CURVES OVER
FUNCTION FIELDS

This section involves elliptic curves with coefficients in a function field k(C) where C
is a regular projective curve over some field k (usually a number field or a finite field).
The commands are largely parallel to those for elliptic curves over the rationals; one
can compute local information (Tate’s algorithm and so forth), a minimal model, the L-
function, the 2-Selmer group, and the Mordell–Weil group. This goes in order of decreasing
generality: Local information is available for curves over univariate function fields over
any exact base field, while at the other extreme Mordell–Weil groups are available only
for curves over rational function fields over finite fields for which the associated surface is
a rational surface. The generality of many of the commands will be expanded in future
releases.

123.1 An Overview of Relevant Theory

An elliptic curve over K = k(C) may be regarded as a surface E over k with a map
π : E → C (in other words, an elliptic surface); the generic fibre of E is E. Under this
interpretation, elements of the Mordell–Weil group E(K) are in one-to-one correspondence
with sections of π. (A section is a morphism s : C → E such that π ◦s = IdC .) This means
that one may study the Mordell–Weil group by studying the geometry of the surface.

Given E, there is a unique E up to isomorphism that is projective, regular, and relatively
minimal. This is called the Kodaira–Néron model, and we will always assume that we are
working with this model of the surface.

Let k̄ denote the separable closure of k, and Ek̄ the elliptic surface considered over
k̄. The Néron–Severi group NS(Ek̄) of Ek̄ is the group of divisors of Ek̄ modulo algebraic
equivalence. It is a finitely generated group and is closely connected with the Mordell–Weil
group E(K).

Let N be the subgroup of NS(Ek̄) that is generated by all components of all the fibres
of π together with the section corresponding to the zero point of E(k̄(C)); this is known as
the trivial lattice of NS(Ek̄). It can easily be determined since the number of components
in reducible fibres can be computed by Tate’s algorithm. The following divisor classes
together form a basis of N

(i) the image of the section corresponding to the zero point;

(ii) one complete fibre; and

(iii) the components of all the reducible fibres, with one component from each fibre
omitted.
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It is known that the quotient NS(Ek̄)/N is generated by images of sections of π, and
that NS(Ek̄)/N ∼= E(k̄(C)) (via the identification of sections with points). In particular,
this implies the Shioda–Tate formula

rank(E(k̄(C))) + 2 +
∑

v∈C(k̄)

(mv − 1) = rank(NS(Ek̄))

where mv denotes the number of components of the fibre π−1(v).
The Galois group G = Gk̄/k acts on NS(Ek̄), and it maps N to itself. Moreover,

after extending scalars to Q one can split the Galois representation. That is, there exists
M ⊂ NS(Ek̄) ⊗Q such that NS(Ek̄) ⊗Q ∼= M ⊕ (N ⊗Q) and M ∼= E(k̄(C)) ⊗Q as G-
modules. In particular, MG ∼= E(K)⊗Q. In the case that k is a finite field, the Frobenius
action on N can be determined with the functions FrobeniusActionOnReducibleFiber
and FrobeniusActionOnTrivialLattice.

In order to study NS(Ek̄) as a G-module, one can embed it in the `-adic cohomology
group H2(Ek̄,Q`). To get a G-equivariant map one must slightly change the G-action on
H2(Ek̄,Q`). Let H2(Ek̄,Q`)(1) denote the (1)-Tate twist of H2(Ek̄,Q`). The main prop-
erty that we need to know about this twist is that it transforms the q-eigensubspace
in H2(Ek̄,Q`) of some q-Frobenius element to the 1-eigenspace of this Frobenius in
H2(Ek̄,Q`)(1). The cycle class map then yields a G-equivariant embedding

NS(Ek̄)⊗Q` ↪→ H2(Ek̄,Q`)(1).

It is conjectured by Tate that the image of (NS(Ek̄)⊗Q`)G under this map exactly equals
H2(Ek̄,Q`)(1)G.

In the case that k is a finite field one can in principal determine H2(Ek̄,Q`)(1)G via the
Lefschetz trace formula. Suppose that k ⊂ Fq and let Fq denote the q-th power Frobenius
map. Then

#E(Fq) = 1 + q2 − (1 + q)Trace(Fq|H1(Ck̄,Q`)) + Trace(Fq|H2(Ek̄,Q`)).

The trace on H1(Ck̄,Q`) is zero if C is a rational curve, and it can be determined
by counting Fq-rational points on C in the general case. Hence one can determine
Trace(Fq|H2(Ek̄,Q`)) by counting Fq-rational points on E . By doing this for various
powers of q one can determine the characteristic polynomial of Fq acting on H2(Ek̄,Q`),
and hence the conjectural ranks of E(k̄(C)) and E(K) by using Tate’s conjectures. The
conjectural ranks obtained in this way give unconditional upper bounds on the true ranks.

As the Galois action on N can be determined, the difficult part is to compute

det(1− T · Fq|H2(Ek̄,Q`)/ im(N ⊗Q`)),

where im(N ⊗Q`) stands for the image of N ⊗Q` under the cycle class map. It can be
shown that this polynomial is equal to the L-function of E over K; it follows that this
L-function is a polynomial. This shows that Tate’s conjectures are linked to a geometric
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version of the Birch and Swinnerton-Dyer conjecture. Just as in the number field case, this
conjecture expresses the rank and the product of the order of the Tate–Shafarevich group
and the regulator of E in terms of its L-function. The L-function can be computed with
the function LFunction and the conjectural information on the rank, Tate–Shafarevich
group, and regulator can be obtained with the function AnalyticInformation.

If E can be defined by a Weierstrass equation in which the coefficients ai are polynomials
of degree at most i, then Ek̄ is a rational surface and rank(NS(Ek̄)) = 10. In this case
rank(E(k̄(C))) = 10− rank(N) can be easily determined. In the case that k is a finite field
then E(k̄(C)) and E(K) can be computed using functions in this section.

123.2 Local Computations

BadPlaces(E)

A sequence containing the places where the given model of E has bad reduction, for
an elliptic curve E defined over a function field.

Conductor(E)

The conductor of an elliptic curve E defined over a function field F . In general this
is returned as a divisor of F . When F is a rational function field it is returned as a
sequence of tuples 〈f, e〉 of places (specified by field elements f) and multiplicities
e.

LocalInformation(E, Pl)

LocalInformation(E, f)

This function performs Tate’s algorithm for an elliptic curve E over a function field
to determine the reduction type and a minimal model at the given place Pl. When
E is defined over a rational function field F (t) the place is simply given as a field
element f (which must either be 1/t or an irreducible polynomial in t.)

The model is not required to be integral on input. The output is of the form
〈Pl, vp(d), fp, cp,K, split〉 and Emin where Pl is the place, vp(d) is the valuation
of the local minimal discriminant, fp is the valuation of the conductor, cp is the
Tamagawa number, K is the Kodaira Symbol, split is a boolean that is false if
reduction is of nonsplit multiplicative type and true otherwise, and Emin is a model
of E (integral and) minimal at Pl.

LocalInformation(E)

Returns a sequence of tuples as described above for all places of bad reduction of
the elliptic curve E.

KodairaSymbols(E)

A sequence of tuples 〈K,n〉, corresponding to the places of bad reduction of the ellip-
tic curve E. Here K is the Kodaira symbol and n is the degree of the corresponding
place.
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NumberOfComponents(K)

The number of components of a fibre with the Kodaira symbol K.

MinimalModel(E)

A model of the elliptic curve E (defined over a function field, which must have genus
0) that is minimal at all finite places, together with a map from E to this minimal
model.

MinimalDegreeModel(E)

A model of the elliptic curve E (defined over a rational function field) which min-
imises the quantity Max([Degree(ai)/i]), where a1, a2, a3, a4, a6 are the Weierstrass
coefficients.

IsConstantCurve(E)

For an elliptic curve E defined over a rational function field F (t), the function returns
true if and only if E is isomorphic over F (t) to an elliptic curve with coefficients in
F (and also returns such a curve in that case).

TraceOfFrobenius(E, p)

The trace of Frobenius ap for the reduction of E at the place p, specified as an
element of the base field.

123.3 Elliptic Curves of Given Conductor

EllipticCurveSearch(N, Effort)

Full BoolElt Default : false

Max RngIntElt Default :

Primes SeqEnum Default :

Traces SeqEnum Default :

Verbose ECSearch Maximum : 2

This routine searches for elliptic curves over a field Fq(t) whose conductor is equal
to the specified conductor N . Alternatively, the first argument may be a set or
sequence of possible conductors. Here a conductor is specified in the same format
as returned by Conductor.

For explanation of the optional parameters and other details, see the description
of EllipticCurveSearch for elliptic curves over number fields.
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123.4 Heights

NaiveHeight(P)

The naive x-coordinate height of a point P on an elliptic curve over a function field
K; in other words, the degree of the point (x(P ) : 1) on the projective line.

Height(P)

The Néron–Tate height ĥ(P ) of the given point P on an elliptic curve defined over
a function field.

LocalHeight(P, Pl)

Given a point P on an elliptic curve defined over a function field F and a place Pl
of the function field F , returns the local height λPl(P ) at Pl of P .

HeightPairing(P, Q)

Returns the height pairing of the points P and Q, defined as 〈P,Q〉 = (ĥ(P +Q)−
ĥ(P )− ĥ(Q))/2 (where as usual ĥ denotes the Néron–Tate height).

HeightPairingMatrix(S)

Given a sequence S of points Pi on an elliptic curve defined over a function field,
this function returns the matrix (〈Pi, Pj〉), where 〈, 〉 is the height pairing.

HeightPairingLattice(S)

The height pairing lattice of a sequence of independent points on an elliptic curve
defined over a function field.

Basis(S)

Given a sequence S of points on an elliptic curve, returns a sequence of points that
form a basis for the free part of the subgroup generated by the points in S. The
second returned value is a Gram matrix for this basis with respect to the Néron–Tate
pairing.

Basis(S, r, disc)

Given a sequence S of points on an elliptic curve, returns a sequence of independent
points in the free part of the subgroup generated by S such that these points generate
a lattice of rank r and discriminant disc. The answer is returned as soon as such a
lattice has been found, ignoring any additional points in the given sequence.

IsLinearlyDependent(points)

IsLinearlyIndependent(points)

IndependentGenerators(points)

These functions are available for elliptic curves over function fields, and behave the
same way as for elliptic curves over the rationals.
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123.5 The Torsion Subgroup

TorsionSubgroup(E)

Given an elliptic curve E defined over a function field F , this function returns an
abelian group A isomorphic to the torsion subgroup of E(F ), together with a map
from A to E(F ).

TorsionBound(E, n)

TorsionBound(E, n, B)

Given an elliptic curve over a function field F and an integer n, this function com-
putes a bound on the size of the torsion subgroup of E(F ) by considering the torsion
subgroups of the fibres of E at n different places of F .

When an integer B is given as a third argument then the subgroup of elements
of order dividing B is bounded, rather than the whole torsion subgroup.

GeometricTorsionBound(E)

Given an elliptic curve E defined over a function field F , this function computes a
bound for the geometric torsion subgroup of E. That is, the torsion group of E(K)
where K/F is the smallest extension with algebraically closed constant field. In
cases where a bound cannot be computed then 0 is returned.

123.6 The Mordell–Weil Group

The machinery in this section and the next section is for curves defined over a rational
function field k(t) whose field of constants k is finite.

The Mordell–Weil group can be computed (and generators found) for a curve y2 +
a1xy + a3y = x3 + a2x

2 + a4x+ a6 where each ai is a polynomial in k[t] ⊂ k(t) of degree
at most i.

When this hypothesis is not satisfied, it may still be possible to bound the Mordell–Weil
rank and find Mordell–Weil generators using the 2-descent routines described in the next
section.

RankBounds(E)

RankBound(E)

These functions return lower and upper bounds (or just an upper bound) on the rank
of the Mordell–Weil group E(F ) for an elliptic curve E defined over a function field
F with finite constant field. The bound is obtained by applying all the available tools
(those described in this section together with the AnalyticInformation obtained
from the L-function).
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MordellWeilGroup(E : parameters)

Al MonStgElt Default : "Geometric"

This function computes the Mordell–Weil group of an elliptic curve E that satisfies
the hypotheses stated in the introduction immediately above. The function returns
two values: an abelian group A and a map m from A to E. The map m provides
an isomorphism between the abstract group A and the Mordell–Weil group.

The algorithm used by default is the geometric method described above. How-
ever, when Al is set to "Descent" it instead uses the 2-descent tools described in
the next section; if the curve admits 2-isogenies then it uses a separate implementa-
tion of descent by 2-isogenies (described in [Rob07]). These descent methods do not
always determine the full Mordell–Weil group (in which case a warning is printed);
their advantages are that they do not require the degrees of the coefficients to be
bounded and in many cases are very efficient.

MordellWeilLattice(E)

This function computes the Mordell–Weil lattice of an elliptic curve E that satisfies
the hypotheses stated in the introduction immediately above. This is the free part
of the Mordell–Weil group with an inner product given by the Néron–Tate height
pairing. The function returns two values: the lattice L and a map m from L to E.

GeometricMordellWeilLattice(E)

This function computes the geometric Mordell–Weil lattice of an elliptic curve E that
satisfies the hypotheses stated in the introduction immediately above. This consists
of the free part of the group of points on E that are defined over the function field
with a possibly extended constant field, together with the Néron–Tate pairing. The
function returns two values: a lattice L and a map m from L to E′, where E′ is a
base change of E over the larger field.

Generators(E)

Given an elliptic curve E over a rational function field F that satisfies the hypotheses
stated in the introduction immediately above, this function returns a sequence of
points in E(F ) which are generators of the Mordell–Weil group.

Example H123E1

We find that the curve y2 = x3 + (t4 + 2t2)x + t3 + 2t over F3(t) has rank 2 and has no 2-torsion
in its Tate–Shafarevich group.

> F<t> := FunctionField(GF(3));

> E := EllipticCurve([ t^4 + 2*t^2, t^3 + 2*t ]);

> S2E := TwoSelmerGroup(E);

> S2E;

Abelian Group isomorphic to Z/2 + Z/2

Defined on 2 generators

Relations:

2*S2E.1 = 0
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2*S2E.2 = 0

> MordellWeilGroup(E);

Abelian Group isomorphic to Z + Z

Defined on 2 generators (free)

Mapping from: Abelian Group isomorphic to Z + Z

Defined on 2 generators (free) to CrvEll: E given by a rule [no inverse]

Furthermore, we may compute the regulator of E as follows.

> Determinant(HeightPairingMatrix(Generators(E)));

12

123.7 Two Descent

In odd characteristic the 2-Selmer group can be computed and its elements can be repre-
sented as minimised 2-coverings. A search for points on these 2-coverings can be made.

In characteristic 2 descent by 2-isogeny can be performed for an ordinary curve E using
the isogenies E → Efrob → E. The Selmer groups for both isogenies are computed; if these
have ranks s1 and s2 then the rank of E is at most s1 + s2 − 1.

TwoSelmerGroup(E)

This function computes the 2-Selmer group of an elliptic curve E defined over a
rational function field Fq(t) of odd characteristic. This is returned as an abstract
group together with a map from the group to the relevant algebra.

The algorithm is standard (similar to the one used for elliptic curves over number
fields).

TwoDescent(E)

This represents the nontrivial elements of the 2-Selmer group of E as hyperelliptic
curves C : y2 = f(x) of degree 4, and returns a sequence containing the curves
together with a list containing the corresponding covering maps C → E. The elliptic
curve should be defined over a rational function field Fq(t) of odd characteristic.

The curves returned have polynomial coefficients and are minimised at all fi-
nite places. The conic parametrisation step uses the algorithm by Cremona and
van Hoeij.

QuarticMinimize(f)

This is the routine used by TwoDescent to minimise two-coverings. The function
takes a homogeneous quartic in two variables with coefficients in a rational univari-
ate function field and returns a minimal quartic equivalent to f together with the
appropriate transformation matrix.
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Points(C : parameters)

Bound RngIntElt Default :

This finds all rational points with height up to the given Bound on the hyperelliptic
curve C, which must be defined over a rational function field Fq(t). The parameter
Bound is not optional, and it refers to the x-coordinate (logarithmic) height of the
points: In other words, the routine finds all projective points (X : Y : Z) where X
and Z are polynomials in t of degree less than or equal to Bound.

PointsQI(C, H)

OnlyOne BoolElt Default : false

ExactBound BoolElt Default : false

This is an optimised routine for finding rational points on a curve given as an
intersection of two quadrics defined over a rational function field Fq(t). It searches
for projective points whose coordinates are polynomials in t of degree up to H. To
guarantee finding all such points the parameter ExactBound must be set to true.

The algorithm uses a lattice reduction method described in [Rob07].

TwoIsogenySelmerGroups(E)

This performs descent by 2-isogenies for a non-supersingular elliptic curve E defined
over a rational function field k(t) where k is finite of characteristic 2. The isogenies
used are the Frobenius map E → Efrob : (x, y) 7→ (x2, y2) and the dual isogeny
Efrob → E (which is separable). The function returns four objects: the Selmer
group Ssep of the separable isogeny (as an abstract group), followed by the Selmer
group SFrob of the Frobenius isogeny, followed by maps Ssep → k(t)/Φ(k(t)) and
SFrob → k(t)∗/(k(t)∗)2. Here Φ denotes the Artin–Schreier map a 7→ a2 + a.

Notes describing the algorithm will be made available (on request). The theo-
retical background is presented in [Kra77].

123.8 The L-function and Counting Points
To compute the L-function one can use the intrinsic LFunction or alternatively one can
do it “by hand”, using the tools in this section and the next (as illustrated in Example
H123E6).

LFunction(E)

LFunction(E, S)

Check BoolElt Default : true

The L-function of the elliptic curve E, which should be defined over a rational
function field over a finite field.

To speed up the computation, the points in S are used to reduce the unknown
part of H2; S should be a sequence of points on E or on some base change of E by
an extension of the constant field. If the parameter Check is set to false then the
points in S must form a basis for a subgroup of the geometric Mordell–Weil group
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modulo torsion that is mapped to itself by the Galois group of the extension of the
fields of constants.

LFunction(E, e)

The L-function for the base change of the elliptic curve E by a constant field exten-
sion of degree e.

AnalyticRank(E)

The Mordell–Weil rank of E as predicted by Tate’s version of the Birch–Swinnerton-
Dyer conjecture (or equivalently, the Artin–Tate conjecture). This is an uncondi-
tional upper bound and is proved to be the actual rank for several classes of curves,
such as those arising from rational elliptic surfaces and K3 elliptic surfaces. It is
required that E is defined over a function field over a finite field.

AnalyticInformation(E)

AnalyticInformation(E, L)

AnalyticInformation(E, e)

This function computes what is predicted by the Birch–Swinnerton-Dyer (or Artin–
Tate) conjecture about E, which should be an elliptic curve defined over a function
field over a finite field. The data is given as a tuple consisting of the rank, geometric
rank, and the product of the order of Tate–Shafarevich group and the regulator.

When a polynomial L is given as a second argument then function will assume
that L is the L-function of E.

When an integer e is given as a second argument then the function will return
analytic data for the base change of E by the constant field extension of degree e.
This is more efficient than simply calling AnalyticInformation on the base change.

Example H123E2

The curve y2 = x3 + 2t2x + (t3 + 2t2 + 2t) over F3(t) has rank 0 and its Tate–Shafarevich group
contains Z/3⊕Z/3. We may conclude this (unconditionally) from the analytic information, since
the Tate conjecture is proved for rational elliptic surfaces.

> F<t> := FunctionField(GF(3));

> E := EllipticCurve([ 2*t^2, t^3 + 2*t^2 + 2*t ]);

> AnalyticInformation(E);

<0, 4, 9>

Furthermore, the rank of E(F3(t)) is 4.
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Example H123E3

We consider again the curve y2 = x3 + (t4 + 2t2)x + t3 + 2t over F3(t), which was found to have
rank 2 and regulator 12 in Example H123E1.

> F<t> := FunctionField(GF(3));

> E := EllipticCurve([ t^4 + 2*t^2, t^3 + 2*t ]);

> AnalyticInformation(E);

<2, 8, 12>

This confirms that the rank is 2 and tells us that the regulator multiplied by the order of Sha is
12; hence the Tate–Shafarevich group is trivial. Again this is unconditional.

NumberOfPointsOnSurface(E, e)

Returns the number of points on the Kodaira–Néron model of the elliptic curve E
over an extension of the constant field of degree e.

NumbersOfPointsOnSurface(E, e)

If an elliptic curve E is defined over a function field over a finite field of q elements
then this intrinsic computes a sequence containing the number of points on the
corresponding Kodaira–Néron model of E over extensions of Fq of degree up to e,
together with the number of points on the base curve over these extensions.

BettiNumber(E, i)

Returns the i-th Betti number of the Kodaira–Néron model of the elliptic surface
corresponding to the elliptic curve E.

CharacteristicPolynomialFromTraces(traces)

Given a sequence traces = [t1, t2, . . . , td], this function computes a polynomial of
degree d with constant coefficient equal to 1 such that the j-th powersum of the
reciprocal zeroes of this polynomial is equal to tj . This is typically used when one
wants to compute the characteristic polynomial of Frobenius acting on some piece
of cohomology from traces of various powers of Frobenius.

CharacteristicPolynomialFromTraces(traces, d, q, i)

Given a sequence of field elements [t1, t2, . . . , tk] and integers d, q, and i, this func-
tion computes a polynomial of degree d with constant coefficient 1 such that the
reciprocals of the zeroes of this polynomial have absolute value qi/2 and the j-th
powersum of the reciprocals of these zeroes equals tj . For this function one must
have k at least equal to Floor(d/2). A priori the leading coefficient of the poly-
nomials is not determined from the list of traces; in this case two polynomials are
returned, one for each choice of sign. One usually needs to provide Ceiling(d/2)
traces in order to determine the sign, but in certain cases more traces are required.
This function is typically used when one wants to compute the characteristic poly-
nomial of Frobenius acting on a piece of the i-th cohomology group from traces of
various powers of Frobenius.
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123.9 Action of Frobenius

Frobenius(P, q)

The q-th power Frobenius map on the point P of an elliptic curve that can be defined
over a function field with constant field Fq).

FrobeniusActionOnPoints(S, q : parameters)

gram AlgMatElt Default :

A matrix representing the q-power Frobenius map on the subgroup of the geometric
Mordell–Weil group (modulo torsion) with the given basis S. (This subgroup is
assumed to be invariant under the q-power Frobenius.)

The optional parameter gram should be the Gram matrix with respect to the
height pairing of the points in S.

FrobeniusActionOnReducibleFiber(L)

Given reduction data L for an elliptic curve E, such as given by the command
LocalInformation, this function returns a matrix representing the Frobenius action
on the non-identity components of corresponding fibres.

FrobeniusActionOnTrivialLattice(E)

Given an elliptic curve E defined over a rational function field over a finite field,
returns a matrix representing the Frobenius action on fibre components and the zero
section of the corresponding elliptic surface.

123.10 Extended Examples

Example H123E4

In this example we construct an elliptic curve by using a pencil of cubic curves passing through 8
given points. The 8 points are defined over GF (18318) and form a Galois orbit over GF (1831).

> p := 1831;

> F := GF(p);

> Fe<u> := ext<F | 8>;

> K<t> := FunctionField(F);

> P2<X,Y,Z> := ProjectivePlane(K);

> // define the 8 points:

> points := [ [ u^(p^i), (u^3+u+1)^(p^i) ] : i in [0..7] ];

> M := [ [ p[1]^i*p[2]^j : i in [0..3-j], j in [0..3] ] : p in points ];

> // find the coefficients of 2 cubics that pass through the points:

> B := Basis(Kernel(Transpose(Matrix(M))));

> R<x,y> := PolynomialRing(F, 2);

> mono_aff := [ x^i*y^j : i in [0..3-j], j in [0..3] ];

> // f1 and f2 are the cubics:

> f1 := &+[ (F!B[1][i])*mono_aff[i] : i in [1..10] ];

> f2 := &+[ (F!B[2][i])*mono_aff[i] : i in [1..10] ];



Ch. 123 ELLIPTIC CURVES OVER FUNCTION FIELDS 4089

> // Find the 9th intersection point, which we use as zero, to put

> // it to a nice Weierstrass model :

> P9 := Points(Scheme(Spec(R), [f1, f2]))[1];

> F1 := Homogenization(Evaluate(f1, [X, Y]), Z);

> F2 := Homogenization(Evaluate(f2, [X, Y]), Z);

> C := Curve(P2, F1 + t*F2);

> E := MinimalDegreeModel(EllipticCurve(C, C![P9[1], P9[2]]));

We could transfer the 8 points to this Weierstrass model, and use them to determine the Mordell–
Weil group. Instead, we will see what Magma is able to compute just from the Weierstrass model.

> KodairaSymbols(E);

[ <I1, 1>, <I1, 7>, <II, 1>, <I1, 2> ]

All fibres are irreducible. According to the theory of rational elliptic surfaces, the geometric
Mordell–Weil lattice should then be isomorphic to the root lattice E8. We can check this. We
also compute the Mordell–Weil lattice over the ground field.

> Lgeom := GeometricMordellWeilLattice(E);

> IsIsomorphic(Lgeom, Lattice("E", 8));

true

[-1 0 -2 1 1 -1 0 -1]

[ 0 0 0 1 0 0 -1 1]

[ 2 0 2 -2 -1 1 1 0]

[-2 0 -1 0 1 0 0 -1]

[ 1 0 0 1 -1 -1 -1 1]

[-1 0 0 0 1 0 1 -1]

[ 2 -1 2 -3 -1 1 1 1]

[ 1 -1 1 -1 0 0 0 0]

> L, f := MordellWeilLattice(E);

> L;

Standard Lattice of rank 1 and degree 1

Inner Product Matrix:

[8]

> f(L.1);

((1057*t^8 + 384*t^7 + 351*t^6 + 728*t^5 + 872*t^4 + 948*t^3 + 1473*t^2 + 257*t

+ 1333)/(t^6 + 100*t^5 + 1565*t^4 + 1145*t^3 + 927*t^2 + 1302*t + 1197) :

(1202*t^12 + 1506*t^11 + 1718*t^10 + 1365*t^9 + 656*t^8 + 325*t^7

+ 1173*t^6 + 902*t^5 + 1555*t^4 + 978*t^3 + 616*t^2 + 779*t +

964)/(t^9 + 150*t^8 + 1520*t^7 + 747*t^6 + 1065*t^5 + 340*t^4 +

1618*t^3 + 1669*t^2 + 1150*t + 1768) : 1)

That the rank equals 1 is not surprising; this point corresponds to the F1831-rational degree 8
divisor consisting of the sum of the 8 points we started with.
To determine the L-function of E one would normally have to count points over various extension
fields of F1831, in this case up to F18314 . This would be costly using current techniques. But since
Magma is able to determine the geometric Mordell–Weil lattice, it can compute the L-function by
simply considering the Galois action on points. Magma automatically uses this when asked for
the L-function:

> LFunction(E);
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-126330075128099803866555841*T^8 + 1

Example H123E5

In this example we determine the C(t)-rank of an elliptic curve, following [Klo07].

> K<t> := FunctionField(Rationals());

> E := EllipticCurve([-(2*t-1)^3*(4*t-1)^2, t*(2*t-1)^3*(4*t-1)^3]);

To determine where the surface has bad reduction we determine the primes at which singular
fibres collapse.

> &*BadPlaces(E);

(t^5 - 99/32*t^4 + 337/128*t^3 - 251/256*t^2 + 3/16*t - 1/64)/t

> Discriminant(Numerator($1));

-87887055375/4503599627370496

> Factorisation(Numerator($1));

[ <3, 15>, <5, 3>, <7, 2> ]

> Factorisation(Denominator($2));

[ <2, 52> ]

So 11 and 13 are the smallest primes of good reduction. We remark that in [Klo07] the primes 17
and 19 were used.

> K11<t11> := FunctionField(GF(11));

> E11 := ChangeRing(E,K11); // Reduce E mod 11

> LFunction(E11);

161051*T^5 - 7986*T^4 - 363*T^3 - 33*T^2 - 6*T + 1

> AnalyticInformation(E11);

<0, 1, 1>

> AnalyticInformation(E11, 2);

<1, 1, 35/2>

So modulo 11 the rank is 0, but over F112(t) the rank equals the geometric rank of 1, and the
height of a generator is congruent to 35

2
modulo Q2. From this it can be concluded that the

geometric rank in characteristic 0 is at most 1. As the L-function has odd degree 5 for any p of
good reduction, it will always have a zero at 1/p or −1/p and consequently the geometric rank
modulo p will always be at least 1. To determine what the geometric rank is in characteristic
zero, one can combine information at 2 different primes.

> K13<t13> := FunctionField(GF(13));

> E13 := ChangeRing(E, K13); // Redude E mod 13

> AnalyticInformation(E13);

<0, 1, 1>

> AnalyticInformation(E13,2);

<1, 1, 121/2>

So over F132(t) the rank equals the geometric rank of 1. The height of a generator is congruent
to 121

2
modulo Q2. As the quotient of the heights of generators in characteristics 11 and 13 is not

a square in Q, there cannot exist a Mordell–Weil group in characteristic zero that both modulo
11 and 13 reduces to a finite index subgroup of the Mordell–Weil group modulo p. Hence one can
conclude that the geometric Mordell–Weil rank in characteristic zero is zero.
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Example H123E6

In this example we calculate part of the L-function of an elliptic curve for which it is not feasible
to compute the L-function completely. The simplest way to compute an L-function is to call
LFunction, which counts points on the surface over certain constant field extensions. However, if
the required extension fields are too big then LFunction will not terminate. One can determine
the required extension degrees as follows.

> K<t> := FunctionField(GF(5));

> E := EllipticCurve([t^9+t^2, t^14+t^4+t^3]);

> h2 := BettiNumber(E, 2);

> N := FrobeniusActionOnTrivialLattice(E);

> [h2, h2 - NumberOfRows(N)];

[ 34, 21 ]

So the H2 has dimension 34, of which a 13-dimensional piece is generated by the trivial lattice
and a 21-dimensional piece is unknown. To determine the L-function one would have to at least
count points over F510 . As this is not feasible we will instead count points over extension degrees
up to 5 and print the first few coefficients of the L-function.

> nop := NumbersOfPointsOnSurface(E, 5);

> traces := [ nop[i] - 1 - 25^i - 5^i*Trace(N^i) : i in [1..5] ];

> CharacteristicPolynomialFromTraces(traces);

5750*T^5 + 875*T^4 - 40*T^3 - 40*T^2 + 1

123.11 Bibliography
[Klo07] Remke Kloosterman. Elliptic K3 surfaces with geometric Mordell-Weil rank 15.

Canadian Mathematical Bulletin, 50(2):215–226, 2007.
[Kra77] K. Kramer. Two-Descent for Elliptic Curves in Characteristic Two. Trans.

Amer. Math. Soc., 232:279–295, 1977.
[Rob07] David Roberts. Explicit Descent On Elliptic Curves Over Function Fields. PhD

thesis, University of Nottingham, 2007.





124 MODELS OF GENUS ONE CURVES
124.1 Introduction . . . . . . . 4095

124.2 Related Functionality . . . 4096

124.3 Creation of Genus One Models4096

GenusOneModel(n, seq) 4096
GenusOneModel(seq) 4096
GenusOneModel(n, str) 4096
GenusOneModel(C) 4096
GenusOneModel(f) 4096
GenusOneModel(seq) 4096
GenusOneModel(n, E) 4096
GenusOneModel(mat) 4097
GenusOneModel(mats) 4097
CompleteTheSquare(model) 4097
RandomGenusOneModel(n) 4097
RandomModel(n) 4097
GenericModel(n) 4097
ChangeRing(model, B) 4097
CubicFromPoint(E, P) 4097
HesseModel(n, seq) 4097
DiagonalModel(n, seq) 4097

124.4 Predicates on Genus One Mod-
els . . . . . . . . . . . . 4099

IsGenusOneModel(f) 4099
IsGenusOneModel(seq) 4099
IsGenusOneModel(mat) 4099
IsEquivalent(model1, model2) 4099
IsEquivalent(cubic1, cubic2) 4099

124.5 Access Functions . . . . . 4099

Degree(model) 4099
DefiningEquations(model) 4099
Equations(model) 4099
Matrix(model) 4099
Curve(model) 4100
HyperellipticCurve(model) 4100
QuadricIntersection(model) 4100
Matrices(model) 4100
BaseRing(model) 4100
PolynomialRing(model) 4100
Eltseq(model) 4100
ModelToString(model) 4100

124.6 Minimisation and Reduction 4100

Minimise(model : -) 4101
Minimise(f) 4101
pMinimise(f, p) 4101
Reduce(model) 4102

Reduce(f) 4102
ReduceQuadrics(seq) 4102

124.7 Genus One Models as Cover-
ings . . . . . . . . . . . 4102

Jacobian(model) 4103
Jacobian(C) 4103
nCovering(model : -) 4103
AddCubics(cubic1, cubic2 : -) 4103
AddCubics(model1, model2 : -) 4103
+ 4103
DoubleGenusOneModel(model) 4103
FourToTwoCovering(model : -) 4103
FourToTwoCovering(C : -) 4103

124.8 Families of Elliptic Curves
with Prescribed n-Torsion . 4104

RubinSilverbergPolynomials(n, J : -) 4104

124.9 Transformations between
Genus One Models . . . . 4104

IsTransformation(n, g) 4104
RandomTransformation(n : -) 4105
* 4105
ApplyTransformation(g, model) 4105
* 4105
ComposeTransformations(g1, g2) 4105
ScalingFactor(g) 4105

124.10 Invariants for Genus One Mod-
els . . . . . . . . . . . . 4105

aInvariants(model) 4105
bInvariants(model) 4105
cInvariants(model) 4105
Invariants(model) 4106
Discriminant(model) 4106
SL4Invariants(model) 4106

124.11 Covariants and Contravariants
for Genus One Models . . . 4106

Hessian(model) 4106
CoveringCovariants(model) 4106
Contravariants(model) 4106
HesseCovariants(model, r) 4106
HessePolynomials(n, r,

invariants : -) 4107

124.12 Examples . . . . . . . . . 4107

124.13 Bibliography . . . . . . . 4109





Chapter 124

MODELS OF GENUS ONE CURVES

124.1 Introduction

This chapter deals with curves of genus one that are given by equations in a particular
form. Most of the functionality involves invariant theory of these models and applications
of this theory to arithmetic problems concerning genus one curves over number fields.

Geometrically (viewed over an algebraically closed field), a genus one model of degree
n is an elliptic curve embedded in Pn−1 via the linear system |n.O|. In general, a genus
one model of degree n is a principal homogeneous space for an elliptic curve (of order
n in the Weil–Châtelet group) which is embedded in Pn−1 in an analogous way. Such
models are sometimes called genus one normal curves. Not every element of order n in
the Weil–Châtelet group admits such an embedding, although it does if it is everywhere
locally soluble.

Genus one models may be defined in Magma over any ring. The degree n can be 2,
3, 4, or 5. Genus one models have their own type in Magma: ModelG1, which is not a
subtype of any other type. In particular, these objects are not curves or even schemes.
The data that defines a genus one model is one of: a multivariate polynomial (for degree
2 or 3), a pair of multivariate polynomials (degree 4), or a matrix of linear forms (degree
5). Each of these are now described in detail.

A genus one model of degree 2 in Magma is defined either by a binary quartic g(x, z)
(referred to as a model without cross terms), or more generally by an equation y2 +
f(x, z)y − g(x, z) where f and g are homogeneous of degrees 2 and 4 and the variables
x, z, y are assigned weights 1, 1, 2 respectively. A binary quartic g(x, z) defines the same
model as the equation y2 − g(x, z). (The implicit map is the projection to P1

x,z, which in
this case is not an embedding but rather has degree 2.)

A genus one model of degree 3 in Magma is defined by a cubic form in 3 variables (in
other words, the equation of a projective plane cubic curve).

A genus one model of degree 4 in Magma is defined by a sequence of two homogeneous
polynomials of degree 2 in 4 variables. This represents an intersection of two quadric forms
in P3, and is the standard form in which Magma returns curves that are obtained by doing
FourDescent on an elliptic curve.

A genus one model of degree 5 in Magma is defined by a 5×5 alternating matrix whose
entries are linear forms in 5 variables. The associated subscheme of P4 is cut out by the
4 × 4 Pfaffians of the matrix. It is known that every genus one normal curve of degree 5
arises in this way.

Note: Degenerate cases are allowed, which means that the scheme associated to a genus
one model is not always a smooth curve of genus 1 (or even a curve).
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124.2 Related Functionality

Section 122.2.11, which concerns three descent on elliptic curves, is relevant for studying
rational points on plane cubics (genus one models of degree 3) over the rationals.

A very efficient point search for schemes is available; for details see Section 112.13.4.
This will find all rational points up to absolute height H on the curve associated to a given
genus one model in time O(H2/d), where d is the dimension of the ambient projective
space.

124.3 Creation of Genus One Models

GenusOneModel(n, seq)

GenusOneModel(seq)

GenusOneModel(n, str)

The genus one model of degree n (where n is 2, 3, 4, or 5) determined by the
coefficients in the given sequence or string. The coefficients may belong to any ring.

A sequence [a, b, c, d, e] of length 5 is interpreted as the degree 2 model ax4 +
bx3z + cx2z2 + dxz3 + ez4. A sequence [f, g, h, a, b, c, d, e] of length 8 is interpreted
as the degree 2 model y2 + y(fx2 + gxz+ hz2)− (ax4 + bx3z+ cx2z2 + dxz3 + ez4).

A sequence [a, b, c, d, e, f, g, h, i, j] of length 10 is interpreted as the degree 3
model ax3 + by3 + cz3 + dx2y + ex2z + fy2x+ gy2z + hz2x+ iz2y + jxyz.

Sequences of lengths 20 or 50 are interpreted as models of degree 4 or 5 re-
spectively; however, it is easier to create these by specifying matrices instead (see
below).

The sequence of coefficients can be recovered by calling Eltseq.

GenusOneModel(C)

A genus one model that represents the given curve C.
For degree 2, C should either be a subscheme of a weighted projective space

P(1, 1, 2), or a hyperelliptic curve. For degrees n = 3, 4, or 5, C should be a genus
one normal curve of degree n; in other words, a plane cubic for n = 3, an intersection
of two quadrics in P3 for n = 4, or an intersection of five quadrics in P4 for n = 5.

GenusOneModel(f)

GenusOneModel(seq)

The genus one model given by the polynomial f or the sequence of equations seq.

GenusOneModel(n, E)

A genus one model of degree n (where n is 2, 3, 4, or 5) representing the elliptic
curve E embedded in Pn−1 via the linear system |n.O|. Also returned are the image
of the embedding as a curve C together with the maps of schemes E → C and
C → E.
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GenusOneModel(mat)

The genus one model of degree 5 associated to the given 5× 5 matrix.

GenusOneModel(mats)

The genus one model of degree 4 determined by the given pair of 4 × 4 sym-
metric matrices in the sequence mats. (The matrices can be recovered by calling
ModelToMatrices).

CompleteTheSquare(model)

Given a genus one model of degree 2, returns a simplified genus one model of degree
2 without cross terms; this is computed by completing the square on the multivariate
polynomial defining the original model.

RandomGenusOneModel(n)

RandomModel(n)

Size RngIntElt Default :

A random genus one model of degree n, where n is 2, 3, 4, or 5.

GenericModel(n)

The generic genus one model of degree n, where n is 2, 3, 4 or 5. The coefficients
are indeterminates in a suitable polynomial ring.

ChangeRing(model, B)

The genus one model defined over the ring B obtained by coercing the coefficients
of the given genus one model into B.

CubicFromPoint(E, P)

The 3-covering corresponding to the rational point P on an elliptic curve E. The 3-
covering is returned as the equation of a projective plane cubic curve. Also returned
are the covering map and a point that maps to P under the covering map.

HesseModel(n, seq)

A genus one model of degree n invariant under the standard representation of the
Heisenberg group. The second argument should be a sequence of two ring elements.

DiagonalModel(n, seq)

A genus one model of degree n invariant under the diagonal action of µn. The
second argument should be a sequence of n ring elements.
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Example H124E1

We construct the genus one model of degree 5 obtained from the generic elliptic curve Ea,b : y2 =
x3 + ax + b over Q(a, b). The model is the image of Ea,b under the embedding in P4 given by the
linear system |5.O|.
> K<a,b> := FunctionField(Rationals(), 2);

> Eab := EllipticCurve([a, b]);

> model := GenusOneModel(5, Eab);

> model;

[ 0 -b*x1 - a*x2 x5 x4 x3]

[ b*x1 + a*x2 0 x4 x3 x2]

[ -x5 -x4 0 -x2 0]

[ -x4 -x3 x2 0 x1]

[ -x3 -x2 0 -x1 0]

From this matrix, which is the data storing the model, the equations of the curve in P4 can be
computed; they are quadratic forms given by the 4× 4 Pfaffians of the matrix.

> Equations(model);

[

-x1*x4 + x2^2,

x1*x5 - x2*x3,

b*x1^2 + a*x1*x2 + x2*x4 - x3^2,

-x2*x5 + x3*x4,

-b*x1*x2 - a*x2^2 + x3*x5 - x4^2

]

Note that the degree 5 model has the same invariants c4, c6, ∆ as Ea,b:

> Invariants(model);

-48*a

-864*b

-64*a^3 - 432*b^2

> cInvariants(Eab), Discriminant(Eab);

[

-48*a,

-864*b

]

-64*a^3 - 432*b^2
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124.4 Predicates on Genus One Models

IsGenusOneModel(f)

IsGenusOneModel(seq)

IsGenusOneModel(mat)

Returns true if and only if the given polynomial, sequence of polynomials, or matrix
determines a “genus one model” in the sense described in the introduction to this
chapter. When true, the model is also returned.

Important note: This does not imply that the associated scheme is a curve of
genus 1, as degenerate cases are allowed!

IsEquivalent(model1, model2)

IsEquivalent(cubic1, cubic2)

Return true if and only if the two given cubics (or genus one models of degree
3) are equivalent as genus one models. In other words, that there exists a linear
transformation of the ambient projective space P2

Q which takes one cubic to the
other, up to scaling. The algorithm is given in [Fis06].

When true, the transformation is also returned as a tuple (the syntax is explained
in Section 124.9, on transformations, below).

124.5 Access Functions

Degree(model)

The degree (2, 3, 4, or 5) of the given model.

DefiningEquations(model)

A sequence containing the equations by which the given genus one model (which
must have degree 2, 3, or 4) is defined.

Equations(model)

A sequence containing equations for the scheme associated to the given genus one
model (of any degree). For degree 2, 3, or 4 this is the same as DefiningEquations.

Matrix(model)

The defining matrix of a genus one model of degree 5.
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Curve(model)

HyperellipticCurve(model)

QuadricIntersection(model)

The curve associated to the given genus one model.
In the degree 2 case the curve is hyperelliptic of the form y2+f(x, z)y−g(x, z) =

0, but is only created explicitly as a hyperelliptic curve when HyperellipticCurve
is called; otherwise it is created as a general curve in a weighted projective space in
which the variables x, z, and y have weights 1, 1, and 2).

In the degree 4 case the curve is an intersection of two quadrics in P3.
An error results in degenerate cases where the equations of the model do not

define a curve

Matrices(model)

For a genus one model of degree 4 this function returns a sequence containing two
4× 4 symmetric matrices representing the quadrics.

BaseRing(model)

The coefficient ring of the given model.

PolynomialRing(model)

The polynomial ring used to define the model.

Eltseq(model)

ModelToString(model)

A sequence or string containing the coefficients of the defining data of the given
genus one model (which is either a polynomial, a pair of polynomials, or a matrix).
The model may be recovered by using GenusOneModel.

124.6 Minimisation and Reduction

This section contains functions for obtaining a simpler model of a given genus one curve.
We use the following terminology, which has become fairly standard. Here a model will

always mean a global integral model.
Minimisation refers to computing a model which is isomorphic to the original one (over

its ground field) but possibly not integrally equivalent. A model is minimal if it is locally
minimal at all primes; a model is locally minimal if the valuation of its discriminant is
as small as possible among all integral models. For locally solvable models this minimal
discriminant is equal to that of the associated elliptic curve.

Reduction refers to computing a model which is integrally equivalent to the original
one (meaning there exist transformations in both directions over the ring of integers of the
base field). Informally, a reduced model is one whose coefficients have small height. One
approach to formulating this precisely is to attach to each model an invariant in some
symmetric space: The model is then said to be reduced iff its invariant lies in some fixed
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fundamental domain. This idea is also the basis for algorithms used to obtain reduced
models.

The algorithms used for models of degree 2, 3, and 4 over Q are described in [CFS10].
For degree 5 it is necessary to use some different techniques developed by Fisher. For
models of degree 2 over number fields the algorithms use additional techniques developed
by Donnelly and Fisher.

Minimise(model : parameters)

Transformation BoolElt Default : true

CrossTerms BoolElt Default : false

UsePrimes SeqEnum Default : []
ClassGroupPrimes SeqEnum Default : []
Verbose Minimise Maximum : 3

Given a genus one model (of degree 2, 3, 4, or 5) with coefficients in Q, this returns
a minimal model in the sense described above.

It is also implemented for genus one models of degree 2 without cross terms, and
returns a model that is minimal among models without cross terms when this is
possible. When this is not possible (due to class group obstructions) it returns a
model that is nearly minimal, in the sense that the extra factor appearing in the
discriminant is chosen to have small norm. The primes dividing the extra factor
may be specified via the optional argument ClassGroupPrimes.

The transformation taking the original model to the minimal model is also re-
turned, unless the optional argument Transformation is set to false. (The syntax
for transformations is explained in Section 124.9).

For degree 2, when the optional argument CrossTerms is set to false then a
model without cross terms is returned that is minimal among models of this kind.

The third value returned is the set of primes where the minimal model has
positive level. These are the primes where the model is not soluble over Qnr

p , the
maximal non-ramified extension of Qp (except for p = 2 for models of degree 2 when
CrossTerms is false).

The degree 5 routine is not yet proven to work in all cases.

Minimise(f)

Given the equation f of a nonsingular projective plane cubic curve, this returns the
equation of a minimal model of the curve and a tuple specifying the transformation
(as explained in Section 124.9 below).

pMinimise(f, p)

Given the equation f of a nonsingular projective plane cubic curve, this function
returns a model of the curve which is minimal at p. Also returned is a matrix M
giving the transformation; up to scaling, the minimised cubic is the original cubic
evaluated at M [x, y, z]tr.
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Reduce(model)

Reduce(f)

Verbose Reduce Maximum : 3

Given a genus one model of degree 2, 3, or 4 over Q, this function computes a
reduced model in the sense described above.

The model may instead be described by the appropriate polynomial f , which
must be either a homogeneous polynomial that defines a genus one model of degree
2 or 3, or a univariate polynomial that defines a genus one model of degree 2 without
cross terms.

The transformation taking the original model to the reduced model is also re-
turned. (The syntax for transformations between genus one models is explained in
Section 124.9).

ReduceQuadrics(seq)

Verbose Reduce Maximum : 3

This function computes a reduced basis for the space spanned by the given quadrics
(which should be given as a sequence of homogeneous quadratic forms in variables
x1, . . . , xn). This means making a linear change of the homogeneous coordinates,
and also finding a new basis for the space of forms, with the aim of making the
resulting coefficients small. The second and third objects returned are matrices S
and T giving the transformation. The change of homogeneous coordinate variables
is given by S, while T specifies the change of basis of the space of forms. The
returned forms are therefore obtained by substituting [x1, . . . , xn].S for [x1, . . . , xn]
in the original forms, and then applying T to this basis of forms (where T acts from
the left).

The current implementation of this routine is not optimal; nevertheless it is
useful in some situations.

124.7 Genus One Models as Coverings

The curve defined by a genus one model of degree n is a principal homogeneous space for
some elliptic curve (namely the Jacobian of the curve). The data of the Jacobian, and the
covering map of degree n2, can be read from the invariants and covariants of the model.

Any two models with the same Jacobian can be added together as elements of the Weil–
Châtelet group. Below are functions for adding two models of degree 3, and for “doubling”
models of degree 4 or 5.

A related function for degree 3 models is ThreeSelmerElement (see Section 122.2.11).
For degree 4 models the maps can also be computed using AssociatedEllipticCurve and
AssociatedHyperellipticCurve from the package on four descent (see Section 122.2.9).
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Jacobian(model)

Jacobian(C)

The Jacobian, returned as an elliptic curve, of the given genus one model, or of the
curve C corresponding to a genus one model.

nCovering(model : parameters)

E CrvEll Default :

The covering map from the given genus one model to its Jacobian. Three values are
returned: the curve C of degree n corresponding to the given model, its Jacobian
as an elliptic curve E, and a map of schemes C → E.

If an elliptic curve E is given it must be isomorphic to the Jacobian and then
this curve will be the image of the map.

AddCubics(cubic1, cubic2 : parameters)

AddCubics(model1, model2 : parameters)

model1 + model2

E CrvEll Default :

ReturnBoth BoolElt Default : false

Given two ternary cubic polynomials, or two genus one models of degree 3, that
both have the same invariants, returns the sum of the corresponding elements of
H1(Q, E[3]).

An error results if the two cubics do not belong to the same elliptic curve E, See
Section 122.2.11 for more information about AddCubics.

DoubleGenusOneModel(model)

Given a genus one model of degree 4 or 5, this function computes twice the associated
element in the Weil–Châtelet group and returns this as a genus one model (which
will have degree 2 or 5, respectively).

FourToTwoCovering(model : parameters)

FourToTwoCovering(C : parameters)

C2 Crv Default :

Given a genus one model of degree 4 or an associated curve, this function returns
three values: the curve C4 in P3 corresponding to the model, a plane quartic curve
C2 representing twice the model in the Weil–Châtelet group, and the map of schemes
C4 → C2. Calling AssociatedHyperellipticCurve(Curve(model)) provides the
same information.
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124.8 Families of Elliptic Curves with Prescribed n-Torsion

In [RS95], Rubin and Silverberg explicitly construct families of elliptic curve over Q which
have the same Galois representation on the n-torsion subgroups as a given elliptic curve.

RubinSilverbergPolynomials(n, J : parameters)

Parameter RngElt Default :

Suppose that n = 2, 3, 4, or 5 and let E : y2 = x3 + ax+ b be an elliptic curve over
the rationals with j-invariant 1728J . This function returns polynomials α(t) and
β(t) that determine a family of elliptic curves with fixed n-torsion, in the following
sense: Every nonsingular member Ft of the family F : y2 = x3 + aα(t)x + bβ(t)
has Ft[n] isomorphic to E[n] as Z[G]-modules, where G is the absolute Galois group
of Q, and furthermore the isomorphisms between Ft[n] and E[n] preserve the Weil
pairing. When n is 3, 4, or 5, all such “n-congruent” curves belong to the same
family.

124.9 Transformations between Genus One Models

A transformation between two genus one models of degree n = 2, 3, 4, or 5 is a tuple
consisting of two elements. The second element is an n × n matrix determining a linear
transformation of the projective coordinates (acting on them from the right). The first
element is a “rescaling”, which is either a matrix or a scalar.

For degree 2 models q(x, z) without cross terms, or for degree 3 models, a transfor-
mation is a tuple 〈k, S〉, where k is an element of the coefficient ring; the transformed
model is obtained by making the substitution of coordinate variables determined by S and
multiplying the equation by k. For degree 2 models with cross terms a transformation is
a tuple 〈k, [A,B,C], S〉, where k and S are as above and in addition y+Ax2 +Bxz+Cz2

is substituted for y in the transformation. For degree 4, the first element is a 2× 2 matrix;
a model of degree 4 is given by two quadric equations, and the 2× 2 matrix determines a
change of basis of the quadrics (acting on them from the left). A transformation of degree
5 models is a tuple 〈T, S〉 where T and S are both 5× 5 matrices; a model of degree 5 is
given by a 5×5 matrix of linear forms M , and the transformed model is given by TMST

tr

where MS is obtained from M by making the substitution of coordinate variables specified
by S.

Two genus one models are said to be equivalent if they differ by one of these trans-
formations. Equivalent models have the same invariants up to scaling by the 4th and 6th
powers of some element, given by ScalingFactor.

IsTransformation(n, g)

Return true if and only if the tuple g represents a transformation between genus
one models of degree n.
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RandomTransformation(n : parameters)

Size RngIntElt Default : 5
Unimodular BoolElt Default : false

CrossTerms BoolElt Default : false

A tuple that represents a random transformation between genus one models of degree
n. When Unimodular is set to true then the returned transformation is integrally
invertible.

The optional parameter Size is passed to RandomSL or RandomGL.
In degree 2, if CrossTerms is false then the returned transformation preserves

the set of models with no cross terms.

g * model

ApplyTransformation(g, model)

The result of applying the transformation g to the second argument, which should
be a genus one model.

g1 * g2

ComposeTransformations(g1, g2)

The composition g1 ∗ g2 of two transformations of genus one models. Transforma-
tions of genus one models act on the left, so (g1 ∗ g2) ∗ f = g1 ∗ (g2 ∗ f).

ScalingFactor(g)

The scaling factor of a transformation g between genus one models is an element λ
such that if a genus one model has invariants c4 and c6 then the transformed model
has invariants λ4c4 and λ6c6.

124.10 Invariants for Genus One Models

aInvariants(model)

The invariants [a1, a2, a3, a4, a6] of the given genus one model which must have
degree 2, 3, or 4. The formulae in the degree 3 case come from [ARVT05].

bInvariants(model)

The invariants [b2, b4, b6, b8] of the given genus one model which must have degree
2, 3, or 4. These are computed from the aInvariants in the standard way (as for
elliptic curves).

cInvariants(model)

The invariants [c4, c6] of the given genus one model. For n = 2, 3, or 4 these are
the classical invariants, as can be found in [AKM+01]. For n = 5 the algorithm is
described in [Fis08].
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Invariants(model)

The invariants c4, c6 and ∆ (the discriminant) of the given genus one model.

Discriminant(model)

The discriminant ∆ of the given genus one model.

SL4Invariants(model)

The SL4-invariants of a genus one model of degree 4.

124.11 Covariants and Contravariants for Genus One Models

The functions in this section implement the invariant theory developed in [Fis].

Hessian(model)

We write Xn for the (affine) space of genus one models of degree n. The module
of covariants Xn → Xn is a free module of rank 2 over the ring of invariants. The
generators are the identity map and a second covariant which we term the Hessian.
(In the cases where n = 2 or 3 this is the determinant of a matrix of second partial
derivatives.) This function evaluates the Hessian of the given genus one model.

CoveringCovariants(model)

The covariants that define the covering map from the given genus one model to its
Jacobian (this is the same as the defining equations of the nCovering).

Contravariants(model)

We write Xn for the (affine) space of genus one models of degree n, and X∗
n for

its dual. The module of contravariants Xn → X∗
n is a free module of rank 2 over

the ring of invariants. This function evaluates the generators P and Q at the given
genus one model.

HesseCovariants(model, r)

Evaluates a pair of covariants, which depend on an integer r, at the genus one model
of degree prime to r. The pencil spanned by these genus one models is a family of
genus one curves invariant under the same representation of the Heisenberg group.
(In other words, the universal family above a twist of X(n).)

If r ≡ 1 (mod n) then the covariants evaluated are the identity map and the
Hessian. If r ≡ −1 (mod n) then the covariants evaluated are the contravariants.
If n = 5 there are two further possibilities. We identify X5 = ∧2V ⊗W where V
and W are 5-dimensional vector spaces. Then the covariants evaluated for r ≡ 2, 3
(mod 5) take values in ∧2W ⊗ V ∗ and ∧2W ∗ ⊗ V respectively.



Ch. 124 MODELS OF GENUS ONE CURVES 4107

HessePolynomials(n, r, invariants : parameters)

Variables [ RngMPolElt ] Default :

The Hesse polynomials D(x, y), c4(x, y), c6(x, y). These polynomials give the in-
variants for the pencil of genus one models computed by HesseCovariants. The
RubinSilverbergPolynomials are closely related to these formulae in the case r ≡ 1
(mod n).

124.12 Examples

Example H124E2

We find a cubic which is a counterexample to the Hasse principle. The approach involves the idea
of “visibility” of Tate–Shafarevich elements, which was introduced by Mazur (see [CM00]).
The cubic will be a nontrivial element of the Tate–Shafarevich group of the curve 4343B1 in
Cremona’s tables, which we call E. The cubic will be obtained from a rational point on an
auxiliary elliptic curve F .
First, we compute that E has rank 0, and F has rank 1:

> E := EllipticCurve([ 0, 0, 1, -325259, -71398995 ]);

> F := EllipticCurve([ 1, -1, 1, -24545, 1486216 ]);

> CremonaReference(E);

4343b1

> RankBounds(E);

0 0

> RankBounds(F);

1 1

We take a plane cubic representing one of the nontrivial elements in the 3-Selmer group of F ,
which has order 3, so that its elements are all in the image of F (Q) since F (Q) has rank 1:

> SetClassGroupBounds(500);

> #ThreeSelmerGroup(F);

3

> coverings := ThreeDescent(F);

> coverings;

[

Curve over Rational Field defined by

-3*x^2*z - 3*x*y^2 - 27*x*y*z + 12*x*z^2 + 2*y^3 + 21*y^2*z + 3*y*z^2 - 4*z^3

]

> C := Equation(coverings[1]);

We now try to find a linear combination of C and its Hessian (which is also a plane cubic) that
has j-invariant equal to the j-invariant of E. To find the right linear combination we may work
geometrically (that is, with F instead of C since they are isomorphic over Q). We work with the
family tF + H where t is an indeterminate.

> B<t> := PolynomialRing(Rationals());

> F_BR := ChangeRing(Parent(Equation(F)), B);
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> F_B := F_BR ! Equation(F);

> H_B := Hessian(F_B);

> c4,c6,Delta := Invariants(t*F_B + H_B);

Alternatively we could get these invariants as follows:

> D,c4,c6 := HessePolynomials(3, 1, cInvariants(F) : Variables := [t, 1] );

> Delta := Discriminant(F)*D^3;

// Solve c4(t)^3/Delta(t) = j(E) for t:

> jpoly := c4^3 - jInvariant(E)*Delta;

> Roots(jpoly);

[ <7479/7, 1> ]

So we take the following linear combination (and replace the equation by a nicer equation):

> C2raw := 7479/7*C + Hessian(C);

> C2 := Reduce(Minimise(C2raw));

> C2;

7*x^3 + 7*x^2*y + 3*x^2*z - 4*x*y^2 - 30*x*y*z + 12*x*z^2 - 13*y^3 - 2*y^2*z -

15*y*z^2 - 17*z^3

The Jacobian of C2 is E, so C2 is a principal homogeneous space for E of index 3, and in fact it
is everywhere locally soluble:

> IsIsomorphic(Jacobian(C2), E);

true

> PrimeDivisors(Integers()!Discriminant(GenusOneModel(C2)));

[ 43, 101 ]

> C2_crv := Curve(ProjectiveSpace(Parent(C2)), C2);

> IsLocallySolvable(C2_crv, 43);

true (7 + O(43) : 1 + O(43^50) : O(43))

> IsLocallySolvable(C2_crv, 101);

true (1 + O(101^50) : 32 + O(101) : 1 + O(101))

// Find the preimage of the covering map C2 -> E:

> _, _, maptoE := nCovering(GenusOneModel(C2) : E := E);

> preimage := Pullback(maptoE, E!0);

> Points(preimage); // Q-rational points

{@ @}

> TorsionSubgroup(E);

Abelian Group of order 1

We conclude that C2 has no rational points since, as E(Q) is trivial, any rational points on C2
must map to OE .
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Chapter 125

HYPERELLIPTIC CURVES

125.1 Introduction
This chapter contains descriptions of functions designed to perform calculations with

hyperelliptic curves and their Jacobians. A hyperelliptic curve, which is taken to include
the genus one case, is given by a nonsingular generalized Weierstrass equation

y2 + h(x)y = f(x),

where h(x) and f(x) are polynomials over a field K. The curve is viewed as embedded in
a weighted projective space, with weights 1, g + 1, and 1, in which the points at infinity
are nonsingular.

Functionality for hyperelliptic curves includes optimized algorithms for working on
genus two curves over Q, including heights on the Jacobian, and a datatype for the Kummer
surface of the Jacobian. For Jacobians of curves over finite fields, there exist specialized
algorithms for computing the group structure of the set of rational points.

The category of hyperelliptic curves is CrvHyp and points on curves are of type PtHyp.
Jacobians of hyperelliptic curves are of type JacHyp and points JacHypPt. Similarly, the
Kummer surface of a genus two curve is of type SrfKum with points of type SrfKumPt.

The initial development of machinery for hyperelliptic curves was undertaken by
Michael Stoll, supported by members of the Magma group.

125.2 Creation Functions

125.2.1 Creation of a Hyperelliptic Curve
A hyperelliptic curve C given by a generalized Weierstrass equation y2 + h(x)y = f(x) is
created by specifying polynomials h(x) and f(x) over a field K. The class of hyperelliptic
curves includes curves of genus one, and a hyperelliptic curve may also be constructed by
type change from an elliptic curve E. Note that the ambient space of C is a weighted
projective space in which the one or two points at infinity are nonsingular.

HyperellipticCurve(f, h)

HyperellipticCurve(f)

HyperellipticCurve([f, h])

Given two polynomials h and f ∈ R[x] where R is a field or integral domain, this
function returns the nonsingular hyperelliptic curve C : y2 + h(x)y = f(x). If h(x)
is not given, then it is taken as zero. If R is an integral domain rather than a field,
the base field of the curve is taken to be the field of fractions of R. An error is
returned if the given curve C is singular.
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HyperellipticCurve(P, f, h)

Create the hyperelliptic curve as described above using the projective space P as
the ambient. The ambient P should have dimension 2.

HyperellipticCurveOfGenus(g, f, h)

HyperellipticCurveOfGenus(g, f)

HyperellipticCurveOfGenus(g, [f, h])

Given a positive integer g and two polynomials h and f ∈ R[x] where R is a field or
integral domain, this function returns the nonsingular hyperelliptic curve of genus
g given by C : y2 + h(x)y = f(x). If h(x) is not given, then it is taken as zero.
Before attempting to create C, the function checks that its genus will be g by testing
various numerical conditions on f and g. If the genus is not correct, a runtime error
is raised. If R is an integral domain rather than a field, the base field of C is taken
to be the field of fractions of R. An error is returned if the curve C is singular.

HyperellipticCurve(E)

Returns the hyperelliptic curve C corresponding to the elliptic curve E, followed by
the map from E to C.

125.2.2 Creation Predicates

IsHyperellipticCurve([f, h])

Given a sequence containing two polynomials h, f ∈ R[x], where R is an integral
domain, return true if and only if C : y2 +h(x)y = f(x) is a hyperelliptic curve. In
this case, the curve is returned as a second value.

IsHyperellipticCurveOfGenus(g, [f, h])

Given a positive integer g and a sequence containing two polynomials h, f ∈ R[x]
where R is an integral domain, return true if and only if C : y2 + h(x)y = f(x) is a
hyperelliptic curve of genus g. In this case, the curve is returned as a second value.

Example H125E1

Create a hyperelliptic curve over the rationals:

> P<x> := PolynomialRing(RationalField());

> C := HyperellipticCurve(x^6+x^2+1);

> C;

Hyperelliptic Curve defined by y^2 = x^6 + x^2 + 1 over Rational Field

> C![0,1,1];

(0 : 1 : 1)

Now create the same curve over a finite field:

> P<x> := PolynomialRing(GF(7));

> C := HyperellipticCurve(x^6+x^2+1);
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> C;

Hyperelliptic Curve defined by y^2 = x^6 + x^2 + 1 over GF(7)

> C![0,1,1];

(0 : 1 : 1)

125.2.3 Changing the Base Ring

BaseChange(C, K)

BaseExtend(C, K)

Given a hyperelliptic curve C defined over a field k, and a field K which is an
extension of k, return a hyperelliptic curve C ′ over K using the natural inclusion of
k in K to map the coefficients of C into elements of K.

BaseChange(C, j)

BaseExtend(C, j)

Given a hyperelliptic curve C defined over a field k and a ring map j : k → K,
return a hyperelliptic curve C ′ over K by applying j to the coefficients of E.

BaseChange(C, n)

BaseExtend(C, n)

If C is a hyperelliptic curve defined over a finite field k and a positive integer n, let
K denote the extension of k of degree n. This function returns a hyperelliptic curve
C ′ over K using the natural inclusion of k in K to map the coefficients of C into
elements of K.

ChangeRing(C, K)

Given a hyperelliptic curve C defined over a field k, and a field K, return a hyper-
elliptic curve C ′ over K that is obtained from C by by mapping the coefficients of
C into K using the standard coercion map from k to K. This is useful when there
is no appropriate ring homomorphism between k and K (e.g., when k = Q and K
is a finite field).
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Example H125E2

We construct a curve C over the rationals and use ChangeRing to construct the corresponding
curve C1 over GF (101).

> P<x> := PolynomialRing(RationalField());

> C := HyperellipticCurve([x^9-x^2+57,x+1]);

> C1 := ChangeRing(C, GF(101));

> C1;

Hyperelliptic Curve defined by y^2 + (x + 1)*y = x^9 + 100*x^2 + 57

over GF(101)

> Q<t> := PolynomialRing(GF(101));

> HyperellipticPolynomials(C1);

t^9 + 100*t^2 + 57

t + 1

> C2, f := SimplifiedModel(C1);

> HyperellipticPolynomials(C2);

4*t^9 + 98*t^2 + 2*t + 27

0

> P1 := C1![31,30,1];

> P1;

(31 : 30 : 1)

> Q := P1@f; // evaluation

> Q;

(31 : 92 : 1)

> Q@@f; // pullback

(31 : 30 : 1)

An explanation of the syntax for isomorphisms of hyperelliptic curves and the functions for models
is given below.

125.2.4 Models

SimplifiedModel(C)

Given a hyperelliptic curve C defined over a field of characteristic not equal to 2,
this function returns an isomorphic hyperelliptic curve C ′ of the form y2 = f(x),
followed by the isomorphism C → C ′.

HasOddDegreeModel(C)

Given a hyperelliptic curve C, this function returns true if C has a model C ′ of
the form y2 = f(x), with f of odd degree. If so, C ′ is returned together with the
isomorphism C → C ′.
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IntegralModel(C)

Reduce BoolElt Default : false

Given a hyperelliptic curve C defined over the rationals, this function returns an
isomorphic curve C ′ given by polynomials with integral coefficients, together with
the isomorphism C → C ′. If Reduce is set true, common divisors of the coefficients
are eliminated as far as possible.

MinimalWeierstrassModel(C)

Bound RngIntElt Default : 0

Verbose CrvHypMinimal Maximum : 3

Given a hyperelliptic curve C defined over the rationals, this function returns a
globally minimal Weierstrass model C ′ of C. If Bound is set, it gives an upper
bound for the bad primes that are checked. As this calculation uses trial division,
Bound should not be set much larger than 107. The isomorphism C → C ′ is returned
as a second value.

pIntegralModel(C, p)

Verbose CrvHypMinimal Maximum : 3

Given a hyperelliptic curve C defined over Q or a rational function field, this function
returns a model C ′ of the curve that is integral at the place p given as an integer,
rational, polynomial, rational function or ∞. The isomorphism C → C ′ is returned
as a second value.

pNormalModel(C, p)

Verbose CrvHypMinimal Maximum : 3

Given a hyperelliptic curve C defined over Q or a rational function field, this function
returns a model C ′ of the curve that is normal at the place p given as an integer,
rational, polynomial, rational function or ∞. The isomorphism C → C ′ is returned
as a second value.

pMinimalWeierstrassModel(C, p)

Verbose CrvHypMinimal Maximum : 3

Given a hyperelliptic curve C defined over Q or a rational function field, this function
returns a Weierstrass model C ′ of the curve that is minimal at the place p given as
an integer, rational, polynomial, rational function or ∞. The isomorphism C → C ′

is returned as a second value.



4120 ARITHMETIC GEOMETRY Part XVII

ReducedModel(C)

Simple BoolElt Default : false

Al MonStgElt Default : “Stoll”
Verbose CrvHypReduce Maximum : 3

Given a hyperelliptic curve C with integral coefficients, this computes a reduced
model C ′. If the Stoll algorithm is used (default) then the curve argument must have
integral coefficients and reduction is performed with respect to the action of SL2(Z)
on the (x, z)-coordinates. If the Wamelen algorithm is used, (Al := "Wamelen"),
the curve must have genus 2. The isomorphism C → C ′ is currently returned only
for the algorithm of Stoll.

ReducedMinimalWeierstrassModel(C)

Simple BoolElt Default : false

Verbose CrvHypMinimal Maximum : 3
Verbose CrvHypReduce Maximum : 3

Given a hyperelliptic curve C defined over the rationals, this function returns a
globally minimal integral Weierstrass model C ′ of C that is reduced with respect to
the action of SL2(Z), using Stoll’s algorithm in ReducedModel. The isomorphism
C → C ′ is returned as a second value.

SetVerbose("CrvHypReduce", v)

This sets the verbose printing level for the curve reduction algorithms of Stoll and
Wamelen. The second argument can take integral values in the interval [0, 3], or
boolean values: false (equivalent to 0) and true (equivalent to 1).

125.2.5 Predicates on Models

IsSimplifiedModel(C)

Returns true if the hyperelliptic curve C is of the form y2 = f(x).

IsIntegral(C)

Given a hyperelliptic curve C, the function returns true if C has integral coefficients,
and false otherwise.

IspIntegral(C, p)

Given a hyperelliptic curve C defined over Q or a rational function field, this function
returns true if the given model of C is integral at the given place.

IspNormal(C, p)

Given a hyperelliptic curve C defined over Q or a rational function field, this function
returns true if the given model of C is normal at the given place.
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IspMinimal(C, p)

Given a hyperelliptic curve C defined over Q or a rational function field, this function
decides whether the given model of C is minimal at the given place. The returned
values as follows:
• false, false if C is not an integral minimal model at the given place.
• true, false if C is integral and minimal at the given place, but not the unique

minimal model (up to transformations that are invertible over the local ring).
• true, false if C is the unique integral minimal model at the given place, (up to

transformations that are invertible over the local ring).

125.2.6 Twisting Hyperelliptic Curves
There are standard functions for quadratic twists of hyperelliptic curves in characteristic
not equal to 2. In addition, from the new package of Lercier and Ritzenthaler (described
in more detail in the next section) there are functions to return all twists of a genus 2
hyperelliptic curve over a finite field of any characteristic.

QuadraticTwist(C, d)

Given a hyperelliptic curve C defined over a field k of characteristic not equal to 2
and an element d that is coercible into k, return the quadratic twist of C by d.

QuadraticTwist(C)

Given a hyperelliptic curve C defined over a finite field k, return the standard
quadratic twist of C over the unique extension of k of degree 2. If the characteristic
of k is odd, then this is the same as the twist of C by a primitive element of k.

QuadraticTwists(C)

Given a hyperelliptic curve C defined over a finite field k of odd characteristic, return
a sequence containing the non-isomorphic quadratic twists of C.

IsQuadraticTwist(C, D)

Verbose CrvHypIso Maximum : 3
Given hyperelliptic curves C and D over a common field k having characteristic not
equal to two, return true if and only if C is a quadratic twist of D over k. If so,
the twisting factor is returned as the second value.

Twists(C)

For C a genus 2 or 3 hyperelliptic curve over a finite field k, returns the sequence of
all twists of C (ie, a set of representatives of all isomorphism classes of curves over
k isomorphic to C over k̄) along with the abstract geometric automorphism group
of C (and all of its twists) as a permutation group.

For genus 2, k can be any characteristic. For genus 3, the characteristic of k
must be at least 11 and the model of C of the form y2 = f(x).
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There is also a version where the argument is GI, the sequence of Cardona-Quer-
Nart-Pujola invariants of a genus 2 curve over a finite field (see Section 125.3.2)
which returns the full set of isomorphism classes (twists) of curves over k with the
given invariants.

These functions are part of the package contributed by Lercier and Ritzenthaler
which is more fully described in the Igusa invariants section.

HyperellipticPolynomialsFromShiodaInvariants(JI)

Computes and returns all twists of a genus 3 hyperelliptic curve and its geometric
automorphism group corresponding to a sequence of Shioda invariants JI (see Sec-
tion 125.3.3) over a finite field of characteristic at least 11. In fact the first return
value is a sequence of polynomials f(x) of degree 7 or 8 such that the twisted curves
correspond to y2 = f(x). The reason for this is that JI could be a singular set
of invariants corresponding to polynomials f with discriminant zero. In that case,
these do not correspond to hyperelliptic curves, but it might be useful to get the
full set of twists anyway.

This function comes from the genus 3 package contributed by Lercier and Ritzen-
thaler.

Example H125E3

We construct the quadratic twists of the hyperelliptic curve y2 = x6 + x2 + 1 defined over F7.

> P<x> := PolynomialRing(GF(7));

> C := HyperellipticCurve(x^6+x^2+1);

> QuadraticTwists(C);

[

Hyperelliptic Curve defined by y^2 = x^6 + x^2 + 1 over GF(7),

Hyperelliptic Curve defined by y^2 = 3*x^6 + 3*x^2 + 3 over GF(7)

]

> IsIsomorphic($1[1],$1[2]);

false

Example H125E4

We take a hyperelliptic curve over the rationals and form a quadratic twist of it.

> P<x> := PolynomialRing(Rationals());

> C := HyperellipticCurve(x^6+x);

> C7 := QuadraticTwist(C, 7);

> C7;

Hyperelliptic Curve defined by y^2 = 7*x^6 + 7*x over Rational Field

We now use the function IsIsomorphic to verify that C and C7 are nonisomorphic. We then extend
the field of definition of both curves to Q(

√
7) and verify that the curves become isomorphic over

this extension.

> IsIsomorphic(C, C7);
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false

> K<w> := ext< Rationals() | x^2-7 >;

> CK := BaseChange(C, K);

> C7K := BaseChange(C7, K);

> IsIsomorphic(CK, C7K);

true (x : y : z) :-> (x : -1/7*w*y : z)

Example H125E5

We find all the twists of a supersingular genus 2 curve over F2.

> P<x> := PolynomialRing(GF(2));

> C := HyperellipticCurve(x^5,P!1);

> C;

Hyperelliptic Curve defined by y^2 + y = x^5 over GF(2)

> tws,auts := Twists(C);

> tws;

[

Hyperelliptic Curve defined by y^2 + y = x^5 over GF(2),

Hyperelliptic Curve defined by y^2 + y = x^5 + x^4 over GF(2),

Hyperelliptic Curve defined by y^2 + y = x^5 + x^4 + 1 over GF(2)

]

> #auts; // auts is the geometric automorphism group of C

160

125.2.7 Type Change Predicates

IsEllipticCurve(C)

The function returns true if and only if C is a genus one hyperelliptic curve of odd
degree, in which case it also returns an elliptic curve E isomorphic to C followed by
the isomorphism C → E and the inverse isomorphism E → C.

125.3 Operations on Curves
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125.3.1 Elementary Invariants

HyperellipticPolynomials(C)

The univariate polynomials f(x), h(x), in that order, defining the hyperelliptic curve
C by y2 + h(x)y = f(x).

Degree(C)

The degree of the hyperelliptic curve C or a pointset C of a hyperelliptic curve.

Discriminant(C)

The discriminant of the hyperelliptic curve C.

Genus(C)

The genus of the hyperelliptic curve C.

125.3.2 Igusa Invariants
The Clebsch, Igusa–Clebsch and Igusa invariants may be computed for curves of genus 2.

The Magma package implementing the functions was written by Everett W. Howe
(however@alumni.caltech.edu) with some advice from Michael Stoll and is based on
some gp routines written by Fernando Rodriguez–Villegas as part of the Computational
Number Theory project funded by a TARP grant. The gp routines may be found at
http://www.ma.utexas.edu/users/villegas/cnt/inv.gp.

In addition, a package of functions written by Reynald Lercier and Christophe Ritzen-
thaler has been added which contains, amongst other things, functionality for working
with a different set of absolute (as opposed to weighted projective) invariants referred to
as Cardona-Quer-Nart-Pujola invariants. These work in characteristic 2 as well as other
characteristics, although the definitions are different in the two cases.

Rodriguez–Villegas’s routines are based on a paper of Mestre [Mes91]. The first part
of Mestre’s paper summarizes work of Clebsch and Igusa, and is based on the classical
theory of invariants. This package contains functions to compute three types of invariants
of quintic and sextic polynomials f (or, perhaps more accurately, of binary sextic forms):
• The Clebsch invariants A, B, C, D of f , as defined on p. 317 of Mestre;
• The Igusa–Clebsch invariants A′, B′, C ′, D′ of f , as defined on p. 319 of Mestre; and
• The Igusa invariants (or Igusa J-invariants, or J-invariants) J2, J4, J6, J8, J10 of f , as

defined on p. 324 of Mestre.
The corresponding functions are ClebschInvariants, IgusaClebschInvariants, and

JInvariants, respectively. For convenience, we use IgusaInvariants as a synonym for
JInvariants.

Igusa invariants may be defined for a curve of genus 2 over any field and for polynomials
of degree at most 6 over fields of characteristic not equal to 2. The Igusa invariants of the
curve y2 + hy = f are equal to the Igusa invariants of the polynomial h2 + 4 ∗ f except
in characteristic 2, where the latter are not defined. In practice, the functions below will
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not calculate the Igusa invariants of a polynomial unless 2 is a unit in the coefficient ring.
However, Igusa invariants of curves are available for all coefficient rings. (But see below.)

Igusa invariants are given by a sequence [J2, J4, J6, J8, J10] of five elements of the coef-
ficient ring of the polynomials defining the curve. This sequence should be thought of as
living in weighted projective space, with weights 2, 4, 6, 8, and 10.

It should be noted that many of the people who work with genus 2 curves over the
complex numbers prefer not to work with the real Igusa invariants, but rather work with
some related numbers, [I2, I4, I6, I10] (or [A′, B′, C ′, D′] in Mestre’s terminology), that we
call the Igusa–Clebsch invariants, of the curve. Once again, these live in weighted projective
space. The Igusa–Clebsch invariants of a polynomial are defined in terms of certain nice
symmetric polynomials in its roots, and, in characteristic zero, the J-invariants may be
obtained from the I-invariants by some simple homogeneous transformations. In fact, many
of the genus-2-curves-over-the-complex-numbers people refer to the elements i1 := I5

2/I10,
i2 := I3

2 ∗ I4/I10 and i3 := I2
2 ∗ I6/I10 as the “invariants” of the curve. The problem with

the Igusa–Clebsch invariants is that they do not work in characteristic 2 and it was for
this reason that Igusa defined his J-invariants.

The coefficient ring of the polynomial f must be an algebra over a field of characteristic
not equal to 2 or 3.

The Cardona-Quer-Nart-Pujola invariants are three absolute invariants g1, g2, g3 which
can be derived from the J-invariants and which provide an affine classification of all genus
two curves over a basefield k up to isomorphism over k̄. That is, there is a 1-1 correspon-
dence between k̄-isomorphism classes of such curves and triples (g1, g2, g3) in k3. There
are also functions to construct a curve with given invariants and to find all twists of such
a curve (ie representatives of the k-isomorphism classes in the given k̄-isomorphism class),
which will be described in later sections.

The invariants are different in the characteristic 2 and odd (or 0) characteristic cases.
Details about the former case may be found in [CNP05]. See [CQ05] for the latter case.
In the odd characteristic case, the formulae for [g1, g2, g3] in terms of the J-invariants are
as follows:

[
J5

2

J10
,
J3

2J4

J10
,
J2

2J6

J10
] J2 6= 0

[0,
J5

4

J2
10

,
J4J6

J10
] J2 = 0, J4 6= 0

[0, 0,
J5

6

J2
10

] J2 = J4 = 0

In the characteristic 2 case, the field k must be perfect. Formulae for the invariants
(labelled ji rather than gi) may be found on p. 191 of [CNP05].

ClebschInvariants(C)
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Given a hyperelliptic curve C having genus 2, compute the Clebsch invariants A,
B, C and D as described on p. 317 of [Mes91]. The base field of C may not have
characteristic 2, 3 or 5. The invariants are found using Überschiebungen.

ClebschInvariants(f)

Given a polynomial f of degree at most 6, compute the Clebsch invariants A, B, C
and D as described on p. 317 of [Mes91]. The coefficient ring of the polynomial f
must be an algebra over a field of characteristic not equal to 2, 3 or 5. The invariants
are found using Überschiebungen.

IgusaClebschInvariants(C: parameters)

Quick BoolElt Default : false

Given a curve C of genus 2 defined over a field, the Igusa–Clebsch invariants A′, B′,
C ′ and D′ as described on p. 319 of [Mes91] are found. These will be all be zero in
characteristic 2. If Quick is true, the base field of C may not have characteristic 2,
3 or 5 and a faster method using Überschiebungen is employed; otherwise, universal
formulae are used.

IgusaClebschInvariants(f, h)

Given a polynomial h having degree at most 3 and a polynomial f having degree at
most 6, the Igusa–Clebsch invariants A′, B′, C ′ and D′ of the curve y2 +hy− f = 0
are found. These will be all be zero in characteristic 2.

IgusaClebschInvariants(f: parameters)

Quick BoolElt Default : false

Given a polynomial f having degree at most 6 and defined over a ring in which 2 is a
unit, the Igusa–Clebsch invariants A′, B′, C ′ and D′ of the polynomial f are found.
These will be all be zero in characteristic 2. If Quick is true, the coefficient ring of
f may not have characteristic 2, 3 or 5 and a faster method using Überschiebungen
is employed; otherwise, universal formulae are used.

IgusaInvariants(C: parameters)

JInvariants(C: parameters)

Quick BoolElt Default : false

Given a curve C of genus 2 defined over a field, the function returns the Igusa
invariants (or J-invariants) J2, J4, J6, J8, J10 as described on p. 324 of [Mes91]. If
Quick is true, the base field of C may not have characteristic 2, 3 or 5 and a faster
method using Überschiebungen is employed; otherwise, universal formulae are used.
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IgusaInvariants(f, h)

JInvariants(f, h)

Given a polynomial h having degree at most 3 and a polynomial f having degree at
most 6, this function returns the Igusa invariants (or J-invariants) J2, J4, J6, J8, J10

of the curve y2 + hy = f . The coefficient ring R of the polynomials h and f must
either (a) have characteristic 2, or (b) be a ring in which Magma can apply the
operator ExactQuotient(n,2). For example, R may be an arbitrary field, the ring
of rational integers, a polynomial ring over a field or over the integers and so forth.
However, R may not be a p-adic ring, for instance. If the desired coefficient ring
does not meet either condition (a) or condition (b), then ScaledIgusaInvariants
should be used and its invariants then scaled by the appropriate powers of 1

2 .

IgusaInvariants(f: parameters)

JInvariants(f: parameters)

Quick BoolElt Default : false

Given a polynomial f having degree at most 6 which is defined over a ring in which
2 is a unit, return the Igusa invariants (or J-invariants) J2, J4, J6, J8, J10 of f . If
Quick is true, the coefficient ring of f may not have characteristic 2, 3 or 5 and
a faster method using Überschiebungen is employed; otherwise, universal formulae
are used.

ScaledIgusaInvariants(f, h)

Given a polynomial h having degree at most 3 and a polynomial f having de-
gree at most 6, return the Igusa J-invariants of the curve y2 + hy = f , scaled by
[16, 162, 163, 164, 165].

ScaledIgusaInvariants(f)

Given a polynomial f having degree at most 6 which is defined over a ring not of
characteristic 2, return the Igusa J-invariants of f , scaled by [16, 162, 163, 164, 165].

AbsoluteInvariants(C)

Given a curve C of genus 2 defined over a field, the function computes the ten
absolute invariants of C as described on p. 325 of [Mes91].

ClebschToIgusaClebsch(Q)

Convert Clebsch invariants in the sequence Q to Igusa–Clebsch invariants.

IgusaClebschToIgusa(S)

Convert Igusa–Clebsch invariants in the sequence S to Clebsch invariants.

G2Invariants(C)

Compute and return the sequence of three Cardona-Quer-Nart-Pujola invariants
(see the introduction above) for C of genus 2.
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G2ToIgusaInvariants(GI)

Convert the sequence of Cardona-Quer-Nart-Pujola invariants (see the introduction
above) to a corresponding sequence of Igusa J-invariants.

IgusaToG2Invariants(JI)

Convert the sequence of Igusa J-invariants to Cardona-Quer-Nart-Pujola invariants
(see the introduction above).

125.3.3 Shioda Invariants
The Shioda invariants may be computed for curves of genus 3 in characteristic 0 or char-
acteristic ≥ 11. There are 9 of these, the first 6 being algebraically independent and the
last 3 being algebraic over the field generated by the other 6. The discriminant is not
one of these invariants. For more details, see [LR12] or [Shi67]. These invariants have
weights and naturally give a point in a weighted projective space. There are also intrinsic
for computing the 6 Maeda invariants of the curve ([Mae90]).

This functionality comes from a package contributed by Lercier and Ritzenthaler.

ShiodaInvariants(C)

normalize BoolElt Default : false

Returns a sequence containing the 9 Shioda invariants of a genus 3 hyperelliptic
curve C along with a sequence containing the weight of the corresponding invariant
(always 2, 3, 4, 5, 6, 7, 8, 9, 10). The base field of C must be of characteristic 0 or
≥ 11. There are also versions that takes a single polynomial f of degree less than
or equal to 8 as argument (corresponding to the curve y2 = f(x)) or a sequence of
two polynomials fh (corresponding to the curve y2 + h(x)y = f(x)). In these cases
if the degree of f (resp f − h2/4) is less than 7, or if the discriminant is zero, the
invariants will be invariants of the corresponding binary octic but not of a genus 3
hyperelliptic curve anymore. Such sequences of invariants are referred to as singular.

The sequence of invariants can be considered as giving a point in a dimension 8
weighted projective space with the above weights. If the parameter normalize is set
to true, the sequence is scaled to give a new sequence representing the same point
in a normalized fashion. This means that two isomorphic curves will not necessarily
give the same sequence of invariants, but they will always give the same sequence
of normalized invariants.

ShiodaInvariantsEqual(V1,V2)

Returns whether two sequences of Shioda invariants V 1 and V 2 represent the same
point in the natural weighted projective space. This is equivalent to asking whether
their normized versions (see previous intrinsic) are the same, which means that they
represent the same isomorphism class of curves (if they are non-singular).
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DiscriminantFromShiodaInvariants(JI)

Returns the corresponding discriminant from a sequence of Shioda invariants JI.
The discriminant (of a binary octic) is just a polynomial in its 9 Shioda invariants.
Note that is scaled if the invariants are scaled, so that the value is different for
example, if applied to the results of calling ShiodaInvariants with normalize set
to true or false. The significant thing though is whether this is non-zero or not.
The value is zero if and only if JI are singular invariants (associated to a polynomial
with multiple roots or of degree ≤ 6).

ShiodaAlgebraicInvariants(FJI)

ratsolve BoolElt Default : true

As mentioned in the introduction, the first 6 Shioda invariants are algebraically
independent forms on the genus 3 hyperelliptic moduli space and the remaining 3
are algebraic over them.

This intrinsic takes a sequence FJI of 6 elements of a field k that must be of
characteristic 0 or ≥ 11. If these are considered to be the first 6 Shioda invariants
(of a possibly singular set), this intrinsic returns a sequence containing all possible
sequences of the full 9 invariants over k that have those of FJI as the first 6, if
the parameter ratsolve is true (the default). If ratsolve is false, the sequence
returned instead contains the 6 polynomials in 3 variables over k, which defines a
dimension 0, degree 5 system whose solutions are the possible last 3 invariants.

Example H125E6

> k := GF(37);

> P<t> := PolynomialRing(k);

> C := HyperellipticCurve(t^8+33*t^7+27*t^6+29*t^5+4*t^4+

> 18*t^3+20*t^2+27*t+36);

> ShiodaInvariants(C);

[ 33, 16, 30, 31, 8, 18, 0, 30, 31 ]

[ 2, 3, 4, 5, 6, 7, 8, 9, 10 ]

> ShiodaAlgebraicInvariants([k|33,16,30,31,8,18]);

[

[ 33, 16, 30, 31, 8, 18, 0, 30, 31 ],

[ 33, 16, 30, 31, 8, 18, 14, 10, 25 ]

]

> ShiodaAlgebraicInvariants([k|33,16,30,31,8,18] : ratsolve := false);

[

$.1^5 + 21*$.1^4 + 12*$.1^3 + 3*$.1^2 + 23*$.1,

$.1^2 + 6*$.1 + 33*$.2 + 23*$.3 + 36,

$.1*$.2 + 34*$.1 + 36*$.2 + 32*$.3,

$.1*$.3 + 17*$.1 + 14*$.2^2 + 23*$.2 + 17*$.3 + 21,

27*$.1 + $.2*$.3 + 36*$.2 + 27*$.3 + 2,

8*$.1 + 27*$.2^2 + 2*$.2 + $.3^2 + 19*$.3 + 27
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]

MaedaInvariants(C)

Returns the six Maeda field invariants (I2, I3, I4, I4p, I8, I9) of a genus 3 hyperel-
liptic curve C. Again, the base field of C must be of characteristic 0 or ≥ 11. For
this intrinsic, the model of C must also be in simplified y2 = f(x) form. There is
also a version with argument f , a univariate polynomial of degree less than or equal
to 8, which returns the Maeda invariants of the binary octic given by homogenizing
f (to degree 8). This is the same as asking for the invariants of y2 = f(x) when f
has degree 7 or 8.

125.3.4 Base Ring

BaseField(C)

BaseRing(C)

CoefficientRing(C)

The base field of the hyperelliptic curve C.

125.4 Creation from Invariants

The problem is to construct a curve of genus 2 from a given set of Igusa–Clebsch invariants
defined over the same field as the field of moduli (simply the smallest field in which the
invariants lie). Mestre [Mes91] shows that this is not always possible, even in theory. But
over a finite field or the rationals he gives a method for deciding whether it is possible and if
it is, for finding such a curve. Mestre’s algorithm was implemented by P. Gaudry. Mestre’s
algorithm does not work when the curve has a split Jacobian. Cardona and Quer [CQ05]
showed that in this case one can always find a curve defined over the field of moduli and
gave equations for such a curve. This works over any field of characteristic not 2, 3 or 5.

In any characteristic, the code package of Lercier and Ritzenthaler produces a genus 2
curve from a given set of Cardona-Quer-Nart-Pujola invariants (see Subsection 125.3.2).
They use the work of Cardona and Quer cited in the previous paragraph in the odd
characteristic case, with some extra work for characteristics 3 and 5. In characteristic 2,
they use the models from [CNP05].

Lercier and Ritzenthaler have also contributed a package for genus 3 hyperelliptic curves
that produces a curve from a given set of Shioda invariants (see Subsection 125.3.3). This
works in characteristic not 2, 3, 5 or 7.

Over a field of characteristic zero, the equation of the curve returned by these methods
can involve huge coefficients. For curves over the rationals, this curve can be processed by
the algorithm of P. Wamelen [Wam99] and [Wam01]. While, in practice, this algorithm
often produces a curve with much smaller coefficients, for certain curves the algorithm may
not significantly reduce their size.
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HyperellipticCurveFromIgusaClebsch(S)

Reduce BoolElt Default : false

This attempts to build a curve of genus 2 with the given Igusa-Clebsch invari-
ants (see Subsection 125.3.2) by Mestre’s algorithm (and Cardona’s in case of non-
hyperelliptic involutions) defined over the field F in which the invariants lie. Cur-
rently this field must be the rationals, a number field, or a finite field of characteristic
greater than 5. If there exists no such curve defined over F , then either a curve over
some quadratic extension is returned (when F is the rationals), or an error results
(when F is a number field).

When the base field is the rationals, the parameter Reduce invokes Wamelen’s
reduction algorithm, and is equivalent to a call to ReducedModel with the algorithm
specified as "Wamelen".

HyperellipticCurveFromG2Invariants(S)

From a given sequence of Cardona-Quer-Nart-Pujola invariants (as described in
Subsection 125.3.2) over a finite field or the rationals, return a genus 2 curve with
these absolute invariants. This works in all characteristics as noted in the intro-
duction to the section. The geometric automorphism group is also returned as a
finitely-presented group.

HyperellipticCurveFromShiodaInvariants(JI)

HyperellipticPolynomialFromShiodaInvariants(JI)

Given a sequence of 9 Shioda invariants JI over the rationals or a finite field k, the
first intrinsic returns a genus 3 hyperelliptic curve over k with these invariants. The
abstract geometric automorphism group is also returned as a permutation group.
This will cause an error if JI are singular Shioda invariants.

The second intrinsic also works for singular invariants. It returns a polynomial
f of degree ≤ 8 with the given invariants. If JI are non-singular, y2 = f(x) is a
genus 3 curve with invariants JI.

Example H125E7

A typical run would look like:

> SetVerbose("Igusa",1);

> IgCl := [ Rationals() |

> -549600, 8357701824, -1392544870972992, -3126674637319431000064 ];

> time C := HyperellipticCurveFromIgusaClebsch(IgCl);

Found conic point:

(-64822283782462146583672682837123736006679080996161747198790\

94839597076141357421875/1363791104410093031413327266775768846\

086857295667582286386963073756856153402049457884003686477312,\

10188009335968531191794821132584413878133549529657888880045011\

3779781952464580535888671875/107297694738676628355433722672369\

86876862256732919126043768293539723478848063808819839532581156\
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5610468983296)

Time: 0.990

> time C := ReducedModel(C : Al := "Wamelen");

Time: 161.680

> HyperellipticPolynomials(C);

-23*x^6 + 52*x^5 - 55*x^4 + 40*x^3 - 161*x^2 + 92*x - 409

0

An example in characteristic 2 from Cardona-Quer-Nart-Pujola invariants:

> k<t> := GF(16);

> g2_invs := [t^3,t^2,t];

> HyperellipticCurveFromG2Invariants(g2_invs);

Hyperelliptic Curve defined by y^2 + (x^2 + x)*y =

t*x^5 + t*x^3 + t*x^2 + t*x over GF(2^4)

Finitely presented group on 3 generators

Relations

$.2^2 = Id($)

$.1^-3 = Id($)

($.1^-1 * $.2)^2 = Id($)

$.3^2 = Id($)

$.1 * $.3 = $.3 * $.1

$.2 * $.3 = $.3 * $.2

> _,auts := $1;

> #auts; // auts = D_12

12

A genus 3 example using Shioda invariants

> k := GF(37);

> FJI := [k| 30, 29, 13, 13, 16, 9];

> ShiodaAlgebraicInvariants(FJI);

[

[ 30, 29, 13, 13, 16, 9, 14, 35, 0 ],

[ 30, 29, 13, 13, 16, 9, 36, 32, 22 ],

[ 30, 29, 13, 13, 16, 9, 36, 32, 23 ]

]

> JI := ($1)[1];

> HyperellipticCurveFromShiodaInvariants(JI);

Hyperelliptic Curve defined by y^2 = 19*x^8 + 13*x^7 + 29*x^6 +

ΨΨ3*x^5 + 16*x^4 + 19*x^3 + x^2 + 27*x + 12

over GF(37)

Symmetric group acting on a set of cardinality 2

Order = 2
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125.5 Function Field

125.5.1 Function Field and Polynomial Ring

FunctionField(C)

The function field of the hyperelliptic curve C.

DefiningPolynomial(C)

A weighted homogeneous polynomial for the hyperelliptic curve C.

EvaluatePolynomial(C, a, b, c)

EvaluatePolynomial(C, [a, b, c])

Evaluates the homogeneous defining polynomial of the hyperelliptic curve C at the
point (a, b, c).

125.6 Points

The hyperelliptic curve is embedded in a weighted projective space, with weights 1, g+ 1,
and 1, respectively on x, y and z. Therefore point triples satisfy the equivalence relation
(x : y : z) = (µx : µg+1y : µz), and the points at infinity are then normalized to take the
form (1 : y : 0).

125.6.1 Creation of Points

C ! [x, y]

C ! [x, y, z]

elt< PS | x, y >

elt< PS | x, y, z >

Returns the point on a hyperelliptic curve C specified by the coordinates (x, y, z).
The elt constructor takes the pointset of a hyperelliptic curve as an argument. If
z is not specified it is assumed to be 1.

C ! P

Given a point P on a hyperelliptic curve C1, such that C is a base extension of C1,
this returns the corresponding point on the hyperelliptic curve C. The curve C can
be, e.g., the reduction of C1 to finite characteristic (i.e. base extension to a finite
field) or the tautological coercion to itself.



4134 ARITHMETIC GEOMETRY Part XVII

Points(C, x)

RationalPoints(C, x)

The indexed set of all rational points on the hyperelliptic curve C that have the
value x as their x-coordinate. (Rational points are those with coordinates in the
coefficient ring of C). Note that points at infinity are considered to have ∞ as their
x-coordinate.

PointsAtInfinity(C)

The points at infinity for the hyperelliptic curve C returned as an indexed set of
points.

IsPoint(C, S)

The function returns true if and only if the sequence S specifies a point on the
hyperelliptic curve C, and if so, returns this point as the second value.

Example H125E8

We look at the point at infinity on y2 = x5 + 1.

> P<x> := PolynomialRing(Rationals());

> C := HyperellipticCurve(x^5+1);

> PointsAtInfinity(C);

{@ (1 : 0 : 0) @}

There is only one, and to see that this really is a point on C it must be remembered that in
Magma, all hyperelliptic curves are considered to live in weighted projective spaces:

> Ambient(C);

Projective Space of dimension 2

Variables : $.1, $.2, $.3

Gradings :

1 3 1

In fact, the point is nonsingular on C, as we now check. (It’s worth remembering that all the
functionality for curves, for instance IsNonSingular, applies to hyperelliptic curves as a special
case.)

> pointAtInfinity := C![1,0,0]; // Entering the point by hand.

> IsNonSingular(pointAtInfinity);

true
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125.6.2 Random Points

Random(C)

Given a hyperelliptic curve C defined over a finite field, this returns a point chosen
at random on the curve. If the set of all points on C has already been computed,
this gives a truly random point, otherwise the ramification points have a slight
advantage.

125.6.3 Predicates on Points

P eq Q

Returns true if and only if the two points P and Q on the same hyperelliptic curve
have the same coordinates.

P ne Q

Returns false if and only if the two points P and Q on the same hyperelliptic curve
have the same coordinates.

125.6.4 Access Operations

P[i]

The i-th coordinate of the point P , for 1 ≤ i ≤ 3.

Eltseq(P)

ElementToSequence(P)

Given a point P on a hyperelliptic curve, this returns a 3-element sequence consisting
of the coordinates of the point P .

125.6.5 Arithmetic of Points

-P

Involution(P)

Given a point P on a hyperelliptic curve, this returns the image of P under the
hyperelliptic involution.
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125.6.6 Enumeration and Counting Points

NumberOfPointsAtInfinity(C)

The number of points at infinity on the hyperelliptic curve C.

PointsAtInfinity(C)

The points at infinity for the hyperelliptic curve C returned as an indexed set of
points.

#C

Given a hyperelliptic curve C defined over a finite field, this returns the number of
rational points on C.

If the base field is small or there is no other good alternative, a naive point count-
ing technique is used. However, if they are applicable, the faster p-adic methods
described in the #J section are employed (which actually yield the full zeta function
of C). As for #J, the verbose flag JacHypCnt can be used to output information
about the computation.

Points(C)

RationalPoints(C)

Bound RngIntElt Default :

NPrimes RngIntElt Default : 30

DenominatorBound RngIntElt Default : Bound

For a hyperelliptic curve C defined over a finite field, the function returns an indexed
set of all rational points on C. For a curve C over Q of the form y2 = f(x) with
integral coefficients, it returns the set of points such that the naive height of the
x-coordinate is less than Bound.

For a curve C over a number field, looks for points using a sieve method, described
in Appendix A of [Bru02]. The parameter NPrimes controls the number of primes
which are used and DenominatorBound the size of the denominators used.

PointsKnown(C)

Returns true if and only if the points of the hyperelliptic curve C have been com-
puted. This can especially be helpful when the curve is likely to have many points
and when one does not wish to trigger the possibly expensive point computation.
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ZetaFunction(C)

Given a hyperelliptic curve C defined over a finite field, this function computes the
zeta function of C. The zeta function is returned as an element of the function field
in one variable over the integers.

If the base field is small or there is no other good alternative, the method used
is a naive point count on the curve over extensions of degree 1, ..., g of the base
field. However, if they are applicable, the faster p-adic methods described in the #J
section are employed. As for #J, the verbose flag JacHypCnt can be used to output
information about the computation.

ZetaFunction(C, K)

Given a hyperelliptic curve C defined over the rationals, this function computes
the zeta function of the base extension of C to K. The curve C must have good
reduction at the characteristic of K.

Example H125E9

For the following classical curve of Diophantus’ Arithmetica, it is proved by Joseph Wetherell
[Wet97] that Diophantus found all positive rational points. The following Magma code enumerates
the points on this curve.

> P<x> := PolynomialRing(Rationals());

> C := HyperellipticCurve(x^6+x^2+1);

> Points(C : Bound := 1);

{@ (1 : -1 : 0), (1 : 1 : 0), (0 : -1 : 1), (0 : 1 : 1) @}

> Points(C : Bound := 2);

{@ (1 : -1 : 0), (1 : 1 : 0), (0 : -1 : 1), (0 : 1 : 1), (-1 : -9 : 2),

(-1 : 9 : 2), (1 : -9 : 2), (1 : 9 : 2) @}

> Points(C : Bound := 4);

{@ (1 : -1 : 0), (1 : 1 : 0), (0 : -1 : 1), (0 : 1 : 1), (-1 : -9 : 2),

(-1 : 9 : 2), (1 : -9 : 2), (1 : 9 : 2) @}

125.6.7 Frobenius

Frobenius(P, F)

Check BoolElt Default : true

Applies the Frobenius x− > x(#F ) to P . If Check is true, it verifies that the curve
of which P is a point is defined over the finite field F .
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125.7 Isomorphisms and Transformations
A hyperelliptic curve isomorphism is defined by a linear fractional transformation t(x :
z) = (ax+ bz : cx+ dz), a scale factor e, and a polynomial u(x) of degree at most g + 1,
where g is the genus of the curve. This data defines the isomorphism of weighted projective
points

(x : y : z) 7→ (ax+ bz : ey + ũ(x, z) : cx+ dz),

where ũ is the degree g + 1 homogenization of u. When not specified, the values of e and
u are by default taken to be 1 and 0, respectively.

An isomorphism can be created from the parent structures by coercing a tuple
〈[a, b, c, d], e, u〉 into the structure of isomorphisms between two hyperelliptic curves, or
by creating it as a transformation of a given curve, i.e. creating the codomain curve
together with the isomorphism from the given data.

Note that due to the projective weighting of the ambient space of the curve, two equal
isomorphisms may have different representations.

125.7.1 Creation of Isomorphisms

Aut(C)

Given a hyperelliptic curve C, this returns the structure of all automorphisms of
the curve.

Iso(C1, C2)

Given hyperelliptic curves C1 and C2 of the same genus and base field, this returns
the structure of all isomorphisms between them.

Transformation(C, t)

Transformation(C, u)

Transformation(C, e)

Transformation(C, e, u)

Transformation(C, t, e, u)

Returns the hyperelliptic curve C ′ which is the codomain of the isomorphism from
the hyperelliptic curve C specified by the sequence of ring elements t, the ring
element e and the polynomial u, followed by the the isomorphism to the curve.

Example H125E10

We create the hyperelliptic curve y2 = x5 − 7 and apply a transformation to it.

> P<x> := PolynomialRing(Rationals());

> H1 := HyperellipticCurve(x^5-7);

> H2, phi := Transformation(H1, [0,1,1,0], 1/2, x^2+1);

> H2;

Hyperelliptic Curve defined by y^2 + (-2*x^2 - 2)*y = -7/4*x^6 - x^4 - 2*x^2 +

1/4*x - 1 over Rational Field
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> phi;

(x : y : z) :-> (z : 1/2*y + x^2*z + z^3 : x)

> IsIsomorphic(H1, H2);

true (x : y : z) :-> (z : 1/2*y + x^3 + x*z^2 : x)

125.7.2 Arithmetic with Isomorphisms
Hyperelliptic curve isomorphisms can be evaluated, inverted, and composed on points as
right operators. Note that the functional notation f(P ) is not presently available for these
maps of curves. However the available map syntax @ is more consistent with functions
as operating on the right (which determines and is apparent from the way composition is
defined).

f * g

The composition of the maps f and g as right operators.

Inverse(f)

The inverse of the hyperelliptic curve isomorphism f .

f in M

Given an isomorphism of hyperelliptic curves f , and the structure of isomorphisms
M between two hyperelliptic curves, this returns true if and only if they share the
same domains and codomains.

P @ f

Evaluate(f,P)

Returns the evaluation of f at a point P in its domain. The same functions apply
equally to points in the Jacobian of the domain curve and, in the case of genus 2,
to points on the associated Kummer surface.

P @@ f

Pullback(f,P)

Returns the inverse image of the isomorphism f at a point P in its codomain. The
same functions apply equally to points in the Jacobian of the codomain curve and,
in the case of genus 2, to points on the associated Kummer surface.

f eq g

Given isomorphisms f and g of hyperelliptic curves having the same domain and
codomain, this function returns true if and only if they are equal. Note that two
isomorphisms may be equal even if their defining data are distinct (see example
below).
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125.7.3 Invariants of Isomorphisms

Parent(f)

The “parent structure” of an isomorphism between two hyperelliptic curves (which
contains all isomorphisms with the same domain and codomain as the given isomor-
phism).

Domain(f)

The curve which is the domain of the given isomorphism.

Codomain(f)

The curve which is the target of the given isomorphism.

125.7.4 Automorphism Group and Isomorphism Testing
This section details the features for computing isomorphisms between two curves and
determining the group of automorphisms. The function IsGL2Equivalent plays a central
role in the isomorphism testing, and is documented here due to its central role in these
computations.

The genus 2 package of Lercier and Ritzenthaler provides a function to determine
the geometric automorphism group of a genus 2 curve in any characteristic by working
with Cardona-Quer-Nart-Pujola invariants (see Subsection 125.3.2). This replaces the old
function that only worked in odd (or 0) characteristics. They also provide a function that
returns a list of all possible geometric automorphism groups for genus 2 curves over a given
finite field and the number of isomorphism classes of curves with each possible group.

Lercier and Ritzenthaler’s genus 3 package provides the same for genus 3 hyperelliptic
curves, working with Shioda invariants. Here, the characteristic has to be 0 or ≥ 11.

IsGL2Equivalent(f, g, n)

This function returns true if and only if f and g are in the same GL2(k)-orbit,
where k is the coefficient field of their parent, modulo scalars. The polynomials are
considered as homogeneous polynomials of degree n, where n must be at least 4.
The second return value is the sequence of all matrix entries [a, b, c, d] such that g(x)
is a constant times f ((ax+ b)/(cx+ d)) (cx+ d)n.

IsIsomorphic(C1, C2)

Verbose CrvHypIso Maximum : 3

This function returns true if and only if the hyperelliptic curves C1 and C2 are iso-
morphic over their common base field. If the curves are isomorphic, an isomorphism
is returned.
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AutomorphismGroup(C)

Given a hyperelliptic curve C of characteristic different from 2, the function returns
a permutation group followed by an isomorphism to the group of automorphisms
of the curve over its base ring. The curve must be of genus at least one, and the
automorphism group is defined to consist of those automorphisms which commute
with the hyperelliptic involution, i.e. which induce a well-defined automorphism of
its quotient projective line. A third return value gives the action C ×G→ C.

Example H125E11

We give an example of the computation of the automorphism group of a genus one hyperelliptic
curve.

> P<x> := PolynomialRing(GF(3));

> C1 := HyperellipticCurve(x^3+x);

> G1, m1 := AutomorphismGroup(C1);

> #G1;

> [ m1(g) : g in G1 ];

[

(x : y : z) :-> (x : y : z),

(x : y : z) :-> (x : -y : z),

(x : y : z) :-> (z : y : x),

(x : y : z) :-> (z : -y : x)

]

We note that due to the weighted projective space, the same map may have a non-unique repre-
sentation, however the equality function is able to identify equivalence on representations.

> f := m1(G1.3);

> f;

(x : y : z) :-> (z : y : x)

> g := Inverse(f);

> g;

(x : y : z) :-> (2*z : y : 2*x)

> f eq g;

true

We see that the geometric automorphism group is much larger. By base extending the curve to a
quadratic extension, we find the remaining automorphisms of the curve.

> K<t> := GF(3,2);

> C2 := BaseExtend(C1, K);

> G2, m2 := AutomorphismGroup(C2);

> #G2;

48

> O := C2![1,0,0];

> auts := [ m2(g) : g in G2 ];

> [ f : f in auts | O@f eq O ];

[

(x : y : z) :-> (x : y : z),
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(x : y : z) :-> (x : -y : z),

(x : y : z) :-> (x : t^2*y : 2*z),

(x : y : z) :-> (x + t^6*z : t^2*y : 2*z),

(x : y : z) :-> (x + t^6*z : y : z),

(x : y : z) :-> (x + t^2*z : y : z),

(x : y : z) :-> (x + t^2*z : t^2*y : 2*z),

(x : y : z) :-> (x : t^6*y : 2*z),

(x : y : z) :-> (x + t^6*z : t^6*y : 2*z),

(x : y : z) :-> (x + t^6*z : -y : z),

(x : y : z) :-> (x + t^2*z : -y : z),

(x : y : z) :-> (x + t^2*z : t^6*y : 2*z)

]

> #$1;

12

Note that this curve is an example of a supersingular elliptic curve in characteristic 3. In the final
computation we restrict to the automorphisms as an elliptic curve, i.e. those which fix the point
at infinity — the identity element of the group law.
In the context of hyperelliptic curves of genus one, the group of automorphisms must stabilize the
ramification points of the hyperelliptic involution. These are precisely the 2-torsion elements as
an elliptic curve. So we have an group extension by the 2-torsion elements, acting by translation.
Converting to an elliptic curve, we find that there are two 2-torsion elements over F3:

> E1 := EllipticCurve(C1);

> A1 := AbelianGroup(E1);

> A1;

Abelian Group isomorphic to Z/4

Defined on 1 generator

Relations:

4*$.1 = 0

We see that two of the 2-torsion elements are defined over F3, and the remaining ones appear
over the quadratic extension. So in the former case the automorphism group is an extension of
the elliptic curve automorphism group (of order 2) by Z/2Z, and in latter case the automorphism
group is an extension (of the group of order 12) by the abelian group isomorphic to Z/2Z×Z/2Z.
Note that there exist other curve automorphisms given by translations by other torsion points (un-
der the addition as an elliptic curve), but that do not commute with the hyperelliptic involution,
hence do not enter into the hyperelliptic automorphism group.

GeometricAutomorphismGroup(C)

Given a hyperelliptic curve C of genus 2 or 3 the function returns a finitely-presented
group isomorphic to the geometric automorphism group, i.e. the automorphism
group of the curve over an algebraic closure of its base field.

The method used for genus 2 is to compute the Cardona-Quer-Nart-Pujola in-
variants (see Subsection 125.3.2) of C and use the classification of the possible
automorphism groups in terms of the invariants. See [SV01] and [CQ05] for the odd
(and 0) characteristic case and [CNP05] for characteristic 2.
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The method used for genus 3 is to compute the Shioda invariants (see Subsec-
tion 125.3.3) of C and use the classification of the possible automorphism groups in
terms of the invariants. For this case, the base field must have characteristic 0 or
≥ 11.

There is also a genus 2 version where the argument is the sequenceGI of Cardona-
Quer-Nart-Pujola invariants of a curve rather than the actual curve. This avoids
actually constructing the curve, in case the user is starting from the invariants.

The functions are part of packages for genus 2 and 3 curves contributed by
Reynald Lercier and Christophe Ritzenthaler.

GeometricAutomorphismGroupFromShiodaInvariants(JI)

There is a variant of the last intrinsic for genus 3 curves where the argument is the
sequence JI of Shioda invariants of a curve rather than the actual curve. This avoids
actually constructing the curve, in case the user is starting from the invariants. The
same restrictions on the characteristic of the base field apply.

Example H125E12

We give examples of the computation of the geometric automorphism group of a genus two and a
genus three hyperelliptic curve.

> P<x> := PolynomialRing(RationalField());

> f := x^6+x^3+13;

> C := HyperellipticCurve(f);

> time GeometricAutomorphismGroup(C);

Permutation group acting on a set of cardinality 6

Order = 12 = 2^2 * 3

(1, 2, 3, 4, 5, 6)

(1, 6)(2, 5)(3, 4)

Time: 0.010

> f := x^8-1;

> C1 := HyperellipticCurve(f);

> GeometricAutomorphismGroup(C1);

GrpPC of order 32 = 2^5

PC-Relations:

$.1^2 = $.4,

$.3^2 = $.5,

$.2^$.1 = $.2 * $.3,

$.3^$.1 = $.3 * $.5,

$.3^$.2 = $.3 * $.5

Note that AutomorphismGroup can be used to retrieve the same (and more!) information but this
can be much slower.

> aut := AutomorphismGroup(C);

> aut;

Symmetric group aut acting on a set of cardinality 2

Order = 2
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(1, 2)

Id(aut)

We need to extend the field!

> Qbar := AlgebraicClosure();

> Cbar := BaseChange(C, Qbar);

> time autbar := AutomorphismGroup(Cbar);

Time: 332.290

> autbar;

Permutation group autbar acting on a set of cardinality 12

Order = 12 = 2^2 * 3

(1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)

Id(autbar)

(1, 3)(2, 4)(5, 7)(6, 8)(9, 11)(10, 12)

(1, 5, 9)(2, 6, 10)(3, 11, 7)(4, 12, 8)

(1, 7)(2, 8)(3, 9)(4, 10)(5, 11)(6, 12)

(1, 9, 5)(2, 10, 6)(3, 7, 11)(4, 8, 12)

(1, 11)(2, 12)(3, 5)(4, 6)(7, 9)(8, 10)

> IdentifyGroup(autbar);

<12, 4>

GeometricAutomorphismGroupGenus2Classification(F)

Given a finite field F (of any characteristic), the function returns two sequences. The
first gives a list of all possible geometric automorphism groups for genus 2 curves
defined over F and the second gives the corresponding number of isomorphism (over
F̄ , the algebraic closure of F ) classes of F -curves having the given automorphism
group. The groups are represented as finitely-presented groups.

This function is part of a package for genus 2 curves contributed by Reynald
Lercier and Christophe Ritzenthaler and is based on the classification analysis in
[Car03] and [CNP05].

GeometricAutomorphismGroupGenus3Classification(F)

Given a finite field F of characteristic ≥ 11, the function returns two sequences. The
first gives a list of all possible geometric automorphism groups for genus 3 curves
defined over F and the second gives the corresponding number of isomorphism (over
F̄ , the algebraic closure of F ) classes of F -curves having the given automorphism
group. The groups are represented as permutation groups.

This function is part of a package for genus 3 curves contributed by Reynald
Lercier and Christophe Ritzenthaler.
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Example H125E13

We determine the possible (geometric) automorphism groups for genus 2 curves over F2.

> gps,ncls := GeometricAutomorphismGroupGenus2Classification(GF(2));

> [#gp : gp in gps];

[ 2, 12, 32, 160 ]

> ncls;

[ 5, 1, 1, 1 ]

125.8 Jacobians

The Jacobian of a hyperelliptic curve is implemented as the divisor class group of the curve.
In particular, no equations giving the Jacobian as a variety ever appear. The Jacobian
of any hyperelliptic curve can be created, but most of the interesting functionality is over
finite fields, or for genus 2 over number fields or Q.

125.8.1 Creation of a Jacobian

Jacobian(C)

The Jacobian of the hyperelliptic curve C.

125.8.2 Access Operations

Curve(J)

The hyperelliptic curve from which the Jacobian J was constructed.

Dimension(J)

The dimension of the Jacobian J as an algebraic variety, equal to the genus of the
curve C of which J is the Jacobian.

125.8.3 Base Ring

BaseField(J)

BaseRing(J)

CoefficientRing(J)

The base field of the Jacobian J .
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125.8.4 Changing the Base Ring

BaseChange(J, F)

BaseExtend(J, F)

The base extension of the Jacobian J to the field F .

BaseChange(J, j)

BaseExtend(J, j)

The base extension of the Jacobian J obtained by the map j, where j is a ring
homomorphism with the base field of C as its domain.

BaseChange(J, n)

BaseExtend(J, n)

The base extension of the Jacobian J over a finite field to its degree n extension.

125.9 Richelot Isogenies
Let k be a field of characteristic different from 2. We consider a curve of genus 2, given by
an equation

C : y2 = f(x)

where f(x) is a square-free polynomial of degree 5 or 6. Let J be the Jacobian of C. In this
section we mean by a Richelot isogeny a polarized isogeny Φ : J → A between principally
polarized abelian surfaces, such that the kernel of Φ over the algebraic closure has group
structure Z/2Z × Z/2Z. We have that J [Φ] ⊂ J [2] is maximal isotropic with respect to
the Weil-pairing on J [2].

We can represent the points of J [Φ] over the algebraic closure as divisors in the following
way. We write

f(x) = cQ1(x)Q2(x)Q3(x),

where the Qi are degree 2 polynomials if deg(f) = 6. If deg(f) = 5 then Q2, Q3 are of
degree 2 and Q1 is of degree 1 and is considered to represent a degree 2 with a root at
x = ∞. Then

{0, [Q1(x) = 0]− [Q2(x) = 0], [Q1(x) = 0]− [Q3(x) = 0], [Q2(x) = 0]− [Q3(x) = 0]}

is the kernel of some Richelot-isogeny and, conversely, any Richelot kernel can be repre-
sented in this way.

The Qi do not have to be defined over the ground field individually. One way of
specifying such a kernel is to write

f(x) = cNormL[x]/k[x]Q(x)

where L = k[t]/(h(t)) for some square free cubic polynomial h and Q(x) ∈ L[x]. If L is
totally split and A is the Jacobian of a genus 2 curve then a description the genus 2 curve
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D such that A = Jac(D) is classically known. See [Smi05], Chapter 8 for an exposition
that is relatively close to the description given here. See [BD09] for a description of D for
general L.

In special cases, the codomain A can be a product of elliptic curves or the Weil-
restriction of an elliptic curve with respect to a quadratic extension of k. In that
case, the curve C has extra automorphisms that respects the representation f(x) =
cNormL[x]/k[x]Q(x). and one can find the relevant elliptic curves as quotients of C.

RichelotIsogenousSurfaces(J)

RichelotIsogenousSurfaces(C)

Kernels BoolElt Default : true

Computes the richelot isogenies defined over the basefield of the given abelian vari-
eties and returns a list of objects representing the codomains. If the codomain is the
Jacobian of a genus 2 curve, then that Jacobian is returned or, if a curve is given
instead of a Jacobian, the corresponding curve.

If the codomain is a product of elliptic curves, a Cartesian product of elliptic
curves is returned. If the codomain is the Weil restriction of an elliptic curve relative
to a quadratic extension, then the elliptic curve over the quadratic extension is
returned.

If Kernels is specified then a second list is returned, consisting of quadratic
polynomials over cubic algebras. Each describes the kernel of the relevant isogeny.

RichelotIsogenousSurface(J, kernel)

RichelotIsogenousSurface(C, kernel)

Given a genus 2 Jacobian and a Richelot kernel, return the codomain. The genus 2
curve must be given by a model of the form C : y2 = f(x) and the kernel must be
a quadratic polynomial Q(x) over a cubic algebra L such that NormL[x]/k[x]Q(x) =
cf(x). The elements of the second list returned by RichelotIsogenousSurfaces
when given Kernels:=true are valid kernel descriptions. The codomain is returned
using the same conventions as for RichelotIsogenousSurfaces.

Example H125E14

We will determine the Richelot isogenies on the Jacobian of y2 = x5 + x. This Jacobian has
the amusing property that there are 3 such isogenies and that each of the types of codomain
(Jacobian, Weil restriction, product of elliptic curves) is represented.

> R<x>:=PolynomialRing(Rationals());

> C:=HyperellipticCurve(x^5+x);

> J:=Jacobian(C);

> RichelotIsogenousSurfaces(J);

[*

Cartesian Product<Elliptic Curve defined by y^2 = x^3 + 5/32*x^2 -

5/1024*x - 1/32768 over Rational Field, Elliptic Curve defined by

y^2 = x^3 - 5/32*x^2 - 5/1024*x + 1/32768 over Rational Field>,
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Jacobian of Hyperelliptic Curve defined by y^2 = -2*x^5 - 2*x over

Rational Field,

Elliptic Curve defined by y^2 = x^3 + 5/32*$.1*x^2 + 5/1024*x +

1/32768*$.1 over Number Field with defining polynomial x^2 + 1

over the Rational Field

*]

We now illustrate how the kernels are represented.

> codomains,kernels:=RichelotIsogenousSurfaces(J:Kernels);

> Q:=kernels[1];

> LX<X>:=Parent(Q);

> L<alpha>:=BaseRing(LX);

> Q;

(-1/2*alpha^2 + 2*alpha)*X^2 + (-1/2*alpha^2 + alpha + 1)*X -

1/2*alpha^2 + 2*alpha

> L;

Univariate Quotient Polynomial Algebra in alpha over Rational Field

with modulus alpha^3 - 4*alpha^2 + 2*alpha

Let us check that the norm of Q gives us x5 +x again and that calling RichelotIsogenousSurface

allows us to recreate the corresponding codomain.

> _,swp:=SwapExtension(LX);

> Norm(swp(Q));

x^5 + x

We can use Q to recreate the corresponding codomain.

> codomains[1] eq RichelotIsogenousSurface(J,Q);

true

Finally, to verify that the computed abelian surfaces are all isogenous, we verify that their L-series
over Q are equal. For each type of return value we have to create the L-Series in a slightly different
way, but once done, we can easily check that their coefficients agree.

> LC:=LSeries(C : ExcFactors:="Ogg");

> myL:=func< A|

> case<Type(A) | SetCart : LSeries(A[1])*LSeries(A[2]),

> JacHyp : LSeries(Curve(A) : ExcFactors:="Ogg"),

> CrvEll : LSeries(A),

> default : false>>;

> cfs:=[c: c in LGetCoefficients(LC,1000)];

> [[c: c in LGetCoefficients(myL(A),1000)] eq cfs : A in codomains];

[ true, true, true ]
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125.10 Points on the Jacobian

Points on Jac(C) are represented as divisors on C. They can be specified simply by giving
points on C, or divisors on C, or in the Mumford representation, which is the way Magma
returns them (and which it uses to store and manipulate them). Points can be added and
subtracted.

Representation of points on Jac(C): Let C be a hyperelliptic curve of genus g. A triple
〈a(x), b(x), d〉 specifies the divisor D of degree d on C defined by

A(x, z) = 0, y = B(x, z)

where A(x, z) is the degree d homogenisation of a(x), and B(x, z) is the degree (g + 1)
homogenisation of b(x). Note that the equation y = B(x, z) make sense projectively
because y has weight g + 1 (as always for hyperelliptic curves in Magma).

The point on Jac(C) corresponding to 〈a(x), b(x), d〉 is then D minus a multiple of the
divisor at infinity on C. So, when there is a single point P∞ at infinity, we have D− dP∞.
Otherwise, there is a Q-rational divisor P+∞+P−∞ consisting of the two points at infinity;
in this case d is required to be even and we have D − (d/2)(P+∞ + P−∞).

All points on Jac(C) can be expressed in this way, except when g is odd and there are
no rational points at infinity (in which case the extra points can not be created in Magma,
and arithmetic on points is not implemented). There is a uniquely determined “reduced”
triple representing each point, which Magma uses to represent any point it encounters.

See the examples in the following section (“Creation of Points”).

Technical details: In order to make sense, a triple 〈a(x), b(x), d〉 is required to satisfy:

(a)a(x) is monic of degree at most g;

(b)b(x) has degree at most g + 1, and a(x) divides b(x)2 + h(x)b(x) − f(x), where h(x)
and f(x) are the defining polynomials of C;

(c) d is a positive integer with deg(a(x)) ≤ d ≤ g + 1, such that the degree of b(x)2 +
h(x)b(x)− f(x) is less than or equal to 2g + 2− d+ deg(a(x)).

For uniqueness of representation, in the case of one point at infinity, (the odd degree case,
in particular), we require that d = deg(a(x)).

A triple 〈a(x), b(x), d〉 is reduced to a canonical representative as follows:

(a) If d = deg(a(x)), we reduce b mod a, so deg(b(x)) < deg(a(x)).

(b)If a = 1, we assume that deg(B(1, z)) = d.

(c) A unique representative for b(x) is found such that the coefficient of xk in b is zero for
deg(a(x)) ≤ k ≤ deg(a(x)) + g + 1− d.

For certain models of C, not all rational points can be represented in the above form (with
the restrictions on d) or the representation is not unique. The bad cases are g odd and (i)
0 or (ii) 2 rational points at infinity.
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In case (i) we would have to allow divisors with deg(a(x)) = g + 1, which give linear
pencils of equivalent divisors, and in case (ii) a Jacobian point with d = g+1 has precisely
two canonical representatives.

In case (i), there is no obvious canonical representative for these additional Jacobian
points and currently Magma does not deal with them. Consequently, arithmetic is not
implemented in this case.

However, in case (ii), the two representatives correspond to the two distinguished ele-
ments of a linear pencil of divisors which include contributions from one or the other point
at infinity. By arbitrarily selecting one of these two infinite points as the default, a unique
representative can be chosen. This is now performed internally by Magma, the default
point being chosen at the time of creation of the Jacobian. Arithmetic is also implemented.
Note that in this case, extra work is generally required in point addition to keep track of
points at infinity and final reduction to the unique representation. If very fast addition is
crucial when C is of this type, it is generally wise to use an isomorphic model with exactly
one point at infinity, if possible, by moving a rational Weierstrass point to infinity.

125.10.1 Creation of Points
J ! 0

Id(J)

Identity(J)

The identity element on the Jacobian J .

J ! [a, b]

elt< J | a, b >

elt< J | [a, b] >

elt< J | a, b, d >

elt< J | [a, b], d >

The point on the Jacobian J defined by the polynomials a and b and the positive
integer d; if not specified then d is taken to be deg(a).

P - Q

J ! [P, Q]

elt< J | P, Q >

For points P and Q on a hyperelliptic curve, this constructs the image of the divisor
class [P −Q] as a point on its Jacobian J .

J ! [S, T]

elt< J | S, T >

Given two sequences S = [Pi] and T = [Qi] of points on the hyperelliptic curve with
Jacobian J , each of length n, this returns the image of the divisor class

∑
i[Pi] −∑

i[Qi] as a point on the Jacobian J .



Ch. 125 HYPERELLIPTIC CURVES 4151

JacobianPoint(J, D)

The point on the Jacobian J (of a hyperelliptic curve C) associated to the divisor D
on C. If D does not have degree 0, then a suitable multiple of the divisor at infinity
is subtracted. When the divisor at infinity on C has even degree, D is required to
have even degree.

The function works for any divisor such that the corresponding point is definable
in Magma. It is not implemented for characteristic 2.

J ! P

Given a point P on a Jacobian J ′, construct the image of P on J , where J is a base
extension of J ′.

Points(J, a, d)

RationalPoints(J, a, d)

Find all points on the Jacobian J with first component a and degree d. Only
implemented for genus 2 curves of the form y2 = f(x).

Example H125E15

Points on y2 = x6 − 3x− 1 and their images on the Jacobian.

> _<x> := PolynomialRing(Rationals());

> C := HyperellipticCurve(x^6-3*x-1);

> C;

Hyperelliptic Curve defined by y^2 = x^6 - 3*x - 1 over Rational Field

> J := Jacobian(C);

> J; // Magma didn’t do much work to create J

Jacobian of Hyperelliptic Curve defined by y^2 = x^6 - 3*x - 1 over Rational Field

Find some points on C and map them to J (using the first point to define the map C → J):

> ptsC := Points(C : Bound := 100);

> ptsC;

{@ (1 : -1 : 0), (1 : 1 : 0), (-1 : -1 : 3), (-1 : 1 : 3) @}

> ptsJ := [ ptsC[i] - ptsC[1] : i in [2,3,4] ];

> ptsJ;

[ (1, x^3, 2), (x + 1/3, x^3, 2), (x + 1/3, x^3 + 2/27, 2) ]

We recreate the first of these, giving it in Magma’s notation (which is read as “the divisor of
degree 2 on C determined by z2 = y − x3 = 0”).

> pt1 := elt< J | [1,x^3], 2 >;

> pt1 eq ptsJ[1];

true

The degree of the divisor must be specified here, otherwise it is assumed to be deg(a(x)) = 0:

> pt1 := J! [1,x^3];

> pt1; pt1 eq J!0;

(1, 0, 0)

true
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Example H125E16

We define the nontrivial 2-torsion point on the Jacobian of C : y2 = (x2 + 1)(x6 + 7).
The divisor (y = 0, x2 + 1 = 0) should define the only nontrivial 2-torsion point in J(Q).

> _<x> := PolynomialRing(Rationals());

> C := HyperellipticCurve( (x^2+1)*(x^6+7) );

> J := Jacobian(C);

Define the point corresponding to the divisor given by x2 + 1 = 0, y = 0 on C. We can use the
simpler syntax, not specifying that the degree of the divisor is 2, because this equals the degree
of a(x) = x2 + 1.

> Ptors := J![x^2+1, 0];

> Ptors;

(x^2 + 1, 0, 2)

The alternative syntax would be as follows.

> Ptors1 := elt< J | [x^2+1, 0], 2 >;

> Ptors eq Ptors1; // Are they the same?

true

Check that Ptors has order 2:

> 2*Ptors;

(1, 0, 0)

> $1 eq J!0; // Is the previous result really the trivial point on J?

true

> Order(Ptors); // Just to be absolutely sure ...

2

The other factor x6 + 7 will give the same point on J :

> Ptors2 := J![x^6+7,0];

(x^2 + 1, 0, 2)

Note that Magma returned the unique reduced triple representing this point, which means we can
easily check whether or not it is the same point as Ptors.
For alternative ways to obtain 2-torsion points, see the section on torsion.

Example H125E17

A Jacobian with a point not coming from the curve.
Any curve containing the point (

√
2,
√

2) has a Q-rational divisor

D := (
√

2,
√

2) + (−
√

2,−
√

2).

This will give a nontrivial point in J(Q). For instance, take y2 = x6 − 6.

> _<x> := PolynomialRing(Rationals());

> C := HyperellipticCurve(x^6-6);
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> J := Jacobian(C);

The divisor D has degree 2 and is given by x2 − 2 = y − x = 0.

> pt := J![x^2-2, x];

> pt; // What is pt?

(x^2 - 2, x, 2)

> Parent(pt); // Where does pt live?

Jacobian of Hyperelliptic Curve defined by y^2 = x^6 - 6 over Rational Field

> pt eq J!0; // Is pt equal to 0 on J?

false

> Order(pt);

0

This means that P has infinite order in J(Q).
Alternatively we can construct the same point by first constructing the divisor, giving it as an
ideal in the homogeneous coordinate ring in which C lives. (Note that Y has weight 3).

> P<X,Y,Z> := CoordinateRing(Ambient(C));

> D := Divisor(C, ideal<P | X^2-2*Z^2, Y-X*Z^2> );

> pt1 := J!D;

> pt eq pt1;

true

125.10.2 Random Points

Random(J)

A random point on a Jacobian J of a hyperelliptic curve defined over a finite field.

125.10.3 Booleans and Predicates for Points
For each of the following functions, P and Q are points on the Jacobian of a hyperelliptic
curve.

P eq Q

Returns true if and only if the points P and Q on the same Jacobian are equal.

P ne Q

Returns false if and only if the two points P and Q on the same Jacobian are
equal.

IsZero(P)

IsIdentity(P)

Returns true if and only if P is the zero element of the Jacobian.
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125.10.4 Access Operations

P[i]

Given an integer 1 ≤ i ≤ 2, this returns the i-th defining polynomial for the Jacobian
point P . For i = 3, this returns the degree d of the associated reduced divisor.

Eltseq(P)

ElementToSequence(P)

Given a point P on the Jacobian J of a hyperelliptic curve, the function returns
firstly, a sequence containing the two defining polynomials for the divisor associated
to P and secondly, the degree of the divisor.

125.10.5 Arithmetic of Points
For each of the following functions, P and Q are points on the Jacobian of a hyperelliptic
curve.

-P

The additive inverse of the point P on the Jacobian.

P + Q

The sum of the points P and Q on the same Jacobian.

P +:= Q

Given two points P and Q on the same Jacobian, set P equal to their sum.

P - Q

The difference of the points P and Q on the same Jacobian.

P -:= Q

Given two points P and Q on the same Jacobian, set P equal to the difference P−Q.

n * P

P * n

The n-th multiple of P in the group of rational points on the Jacobian.

P *:= n

Set P equal to the n-th multiple of itself.
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125.10.6 Order of Points on the Jacobian

Order(P)

Returns the order of the point P on the Jacobian J of a hyperelliptic curve defined
over a finite field or the rationals, or 0 if P has infinite order. This first computes
#J when J is defined over a finite field.

Order(P, l, u)

Alg MonStg Default : “Shanks”

UseInversion BoolElt Default : true

Returns the order of the point P where u and l are bounds for the order of P or for
the order of J the parent of P . This does not compute #J .

If the parameter Alg is set to "Shanks" then the generic Shanks algorithm is
used, otherwise, when Alg is "PollardRho", a Pollard-Rho variant is used (see
[GH00]).

If UseInversion is true the search space is halved by using point negation.

Order(P, l, u, n, m)

Alg MonStg Default : “Shanks”

UseInversion BoolElt Default : true

Returns the order of the point P where u and l are bounds for the order of P or for
the order of J the parent of P and where n and m are such that the group order is
n mod m. This does not compute #J .

The two parameters Alg and UseInversion have the same use as in the previous
function.

HasOrder(P, n)

Given a point P on the Jacobian J of a hyperelliptic curve and a positive integer n,
this returns true if the order of the point is n.

125.10.7 Frobenius

Frobenius(P, k)

Check BoolElt Default : true

Given a point P that lies on the Jacobian J of a hyperelliptic curve that is defined
over the finite field k = Fq, determine the image of P under the Frobenius map
x→ xq. If Check is true, Magma verifies that the Jacobian of P is defined over k.
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125.10.8 Weil Pairing

WeilPairing(P, Q, m)

Computes the Weil pairing of P and Q, where P and Q are m-torsion points on the
2-dimensional Jacobian J defined over a finite field.

Example H125E18

The following illustrates the use of the Weil Pairing in the MOV-reduction of the discrete logarithm
problem on a Jacobian.

> PP<x>:=PolynomialRing(GF(2));

> h := PP!1;

> f := x^5 + x^4 + x^3 + 1;

> J := Jacobian(HyperellipticCurve(f,h)); // a supersingular curve

> Jext := BaseExtend(J, 41);

> Factorization(#Jext);

[ <7, 1>, <3887047, 1>, <177722253954175633, 1> ]

> m := 177722253954175633; // some big subgroup order

> cofact := 3887047*7;

> P := cofact*Random(Jext);

> Q := 876213876263897634*P; // Q in <P>

Say we want to recompute the logarithm of Q in base P .

> Jext2 := BaseExtend(Jext, 6); // go to an ext of deg 6

> NJ := #Jext2;

>

> R := Random(Jext2);

> R *:= NJ div m^Valuation(NJ, m);

>

> eP := WeilPairing(Jext2!P, R, m);

> eQ := WeilPairing(Jext2!Q, R, m);

> assert eP^876213876263897634 eq eQ;

So the discrete log problem on the Jacobian has been reduced to a discrete log problem in a finite
field.
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125.11 Rational Points and Group Structure over Finite Fields

125.11.1 Enumeration of Points

Points(J)

RationalPoints(J)

Given a Jacobian J of a hyperelliptic curve defined over a finite field, determine all
rational points on the Jacobian J .

125.11.2 Counting Points on the Jacobian
Several algorithms are used to compute the order of a Jacobian depending of its size, its
genus and its type. In particular, in genus 2 it includes all the techniques described in
[GH00]. The best current algorithms are the ones based on p-adic liftings. These are
the defaults when they apply (see below) and the characteristic is not too large. In odd
characteristic, Kedlaya’s algorithm is used as described in [Ked01]. For characteristic 2,
we have Mestre’s canonical lift method as adapted by Lercier and Lubicz. Details can
be found in [LL]. We also now have an implementation of Vercauteren’s characteristic 2
version of Kedlaya (described in [Ver02]). As an added bonus, the p-adic methods actually
give the Euler factor (see below). A verbose flag can be set to see which strategy is chosen
and the progress of the computation.

The latest p-adic methods, faster than Kedlaya in odd characteristic, are those of
Alan Lauder based on deformations over parametrised families. Magma incorporates an
implementation for hyperelliptic families by Hendrik Hubrechts (see [Hub06] for details).
This has a slightly different interface to the other methods (which all run through the same
top-level intrinsics) as it can be used to count points on several members of the family at
once.

SetVerbose("JacHypCnt", v)

Set the verbose printing level for the point-counting on the Jacobians. Currently
the legal values for v are true, false, 0, 1, 2, 3 or 4 (false is the same as 0, and
true is the same as 1).

#J

Order(J)

Given the Jacobian J of a hyperelliptic curve defined over a finite field, determine
the order of the group of rational points.

There are 4 optional parameters which concern every genus.
NaiveAlg BoolElt Default : false

ShanksLimit RngIntElt Default : 1012

CartierManinLimit RngIntElt Default : 5× 105

UseSubexpAlg BoolElt Default : true
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The parameter NaiveAlg can be set to one if one want to use the naive algorithm for
point counting, consisting in counting points on the curve over the first g extensions,
where g is the genus. Setting this parameter to true annihilates the effects of
the others. By default, this strategy is used for small groups and Jacobians in
characteristic 2 for which no group law is available.

In odd characteristic, Kedlaya’s algorithm can be applied to curves of any genus
and it is the default when the group is not too small or the characteristic too large.

In contrast, Mestre’s characteristic 2 method has several conditions on its appli-
cability. When these are satisfied and the genus is not too large or the group order
too small, it is the default.
• Firstly, the Jacobian must be ordinary. This is equivalent to the defining poly-

nomial h(x) having degree g or g + 1 and having distinct roots (ie non-zero
discriminant).

• Next, there must be a group law available for a final elimination: the algorithm
produces several possibilities for the characteristic polynomial of Frobenius. If
no group law is available, we attempt to replace the curve with an isomorphic
one for which one is. Note that a group law exists if there is a single point at
infinity (degree of h(x) = g).

Warning : Even if these conditions are satisfied, the last phase of the algorithm may
still fail for g ≥ 4 in unusual cases. However, this is very rare. Finally, it should be
noted that the main algorithm works over the smallest extension of the ground field
K over which h(x) splits. It is therefore much faster if h(x) has all its roots in K.

When the genus is > 4 or the canonical lift method doesn’t apply, Vercauteren’s
version of Kedlaya is now used in its place. It is also used for genus 4 when an
extension of the base field is required for Mestre: ie, h(x) doesn’t split.

UseGenus2 BoolElt Default : false

For genus 2 the methods mentioned at the start are applied if the parameter
UseGenus2 is set to true. Otherwise they are now only used for large characteristic.

If none of the above apply, the remaining methods are the subexponential algo-
rithm, which uses the generic machinery of the function fields, and general group
order algorithms of Shanks and Pollard. The subexponential algorithm will be the
first choice if no group law is available or the genus is large and the base field small.
It can be disabled by setting UseSubexpAlg to false.

The parameter ShanksLimit determines when we switch from a memory-
consuming Shanks’ algorithm to a slower Pollard’s method. The value of the pa-
rameter CartierManinLimit is the maximal characteristic for which we may use
the Cartier-Manin trick (see function EulerFactorModChar below).

The next 2 parameters are used only for the genus 2 methods in odd character-
istic.

UseSchoof BoolElt Default : true

UseHalving BoolElt Default : true
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When the base field is large enough, it is better to firstly compute the cardinality of
the Jacobian modulo some odd primes and some power of two. These two parameters
allow the user to disable one or both of these methods.

Example H125E19

In the following sequence of examples the different point counting methods are illustrated. The
first example uses direct counting.

> SetVerbose("JacHypCnt",true);

> P<x> := PolynomialRing(GF(31));

> f := x^8 + 3*x^7 + 2*x^6 + 23*x^5 + 5*x^4 + 21*x^3 + 29*x^2 + 12*x + 9;

> J := Jacobian(HyperellipticCurve(f));

> time #J;

Using naive counting algorithm.

20014

Time: 0.020

Example H125E20

For the second example, we apply Kedlaya’s algorithm to a genus curve 2 over GF (320).

> K := FiniteField(3,20);

> P<x> := PolynomialRing(K);

> f := x^5 + x + K.1;

> J := Jacobian(HyperellipticCurve(f));

> #J;

Using Kedlaya’s algorithm.

Applying Kedlaya’s algorithm

Total time: 2.310

12158175772023384771

Example H125E21

For the third example, we apply Vercauteren’s algorithm to a non-ordinary genus curve 2 over
GF (225)..

> K := FiniteField(2,25);

> P<x> := PolynomialRing(K);

> f := x^5 + x^3 + x^2 + K.1;

> J := Jacobian(HyperellipticCurve([f,K!1]));

> time #J;

Using Kedlaya/Vercauteren’s algorithm.

1125899940397057

Time: 0.680
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Example H125E22

For the third example, we apply Mestre’s algorithm to a genus 3 ordinary curve over GF (225).

> K := FiniteField(2,25);

> P<x> := PolynomialRing(K);

> h := x*(x+1)*(x+K.1);

> f := x^7 + x^5 + x + K.1;

> C := HyperellipticCurve([f,h]);

> J := Jacobian(C);

> #J;

Using Mestre’s method.

Total time: 0.440

37780017712685037895040

> SetVerbose("JacHypCnt",false);

As the full Euler factor of J has been computed and stored the number of points on C, the Zeta
function for C and the Euler factor for C are now immediate.

> time #C;

33555396

Time: 0.000

Example H125E23

We compare the Shanks and Pollard methods for large prime fields.

> // Comparison between Shanks and Pollard:

> P<x> := PolynomialRing(GF(1000003));

> f := x^7 + 123456*x^6 + 123*x^5 + 456*x^4 + 98*x^3 + 76*x^2 + 54*x + 32;

> J := Jacobian(HyperellipticCurve(f));

> curr_mem := GetMemoryUsage(); ResetMaximumMemoryUsage();

> time Order(J : ShanksLimit := 10^15);

1001800207033014252

Time: 19.140

> GetMaximumMemoryUsage()-curr_mem;

133583360

The computation took about 100 MB of central memory.

> delete J‘Order; // clear the result which has been stored

> curr_mem := GetMemoryUsage();

> ResetMaximumMemoryUsage();

> time Order(J : ShanksLimit := 0);

1001800207033014252

Time: 95.670

> GetMaximumMemoryUsage()-curr_mem;

0

Now it takes almost no memory, but it is slower (and runtime may vary a lot).
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Example H125E24

In the case of genus 2 curves, the parameters UseSchoof and UseHalving do help.

> // Using Schoof and Halving true is generally best in genus 2

> P<x> := PolynomialRing(GF(100000007));

> f := x^5 + 456*x^4 + 98*x^3 + 76*x^2 + 54*x + 32;

> J := Jacobian(HyperellipticCurve(f));

> time Order(J);

10001648178050390

Time: 7.350

> delete J‘Order;

> time Order(J: UseSchoof := false, UseHalving := false);

10001648178050390

Time: 21.080

But if the Jacobian is known in advance to be highly non–cyclic, it may be slightly better to
switch them off. The Jacobian below is the direct product of two copies of the same supersingular
elliptic curve.

> // ... but not always for highly non-cyclic Jacobians

> P<x> := PolynomialRing(GF(500083));

> f := x^5 + 250039*x^4 + 222262*x^3 + 416734*x^2 + 166695*x + 222259;

> J := Jacobian(HyperellipticCurve(f));

> time Order(J);

250084007056

Time: 1.920

> delete J‘Order;

> time Order(J : UseSchoof:=false, UseHalving := false);

250084007056

Time: 1.870

FactoredOrder(J)

Given the Jacobian J of a hyperelliptic curve defined over a finite field, the function
returns the factorization of the order of the group of rational points.

EulerFactor(J)

Given the Jacobian J of a hyperelliptic curve defined over a finite field, the function
returns the Euler factor J , i.e. the reciprocal of the characteristic polynomial of
Frobenius acting on H1(J). (see also ZetaFunction(C) which is essentially the
same function and has the same behaviour).

EulerFactorModChar(J)

Given the Jacobian J of a hyperelliptic curve defined over a finite field, the function
returns the Euler factor J modulo the characteristic of the base field. This function
should not be used in high characteristic (say p should be ≤ 106).
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EulerFactor(J, K)

Given a Jacobian J of a hyperelliptic curve defined over the rationals and a finite
field K at which J has good reduction, the function returns the Euler factor of the
base extension of J to K.

125.11.3 Deformation Point Counting

JacobianOrdersByDeformation(Q, Y)

EulerFactorsByDeformation(Q, Y)

ZetaFunctionsByDeformation(Q, Y)

These functions compute the orders of Jacobians (resp. Euler factors, resp. Zeta
functions) of one or more hyperelliptic curves in a 1-parameter family over a finite
field using deformation methods.

Q(x, z) should be a 2-variable polynomial in variables x and z over a finite field
of odd characteristic k. Currently Q must be monic of odd degree as a polynomial
in x. z is the parameter and the familiy of curves is given by y2 = Q(x, z).

Y should be a sequence of elements in a finite field extension K of k. The
function then computes and returns the sequence of orders, Euler factors or Zeta
functions associated to the hyperelliptic curves over K obtained by specialising the
z parameter of Q(x, z) to the elements of Y .

Over a field of size pn, for n not too large, it is efficient to compute the results
for several curves in the family at once, as roughly half of the computation for an
individual curve is taken up in computing a Frobenius matrix that is then specialised
to the parameter value. For a sequence of input parameter values, this part of the
computation is only performed once at the start. However, as n becomes larger, the
time taken for the specialisation at a particular value starts to dominate.

The field k over which the family is defined should be of small degree over the
prime field. This is because Kedlaya’s algorithm is applied over k to a particular
member of the family with the parameter specialised to a k-value to initialise the
deformation.

Similarly, the algorithm is much faster when Q(x, z) is of small degree in the
parameter z. In practice, the degree of Q(x, z) as a polynomial in z, probably
shouldn’t exceed 3 or 4 (linear is obviously best).

There are two further conditions on Q and Y which we will try to remove in the
near future. The first is that no Y -value is zero. The second is that the generic
discriminant of Q̂ (resultant of Q̂ and ∂Q̂/∂x w.r.t. x) must have leading coefficient
(as a polynomial in z) a unit in W (k). Here, W (k) is the ring of integers of the
unramified extension of Qp with residue class field k and Q̂ is a lift of Q to a 2-
variable polynomial over W (k). By translating and scaling the parameter, the user
may be able to effect these two conditions if they aren’t initially satisfied.

As with the other point-counting functions, the verbose flag JacHypCnt can be
used to output information during processing.



Ch. 125 HYPERELLIPTIC CURVES 4163

Example H125E25

The following is a small example where the Euler factors for 4 random members of a linear family
of elliptic curves are computed with a single call. The base field is F9 and the parameter values
are taken in F340 which is the field over which the counting occurs.

> Fp := FiniteField(3^2);

> R<X,Y> := PolynomialRing(Fp,2);

> Q := X^3+X^2-2*X+Fp.1+Y*(X^2-X+1);

> Fq := ext<Fp | 20>;

> values := [Random(Fq) : i in [1..4]];

> EFs := EulerFactorsByDeformation(Q,values);

> EFs;

[

12157665459056928801*$.1^2 + 852459373*$.1 + 1,

12157665459056928801*$.1^2 + 1088717005*$.1 + 1,

12157665459056928801*$.1^2 + 6911064226*$.1 + 1,

12157665459056928801*$.1^2 - 607949990*$.1 + 1

]

125.11.4 Abelian Group Structure

Sylow(J, p)

Given the Jacobian J of a hyperelliptic curve defined over a finite field and a prime
p, this function returns the Sylow p-subgroup of the group of rational points of J ,
as an abstract abelian group A. The injection from A to J is also returned as well
as the generators of the p-Sylow subgroup.

AbelianGroup(J)

UseGenerators Bool Default : false

Generators SetEnum Default :

Given the Jacobian J of a hyperelliptic curve defined over a finite field K, this
function returns the group of rational points of J as an abstract abelian group A.
The isomorphism from A to J(K) is returned as a second value.

If UseGenerators is set then the group structure computation is achieved by
extracting relations from the user-supplied set of generators in Generators.

HasAdditionAlgorithm(J)

Returns true if and only if the Jacobian J has an addition algorithm. This is of
interest when trying to construct the (abelian) group structure of J : When no
user-supplied generators are given, such an algorithm must be present.
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125.12 Jacobians over Number Fields or Q
Some functions in this section work for general number fields (notably TwoSelmerGroup),
while many are only implemented over Q.

125.12.1 Searching For Points

Points(J)

RationalPoints(J)

Bound RngInt Default : 0
Given a Jacobian J of a genus 2 hyperelliptic curve defined by an integral model over
the rationals, determine all rational points on the Jacobian J whose naive height on
the associated Kummer surface is less than or equal to Bound.

125.12.2 Torsion

TwoTorsionSubgroup(J)

Given the Jacobian J of a hyperelliptic curve C which is either of genus 2 or has odd
degree defined over a number field K, the function returns J(K)[2] as an abstract
group, together with a map sending elements of the abstract group to points on J .
The curve C must be given in the simplified form y2 = f(x).

TorsionBound(J, n)

Given the Jacobian J of a hyperelliptic curve defined over the rationals, this function
returns a bound on the size of the rational torsion subgroup of the Jacobian. The
bound is obtained by examining the group J(Fp) for the first n good primes p.

TorsionSubgroup(J)

Given the Jacobian J of a genus 2 curve defined over the rationals, this function
returns the rational torsion subgroup of J , and the map from the group into J . The
curve must have the form y2 = f(x) with integral coefficients.

Example H125E26

For the curve
C : y2 = (x + 3)(x + 2)(x + 1)x(x− 1)(x− 2),

the only Q-rational torsion on the Jacobian is 2-torsion.

> _<x> := PolynomialRing(Rationals());

> C := HyperellipticCurve(&*[x-n : n in [-3..2]]);

> J := Jacobian(C);

> T, m := TwoTorsionSubgroup(J);

> T;

Abelian Group isomorphic to Z/2 + Z/2 + Z/2 + Z/2

Defined on 4 generators

Relations:



Ch. 125 HYPERELLIPTIC CURVES 4165

2*P[1] = 0

2*P[2] = 0

2*P[3] = 0

2*P[4] = 0

> [ m(T.i) : i in [1..4] ];

[ (x^2 - 3*x + 2, 0, 2), (x^2 - 2*x, 0, 2), (x^2 - x - 2, 0, 2),

(x^2 - 4, 0, 2) ]

> #T eq #TorsionSubgroup(J);

true

The Jacobian for the following curve has torsion subgroup Z/24 over Q.

> C := HyperellipticCurve((2*x^2-2*x-1)*(2*x^4-10*x^3+7*x^2+4*x-4));

> J := Jacobian(C);

> T, m := TwoTorsionSubgroup(J);

> T;

Abelian Group isomorphic to Z/2

Defined on 1 generator

Relations:

2*P[1] = 0

> m(T.1);

(x^2 - x - 1/2, 0, 2)

> A,h := TorsionSubgroup(J);

> #T eq #A;

false

> A;

Abelian Group isomorphic to Z/24

Defined on 1 generator

Relations:

24*P[1] = 0

> P := h(A.1);

> P;

(x^2 - 1/2, -1, 2)

> Order(P);

24

> 12 * P eq m(T.1);

true
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125.12.3 Heights and Regulator
This section pertains to height functions on the Mordell–Weil group of the Jacobian of
hyperelliptic curves over a number field k. However, naive heights and height constants
are currently only implemented for Jacobians of genus 2 curves defined over Q.

In the case of genus two curves defined over Q, the canonical height is computed
using the algorithm of Flynn and Smart[FS97] with improvements by Stoll[Sto99]. This
algorithm computes the canonical height using local error functions on the associated
Kummer surface.

In all other cases the algorithm described in chapter 5 of [Mül10a] is used. It is based
on a theorem due to Faltings and Hriljac which expresses the canonical height pairing in
terms of Arakelov intersection theory and works as follows:

We find divisors DP and DQ of degree zero on the curve representing P and Q, re-
spectively. For this we use the canonical representative of P and Q (see Section 125.10);
if P = Q, then the canonical representatives for P and −P are used. Since the canonical
representatives have common support at infinity, we subtract the divisor of a function x−λ
from one of them. These ideas are due to David Holmes [Hol06]. If there are points at
infinity in the positive support of P or Q, then we might have to also subtract the divisor
of a function x− µ from the other representatives.

The actual Arakelov intersection computations are performed locally using regular mod-
els of the curve (see Section 114.12.2) at the relevant primes and Groebner bases over
p-adic quotient rings in the non-archimedean case. The algorithm requires factorisation of
polynomials over non-archimedean local fields. For archimedean places the intersections
multiplicities can be expressed using theta functions with respect to the analytic Jacobian.
This relies heavily on several functions described in Section 125.18.

If the genus is less than 4, the most expensive archimedean operations are usually
applications of the Abel-Jacobi map ToAnalyticJacobian. In larger genus, the computation
of theta functions, whose running time grows exponentially in the genus is more expensive.

Regarding the non-archimedean computations, the main bottleneck is integer factori-
sation which is required to find out which primes may yield non-trivial intersection multi-
plicities.

Applications: Heights are a useful tool for studying rational points on varieties. The
most standard applications concerning points on Jacobians are
• proving independence of points in J(k)/Jtors(k) (in particular, the regulator is defined

in terms of the canonical height), and
• proving non-divisibility: given P ∈ J(k) and n ∈ Z, proving that P is not of the form

nR for some R ∈ J(k).
The heights in this section are logarithmic, and they measure the size of the coordinates

of the image of P on the Kummer variety associated to J (embedded in P2g−1, where g
is the genus of the curve). The naive height h is simply the height of the image of P in
P2g−1 using an explicit embedding, which is currently only available for g = 2. One can
refine this, taking advantage of the group law on J , defining a canonical height which has
nice properties with respect to the group law, for instance ĥ(nP ) = n2ĥ(P ). In particular,
ĥ(P ) = 0 if and only if P is a torsion point. The function h − ĥ is bounded on J(k).
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Computationally, one generally wants an upper bound on this, because then one can find
all points up to a given canonical height by doing a search for points of bounded naive
height.

NaiveHeight(P)

Given a point P on the Jacobian of a curve of genus 2 (or on the associated Kummer
surface), the function returns the logarithmic height of the image of P in P3 under
the maps J → K → P3.

Height(P: parameters)

CanonicalHeight(P: parameters)

lambda RngIntElt Default : 1
mu RngIntElt Default : 0
LocalPrecision RngIntElt Default : 0
UseArakelov BoolElt Default : false

Precision RngIntElt Default : 0
The canonical height of a point P on the Jacobian of a hyperelliptic curve over a
number field or over the rationals. If the genus is 2 and the ground field is Q, then
this computes the canonical height on the associated Kummer surface. Otherwise
this function simply computes the height pairing of P with itself using Arakelov
intersection theory.

HeightConstant(J: parameters)

Effort RngIntElt Default : 0
Factor BoolElt Default : false

Given the Jacobian J of a genus 2 curve over Q of the form y2 = f(x) with integral
coefficients, this computes a real number c such that h(P ) ≤ ĥ(P ) + c for all P in
J(Q), where h is the naive height and ĥ is the canonical height.

The parameter Effort (which can be 0, 1 or 2) indicates how much effort should
be put into finding a good bound. The second value returned is a bound for µ∞,
the contribution from the infinite place. If the parameter Factor is true, then the
discriminant will be factored, and its prime divisors will be considered individually,
usually resulting in an improvement of the bound.

HeightPairing(P, Q: parameters)

lambda RngIntElt Default : 1
mu RngIntElt Default : 0
LocalPrecision RngIntElt Default : 0
UseArakelov BoolElt Default : false

Precision RngIntElt Default : 0
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The value of the canonical height pairing for rational points P and Q on the Jacobian
of a hyperelliptic curve defined over a number field. The pairing can be defined as
〈P,Q〉 := (ĥ(P +Q)− ĥ(P )− ĥ(Q))/2 and if the genus is 2 and the ground field is
Q, the pairing is computed using this definition. Otherwise the pairing is computed
using Arakelov intersection theory.

Sometime these fail due to insufficient precision; if this happens, the parameter
LocalPrecision should be changed accordingly.

Changing the parameters lambda and mu (see the introduction above) can some-
times speed up the computations because some of the required integer factorisations
might be significantly easier for some values of λ and µ than for others. Note that
the parameter mu is only used if it is nonzero.

The parameter UseArakelov indicates whether the algorithm based on Arakelov
intersection theory should be used in genus 2.

HeightPairingMatrix(S: Precision)

Precision RngIntElt Default : 0
Given a sequence [P1, ...Pn] of points on the Jacobian J of a hyperelliptic curve
defined over a number field, this function returns the matrix with entries 〈Pi, Pj〉,
where the latter denotes the canonical height pairing between Pi and Pj .

Regulator(S: Precision)

Precision RngIntElt Default : 0
Given a sequence S of points on the Jacobian J of a hyperelliptic curve defined over
a number field k, the function returns the determinant of the height pairing matrix
of S. The regulator is equal to zero when the points are dependent in the Mordell–
Weil group, and otherwise is equal to the square of the volume of the parallelotope
spanned by the points in the subgroup of the free quotient of J(k) generated by S.

ReducedBasis(S: Precision)

Precision RngIntElt Default : 0
Given a sequence of points on the Jacobian J of a hyperelliptic curve defined over
a number field k, this function returns an LLL- reduced basis for the subgroup of
J(k)/Jtors(k) generated by the given points (that is,the function reduces the real
lattice formed by the points, under the positive definite quadratic form given by the
canonical height pairing). The height pairing matrix of the sequence is returned as
a second value.

Example H125E27

This example illustrates some basic properties of heights, and proves that a certain point in J(Q)
is not a nontrivial multiple of any other point in J(Q). Let J be the Jacobian of y2 = x6 +x2 +2.

> P<x> := PolynomialRing(Rationals());

> C := HyperellipticCurve(x^6+x^2+2);
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> J := Jacobian(C);

Find some small points on C and map them to J:

> ptsC := Points(C : Bound:=1000);

> ptsJ := [ ptsC[i] - ptsC[1] : i in [2,3,4,5,6] ];

> ptsJ;

[ (1, x^3, 2), (x + 1, x^3 - 1, 2), (x + 1, x^3 + 3, 2), (x - 1, x^3 - 3, 2),

(x - 1, x^3 + 1, 2) ]

The canonical heights of these five points:

> [ Height(P) : P in ptsJ ];

[ 0.479839797450405152023279542502, 0.000000000000000000000000000000,

0.479839797450405152023279542491, 0.479839797450405152023279542491,

0.000000000000000000000000000000 ]

We see that two of them are torsion (ĥ = 0), and the others are probably equal or inverse to each
other modulo torsion, because they appear to have the same canonical height. If so, they would
generate a subgroup of rank 1 in J(Q)/Jtors(Q). The next command verifies this.

> ReducedBasis(ptsJ);

[ (x + 1, x^3 + 3, 2) ]

[0.479839797450405152023279542491]

> P := ptsJ[3];

> P;

(x + 1, x^3 + 3, 2)

So this point (which is the third point in our list) generates the others. We proceed to check that
the other two non-torsion points in our list are equal to P + T or −P + T for some torsion point
T .

> Jtors, maptoJ := TorsionSubgroup(J);

> {ptsJ[1], ptsJ[4]} subset { pt + maptoJ(T) : pt in {P,-P}, T in Jtors };

true

Now we check the property ĥ(nP ) = n2ĥ(P ) for n = 23.

> Height(23*P)/Height(P);

529.000000000000000000000000000

Of course, the naive height does not behave so nicely, but at least h − ĥ should be bounded by
the height constant.

> HC := HeightConstant(J : Effort:=2, Factor);

> HC;

3.73654623288305720113473940376

In particular, all torsion points should have naive height less than this.

> for T in Jtors do

> NaiveHeight(maptoJ(T));

> end for;

0.000000000000000000000000000000
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0.693147180559945309417232121458

0.693147180559945309417232121458

0.693147180559945309417232121458

0.693147180559945309417232121458

0.693147180559945309417232121458

0.693147180559945309417232121458

0.693147180559945309417232121458

> // Does the inequality hold for 23*P?

> NaiveHeight(23*P) - Height(23*P) le HeightConstant(J);

true

Finally, we show that P is not a nontrivial multiple of another point in J(Q)/Jtors(Q) (implying
that P generates J(Q)/Jtors(Q) if this has rank 1). For suppose that P = nQ + T for some
Q ∈ J(Q), T ∈ Jtors(Q). Then ĥ(Q) = (1/n2)ĥ(P ) < ĥ(P ), and the following search shows there
is no Q satisfying this bound.

> LogarithmicBound := Height(P) + HeightConstant(J); // Bound on the naive h(Q)

> AbsoluteBound := Ceiling(Exp(LogarithmicBound));

> PtsUpToAbsBound := Points(J : Bound:=AbsoluteBound );

> ReducedBasis( [ pt : pt in PtsUpToAbsBound ]);

[ (x^2 + 1/2*x + 1/2, 1/4*x - 5/4, 2) ]

[0.479839797450405152023279542491]

If Q exists, it would have to be in the set PtsUpToAbsBound. But the results of the final com-
mand indicate that the group generated by PtsUpToAbsBound is also generated by a single point
of canonical height 0.479839797450405152023279542491, so there are no nontorsion points Q in
PtsUpToAbsBound with ĥ(Q) < ĥ(P ).
This example is continued in Example H125E35, where we prove that J(Q) has rank 1, and then
use the fact that P generates J(Q)/Jtors(Q) to find all rational points on C.

Example H125E28

We compute a reduced basis for a set of points on the Jacobian J on the genus two curve C : y2 =
x6 + x2 + 1.

> P<x> := PolynomialRing(Rationals());

> C := HyperellipticCurve(x^6+x^2+1);

> J := Jacobian(C);

We construct some points on C:

> Z := PointsAtInfinity(C);

> Z;

{@ (1 : -1 : 0), (1 : 1 : 0) @}

> P1 := Z[1];

> P2 := Z[2];

> P3 := C![1/2,9/8,1];

> P4 := C![-1/2,9/8,1];

We now map them to J (for example Q1 is the divisor P1− P2):

> Q1 := J![P1, P2];
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> Q2 := J![P1, P3];

> Q3 := J![P3, P4];

> B, M := ReducedBasis([Q1, Q2, Q3] : Precision := 12);

> B; // This will be a basis for <Q1, Q2, Q3>

[ (1, -x^3, 2), (x^2, 1, 2) ]

> M; // The height pairing matrix for the new basis B

[0.2797317933688278287667056839 -5.005347463630776922E-17]

[ -5.005347463630776922E-17 0.9524462128097307697800077959]

> Determinant(M);

0.2664294871966142247655164984

Since Det(M) is nonzero, the two generators in B are independent.

125.12.4 The 2-Selmer Group
The principal functions in this section provide information about the Mordell-Weil group
J(K) of a hyperelliptic Jacobian defined over the rationals or a number field. Two descent
provides an upper bound (since J(K)/2J(K) embeds in the 2-Selmer group of J). Finer
information is provided by HasSquareSha, which determines the parity of the 2-rank of
the Shafarevich–Tate group, and RankBounds collects together all the information that is
computable in Magma.

Starting with Magma 2.13, a simpler user interface for computing 2-Selmer groups was
introduced. The two implementations that were previously available still exist internally.
In Magma 2.18-4 a new implementation has been included. When TwoSelmerGroup is
called, it chooses one of them (or the user may choose).

BadPrimes(C)

BadPrimes(J)

Badness RngIntElt Default : 1

Given a hyperelliptic curve C with integral coefficients defined over a number field
(or the Jacobian of such a curve), the function returns a sequence containing the
primes where the given model has bad reduction.

HasSquareSha(J)

IsEven(J)

Given the Jacobian of a hyperelliptic curve over Q or a number field, and assuming
that the Shafarevich-Tate group of J is finite, this returns true if and only if the
order of the Shafarevich-Tate group is a square. (Otherwise, the order is twice a
square, as shown by Poonen and Stoll in [PS99]). The order is square if and only if
the number of “deficient” primes for C is even (see below).
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IsDeficient(C, p)

For a genus 2 curve defined over Q or a number field, this returns true if C is
“deficient” at p. By definition, the curve is deficient if there are no points on C
defined over any extension of odd degree over Qp (when p is a prime) or over R
(when p is 0). Equivalently, C is deficient if there is no Qp-rational divisor of odd
degree on C.

HasIndexOne(C,p)

HasIndexOne(C,p)

Given a hyperelliptic curve C over Q or a number field, this returns true if and only
if there is a divisor of odd degree on C which is defined over the completion at the
prime p. An even genus curve is deficient at p if and only if it does not have index
one at p.

HasIndexOneEverywhereLocally(C)

Returns true if and only if C has index one over all completions of its base field
(including real completions).

TwoSelmerGroup(J)

Al MonStgElt Default :

Fields SetEnum Default :

ReturnFakeSelmerData BoolElt Default : false

ReturnRawData BoolElt Default : false

Verbose Selmer Maximum : 3
The 2-Selmer group of the Jacobian of a hyperelliptic curve defined over Q or a
number field. If the curve is not defined over Q then it must have a single rational
point at infinity (for curves in the simplified form y2 = f(x), this is equivalent to
f(x) having odd degree), The algorithm may work better when an integral model
of the curve is given (or better yet, a minimal model).

The Selmer group is returned as a finite abelian group S, together with a map
from S to some affine algebra A, which represents the standard map from the Selmer
group to A∗/(A∗)2 or to A∗/(A∗)2Q∗ (depending whether the degree of f is odd or
even).

Three separate implementations exist internally in Magma. (Prior to V2.13 two
of these were available as the intrinsics TwoSelmerGroup and TwoSelmerGroupData).
The user can specify which implementation is used by setting the optional parameter
Al to "TwoSelmerGroupOld", "TwoSelmerGroupNew" or to "TwoSelmerGroupData";
otherwise, an appropriate choice is made automatically.

Much of the computation time is usually spent on class group and unit calcu-
lations. These computations can be speeded up by using non-rigorous bounds,
and there are two ways to control which bounds are used. The recommended
way is to preset them using one of the intrinsics SetClassGroupBounds or
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SetClassGroupBoundMaps (see 37.6.1). The other way is to precompute the class
groups of the fields involved (with the desired optional parameters in ClassGroup),
and then pass these fields to TwoSelmerGroup via the optional parameter Fields.
The class group data is stored, and if TwoSelmerGroup requires a field that is iso-
morphic to one of the given Fields, the stored data will automatically be used.
The relevant fields are those given by the roots of f , where y2 = f(x) is the
SimplifiedModel of the curve.

When called with ReturnFakeSelmerData, the program returns an additional
item, which specifies the “fake Selmer group” in the terminology of [Sto01]. (This is
only relevant to the even degree case.) The returned object is a tuple 〈B1, B2, B3〉,
where B1 is a sequence of elements in A that span a subgroup S1 of A∗/(A∗)2, and
B2 and B3 are sequences of integers that span subgroups S2 and S3 of Q∗/(Q∗)2.
The fake Selmer group S is then determined by the exact sequence 0 → S3 → S2 →
S1 → S → 0. See [Sto01] for a full explanation of this.

When called with ReturnRawData, the program additionally returns a third item
expvecs and a fourth item factorbase. These specify the images in A∗/(A∗)2 of
the Selmer group generators (in unexpanded form). The factorbase is a sequence
of elements fj of A, and expvecs is a sequence of vectors in ZF , where F is the
number of elements in the factorbase. The image in A∗/(A∗)2 of the ith Selmer
group generator is then the sum over j of fej

j where (ej) is the ith exponent vector.

RankBound(J)

RankBounds(J)

An upper, or a lower and an upper bound, on the rank of the Mordell-Weil group
of J , which should be the Jacobian of a hyperelliptic curve over the rationals or
a number field. RankBound can be computed provided both TwoSelmerGroup and
TwoTorsionSubgroup are implemented for J , while RankBounds is only implemented
for Jacobians defined over Q.

For curves of even degree and odd genus it is not always possible to compute
an upper bound for the rank. One can compute instead an upper bound for the
rank of the subgroup of the Mordell-Weil group consisting of points which can be
represented by rational divisors. When the curve has index one everywhere locally,
every rational divisor class can be represented by a rational divisor. RankBound and
RankBounds check if this condition is satisfied and print a warning if it is not.

An initial upper bound is furnished by computing the 2-Selmer group. For
even degree hyperelliptic curves this can potentially be sharpened by determining
if the torsor T parameterizing divisor classes of degree 1 on the curve represents a
nontrivial element of Sha[2]. This can be achieved in two ways. If Sha does not
have square order (see HasSquareSha) then T is nontrivial and the bound can be
decreased by 1. If there are rational divisor classes of degree 1 everywhere locally,
then T lies in Sha[2], and RankBounds will attempt to determine whether T is
divisible by 2 in Sha using the algorithm described in [Cre12]. When T is not
divisible by 2, the bound may be lowered by 2. Examples of both phenomena are
given below.
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The lower bound is computed by searching for points on the Jacobian, then
determining their independence using either the height pairing machinery or by
considering their images in J(Q)/2J(Q).

Example H125E29

In this example, we find out as much as we can about the Mordell-Weil group of the Jacobian of

y2 = x(x + 13442)(x + 108152)(x + 54062)(x + 27002).

First define the curve and its Jacobian:

> _<x> := PolynomialRing(Rationals());

> pol := x*(x+1344^2)*(x+10815^2)*(x+5406^2)*(x+2700^2);

> C := HyperellipticCurve( pol );

> J := Jacobian(C);

> J;

Jacobian of Hyperelliptic Curve defined by

y^2 = x^5 + 155285397*x^4 + 4761213301312596*x^3 + 33018689414366470785600*x^2

+ 45012299099933971943424000000*x over Rational Field

We can search for points on C (with x-coordinate up to Bound):

> ptsC := Points(C : Bound := 10^6);

> ptsC;

{@ (1 : 0 : 0), (0 : 0 : 1), (43264 : -44828581639628800 : 1),

(43264 : 44828581639628800 : 1) @}

> pointAtInfinity := ptsC[1];

This pointAtInfinity (1 : 0 : 0) might not seem to lie on C, but recall that in Magma, a
hyperelliptic curve lives in a weighted projective plane. We can also search for points on the
Jacobian, which takes longer:

> time ptsJ := Points(J : Bound := 2000);

Time: 0.670

> ptsJ;

{@ (1, 0, 0), (x, 0, 1) @}

The notation for points on J is explained in the section “Points on the Jacobian” in this chapter.
The points appearing above are the trivial point on J , and the point corresponding to the divisor
(0 : 0 : 1)− (1 : 0 : 0) on C.

> ptsJ[1] eq J!0; // Is the first point equal to 0 on J?

true

> Order( ptsJ[2] );

2

So far, we have only found some trivial points on J . In fact, we can see from the equation that J
has full 2-torsion, which we now confirm.

> Jtors, map := TorsionSubgroup(J);

> Jtors;
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Abelian Group isomorphic to Z/2 + Z/2 + Z/2 + Z/4

Defined on 4 generators

Relations:

2*P[1] = 0

2*P[2] = 0

2*P[3] = 0

4*P[4] = 0

Jtors is an abstract group, and map converts elements of Jtors to actual points on J . Here are
the generator of the Z/4 and its inverse.

> map(Jtors.4);

> map(3*Jtors.4);

(x^2 + 32963094*x - 212161021632000, 94792247622*x - 2005558137487296000, 2)

(x^2 + 32963094*x - 212161021632000, -94792247622*x + 2005558137487296000, 2)

Looking at the points on C we found above, the third of them looks nontrivial, so we find its
order on J :

> P := ptsC[3];

> PJ := J![ P, pointAtInfinity ];

> PJ;

(x - 43264, -44828581639628800, 1)

> Order(PJ);

0

This means PJ has infinite order on J . Now we do two-descent on J :

> #TwoSelmerGroup(J);

64

We already knew that J(Q)[2] has order 16, and that the rank of J(Q) is at least 1, so we now
know that the rank is either 1 or 2. We now ask whether the order of Sha(J) is a square or twice
a square (assuming it is finite):

> HasSquareSha(J);

true

It follows (assuming Sha(J) is finite) that Sha(J) has square order, and that J(Q) has rank 2,
even though the other generator of J(Q) is probably not easy to find, especially if does not come
from a point on C.
For more examples of Selmer group computations, see the next section.

Example H125E30

We produce some Jacobians for which the order of the Tate-Shafarevich group is twice a square
(assuming it is finite). We then observe how this affects the rank bounds.
A good source of examples are curves y2 = 3(x6 − x2 + a) for a = 1 mod 3, since these curves are
“deficient” at 3 (for the definition, see above); this can be proved by elementary arguments. We
now list those (for a up to 50) which have nonsquare Sha.

> _<x> := PolynomialRing(Rationals());

> for a := 1 to 50 do
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> if a mod 3 eq 1 then

> Ca := HyperellipticCurve( 3*(x^6-x^2+a) );

> assert IsDeficient(Ca,3);

> // (This causes a failure if our assertion is wrong.)

> if not HasSquareSha(Jacobian(Ca)) then print Ca; end if;

> end if;

> end for;

Hyperelliptic Curve defined by y^2 = 3*x^6 - 3*x^2 + 12 over Rational Field

Hyperelliptic Curve defined by y^2 = 3*x^6 - 3*x^2 + 21 over Rational Field

Hyperelliptic Curve defined by y^2 = 3*x^6 - 3*x^2 + 30 over Rational Field

Hyperelliptic Curve defined by y^2 = 3*x^6 - 3*x^2 + 48 over Rational Field

Hyperelliptic Curve defined by y^2 = 3*x^6 - 3*x^2 + 57 over Rational Field

Hyperelliptic Curve defined by y^2 = 3*x^6 - 3*x^2 + 66 over Rational Field

Hyperelliptic Curve defined by y^2 = 3*x^6 - 3*x^2 + 84 over Rational Field

Hyperelliptic Curve defined by y^2 = 3*x^6 - 3*x^2 + 93 over Rational Field

Hyperelliptic Curve defined by y^2 = 3*x^6 - 3*x^2 + 102 over Rational Field

Hyperelliptic Curve defined by y^2 = 3*x^6 - 3*x^2 + 129 over Rational Field

Hyperelliptic Curve defined by y^2 = 3*x^6 - 3*x^2 + 138 over Rational Field

Aside: we could have tried simply y2 = 3(x6 + a) for a = 1 mod 3, but this won’t produce any
examples: it’s a cute exercise to show that for these curves, the number of deficient primes is
always even.
Now consider the Mordell-Weil rank of the second curve listed (where a = 7),

> C7 := HyperellipticCurve( 3*(x^6-x^2+7) );

> J := Jacobian(C7);

> #TwoTorsionSubgroup(J);

1

> #TwoSelmerGroup(J);

2

> RankBound(J);

0

There is no nontrivial 2-torsion in J(Q), and the Selmer group has order 2. The program has
checked that the order of the Tate-Shafarevich group is twice a square (hence the 2-rank of Sha
is exactly 1), and therefore it has returned a RankBound indicating that J(Q) has rank 0. This
rank bound is unconditional. In fact, the computation proves that there is a subgroup Z/2 in Sha
modulo the subgroup of infinitely divisible elements; therefore one may also deduce unconditionally
that the 2-power part of Sha is finite cyclic (since if there was an infinitely 2-divisible part, it
would still contribute to the 2-Selmer group).

Example H125E31

We demonstrate a non-trivial Tate-Shafarevich group on the Jacobian of a genus 2 curve. We
consider the following Jacobian.

> P<x>:=PolynomialRing(Rationals());

> C:=HyperellipticCurve(-x^6 + 2*x^5 + 3*x^4 + 2*x^3 - x - 3);
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> JC:=Jacobian(C);

We determine an upper bound on its Mordell-Weil rank

> RankBound(JC);

3

But we can only find one independent rational point on this Jacobian.

> V:=RationalPoints(JC,x^2 + 83/149*x + 313/596,2);

> B:=ReducedBasis(V);

> #B;

1

We test if there is a quadratic twist of our curve that does have high Mordell-Weil rank.

> d:=-1;

> Cd:=QuadraticTwist(C,d);

> JCd:=Jacobian(Cd);

> Vd:=RationalPoints(JCd:Bound:=100);

> Bd:=ReducedBasis(Vd);

> #Bd;

4

This shows that the Mordell-Weil rank of Jac(Cd)(Q) is at least four. We note that
rankJac(C)(Q(

√
d)) = rankJac(C)(Q)+rankJac(Cd)(Q), so if we can find an upper bound on the

Mordell-Weil rank of Jac(C) over Q(
√

d) then we also find an upper bound on rankJac(Cd)(Q).
We first try this with unproven class group data.

> SetClassGroupBounds(1000);

> K:=QuadraticField(d);

> CK:=BaseChange(C,K);

> JCK:=Jacobian(CK);

> NumberOfGenerators(TwoSelmerGroup(JCK));

5

We find that rankJac(C)(Q(
√

d)) ≤ 5, which means that Jac(C) must indeed have Mordell-Weil
rank 1 over Q. To make the class group computation unconditional, we must check up to the
Minkowski bound for each of the number fields utilized in the computation

> Aa:=AbsoluteAlgebra(JCK‘Algebra);

> L:=Aa[1];

> MinkowskiBound(L);

3763009

The command FactorBasisVerify(IntegerRing(L),1000,MinkowskiBound(L)) would perform
the required check, but will take considerable time to complete.
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Example H125E32

In this example we compute the Mordell-Weil rank of a genus 3 hyperelliptic Jacobian J with
nontrivial 2-torsion in Sha using a different method. Namely we perform a 2-descent on the torsor
parameterizing divisor classes of degree one on the curve as described in [Cre12].

> f := Polynomial([Rationals()| 30, 10, 30, 20, 10, 10, 10, 30, 10 ]);

> f;

10*x^8 + 30*x^7 + 10*x^6 + 10*x^5 + 10*x^4 + 20*x^3 + 30*x^2 + 10*x + 30

> X := HyperellipticCurve(f);

> J := Jacobian(X);

> SetClassGroupBounds("GRH");

> S := TwoSelmerGroup(J);

> #S;

4

> TorsionBound(J,5);

1

Here the 2-Selmer rank is 2 and there is no nontrivial 2-torsion. So the 2-descent on J gives an
upper bound of 2 for the Mordell-Weil rank. However, one can do better.

>J‘TwoSelmerSet;

{}

Calling TwoSelmerGroup also computes the 2-Selmer set of the torsor T parameterizing ratio-
nal divisor classes of degree 1 (because C is everywhere locally solvable, the parameter Al :=

"TwoSelmerGroupNew" was used). This extra information allows us to deduce a better bound for
the rank.

>RankBounds(J);

0 0

In this example the 2-Selmer set is empty, which implies that T is not divisible by 2 in Sha.
Consequently Sha[2] has rank at least 2 (because of well known properties of the Cassels-Tate
pairing). The theory behind these computations is described in [Cre12].

Example H125E33

For hyperelliptic curves of even degree and odd genus it is not always possible to obtain an upper
bound for the Mordell-Weil rank. When the curve does not have index one everywhere locally, it
may not be the case that every rational divisor class can be represented by a rational divisor.
Here we provide an example of an even degree odd genus curve which does not have index one
everywhere locally, but for which we can still compute an upper bound for the Mordell-Weil rank.
The use of SetClassGroupBounds speeds up the computation, but is not necessary.

> f := Polynomial([Rationals()|-9, 8, 8, 1, -8, -8, -7, -2, -7 ]);

> C := HyperellipticCurve(f);

> Genus(C);

3

> Degree(C);

8

> J := Jacobian(C);
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> SetClassGroupBounds("GRH");

> RankBound(J);

WARNING: upper bound is only an upper bound for the rank of Pic^0(X).

2

The warning appears because C does not have index one everywhere locally. In fact it is easy to
see C has no real points. So over the reals it has no rational divisors of odd degree. However C
has points locally at all nonarchimedean primes. This means C fails to have index 1 at exactly
one prime. The obstruction to a rational divisor class being represented by a rational divisor is an
element of the Brauer group. It follows from reciprocity in the Brauer group that every Q-rational
divisor class is represented by a Q-rational divisor. In particular Pic0(C) = J(Q). So we can
disregard the warning.

> HasIndexOneEverywhereLocally(C);

false 0

> Roots(f,RealField(50));

[]

> Evaluate(f,0) lt 0;

true

> &and[ HasIndexOne(C,p) : p in BadPrimes(C) ];

true

125.13 Two-Selmer Set of a Curve

Let C : y2 = f(x) be a hyperelliptic curve of genus g over a number field k. We say
πδ : Dδ → C is a two-cover of C if, over an algebraic closure, πδ is isomorphic as a cover
to the pull-back of an embedding of C into its Jacobian along multiplication by 2. The
two-Selmer set classifies the k-isomorphism classes of two-covers of C that have points
everywhere locally.

The hyperelliptic involution acts on such covers by pull-back: ι∗(πδ) = πδ ◦ ι (apply ι
after πδ). The fake two-Selmer set is the set

{δ : Dδ(kv) 6= ∅ for all places v of k}/ι∗

If this set is empty, then C has no k-rational points. This can happen even if C itself does
have points everywhere locally. If the set is non-empty, it gives information about rational
points on C. See [BS09] for the underlying theory as well as a description of an algorithm
to compute the set.

TwoCoverDescent(C)

Bound RngIntElt Default : −1
Fields SetEnum Default :

Raw BoolElt Default : false

PrimeBound RngIntElt Default : 0
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PrimeCutoff RngIntElt Default : 0
Computes the fake 2-Selmer set as an abstract set. The map returned as second
value can be used to obtain a representation of these abstract elements as ellements
in an algebra, which allows explicit construction of the corresponding cover.

The optional parameters Bound, Fields and Raw perform the same function as
for TwoSelmerGroup and we refer to it for their description. The remaining optional
parameters are specific to this routine and we describe them here.

PrimeBound: Two covers are of very high genus. Hence, according to the Weil
bounds, they can have local obstructions at very large good primes. For instance,
for genus 2 one should check all primes up to norm 1153 and for genus 3 one should
check all primes up to norm 66553. This is very time consuming. One can use
PrimeBound to restrict the good primes to be considered to only those whose norm
do not exceed the given bound. In principle, this can result in a larger set being
returned than the proper two-selmer set.

PrimeCutoff: If the curve has bad reduction at some large prime, it can be
prohibitively expensive to check the local conditions at this prime. This bound
allows a restriction on the norm of bad primes where local conditions are considered.
Setting this bound can result in a larger set being returned than the proper two-
selmer set.

Example H125E34

As an illustration of TwoCoverDescent, we give the Magma-code to perform the computations
related to the examples in [BS09]. First we give some examples of genus 2 curves that have points
everywhere locally, but have an empty 2-Selmer set and hence have no rational points.

> Q:=Rationals();

> Qx<x>:=PolynomialRing( Q );

> C:=HyperellipticCurve(2*x^6+x+2);

> Hk,AtoHk:=TwoCoverDescent(C);

> #Hk;

0

> C:=HyperellipticCurve(-x^6+2*x^5+3*x^4-x^3+x^2+x-3);

> Hk,AtoHk:=TwoCoverDescent(C);

> #Hk;

0

In the following we consider a curve of genus 2 that does have rational points. In fact, its Jacobian
has Mordell-Weil rank 2. We compute its two-covers with points everywhere locally. There are
two. They both cover an elliptic curve over a quadratic extension. We use Chabauty following
[Bru02] to determine the rational points on C. First we check that we can represent the fake
two-Selmer set of the curve with some nice elements.

> f:=2*x^6+x^4+3*x^2-2;

> C:=HyperellipticCurve(f);

> Hk,AtoHk:=TwoCoverDescent(C:PrimeBound:=30);

> A<theta>:=Domain(AtoHk);

> deltas:={-1-theta,1-theta};
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> {AtoHk(d): d in deltas} eq Hk;

true

Next, we determine a factorisation of f into a quartic and a quadratic polynomial.

> L<alpha>:=NumberField(x^2+x+2);

> LX<X>:=PolynomialRing(L);

> g:=(X^2-1/2)*(X^2-alpha);

> h:=2*(X^2+alpha+1);

> g*h eq Evaluate(f,X);

true

For some γ = γ(δ), we have that a 2-cover Dδ covers the elliptic curve

E : y2 = γ g(x).

This allows us to translate the question about rational points on Dδ into a question about L-
rational points on E with the additional property that x is rational. We verify that the two values
of δ we found above, correspond to γ = (1− α)/2.

> LTHETA<THETA>:=quo<LX|g>;

> j:=hom<A->LTHETA|THETA>;

> gamma:=1/2*(-alpha + 1);

> {Norm(j(delta)):delta in deltas} eq {gamma};

true

> E:=HyperellipticCurve( gamma * g );

> P1:=ProjectiveSpace(Rationals(),1);

> EtoP1:=map<E->P1|[E.1,E.3]>;

We present E explicitly as an elliptic curve to Magma

> P0:=E![1,(1-alpha)/2];

> Eprime,EtoEprime:=EllipticCurve(E,P0);

> Etilde:=EllipticCurve(X^3+(1-alpha)*X^2+(2-9*alpha)*X+(16-2*alpha));

> EprimeToEtilde:=Isomorphism(Eprime,Etilde);

> EtoEtilde:=EtoEprime*EprimeToEtilde;

> EtildeToP1:=Expand(Inverse(EtoEtilde)*EtoP1);

We determine a group of finite odd index in E(L).

> success,MWgrp,MWmap:=PseudoMordellWeilGroup(Etilde);

> success;

true

> MWgrp;

Abelian Group isomorphic to Z/2 + Z

Defined on 2 generators

Relations:

2*MWgrp.1 = 0

We determine the set of L-rational points on E that have a Q-rational image under EtildeToP1.

> V,R:=Chabauty(MWmap,EtildeToP1:IndexBound:=2);

> V;
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{

0,

MWgrp.1 - MWgrp.2,

MWgrp.1,

-MWgrp.2

}

> R;

4

Since we found earlier that in this case, there is only one value of γ to consider, we know that any
rational point on C must correspond to one of these points on E. The correspondence is given by
the fact that E and C both cover the x-line. We determine these points explicitly.

> CtoP1 := map< C -> P1 | [C.1,C.3] >;

> pi := Extend( EtildeToP1 );

> { pi( MWmap( v ) ) : v in V };

{ (1 : 1), (-1 : 1) }

> [ RationalPoints( p@@CtoP1 ): p in { P1(Q)| pi( MWmap( v ) ) : v in V } ];

[

{@ (1 : -2 : 1), (1 : 2 : 1) @},

{@ (-1 : -2 : 1), (-1 : 2 : 1) @}

]

125.14 Chabauty’s Method
This is a method for finding the rational points on a curve C of genus at least 2, that
applies when the Mordell-Weil group of Jac(C) has rank less than the genus of C. It
involves doing local calculations at some prime where C has good reduction.

For (hyperelliptic) curves of genus 2 over Q, two separate routines are available in
Magma. In the older one, the user specifies the prime, and the results usually do not
determine the set of rational points precisely. In the new implementation, which is far
more powerful, Chabauty calculations are combined with a “Mordell-Weil sieve” which
puts together information obtained using many different primes, to determine precisely
the set of rational points on the curve. However, this routine does not apply to curves
with no rational points, in fact one rational point must be known, as this plays a role in the
algorithm. Both routines require a generator of the Mordell-Weil group of the Jacobian
(which must have rank 1) to be provided.

In addition a routine Chabauty0 is provided to handle the trivial case where the Jaco-
bian has rank 0.

How Chabauty’s method works: Under the assumption that the rank of J = Jac(C) is
strictly less than the genus of C, the closure V of J(Q) in J(Qp) (in the p-adic topology)
can be described as the locus where certain power series vanish. The dimension of V is at
most the rank of J(Q). The image of C in J (under a natural embedding) will intersect
V in a finite set, and this set must contain C(Q). By examining the power series that
define this finite intersection, one obtains upper bounds for the number of points on C(Q)
in each congruence class modulo p (or any power of p).
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Chabauty0(J)

Given the Jacobian of a hyperelliptic curve C over Q, the function finds all rational
points on C, under the assumption that J(Q) has rank zero.

The assumption is not checked. When it does not hold, the function computes
a subset of C(Q) corresponding (in some sense) to the torsion in J(Q).

Chabauty(P : ptC)

ptC Pt Default :

For a curve C of genus 2 over Q, this returns the full set of rational points. The
algorithm involves Chabauty’s method combined with a Mordell-Weil sieve. The
argument P should be a rational point on the Jacobian of C, and P is assumed to
generate the Mordell-Weil group (which must have rank 1 in order for Chabauty’s
method to be applicable).

The algorithm requires knowledge of one rational point on the curve. (In partic-
ular, it cannot be used to show that a curve has no rational points!) Such a point
may be supplied as the optional argument ptC; otherwise, one is found by searching.

Chabauty(P, p: Precision)

Precision RngIntElt Default : 5
Given a point on the Jacobian of a hyperelliptic curve C over Q, the function uses
Chabauty’s method (at the prime p) to bound the number of rational points on
the curve C, The curve must have good reduction at the prime p, and the point P
should generate a subgroup of index coprime to p in J(Q)/Jtors(Q). The algorithm
assumes that C is in the simplified form y2 = f(x), where f has integral coefficients.

The function returns an indexed set of tuples 〈x, z, v, k〉 such that there are at
most k pairs of rational points on C whose image in P 1 under the x-coordinate map
are congruent to (x : z) modulo pv, and such that the only rational points on C
outside these congruences classes are Weierstrass points.

If the optional parameter Precision is supplied, then in the returned data each
of the v’s will be greater than or equal to Precision. (This might take some time
because the algorithm is not optimised for this.)

Example H125E35

In this example, which continues Example H125E27, we use both implementations of Chabauty
to prove that the curve y2 = x6 + x2 + 2 has only the obvious six rational points.

> _<x> := PolynomialRing(Rationals());

> C := HyperellipticCurve(x^6+x^2+2);

> ptsC := Points(C : Bound:=1000); ptsC;

{@ (1 : -1 : 0), (1 : 1 : 0), (-1 : -2 : 1), (-1 : 2 : 1),

(1 : -2 : 1), (1 : 2 : 1) @}

> J := Jacobian(C);

> RankBound(J);
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1

So the Jacobian has rank at most 1. Next we ask whether any of the points on C give us points
of infinite order on J .

> PJ1 := J! [ ptsC[3], ptsC[1] ];

> Order(PJ1);

8

> PJ2 := J! [ ptsC[5], ptsC[1] ];

> Order(PJ2);

0

This means PJ2 has infinite order in J(Q). In Example H125E27 we proved that PJ2 is not
divisible in J(Q). Since we now know J(Q) has rank 1, we can conclude that PJ2 is a generator
of J(Q)/J(Q)tors. Therefore we can use it for Chabauty’s method.

> all_pts := Chabauty(PJ2); all_pts;

{ (1 : -2 : 1), (-1 : -2 : 1), (1 : 2 : 1),

(1 : -1 : 0), (1 : 1 : 0), (-1 : 2 : 1) }

So we find that we already had the full set of rational points. We could have reached the same
conclusion using the other implementation of Chabauty, where we specify that the method be
applied at the prime 3 (the most natural choice, since it is the smallest prime of good reduction).

> BadPrimes(C);

[ 2, 7 ]

> Chabauty(PJ2, 3);

{@ <1, 1, 4, 1>, <80, 1, 4, 1>, <1, 0, 4, 1> @}

This tells us that there are at most 3 pairs of rational points on C, apart from Weierstrass points.
In fact, one can easily check that there are no rational Weierstrass points. Therefore, the 6 known
points are the only rational points on C.

Example H125E36

In this example we show that there are precisely 6 rational points on the curve y2 = x6 + 8.

> _<x> := PolynomialRing(Rationals());

> C := HyperellipticCurve(x^6+8);

> ptsC := Points(C : Bound:= 1000); ptsC;

{@ (1 : -1 : 0), (1 : 1 : 0), (-1 : -3 : 1), (-1 : 3 : 1),

(1 : -3 : 1), (1 : 3 : 1) @}

> J := Jacobian(C);

> PJ := J! [ ptsC[5], ptsC[1]];

> Order(PJ);

0

> RankBound(J);

1

This shows that J(Q) has rank 1, and PJ has infinite order. Now we check that PJ generates
J(Q)/Jtors(Q). (For more explanation, see the similar calculation in Example H125E27).

> heightconst := HeightConstant(J : Effort:=2, Factor);
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> LogarithmicBound := Height(PJ) + heightconst; // Bound on h(Q)

> AbsoluteBound := Ceiling(Exp(LogarithmicBound));

> PtsUpToAbsBound := Points(J : Bound:=AbsoluteBound );

> ReducedBasis([ pt : pt in PtsUpToAbsBound ]);

[ (x^2 - x + 1, 3, 2) ]

[0.326617338771488428260076768590]

> Height(PJ);

0.326617338771488428260076768590

This shows there are no points in J(Q) with canonical height smaller than that of PJ , so PJ is
a generator modulo torsion and we may use it for Chabauty’s method.

> all_pts := Chabauty(PJ : ptC:=ptsC[1]); all_pts;

{@ (1 : -1 : 0), (-1 : -3 : 1), (1 : 3 : 1),

(-1 : 3 : 1), (1 : -3 : 1), (1 : 1 : 0) @}

Example H125E37

In Example H125E29 (in the section on 2-Selmer groups) we found a curve of rank 2. Although
we cannot apply Chabauty’s method to get information about the full set of rational points on C,
we can still apply the routines to find all points on C whose images on J lie in a given subgroup
of rank 1.

> _<x> := PolynomialRing(Rationals());

> C := HyperellipticCurve( x*(x+1344^2)*(x+10815^2)*(x+5406^2)*(x+2700^2) );

> J := Jacobian(C);

> ptsC := Points(C : Bound := 10^6); ptsC;

{@ (1 : 0 : 0), (0 : 0 : 1), (43264 : -44828581639628800 : 1),

(43264 : 44828581639628800 : 1) @}

> PJ := J! [ ptsC[3], ptsC[1] ]; Order(PJ);

0

Now we find all the points P ∈ C(Q) for which the image P − P0 ∈ J(Q) lies in the subgroup
generated by PJ , where P0 denotes ptsC[1].

> pts := Chabauty(PJ : ptC:=ptsC[1] ); pts;

{ (-1806336 : 0 : 1), (0 : 0 : 1), (43264 : 44828581639628800 : 1),

(1 : 0 : 0), (-29224836 : 0 : 1), (-7290000 : 0 : 1),

(-116964225 : 0 : 1), (43264 : -44828581639628800 : 1) }

Example H125E38

We find all rational points on y2 = x6 + 1, whose Jacobian J has rank 0, ie the group J(Q) is
finite.

> _<x> := PolynomialRing(Rationals());

> C := HyperellipticCurve(x^6+1);

> J := Jacobian(C);

> RankBound(J);

0
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// So we may use Chabauty0.

> Chabauty0(J);

{@ (1 : -1 : 0), (1 : 1 : 0), (0 : 1 : 1), (0 : -1 : 1) @}

This Selmer computation required class/unit computations in the fields given by roots of x6 + 1.
In this example, there’s clearly an approach requiring less work: to use the self-evident map from
C to the elliptic curve y2 = x3 + 1, which has rank 0.
To define the map, we need to refer to the space where C lives, which is a weighted projective
space in which Y has weight 3.

> E := EllipticCurve([0,1]);

> Pr2<X,Y,Z> := Ambient(C);

> CtoE := map< C -> E | [X^2*Z,Y,Z^3] >;

The map is well-defined (otherwise Magma would have already complained).

> CtoE;

Mapping from: CrvHyp: C to CrvEll: E

with equations :

X^2*Z

Y

Z^3

Now find the rational points on E.

> Rank(E);

0

> #TorsionSubgroup(E);

6

> ptsE := Points(E : Bound:=100 ); ptsE;

{@ (0 : 1 : 0), (-1 : 0 : 1), (0 : 1 : 1), (0 : -1 : 1),

(2 : 3 : 1), (2 : -3 : 1) @}

So, these are all the rational points on E. We can see with the naked eye that only those with
X = 0 pull back to rational points on C, giving us the same six points on C that we found before.
Of course, we could instead ask Magma to pull them back:

> for P in ptsE do

> preimageofP := P @@ CtoE;

> Points(preimageofP);

> end for;

{@ (1 : -1 : 0), (1 : 1 : 0) @}

{@ @}

{@ (0 : 1 : 1) @}

{@ (0 : -1 : 1) @}

{@ @}

{@ @}
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125.15 Cyclic Covers of P1

A q-cyclic cover of the projective line is a curve C which admits a degree q morphism
to P1 such that the associated extension of function fields is (geometrically) cyclic. By
Kummer theory, such a curve has an affine model of the form yq = f(x) (at least when
the base field contains the q-th roots of unity). This class of curve includes hyperelliptic
curves. Current functionality for cyclic covers includes testing local solubility, searching
for points and performing descents on curves and their Jacobians when they are defined
over a number field.

Most functionality is implemented in the cases where f(x) is a separable polynomial of
arbitrary degree and q is prime. One notable exception is that the method of descent on
the curve is available for any f(x) that is q-th power free.

125.15.1 Points
A point on a cyclic cover C : yq = fdx

d + fd−1x
d−1 + ... + f0 is specified by a triple

representing a point in the appropriate weighted projective plane.
When d = Degree(f(x)) is divisible by q, we consider points the weighted projective

plane P2(1 : d/q : 1). In this case a point is represented by a triple [X,Y, Z] satisfying

Y q = fdX
d + fd−1X

d−1Z + ...+ f0Z
d.

When d = Degree(f(x)) is not divisible by q, we consider points in the weighted pro-
jective plane P2(q : d : 1). In this case a point is represented by a triple [X,Y, Z] satisfying

Y q = fdX
d + fd−1X

d−1Zq + ...+ f0Z
dq.

RationalPoints(f,q)

Bound RngIntElt Default : 0
DenominatorBound RngIntElt Default : 0
NPrimes RngIntElt Default : 0

For a polynomial f defined over a number field (or Q) this Searches for rational
points on the curve yq = f(x) in a box bounded by Bound (which must be speci-
fied). Returns a set of triples (x, y, z) satisfying yq = F (x, z) where F (x, z) is the ho-
mogenisation of f(x) taking x to have weight LCM(q,Degree(f(x)))/Degree(f(x)).

The search is by a sieve method described in Appendix A of [Bru02]. The param-
eter NPrimes controls the number of primes which are used and DenominatorBound
the size of the denominators used.

HasPoint(f,q,v)

HasPoint(f,q,v)

For a polynomial f defined over a number field k, this checks if the curve defined
by yq = f(x) has any points over the completion kv. The second return value is a
triple of elements in the completion of k at v giving a point on the curve. The triple
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(x, y, z) returned satisfies yq = F (x, z) where F (x, z) is the homogenisation of f(x)
taking x to have weight LCM(q,Degree(f(x)))/Degree(f(x)).

The current implementation for testing local solubility of cyclic covers is poly-
nomial time in the cardinality of the residue field, making it somewhat impractical
for larger primes.

HasPointsEverywhereLocally(f,q)

For a polynomial f defined over a number field k, this returns true if and only if the
curve yq = f(x) has points over all nonarchimedean completions of k.

125.15.2 Descent
Let C be a curve with Jacobian J and suppose ψ : A→ J is an isogeny of abelian varieties.
We say that a morphism of curves π : D → C is a ψ-covering of C if, over an algebraic
closure, π is isomorphic as a cover to the pull-back of an embedding of C into J along ψ.

Now suppose that C : yq = f(x) is a q-cyclic cover of the projective line defined over
a number field k. Any primitive q-th root of unity ζ gives rise to an automorphism: ι
sending a point (x, y) to (x, ζy). This induces an automorphism of the Jacobian. Hence
the endomorphism ring of the Jacobian contains the cyclotomic ring Z[ζ], and in particular
the endomorphism φ = 1 − ζ. The φ-Selmer set of C classifies isomorphism classes of φ-
coverings of C which are everywhere locally soluble. There is an action of ι on these
coverings. The quotient by this action is known as the fake φ-Selmer set of C. If this set
is empty, then C has no k-rational points. This can happen even if C itself has points
everywhere locally. Even when this set is non-empty, it gives information about rational
points on C. When q = 2, φ is multiplication by 2, in which case the φ-Selmer set is the
same as the 2-Selmer set described in TwoCoverDescent.

qCoverDescent(f,q)

PrimeBound RngIntElt Default : 0
PrimeCutOff RngIntElt Default : 0
KnownPoints Set Default :

Verbose CycCov Maximum : 3
Computes the fake φ-Selmer set of the cyclic cover C : yq = f(x) as an abstract
set. The first return value is the fake φ-Selmer set given as a subset of the cartesian
product of number fields having defining polynomials the irreducible factors of f .
The map returned is from this cartesian product into the abstract group A(S, q)
involved in the computation (the unramified outside S subgroup of the quotient
of the etale algebra associated to the ramification points of C by the subgroup
generated by scalars and q-th powers).

The input f must be a q-th power free polynomial defined over a number field k
with class number 1.

The optional parameters PrimeBound and PrimeCutoff have the same meaning
as those used the TwoCoverDescent for hyperelliptic curves. Only good primes up
to PrimeBound and bad primes up to PrimeCutoff will be considered in the local
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computations. If either of these parameters is not set to default, the set returned
might be strictly larger than the fake φ-Selmer set.

One can obtain a lower bound for the size of the φ-Selmer set by considering
the images of known global points on C. This often speeds up the computation
considerably as the first few primes might be sufficient to show that the φ-Selmer
set is equal to the set of images of the known rational points. A set of known
points may be passed in using the parameter KnownPoints. These should be given
as triples of the type returned by RationalPoints.

Example H125E39

The following computation shows that the genus 15 curve defined by the equation y7 = 2x7 + 6
has no rational points even though it is everywhere locally solvable.

> _<x> := PolynomialRing(Rationals());

> RationalPoints(3*x^7+6,7 : Bound := 1000);

{@ @}

> HasPointsEverywhereLocally(3*x^7+6,7);

true

> time Sel := qCoverDescent(3*x^7+6,7 : PrimeBound := 1000);

Time: 0.450

> Sel;

{}

125.15.3 Descent on the Jacobian
Suppose J is the Jacobian of the cyclic cover C defined by yq = f(x) over a field k
containing the q-th roots of unity. If k is a number field, then the φ-Selmer group of J is a
finite group which contains J(k)/φ(J(k)). Computing the φ-Selmer group can be used to
give an upper bound for the rank of J(k). In the case q = 2, this reduces to the 2-Selmer
group computed with TwoSelmerGroup.

For q prime the φ-Selmer group may be computed using an algorithm of Poonen-
Schaefer [PS97]. Their algorithm actually computes a fake Selmer group, which is a quo-
tient of the true Selmer group by a subgroup of order dividing q.

When the base field does not contain the q-th roots of unity, one still obtains information
by computing the φ-Selmer group over the cyclotomic extension. For details see [PS97],
or consider the example below.
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PhiSelmerGroup(f,q)

ReturnRawData BoolElt Default : false

Verbose Selmer Maximum : 3
For a polynomial f over a number field k, ths computes the (fake) φ-Selmer group of

the Jacobian of the curve yq = f(x) over the field k(µq) obtained by adjoining the q-th
roots of unity to k. The polynomial f(x) must be separable and q must be prime.

There are two steps in the algorithm which may require a significant amount of time: the
first is the computation of class groups of the extensions of k(µq) given by the irreducible
factors of f(x); the second is the computation of the local images of the descent map at
the prime(s) above q.

The (fake) Selmer group is returned as a finite abelian group S, together with a map
from S to some affine algebra A, which represents the standard map from the Selmer group
to A∗/k∗(A∗)q or to A∗/(A∗)q correspondingly as the degree of f(x) is or is not divisible
by q.

When called with ReturnRawData the program will yield three additional return val-
ues, expvecs, factorbase and selpic1. The first two are used to specify the images in
A∗/k∗(A∗)q of the (fake) Selmer group generators (in unexpanded form). This is done
exactly as for TwoSelmerGroup. selpic1 is an element of the supergroup containing the
(fake) Selmer group, or it is the empty set. This specifies the coset of the (fake) Selmer
group corresponding to the (fake) Selmer set of the Pic1 torsor as described in [Cre12].
When the curve has points everywhere locally this determines whether or not the torsor
is divisible by φ in Sha, which in turn yields more information on the rank.

RankBound(f,q)

RankBounds(f,q)

ReturnGenerators BoolElt Default : false

Verbose Selmer Maximum : 3
An upper (or a lower and upper) bound for the rank of the Jacobian of the cyclic
cover defined by yq = f(x). The upper bound is obtained by performing a descent as
described above and incorporates the information on the Pic1 torsor thus obtained.
The lower bound is obtained by a naive (and rather inefficient) search for divisors
on the curve.

If the optional parameter ReturnGenerators is set to true, then a third value
will be returned. This will be a list of univariate polynomials defining divisors on
P1 that lift to divisors on the curve. The images of these in the Mordell-Weil
group generate a subgroup of rank at least as large as the lower bound provided.
Independence of these points is determined by considering their images in the (fake)
Selmer group.

Example H125E40

In this example we use descents to determine both the rank of the Mordell-Weil group and the
3-primary part of Sha for the Jacobian J of a genus 4 curve C over the rationals.

> _<x> := PolynomialRing(Rationals());
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> f := 3*(x^6 + x^4 + 4*x^3 + 2*x^2 + 4*x + 3);

> k := CyclotomicField(3);

> IsIrreducible(PolynomialRing(k)!f);

true

> SelJ,m,expvecs,fb,SelPic1 := PhiSelmerGroup(f,3 : ReturnRawData);

> Ilog(3,#SelJ);

2

In this example the map from the genuine Selmer group to the fake Selmer group has a kernel of
order 3. This is because f has degree divisible by q = 3 and is irreducible. Hence the φ-Selmer
group has 3-rank 3. The fact that f is irreducible also implies that there is no nontrivial φ-torsion
on J defined over k. Thus the φ-Selmer group gives an upper bound of 2 ∗ 3 = 6 for the rank of
J over k and an upper bound of 3 for the rank over Q (see [PS97]). We can use the information
about the Pic1 torsor to get a better bound

> HasPointsEverywhereLocally(f,3);

true

> SelPic1;

{}

This means that the Pic1 torsor represents a φ-torsion class in the Shafarevich-Tate group of J
that is not divisible by φ. In particular it is nontrivial, and because the Cassels-Tate pairing is
alternating this imples the φ-torsion subgroup of Sha contains a nontrivial subgroup with even
3-rank. Hence, we deduce that J(k)/φ(J(k)) has 3-rank at most 3− 2 = 1, and consequently that
J(Q) has rank ≤ 1. Calling RankBounds will deduce these bounds, and search for generators to
obtain a lower bound.

> r_l, r_u, gens := RankBounds(f,3 : ReturnGenerators);

> [r_l,r_u];

[1,1]

> gens;

[*

T^3 - T^2 + 4*T + 4

*]

This polynomial defines a divisor on P1 that lifts to a degree 3 divisor D on C : y3 = f(x). One
way to verify this is the following:

> K := NumberField(gens[1]);

> IsPower(Evaluate(f,K.1),3);

true 1/4*(-3*K.1^2 + 9*K.1 + 6)

Let D0 denote the pullback of some point P ∈ P1 under the degree 3 map C → P1. Then D−D0 is
a degree 0 defined over the rationals. According to RankBounds its class has infinite order in J(Q).
This was determined by considering its image under the composition, J(Q) → J(k) → Selφ(J/k).
Since there is no nontrivial φ-torsion, this amounts to saying that the image is nontrivial. We can
verify this with the following computations (carried out internally by RankBounds).

> A<theta> := Domain(m); // the algebra representing Sel

> D := Evaluate(gens[1],theta);

> imD := m(D);

> assert imD ne SelJ!0;
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> assert imD in SelJ;

Since the rank over Q has been computed unconditionally it follows that the φ-torsion subgroup
of Sha is isomorphic to (Z/3)2, and since it contains a element not divisible by φ in Sha one can
deduce that the 3-primary part of Sha is also isomorphic to (Z/3)2.

125.15.4 Partial Descent
The (fake) φ-Selmer set of the curve C : yq = f(x) defined over a number field k is
computed using a map which sends a point (x, y) of C to x − θ, where θ is a generic
root of f . This map takes values in the product of the extensions of k defined by the
irreducible factors of f(x). More generally one can specify a partial descent map as follows.
For each irreducible factor fi(x) of f(x), fix an extension Ki/k and an irreducible factor
hi(x) ∈ Ki[x] of fi(x). The map sending (x, y) to (h1(x), ..., hn(x)) induces a well defined
map from C(k) to an appropriate quotient of the units in the product of the Ki. A partial
descent computes the set of elements which restrict into the image of C(kv) for every prime
v of k. This set gives information on the set of rational points of C. If it is empty, then
the curve has no rational points.

Geometrically this set can be understood as follows. The coverings parameterised by
the φ-Selmer set are Galois covers of C with group isomorphic (as a Galois module) to the
φ-torsion subgroup of the Jacobian. By Galois theory, any Galois submodule gives rise to
intermediate coverings. A partial descent computes a set of everywhere locally solvable
intermediate coverings corresponding to some Galois submodule of J [φ].

qCoverPartialDescent(f,factors,q)

PrimeBound RngIntElt Default : 0

PrimeCutoff RngIntElt Default : 0

KnownPoints Set Default :

Verbose CycCov Maximum : 3

Performs a partial descent on the curve yq = f(x) with respect to the descent map
given by factors. The map returned is from this cartesian product into the abstract
group A(S, q) involved in the computation (the unramified outside S subgroup of
the quotient of the etale algebra associated to the orbits of ramification points of C
determined by factors by the subgroup generated by scalars and q-th powers).

The input f must be a separable polynomial defined over a number field k with
class number 1. For each irreducible factor hi ∈ k[x] of f , the list factors must
contain an irreducible factor of hi defined over some (possibly trivial) extension of
k. The optional parameters are the same as for qCoverDescent.
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Example H125E41

Consider the cyclic cover D : y3 = 3(x2 + 1)(x2 + 17)(x2 − 17).

> _<x>:=PolynomialRing(Rationals());

> f := 3*(x^2+1)*(x^2+17)*(x^2-17);

> pts := RationalPoints(f,3 : Bound:=100);

> pts;

{@

[ -1, -12, 1 ],

[ 1, -12, 1 ]

@}

So this appears to have only two rational points. We now apply partial descent by only factorising
the third factor as follows:

> K<th> := NumberField(x^2-17);

> factor := Factorisation(x^2-17,K)[1,1];

> time selmerset, algebra:=qCoverPartialDescent(

> 3*(x^2+1)*(x^2+17)*(x^2-17),[*x^2+1,x^2+17,factor*],3

> : KnownPoints := pts, PrimeBound := 1000 );

Time: 0.530

> selmerset;

{

<1, 9, $.1 + 9>,

<1, 9, 2*$.1 + 2>

}

> delta := <1,9,2+2*th>;

Each element of selmerset corresponds to a covering of D and every rational point on D lifts
to one of these two coverings. For example δ corresponds to a covering Yδ of D with defining
equations

λ2y3
1 = x2 + 1,

9λ2y3
2 = x2 + 17,

(2θ + 2)λy3
3 = x− θ,

where θ is a square root of 17. This covering of D also evidently covers the genus one curve defined
over Q(θ),

C : (2θ + 2)v3 = (x2 + 1)(x− θ) .

One can now use the method of Elliptic Curve Chabauty to find all points of Yδ(K) which map
to points of D(Q). Namely any such point gives rise to a point of C(K) with x-coordinate in Q.
Provided we can obtain generators for C(K), such points can be determined using Chabauty.

> P2<x,v,w>:=ProjectivePlane(K);

> C:=Curve(P2, -(delta[3])*v^3 + (x^2+w^2)*(x-th*w) );

> E,CtoE:=EllipticCurve(C);

> twotors := TorsionSubgroup(E);

> #twotors;

1
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> covers,coverstoE:=TwoDescent(E);

> #covers;

1

> cover:=covers[1];

> covertoE:=coverstoE[1];

> pts:={@pt@covertoE : pt in RationalPoints(cover : Bound:=100)@};

> pts;

{@ (1/128*(-153*th + 1377) : 1/1024*(-8109*th + 28917) : 1),

(1/128*(-153*th + 1377) : 1/1024*(6885*th - 17901) : 1),

(1/194688*(-171346689*th + 708942857) : 1/60742656*(-4566609746937*th

+ 18826158509345) : 1), (1/194688*(-171346689*th + 708942857) :

1/60742656*(4566537140481*th - 18825505051241) : 1) @}

> gen := pts[1];

This shows that E(K) ' Z, so gen generates a finite index subgroup.

> A:=FreeAbelianGroup(1);

> AtoE:=map<A -> E | elt :-> Eltseq(elt)[1]*gen >;

To apply Chabauty, we want to use a map E → P1 such that the composition C → E → P1

sends (x, v, w) to x.

> P1:=ProjectiveSpace(Rationals(),1);

> CtoE;

Mapping from: CrvPln: C to CrvEll: E

with equations :

1/16*(9*th - 153)*v

1/128*(-729*th + 1377)*x

-1/17*th*x + w

and inverse

th*$.2

1/16*(-9*th + 153)*$.1

$.2 + 1/128*(1377*th - 12393)*$.3

> EtoP1:=map<E -> P1 | [th*E.2,E.2 + 1/128*(1377*th - 12393)*E.3]>;

> Chabauty(AtoE,EtoP1);

{

-A.1

}

126

> Chabauty(AtoE,EtoP1 : IndexBound:=126);

{

-A.1

}

126

> pointC:= (-A.1)@AtoE@@CtoE;

> pointC;

(-1 : -1 : 1)

Any preimage of this point on Yδ has x = −1, and as such must lie above (−1,−12) ∈ D(Q). A
similar argument proves that the only rational point coming from the other element of the partial
Selmer set is (1,−12), proving D(Q) = {(1, 12), (−1,−12)}.
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125.16 Kummer Surfaces

The Kummer surface K associated to the Jacobian J of a genus 2 curve is the quotient of
J by the inverse map. It can be embedded as a quartic hypersurface in projective 3-space
whose only singularities are 16 ordinary double points. The Jacobian is a double cover
of K ramified at these double points; they are the images of the two-torsion points on J .
Resolving the singularities on K yields a K3-surface.

Currently, Kummer surfaces in Magma are not schemes, but are of type SrfKum.
They can be used to perform arithmetic on the Jacobian without the need for reduction
of divisors. The other nontrivial functionality that uses them is point searching.

The Kummer surface and arithmetic on it are implemented for Jacobians in arbitrary
characteristic following [Mül10b] which extends earlier work by Flynn, described in chapter
3 of [CF96].

125.16.1 Creation of a Kummer Surface

KummerSurface(J)

The Kummer surface of the Jacobian J of a genus 2 curve.

125.16.2 Structure Operations

DefiningPolynomial(K)

The defining polynomial of the Kummer surface K.

125.16.3 Base Ring

BaseField(K)

BaseRing(K)

CoefficientRing(K)

The base field of the Kummer surface K.
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125.16.4 Changing the Base Ring

BaseChange(K, F)

BaseExtend(K, F)

Extends the base field of the Kummer surface K to the field F .

BaseChange(K, j)

BaseExtend(K, j)

Extends the base field of the Kummer surface K by the map j, where j is a ring
homomorphism with the base field of C as its domain.

BaseChange(K, n)

BaseExtend(K, n)

Extends the finite base field of the Kummer surface K over a finite field to the
degree n extension.

125.17 Points on the Kummer Surface

Points are given by their projective coordinates, normalized depending on the base field.

125.17.1 Creation of Points

K ! 0

Returns the image of the identity element on the Kummer surface K, which is
normalized to be the origin (0 : 0 : 0 : 1).

K ! [x1, x2, x3, x4]

Returns the point on the Kummer surface K defined by the projective coordinates
x1, x2, x3, and x4.

K ! P

Given a point P on the Jacobian of K, or on a Kummer surface for which K is a
base extension, this returns the point on K.

IsPoint(K, S)

Given a sequence S = [x1, x2, x3, x4] of elements of the base field of K, the function
returns true if the point specified by the sequence defines the homogeneous coordi-
nates of a point on the Kummer surface K. If so, the corresponding point on K is
returned as the second value.

Points(K,[x1, x2, x3])

Returns the indexed set of points on the Kummer surface K with first three coor-
dinates given by the sequence [x1, x2, x3].
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125.17.2 Access Operations

P[i]

Returns the i-th coordinate of the point P , for 1 ≤ i ≤ 4.

Eltseq(P)

ElementToSequence(P)

Given a point P on a Kummer surface, the function returns the coordinates of P as
a sequence.

125.17.3 Predicates on Points

P eq Q

Given two points on the same Kummer surface, this returns true if and only if the
points P and Q are equal.

P ne Q

Given two points on the same Kummer surface, this returns false if and only if the
points P and Q are equal.

125.17.4 Arithmetic of Points

-P

Returns the negation of the point P on the Kummer surface, equal to P itself.

n * P

P * n

Returns the n-th multiple of the point P on the Kummer surface K.

Double(P)

Returns the double 2 ∗ P of the point P .

PseudoAdd(P1, P2, P3)

Let P and Q be points on the Jacobian J of a genus 2 curve. Given the images P1,
P2, and P3 on the Kummer surface of points P , Q, and P − Q on J , the function
returns the image of P +Q.

PseudoAddMultiple(P1, P2, P3, n)

Let P and Q be points on the Jacobian J of a genus 2 curve. Given the images P1,
P2, and P3 on the Kummer surface of points P , Q, P −Q on J , the function returns
the image of P + n ∗Q.
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125.17.5 Rational Points on the Kummer Surface

RationalPoints(K, Q)

Given the Kummer surface of the Jacobian of a genus 2 hyperelliptic curve defined
over a ring R and sequence Q of three elements of R, the function returns an
indexed set containing those points on K whose first three coordinates correspond
to the three terms of Q.

Example H125E42

We search for some points on the Kummer surface of the hyperelliptic curve y2 = x5 − 7 defined
over the rational field.

> P<x> := PolynomialRing(Rationals());

> C := HyperellipticCurve(x^5-7);

> Genus(C);

2

> J := Jacobian(C);

> K := KummerSurface(J);

> K;

Kummer surface of Jacobian of Hyperelliptic Curve defined by

y^2 = x^5 - 7 over Rational Field

> Points(K, [0,1,2]);

{@ (0 : 1 : 2 : 4) @}

> Points(K, [1,3,2]);

{@ @}

> Points(K, [0,1,3]);

{@ (0 : 1 : 3 : 9) @}

125.17.6 Pullback to the Jacobian

Points(J, P)

RationalPoints(J, P)

Given a point P on the Kummer surface associated to the Jacobian J (of a genus 2
curve), the function returns the indexed set of points on J mapping to P .
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125.18 Analytic Jacobians of Hyperelliptic Curves
This section contains descriptions of functions pertaining to the creation and use of analytic
Jacobians for hyperelliptic curves.

Suppose C is a curve of genus g defined over the complex numbers. The analytic
Jacobian of the curve is an abelian torus and is constructed as follows: We view the
complex points on the curve, C(C), as a compact Riemann surface of genus g. It is
known that the dimension of the vector space of holomorphic differentials is equal to the
genus of the curve. So let φi, i = 1, 2, . . . , g be a basis for this vector space and set
φ = t(φ1, . . . , φg), a vector of holomorphic 1-forms. For a hyperelliptic curve there is a
natural choice of holomorphic differentials, namely φi = xi−1dx/y. We can now define a
mapping Int : C → Cg by

P 7→
∫ ∞

P

φ.

To remove the dependency of this mapping on the path of integration, we define Λ to be
the image of the map from the first homology group of C, H1(C,Z), to Cg which sends
a closed path, σ ∈ H1(C,Z), on the Riemann surface to

∫
σ
φ. Then Λ turns out to be a

lattice in Cg and so we get the complex torus Cg/Λ. We then see that Int is a well-defined
mapping from C into Cg/Λ. We extend this mapping additively to the divisors of degree
zero on C. The Abel part of the Abel-Jacobi theorem states that two divisors map to the
same image under Int if and only if they are linearly equivalent. The Jacobi part of the
theorem asserts that the map is onto. So there is a bijection between the points of Cg/Λ
and the points of the (algebraic) Jacobian.

So far the analytic Jacobian Cg/Λ is just a torus, but it can be made into an abelian
manifold by choosing a polarization. Let A1, . . . , Ag, B1, . . . , Bg be a symplectic homology
basis. That is, the Ai and Bi are closed paths on the Riemann surface such that all
intersection numbers are 0 except that Ai intersects Bi with intersection number 1 for
each i. Let ω1 and ω2 be the g × g-matrices with entries

ω1ij =
∫

Bj

φi,

and
ω2ij =

∫

Aj

φi.

Then the columns of P = (ω1, ω2) form a Z-basis for the lattice Λ = PZ2g. The matrix
P is called the (big) period matrix. The space of complex, symmetric g × g matrices with
positive definite imaginary part is called the Siegel upper-half space of degree g. Because
we chose a symplectic basis for the homology it follows that τ = ω−1

2 ω1 is an element of
Siegel upper half-space. We will refer to τ as the small period matrix.

Set

J =
(

0 1g

−1g 0

)
.

If we define
E(Px, Py) = txJy,
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for any x, y ∈ R2g, then E is a Riemann form for the torus Cg/Λ and so the torus acquires
a polarization. The existence of a Riemann form on a torus is a necessary and sufficient
condition for the torus to be embeddable into projective space. The image is isomorphic
to the (algebraic) Jacobian.

In order for the theory describing the map from the analytic Jacobian to the algebraic
Jacobian (see Mumford [Mum84]) to work we actually need a special symplectic basis linked
to a particular ordering of the roots of the hyperelliptic polynomial. For an example of
such a basis see Mumford [Mum84, Chap III.5]. The basis used can be obtained using
the function HomologyBasis and the roots in the corresponding order are stored as the
attribute A‘Roots (where A is an analytic Jacobian).

125.18.1 Creation and Access Functions

AnalyticJacobian(f)

Given f ∈ C[x] where C is a complex field (see Chapter 25), this function returns the
analytic Jacobian of the hyperelliptic curve defined by y2 = f(x). The polynomial
must have degree at least 3 and the complex field precision at least 20 and, for the
moment, less than 2000.

HyperellipticPolynomial(A)

Returns the polynomial defining the hyperelliptic curve whose Jacobian is A.

SmallPeriodMatrix(A)

The small period matrix of the analytic Jacobian A. If A has dimension g or
equivalently the hyperelliptic curve has genus g, then this is a symmetric g × g
matrix with positive definite imaginary part. If P = (ω1, ω2) is the full period
matrix (see BigPeriodMatrix) then the small period matrix is defined by ω−1

2 ω1.

BigPeriodMatrix(A)

The full period matrix of the hyperelliptic curve of the Jacobian A. If A has di-
mension g or equivalently the hyperelliptic curve has genus g, then this is a g × 2g
matrix. The analytic Jacobian as a torus equals Cg/Λ, where Λ is the Z-lattice
spanned by the columns of the period matrix. The period matrix is computed with
respect to the holomorphic differentials φi = xi−1dx/y and a symplectic basis for
the homology that can be retrieved using HomologyBasis.

HomologyBasis(A)

The symplectic homology basis used for the computation of the period matrix of
the Jacobian A. First assume that HyperellipticPolynomial(A) has odd degree.
The function HomologyBasis(A) returns three values which we label basepoints,
loops and S. Then basepoints is a list of points in the complex plane. The re-
turn valueloops is a list of 2g lists of indices into basepoints. So the list [i1,
i2, i3, ...] corresponds to the loop consisting of joining the straight lines from
basepoints[in] to basepoints[in+1] for i = 1, 2, .... These closed loops form a
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homology basis for the curve but probably not a symplectic basis. The third return
value, S, is a matrix giving the linear combinations of the loops that were used to
form a symplectic homology basis and to compute the period matrix.

If HyperellipticPolynomial(A) has even degree then the returned homology
basis is not for the Riemann surface for this curve, but for the curve of odd degree
obtained by sending a = A‘InfiniteRoot to infinity through the linear fractional
transformation given by x 7→ 1/(x− a). So one needs to apply the inverse transfor-
mation to the returned basis in order to get the basis that was used to compute the
period matrix.

Dimension(A)

Genus(A)

The dimension of the Jacobian A as a complex abelian variety. This is equal to the
genus of the curve C for which A is the Jacobian.

BaseField(A)

BaseRing(A)

CoefficientRing(A)

The base field of the Jacobian A.

125.18.2 Maps between Jacobians

ToAnalyticJacobian(x, y, A)

Let A be the analytic Jacobian of y2 = f(x). This function maps the point
(x, y) on the curve to the analytic Jacobian. More precisely, let a = ∞ when
HyperellipticPolynomial has odd degree and a =A‘InfiniteRoot otherwise.
Then it maps the divisor (x, y) − (a, 0) to the analytic Jacobian. As any point
on the algebraic Jacobian is simply a sum of such divisors, we can get its image by
linearity of the map. The function returns a g × 1 matrix. This should be thought
of as an element of Cg/Λ where Λ is the Z-lattice generated by the columns of the
BigPeriodMatrix.

FromAnalyticJacobian(z, A)

Let A be an analytic Jacobian of y2 = f(x), with small period matrix τ . Let z be
a g × 1 complex matrix (thought of as an element of Cg/Λ where Λ is the Z-lattice
generated by the columns of the BigPeriodMatrix). This function returns a list of
g (the dimension of A), or fewer, pairs Pi = 〈xi, yi〉 satisfying y2 = f(x). This is an
element of the algebraic Jacobian when interpreted as the divisor

∑g
i=1 Pi − g∞.
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Example H125E43

We give an example of moving between the algebraic and analytic Jacobians. We take two points
on an algebraic Jacobian, map them to the analytic Jacobian, add them there and map the answer
back to the algebraic Jacobian. We check that the answer corresponds to adding the points on
the algebraic Jacobian.

> P<x> := PolynomialRing(RationalField());

> f := -8*x^5 - 14*x^4 + 28*x^3 - 30*x^2 + 6*x;

> C := HyperellipticCurve(f);

> J := Jacobian(C);

> pts := ReducedBasis(RationalPoints(J:Bound:=500)); pts;

[ (x^2 + 1, -3*x + 5, 2), (x^2 - 4/9*x + 1/9, -55/27*x + 43/27, 2) ]

This Jacobian has rank 2 and these are two generators. We will use them as our two points.

> P1 := pts[1]; P2 := pts[2];

> C<I> := ComplexField(50);

> K<x> := PolynomialRing(C);

> f2 := Evaluate(f,x);

> div1 := [r[1] : r in Roots(Evaluate(ElementToSequence(P1)[1],x))];

> div1 := [<d1,Evaluate(ElementToSequence(P1)[2],d1)> : d1 in div1];

> div2 := [r[1] : r in Roots(Evaluate(ElementToSequence(P2)[1],x))];

> div2 := [<d1,Evaluate(ElementToSequence(P2)[2],d1)> : d1 in div2];

> A := AnalyticJacobian(f2);

We are working with 50 decimal places. The sequences div1 and div2 are the two points on the
algebraic Jacobian represented as pairs of 〈x, y〉 coordinates.

> pt1 := &+[ToAnalyticJacobian(d[1],d[2],A) : d in div1];

> pt2 := &+[ToAnalyticJacobian(d[1],d[2],A) : d in div2];

Now pt1 and pt2 are the images of the two points P1 and P2 on the analytic Jacobian (two 2× 1
matrices).

> sum := FromAnalyticJacobian(pt1+pt2,A);

> sum;

[ <0.62500000000000000000000000000000000000000000000024 +

-1.4999999999999999999999999999999999999999999999992*I,

1.7343750000000000000000000000000000000000000000053 +

-11.718749999999999999999999999999999999999999999985*I>,

<0.62500000000000000000000000000000000000000000000036 +

1.4999999999999999999999999999999999999999999999992*I,

1.7343750000000000000000000000000000000000000000075 +

11.718749999999999999999999999999999999999999999986*I> ]

Now we have mapped sum back to the algebraic Jacobian where it is given as a sequence of two
〈x, y〉 coordinates. We compare the polynomial having these two x-coordinates as roots, with the
algebraic sum of P1 and P2.

> clst := Coefficients((x-sum[1][1])*(x-sum[2][1]));

> xpol := P![BestApproximation(Re(c),1000) : c in clst];
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> xpol;

x^2 - 5/4*x + 169/64

> P1+P2;

(x^2 - 5/4*x + 169/64, 125/16*x - 403/128, 2)

125.18.2.1 Isomorphisms, Isogenies and Endomorphism Rings of An-
alytic Jacobians

In this section we discuss the functionality provided for finding isomorphisms and iso-
genies between different analytic Jacobians and also for computing the endomorphism ring
of an analytic Jacobian.

Suppose we have two abelian varieties A1 = Cg/Λ1 and A2 = Cg/Λ2 with a morphism
φ : A1 7→ A2. This map lifts to a map Cg 7→ Cg, given by some complex g × g matrix, α.
This is called the complex representation of φ. Suppose Λi is spanned by the columns of
the g×2g matrix Pi. As φ(Λ1) ⊂ Λ2, we see that there must exist an integral 2g×2g matrix
M such that αP1 = P2M . M is called the rational representation of φ. If A1 and A2 are
isomorphic and P1 and P2 are Frobenius bases, that is, they provide a basis with respect

to which the polarization is given by the matrix J =
(

0 1g

−1g 0

)
, then it follows that M

must be a symplectic matrix. That is, M must be such that MJ tM = J . The symplectic

matrices act on Siegel upper half-space. If M =
(
a b
c d

)
is a symplectic matrix and τ an

element of Siegel upper half-space, then the action is given by τ 7→ (aτ + b)(cτ + d)−1.
Note that if there is an isomorphism from A1 to A2 with rational representation M then
τ1 equals the result of letting tM (not M) act on τ2.

In the case of finding isomorphisms between abelian surfaces, the code makes use
of a fundamental domain for 2-dimensional upper half-space (see [Got59]). This often
works well even with relatively low precision. The other functions all rely on the function
LinearRelation and work with greater reliability if a high precision is chosen. This also
means that it can happen that these functions miss finding a map. Even if a map is re-
ported it might be an artifact of insufficient precision causing LinearRelation to identify
a relation that disappears at higher precision. Of course, every effort was made to make
these functions work as well as possible and no cases are known where sufficient precision
fails to give correct results.

To2DUpperHalfSpaceFundamentalDomian(z)

Given a complex matrix in 2-dimensional Siegel upper half-space (that is a symmet-
ric matrix with positive definite imaginary part), this function returns two matrices.
The first is an element of the fundamental domain for 2-dimensional Siegel upper
half-space described by Gottschling in [Got59] and the second is a symplectic matrix
that takes the input to the first return value. Note that if the input is equivalent
to an element on the border of the fundamental domain the returned value might
depend heavily on the least significant digits of the input.
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AnalyticHomomorphisms(t1, t2)

Given two small period matrices t1 and t2, this function returns a basis for the Z-
module of 2g× 2g integer matrices M such that there exists a complex g× g matrix
α such that α(t1, 1) = (t2, 1)M .

IsIsomorphicSmallPeriodMatrices(t1,t2)

For two small period matrices t1 and t2, this function finds a 2g × 2g symplectic
integer matrixM such that there exists a complex g×g matrix α such that α(t1, 1) =
(t2, 1)M . Such matrices define isomorphisms between the corresponding analytic
Jacobians. The first return value is true if such a matrix is found, false otherwise.
The second return value is the matrix, if found. Zero matrix otherwise.

IsIsomorphicBigPeriodMatrices(P1, P2)

For two big period matrices P1 and P2, this function finds a 2g×2g symplectic integer
matrix M such that there exists a complex g × g matrix α such that αP1 = P2M .
Such matrices define isomorphisms between the corresponding analytic Jacobians.
The first return value is true if such a matrix is found, false otherwise. The second
and third return values are M and α, if found.

IsIsomorphic(A1, A2)

For two analytic Jacobians A1 and A2 with big period matrices P1 and P2, this
function finds a 2g×2g symplectic integer matrix M such that there exists a complex
g × g matrix α such that αP1 = P2M . Such matrices define isomorphisms between
the analytic Jacobians. The first return value is true if such a matrix is found, false
otherwise. The second and third return values are M and α, if found.

IsIsogenousPeriodMatrices(P1, P2)

For two period matrices (small or big) P1 and P2, this function finds a nonsingular
2g× 2g integer matrix M such that there exists a complex g× g matrix α such that
α(P1, 1) = (P2, 1)M , in case of small period matrices, or αP1 = P2M for big period
matrices. Such a matrix defines an isogeny between the corresponding analytic
Jacobians. The first return value is true if such a matrix is found, false otherwise.
The second return value is M , if found. In the case of big period matrices α is the
third return value.

IsIsogenous(A1, A2)

For two analytic Jacobians A1 and A2 with big period matrices P1 and P2, this
function finds a nonsingular 2g × 2g integer matrix M such that there exists a
complex g × g matrix α such that αP1 = P2M . Such a matrix defines an isogeny
between the analytic Jacobians. The first return value is true if such a matrix is
found, false otherwise. The second and third return values are M and α, if found.
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EndomorphismRing(P)

This function returns the endomorphism ring, as a matrix algebra, of the analytic
Jacobian associated to the given period matrix P . If a big period matrix, P , is given
then it also returns a list of α-matrices such that αP = PM , for each generator, M ,
of the matrix algebra.

EndomorphismRing(A)

This function returns the endomorphism ring, as a matrix algebra, of the given
analytic Jacobian A. Suppose the analytic Jacobian has big period matrix P . The
second return value is a list of α-matrices such that αP = PM , for each generator,
M , of the matrix algebra.

Example H125E44

We give an example of how Magma can be used to find rational isogenies between the Jacobians
of genus 2 curves. Let us consider the two curves

y2 = x5 − 4x4 + 8x2 − 4x,

and
y2 = x5 + 4x4 + 10x3 + 12x2 + x.

These are curves 1 and 3 in the twenty second isogeny class of Smart [Sma97]. We compute their
analytic Jacobians to 100 decimal places.

> K<x> := PolynomialRing(RationalField());

> C<i> := ComplexField(100);

> KC<xc> := PolynomialRing(C);

> f1 := x^5 - 4*x^4 + 8*x^2 - 4*x;

> f1C := Evaluate(f1,xc);

> A1 := AnalyticJacobian(f1C);

> f2 := x^5 + 4*x^4 + 10*x^3 + 12*x^2 + x;

> f2C := Evaluate(f2,xc);

> A2 := AnalyticJacobian(f2C);

We now get a basis for the Z-module of isogenies from A1 to A2. Note that IsIsogenous returns
true for these two Jacobians, but it does not return an isogeny defined over Q.

> Mlst := AnalyticHomomorphisms(SmallPeriodMatrix(A1),SmallPeriodMatrix(A2));

> Mlst;

[

[ 1 0 -1 0]

[ 0 1 0 0]

[ 1 1 1 0]

[ 1 1 -1 2],

[ 1 0 1 0]

[ 0 0 0 -1]

[-1 0 1 -1]
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[ 1 2 1 -1],

[ 0 1 0 -1]

[ 1 0 0 0]

[ 1 1 0 1]

[ 1 1 2 -1],

[ 0 1 0 1]

[ 0 0 -1 0]

[ 0 -1 -1 1]

[ 2 1 -1 1]

]

>

For each of these four “M” matrices let us find the corresponding α matrices.

> P1 := BigPeriodMatrix(A1);

> P2 := BigPeriodMatrix(A2);

> alst := [Submatrix(P2*Matrix(C,M),1,1,2,2)

> *Submatrix(P1,1,1,2,2)^-1 : M in Mlst];

> alst[1][1,1];

9.49857267318279326916448048991143479789137754919824276557860348643797948105949

8481543257426864218501E-101 + -1.4142135623730950488016887242096980785696718753

76948073176679737990732478462107038850387534327641573*i

>

So at least alst[1] does not correspond to a rational isogeny. In general none of the four α-
matrices might correspond to a rational isogeny. But it is possible that some Z-linear combination
of them is defined over the rationals and we want to know whether this actually happens. We
can find out by recognizing the entries of the α-matrices as algebraic numbers. This can be done
using the PowerRelation function.

> SetDefaultRealFieldPrecision(100);

> pol := PowerRelation(C!alst[4][1,1],8:Al:="LLL");

> Evaluate(pol,x);

x^4 + 2*x^2 - 1

It turns out that every entry of each of the alst matrices is in the number field defined by the
polynomial x8 + 12x6 + 34x4 + 52x2 + 1. We can use LinearRelation to write each entry as a
linear combination of the elements of a power basis for this number field. For example:

> aroot := C!Roots(Evaluate(x^8 + 12*x^6 + 34*x^4 + 52*x^2 + 1,xc))[1][1];

> basis := [aroot^i : i in [0..7]];

> LinearRelation(Append(basis,alst[1][1,1]));

[ 0, 411, 0, 293, 0, 107, 0, 9, -40 ]

So we can write each α-matrix as an algebraic number in the number field defined by x8 +12x6 +
34x4 + 52x2 + 1. It is then a simple matter to find a linear combination of the α-matrices that is
defined over Q. In this particular case we get lucky and alst[3] itself is already rational:

> alpha := alst[3];
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> alpha;

[1.1429873912822749822157835483053409594519099948227986612151258432276326359067

38195675448021860172030E-100 + 1.23928539763340698646676489320756860362798512

5201250666217517621001351893530963357790883492962362769E-100*i

-0.99999999999999999999999999999999999999999999999999999999999999999999999999

99999999999999999999999999 + -1.186746029522145753827915120679934647863639129

872566393745293697438092777106745249196918175632802507E-100*i]

[-2.000000000000000000000000000000000000000000000000000000000000000000000000000

000000000000000000000000 + 8.334710799700090834903499884806428065464872993741

227568734726305245439778438567887663105063271942125E-101*i

1.000000000000000000000000000000000000000000000000000000000000000000000000000

000000000000000000000000 + -1.29064186778300376477121365149925086148800581946

5331943514008039451662739730964143625816137036994307E-100*i]

> Matrix(2,2,[Round(Real(x)) : x in Eltseq(alpha)]);

[ 0 1]

[ 2 -1]

So the two Jacobians are Q-isogenous. We can use alpha to map points from the one Jacobian
to the other. We check that it maps rational points to rational points.

> C1 := HyperellipticCurve(f1);

> J1 := Jacobian(C1);

> pts1 := RationalPoints(J1:Bound:=500);

> pts1;

{@ (1, 0, 0), (x^2 - 2*x + 1, 1/2*x + 1/2, 2), (x^2 - 2*x + 1, -1/2*x - 1/2, 2),

(x, 0, 1), (x - 1, 1, 1), (x - 1, -1, 1), (x^2 - 2, 0, 2), (x^2 + 2, 4*x, 2),

(x^2 + 2, -4*x, 2), (x^2 - x, x, 2), (x^2 - x, -x, 2), (x^2 - 4*x - 2, 4*x, 2),

(x^2 - 4*x - 2, -4*x, 2), (x^2 - 4*x + 2, 0, 2), (x^2 - 9/4*x - 4, 3/8*x - 2,

2), (x^2 - 9/4*x - 4, -3/8*x + 2, 2), (x^2 - 52/9*x + 50/9, 152/27*x - 160/27,

2), (x^2 - 52/9*x + 50/9, -152/27*x + 160/27, 2), (x^2 + 16/25*x - 18/25,

152/125*x - 96/125, 2), (x^2 + 16/25*x - 18/25, -152/125*x + 96/125, 2) @}

> P1 := pts1[8]; P1;

(x^2 + 2, 4*x, 2)

> div1 := [r[1] : r in Roots(Evaluate(ElementToSequence(P1)[1],xc))];

> div1 := [<d1,Evaluate(ElementToSequence(P1)[2],d1)> : d1 in div1];

> pt1 := &+[ToAnalyticJacobian(d[1],d[2],A1) : d in div1];

> P2 := FromAnalyticJacobian(alpha*pt1,A2);

> clst := Coefficients((xc-P2[1][1])*(xc-P2[2][1]));

> xpol := K![BestApproximation(Re(c),10^50) : c in clst];

> xpol;

x^2 + x + 1

> C2 := HyperellipticCurve(f2);

> J2 := Jacobian(C2);

> pts2 := RationalPoints(J2:Bound:=500);

> pts2;

{@ (1, 0, 0), (x^2 + 2*x + 1, x - 1, 2), (x^2 + 2*x + 1, -x + 1, 2), (x + 1, 2,

1), (x + 1, -2, 1), (x, 0, 1), (x^2 + x, 2*x, 2), (x^2 + x, -2*x, 2), (x^2 + x +

1, 2*x - 1, 2), (x^2 + x + 1, -2*x + 1, 2), (x^2 - 23*x - 16, 122*x + 84, 2),

(x^2 - 23*x - 16, -122*x - 84, 2), (x^2 + 23/4*x + 9, 59/8*x + 57/2, 2), (x^2 +
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23/4*x + 9, -59/8*x - 57/2, 2), (x^2 - 106/9*x + 1/9, 2599/54*x - 19/54, 2),

(x^2 - 106/9*x + 1/9, -2599/54*x + 19/54, 2), (x^2 - 9/16*x - 1/16, 269/64*x +

21/64, 2), (x^2 - 9/16*x - 1/16, -269/64*x - 21/64, 2) @}

125.18.3 From Period Matrix to Curve

RosenhainInvariants(t)

Given a small period matrix t corresponding to an analytic Jacobian A of genus g,
this function returns a set S of 2g − 1 complex numbers such that the hyperelliptic
curve y2 = x(x − 1)

∏
s∈S(x − s) has Jacobian isomorphic to A. The name of the

function comes from the fact that a hyperelliptic curve in the form y2 = x(x−1)(x−
λ1)...(x− λ2g−1) is said to be in Rosenhain normal form.

Example H125E45

We give an example of how Magma can be used to find the equation of a genus 2 curve whose

Jacobian has Complex Multiplication by a given field. We use the field Q(
√
−2 +

√
2).

> SetSeed(1);

> Q := RationalField();

> P<x> := PolynomialRing(Q);

> R<s> := NumberField(x^2-2);

> PP<x> := PolynomialRing(R);

> RF := NumberField(x^2-(-2+s));

> CMF<t> := AbsoluteField(RF);

> O := MaximalOrder(CMF);

Now, for a CM type Φ, and O the ring of integers, C2/Φ(O) is a torus with Complex Multiplication

by the maximal order of our field Q(
√
−2 +

√
2). In order for this to be an abelian variety we

have to find a principal polarization. This can be done using Algorithm 1 in [Wam99]. In this
case it turns out that a principal polarization is essentially given by a generator of the inverse
different.

> D := Different(O);

> IsPrincipal(D);

true

> xi := -1/8*O.2; // a chosen generator of D^-1

> xi*O eq D^-1;

true

> auts := Automorphisms(CMF : Abelian := true);

> cc := auts[3];

> cc(cc(t)) eq t;

true

> cc(xi^2) eq xi^2;
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true

So cc is complex multiplication and xi squared is in the real subfield. By Theorem 3 of [Wam99]
we see that this gives a principal polarization. We now find a Frobenius basis for our lattice with
respect to the non-degenerate Riemann form given by xi.

> Z := IntegerRing();

> E := Matrix(Z,4,4,[Trace(xi*cc(a)*b) : b in Basis(O), a in Basis(O)]);

> D, C := FrobeniusFormAlternating(E); D;

[ 0 0 1 0]

[ 0 0 0 1]

[-1 0 0 0]

[ 0 -1 0 0]

> newb := ElementToSequence(Matrix(O,C)*Matrix(O,4,1,Basis(O)));

> SetKantPrecision(O,100);

> Abs(Re(Conjugate(xi,2))) lt 10^-10 and Im(Conjugate(xi,2)) gt 0;

true

> Abs(Re(Conjugate(xi,4))) lt 10^-10 and Im(Conjugate(xi,4)) gt 0;

true

The CM type Φ is given by the second and fourth complex embeddings. We can finally write
down a big period matrix and find the element in the Siegel upper half-space corresponding to
our CM Jacobian:

> C := ComplexField(100);

> BigPM := Matrix(C,2,4,[Conjugate(b,2) : b in newb] cat

> [Conjugate(b,4) : b in newb]);

> tau := Submatrix(BigPM,1,3,2,2)^-1*Submatrix(BigPM,1,1,2,2);

We can use EndomorphismRing to check that the analytic Jacobian corresponding to tau does
have CM by the correct field:

> MA := EndomorphismRing(tau); Dimension(MA);

4

> MAGens := SetToSequence(Generators(MA)); MAGens;

[

[-1 0 0 0]

[ 0 -1 0 0]

[ 0 0 -1 0]

[ 0 0 0 -1],

[ 0 0 -17 -7]

[ 0 0 -7 -3]

[ 5 -12 0 0]

[-12 29 0 0]

]

> MP := [MinimalPolynomial(g): g in MAGens];

> IsIsomorphic(NumberField(rep{f: f in MP | Degree(f) gt 1}), CMF);

true

Now let us find a curve with this Jacobian.

> S := RosenhainInvariants(tau);
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> P<x> := PolynomialRing(C);

> f := x*(x-1)*&*{x-a : a in S};

> IC := IgusaClebschInvariants(f);

> ICp := [BestApproximation(Re(r),10^50) : r in

> [IC[1]/IC[1], IC[2]/IC[1]^2, IC[3]/IC[1]^3, IC[4]/IC[1]^5]];

> ICp;

[ 1, 5/324, 31/5832, 1/1836660096 ]

> C1 := HyperellipticCurveFromIgusaClebsch(ICp);

> C2 := ReducedWamelenModel(C1);

> C2;

Hyperelliptic Curve defined by y^2 = -x^5 - 3*x^4 + 2*x^3 + 6*x^2 - 3*x - 1

over Rational Field

Let’s check that this curve’s analytic Jacobian is isomorphic to the one corresponding to tau.

> P<x> := PolynomialRing(C);

> f := -x^5 - 3*x^4 + 2*x^3 + 6*x^2 - 3*x - 1;

> A := AnalyticJacobian(f);

> IsIsomorphicSmallPeriodMatrices(tau,SmallPeriodMatrix(A));

true

[ 1 -2 0 0]

[ 0 0 2 1]

[ 1 -2 5 2]

[ 2 -5 4 2]

125.18.4 Voronoi Cells
This section describes two functions that are concerned with the computation of Voronoi
cells.

Delaunay(sites)

This function computes the Delaunay triangulation for the sites given by sites. The
argument sites should be a sequence of pairs (of type Tup) of real numbers. The
real numbers should all belong to the same real field. For n sites, a sequence of n
sequences is returned. The ith sequence contains the list of indices of the sites to
which site i should be joined to form the triangulation.

Voronoi(sites)

This function computes the Voronoi cells for the sites given by sites. A Voronoi cell
of a site consists of all those points in the plane closer to that site than to any other.
The argument sites should be a sequence of pairs (of type Tup) of real numbers.
The real numbers can be either fixed precision or free reals, but they should all be
in the same real field.

Three sequences, siteedges, dualsites and cells are returned. The sequence
siteedges is what the intrinsic Delaunay would have returned (so it defines the
Delaunay triangulation). The sequence dualsites is a sequence of triples 〈x, y,m〉,
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interpreted as follows: If m is zero the triple represents the point x, y. If m is non-
zero the triple represents a point “at infinity” in the direction of the vector x, y. For
n sites, cells is a sequence of n sequences. The ith sequence is a list [i1, i2, i3, ..., im]
such that the cell around site i is formed by connecting dualsites[i1] to dualsites[i2],
... If a cell is infinite the first and last indices in the sequence point to infinite
points. That is, the two infinite sides are given by the lines (x0, y0) + t(x1, y1), for
t ≥ 0 where (x0, y0) equals dualsites[i2][1], dualsites[i2][2] and (x1, y1) equals dual-
sites[i1][1], dualsites[i1][2] or (x0, y0) equals dualsites[im-1][1], dualsites[im-1][2] and
(x1, y1) equals dualsites[im][1], dualsites[im][2].
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Chapter 126

HYPERGEOMETRIC MOTIVES

126.1 Introduction
Let ~α, ~β ∈ Cn be n-tuples (or multisets) of complex numbers. For arithmetic applica-

tions we will eventually take them to be rationals, and for purposes of monodromy will
largely need only to consider them modulo 1.

Consider the generalised hypergeometric differential equation

z(θ + α1) · · · (θ + αn)F (z) = (θ + β1 − 1) · · · (θ + βn − 1)F (z), θ = z
d

dz
,

whose only singularities are regular at 0, 1, and ∞. For simplicity of exposition, we assume
that the β’s are distinct modulo 1, when a basis of solutions around z = 0 is given by

z1−βi
nFn−1

(
α1 − βi + 1, . . . , αn − βi + 1
β1 − βi + 1, ..∨.., βn − βi + 1

∣∣∣∣ z
)

for i = 1 . . . n, and the ith term βi − βi + 1 is suppressed. The generalised hypergeometric
function nFn−1 is given by

nFn−1

(
a1, . . . , an

b1, . . . , bn−1

∣∣∣∣ z
)

=
∞∑

k=0

(a1)k · · · (an)k

(b1)k · · · (bn−1)k

zk

k!
,

where the Pochhammer symbol is given by (x)k = (x)(x+ 1) · · · (x+ k − 1); the k! in the
denominator of the above display can thus be thought of as (1)k, which was the suppressed
term. Note that shifting all the α and β by some fixed amount keeps the nFn−1 expression
the same, while only modifying the z1−βi term. Also, switching α and β can be envisaged
in terms of the map z → 1/z that swaps 0 and ∞.

A theorem of Pochhammer says that the above differential equation has (n − 1) in-
dependent holomorphic solutions around z = 1. Let G denote the fundamental group of
the thrice punctured Riemann sphere, and V~α,~β the solution space around a base point.
We have a monodromy representation M : G → GLn(V~α,~β). Writing g0, g1, g∞ ∈ G for
loops about 0,1,∞, we find that M(g0) has eigenvalues e−2πiβj and M(g∞) has eigenval-
ues e2πiαj , implying that we are mainly concerned with ~α and ~β only modulo 1. Indeed,
one can note that if we take F = nFn−1(~a,~b|z) and ~x ∈ Zn, ~y ∈ Zn−1, then generically
nFn−1(~a + ~x,~b + ~y|z) is a linear combination of rational functions times derivatives of F
(this is a contiguity relation). Meanwhile, the above fact from Pochhammer implies that
M(g1) must have (n − 1) eigenvalues equal to 1 (all with independent eigenvectors), and
so this element is a pseudo-reflection.
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It turns out that if H ⊆ GLn(C) is generated by A and B with AB−1 a pseudo-
reflection, the H-action on Cn is irreducible if and only if A and B have disjoint sets of
eigenvalues. This is equivalent to all the αi − βj being nonintegral. Moreover, in his 1961
Amsterdam thesis, Levelt showed that, given any eigenvalues, there are (up to conjugacy)
unique A and B realising these eigenvalues with AB−1 a pseudo-reflection. (Much of the
above comes from notes of Beukers.)

For arithmetic purposes, one usually also desires that the eigenvalues be roots of unity
and the sets of them be Galois-invariant. Thus we can specify hypergeometric data H
by (say) two products of cyclotomic polynomials, these products being coprime and of
equal degree. Given such an H, Rodriguez-Villegas conjectures the existence of a family
of pure motives (defined over Q), for which the trace of Frobenius at good primes is given
by a hypergeometric sum defined by Katz [Kat90] (see also [Kat96]). For each rational
t 6= 0, 1, there should be a motive Ht whose L-function satisfies a functional equation of a
prescribed type, with the Euler factors at good primes given in terms of Gauss sums (the
bad Euler factors are less understood, and depend on deformation theory).

One can also relate such motives to more traditional objects in many cases. For in-
stance, there is one hypergeometric datum in degree 1, which can be specified by α = [ 12 ]
and β = [0], these being rationals corresponding to the second and first cyclotomic poly-
nomials respectively (by convention, we take β to contain the smallest such rational). The
L-function here corresponds to the quadratic field Q(

√
t(t− 1)). In degree 2 there are 13

such data, of which 3 are of weight 0 (see below) and give Artin representations of number
fields, while the other 10 are of weight 1, and yield elliptic curves (explicitly calculated by
Cohen). An example in higher degree is α = [ 15 ,

2
5 ,

3
5 ,

4
5 ] and β = [0, 0, 0, 0], corresponding

respectively to the 5th cyclotomic polynomial and the 4th power of the first cyclotomic
polynomial, and this is associated to the Calabi-Yau quintic 3-fold given by

x5
1 + x5

2 + x5
3 + x5

4 + x5
5 = 5tx1x2x3x4x5.

The weight w of a hypergeometric motive can be defined in terms of how much the α and
β interlace (considered as roots of unity). In particular, if they are completely interlacing,
then the weight is 0, and the resulting motive corresponds to an Artin representation.
Write D(x) = #{α : α ≤ x} −#{β : β ≤ x}. Then w + 1 = maxxD(x) −minxD(x), so
that the above 3-fold has weight 3 (from the four β’s at 0). This weight controls how large
the coefficients of the Euler factors will be.

The trace at q of a hypergeometric motive (for the parameter t) is given in terms of
Gauss sums gq over Fq. Associated to hypergeometric data is a GammaArray, and one
defines Gq(r) =

∏
v gq(−rv)γv , and also the MValue by M =

∏
v v

vγv . For primes p with
vp(Mt) = 0 the hypergeometric trace is then given by

Uq(t) =
1

1− q

(q−2∑
r=0

ωp(Mt)rQq(r)
)
,

where ωp is the Teichmüller character and Qq(r) = (−1)m0qD+m0−mrGq(r) where mr is
the multiplicity of r

q−1 in the β and D is a scaling parameter that involves the Hodge
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structure (one expression is m0 = w + 1 − 2D). One uses p-adic Γ-functions to expedite
the computation of the above Gauss sums. The Euler factor is given by the standard recipe
Ep(T ) = exp

(−∑
n Upn(t)Tn/n

)
, and this is a polynomial that satisfies a local functional

equation.

126.2 Functionality

126.2.1 Creation Functions

HypergeometricData(A, B)

HypergeometricData(F, G)

These are two of the principal ways of specifying hypergeometric data. The first
takes two sequences A and B (of the same length) of rationals, which must be disjoint
upon reduction modulo 1, and each of which must be Galois-invariant when taking
the corresponding roots of unity (for instance, if 1

6 is specified, 5
6 is also given). The

second takes two products F and G of cyclotomic polynomials, these products being
coprime and of the same degree. NOTE: the routine will always switch A and B
(or f and g) so that the latter has the smallest rational in [0, 1) in it.

HypergeometricData(G)

This is a third way to specify hypergeometric data, by giving a sequence of integersG
such that

∑
v vG[v] = 0. Here we have Pα(T )/Pβ(T ) =

∏
v(T v − 1)G[v], and the

polynomials can be determined via Möbius inversion. Again α and β will be reversed
if necessary (which corresponds to negating all the entries of G).

HypergeometricData(G)

This is a fourth way to specify hypergeometric data, by giving a list G of nonzero
integers (with repetition possible) corresponding to the sequence G of the previous
intrinsic, with negative integers for those where G[v] is negative. The sum of the
members of the list must be 0.

HypergeometricData(F, G)

This is a fifth way to specify hypergeometric data, by giving two arrays F and G of
integers, corresponding to the cyclotomic polynomials to be used.

HypergeometricData(E)

This is a utility intrinsic that take a sequence E of two sequences and then passes
these two sequences to the intrinsics above.

Twist(H)

This intrinsic takes hypergeometric data H, and adds 1/2 to every element in α
and β, returning new hypergeometric data. Note that the new α and β may be
switched due to this twisting.
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PrimitiveData(H)

Given hypergeometric data H, return its primitive associated data. This is most
easily described in terms of GammaList, where one divides all the elements by the
gcd.

PossibleHypergeometricData(d)

Weight RngIntElt Default : false

TwistMinimal BoolElt Default : false

CyclotomicData BoolElt Default : false

Primitive RngIntElt Default : 0

Given a degree d, generate all possible examples of hypergeometric data of that
degree, returned as a sequence of pairs of sequences, each sequence therein having
d rationals. If Weight is specified, restrict to data of this weight. If TwistMinimal
is specified, only give twist-minimal data. If CyclotomicData is specified, return
the sequences of cyclotomic data rather than rationals. If Primitive is true, only
return data that are primitive; if Primitive is a positive integer, return the data
that have this imprimitivity.

126.2.2 Access Functions

Weight(H)

The weight of the given hypergeometric data H.

Degree(H)

The degree of the given hypergeometric data H.

DefiningPolynomials(H)

The (products of cyclotomic) polynomials corresponding to α and β corresponding
to hypergeometric data H.

CyclotomicData(H)

This returns two arrays of integers, specifying which cyclotomic polynomials occur
for α and β corresponding to hypergeometric data H. Thus, for example, Φ3Φ2

4Φ6

would be represented by [3,4,4,6]).

AlphaBetaData(H)

This returns two arrays of rationals, giving the α and β of the hypergeometric data
H.



Ch. 126 HYPERGEOMETRIC MOTIVES 4221

MValue(H)

This returns the scaling parameter M of the given hypergeometric data H. This
is defined by taking Mn =

∏
d|n d

dµ(n/d) for the nth cyclotomic polynomial, and
combining these into the products for α and β, and then dividing these. Another
definition is M =

∏
v v

vγv .

GammaArray(H)

This returns an array of integers corresponding to γv, where these are defined by
Pα(T )/Pβ(T ) =

∏
v(T v − 1)γv . We also have

∑
v vγv = 0.

GammaList(H)

This returns a list of integers corresponding to γv, where sign(γv) · v appears in the
list |γv| times.

H1 eq H2

H1 ne H2

Two instances of hypergeometric data H1 and H2 are equal if they have the same
α and β.

IsPrimitive(H)

Returns true if the given hypergeometric data H is primitive, and the index of
imprimitivity. The latter is the gcd of the elements in the GammaList.

126.2.3 Functionality with L-series and Euler Factors

EulerFactor(H, t, p)

Precision RngIntElt Default : 0
Check BoolElt Default : false

Fake BoolElt Default : false

This intrinsic is the heart of the hypergeometric motive package. It takes hypergeo-
metric data H, a rational t 6= 0, 1, and a prime p, and computes the pth Euler factor
of the hypergeometric motive at t. This uses p-adic Γ-functions, as indicated by
Cohen. The Precision vararg specifies how many terms in the Euler factor should
be computed – if this is 0, then the whole polynomial is computed. The Check
vararg allows one to turn off the use of the (local) functional equation that is used
to expedite the computation process.

The Fake vararg allows one to compute the hypergeometric trace(s) for t with
vp(Mt) = 0 (including wild primes). Whether or not this is the actual Euler factor
depends on how inertia acts. The use of this vararg inhibits the use of the local
functional equation, but one can curtail via Precision, and apply it manually (if
known).

In general, the given prime must not be wild, that is, it must not divide the
denominator of any of the α or β.
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At other bad primes, the Euler factor will depend upon the relevant monodromy.
The primes for which vp(t − 1) > 0 can perhaps be called multiplicative, in that
p should divide the conductor only once (this is related to the pseudoreflection).
Since vp(Mt) = 0 here, the Euler factor (of degree d − 1) can be recovered by the
p-adic Γ-function methods (even when p = 2). Also it is often possible to relate the
(presumed) hypergeometric motive to objects from a deformation. When vp(t− 1)
is even and the weight is also even, the prime p is actually good and has a degree d
Euler factor, even though the hypergeometric trace only gives one of degree (d− 1).
In such a case, the EulerFactor intrinsic with the Fake vararg will return the part
from the hypergeometric trace.

The p with vp(1/t) > 0 correspond to monodromy at∞. The associated inertia is
given by the roots of unity with the β, with maximal Jordan blocks when eigenvalues
are repeated. The same is true for p with vp(t) > 0, where the monodromy is
around 0 (so that the α are used). In Example H126E7), an instance is given where
the inertia is trivialised due to having ζvp(t) = 1.

We can compute the Euler factors at such tame primes as follows. Suppose that
t = t0p

vm with v > 0, where m occurs as a denominator of the α (similarly with
v < 0 and β). Then one takes the smallest q = pf that is 1 mod m, and from the
hypergeometric trace formula extracts the terms

ωp(Mt0)j(q−1)/mQq

(
j(q − 1)
m

)

for 0 ≤ j < m with gcd(j,m) = 1. Denoting these by η, we then have that∏
η(1− ηT f ) is an fth power (due to repetitions in the above extraction), and the

fth root of this is the desired Euler factor of degree φ(m).
When m does not divide vp(t), the Euler factor from it is trivial. One then multi-

plies together all such Euler factors corresponding to the m from the α and β. Each
m is only considered once, even if it appears multiple times in the CyclotomicData,
as the Jordan blocks of the eigenvalues are maximal. Note that the local functional
equation is not used for tame primes, though the computation should not be too
onerous unless q = pf is large.

LSeries(H, t)

BadPrimes SeqEnum Default : []
GAMMA SeqEnum Default : []
Identify BoolElt Default : true

Given hypergeometric data H and a rational t 6= 0, 1, try to construct the L-series
of the associated motive. This will usually need the Euler factors at wild primes
to be specified. Everything else, including tame/multiplicative Euler factors and
γ-factors, can be computed automatically by Magma (these can also be given via
BadPrimes and GAMMA). The Identify vararg indicates whether an attempt should
be made to identify motives of weight 0 as Artin representations, and similarly with
(hyper)elliptic curves for weight 1.
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126.2.3.1 Identification of Hypergeometric Data as Other Objects

ArtinRepresentation(H, t)

Check BoolElt Default : true

Given hypergeometric data H of weight 0 and a rational t 6= 0, 1, try to deter-
mine the associated Artin representation. This is implemented for all such H of
degree 3 or less, and for some of degree 4 and higher. The condition needed is that
GammaList(H) have cardinality 3. When Check is true, good primes up to 100 have
their Euler factors checked for correctness.

EllipticCurve(H)

EllipticCurve(H, t)

Given hypergeometric data H of degree 2 and weight 1 (there are 10 such families)
and a rational t 6= 0, 1, return the associated elliptic curve, as catalogued by Cohen.
When t is not given, return the result over a function field.

For each of the 10 families, the same function can be called for the corresponding
imprimitive data of index r, and the result will generically be an elliptic curve over
an extension of degree r. However, when the xr − 1/Mt splits, the intrinsic will
return an array of elliptic curves corresponding to this splitting.

HyperellipticCurve(H)

HyperellipticCurve(H, t)

Given hypergeometric data H of degree 4 and weight 1 and a rational t 6= 0, 1, return
the associated hyperelliptic curve, if this data is known to correspond to such. When
t is not given, return the result over a function field. There are 18 cases where one
gets a genus 2 curve from the CanonicalCurve (making 36 cases when twisting is
considered), and a few others where CanonicalCurve gives a higher genus curve
and there is a genus 2 quotient. In general, one can try to call IsHyperelliptic
on the CanonicalCurve.

Identify(H, t)

Given hypergeometric data H and a rational t 6= 0, 1, return any known associated
object (else returns false). The return value can (currently) be: an Artin rep-
resentation (weight 0); an elliptic curve over Q (weight 1 in degree 2); an elliptic
curve over a number field (weight 1 in degree 2r with imprimitivity r), or possibly
multiple such curves; or a hyperelliptic curve over Q (weight 1 in degree 4).
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126.2.4 Associated Schemes and Curves

CanonicalScheme(H)

CanonicalScheme(H, t)

Given hypergeometric data H, this constructs a canonical associated scheme. When
the parameter t is given, the specialization is returned, otherwise the result returned
will be a scheme over a function field.

The scheme is determined from the GammaList, with a variable (Xi or Yj) for
every element in the list. The scheme is the intersection of

∑
iXi =

∑
j Yj = 1 with

∏

i

X
g+

i
i

∏

j

Y
g−

j

j =
1
Mt

,

where the g+
i are the positive elements in the GammaList and the g−j are the negative

ones (one usually moves the latter to the other side of the equation, to make the
exponents positive).

CanonicalCurve(H)

CanonicalCurve(H, t)

Given suitable hypergeometric data H, this tries to construct an associated plane
curve. When the parameter t is given, the specialization at t is returned, otherwise
the return value will be a plane curve over a function field. The curve is constructed
using the GammaList (which indicates the Jacobi sums that need to be taken). When
this list has four elements, it is always possible to get a curve. When the list has
six elements, it is sometimes possible, depending on whether the largest element (in
absolute value) is the negation of the sum of two of the other elements. If it is not
possible to construct such a curve, the intrinsic returns false.

126.2.5 Utility Functions

HypergeometricMotiveSaveLimit(n)

HypergeometricMotiveClearTable()

These are utility intrinsics that will cache the pre-computation of p-adic Γ-functions.
The first indicates to save all computed values when the prime power is less than n,
and the second clears the table. The qth table entry will have (q− 1) elements in it.
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126.3 Examples

Example H126E1

Our first example constructs some hypergeometric motives, and recognises them as being related
to elliptic curves or Artin representations.

> H := HypergeometricData([1/2],[0]); // weight 0

> t := 3/5;

> A := ArtinRepresentation(H,t);

> D := Discriminant(Integers(Field(A))); // -24

> assert IsSquare(D/(t*(t-1))); // Q(sqrt(t(t-1)))

> R := ArtinRepresentationQuadratic(-24);

> assert A eq R;

> //

> H := HypergeometricData([1/4,3/4],[0,0]);

> Weight(H);

1

> DefiningPolynomials(H);

y^2 + 1, y^2 - 2*y + 1

> t := 3/2;

> E := EllipticCurve(H,t); E;

Elliptic Curve defined by y^2 + x*y = x^3 + 1/96*x over Q

> P := PrimesInInterval(5,100);

> &and[EulerFactor(E,p) eq EulerFactor(H,t,p) : p in P];

true

> //

> f := CyclotomicPolynomial(6)*CyclotomicPolynomial(2);

> g := CyclotomicPolynomial(1)^3;

> H := HypergeometricData(f,g); H;

Hypergeometric data given by [ 1/6, 1/2, 5/6 ] and [ 0, 0, 0 ]

> Weight(H);

2

> GammaList(H);

[* -1, -1, -1, -3, 6 *]

> GammaArray(H);

[ -3, 0, -1, 0, 0, 1 ]

> [EulerFactor(H,4,p) : p in [5,7,11,13,17,19]];

[ 125*y^3 + 20*y^2 + 4*y + 1, 343*y^3 - 42*y^2 - 6*y + 1,

-1331*y^3 - 22*y^2 + 2*y + 1, -2197*y^3 - 156*y^2 + 12*y + 1,

4913*y^3 + 323*y^2 + 19*y + 1, 6859*y^3 - 57*y^2 - 3*y + 1 ]

> //

> _<u> := FunctionField(Rationals());

> H := HypergeometricData([-2,0,0,-1,0,1]); H; // weight 1

Hypergeometric data given by [1/6,1/3,2/3,5/6] and [0,0,1/4,3/4]

> HyperellipticCurve(H); // defined over Q(u)

Hyperelliptic Curve defined by y^2 = 4*x^6 - 8*x^5 + 4*x^4 - 64/729/u

> t := 4;

> C := Specialization($1,t); // only works over Q(u)
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> &and[EulerFactor(C,p) eq EulerFactor(H,t,p) : p in P];

true

> //

> H := HypergeometricData([0,-1,0,1,0,1,0,-1]); H; // weight 1

Hypergeometric data given by [1/6,1/3,2/3,5/6] and [1/8,3/8,5/8,7/8]

> MValue(H);

729/4096

> t := 3; // could alternatively specialize later

> E := EllipticCurve(H,t); aInvariants(E);

[ 0, 0, -s, -s, 0] where s^2 is 4096/2187

> &and[EulerFactor(E,p) eq EulerFactor(H,t,p) : p in P];

true

Example H126E2

This is a simple example of twisting hypergeometric data, showing that a related Artin motive is
obtained for the given weight 0 data.

> f := CyclotomicPolynomial(6);

> g := CyclotomicPolynomial(1)*CyclotomicPolynomial(2);

> H := HypergeometricData(f,g); H; assert(Weight(H)) eq 0;

Hypergeometric data given by [ 1/6, 5/6 ] and [ 0, 1/2 ]

> A := ArtinRepresentation(H,-4/5);

> K := OptimisedRepresentation(Field(A));

> DefiningPolynomial(K);

y^6 - 3*y^5 + 3*y^4 - y^3 + 3*y^2 - 3*y + 1

> T := Twist(H); T;

Hypergeometric data given by [ 1/3, 2/3 ] and [ 0, 1/2 ]

> A := ArtinRepresentation(T,-4/5); // can be 1/t sometimes

> L := OptimisedRepresentation(Field(A));

> IsSubfield(L,K), DefiningPolynomial(L);

true Mapping from: L to K, y^3 + 3*y - 1

The same can be said for twisting for (hyper)elliptic curves.

> H := HypergeometricData([2,2],[3]); // Phi_2^2 and Phi_3

> E := EllipticCurve(H,3);

> T := EllipticCurve(Twist(H),1/3); // 1/t here

> IsQuadraticTwist(E,T);

true -4/9

> //

> H := HypergeometricData([5],[8]); // Phi_5 and Phi_8

> C := HyperellipticCurve(H);

> t := 7;

> S := Specialization(C,t);

> T := HyperellipticCurve(Twist(H),1/t);

> Q := QuadraticTwist(T,5*t); // get right parameter

> assert IsIsomorphic(Q,S);
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Example H126E3

This example exercises the primitivity functionality.

> H := HypergeometricData([3],[4]); // Phi_3 and Phi_4

> GammaList(H);

[* -1, 2, 3, -4 *]

> H2 := HypergeometricData([* -2, 4, 6, -8 *]);

> IsPrimitive(H2);

false 2

> PrimitiveData(H2) eq H;

true

> H3 := HypergeometricData([* -3, 6, 9, -12 *]);

> IsPrimitive(H3);

false 3

> PrimitiveData(H3) eq H;

true

> aInvariants(EllipticCurve(H));

[ 0, 0, -64/27/u, -64/27/u, 0 ] where u is FunctionField(Q).1

> aInvariants(EllipticCurve(H2));

[ 0, 0, -s, -s, 0 ] where s^2=(-64/27)^2/u

> aInvariants(EllipticCurve(H3));

[ 0, 0, -s, -s, 0 ] where s^3=(-64/27)^3/u

Example H126E4

Here is an example with the canonical schemes and curves associated to various hypergeometric
data.

> _<u> := FunctionField(Rationals());

> H := HypergeometricData([* -2, 3, 4, -5 *]); // degree 4

> C := CanonicalScheme(H);

> _<[X]> := Ambient(C); C;

Scheme over Univariate rational function field over Q defined by

X[1] + X[2] - 1, X[3] + X[4] - 1,

X[1]^2*X[2]^5 - 3125/1728/u*X[3]^3*X[4]^4

> Dimension(C), Genus(Curve(C)); // genus 2 curve

1 2

> assert IsHyperelliptic(Curve(C));

> CC := CanonicalCurve(H);

> _<x,y> := Ambient(CC); CC;

Curve over Univariate rational function field over Q defined by

x^7 - 2*x^6 + x^5 + 3125/1728/u*y^7 - 3125/576/u*y^6 +

3125/576/u*y^5 - 3125/1728/u*y^4

> b, C2 := IsHyperelliptic(CC); assert b;

> HyperellipticCurve(H); // in the degree 4 catalogue

Hyperelliptic Curve defined over Univariate function field

over Q by y^2 = 4*x^5 - 3125/432/u*x^3 + 9765625/2985984/u^2

> assert IsIsomorphic(HyperellipticCurve(H),C2);
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> // and an example where the curve is reducible

> H := HypergeometricData([* 6,6,-8,-4 *]); // weight 1

> C := CanonicalCurve(H);

> A := AlgorithmicFunctionField(FunctionField(C));

> E<s> := ExactConstantField(A);

> CE := BaseChange(C,E);

> I := IrreducibleComponents(CE); assert #I eq 2;

> _<x,y> := Ambient(I[1]); I[1];

Scheme over E defined by [ where s^2 = 1048576/531441/u ]

x^6 - 2*x^5 + x^4 - s*y^6 + 3*s*y^5 - 3*s*y^4 + s*y^3

> b, C2 := IsHyperelliptic(Curve(I[1])); assert b;

Example H126E5

Here is an example in degree 4 and weight 3. It turns out that the motive from t = −1 has
complex multiplication, and the L-series appears to be the same as that of a Siegel modular form
given by [vGvS93, §8.7]. (This was found by Cohen and Rodriguez-Villegas). This L-series also
appears in Example H127E28.

> H := HypergeometricData([1/2,1/2,1/2,1/2],[0,0,0,0]);

> L := LSeries(H,-1 : BadPrimes:=[<2,9,1>]); // guessed

> CheckFunctionalEquation(L);

-5.91645678915758854058796423962E-31

> LGetCoefficients(L,100);

[* 1, 0, 0, 0, -4, 0, 0, 0, -6, 0, 0, 0, -84, 0, 0, 0, 36, 0, 0, 0, 0,

0, 0, 0, 146, 0, 0, 0, 140, 0, 0, 0, 0, 0, 0, 0, 60, 0, 0, 0, -140,

0, 0, 0, 24, 0, 0, 0, -238, 0, 0, 0, 924, 0, 0, 0, 0, 0, 0, 0, -820,

0, 0, 0, 336, 0, 0, 0, 0, 0, 0, 0, -396, 0, 0, 0, 0, 0, 0, 0, -693,

0, 0, 0, -144, 0, 0, 0, -300, 0, 0, 0, 0, 0, 0, 0, -252, 0, 0, 0 *]

> // compare to the Tensor product way of getting this example

> E := EllipticCurve("32a");

> NF := Newforms(ModularForms(DirichletGroup(32).1,3)); // wt 3 w/char

> L1 := LSeries(E); L2 := LSeries(ComplexEmbeddings(NF[1][1])[1][1]);

> TP := TensorProduct(L1, L2, [ <2, 9> ]); // conductor 2^9 (guessed)

> [Round(Real(x)) : x in LGetCoefficients(TP,100)];

[ 1, 0, 0, 0, -4, 0, 0, 0, -6, 0, 0, 0, -84, 0, 0, 0, 36, 0, 0, 0, 0,

0, 0, 0, 146, 0, 0, 0, 140, 0, 0, 0, 0, 0, 0, 0, 60, 0, 0, 0, -140,

0, 0, 0, 24, 0, 0, 0, -238, 0, 0, 0, 924, 0, 0, 0, 0, 0, 0, 0, -820,

0, 0, 0, 336, 0, 0, 0, 0, 0, 0, 0, -396, 0, 0, 0, 0, 0, 0, 0, -693,

0, 0, 0, -144, 0, 0, 0, -300, 0, 0, 0, 0, 0, 0, 0, -252, 0, 0, 0 ]

Example H126E6

Here is an example showing how to handle bad primes in some cases. The Euler factors at {3, 5, 17}
[where p|(t − 1)] were determined via a recipe from deformation theory by Rodriguez-Villegas,
while at p = 2, Roberts suggested a t-value that would trivialise the conductor (from a number
field analogy), and Tornaŕia then computed the full degree 4 factor (at p = 2) for t = 28.
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> H := HypergeometricData([1/2,1/2,1/2,1/2],[0,0,0,0]);

> Lf := LSeries(Newforms(ModularForms(8,4))[1][1]);

> T := PolynomialRing(Integers()).1; // dummy variable

> f3 := EulerFactor(Lf,3 : Integral)*(1-3*T); // make it a poly

> f5 := EulerFactor(Lf,5 : Integral)*(1-5*T); // via Integral

> f17 := EulerFactor(Lf,17 : Integral)*(1-17*T);

> f2 := 1+T+6*T^2+8*T^3+64*T^4; // determined by Tornaria

> BP := [<2,0,f2>,<3,1,f3>,<5,1,f5>,<17,1,f17>];

> L := LSeries(H,256 : BadPrimes:=BP);

> Conductor(L);

255

> assert Abs(CheckFunctionalEquation(L)) lt 10^(-28);

One need not specify all the bad prime information as in the above example. Here is a variation
on it, with t = 1/28 (note that this actually gives the same L-series, as the data is a self-twist,
with the character induced by twisting being trivial for this choice of t). Note that only the
information at 2 is given to LSeries.

> H := HypergeometricData([1/2,1/2,1/2,1/2],[0,0,0,0]);

> MValue(H);

256

> t := 1/2^8; // makes v_2(Mt)=0

> f2 := EulerFactor(H,t,2 : Fake);

> f2;

64*T^4 + 8*T^3 + 6*T^2 + T + 1

> L := LSeries(H,t : BadPrimes:=[<2,0,f2>]);

> Conductor(L);

255

> assert Abs(CheckFunctionalEquation(L)) lt 10^(-28);

Example H126E7

Here is an example with the quintic 3-fold. The deformation theory at p = 11 here is related to
the Grössencharacter example over Q(ζ5) given in Example H34E24. The action on inertia at
p = 11 involves ζ5 when 11|t, and here it is raised to the 5th power, thus trivialising it. As with
previous example, the deformation theory also involves a weight 4 modular form, here of level 25.

> f := CyclotomicPolynomial(5); g := CyclotomicPolynomial(1)^4;

> H := HypergeometricData(f,g); H, Weight(H); // weight 3

Hypergeometric data given by [1/5,2/5,3/5,4/5] and [0,0,0,0]

3

> t := 11^5; // 11 is now good, as is raised to 5th power

> T := PolynomialRing(Rationals()).1;

> f2 := (1-T+8*T^2)*(1+2*T); // could have Magma compute these

> f3221 := (1-76362*T+3221^3*T^2)*(1-3221*T); // wt 4 lev 25

> // degree 4 factor at 11 comes from Grossencharacter

> // in fact, this is the t=0 deformation: sum_i x_i^5 = 0

> K<z5> := CyclotomicField(5);

> p5 := Factorization(5*Integers(K))[1][1]; // ramified
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> G := HeckeCharacterGroup(p5^2);

> psi := Grossencharacter(G.0,[[3,0],[1,2]]);

> f11 := EulerFactor(LSeries(psi),11 : Integral); f11;

1771561*x^4 - 118459*x^3 + 3861*x^2 - 89*x + 1

> BP := [<2,1,f2>,<5,4,1>,<11,0,f11>,<3221,1,f3221>];

> L := LSeries(H,t : BadPrimes:=BP);

> Conductor(L); // 2*5^4*3221, 5^4 is somewhat guessed

4026250

> LSetPrecision(L,5); LCfRequired(L);

12775

> CheckFunctionalEquation(L); // takes about 40s

-3.8147E-6

Again one need not specify all the bad prime information, as Magma can automatically compute
it at multiplicative and tame primes (however, the local conductor at 5 must be specified).

> EulerFactor(H,t,11); // tame

1771561*T^4 - 118459*T^3 + 3861*T^2 - 89*T + 1

> EulerFactor(H,t,2); // multiplicative

16*T^3 + 6*T^2 + T + 1

> EulerFactor(H,t,3221); // multiplicative

-107637325775281*T^3 + 33663324863*T^2 - 79583*T + 1

One can also choose t so as to trivialise the wild prime 5.

> MValue(H); // 5^5;

3125

> t := 11^5/5^5;

> f5 := EulerFactor(H,t,5 : Fake); // v_5(Mt)=0

> f5;

15625*T^4 - 125*T^3 - 45*T^2 - T + 1

> L := LSeries(H,t : BadPrimes:=[<5,0,f5>]);

> Conductor(L); // 2*3*26321, Magma computes Euler factors

157926

> LSetPrecision(L,9); // about 4000 terms

> CheckFunctionalEquation(L);

-2.32830644E-10

> t := -11^5/5^5; // another choice with v_5(Mt)=0

> f5 := EulerFactor(H,t,5 : Fake); // v_5(Mt)=0

> f5; // four possible Euler factors, one for each Mt mod 5

15625*T^4 + 1750*T^3 + 230*T^2 + 14*T + 1

> L := LSeries(H,t : BadPrimes:=[<5,0,f5>]);

> Conductor(L); // 2*31*331, Magma computes Euler factors

20552

> LSetPrecision(L,9); // about 1300 terms

> CheckFunctionalEquation(L);

4.65661287E-10
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Example H126E8

Here is an example with tame primes. This derives from comments of Rodriguez-Villegas. The
idea is to take hypergeometric data that has weight 0 or 1, and compare it to Artin representations
or hyperelliptic curves.

> T := PolynomialRing(Rationals()).1; // dummy variable

> H := HypergeometricData([3,4,6,12],[1,1,5,5]); // degree 10

> b, HC := IsHyperelliptic(CanonicalCurve(H)); // genus 5

> assert b; Genus(HC);

5

> EulerFactor(Specialization(HC,13^12),13); // 13 becomes good

371293*T^10 - 285610*T^9 + 125229*T^8 - 31096*T^7 + 4810*T^6

- 540*T^5 + 370*T^4 - 184*T^3 + 57*T^2 - 10*T + 1

> EulerFactor(H,13^12,13); // use hypergeometric methods

371293*T^10 - 285610*T^9 + 125229*T^8 - 31096*T^7 + 4810*T^6

- 540*T^5 + 370*T^4 - 184*T^3 + 57*T^2 - 10*T + 1

> assert &and[EulerFactor(Specialization(HC,p^12),p)

> eq EulerFactor(H,p^12,p) : p in [11,13,17,19]];

> assert &and[EulerFactor(Specialization(HC,t0*13^12),13)

> eq EulerFactor(H,t0*13^12,13) : t0 in [1..12]];

One can take a smaller power than the 12th, but then the curve will not become completely good
at the prime. However, the hypergeometric calculations will still be possible.

> EulerFactor(H,17^4,17);

17*T^2 + 2*T + 1

> EulerFactor(H,19^9,19); // takes the Phi_3 term

19*T^2 + 7*T + 1

> EulerFactor(H,19^6,19);

361*T^4 + 114*T^3 + 31*T^2 + 6*T + 1

> EulerFactor(H,1/11^5,11); // degree is phi(1)+phi(5)

-T^5 + 1

> EulerFactor(H,4/11^5,11); // degree is phi(1)+phi(5)

-T^5 + 5*T^4 - 10*T^3 + 10*T^2 - 5*T + 1

A similar exploration is possible with a weight 0 example. Here the Artin representation machinery
is better able to cope with partially good primes.

> H := HypergeometricData([2,3,6],[1,5]); // degree 5

> Q := Rationals();

> EulerFactor(ArtinRepresentation(H,7^6),7 : R:=Q);

-T^5 - T^4 - T^3 + T^2 + T + 1

> EulerFactor(ArtinRepresentation(H,7^3),7 : R:=Q);

T^2 + T + 1

> EulerFactor(ArtinRepresentation(H,7^2),7 : R:=Q);

-T + 1

> EulerFactor(ArtinRepresentation(H,2/11^5),11 : R:=Q);

-T^5 + 5*T^4 - 10*T^3 + 10*T^2 - 5*T + 1

> EulerFactor(H,7^6,7); // compute it directly from H

-T^5 - T^4 - T^3 + T^2 + T + 1
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> EulerFactor(H,7^3,7);

T^2 + T + 1

> EulerFactor(H,7^2,7);

-T + 1

> EulerFactor(H,2/11^5,11);

-T^5 + 5*T^4 - 10*T^3 + 10*T^2 - 5*T + 1

Example H126E9

Here is an example of the use of PossibleHypergeometricData, enumerating the number of pos-
sibilities in small degree. A speed test is also done for the save-limit code.

> for d in [1..8] do

> [#PossibleHypergeometricData(d : Weight:=w) : w in [0..d-1]];

> end for;

[ 1 ]

[ 3, 10 ]

[ 3, 0, 10 ]

[ 11, 74, 30, 47 ]

[ 7, 0, 93, 0, 47 ]

[ 23, 287, 234, 487, 84, 142 ]

[ 21, 0, 426, 0, 414, 0, 142 ]

[ 51, 1001, 1234, 3247, 894, 1450, 204, 363 ]

> D4w1 := PossibleHypergeometricData(4 : Weight:=1);

> D := [HypergeometricData(x) : x in D4w1];

> #[x : x in D | Twist(x) eq x]; // 12 are self-twists

12

> #PossibleHypergeometricData(4 : Weight:=1,TwistMinimal);

43

> #PossibleHypergeometricData(4 : Weight:=1,Primitive);

64

> // speed test for SaveLimit

> H := HypergeometricData([1/2,1/2,1/2,1/2],[0,0,0,0]);

> HypergeometricMotiveSaveLimit(2000);

> time _:=LGetCoefficients(LSeries(H,-1),2000);

Time: 1.040

> time _:=LGetCoefficients(LSeries(H,-1),2000);

Time: 0.540

> HypergeometricMotiveClearTable();

> time _:=LGetCoefficients(LSeries(H,-1),2000);

Time: 1.030
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Chapter 127

L-FUNCTIONS

127.1 Overview

A large variety of ζ-functions and L-functions occur in number theory and algebraic ge-
ometry. Some well-known L-functions include the Riemann ζ-function, the Dedekind ζ-
function of a number field, Dirichlet series associated to characters, and L-series of curves
(e.g., elliptic curves) over the rationals. Magma provides functionality for constructing
such L-functions and computing their values in the complex plane. A typical calculation
might go as follows:

> L := LSeries(EllipticCurve([0, -1, 1, 0, 0]));
> Evaluate(L,2);
0.546048036215013518334126660433

The first line defines an L-series L(E, s) of the elliptic curve

E : y2 + xy = x3 − x2

while the second line computes its value at s = 2. An impatient reader may wish simply
to type LSeries; at the prompt and look at the various LSeries signatures and mimic
the code above, thus getting access to much of the functionality.

Topics covered in this chapter include:

• The built-in L-series which include the Riemann ζ-function, the Dedekind ζ-function of
a number field, Dirichlet series associated to characters, Artin representations, modular
forms, and L-series of elliptic curves;

• The calculation of values, derivatives and Taylor expansions of L-series at a complex
point s0 to desired accuracy;

• A technical description of the L-series object in Magma, together with a description
of how to construct user-defined L-series with any number of gamma factors, provided
that the L-series satisfies a functional equation of the standard type;

• Operations such as division, multiplication and the tensor product of two L-series.

The reader is referred to Manin-Panchishkin [Sha95] Chapter 4, Serre [Ser65] and articles
in [JKS94] for a background on L-functions. The algorithms mostly follow Dokchitser
[Dok04] and the Pari implementation ComputeL [Dok02]. See also Lavrik [Lav67], Tollis
[Tol97] and the exposition in Cohen [Coh00], 10.3.
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127.2 Built-in L-series

An L-series or an L-function is an infinite sum L(s) =
∑∞

n=1 an/n
s in the complex variable

s with complex coefficients an. Such functions arise in many places in mathematics and
they are usually naturally associated with some kind of mathematical object, for instance
a character, a number field, a curve, a modular form or a cohomology group of an algebraic
variety. The coefficients an are certain invariants associated with that object. For example,
in the case of a character χ : (Z/mZ)∗ → C∗ they are simply its values an = χ(n) when
gcd(n,m) = 1 and 0 otherwise.

Magma is able to associate an L-series to various types of object. The intrinsic which
provides access to such pre-defined L-series (apart from the Riemann zeta function that is
not quite associated with anything) is

LSeries(object: optional parameters)
Every such function returns a variable of type LSer. A range of functions may now
be applied to this L-series object as described in the following sections, and these are
independent of the object to which the L-series was originally associated. In fact, an
object of type LSer only “remembers” its origin for printing purposes.

RiemannZeta()

Precision RngIntElt Default :

The Riemann zeta function ζ(s) is returned.
The number of digits of precision to which the values ζ(s) are to be computed

may be specified using the Precision parameter. If it is omitted, the precision of
the default real field will be used.

Example H127E1

Check that ζ(2) agrees numerically with π2/6.

> L := RiemannZeta( : Precision:=40);

> Evaluate(L,2);

1.644934066848226436472415166646025189219

> Pi(RealField(40))^2/6;

1.644934066848226436472415166646025189219

LSeries(K)

Method MonStgElt Default : “Default”
ClassNumberFormula BoolElt Default : false

Precision RngIntElt Default :

Create the Dedekind zeta function ζ(K, s) of a number field K. The series is defined
by

∑
I NormK/Q(I)−s, where the sum is taken over the non-zero ideals I of the

maximal order of K. For K = Q, the series coincides with the Riemann zeta
function.
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The optional parameter Method may be "Artin", "Direct" or "Default" and
specifies whether the zeta function should be computed as a product of L-series of
Artin representations or directly, by counting prime ideals. (The default behaviour
depends upon the field.)

For the "Direct" method, the Dedekind zeta function has a simple pole at
s = 1 whose residue must be known in order to compute the L-values. The
class number formula gives an expression for this residue in terms of the num-
ber of real/complex embeddings of K, the regulator, the class number and the
number of roots of unity in K. If the optional parameter ClassNumberFormula is
set to true, then these quantities are computed on initialization (using Magma’s
functions Signature(K), Regulator(K), #ClassGroup(MaximalOrder(K)) and
#TorsionSubgroup(UnitGroup(K))) and it might take some time if the discrim-
inant of K is large. If ClassNumberFormula is false (default) then the residue is
computed numerically from the functional equation. This is generally faster, unless
the discriminant of K is small and the precision is set to be very high.

The number of digits of precision to which the values ζ(K, s) are to be computed
may be specified using the Precision parameter. If it is omitted the precision is
taken to be that of the default real field.

Example H127E2

This code computes the value of ζ(Q(i), s) at s = 2.

> P<x> := PolynomialRing(Integers());

> K := NumberField(x^2+1);

> L := LSeries(K);

> Evaluate(L, 2);

1.50670300992298503088656504818

This particular example could have been expressed somewhat more succinctly by replacing the
first two lines by either K:=CyclotomicField(4) or K:=QuadraticField(-1).

Example H127E3

The code computes ζ(F, 2) for F = Q( 12
√

3).

> R<x> := PolynomialRing(Rationals());

> F := NumberField(x^12-3);

> L := LSeries(F: Method:="Direct");

Time: 0.078

> Conductor(L), LCfRequired(L);

1579460446107205632 92968955438

The set-up time for the direct method is negligible, but the L-value computation will take days
for this number of coefficients. On the other hand, the normal closure of F is not too large and
has only representations of small dimension:

> G := GaloisGroup(F);

> #G, [Degree(ch): ch in CharacterTable(G)];
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24 [ 1, 1, 1, 1, 2, 2, 2, 2, 2 ]

> time L := LSeries(F : Method:="Artin");

Time: 5.234

It took longer to define the L-series, but the advantage is that it is a product of L-series with very
small conductors, and the L-value calculations are almost instant:

> [Conductor(f[1]) : f in Factorisation(L)];

[ 1, 12, 3888, 576, 243, 15552, 15552 ]

> time Evaluate(L, 2);

1.63925427193646882835990708818

Time: 3.250

Example H127E4

This code follows an example of Serre and Armitage (see [Ser71, Arm71, Fri76]) where the ζ-
function of a field vanishes at the central point.

> _<x> := PolynomialRing(Rationals());

> K<s5> := NumberField( x^2-5 );

> L<s205> := NumberField( x^2-205 );

> C := Compositum(K,L);

> e1 := C!(5+s5);

> e2 := C!(41+s205);

> E:=ext<C | Polynomial( [ -e1*e2, 0, 1] )>;

> A:=AbsoluteField(E);

> DefiningPolynomial(A);

x^8 - 820*x^6 + 223040*x^4 - 24206400*x^2 + 871430400

> Signature(A); // totally real

8 0

> L := LSeries(A);

> LCfRequired(L);

2739

> CheckFunctionalEquation(L);

1.57772181044202361082345713057E-30

> Evaluate(L, 1/2); // zero as expected

-9.98707556173617338749102627597E-62

So the evaluation of L at 1/2 is zero as expected. In fact, L is a product, and one factor has odd
sign:

> L‘prod;

[ <L-series of Riemann zeta function, 1>,

<L-series of Artin representation of Number Field A with

character ( 1, 1, 1, -1, -1 ) and conductor 41, 1>,

<L-series of Artin representation of Number Field A with

character ( 1, 1, -1, -1, 1 ) and conductor 5, 1>,

<L-series of Artin representation of Number Field A with

character ( 1, 1, -1, 1, -1 ) and conductor 205, 1>,

<L-series of Artin representation of Number Field A with
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character ( 2, -2, 0, 0, 0 ) and conductor 42025, 2> ]

> [ ComplexField(9)!Sign(x[1]) : x in $1 ];

[ 1.00000000, 1.00000000, 1.00000000, 1.00000000, -1.00000000 ]

> Sign(L‘prod[5][1]);

-1.00000000000000000000000000000

LSeries(A)

Precision RngIntElt Default :

Creates the L-series of an Artin representation A. (For information about Artin
representations see Chapter 44.)

Example H127E5

L-series of the two characters of Gal(Q(i)/Q) ∼= C2.

> K := QuadraticField(-1);

> triv,sign := Explode(ArtinRepresentations(K));

> Evaluate(LSeries(triv), 2); // zeta(2)=pi^2/6

1.64493406684822643647241516665

> Evaluate(LSeries(sign), 2);

0.915965594177219015054603514933

Example H127E6

We take a polynomial over Q with Galois group A7 and the unique 6-dimensional irreducible
Artin representation a of this group

> load galpols;

> f:=PolynomialWithGaloisGroup(7,6);

> K:=NumberField(f);

> A:=ArtinRepresentations(K);

> a:=A[2];a;

Artin representation of Number Field with defining polynomial

x^7 - 2*x^6 - 7*x^5 + 11*x^4 + 16*x^3 - 14*x^2 - 11*x + 2 over

the Rational Field with character ( 6, 2, 3, 0, 0, 1, -1, -1, -1 )

and conductor 988410721

Its L-series with the default precision of 30 digits needs a lot of coefficients to compute with

> L:=LSeries(a);

> LCfRequired(L);

1830809

We decrease the precision to 8 digits

> L:=LSeries(a: Precision:=8);

> LCfRequired(L);
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52584

Now it takes under 30 seconds to verify the functional equation of L(a, s) and to compute its value
at s = 2.

> CheckFunctionalEquation(L);

-2.9802322E-7

> Evaluate(L,2);

1.1105970

LSeries(E)

Precision RngIntElt Default :

Create the L-series L(E, s) of an elliptic curve E defined over Q or over a number
field.

The number of digits of precision to which the values L(E, s) are to be computed
may be specified using the Precision parameter. If it is omitted the precision is
taken to be that of the default real field.

Note that the computation time for evaluating an L-series grows roughly like
the square root of the conductor (or its norm to Q if the base field is a number
field). Therefore an evaluation might take an unreasonable amount of time if the
conductor of E is much larger than, say, 1010 or so. If only the leading term at s = 1
is required, over Q it is faster to use AnalyticRank or ConjecturalRegulator.

Note also for general number fields it is only conjectured that L(E/K, s) has
a meromorphic continuation to C and also possesses a functional equation. This
conjecture is implicitly used in the computations.

Example H127E7

Consider the curve E : y2 + y = x3 + x2 over Q of conductor 43. It has Mordell-Weil rank equal
to 1, so we expect L(E/Q, 1) = 0 and L′(E/Q, 1) 6= 0 by the Birch-Swinnerton-Dyer conjecture.

> E := EllipticCurve([0,1,1,0,0]);

> Conductor(E);

43

> L:=LSeries(E);

> Evaluate(L, 1);

0.000000000000000000000000000000

> Evaluate(L, 1 : Derivative:=1);

0.343523974618478230618071163922

Now base change E to K = Q(i). The Mordell-Weil rank of E over K is 2:

> Rank(E) + Rank(QuadraticTwist(E,-1));

2

So we expect L(E/K, s) to have a zero of order 2:

> K := QuadraticField(-1);
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> EK := BaseChange(E, K);

> L := LSeries(EK);

> Evaluate(L, 1);

0.000000000000000000000000000000

> Evaluate(L, 1 : Derivative:=1) lt 10^-20;

true

> Evaluate(L, 1 : Derivative:=2);

1.62399545025600030722546910342

LSeries(E, K)

Method MonStgElt Default : “Default”
Precision RngIntElt Default :

Given an elliptic curve E defined over the rationals and a number field K, create
the L-series L(E/K, s) associated with E/K. Note that in general it is only conjec-
tured that L(E/K, s) has an analytic continuation to C and possesses a functional
equation. This conjecture is implicitly used in the computations.

Technically, the resulting L-series is the tensor product of two l-adic repre-
sentations, the one associated to E/Q and the one associated to K/Q. Method
specifies how LSeries(K) should be defined. It is the same parameter as for
LSeries(FldNum), except that when E and K both have wild ramification at either
2 or 3, "Direct" is always used. Note that the conductor of the L-series L(E/K, s)
usually increases very rapidly with the discriminant of K. Consequently, if the used
method is "Direct" or the irreducible constituents of PermutationCharacter(K)
have large dimension, the computation time may be quite substantial.

The number of digits of precision to which the values L(E/K, s) are to be com-
puted may be specified using the Precision parameter. If it is omitted the precision
is taken to be that of the default real field.

Example H127E8

We take the curve E : y2 = x3 + x over the rationals and apply base change to obtain a curve
over Q(

√
5). The resulting L-series L(E, K, s) is in fact the product of L(E/Q, s) and L(F/Q, s)

where F is E twisted by 5.

> E := EllipticCurve([0, 0, 0, 1, 0]);

> F := QuadraticTwist(E, 5);

> L := LSeries(E, QuadraticField(5));

> Evaluate(L, 1);

1.53733828470360522458966069195

> Evaluate(LSeries(E),1) * Evaluate(LSeries(F),1);

1.53733828470360522458966069195

Here is another example over a cyclotomic field. The L-value computations are fast, as here they
only involve one-dimensional twists:

> E := EllipticCurve([0, 0, 0, 1, 0]);
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> L := LSeries(E, CyclotomicField(11));

> time Evaluate(L, 1);

-1.03578452039312258255988860081E-28

Time: 4.797

LSeries(E, A)

Precision RngIntElt Default :

Twisted L-series of an elliptic curve E/Q by an Artin representation A. Currently
does not allow E and A to be simultaneously wildly ramified at either 2 or 3.

Example H127E9

We take the elliptic curve 11A3 and twist it by the characters of Q(ζ5)/Q:

> E := EllipticCurve(CremonaDatabase(),"11A3");

> K := CyclotomicField(5);

> art := ArtinRepresentations(K);

> for A in art do Evaluate(LSeries(E,A),1); end for;

0.253841860855910684337758923351

0.685976714588516438169889514223 + 1.10993363969520543571381847366*$.1

2.83803828204429619496466743334

0.685976714588516438169889514223 - 1.10993363969520543571381847366*$.1

All the L-values are non-zero, so according to the Birch-Swinnerton-Dyer conjecture E has rank 0
over Q(ζ5). Indeed:

> #TwoSelmerGroup(BaseChange(E,K));

1

Example H127E10

As a higher-dimensional example, we twist E = X1(11)/Q by a 2-dimensional Artin representation
that factors through a quaternion Galois group.

> load galpols;

> E:=EllipticCurve("11a3"); // X_1(11)

> f:=PolynomialWithGaloisGroup(8,5); // Quaternion Galois group

> K:=NumberField(f);

> A:=ArtinRepresentations(K);

> assert exists(a){a: a in A | Degree(a) eq 2};a;

Artin representation of Number Field with defining polynomial

x^8 - 12*x^6 + 36*x^4 - 36*x^2 + 9 over the Rational Field with

character ( 2, -2, 0, 0, 0 )

> L:=LSeries(E,a: Precision:=10);

> LCfRequired(L);

208818

> time Evaluate(L,1);

1.678012769
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Time: 23.688

> Sign(L);

1.000000002

LSeries(C)

Precision RngIntElt Default :

ExcFactors SeqEnum Default : []
L-series of a hyperelliptic curve C defined over the rationals.

The number of digits of precision to which the values L(C, s) are to be com-
puted may be specified using the Precision parameter. If it is omitted the preci-
sion is taken to be that of the default real field. If the conductor exponents and
the local factors at (some of) the bad primes are known in advance, they can be
passed as a sequence of tuples <prime,conductor exponent,local factor>, e.g.
ExcFactors:=[〈2, 11, 1− x〉].

Example H127E11

We take the hyperelliptic curve y2 = x5 + 1

> R<x> := PolynomialRing(Rationals());

> C := HyperellipticCurve(x^5+1);

> L := LSeries(C: Precision:=18);

> LCfRequired(L); // need this number of coefficients

1809

> Evaluate(L,1); // L(C,1)

1.03140710417331775

> Sign(L); // sign in the functional equation

1.00000000000000000

The L-value is non-zero, indicating that the Jacobian should have rank 0. In fact, it does:

> RankBound(Jacobian(C));

0

LSeries(Chi)

Precision RngIntElt Default :

Given a primitive dirichlet character χ : (Z/mZ)∗ → C∗, create the associated
Dirichlet L-series L(χ, s) =

∑∞
n=1 χ(n)/ns. The character χ must be defined so

that its values fall in either the ring of integers, the rational field or a cyclotomic
field.

The number of digits of precision to which the values L(χ, s) are to be computed
may be specified using the Precision parameter. If it is omitted the precision is
taken to be that of the default real field.

For information on Dirichlet characters, see Section 19.8.
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Example H127E12

We define a primitive character χ : (Z/37Z)∗ → C∗ and construct the associated Dirichlet L-
function.

> G<Chi> := DirichletGroup(37, CyclotomicField(36));

> L := LSeries(Chi);

> Evaluate(L,1); // depends on the chosen generator of G

1.65325576836885655776002342451 - 0.551607898922910805875537715934*$.1

LSeries(hmf)

Given a cuspidal newform in a space of Hilbert modular forms, this creates the
associated L-series.

Example H127E13

> K := QuadraticField(5);

> H := HilbertCuspForms(K,7*Integers(K),[2,2]);

> f := NewformDecomposition(NewSubspace(H))[1];

> L := LSeries(Eigenform(f));

> LSetPrecision(L,9);

> LCfRequired(L);

198

> time CheckFunctionalEquation(L);

-2.32830644E-10

Time: 16.590

LSeries(psi)

LSeries(psi)

Precision RngIntElt Default :

Given a primitive Hecke (Grössen)character on ideals, construct the associated L-
series.

For more information on these see Section 34.9.
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LSeries(f)

Embedding Map/UserProgram Default :

Precision RngIntElt Default :

Given a modular form f , construct the L-series L(f, s) =
∑∞

n=1 an/n
s, where f has

the q-expansion
∑∞

n=0 anq
n. It is assumed that L(f, s) satisfies a functional equation

of the standard kind (see Section 127.5.1 for the precise form of the functional
equation).

The optional parameter embedding specifies a map which embeds the coefficients
of f into the complex field. By default this is the identity map, so that the coefficients
of f must be coercible into C. Otherwise, the value of the parameter must either be
an object of type Map or a user-defined function e(x) each having domain the base
ring of f and codomain the complex field (or values than can be coerced into the
complex field).

The number of digits of precision to which the values L(f, s) are to be computed
may be specified using the Precision parameter. If it is omitted the precision is
taken to be that of the default real field.

Example H127E14

We define a newform of weight 2 and conductor 16. It is not defined over the integers but rather
over B = Z[i].

> f := Newforms("G1N16k2A")[1]; f;

q + (-a - 1)*q^2 + (a - 1)*q^3 + 2*a*q^4 + (-a - 1)*q^5 + 2*q^6 -

2*a*q^7 + O(q^8)

> B:=BaseRing(f); B;

Equation Order with defining polynomial x^2 + 1 over Z

The two distinct embeddings of B into the complex numbers give rise to two modular forms,
which can be accessed using the ComplexEmbeddings function.

> f1, f2 := Explode(ComplexEmbeddings(f)[1]);

> Coefficient(f,2), Coefficient(f1,2), Coefficient(f2,2);

-a - 1

-1.00000000000000000000000000000 + 1.00000000000000000000000000000*$.1

-1.00000000000000000000000000000 - 1.00000000000000000000000000000*$.1

Thus, f1 and f2 have genuine complex coefficients and we can construct the associated L-series
and compute their L-values, for instance at s = 1.

> L1 := LSeries(f1);

> L2 := LSeries(f2);

> CheckFunctionalEquation(L1);

-2.36658271566303541623518569585E-30

> CheckFunctionalEquation(L2);

-2.36658271566303541623518569585E-30

> v1 := Evaluate(L1,1); v2 := Evaluate(L2,1); v1,v2;

0.359306437003505684066327207778 + 0.0714704939991172686588458066910*$.1
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0.359306437003505684066327207778 - 0.0714704939991172686588458066910*$.1

If instead we invoke LSeries(f), Magma will note that f is defined over a number field and
complain that the coefficients of f are not well-defined complex numbers.

> L := LSeries(f);

For f over a number field, you have to specify a complex embedding

Instead of using ComplexEmbeddings, one can instead explicitly specify an embedding of the
coefficients of B into the complex numbers using the parameter Embedding with the function
LSeries The following statements define the same L-function as L2 above.

> C<i> := ComplexField();

> L2A := LSeries(f: Embedding:=hom< B -> C | i > );

> L2B := LSeries(f: Embedding:=func< x | Conjugates(x)[1] > );

> L2C := LSeries(f1: Embedding:=func< x | ComplexConjugate(x) > );

Finally, we illustrate the very important fact that Magma expects, but does not check that the
L-function associated to a modular form satisfies a functional equation.

> L := LSeries(f1+f2); // or L:=LSeries(f: Embedding:=func<x|Trace(B!x)>);

Although Magma is happy with this definition, it is in fact illegal. The modular form f has a
character whose values lie in the field of the 4-th roots of unity.

> Order(DirichletCharacter(f));

4

The two embeddings f1 and f2 of f have different (complex conjugate) characters and f1 + f2

does not satisfy a functional equation of the standard kind. Magma will suspect this when it tries
to determine the sign in the functional equation and thereby print a warning:

> Evaluate(L,1);

|Sign| is far from 1, wrong functional equation?

0.736718188651826073550560964422

> CheckFunctionalEquation(L);

0.00814338037134482026061721221244

The function CheckFunctionalEquation should return 0 (to current precision), so the functional
equation is not satisfied, and the result of evaluating L will be a random number. So it is the user’s
responsibility to ensure that the modular form does satisfy a functional equation as described in
Section 127.5.1. Here are some examples of modular forms that do.

> CheckFunctionalEquation(LSeries(f1^2*f2));

1.57772181044202361082345713057E-30

> f3 := ModularForm(EllipticCurve([0, -1, 1, 0, 0]));

> CheckFunctionalEquation(LSeries(f3));

0.000000000000000000000000000000

> M := Newforms("37k2");

> f4 := M[1,1]; f5 := M[2,1]; f6 := M[3,1];

> CheckFunctionalEquation(LSeries((f5+2*f6)*f4));

5.91645678915758854058796423962E-31
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127.3 Computing L-values
Once an L-series L(s) has been constructed using either a standard zeta- or L-function
(Section 127.2), a user defined L-function (Section 127.5.2) or constructed from other L-
functions (Section 44.4), Magma can compute values L(s0) for complex s0, values for the
derivatives L(k)(s0) and Taylor expansions.

Evaluate(L, s0)

Derivative RngIntElt Default : 0
Leading BoolElt Default : false

Given the L-series L and a complex number s0, the intrinsic computes either L(s0),
or if D > 0, the value of the derivative L(D)(s0). If D > 0 and it is known that all
the lower derivatives vanish,

L(s0) = L′(s0) = ... = L(D−1)(s0) = 0 ,

the computation time can be substantially reduced by setting Leading:=true. This
is useful if it is desired to determine experimentally the order of vanishing of L(s)
at s0 by successively computing the first few derivatives.

CentralValue(L)

Given an L-function of even weight 2k (in the Magma sense), the value of L is
computed at s = k.

LStar(L, s0)

Derivative RngIntElt Default : 0
Given the L-series L and a complex number s0, the intrinsic computes either
the value L∗(s0) or, if D > 0, the value of the derivative L∗(D)(s0). Here
L∗(s) = γ(s)L(s) is the modified L-function that satisfies the functional equation
(cf. Section 127.5.1)

L∗(s) = sign · L̄∗(weight− s)

(cf. Section 127.5.1).

LTaylor(L,s0,n)

ZeroBelow RngIntElt Default : 0
Compute the first n+ 1 terms of the Taylor expansion of the L-function about the
point s = s0, where s0 is a complex number:

L(s0) + L′(s0)x+ L′′(s0)x2/2! + . . .+ L(n)(s0)xn/n! +O(xn+1) .

If the first few terms L(s0), ..., L(k)(s0) of this expansion are known to be zero, the
computation time can be reduced by setting ZeroBelow:=k + 1.
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Example H127E15

We define an elliptic curve E of conductor 5077 and compute derivatives at s = 1 until a non-zero
value is reached:

> E := EllipticCurve([0, 0, 1, -7, 6]);

> L := LSeries(E : Precision:=15);

> Evaluate(L, 1);

0.000000000000000

> Evaluate(L, 1 : Derivative:=1, Leading:=true);

-1.69522909186553E-17

> Evaluate(L, 1 : Derivative:=2, Leading:=true);

6.27623031179552E-17

> Evaluate(L, 1 : Derivative:=3, Leading:=true);

10.3910994007158

This suggests that L(E, s) has a zero of order 3 at s = 1. In fact, E is the rational elliptic curve
of smallest conductor with Mordell-Weil rank 3:

> Rank(E);

3

Consequently, a zero of order 3 is predicted by the Birch–Swinnerton-Dyer conjecture. We can
also compute a few terms of the Taylor expansion about s = 1, with or without specifying that
the first three terms vanish.

> time LTaylor(L, 1, 5 : ZeroBelow:=3);

1.73184990011930*$.1^3 - 3.20590558844390*$.1^4 + 2.93970849657696*$.1^5

Time: 11.070

> time LTaylor(L, 1, 5);

-1.69522909186553E-17*$.1 + 3.13811515589776E-17*$.1^2 +

1.73184990011930*$.1^3 - 3.20590558844390*$.1^4 + 2.93970849657696*$.1^5

Time: 20.320

And this is the leading derivative, with the same value as Evaluate(L,1:D:=3).

> c := Coefficient($1,3)*Factorial(3);c;

10.3910994007158

Finally, we compute the 3rd derivative of the modified L-function L∗(s) = γ(s)L(s) at s = 1. For
an elliptic curve over the rationals, γ(s) = (N/π2)s/2Γ(s/2)Γ((s+1)/2), where N is the conductor.

So, by the chain rule, L∗′′′(1) = γ(1)L′′′(1) =
√

N/πL′′′(1).

> LStar(L, 1 : Derivative:=3);

417.724689268266

> c*Sqrt(Conductor(E)/Pi(RealField(15)));

417.724689268267
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127.4 Arithmetic with L-series
With the exception of some modular forms, all the built-in L-series have weakly multi-
plicative coefficients, so that L(s) =

∑
an/n

s with amn = aman for m, n coprime. For
two such L-series, Magma allows the user to construct their product and, provided that
it makes sense, their quotient.

L1 * L2

Poles SeqEnum Default : []
Residues SeqEnum Default : []
Precision RngIntElt Default :

Let L1(s) and L2(s) be two L-series of the same weight whose coefficients are weakly
multiplicative, that is, they satisfy amn = aman for m,n coprime. This function
constructs their product L(s) = L1(s)L2(s).

If one of the L-series has zeros that cancel the poles of the other L-series, the user
should specify the list of poles for L∗1(s)L

∗
2(s) using the Poles parameter and the

corresponding residues using the Residues parameter. See Section 127.5.1 for the
terminology and Section 127.5.2 for the format of the poles and residues parameters.

The number of digits of precision to which the values L(s) are to be computed
may be specified using the Precision parameter. If it is omitted, the precision is
taken to be that of the default real field.

L1 / L2

Poles SeqEnum Default : []
Residues SeqEnum Default : []
Precision RngIntElt Default :

Let L1(s) and L2(s) be two L-series whose coefficients amn are weakly multiplicative,
that is, they satisfy amn = aman for m,n coprime. This function constructs their
quotient L(s) = L1(s)/L2(s).

This function assumes (but does not check!) that this quotient exists and is a
genuine L-function with finitely many poles.

If L2(s) happens to have zeros that give poles in the quotient, the user must spec-
ify the list of poles of L∗1(s)/L

∗
2(s) using the Poles parameter and the corresponding

residues using the Residues parameter. See Section 127.5.1 for the terminology and
Section 127.5.2 for the format of Poles and Residues.

The number of digits of precision to which the values L(s) are to be computed
may be specified using the Precision parameter. If it is omitted, the precision is
taken to be that of the default real field.

TensorProduct(L1, L2, ExcFactors)

TensorProduct(L1, L2)

TensorProduct(L1, L2, ExcFactors, K)

TensorProduct(L1, L2, K)
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Precision RngIntElt Default :

Sign FldComElt Default :

Let L1 and L2 be L-functions such that L1(s) = L(V1, s) and L2(s) = L(V2, s) are
associated to systems of l-adic representations V1 and V2 (à la Serre). This function
computes their tensor product L(s) = L(V1⊗V2, s). This can be used, for example,
to twist an L-function by characters or higher-dimensional Artin representations
(see Examples H127E24, H127E25).

Note that, in particular, both L1(s) and L2(s) must have integer conductor,
weakly multiplicative coefficients and an underlying Hodge structure (which is com-
puted from the γ-shifts). The argument ExcFactors is a list of tuples of the form
〈p, v〉 or 〈p, v, Fp(x)〉 that give, for each of the primes p where V1 and V2 both have
bad reduction, the valuation v of the conductor of V1⊗V2 at p and the inverse local
factor at p. If the data is not provided for such a prime p, Magma will attempt to
compute the local factors by assuming that the inertia invariants behave well at p,

(V1 ⊗ V2)Ip = V
Ip

1 ⊗ V
Ip

2 .

It will also compute the conductor exponents by predicting the tame and wild de-
grees from the degrees of the local factors, but this does not work if both V1 and V2

are wildly ramified at p.
The sign in the functional equation of L(V1⊗V2, s) cannot be determined from the

signs of the factors, so it will be calculated numerically from the functional equation.
If the sign is known, the user may specify it by means of the Sign parameter.

The number of digits of precision to which the values L(s) are to be computed
may be specified using the Precision parameter. If it is omitted, the precision is
taken to be that of the default real field.

If L1 and L2 have Euler products over the same field K, this field can be given as
an additional argument, and the tensor product will be taken with respect to that
field.

See Examples H127E18 and H127E24, H127E25, and Section 127.9.7.

127.5 General L-series

In addition to the built-in L-series for the standard objects, Magma provides machinery
that allows the user to define L-series for arbitrary objects, provided that they admit a
meromorphic continuation to the whole complex plane and satisfy a functional equation
of the standard kind. To describe how this may be done, we need to introduce some
terminology.
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127.5.1 Terminology
Recall that an L-series is a sum

L(s) =
∞∑

n=1

an

ns
,

where the coefficients an are complex numbers, known as the Dirichlet coefficients of the
L-series. For example, the Dirichlet coefficients of the classical Riemann zeta function
are an = 1 for all n. We assume that, as in the case of Riemann zeta function, every
L(s) has a meromorphic continuation to the complex plane and has a functional equation.
Technically, our assumptions are as follows:

Assumption 1. The defining series for L(s) converges for Re(s) sufficiently large.
Equivalently, the coefficients an grow at worst as a polynomial function of n.

Assumption 2. L(s) admits a meromorphic continuation to the entire complex plane.
Assumption 3. The following exist: real positive weight, complex sign of absolute

value 1, real positive conductor and the Γ-factor

γ(s) = Γ
(s+λ1

2

)
· · ·Γ

(s+λd

2

)

of dimension d ≥ 1 and rational γ-shifts λ1, . . . λd, such that

L∗(s) =
(conductor

πd

)s/2

γ(s)L(s)

satisfies the functional equation

L∗(s) = sign · L̄∗(weight− s).

Here L̄ is the dual L-series with complex conjugate coefficients L(s) =
∑∞

n=1 an/n
s. Note

that the “weight” here is one more than the usual motivic notion of weight.
Assumption 4. The series L∗(s) has finitely many simple poles and no other singu-

larities.

Assumption 1 will almost certainly be true for any naturally arising L-function and
Assumptions 2–4 are expected (but not proven) to be satisfied for most of the L-functions
arising in geometry and number theory. In fact, there is a large class of so-called motivic
L-functions for which all of the above assumptions are conjectured to be true. Essentially
this class consists of L-functions associated to cohomology groups of varieties over number
fields. This is an extremely large class of L-functions that includes all of the standard
examples.
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127.5.2 Constructing a General L-Series
When computing the values L(s) for a complex number s, Magma relies heavily on

the functional equation. This means that the emphasized parameters in Assumptions 1–4
(coefficients, weight, conductor, poles, etc.) must be known before the computations can
be carried out.

The generic LSeries function allows the user to construct an L-series for a new object
by specifying values for these parameters. In fact, this function is used to construct all of
the built-in L-series in Magma and some of these will be used as examples to illustrate
its use (see the advanced examples section).

LSeries(weight, gamma, conductor, cffun)

Sign FldComElt Default : 0
Poles SeqEnum Default : []
Residues SeqEnum Default : []
Parent Any Default :

CoefficientGrowth UserProgram Default :

Precision RngIntElt Default :

ImS FldReElt Default : 0
Asymptotics BoolElt Default : true

The function takes four arguments: real positive weight, sequence of rational numbers
gamma, real positive conductor and a coefficient function cffun together with a number
of optional parameters. It constructs an L-series with specified coefficients and the form
of the functional equation.

Compulsory arguments (see Section 127.5.1 for terminology):

weight — weight of the L-series.
Specifies the functional equation; for instance, it is 1 for the Riemann zeta function, 2

for curves over the rationals and Weight(f) for modular forms f .
Note that the “weight” in this sense is the w such that s→ w− s satisfies a functional

equation. The usual motivic notion of weight is thus one less than this – for instance,
a weight k modular form has weight k in Magma, but weight k − 1 for motives, as its
coefficients are typically of size (

√
p)k−1.

gamma — gamma shifts/parameters.
List (of type SeqEnum) of rational numbers that specify the gamma factor. For in-

stance, this is [0] for the Riemann zeta function, [0,1] for an elliptic curve over Q and
[0,...,0,1,...,1] with r1 + r2 zeros and r2 ones for the Dedekind zeta function of a
number field K with r1 real and r2 pairs of complex embeddings.

conductor — conductor of the L-series.
Part of the exponential factor ( conductor

πd )s/2 in the functional equation. It is usu-
ally an integer and is 1 for the Riemann zeta function, the level for a modular form,
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|Discriminant(K)| for the Dedekind zeta of a number field K and the conductor of the
Jacobian for an algebraic curve over the rationals.

cffun — specifies the coefficients an. The following possibilities are allowed:

• A finite sequence [a1, ..., an];
• A function f(n) that returns an;
• A function f(p, d) that computes the inverse of the local factor at p up to degree
d;
• The value 0, signifying that the coefficients will be provided later with a call to

LSetCoefficients.
See Section 127.5.3 for a detailed explanation and examples.

Optional parameters for Lseries::

Sign — the sign appearing in the functional equation.
This is the sign that enters the functional equation and is usually ±1. It must be a

complex number of absolute value 1. Alternatively, this can be set to 0 (default), in which
case Magma will determine it numerically from the functional equation.

Instead of providing the actual sign, the user may also use an option Sign:=s where s
is the name of a function s(p) or s(L, p) that computes the sign to precision p.

Poles — the poles z of L∗(s) with Re z ≥weight/2 and

Residues — the residues at these poles
If L∗(s) happens to have poles, there are only finitely many of them and each must

be simple by Assumption 4 of the previous subsection. The poles have to be known and
specified here when the L-function is created. The poles are symmetric about the point
s =weight/2 by the functional equation and only the “right half” of the set of them has
to be supplied in the form of a sequence as the value of the parameter Poles. The default
setting is that L∗(s) has no poles.

The residues at the poles of L∗(s) are also required and they can be specified using the
Residues parameter, which also takes a sequence as its value. It can be either a sequence
of the same length as Poles or left to its default setting []. In that case, Magma will
attempt to determine the residues numerically using the functional equation. However,
this is only possible if Sign is known and will not work to full precision if there is more
than one pair of poles.

As an example, the Riemann zeta function has weight 1 and the modified function
ζ∗(s) has poles at s = 0 and s = 1 with residues 1 and −1 respectively. So the parameter
assignments Poles:=[1], Residues:=[-1] would be used in its definition.

As in the case of Sign, instead of providing the actual residues, the user may give the
name of a function r(p) or r(L, p) that computes the residues up to precision p and returns
them as a sequence.

Parent — any Magma object.
This is only used for printing purposes. When a variable type LSer is printed, Magma

prints “L-series of” and then prints the parent object.



4256 ARITHMETIC GEOMETRY Part XVII

Precision — the precision to which L-values are to be computed (default is 0, use
current precision).

CoefficientGrowth — name f of a function f(x) or f(L, x) such that |an| < f(n).

ImS — the largest imaginary part of s for which L(s) will be evaluated.

Asymptotics — whether to use asymptotic expansions (default is yes).
These four settings are related to the precision to which values are calculated in L-series

computations. They are the same as for the SetPrecision function and are described in
detail in Section 127.7.

As an illustration, the following code creates the Riemann zeta function from its in-
variants. This is essentially what RiemannZeta() does:

> Z := LSeries(1, [0], 1, func<n|1>
> : Sign:=1, Poles:=[1], Residues:=[-1]);
> CheckFunctionalEquation(Z);
0.0000000000000000000000000000000

For more examples, see the “Advanced Examples” Section 127.9.

It is strongly advised that the user apply the function CheckFunctionalEquation
whenever a generic L-series is defined. If one of the specified parameters (conductor, sign,
etc.) happens to be incorrect, the resulting L-series will not have a functional equation
and the values returned by the evaluation functions will be nonsense. Only by checking
the functional equation will the user have an indication that something is wrong.

CheckFunctionalEquation(L)

t FldReElt Default : 1.2
Given an L-series L, this function tests the functional equation numerically and
should ideally return 0 (to the current precision), meaning that the test was passed.
If the value returned is a significant distance from 0, either the L-function does not
have a functional equation or some of the defining parameters (conductor, poles
etc.) have been incorrectly specified or not enough coefficients have been given. In
the latter case, CheckFunctionalEquation is likely to return a number reasonably
close to 0 that measures the accuracy of computations.

As already mentioned, Magma can only work with L-functions that satisfy the
functional equation as in Section 127.5.1. Whenever an L-function is constructed,
its functional equation is implicitly used in all the L-series evaluations, even when L
is evaluated in the region where the original Dirichlet series is absolutely convergent.

If either the sign in the functional equation or the residues of L∗(s) have not yet
been computed, this function will first compute them. If the sign was undefined, it
returns |Sign| − 1 which, again, must be 0.

The optional technical parameter t is a point on the real line where Magma
evaluates the two Theta functions associated to the L-series and subtracts one from
the other to get the value returned by CheckFunctionalEquation. The parameter
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t must be a real number satisfying 1.05 < t < 1.2 and for every such number the
function should return 0, provided that the functional equation is indeed correct.

Example H127E16

We attempt to define a truncated L-series of a quadratic character mod 3 (so χ(n) = 0, 1,−1 if n
is 0,1 or 2 mod 3 respectively.)

> L := LSeries(1, [0], 3, [1,-1,0,1,-1,0] : Sign:=-1);

> CheckFunctionalEquation(L);

1.152455615560373697496605481547

This does not look right. In fact, the γ-shifts are 0 for even quadratic characters, but 1 for odd
ones,

> L := LSeries(1, [1], 3, [1,-1,0,1,-1,0] : Sign:=-1);

> CheckFunctionalEquation(L);

1.063726235879220898712968226243

This still does not look right. We gave the wrong sign in the functional equation.

> L := LSeries(1, [1], 3, [1,-1,0,1,-1,0] : Sign:=1);

> CheckFunctionalEquation(L);

3.328171077588057787282583863548E-15

This certainly looks better but it indicates that we did not give enough coefficients to our L-series.
We determine how many coefficients are needed to do computations with default precision (30
digits),

> LCfRequired(L);

11

So 11 coefficients are needed and we provide them in the code below.

> L := LSeries(1, [1], 3, [1,-1,0,1,-1,0,1,-1,0,1] : Sign:=1);

> CheckFunctionalEquation(L);

9.860761315262647567646607066035E-32

This a correct way to define our L-series. Even better is the following variant:

> L := LSeries(1, [1], 3, func<n|((n+1) mod 3)-1> : Sign:=1);

> CheckFunctionalEquation(L);

9.860761315262647567646607066035E-32

This allows Magma to calculate as many an as it deems necessary using the provided function.
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127.5.3 Setting the Coefficients

LSetCoefficients(L,cffun)

This function defines the coefficients an of the L-series L. The argument cffun can
be one of the following:

• A sequence [a1, ..., an];

• A function f(n) that returns an;

• A function f(p, d) that computes the inverse of the local factor at p up to degree
d.

When a user-defined L-series is constructed by invoking the function

> L := LSeries(weight,gamma,conductor,cffun: <optional parameters>);

this is actually equivalent to invoking the pair of functions

> L := LSeries(weight,gamma,conductor,0: <optional parameters>);
> LSetCoefficients(L,cffun);

where the first line indicates that the coefficients will be supplied later and the second line
actually specifies the coefficients. So the following description of the cffun parameter for
the function LSetCoefficients(L,cffun) applies to the main LSeries signature as well.

The first two ways to specify the an are either to give a pre-computed sequence of
coefficients up to a certain bound or to give the name of a function f(n) that computes the
an. (The other two ways are described in the two subsections that follow.) For instance,
the following both define the Riemann zeta function with weight 1, one γ-shift 0, conductor
1, sign 1, pole at s = 1 with residue −1, all an = 1:

> V := [ 1 : k in [1..100] ];
> L := LSeries(1, [0], 1, V : Sign:=1, Poles:=[1], Residues:=[-1]);

or

> f := func<n|1>;
> L := LSeries(1, [0], 1, f : Sign:=1, Poles:=[1], Residues:=[-1]);

Of the two possibilities, the second one is safer to use in a sense that it lets Magma
decide how many coefficients it needs in order to perform the calculations to the required
precision. However, if the computation of an is costly and it involves previous coefficients,
then it is probably better to write a function that computes an recursively, storing them
in a sequence and then passing it to LSeries.

127.5.4 Specifying the Coefficients Later
When specifying a finite list of coefficients it is necessary to know in advance how many
coefficients have to be computed. For this, Magma provides a function LCfRequired(L)
(see Section 44.3).
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Example H127E17

We define L to be our own version of the Riemann zeta function (weight 1, one γ-shift 0, conductor
1, sign 1, pole at s = 1 with residue −1), but tell Magma that we will specify the coefficients
later with the 4th parameter set to 0. Then we ask how many coefficients it needs to perform
computations:

> L := LSeries(1, [0], 1, 0: Sign:=1, Poles:=[1], Residues:=[-1]);

> N := LCfRequired(L); N;

6

Now we compute the coefficient vector [a1, ..., aN ].

> vec := [1, 1, 1, 1, 1, 1];

> LSetCoefficients(L,vec);

Now we can evaluate our ζ-function

> Evaluate(L,2);

1.64493406684822643647241516665

> Pi(RealField())^2/6;

1.64493406684822643647241516665

If we provide fewer coefficients, the computations will not have full precision but we can use
CheckFunctionalEquation to get an indication of the resulting accuracy

> LSetCoefficients(L, [1,1]);

> CheckFunctionalEquation(L);

4.948762810534411372665820496508E-9

> Evaluate(L, 2);

1.64493406684811250127872978182

> $1 - Pi(RealField(28))^2/6;

-1.139351936853848646746774340E-13

Note that such good accuracy with just two coefficients is a singular phenomenon that only
happens for L-functions with very small conductors. Normally, at least hundreds of coefficients
are needed to compute L-values to this precision.

Note also that the last value Evaluate(L,2) in the example is much more precise than what one
would get with the truncated version of the original defining series ζtrunc(s) = 1 + 1/2s at s = 2.
The reason for this is that even in the region where the original Dirichlet series converges, the use
of the functional equation usually speeds up the convergence.
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127.5.5 Generating the Coefficients from Local Factors
The final and, in many cases, mathematically the most natural way to supply the coef-
ficients is by specifying the so-called local factors. Recall that the coefficients for most
L-series are weakly multiplicative, meaning that amn = aman for m coprime to n. For such
L-series, L(s) admits a product formula

L(s) =
∏

p prime

1
Fp(p−s)

,

where Fp(x) is a formal power series in x with complex coefficients. For example, if L(s)
arises from a variety over a number field (and this, as we already mentioned, essentially
covers everything), then such a product formula holds. In this case the Fp(x) are polyno-
mials of degree d for those primes p not dividing the conductor and are of smaller degree
otherwise. Moreover, their coefficients lie in the ring of integers of the field of definition of
the variety.

For L-functions with weakly multiplicative coefficients, Magma allows the coefficients
to be defined by specifying the local factors, using the function LSetCoefficients(L,f)
where f is a user-defined function with two arguments p and d that computes Fp(x), either
as a full polynomial in x or as a power series in x of precision O(xd+1). For example, the
Riemann zeta function has Fp(x) = 1− x for all p, so we can define it as follows,

> Z := LSeries(1, [0], 1, 0 : Poles:=[1], Residues:=[-1], Sign:=1);
> P<x> := PolynomialRing(Integers());
> LSetCoefficients(Z, func<p,d | 1-x> );

or as

> P<x> := PowerSeriesRing(Integers());
> Z := LSeries(1, [0], 1, func<p,d|1-x+O(x^(d+1))> :

Poles:=[1], Residues:=[-1], Sign:=1);

127.6 Accessing the Invariants

LCfRequired(L)

The number of Dirichlet coefficients an that have to be calculated in order to com-
pute the values L(s). This function can be also used with a user-defined L-series
before its coefficients are set, see Section 127.5.4.

LGetCoefficients(L, N)

Compute the vector of first N coefficients [* a1, ..., aN *] of the L-series given by L.
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EulerFactor(L, p)

Given an L-series and a prime p, this computes the pth Euler factor, either as a
polynomial or a power series. The optional parameter Degree will truncate the
series to that length, and the optional parameter Precision is of use when the
series is defined over the complex numbers.

Conductor(L)

Conductor of the L-series (real number, usually an integer). This invariant enters
the functional equation and measures the ‘size’ of the object to which the L-series
is associated. Evaluating an L-series takes time roughly proportional to the square
root of the conductor.

Sign(L)

Sign in the functional equation of the L-series. This is a complex number
of absolute value 1, or 0 if the sign has not been computed yet. (Calling
CheckFunctionalEquation(L) or any evaluation function sets the sign.)

GammaFactors(L)

A sequence of Gamma factors λ1, . . . , λd for L(s). Each one represents a factor
Γ((s+ λi)/2) entering the functional equation of the L-function.

LSeriesData(L)

Given an L-series L, this function returns the weight, the conductor, the list of
γ-shifts, the coefficient function, the sign, the poles of L∗(s) and the residues of
L∗(s) as a tuple of length 7. If Sign = 0, this means it has not been computed yet.
Residues= [] means they have not yet been computed. From this data, L can be
re-created with a general LSeries call (see Section 127.5.2).

Example H127E18

For a modular form, the q-expansion coefficients are the same as the Dirichlet coefficients of the
associated L-series:

> f := Newforms("30k2")[1,1];

> qExpansion(f,10);

q - q^2 + q^3 + q^4 - q^5 - q^6 - 4*q^7 - q^8 + q^9 + O(q^10)

> Lf := LSeries(f);

> LGetCoefficients(Lf,20);

[* 1, -1, 1, 1, -1, -1, -4, -1, 1, 1, 0, 1, 2, 4, -1, 1, 6, -1, -4, -1*]

The elliptic curve of conductor 30 that corresponds to f has, of course, the same L-series.

> E := EllipticCurve(f); E;

Elliptic Curve defined by y^2 + x*y + y = x^3 + x + 2 over Rational Field

> LE := LSeries(E);

> LGetCoefficients(LE,20);



4262 ARITHMETIC GEOMETRY Part XVII

[* 1, -1, 1, 1, -1, -1, -4, -1, 1, 1, 0, 1, 2, 4, -1, 1, 6, -1, -4, -1*]

Now we change the base field of E to a number field K and evaluate the L-series of E/K at s = 2.

> P<x> := PolynomialRing(Integers());

> K := NumberField(x^3-2);

> LEK := LSeries(E,K);

> i := LSeriesData(LEK); i;

<2, [ 0, 0, 0, 1, 1, 1 ], 8748000, ... >

The conductor of this L-series (second entry) is very large and this is an indication that the
calculations of L(E/K, 2) to the required precision (30 digits) will take some time. We can also
ask how many coefficients will be used in this calculation.

> LCfRequired(LEK); // a lot!

280632

Decreasing the precision will help somewhat.

> LSetPrecision(LEK,9);

> LCfRequired(LEK);

17508

And realizing that our L-series has a piece that can be factored out will certainly help (see the
Arithmetic section).

> Q := LEK/LE;

> LSetPrecision(Q,9);

> LCfRequired(Q);

3780

> time Evaluate(Q,2) * Evaluate(LE,2); // = L(E/K,2)

0.892165947

Time: 8.020

Factorization(L)

If an L-series is represented internally as a product of other L-series, say L(s) =∏
i Li(s)ni , return the sequence [...<Li,ni>...].

Example H127E19

> L := RiemannZeta();

> Factorization(L);

[

<L-series of Riemann zeta function, 1>

]

> R<x> := PolynomialRing(Rationals());

> K := SplittingField(x^3-2);

> L := LSeries(K);

> Factorization(L);

[
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<L-series of Riemann zeta function, 1>,

<L-series of Artin representation of Number Field with

defining polynomial x^6 + 108 over the Rational Field

with character ( 1, -1, 1 ) and conductor 3, 1>,

<L-series of Artin representation of Number Field with

defining polynomial x^6 + 108 over the Rational Field

with character ( 2, 0, -1 ) and conductor 108, 2>

]

127.7 Precision
The values of an L-series are computed numerically and the precision required in these
computations can be specified using the Precision parameter when an L-function is cre-
ated. For example,

> K := CyclotomicField(3);
> L := LSeries(K: Precision:=60);
> Evaluate(L,2);
1.28519095548414940291751179869957460396917839702892124395133

computes ζ(K, 2) to 60 digits precision. The default value Precision:=0 is equivalent to
the precision of the default real field at the time of the LSeries initialization call. If the
user only wants to check numerically whether an L-function vanishes at a given point s
and the value itself is not needed, it might make sense to decrease the precision (to 9 digits,
say) to speed up the computations.

> E := EllipticCurve([0,0,1,-7,6]);
> RootNumber(E);
-1
> L := LSeries(E: Precision:=9);
> Evaluate(L, 1: Derivative:=1);
1.50193628E-11
> Rank(E);
3

This example checks numerically that L′(E, 1) = 0 for the elliptic curve E of conductor
5077 from Example H127E15.

The precision may be changed at a later time using LSetPrecision.

LSetPrecision(L,precision)

CoefficientGrowth UserProgram Default :

ImS FldReElt Default : 0
Asymptotics BoolElt Default : true

Change the number of digits to which the L-values are going to be computed to
precision. The parameter CoefficientGrowth is described below in Section 127.7.1.
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127.7.1 L-series with Unusual Coefficient Growth
The parameter CoefficientGrowth is the name f of a function f(x) (or f(L, x), where
L is an L-series) which is an increasing function of a real positive variable x such that
|an| ≤ f(n). This is used to truncate various infinite series in computations. It is set by
default to the function f(x) = 1.5 ·xρ−1 where ρ is the largest real part of a pole of L∗(s) if
L∗(s) has poles and f(x) = 2x(weight−1)/2 if L∗(s) has no poles. The user will most likely
leave this setting untouched.

127.7.2 Computing L(s) when Im(s) is Large (ImS Parameter)
If s is a complex number having a large imaginary part, a great deal of cancellation occurs
while computing L(s), resulting in a loss of precision. (The time when all the precision-
related parameters are pre-computed is when the function LSeries is invoked, and at that
time Magma has no way of knowing whether L(s) is to be evaluated for complex numbers
s having large imaginary part.) If this happens, a message is printed, warning of a precision
loss. To avoid this, the user may specify the largest Im(s) for which the L-values are to
be calculated as the value of the ImS parameter at the time of the L-series initialization
or, later, with a call to LSetPrecision:

> C<i> := ComplexField();
> L := RiemannZeta();
> Evaluate(L, 1/2+40*i); // wrong
Warning: Loss of 13 digits due to cancellation
0.793044952561928671982128851045 - 1.04127461465106502007452195086*i
> LSetPrecision(L, 30: ImS:=40);
> Evaluate(L, 1/2+40*i); // right
0.793044952561928671964892588898 - 1.04127461465106502005189059539*i

127.7.3 Implementation of L-series Computations (Asymptotics Pa-
rameter)

The optional parameter Asymptotics in LSetPrecision and in the general LSeries
function specifies the method by which the special functions needed for the L-series eval-
uation are computed.

If set to false, Magma will use only Taylor expansions at the origin and these are al-
ways known to be convergent. With the default behaviour (Asymptotics:=true) Magma
will use both the Taylor expansions and the continued fractions of the asymptotic expan-
sions at infinity. This is much faster, but these continued fractions are not proved to be
convergent in all cases.
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127.8 Verbose Printing
There is one verbose printing variable, called "LSeries" that controls verbose printing

for all of the functions in this chapter.

> SetVerbose("LSeries",n);

It accepts verbosity levels n such that 0 ≤ n ≤ 3. The values are as follows:
n = 0 is the (default) quiet mode. The functions do not print anything apart from

loss-of-precision warnings.
n = 1 is possibly the most useful setting. The sign and the residues of L∗(s) are printed

whenever they are determined from the functional equation.
n = 2 generates messages that allow the user to keep track of what is currently hap-

pening. So messages are printed when a new L-function is constructed, when coefficients
are generated or when expansions of special functions are computed.

n = 3 is a “keep-alive” setting that basically informs the user that the computer has
not crashed yet and, yes, something is still happening. For L-functions of large con-
ductor or very high precision that require a large number of coefficients, Magma will
print a “progress indicator” every time 1000 new coefficients are generated and every
5000 terms in the series computations that test the functional equation or compute the
L-values. (The frequencies 1000 and 5000 are stored in the attributes L‘vprint coeffs
and L‘vprint series of a variable L of type LSeries and may be changed at the user’s
desire.)

127.9 Advanced Examples

127.9.1 Handmade L-series of an Elliptic Curve

Example H127E20

This is an example of how the general LSeries function can be used to define the L-series for
elliptic curves. This is essentially what LSeries(E) does:

> E := EllipticCurve([1,2,3,4,5]);

> N := Conductor(E);N;

10351

> P<x> := PolynomialRing(Integers());

The easiest way to define the coefficients is to provide the local factors.

> cf := func< p,d|1 - TraceOfFrobenius(E,GF(p,1))*x

> +(N mod p ne 0 select p else 0)*x^2 >;

> L := LSeries(2,[0,1],N,cf : Parent:=E, Sign:=RootNumber(E));

Compare this with the built-in function LSeries(E)

> Evaluate(L,2);

0.977431866894500508679039127647

> Evaluate(LSeries(E),2);

0.977431866894500508679039127647
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127.9.2 Self-made Dedekind Zeta Function

Example H127E21

This is an example of how the general LSeries function may be used to define the Dedekind zeta
function of a number field K. This is essentially what the function LSeries(K) does:

> function DedekindZeta(K)

> M := MaximalOrder(K);

> r1,r2 := Signature(K);

> gamma := [0: k in [1..r1+r2]] cat [1: k in [1..r2]];

> disc := Abs(Discriminant(M));

> P<x> := PolynomialRing(Integers());

The coefficients are defined by means of local factors; for a prime p we take the product of 1−xfk

where the fi are the residue degrees of primes above p. Note that this local factor has (maximal)
degree [K : Q] if and only if p is unramified or, equivalently, if and only if p does not divide the
discriminant of K which is (up to sign) the conductor of our zeta-function.

> cf := func<p,d|&*[1-x^Degree(k[1]): k in Decomposition(M,p)]>;

Finally, the Dedekind zeta function has a pole at s = 1 and we need its residue (or, rather, the
residue of ζ∗(s)) which we compute using the class number formula.

> h := #ClassGroup(M);

> reg := Regulator(K);

> mu := #TorsionSubgroup(UnitGroup(M));

> return LSeries(1, gamma, disc, cf: Parent:=K, Sign:=1, Poles:=[1],

> Residues := [-2^(r1+r2)*Pi(RealField())^(r2/2)*reg*h/mu]);

> end function;

> Z := DedekindZeta(CyclotomicField(5)); Z;

L-series of Cyclotomic Field of order 5 and degree 4

> Evaluate(Z,1);

L*(s) has a pole at s = 1

> L := Z/RiemannZeta();

> Evaluate(L,1);

0.339837278240523535464278781159

127.9.3 L-series of a Genus 2 Hyperelliptic Curve

Example H127E22

We compute an L-series of a hyperelliptic curve of genus 2.

> P<x> := PolynomialRing(Integers());

> C := HyperellipticCurve([x^5+x^4,x^3+x+1]); C;

Hyperelliptic Curve defined by y^2 + (x^3 + x + 1)*y = x^5 + x^4
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over Rational Field

There is an L-series attached to H1(C) or, equivalently, the H1 of the Jacobian J of C. To define
this L-series, we need its local factors which, for primes p of good reduction of C, are given by
EulerFactor(J,GF(p,1)). Let us look at the primes of bad reduction:

> Abs(Discriminant(C));

169

> Factorization(Integers()!$1);

[ <13, 2> ]

There is one prime p = 13 where the curve has bad reduction. There the fibre is a singular curve
whose normalization is elliptic.

> A<X,Y> := AffineSpace(GF(13,1),2);

> C13 := Curve(A,Equation(AffinePatch(C,1)));

> GeometricGenus(C), GeometricGenus(C13);

2 1

> SingularPoints(C13);

{@ (9, 1) @}

> p := $1[1]; IsNode(p), IsCusp(p);

false true

> C13A := Translation(C13,p)(C13);

> C13B := Blowup(C13A); C13B;

Curve over GF(13) defined by

X^3 + 12*X^2*Y + 7*X^2 + 12*X*Y + 12*Y^2 + 3*Y + 1

> E := EllipticCurve(ProjectiveClosure(C13B));

The local factor of C at p = 13 is given by the Euler factor of this elliptic curve

> EulerFactor(E);

13*x^2 + 5*x + 1

The conductor of L(C, s) is 132, the same as the discriminant in this case. So, we define L(C, s):

> J := Jacobian(C);

> loc := func<p,d|p eq 13 select EulerFactor(E) else EulerFactor(J, GF(p,1))>;

> L := LSeries(2,[0,0,1,1],13^2,loc);

Now we check the functional equation and compute a few L-values. (Most of the execution time
will be spent generating coefficients, so the first call takes some time. After that, the computations
are reasonably fast.)

> CheckFunctionalEquation(L);

-2.958228394578794270293982119810E-31

> Evaluate(L,1);

0.0904903908324296291135897572580

> Evaluate(L,2);

0.364286342944364068154291450139
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127.9.4 Experimental Mathematics for Small Conductor

Example H127E23

This example shows how one may construct the first 20 coefficients of the L-series of an elliptic
curve of conductor 11 without knowing anything about either the curve or modular form theory.
The point is that for an L-series L(s) =

∑
an/ns, the associated theta function (used in

CheckFunctionalEquation) is a series with an as coefficients and terms that decrease very rapidly
with n. This means that if we truncate the series to, for instance, just a1 +a2/2s and call LSeries
with the same parameters (weight, sign, etc.) as those for L(s) but just [a1, a2, 0, 0, 0, 0, ...] as
the coefficient vector, then CheckFunctionalEquation will return a number reasonably close to
0, because the coefficients an for n > 2 only make a small contribution.
With this in mind, we create an L-series that looks like that of an elliptic curve with conductor
11 and sign 1, that is, we take weight = 2, conductor = 1, gamma = [0,1], sign = 1 and no poles:

> L := LSeries(2, [0,1], 11, 0 : Sign:=1);

Then taking a1 = 1, and recalling the requirement that all the coefficients must be weakly multi-
plicative, we try various a2 to see which of the truncated L-series 1+ a2/2s is closest to satisfying
a functional equation. Using the knowledge that a2 (and every other an) is an integer together
with the Hasse-Weil bound, |ap| < 2

√
p, we find just 5 choices:

> for a_2 := -2 to 2 do

> LSetCoefficients(L,[1,a_2]);

> print a_2, CheckFunctionalEquation(L);

> end for;

-2 0.008448098707478090187579588380635

-1 0.07557498328782515608604001309880

0 0.1427018678681722219845004378169

1 0.2098287524485192878829608625350

2 0.2769556370288663537814212872532

It seems that a2 = −2 is the best choice, so we set it. Note that this also determines a4, a8, etc.
We next proceed to find a3 in the same way. It might come as a surprise, but in this way we can
find the first 30 or so coefficients correctly. (Actually, by using careful bounds, it is even possible
to prove that these are indeed uniquely determined.) Here is code that finds a1, ..., a20:

> N := LCfRequired(L); N;

48

> V := [0 : k in [1..N] ]; // keep a_p in here

> P<x> := PolynomialRing(Integers());

> function Try(V,p,a_p) // set V[p]=a_p and try functional equation

> V[p] := a_p;

> LSetCoefficients(L, func<p,d | 1-V[p]*x+(p eq 11 select 0 else p)*x^2 >);

> return Abs(CheckFunctionalEquation(L));

> end function;

> for p := 2 to 20 do // try a_p in Hasse-Weil range and find best one

> if IsPrime(p) then

> hasse := Floor(2*Sqrt(p));

> _,V[p] := Min([Try(V,p, a_p): a_p in [-hasse..hasse]]);
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> V[p] -:= hasse+1;

> end if;

> end for;

> LSetCoefficients(L, func<p,d | 1-V[p]*x+(p eq 11 select 0 else p)*x^2 >);

We list the coefficients that we found and apply CheckFunctionalEquation to them:

> LGetCoefficients(L,20);

[* 1, -2, -1, 2, 1, 2, -2, 0, -2, -2, 1, -2, 4, 4, -1, -4, -2, 4, 0, 2*]

> CheckFunctionalEquation(L);

4.186579790674123374418985668816E-16

Compare this with the actual truth:

> qExpansion(Newforms("11A")[1],21);

q - 2*q^2 - q^3 + 2*q^4 + q^5 + 2*q^6 - 2*q^7 - 2*q^9 - 2*q^10 + q^11

- 2*q^12 + 4*q^13 + 4*q^14 - q^15 - 4*q^16 - 2*q^17 + 4*q^18 +

2*q^20 + O(q^21)

Such methods have been used by Stark in his experiments with L-functions of number fields, and
by Mestre to find restrictions on possible conductors of elliptic curves. In fact, by modifying our
example (changing 11 to 1 . . . 10 and sign = 1 to sign = ±1) one can show that for N < 11 there
are no modular elliptic curves of conductor N .

127.9.5 Tensor Product of L-series Coming from l-adic Representations

Example H127E24

This is an example of using the tensor product for L-functions coming from l-adic representations.
This is what LSeries(E,K) uses to construct L-series of elliptic curves over number fields.

> E := EllipticCurve([ 0, 0, 0, 0, 1]); // Mordell curve

> P<x> := PolynomialRing(Integers());

> K := NumberField(x^3-2);

> LE := LSeries(E);

> LK := LSeries(K);

We have now two L-functions, one associated to an elliptic curve and one to a number field. They
both come from l-adic representations, and we can try to construct their tensor product. Actually,
the function TensorProduct requires us to specify exponents of the conductor and the bad local
factors of the tensor product representation, but we can try and let Magma do it, hoping that
nothing unusual happens. We take the tensor product of the two L-series and divide it by L(E, s)
to speed up the computations. Remember that L(K, s) has a copy of the Riemann zeta function
as a factor.

> L := TensorProduct(LE, LK, []) / LE;

> CheckFunctionalEquation(L);

|Sign| is far from 1, wrong functional equation?
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0.0234062571006075114301535636401

The resulting L-function does not satisfy the required functional equation, so something unusual
does happen at a prime where both E and K have bad reduction, which in this case must be
either p = 2 or p = 3.
Let us check p = 2. We change the base field of E to K and look at its reduction at the unique
prime above 2:

> EK := BaseChange(E,K);

> p := Decomposition(MaximalOrder(K),2)[1,1];

> LocalInformation(E,2);

<2, 4, 2, 3, IV>

> loc, model:=LocalInformation(EK,p);loc,model;

<Principal Prime Ideal

Generator:

[0, -1, 0], 0, 0, 1, I0>

Elliptic Curve defined by y^2 - y = x^3 over K

We see that E has acquired good reduction at p|2. This means that the inertia invariants at 2
of the l-adic representation associated to L, namely ρE ⊗ (ρK − ρQ) are larger than the tensor
product of the corresponding inertia invariants, which is zero. Thus the local factor of L at 2
is not Fp(x) = 1 (which is what TensorProduct assumed), but a polynomial of higher degree.
In fact, it is the characteristic polynomial of Frobenius of the reduced curve E/K mod p, so
Fp(x) = 1− a2x + 2x2 with a2 given by

> TraceOfFrobenius(Reduction(model, p));

0

This is now the correct L-function (at p = 3 the default procedure works) and the functional
equation is satisfied

> L := TensorProduct(LE,LK,[<2,4,1+2*x^2>])/LE;

> CheckFunctionalEquation(L);

3.15544362088404722164691426113E-30

In fact, our L-series is the same as that constructed by LSeries(E,K)/LE.

127.9.6 Non-abelian Twist of an Elliptic Curve

Example H127E25

In this example we illustrate how to use LSeries(E,K) to construct non-abelian twists of elliptic
curves.

> E := EllipticCurve([0, 0, 0, 0, 1]);

> P<x> := PolynomialRing(Integers());

> K := NumberField(x^3-2);

> L := LSeries(E,K) / LSeries(E);

> lval := Evaluate(L, 1); lval;
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0.655371552164974435712378842491

The series L is the L-function of non-abelian twist of E and it appears that L(1) is non-zero. In
other words, the analytic rank of L(E/K, s) at s = 1 is the same as that of L(E/Q, s). Tate’s
version of the Birch-Swinnerton-Dyer conjecture then predicts that the Mordell-Weil rank of E/K
is the same as the rank over Q, so the elliptic curve has not acquired new independent points.
This is something that can be confirmed by a Selmer group computation:

> EK := BaseChange(E,K);

> twoE := MultiplicationByMMap(E, 2);

> #SelmerGroup(twoE);

2

> twoEK := MultiplicationByMMap(EK, 2);

> #SelmerGroup(twoEK);

2

Indeed, the 2-Selmer rank is 1 in both cases, as expected. Also, the second part of the Birch-
Swinnerton-Dyer conjecture predicts that the following quotient should be rational:

> p1, p2 := Explode(Periods(E));

> lval*Sqrt(Abs(Discriminant(K))) / (p1*Im(p2));

1.33333333333333333333333333334

Finally, the same L-series can be defined via the Artin representation machinery:

> triv,sign,rho:=Explode(ArtinRepresentations(K));

> L:=LSeries(E,rho);

> CentralValue(L);

0.655371552164974435712378842492

127.9.7 Other Tensor Products
We take two L-functions with Euler products over a field K:

L1(M, s) =
∏

p

m∏

i=1

(
1− αi(p)/Nps

)−1 and L2(N, s) =
∏

p

n∏

j=1

(
1− βj(p)/Nps

)−1
,

where M and N are of degrees m and n respectively, and we ignore bad Euler factors in
the above. Their tensor product is an L-function of degree mn given by

L(A⊗B, s) =
∏

p

m∏

i=1

n∏

j=1

(
1− αi(p)βj(p)/Nps

)−1
.

It is not clear in general how to compute bad Euler factors, and even the gamma factors can
be tricky. Internally, the functionality tries to compute a “Hodge structure” corresponding
to the gamma factors of each object, with the “Hodge structure” for the tensor product
then following via combinatorics, before passing back to the gamma factors.

Some tensor products can induce poles, particularly when tensoring an L-series with
itself. Also in some cases, the tensor product will be taken over Q unless the user specifies
otherwise.
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Example H127E26

A tensor product of two elliptic curves over Q.

> E1 := EllipticCurve("11a");

> E2 := EllipticCurve("17a");

> L1 := LSeries(E1);

> L2 := LSeries(E2);

> L := TensorProduct(L1, L2, []);

> LSeriesData(L); // level is 11^2 * 17^2

<3, [ 0, 1, -1, 0 ], 34969, ... >

> CheckFunctionalEquation(L);

-2.83989925879564249948222283502E-29

Example H127E27

A tensor product of two modular forms of level 1.

> f1 := ModularForms(1,12).2;

> f2 := ModularForms(1,26).2;

> L1 := LSeries(f1);

> L2 := LSeries(f2);

> L := TensorProduct(L1, L2, []);

> LSeriesData(L); // weight is (12-1)+(26-1)+1 -- motivic weight is 11+25

<37, [ 0, 1, -11, -10 ], 1, ... >

> CheckFunctionalEquation(L);

-5.75014913311889483177106362349E-25

> Pi(RealField(30))^2 * Evaluate(L,24) / Evaluate(L,25);

9.87142857142857142857142857136

> 691/70.; // Ramanujan congruence

9.87142857142857142857142857142

Example H127E28

An example related to Siegel modular forms (see [vGvS93, §8.7]).

> E := EllipticCurve("32a"); // congruent number curve

> chi := DirichletGroup(32).1; // character of conductor 4 lifted

> MF := ModularForms(chi, 3); // weight 3 modular forms on Gamma1(32,chi)

> NF := Newforms(MF);

> NF[1][1]; // q-expansion of the desired form

q + a*q^3 + 2*q^5 - 2*a*q^7 - 7*q^9 - a*q^11 + O(q^12)

> Parent(Coefficient(NF[1][1], 3)); // defined over Q(i)

Number Field with defining polynomial x^2 + 16 over the Rational Field

> f1, f2 := Explode(ComplexEmbeddings(NF[1][1])[1]);

> L1 := LSeries(E);

> L2 := LSeries(f1); // first complex embedding

> L := TensorProduct(L1, L2, [ <2, 9> ]); // conductor 2^9 (guessed)

> time CheckFunctionalEquation(L);
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-3.15544362088404722164691426113E-30

Time: 2.090

Example H127E29

An example of a tensor product over a field larger than the rationals.

> K<s> := QuadraticField(-3);

> I := Factorization(3 * IntegerRing(K))[1][1];

> H := HeckeCharacterGroup(I^2);

> G := Grossencharacter(H.0, [[1, 0]]); // canonical character

> E := EllipticCurve([1, (3+s)/2, 0, (1+s)/2, 0]);

> Norm(Conductor(E));

73

> LG := LSeries(G);

> LE := LSeries(E);

> TP := TensorProduct(LE, LG, [<I, 5>], K); // ensure 3-part correct

> LSetPrecision(TP, 9); // there is another factor of 3 from K

> LCfRequired(TP);

1642

> CheckFunctionalEquation(TP);

4.65661287E-10

127.9.8 Symmetric Powers
Symmetric power L-functions form a natural analogue to tensor products. Here we

essentially tensor an L-function with itself repeatedly, but remove redundant factors.
In the case of GL(1), the kth symmetric power is simply the L-function associated to

the kth power of the underlying character, though we must be careful to ensure primitivity
(this disregards the bad primes). Explicitly, we have

L(Symkψ, s) =
∏

p

(
1− ψ(p)k/Nps

)−1

,

(again ignoring bad primes) and so the eigenvalues are just the kth powers of the original.
It is relatively easy to compute the bad Euler factors, given those for L(ψ, s).

In the case of GL(2), the kth symmetric power is an L-function of degree (k + 1) over
the field of definition, given by

L(SymkA, s) =
∏

p

k∏

i=0

(
1− α1(p)k−iα2(p)i/Nps

)−1

,

where α1(p) and α2(p) are the eigenvalues at the prime p. In the case of elliptic curves,
one can use the fact that α1(p)α2(p) = p to rewrite these via symmetric functions.
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A similar definition can be made for higher degree L-functions, yielding that the kth
symmetric power of an L-function of degree d will have degree

(
k+d−1

d−1

)
.

If the object itself has a natural powering operation (as with, say, Hecke characters),
Magma will simply take the primitivization therein. The bad Euler factors have been
explicitly calculated for elliptic curves over the rationals in [MW06] and [DMW09]. In
other cases, the user will likely have to provide them. Furthermore, the full ability to take
symmetric powers over fields other than the rationals is not yet fully implemented.

SymmetricPower(L, m)

BadEulerFactors SeqEnum Default : []

Return the L-series corresponding to the mth symmetric power of L. The
BadEulerFactors consists of 〈p, f, E〉 triples, where p is a prime, f the conduc-
tor exponent, and E a polynomial that gives the Euler factor at that prime.

Example H127E30

Some basic code, showing the special cases where Magma will just take the power of the underlying
object.

> G := FullDirichletGroup(3*5*7);

> chi := G.1*G.2*G.3; // Random now gives an imprimitive character

> L := LSeries(chi);

> LS3 := SymmetricPower(L, 3);

> Lc3 := LSeries(chi^3);

> Evaluate(LS3, 1);

0.843964498053507794372984784470 + 0.199232992137116783033645803753*i

> Evaluate(Lc3, 1);

0.843964498053507794372984784470 + 0.199232992137116783033645803753*i

Example H127E31

> K := QuadraticField(-23);

> I := Factorization(23 * IntegerRing(K))[1][1];

> G := HeckeCharacterGroup(I);

> psi := G.1^14; // Random now gives an imprimitive character

> L := LSeries(psi);

> LS5 := SymmetricPower(L, 5);

> Lp5 := LSeries(psi^5);

> Evaluate(LS5, 1);

0.870801884824381647583631149814 + 0.622589291563954831229726530813*i

> Evaluate(Lp5, 1);

0.870801884824381647583631149814 + 0.622589291563954831229726530813*i
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Example H127E32

In this example we take symmetric powers of the L-function of a Grossencharacter.

> GR := Grossencharacter(psi, [[1,0]]);

> L := LSeries(GR);

> LS4 := SymmetricPower(L, 4);

> Lp4 := LSeries(GR^4);

> Evaluate(LS4, 3);

0.354651275716915313430268098042 - 0.147519877277453173656613056548*i

> Evaluate(Lp4, 3);

0.354651275716915313430268098042 - 0.147519877277453173656613056548*i

Example H127E33

An example with symmetric powers of elliptic curves. In the case of the symmetric square of
389A, the ModularDegree code will do the same calculation, but more efficiently.

> E := EllipticCurve("389a");

> L := LSeries(E);

> L2 := SymmetricPower(L, 2);

> LSeriesData(L2);

<3, [ 0, 1, 0 ], 389^2, function(p, d) ... end function, 1, [], []>

> LSetPrecision(L2, 9);

> Evaluate(L2, 2);

3.17231145

> ($1 * Conductor(E)) / (2 * Pi(RealField()) * FundamentalVolume(E));

40.0000000

> ModularDegree(E);

40

Example H127E34

This in an example where a higher symmetric power has a vanishing central value, here a zero of
(presumably) order 4. It comes from work of Buhler, Schoen, and Top [BST97].

> E := EllipticCurve("73a");

> L := LSeries(E);

> L3 := SymmetricPower(L, 3);

> LSeriesData(L3); // Magma knows the Sign is +1

<4, [ 0, -1, 1, 0 ], 73^3, function(p, d) ... end function, 1, [], []>

> LSetPrecision(L3, 9);

> CentralValue(L3);

-2.16367048E-12
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127.10 Weil Polynomials
The characteristic polynomial of the Frobenius on the etale cohomology is called a
Weil polynomial. This section contains some auxiliary routines for simpler handling
of these polynomials. All routines make frequently use of PowerSumToCoefficients,
CoefficientsToElementarySymmetric and ElementarySymmetricToPowerSums.

SetVerbose("WeilPolynomials", v)

Set the verbose printing level for the analysis of weil polynomials. Maximal value 2.

HasAllRootsOnUnitCircle(f)

Given a polynomial f with rational coefficients this routine checks that the complex
roots of the polynomial are all of absolute value 1. The algorithm does not use
floating point approximations.

FrobeniusTracesToWeilPolynomials(tr, q, i, deg)

KnownFactor RngUPolElt Default : 1
Verbose WeilPolynomials Maximum : 2

Given the sequence of Frobenius traces on the i-th etale cohomology this function
returns a list of possible characteristic polynomials. Here q is the order of the
basefield and deg is the degree of the characteristic polynomial. In the case of even
i the sign in the functional equation has to be determined. This is done by checking
the absolute values of the roots of the hypothetical polynomials. In the case that
this does not work both candidates are returned. In the case of contradictory data
an empty sequence is returned.

If a factor of the characteristic polynomial is known it can be given as optional
argument.

WeilPolynomialToRankBound(f, q)

Given a polynomial f this routine counts the zeros (with multiplicity) of f that
are q times a root of unity. This is an upper bound for the Picard rank of the
corresponding algebraic surface; according to the Tate conjecture, it is precisely the
Picard rank.

ArtinTateFormula(f, q, h20)

Given a Weil polynomial corresponding to H2 of an algebraic surface with Hodge
number h2,0 this routine evaluates the Artin-Tate formula. If the Tate conjecture
holds, the two values returned are the arithmetic Picard rank, and the absolute
value of the discriminant of the Picard group times the order of the Brauer group
of the surface.

WeilPolynomialOverFieldExtension(f, deg)

Given the characteristic polynomial f of the Frobenius on an etale cohomology
group. This routine returns the characteristic polynomial of the deg times iterated
Frobenius.
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CheckWeilPolynomial(f, q, h20)

SurfDeg RngIntElt Default : −1
Given a polynomial f this routine checks several conditions that must be satisfied
by the characteristic polynomial of the Frobenius on H2 of an algebraic surface.
Here q is the size of the basefield, h20 is the Hodge number h2,0 and SurfDeg is the
degree of the surface (-1 means degree unknown). For example, this routine can be
used to determine the sign in the functional equation.

The routine checks the valuation of the roots at all places (including p and ∞).
It also checks the functional equation and the Artin-Tate conditions (see [EJ10] for
details).

Example H127E35

> q1<t> := PolynomialRing(RationalField());

> z4<x,y,z,w> := PolynomialRing(IntegerRing(),4);

> f := x^4 + x^3*z + x^2*y^2 + x^2*y*w + x^2*z^2 + x^2*z*w +

> x*y^3 + x*y*z*w + x*y*w^2 + x*z^2*w + y^3*w + y^2*z^2 +

> y^2*z*w + y^2*w^2 + y*z^2*w + z^4 + z*w^3;

> Tr := [];

> for i := 1 to 10 do

> P3 := ProjectiveSpace(GF(2^i),3);

> S := Scheme(P3,f);

> time

> Tr[i] := #Points(S) - 1 - 2^(2*i);

> end for;

> cpl := FrobeniusTracesToWeilPolynomials(Tr, 2, 2, 22: KnownFactor := t-2);

> cpl;

[

t^22 - t^21 - 2*t^20 - 4*t^19 + 16*t^17 + 32*t^16 - 64*t^15

+ 16384*t^7 - 32768*t^6 - 65536*t^5 + 262144*t^3

+ 524288*t^2 + 1048576*t - 4194304,

t^22 - t^21 - 2*t^20 - 4*t^19 + 16*t^17 + 32*t^16 - 64*t^15

- 16384*t^7 + 32768*t^6 + 65536*t^5 - 262144*t^3

- 524288*t^2 - 1048576*t + 4194304

]

Here the sign in the functional equation can not be determined by the absolute values of roots
test. Further point counting would be very slow, as the coefficients of t11, t10, t9, t8 are zero, thus
point counting over F215 would be necessary to determine the sign in this way. Instead, we can
try to use more invariants of the surface.

> cpl_2 := [wp : wp in cpl | CheckWeilPolynomial(wp,2,1: SurfDeg := 4)];

> cpl_2;

[

t^22 - t^21 - 2*t^20 - 4*t^19 + 16*t^17 + 32*t^16 - 64*t^15

+ 16384*t^7 - 32768*t^6 - 65536*t^5 + 262144*t^3

+ 524288*t^2 + 1048576*t - 4194304
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]

> WeilPolynomialToRankBound(cpl_2[1],2);

2

> ArtinTateFormula(cpl_2[1],2,1);

1 4

> ArtinTateFormula(WeilPolynomialOverFieldExtension(cpl_2[1],2),2^2,1);

2 68

Thus the minus sign in the functional equation is correct. The surface has arithmetic Picard rank
1 and relative to the Tate conjecture the geometric Picard group has rank 2 and discriminant
either -17 or -68 (depending on the order of the Brauer group).

Advanced example: Bounding Picard rank with less point counting:

The computation is based on the same equation as the example above. Now we do not use the
most costly Frobenius trace, but we assume additional cyclotomic factors.

> Tr := [ 1, 5, 19, 33, 11, -55, 435, -31, -197]; /* First 9 Frobenius traces */

> cycl := [ Evaluate(CyclotomicPolynomial(i),t/2)*2^EulerPhi(i)

> : i in [1..100] | EulerPhi(i) lt 23];

> cycl[1] := cycl[1]^2;

> cycl[2] := cycl[2]^2; /* linear factors need multiplicity two */

> hyp := &cat [FrobeniusTracesToWeilPolynomials(Tr, 2, 2, 22 :

> KnownFactor := (t-2)*add) : add in cycl];

> hyp := SetToSequence(Set(hyp));

> hyp;

[

t^22 - t^21 - 2*t^20 - 4*t^19 + 16*t^17 + 32*t^16 - 64*t^15

- 16384*t^7 + 32768*t^6 + 65536*t^5 - 262144*t^3

- 524288*t^2 - 1048576*t + 4194304

]

Using only the number of point over F2, . . . ,F29 we can prove that either the Picard rank is
bounded by 2 or the correct Weil polynomial is in the list.

> CheckWeilPolynomial(hyp[1],2,1:SurfDeg := 4);

false

The invariants of the surface and the hypothetical Weil polynomial are contradictory. Thus the
Picard rank is at most 2.
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